
costing us lots more to maintain than it was worth. On shared tables it was of exactly zero benefit because we couldn't trust it to be up to date. On temp tables it sometimes saved an lseek, but not often enough to be worth getting excited about. And the real problem was that we forced an lseek on every relcache flush in order to update the field. So all in all it seems best to lose the complexity.
2156 lines
60 KiB
C
2156 lines
60 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* analyze.c
|
|
* the Postgres statistics generator
|
|
*
|
|
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/commands/analyze.c,v 1.71 2004/05/08 19:09:24 tgl Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include <math.h>
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/tuptoaster.h"
|
|
#include "catalog/catalog.h"
|
|
#include "catalog/catname.h"
|
|
#include "catalog/index.h"
|
|
#include "catalog/indexing.h"
|
|
#include "catalog/namespace.h"
|
|
#include "catalog/pg_operator.h"
|
|
#include "commands/vacuum.h"
|
|
#include "executor/executor.h"
|
|
#include "miscadmin.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/datum.h"
|
|
#include "utils/fmgroids.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
#include "utils/tuplesort.h"
|
|
|
|
|
|
/* Per-index data for ANALYZE */
|
|
typedef struct AnlIndexData
|
|
{
|
|
IndexInfo *indexInfo; /* BuildIndexInfo result */
|
|
double tupleFract; /* fraction of rows for partial index */
|
|
VacAttrStats **vacattrstats; /* index attrs to analyze */
|
|
int attr_cnt;
|
|
} AnlIndexData;
|
|
|
|
|
|
/* Default statistics target (GUC parameter) */
|
|
int default_statistics_target = 10;
|
|
|
|
static int elevel = -1;
|
|
|
|
static MemoryContext anl_context = NULL;
|
|
|
|
|
|
static void compute_index_stats(Relation onerel, double totalrows,
|
|
AnlIndexData *indexdata, int nindexes,
|
|
HeapTuple *rows, int numrows,
|
|
MemoryContext col_context);
|
|
static VacAttrStats *examine_attribute(Relation onerel, int attnum);
|
|
static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
|
|
int targrows, double *totalrows);
|
|
static double random_fract(void);
|
|
static double init_selection_state(int n);
|
|
static double select_next_random_record(double t, int n, double *stateptr);
|
|
static int compare_rows(const void *a, const void *b);
|
|
static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
|
|
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
|
|
static Datum ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
|
|
|
|
static bool std_typanalyze(VacAttrStats *stats);
|
|
|
|
|
|
/*
|
|
* analyze_rel() -- analyze one relation
|
|
*/
|
|
void
|
|
analyze_rel(Oid relid, VacuumStmt *vacstmt)
|
|
{
|
|
Relation onerel;
|
|
int attr_cnt,
|
|
tcnt,
|
|
i,
|
|
ind;
|
|
Relation *Irel;
|
|
int nindexes;
|
|
bool hasindex;
|
|
bool analyzableindex;
|
|
VacAttrStats **vacattrstats;
|
|
AnlIndexData *indexdata;
|
|
int targrows,
|
|
numrows;
|
|
double totalrows;
|
|
HeapTuple *rows;
|
|
|
|
if (vacstmt->verbose)
|
|
elevel = INFO;
|
|
else
|
|
elevel = DEBUG2;
|
|
|
|
/*
|
|
* Use the current context for storing analysis info. vacuum.c
|
|
* ensures that this context will be cleared when I return, thus
|
|
* releasing the memory allocated here.
|
|
*/
|
|
anl_context = CurrentMemoryContext;
|
|
|
|
/*
|
|
* Check for user-requested abort. Note we want this to be inside a
|
|
* transaction, so xact.c doesn't issue useless WARNING.
|
|
*/
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
/*
|
|
* Race condition -- if the pg_class tuple has gone away since the
|
|
* last time we saw it, we don't need to process it.
|
|
*/
|
|
if (!SearchSysCacheExists(RELOID,
|
|
ObjectIdGetDatum(relid),
|
|
0, 0, 0))
|
|
return;
|
|
|
|
/*
|
|
* Open the class, getting only a read lock on it, and check
|
|
* permissions. Permissions check should match vacuum's check!
|
|
*/
|
|
onerel = relation_open(relid, AccessShareLock);
|
|
|
|
if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
|
|
(pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
|
|
{
|
|
/* No need for a WARNING if we already complained during VACUUM */
|
|
if (!vacstmt->vacuum)
|
|
ereport(WARNING,
|
|
(errmsg("skipping \"%s\" --- only table or database owner can analyze it",
|
|
RelationGetRelationName(onerel))));
|
|
relation_close(onerel, AccessShareLock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check that it's a plain table; we used to do this in
|
|
* get_rel_oids() but seems safer to check after we've locked the
|
|
* relation.
|
|
*/
|
|
if (onerel->rd_rel->relkind != RELKIND_RELATION)
|
|
{
|
|
/* No need for a WARNING if we already complained during VACUUM */
|
|
if (!vacstmt->vacuum)
|
|
ereport(WARNING,
|
|
(errmsg("skipping \"%s\" --- cannot analyze indexes, views, or special system tables",
|
|
RelationGetRelationName(onerel))));
|
|
relation_close(onerel, AccessShareLock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Silently ignore tables that are temp tables of other backends ---
|
|
* trying to analyze these is rather pointless, since their contents
|
|
* are probably not up-to-date on disk. (We don't throw a warning
|
|
* here; it would just lead to chatter during a database-wide
|
|
* ANALYZE.)
|
|
*/
|
|
if (isOtherTempNamespace(RelationGetNamespace(onerel)))
|
|
{
|
|
relation_close(onerel, AccessShareLock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* We can ANALYZE any table except pg_statistic. See update_attstats
|
|
*/
|
|
if (IsSystemNamespace(RelationGetNamespace(onerel)) &&
|
|
strcmp(RelationGetRelationName(onerel), StatisticRelationName) == 0)
|
|
{
|
|
relation_close(onerel, AccessShareLock);
|
|
return;
|
|
}
|
|
|
|
ereport(elevel,
|
|
(errmsg("analyzing \"%s.%s\"",
|
|
get_namespace_name(RelationGetNamespace(onerel)),
|
|
RelationGetRelationName(onerel))));
|
|
|
|
/*
|
|
* Determine which columns to analyze
|
|
*
|
|
* Note that system attributes are never analyzed.
|
|
*/
|
|
if (vacstmt->va_cols != NIL)
|
|
{
|
|
List *le;
|
|
|
|
vacattrstats = (VacAttrStats **) palloc(length(vacstmt->va_cols) *
|
|
sizeof(VacAttrStats *));
|
|
tcnt = 0;
|
|
foreach(le, vacstmt->va_cols)
|
|
{
|
|
char *col = strVal(lfirst(le));
|
|
|
|
i = attnameAttNum(onerel, col, false);
|
|
vacattrstats[tcnt] = examine_attribute(onerel, i);
|
|
if (vacattrstats[tcnt] != NULL)
|
|
tcnt++;
|
|
}
|
|
attr_cnt = tcnt;
|
|
}
|
|
else
|
|
{
|
|
attr_cnt = onerel->rd_att->natts;
|
|
/* +1 here is just to avoid palloc(0) with zero-column table */
|
|
vacattrstats = (VacAttrStats **) palloc((attr_cnt + 1) *
|
|
sizeof(VacAttrStats *));
|
|
tcnt = 0;
|
|
for (i = 1; i <= attr_cnt; i++)
|
|
{
|
|
vacattrstats[tcnt] = examine_attribute(onerel, i);
|
|
if (vacattrstats[tcnt] != NULL)
|
|
tcnt++;
|
|
}
|
|
attr_cnt = tcnt;
|
|
}
|
|
|
|
/*
|
|
* Open all indexes of the relation, and see if there are any analyzable
|
|
* columns in the indexes. We do not analyze index columns if there was
|
|
* an explicit column list in the ANALYZE command, however.
|
|
*/
|
|
vac_open_indexes(onerel, &nindexes, &Irel);
|
|
hasindex = (nindexes > 0);
|
|
indexdata = NULL;
|
|
analyzableindex = false;
|
|
if (hasindex)
|
|
{
|
|
indexdata = (AnlIndexData *) palloc0(nindexes * sizeof(AnlIndexData));
|
|
for (ind = 0; ind < nindexes; ind++)
|
|
{
|
|
AnlIndexData *thisdata = &indexdata[ind];
|
|
IndexInfo *indexInfo;
|
|
|
|
thisdata->indexInfo = indexInfo = BuildIndexInfo(Irel[ind]);
|
|
thisdata->tupleFract = 1.0; /* fix later if partial */
|
|
if (indexInfo->ii_Expressions != NIL && vacstmt->va_cols == NIL)
|
|
{
|
|
List *indexprs = indexInfo->ii_Expressions;
|
|
|
|
thisdata->vacattrstats = (VacAttrStats **)
|
|
palloc(indexInfo->ii_NumIndexAttrs * sizeof(VacAttrStats *));
|
|
tcnt = 0;
|
|
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
|
|
{
|
|
int keycol = indexInfo->ii_KeyAttrNumbers[i];
|
|
|
|
if (keycol == 0)
|
|
{
|
|
/* Found an index expression */
|
|
Node *indexkey;
|
|
|
|
if (indexprs == NIL) /* shouldn't happen */
|
|
elog(ERROR, "too few entries in indexprs list");
|
|
indexkey = (Node *) lfirst(indexprs);
|
|
indexprs = lnext(indexprs);
|
|
|
|
/*
|
|
* Can't analyze if the opclass uses a storage type
|
|
* different from the expression result type. We'd
|
|
* get confused because the type shown in pg_attribute
|
|
* for the index column doesn't match what we are
|
|
* getting from the expression. Perhaps this can be
|
|
* fixed someday, but for now, punt.
|
|
*/
|
|
if (exprType(indexkey) !=
|
|
Irel[ind]->rd_att->attrs[i]->atttypid)
|
|
continue;
|
|
|
|
thisdata->vacattrstats[tcnt] =
|
|
examine_attribute(Irel[ind], i+1);
|
|
if (thisdata->vacattrstats[tcnt] != NULL)
|
|
{
|
|
tcnt++;
|
|
analyzableindex = true;
|
|
}
|
|
}
|
|
}
|
|
thisdata->attr_cnt = tcnt;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Quit if no analyzable columns
|
|
*/
|
|
if (attr_cnt <= 0 && !analyzableindex)
|
|
{
|
|
vac_close_indexes(nindexes, Irel);
|
|
relation_close(onerel, AccessShareLock);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Determine how many rows we need to sample, using the worst case
|
|
* from all analyzable columns. We use a lower bound of 100 rows to
|
|
* avoid possible overflow in Vitter's algorithm.
|
|
*/
|
|
targrows = 100;
|
|
for (i = 0; i < attr_cnt; i++)
|
|
{
|
|
if (targrows < vacattrstats[i]->minrows)
|
|
targrows = vacattrstats[i]->minrows;
|
|
}
|
|
for (ind = 0; ind < nindexes; ind++)
|
|
{
|
|
AnlIndexData *thisdata = &indexdata[ind];
|
|
|
|
for (i = 0; i < thisdata->attr_cnt; i++)
|
|
{
|
|
if (targrows < thisdata->vacattrstats[i]->minrows)
|
|
targrows = thisdata->vacattrstats[i]->minrows;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Acquire the sample rows
|
|
*/
|
|
rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
|
|
numrows = acquire_sample_rows(onerel, rows, targrows, &totalrows);
|
|
|
|
/*
|
|
* Compute the statistics. Temporary results during the calculations
|
|
* for each column are stored in a child context. The calc routines
|
|
* are responsible to make sure that whatever they store into the
|
|
* VacAttrStats structure is allocated in anl_context.
|
|
*/
|
|
if (numrows > 0)
|
|
{
|
|
MemoryContext col_context,
|
|
old_context;
|
|
|
|
col_context = AllocSetContextCreate(anl_context,
|
|
"Analyze Column",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
old_context = MemoryContextSwitchTo(col_context);
|
|
|
|
for (i = 0; i < attr_cnt; i++)
|
|
{
|
|
VacAttrStats *stats = vacattrstats[i];
|
|
|
|
stats->rows = rows;
|
|
stats->tupDesc = onerel->rd_att;
|
|
(*stats->compute_stats) (stats,
|
|
std_fetch_func,
|
|
numrows,
|
|
totalrows);
|
|
MemoryContextResetAndDeleteChildren(col_context);
|
|
}
|
|
|
|
if (hasindex)
|
|
compute_index_stats(onerel, totalrows,
|
|
indexdata, nindexes,
|
|
rows, numrows,
|
|
col_context);
|
|
|
|
MemoryContextSwitchTo(old_context);
|
|
MemoryContextDelete(col_context);
|
|
|
|
/*
|
|
* Emit the completed stats rows into pg_statistic, replacing any
|
|
* previous statistics for the target columns. (If there are
|
|
* stats in pg_statistic for columns we didn't process, we leave
|
|
* them alone.)
|
|
*/
|
|
update_attstats(relid, attr_cnt, vacattrstats);
|
|
|
|
for (ind = 0; ind < nindexes; ind++)
|
|
{
|
|
AnlIndexData *thisdata = &indexdata[ind];
|
|
|
|
update_attstats(RelationGetRelid(Irel[ind]),
|
|
thisdata->attr_cnt, thisdata->vacattrstats);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are running a standalone ANALYZE, update pages/tuples stats
|
|
* in pg_class. We know the accurate page count from the smgr,
|
|
* but only an approximate number of tuples; therefore, if we are part
|
|
* of VACUUM ANALYZE do *not* overwrite the accurate count already
|
|
* inserted by VACUUM. The same consideration applies to indexes.
|
|
*/
|
|
if (!vacstmt->vacuum)
|
|
{
|
|
vac_update_relstats(RelationGetRelid(onerel),
|
|
RelationGetNumberOfBlocks(onerel),
|
|
totalrows,
|
|
hasindex);
|
|
for (ind = 0; ind < nindexes; ind++)
|
|
{
|
|
AnlIndexData *thisdata = &indexdata[ind];
|
|
double totalindexrows;
|
|
|
|
totalindexrows = ceil(thisdata->tupleFract * totalrows);
|
|
vac_update_relstats(RelationGetRelid(Irel[ind]),
|
|
RelationGetNumberOfBlocks(Irel[ind]),
|
|
totalindexrows,
|
|
false);
|
|
}
|
|
}
|
|
|
|
/* Done with indexes */
|
|
vac_close_indexes(nindexes, Irel);
|
|
|
|
/*
|
|
* Close source relation now, but keep lock so that no one deletes it
|
|
* before we commit. (If someone did, they'd fail to clean up the
|
|
* entries we made in pg_statistic.)
|
|
*/
|
|
relation_close(onerel, NoLock);
|
|
}
|
|
|
|
/*
|
|
* Compute statistics about indexes of a relation
|
|
*/
|
|
static void
|
|
compute_index_stats(Relation onerel, double totalrows,
|
|
AnlIndexData *indexdata, int nindexes,
|
|
HeapTuple *rows, int numrows,
|
|
MemoryContext col_context)
|
|
{
|
|
MemoryContext ind_context,
|
|
old_context;
|
|
TupleDesc heapDescriptor;
|
|
Datum attdata[INDEX_MAX_KEYS];
|
|
char nulls[INDEX_MAX_KEYS];
|
|
int ind,
|
|
i;
|
|
|
|
heapDescriptor = RelationGetDescr(onerel);
|
|
|
|
ind_context = AllocSetContextCreate(anl_context,
|
|
"Analyze Index",
|
|
ALLOCSET_DEFAULT_MINSIZE,
|
|
ALLOCSET_DEFAULT_INITSIZE,
|
|
ALLOCSET_DEFAULT_MAXSIZE);
|
|
old_context = MemoryContextSwitchTo(ind_context);
|
|
|
|
for (ind = 0; ind < nindexes; ind++)
|
|
{
|
|
AnlIndexData *thisdata = &indexdata[ind];
|
|
IndexInfo *indexInfo = thisdata->indexInfo;
|
|
int attr_cnt = thisdata->attr_cnt;
|
|
TupleTable tupleTable;
|
|
TupleTableSlot *slot;
|
|
EState *estate;
|
|
ExprContext *econtext;
|
|
List *predicate;
|
|
Datum *exprvals;
|
|
bool *exprnulls;
|
|
int numindexrows,
|
|
tcnt,
|
|
rowno;
|
|
double totalindexrows;
|
|
|
|
/* Ignore index if no columns to analyze and not partial */
|
|
if (attr_cnt == 0 && indexInfo->ii_Predicate == NIL)
|
|
continue;
|
|
|
|
/*
|
|
* Need an EState for evaluation of index expressions and
|
|
* partial-index predicates. Create it in the per-index context
|
|
* to be sure it gets cleaned up at the bottom of the loop.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
econtext = GetPerTupleExprContext(estate);
|
|
/* Need a slot to hold the current heap tuple, too */
|
|
tupleTable = ExecCreateTupleTable(1);
|
|
slot = ExecAllocTableSlot(tupleTable);
|
|
ExecSetSlotDescriptor(slot, heapDescriptor, false);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* Set up execution state for predicate. */
|
|
predicate = (List *)
|
|
ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
|
|
estate);
|
|
|
|
/* Compute and save index expression values */
|
|
exprvals = (Datum *) palloc((numrows * attr_cnt + 1) * sizeof(Datum));
|
|
exprnulls = (bool *) palloc((numrows * attr_cnt + 1) * sizeof(bool));
|
|
numindexrows = 0;
|
|
tcnt = 0;
|
|
for (rowno = 0; rowno < numrows; rowno++)
|
|
{
|
|
HeapTuple heapTuple = rows[rowno];
|
|
|
|
/* Set up for predicate or expression evaluation */
|
|
ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);
|
|
|
|
/* If index is partial, check predicate */
|
|
if (predicate != NIL)
|
|
{
|
|
if (!ExecQual(predicate, econtext, false))
|
|
continue;
|
|
}
|
|
numindexrows++;
|
|
|
|
if (attr_cnt > 0)
|
|
{
|
|
/*
|
|
* Evaluate the index row to compute expression values.
|
|
* We could do this by hand, but FormIndexDatum is convenient.
|
|
*/
|
|
FormIndexDatum(indexInfo,
|
|
heapTuple,
|
|
heapDescriptor,
|
|
estate,
|
|
attdata,
|
|
nulls);
|
|
/*
|
|
* Save just the columns we care about.
|
|
*/
|
|
for (i = 0; i < attr_cnt; i++)
|
|
{
|
|
VacAttrStats *stats = thisdata->vacattrstats[i];
|
|
int attnum = stats->attr->attnum;
|
|
|
|
exprvals[tcnt] = attdata[attnum-1];
|
|
exprnulls[tcnt] = (nulls[attnum-1] == 'n');
|
|
tcnt++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Having counted the number of rows that pass the predicate in
|
|
* the sample, we can estimate the total number of rows in the index.
|
|
*/
|
|
thisdata->tupleFract = (double) numindexrows / (double) numrows;
|
|
totalindexrows = ceil(thisdata->tupleFract * totalrows);
|
|
|
|
/*
|
|
* Now we can compute the statistics for the expression columns.
|
|
*/
|
|
if (numindexrows > 0)
|
|
{
|
|
MemoryContextSwitchTo(col_context);
|
|
for (i = 0; i < attr_cnt; i++)
|
|
{
|
|
VacAttrStats *stats = thisdata->vacattrstats[i];
|
|
|
|
stats->exprvals = exprvals + i;
|
|
stats->exprnulls = exprnulls + i;
|
|
stats->rowstride = attr_cnt;
|
|
(*stats->compute_stats) (stats,
|
|
ind_fetch_func,
|
|
numindexrows,
|
|
totalindexrows);
|
|
MemoryContextResetAndDeleteChildren(col_context);
|
|
}
|
|
}
|
|
|
|
/* And clean up */
|
|
MemoryContextSwitchTo(ind_context);
|
|
|
|
ExecDropTupleTable(tupleTable, true);
|
|
FreeExecutorState(estate);
|
|
MemoryContextResetAndDeleteChildren(ind_context);
|
|
}
|
|
|
|
MemoryContextSwitchTo(old_context);
|
|
MemoryContextDelete(ind_context);
|
|
}
|
|
|
|
/*
|
|
* examine_attribute -- pre-analysis of a single column
|
|
*
|
|
* Determine whether the column is analyzable; if so, create and initialize
|
|
* a VacAttrStats struct for it. If not, return NULL.
|
|
*/
|
|
static VacAttrStats *
|
|
examine_attribute(Relation onerel, int attnum)
|
|
{
|
|
Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1];
|
|
HeapTuple typtuple;
|
|
VacAttrStats *stats;
|
|
bool ok;
|
|
|
|
/* Never analyze dropped columns */
|
|
if (attr->attisdropped)
|
|
return NULL;
|
|
|
|
/* Don't analyze column if user has specified not to */
|
|
if (attr->attstattarget == 0)
|
|
return NULL;
|
|
|
|
/*
|
|
* Create the VacAttrStats struct.
|
|
*/
|
|
stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
|
|
stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE);
|
|
memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE);
|
|
typtuple = SearchSysCache(TYPEOID,
|
|
ObjectIdGetDatum(attr->atttypid),
|
|
0, 0, 0);
|
|
if (!HeapTupleIsValid(typtuple))
|
|
elog(ERROR, "cache lookup failed for type %u", attr->atttypid);
|
|
stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type));
|
|
memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type));
|
|
ReleaseSysCache(typtuple);
|
|
stats->anl_context = anl_context;
|
|
stats->tupattnum = attnum;
|
|
|
|
/*
|
|
* Call the type-specific typanalyze function. If none is specified,
|
|
* use std_typanalyze().
|
|
*/
|
|
if (OidIsValid(stats->attrtype->typanalyze))
|
|
ok = DatumGetBool(OidFunctionCall1(stats->attrtype->typanalyze,
|
|
PointerGetDatum(stats)));
|
|
else
|
|
ok = std_typanalyze(stats);
|
|
|
|
if (!ok || stats->compute_stats == NULL || stats->minrows <= 0)
|
|
{
|
|
pfree(stats->attrtype);
|
|
pfree(stats->attr);
|
|
pfree(stats);
|
|
return NULL;
|
|
}
|
|
|
|
return stats;
|
|
}
|
|
|
|
/*
|
|
* acquire_sample_rows -- acquire a random sample of rows from the table
|
|
*
|
|
* Up to targrows rows are collected (if there are fewer than that many
|
|
* rows in the table, all rows are collected). When the table is larger
|
|
* than targrows, a truly random sample is collected: every row has an
|
|
* equal chance of ending up in the final sample.
|
|
*
|
|
* We also estimate the total number of rows in the table, and return that
|
|
* into *totalrows.
|
|
*
|
|
* The returned list of tuples is in order by physical position in the table.
|
|
* (We will rely on this later to derive correlation estimates.)
|
|
*/
|
|
static int
|
|
acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
|
|
double *totalrows)
|
|
{
|
|
int numrows = 0;
|
|
HeapScanDesc scan;
|
|
BlockNumber totalblocks;
|
|
HeapTuple tuple;
|
|
ItemPointer lasttuple;
|
|
BlockNumber lastblock,
|
|
estblock;
|
|
OffsetNumber lastoffset;
|
|
int numest;
|
|
double tuplesperpage;
|
|
double t;
|
|
double rstate;
|
|
|
|
Assert(targrows > 1);
|
|
|
|
/*
|
|
* Do a simple linear scan until we reach the target number of rows.
|
|
*/
|
|
scan = heap_beginscan(onerel, SnapshotNow, 0, NULL);
|
|
totalblocks = scan->rs_nblocks; /* grab current relation size */
|
|
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
|
|
{
|
|
rows[numrows++] = heap_copytuple(tuple);
|
|
if (numrows >= targrows)
|
|
break;
|
|
vacuum_delay_point();
|
|
}
|
|
heap_endscan(scan);
|
|
|
|
/*
|
|
* If we ran out of tuples then we're done, no matter how few we
|
|
* collected. No sort is needed, since they're already in order.
|
|
*/
|
|
if (!HeapTupleIsValid(tuple))
|
|
{
|
|
*totalrows = (double) numrows;
|
|
|
|
ereport(elevel,
|
|
(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
|
|
RelationGetRelationName(onerel),
|
|
totalblocks, numrows, *totalrows)));
|
|
|
|
return numrows;
|
|
}
|
|
|
|
/*
|
|
* Otherwise, start replacing tuples in the sample until we reach the
|
|
* end of the relation. This algorithm is from Jeff Vitter's paper
|
|
* (see full citation below). It works by repeatedly computing the
|
|
* number of the next tuple we want to fetch, which will replace a
|
|
* randomly chosen element of the reservoir (current set of tuples).
|
|
* At all times the reservoir is a true random sample of the tuples
|
|
* we've passed over so far, so when we fall off the end of the
|
|
* relation we're done.
|
|
*
|
|
* A slight difficulty is that since we don't want to fetch tuples or
|
|
* even pages that we skip over, it's not possible to fetch *exactly*
|
|
* the N'th tuple at each step --- we don't know how many valid tuples
|
|
* are on the skipped pages. We handle this by assuming that the
|
|
* average number of valid tuples/page on the pages already scanned
|
|
* over holds good for the rest of the relation as well; this lets us
|
|
* estimate which page the next tuple should be on and its position in
|
|
* the page. Then we fetch the first valid tuple at or after that
|
|
* position, being careful not to use the same tuple twice. This
|
|
* approach should still give a good random sample, although it's not
|
|
* perfect.
|
|
*/
|
|
lasttuple = &(rows[numrows - 1]->t_self);
|
|
lastblock = ItemPointerGetBlockNumber(lasttuple);
|
|
lastoffset = ItemPointerGetOffsetNumber(lasttuple);
|
|
|
|
/*
|
|
* If possible, estimate tuples/page using only completely-scanned
|
|
* pages.
|
|
*/
|
|
for (numest = numrows; numest > 0; numest--)
|
|
{
|
|
if (ItemPointerGetBlockNumber(&(rows[numest - 1]->t_self)) != lastblock)
|
|
break;
|
|
}
|
|
if (numest == 0)
|
|
{
|
|
numest = numrows; /* don't have a full page? */
|
|
estblock = lastblock + 1;
|
|
}
|
|
else
|
|
estblock = lastblock;
|
|
tuplesperpage = (double) numest / (double) estblock;
|
|
|
|
t = (double) numrows; /* t is the # of records processed so far */
|
|
rstate = init_selection_state(targrows);
|
|
for (;;)
|
|
{
|
|
double targpos;
|
|
BlockNumber targblock;
|
|
Buffer targbuffer;
|
|
Page targpage;
|
|
OffsetNumber targoffset,
|
|
maxoffset;
|
|
|
|
vacuum_delay_point();
|
|
|
|
t = select_next_random_record(t, targrows, &rstate);
|
|
/* Try to read the t'th record in the table */
|
|
targpos = t / tuplesperpage;
|
|
targblock = (BlockNumber) targpos;
|
|
targoffset = ((int) ((targpos - targblock) * tuplesperpage)) +
|
|
FirstOffsetNumber;
|
|
/* Make sure we are past the last selected record */
|
|
if (targblock <= lastblock)
|
|
{
|
|
targblock = lastblock;
|
|
if (targoffset <= lastoffset)
|
|
targoffset = lastoffset + 1;
|
|
}
|
|
/* Loop to find first valid record at or after given position */
|
|
pageloop:;
|
|
|
|
/*
|
|
* Have we fallen off the end of the relation?
|
|
*/
|
|
if (targblock >= totalblocks)
|
|
break;
|
|
|
|
/*
|
|
* We must maintain a pin on the target page's buffer to ensure
|
|
* that the maxoffset value stays good (else concurrent VACUUM
|
|
* might delete tuples out from under us). Hence, pin the page
|
|
* until we are done looking at it. We don't maintain a lock on
|
|
* the page, so tuples could get added to it, but we ignore such
|
|
* tuples.
|
|
*/
|
|
targbuffer = ReadBuffer(onerel, targblock);
|
|
if (!BufferIsValid(targbuffer))
|
|
elog(ERROR, "ReadBuffer failed");
|
|
LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
|
|
targpage = BufferGetPage(targbuffer);
|
|
maxoffset = PageGetMaxOffsetNumber(targpage);
|
|
LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK);
|
|
|
|
for (;;)
|
|
{
|
|
HeapTupleData targtuple;
|
|
Buffer tupbuffer;
|
|
|
|
if (targoffset > maxoffset)
|
|
{
|
|
/* Fell off end of this page, try next */
|
|
ReleaseBuffer(targbuffer);
|
|
targblock++;
|
|
targoffset = FirstOffsetNumber;
|
|
goto pageloop;
|
|
}
|
|
ItemPointerSet(&targtuple.t_self, targblock, targoffset);
|
|
if (heap_fetch(onerel, SnapshotNow, &targtuple, &tupbuffer,
|
|
false, NULL))
|
|
{
|
|
/*
|
|
* Found a suitable tuple, so save it, replacing one old
|
|
* tuple at random
|
|
*/
|
|
int k = (int) (targrows * random_fract());
|
|
|
|
Assert(k >= 0 && k < targrows);
|
|
heap_freetuple(rows[k]);
|
|
rows[k] = heap_copytuple(&targtuple);
|
|
/* this releases the second pin acquired by heap_fetch: */
|
|
ReleaseBuffer(tupbuffer);
|
|
/* this releases the initial pin: */
|
|
ReleaseBuffer(targbuffer);
|
|
lastblock = targblock;
|
|
lastoffset = targoffset;
|
|
break;
|
|
}
|
|
/* this tuple is dead, so advance to next one on same page */
|
|
targoffset++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Now we need to sort the collected tuples by position (itempointer).
|
|
*/
|
|
qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
|
|
|
|
/*
|
|
* Estimate total number of valid rows in relation.
|
|
*/
|
|
*totalrows = floor((double) totalblocks * tuplesperpage + 0.5);
|
|
|
|
/*
|
|
* Emit some interesting relation info
|
|
*/
|
|
ereport(elevel,
|
|
(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
|
|
RelationGetRelationName(onerel),
|
|
totalblocks, numrows, *totalrows)));
|
|
|
|
return numrows;
|
|
}
|
|
|
|
/* Select a random value R uniformly distributed in 0 < R < 1 */
|
|
static double
|
|
random_fract(void)
|
|
{
|
|
long z;
|
|
|
|
/* random() can produce endpoint values, try again if so */
|
|
do
|
|
{
|
|
z = random();
|
|
} while (z <= 0 || z >= MAX_RANDOM_VALUE);
|
|
return (double) z / (double) MAX_RANDOM_VALUE;
|
|
}
|
|
|
|
/*
|
|
* These two routines embody Algorithm Z from "Random sampling with a
|
|
* reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
|
|
* (Mar. 1985), Pages 37-57. While Vitter describes his algorithm in terms
|
|
* of the count S of records to skip before processing another record,
|
|
* it is convenient to work primarily with t, the index (counting from 1)
|
|
* of the last record processed and next record to process. The only extra
|
|
* state needed between calls is W, a random state variable.
|
|
*
|
|
* Note: the original algorithm defines t, S, numer, and denom as integers.
|
|
* Here we express them as doubles to avoid overflow if the number of rows
|
|
* in the table exceeds INT_MAX. The algorithm should work as long as the
|
|
* row count does not become so large that it is not represented accurately
|
|
* in a double (on IEEE-math machines this would be around 2^52 rows).
|
|
*
|
|
* init_selection_state computes the initial W value.
|
|
*
|
|
* Given that we've already processed t records (t >= n),
|
|
* select_next_random_record determines the number of the next record to
|
|
* process.
|
|
*/
|
|
static double
|
|
init_selection_state(int n)
|
|
{
|
|
/* Initial value of W (for use when Algorithm Z is first applied) */
|
|
return exp(-log(random_fract()) / n);
|
|
}
|
|
|
|
static double
|
|
select_next_random_record(double t, int n, double *stateptr)
|
|
{
|
|
/* The magic constant here is T from Vitter's paper */
|
|
if (t <= (22.0 * n))
|
|
{
|
|
/* Process records using Algorithm X until t is large enough */
|
|
double V,
|
|
quot;
|
|
|
|
V = random_fract(); /* Generate V */
|
|
t += 1;
|
|
quot = (t - (double) n) / t;
|
|
/* Find min S satisfying (4.1) */
|
|
while (quot > V)
|
|
{
|
|
t += 1;
|
|
quot *= (t - (double) n) / t;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Now apply Algorithm Z */
|
|
double W = *stateptr;
|
|
double term = t - (double) n + 1;
|
|
double S;
|
|
|
|
for (;;)
|
|
{
|
|
double numer,
|
|
numer_lim,
|
|
denom;
|
|
double U,
|
|
X,
|
|
lhs,
|
|
rhs,
|
|
y,
|
|
tmp;
|
|
|
|
/* Generate U and X */
|
|
U = random_fract();
|
|
X = t * (W - 1.0);
|
|
S = floor(X); /* S is tentatively set to floor(X) */
|
|
/* Test if U <= h(S)/cg(X) in the manner of (6.3) */
|
|
tmp = (t + 1) / term;
|
|
lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
|
|
rhs = (((t + X) / (term + S)) * term) / t;
|
|
if (lhs <= rhs)
|
|
{
|
|
W = rhs / lhs;
|
|
break;
|
|
}
|
|
/* Test if U <= f(S)/cg(X) */
|
|
y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
|
|
if ((double) n < S)
|
|
{
|
|
denom = t;
|
|
numer_lim = term + S;
|
|
}
|
|
else
|
|
{
|
|
denom = t - (double) n + S;
|
|
numer_lim = t + 1;
|
|
}
|
|
for (numer = t + S; numer >= numer_lim; numer -= 1)
|
|
{
|
|
y *= numer / denom;
|
|
denom -= 1;
|
|
}
|
|
W = exp(-log(random_fract()) / n); /* Generate W in advance */
|
|
if (exp(log(y) / n) <= (t + X) / t)
|
|
break;
|
|
}
|
|
t += S + 1;
|
|
*stateptr = W;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* qsort comparator for sorting rows[] array
|
|
*/
|
|
static int
|
|
compare_rows(const void *a, const void *b)
|
|
{
|
|
HeapTuple ha = *(HeapTuple *) a;
|
|
HeapTuple hb = *(HeapTuple *) b;
|
|
BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
|
|
OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
|
|
BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
|
|
OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
|
|
|
|
if (ba < bb)
|
|
return -1;
|
|
if (ba > bb)
|
|
return 1;
|
|
if (oa < ob)
|
|
return -1;
|
|
if (oa > ob)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* update_attstats() -- update attribute statistics for one relation
|
|
*
|
|
* Statistics are stored in several places: the pg_class row for the
|
|
* relation has stats about the whole relation, and there is a
|
|
* pg_statistic row for each (non-system) attribute that has ever
|
|
* been analyzed. The pg_class values are updated by VACUUM, not here.
|
|
*
|
|
* pg_statistic rows are just added or updated normally. This means
|
|
* that pg_statistic will probably contain some deleted rows at the
|
|
* completion of a vacuum cycle, unless it happens to get vacuumed last.
|
|
*
|
|
* To keep things simple, we punt for pg_statistic, and don't try
|
|
* to compute or store rows for pg_statistic itself in pg_statistic.
|
|
* This could possibly be made to work, but it's not worth the trouble.
|
|
* Note analyze_rel() has seen to it that we won't come here when
|
|
* vacuuming pg_statistic itself.
|
|
*
|
|
* Note: if two backends concurrently try to analyze the same relation,
|
|
* the second one is likely to fail here with a "tuple concurrently
|
|
* updated" error. This is slightly annoying, but no real harm is done.
|
|
* We could prevent the problem by using a stronger lock on the
|
|
* relation for ANALYZE (ie, ShareUpdateExclusiveLock instead
|
|
* of AccessShareLock); but that cure seems worse than the disease,
|
|
* especially now that ANALYZE doesn't start a new transaction
|
|
* for each relation. The lock could be held for a long time...
|
|
*/
|
|
static void
|
|
update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats)
|
|
{
|
|
Relation sd;
|
|
int attno;
|
|
|
|
if (natts <= 0)
|
|
return; /* nothing to do */
|
|
|
|
sd = heap_openr(StatisticRelationName, RowExclusiveLock);
|
|
|
|
for (attno = 0; attno < natts; attno++)
|
|
{
|
|
VacAttrStats *stats = vacattrstats[attno];
|
|
HeapTuple stup,
|
|
oldtup;
|
|
int i,
|
|
k,
|
|
n;
|
|
Datum values[Natts_pg_statistic];
|
|
char nulls[Natts_pg_statistic];
|
|
char replaces[Natts_pg_statistic];
|
|
|
|
/* Ignore attr if we weren't able to collect stats */
|
|
if (!stats->stats_valid)
|
|
continue;
|
|
|
|
/*
|
|
* Construct a new pg_statistic tuple
|
|
*/
|
|
for (i = 0; i < Natts_pg_statistic; ++i)
|
|
{
|
|
nulls[i] = ' ';
|
|
replaces[i] = 'r';
|
|
}
|
|
|
|
i = 0;
|
|
values[i++] = ObjectIdGetDatum(relid); /* starelid */
|
|
values[i++] = Int16GetDatum(stats->attr->attnum); /* staattnum */
|
|
values[i++] = Float4GetDatum(stats->stanullfrac); /* stanullfrac */
|
|
values[i++] = Int32GetDatum(stats->stawidth); /* stawidth */
|
|
values[i++] = Float4GetDatum(stats->stadistinct); /* stadistinct */
|
|
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
|
|
{
|
|
values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
|
|
}
|
|
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
|
|
{
|
|
values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
|
|
}
|
|
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
|
|
{
|
|
int nnum = stats->numnumbers[k];
|
|
|
|
if (nnum > 0)
|
|
{
|
|
Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
|
|
ArrayType *arry;
|
|
|
|
for (n = 0; n < nnum; n++)
|
|
numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
|
|
/* XXX knows more than it should about type float4: */
|
|
arry = construct_array(numdatums, nnum,
|
|
FLOAT4OID,
|
|
sizeof(float4), false, 'i');
|
|
values[i++] = PointerGetDatum(arry); /* stanumbersN */
|
|
}
|
|
else
|
|
{
|
|
nulls[i] = 'n';
|
|
values[i++] = (Datum) 0;
|
|
}
|
|
}
|
|
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
|
|
{
|
|
if (stats->numvalues[k] > 0)
|
|
{
|
|
ArrayType *arry;
|
|
|
|
arry = construct_array(stats->stavalues[k],
|
|
stats->numvalues[k],
|
|
stats->attr->atttypid,
|
|
stats->attrtype->typlen,
|
|
stats->attrtype->typbyval,
|
|
stats->attrtype->typalign);
|
|
values[i++] = PointerGetDatum(arry); /* stavaluesN */
|
|
}
|
|
else
|
|
{
|
|
nulls[i] = 'n';
|
|
values[i++] = (Datum) 0;
|
|
}
|
|
}
|
|
|
|
/* Is there already a pg_statistic tuple for this attribute? */
|
|
oldtup = SearchSysCache(STATRELATT,
|
|
ObjectIdGetDatum(relid),
|
|
Int16GetDatum(stats->attr->attnum),
|
|
0, 0);
|
|
|
|
if (HeapTupleIsValid(oldtup))
|
|
{
|
|
/* Yes, replace it */
|
|
stup = heap_modifytuple(oldtup,
|
|
sd,
|
|
values,
|
|
nulls,
|
|
replaces);
|
|
ReleaseSysCache(oldtup);
|
|
simple_heap_update(sd, &stup->t_self, stup);
|
|
}
|
|
else
|
|
{
|
|
/* No, insert new tuple */
|
|
stup = heap_formtuple(sd->rd_att, values, nulls);
|
|
simple_heap_insert(sd, stup);
|
|
}
|
|
|
|
/* update indexes too */
|
|
CatalogUpdateIndexes(sd, stup);
|
|
|
|
heap_freetuple(stup);
|
|
}
|
|
|
|
heap_close(sd, RowExclusiveLock);
|
|
}
|
|
|
|
/*
|
|
* Standard fetch function for use by compute_stats subroutines.
|
|
*
|
|
* This exists to provide some insulation between compute_stats routines
|
|
* and the actual storage of the sample data.
|
|
*/
|
|
static Datum
|
|
std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
|
|
{
|
|
int attnum = stats->tupattnum;
|
|
HeapTuple tuple = stats->rows[rownum];
|
|
TupleDesc tupDesc = stats->tupDesc;
|
|
|
|
return heap_getattr(tuple, attnum, tupDesc, isNull);
|
|
}
|
|
|
|
/*
|
|
* Fetch function for analyzing index expressions.
|
|
*
|
|
* We have not bothered to construct index tuples, instead the data is
|
|
* just in Datum arrays.
|
|
*/
|
|
static Datum
|
|
ind_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull)
|
|
{
|
|
int i;
|
|
|
|
/* exprvals and exprnulls are already offset for proper column */
|
|
i = rownum * stats->rowstride;
|
|
*isNull = stats->exprnulls[i];
|
|
return stats->exprvals[i];
|
|
}
|
|
|
|
|
|
/*==========================================================================
|
|
*
|
|
* Code below this point represents the "standard" type-specific statistics
|
|
* analysis algorithms. This code can be replaced on a per-data-type basis
|
|
* by setting a nonzero value in pg_type.typanalyze.
|
|
*
|
|
*==========================================================================
|
|
*/
|
|
|
|
|
|
/*
|
|
* To avoid consuming too much memory during analysis and/or too much space
|
|
* in the resulting pg_statistic rows, we ignore varlena datums that are wider
|
|
* than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
|
|
* and distinct-value calculations since a wide value is unlikely to be
|
|
* duplicated at all, much less be a most-common value. For the same reason,
|
|
* ignoring wide values will not affect our estimates of histogram bin
|
|
* boundaries very much.
|
|
*/
|
|
#define WIDTH_THRESHOLD 1024
|
|
|
|
#define swapInt(a,b) do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
|
|
#define swapDatum(a,b) do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
|
|
|
|
/*
|
|
* Extra information used by the default analysis routines
|
|
*/
|
|
typedef struct
|
|
{
|
|
Oid eqopr; /* '=' operator for datatype, if any */
|
|
Oid eqfunc; /* and associated function */
|
|
Oid ltopr; /* '<' operator for datatype, if any */
|
|
} StdAnalyzeData;
|
|
|
|
typedef struct
|
|
{
|
|
Datum value; /* a data value */
|
|
int tupno; /* position index for tuple it came from */
|
|
} ScalarItem;
|
|
|
|
typedef struct
|
|
{
|
|
int count; /* # of duplicates */
|
|
int first; /* values[] index of first occurrence */
|
|
} ScalarMCVItem;
|
|
|
|
|
|
/* context information for compare_scalars() */
|
|
static FmgrInfo *datumCmpFn;
|
|
static SortFunctionKind datumCmpFnKind;
|
|
static int *datumCmpTupnoLink;
|
|
|
|
|
|
static void compute_minimal_stats(VacAttrStatsP stats,
|
|
AnalyzeAttrFetchFunc fetchfunc,
|
|
int samplerows,
|
|
double totalrows);
|
|
static void compute_scalar_stats(VacAttrStatsP stats,
|
|
AnalyzeAttrFetchFunc fetchfunc,
|
|
int samplerows,
|
|
double totalrows);
|
|
static int compare_scalars(const void *a, const void *b);
|
|
static int compare_mcvs(const void *a, const void *b);
|
|
|
|
|
|
/*
|
|
* std_typanalyze -- the default type-specific typanalyze function
|
|
*/
|
|
static bool
|
|
std_typanalyze(VacAttrStats *stats)
|
|
{
|
|
Form_pg_attribute attr = stats->attr;
|
|
Operator func_operator;
|
|
Oid eqopr = InvalidOid;
|
|
Oid eqfunc = InvalidOid;
|
|
Oid ltopr = InvalidOid;
|
|
StdAnalyzeData *mystats;
|
|
|
|
/* If the attstattarget column is negative, use the default value */
|
|
/* NB: it is okay to scribble on stats->attr since it's a copy */
|
|
if (attr->attstattarget < 0)
|
|
attr->attstattarget = default_statistics_target;
|
|
|
|
/* If column has no "=" operator, we can't do much of anything */
|
|
func_operator = equality_oper(attr->atttypid, true);
|
|
if (func_operator != NULL)
|
|
{
|
|
eqopr = oprid(func_operator);
|
|
eqfunc = oprfuncid(func_operator);
|
|
ReleaseSysCache(func_operator);
|
|
}
|
|
if (!OidIsValid(eqfunc))
|
|
return false;
|
|
|
|
/* Is there a "<" operator with suitable semantics? */
|
|
func_operator = ordering_oper(attr->atttypid, true);
|
|
if (func_operator != NULL)
|
|
{
|
|
ltopr = oprid(func_operator);
|
|
ReleaseSysCache(func_operator);
|
|
}
|
|
|
|
/* Save the operator info for compute_stats routines */
|
|
mystats = (StdAnalyzeData *) palloc(sizeof(StdAnalyzeData));
|
|
mystats->eqopr = eqopr;
|
|
mystats->eqfunc = eqfunc;
|
|
mystats->ltopr = ltopr;
|
|
stats->extra_data = mystats;
|
|
|
|
/*
|
|
* Determine which standard statistics algorithm to use
|
|
*/
|
|
if (OidIsValid(ltopr))
|
|
{
|
|
/* Seems to be a scalar datatype */
|
|
stats->compute_stats = compute_scalar_stats;
|
|
/*--------------------
|
|
* The following choice of minrows is based on the paper
|
|
* "Random sampling for histogram construction: how much is enough?"
|
|
* by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
|
|
* Proceedings of ACM SIGMOD International Conference on Management
|
|
* of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
|
|
* says that for table size n, histogram size k, maximum relative
|
|
* error in bin size f, and error probability gamma, the minimum
|
|
* random sample size is
|
|
* r = 4 * k * ln(2*n/gamma) / f^2
|
|
* Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain
|
|
* r = 305.82 * k
|
|
* Note that because of the log function, the dependence on n is
|
|
* quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59
|
|
* bin size error with probability 0.99. So there's no real need to
|
|
* scale for n, which is a good thing because we don't necessarily
|
|
* know it at this point.
|
|
*--------------------
|
|
*/
|
|
stats->minrows = 300 * attr->attstattarget;
|
|
}
|
|
else
|
|
{
|
|
/* Can't do much but the minimal stuff */
|
|
stats->compute_stats = compute_minimal_stats;
|
|
/* Might as well use the same minrows as above */
|
|
stats->minrows = 300 * attr->attstattarget;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* compute_minimal_stats() -- compute minimal column statistics
|
|
*
|
|
* We use this when we can find only an "=" operator for the datatype.
|
|
*
|
|
* We determine the fraction of non-null rows, the average width, the
|
|
* most common values, and the (estimated) number of distinct values.
|
|
*
|
|
* The most common values are determined by brute force: we keep a list
|
|
* of previously seen values, ordered by number of times seen, as we scan
|
|
* the samples. A newly seen value is inserted just after the last
|
|
* multiply-seen value, causing the bottommost (oldest) singly-seen value
|
|
* to drop off the list. The accuracy of this method, and also its cost,
|
|
* depend mainly on the length of the list we are willing to keep.
|
|
*/
|
|
static void
|
|
compute_minimal_stats(VacAttrStatsP stats,
|
|
AnalyzeAttrFetchFunc fetchfunc,
|
|
int samplerows,
|
|
double totalrows)
|
|
{
|
|
int i;
|
|
int null_cnt = 0;
|
|
int nonnull_cnt = 0;
|
|
int toowide_cnt = 0;
|
|
double total_width = 0;
|
|
bool is_varlena = (!stats->attr->attbyval &&
|
|
stats->attr->attlen == -1);
|
|
bool is_varwidth = (!stats->attr->attbyval &&
|
|
stats->attr->attlen < 0);
|
|
FmgrInfo f_cmpeq;
|
|
typedef struct
|
|
{
|
|
Datum value;
|
|
int count;
|
|
} TrackItem;
|
|
TrackItem *track;
|
|
int track_cnt,
|
|
track_max;
|
|
int num_mcv = stats->attr->attstattarget;
|
|
StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
|
|
|
|
/*
|
|
* We track up to 2*n values for an n-element MCV list; but at least
|
|
* 10
|
|
*/
|
|
track_max = 2 * num_mcv;
|
|
if (track_max < 10)
|
|
track_max = 10;
|
|
track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
|
|
track_cnt = 0;
|
|
|
|
fmgr_info(mystats->eqfunc, &f_cmpeq);
|
|
|
|
for (i = 0; i < samplerows; i++)
|
|
{
|
|
Datum value;
|
|
bool isnull;
|
|
bool match;
|
|
int firstcount1,
|
|
j;
|
|
|
|
vacuum_delay_point();
|
|
|
|
value = fetchfunc(stats, i, &isnull);
|
|
|
|
/* Check for null/nonnull */
|
|
if (isnull)
|
|
{
|
|
null_cnt++;
|
|
continue;
|
|
}
|
|
nonnull_cnt++;
|
|
|
|
/*
|
|
* If it's a variable-width field, add up widths for average width
|
|
* calculation. Note that if the value is toasted, we use the
|
|
* toasted width. We don't bother with this calculation if it's a
|
|
* fixed-width type.
|
|
*/
|
|
if (is_varlena)
|
|
{
|
|
total_width += VARSIZE(DatumGetPointer(value));
|
|
|
|
/*
|
|
* If the value is toasted, we want to detoast it just once to
|
|
* avoid repeated detoastings and resultant excess memory
|
|
* usage during the comparisons. Also, check to see if the
|
|
* value is excessively wide, and if so don't detoast at all
|
|
* --- just ignore the value.
|
|
*/
|
|
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
|
|
{
|
|
toowide_cnt++;
|
|
continue;
|
|
}
|
|
value = PointerGetDatum(PG_DETOAST_DATUM(value));
|
|
}
|
|
else if (is_varwidth)
|
|
{
|
|
/* must be cstring */
|
|
total_width += strlen(DatumGetCString(value)) + 1;
|
|
}
|
|
|
|
/*
|
|
* See if the value matches anything we're already tracking.
|
|
*/
|
|
match = false;
|
|
firstcount1 = track_cnt;
|
|
for (j = 0; j < track_cnt; j++)
|
|
{
|
|
if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value)))
|
|
{
|
|
match = true;
|
|
break;
|
|
}
|
|
if (j < firstcount1 && track[j].count == 1)
|
|
firstcount1 = j;
|
|
}
|
|
|
|
if (match)
|
|
{
|
|
/* Found a match */
|
|
track[j].count++;
|
|
/* This value may now need to "bubble up" in the track list */
|
|
while (j > 0 && track[j].count > track[j - 1].count)
|
|
{
|
|
swapDatum(track[j].value, track[j - 1].value);
|
|
swapInt(track[j].count, track[j - 1].count);
|
|
j--;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* No match. Insert at head of count-1 list */
|
|
if (track_cnt < track_max)
|
|
track_cnt++;
|
|
for (j = track_cnt - 1; j > firstcount1; j--)
|
|
{
|
|
track[j].value = track[j - 1].value;
|
|
track[j].count = track[j - 1].count;
|
|
}
|
|
if (firstcount1 < track_cnt)
|
|
{
|
|
track[firstcount1].value = value;
|
|
track[firstcount1].count = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We can only compute valid stats if we found some non-null values. */
|
|
if (nonnull_cnt > 0)
|
|
{
|
|
int nmultiple,
|
|
summultiple;
|
|
|
|
stats->stats_valid = true;
|
|
/* Do the simple null-frac and width stats */
|
|
stats->stanullfrac = (double) null_cnt / (double) samplerows;
|
|
if (is_varwidth)
|
|
stats->stawidth = total_width / (double) nonnull_cnt;
|
|
else
|
|
stats->stawidth = stats->attrtype->typlen;
|
|
|
|
/* Count the number of values we found multiple times */
|
|
summultiple = 0;
|
|
for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
|
|
{
|
|
if (track[nmultiple].count == 1)
|
|
break;
|
|
summultiple += track[nmultiple].count;
|
|
}
|
|
|
|
if (nmultiple == 0)
|
|
{
|
|
/* If we found no repeated values, assume it's a unique column */
|
|
stats->stadistinct = -1.0;
|
|
}
|
|
else if (track_cnt < track_max && toowide_cnt == 0 &&
|
|
nmultiple == track_cnt)
|
|
{
|
|
/*
|
|
* Our track list includes every value in the sample, and
|
|
* every value appeared more than once. Assume the column has
|
|
* just these values.
|
|
*/
|
|
stats->stadistinct = track_cnt;
|
|
}
|
|
else
|
|
{
|
|
/*----------
|
|
* Estimate the number of distinct values using the estimator
|
|
* proposed by Haas and Stokes in IBM Research Report RJ 10025:
|
|
* n*d / (n - f1 + f1*n/N)
|
|
* where f1 is the number of distinct values that occurred
|
|
* exactly once in our sample of n rows (from a total of N),
|
|
* and d is the total number of distinct values in the sample.
|
|
* This is their Duj1 estimator; the other estimators they
|
|
* recommend are considerably more complex, and are numerically
|
|
* very unstable when n is much smaller than N.
|
|
*
|
|
* We assume (not very reliably!) that all the multiply-occurring
|
|
* values are reflected in the final track[] list, and the other
|
|
* nonnull values all appeared but once. (XXX this usually
|
|
* results in a drastic overestimate of ndistinct. Can we do
|
|
* any better?)
|
|
*----------
|
|
*/
|
|
int f1 = nonnull_cnt - summultiple;
|
|
int d = f1 + nmultiple;
|
|
double numer,
|
|
denom,
|
|
stadistinct;
|
|
|
|
numer = (double) samplerows *(double) d;
|
|
|
|
denom = (double) (samplerows - f1) +
|
|
(double) f1 *(double) samplerows / totalrows;
|
|
|
|
stadistinct = numer / denom;
|
|
/* Clamp to sane range in case of roundoff error */
|
|
if (stadistinct < (double) d)
|
|
stadistinct = (double) d;
|
|
if (stadistinct > totalrows)
|
|
stadistinct = totalrows;
|
|
stats->stadistinct = floor(stadistinct + 0.5);
|
|
}
|
|
|
|
/*
|
|
* If we estimated the number of distinct values at more than 10%
|
|
* of the total row count (a very arbitrary limit), then assume
|
|
* that stadistinct should scale with the row count rather than be
|
|
* a fixed value.
|
|
*/
|
|
if (stats->stadistinct > 0.1 * totalrows)
|
|
stats->stadistinct = -(stats->stadistinct / totalrows);
|
|
|
|
/*
|
|
* Decide how many values are worth storing as most-common values.
|
|
* If we are able to generate a complete MCV list (all the values
|
|
* in the sample will fit, and we think these are all the ones in
|
|
* the table), then do so. Otherwise, store only those values
|
|
* that are significantly more common than the (estimated)
|
|
* average. We set the threshold rather arbitrarily at 25% more
|
|
* than average, with at least 2 instances in the sample.
|
|
*/
|
|
if (track_cnt < track_max && toowide_cnt == 0 &&
|
|
stats->stadistinct > 0 &&
|
|
track_cnt <= num_mcv)
|
|
{
|
|
/* Track list includes all values seen, and all will fit */
|
|
num_mcv = track_cnt;
|
|
}
|
|
else
|
|
{
|
|
double ndistinct = stats->stadistinct;
|
|
double avgcount,
|
|
mincount;
|
|
|
|
if (ndistinct < 0)
|
|
ndistinct = -ndistinct * totalrows;
|
|
/* estimate # of occurrences in sample of a typical value */
|
|
avgcount = (double) samplerows / ndistinct;
|
|
/* set minimum threshold count to store a value */
|
|
mincount = avgcount * 1.25;
|
|
if (mincount < 2)
|
|
mincount = 2;
|
|
if (num_mcv > track_cnt)
|
|
num_mcv = track_cnt;
|
|
for (i = 0; i < num_mcv; i++)
|
|
{
|
|
if (track[i].count < mincount)
|
|
{
|
|
num_mcv = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate MCV slot entry */
|
|
if (num_mcv > 0)
|
|
{
|
|
MemoryContext old_context;
|
|
Datum *mcv_values;
|
|
float4 *mcv_freqs;
|
|
|
|
/* Must copy the target values into anl_context */
|
|
old_context = MemoryContextSwitchTo(stats->anl_context);
|
|
mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
|
|
mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
|
|
for (i = 0; i < num_mcv; i++)
|
|
{
|
|
mcv_values[i] = datumCopy(track[i].value,
|
|
stats->attr->attbyval,
|
|
stats->attr->attlen);
|
|
mcv_freqs[i] = (double) track[i].count / (double) samplerows;
|
|
}
|
|
MemoryContextSwitchTo(old_context);
|
|
|
|
stats->stakind[0] = STATISTIC_KIND_MCV;
|
|
stats->staop[0] = mystats->eqopr;
|
|
stats->stanumbers[0] = mcv_freqs;
|
|
stats->numnumbers[0] = num_mcv;
|
|
stats->stavalues[0] = mcv_values;
|
|
stats->numvalues[0] = num_mcv;
|
|
}
|
|
}
|
|
|
|
/* We don't need to bother cleaning up any of our temporary palloc's */
|
|
}
|
|
|
|
|
|
/*
|
|
* compute_scalar_stats() -- compute column statistics
|
|
*
|
|
* We use this when we can find "=" and "<" operators for the datatype.
|
|
*
|
|
* We determine the fraction of non-null rows, the average width, the
|
|
* most common values, the (estimated) number of distinct values, the
|
|
* distribution histogram, and the correlation of physical to logical order.
|
|
*
|
|
* The desired stats can be determined fairly easily after sorting the
|
|
* data values into order.
|
|
*/
|
|
static void
|
|
compute_scalar_stats(VacAttrStatsP stats,
|
|
AnalyzeAttrFetchFunc fetchfunc,
|
|
int samplerows,
|
|
double totalrows)
|
|
{
|
|
int i;
|
|
int null_cnt = 0;
|
|
int nonnull_cnt = 0;
|
|
int toowide_cnt = 0;
|
|
double total_width = 0;
|
|
bool is_varlena = (!stats->attr->attbyval &&
|
|
stats->attr->attlen == -1);
|
|
bool is_varwidth = (!stats->attr->attbyval &&
|
|
stats->attr->attlen < 0);
|
|
double corr_xysum;
|
|
RegProcedure cmpFn;
|
|
SortFunctionKind cmpFnKind;
|
|
FmgrInfo f_cmpfn;
|
|
ScalarItem *values;
|
|
int values_cnt = 0;
|
|
int *tupnoLink;
|
|
ScalarMCVItem *track;
|
|
int track_cnt = 0;
|
|
int num_mcv = stats->attr->attstattarget;
|
|
int num_bins = stats->attr->attstattarget;
|
|
StdAnalyzeData *mystats = (StdAnalyzeData *) stats->extra_data;
|
|
|
|
values = (ScalarItem *) palloc(samplerows * sizeof(ScalarItem));
|
|
tupnoLink = (int *) palloc(samplerows * sizeof(int));
|
|
track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
|
|
|
|
SelectSortFunction(mystats->ltopr, &cmpFn, &cmpFnKind);
|
|
fmgr_info(cmpFn, &f_cmpfn);
|
|
|
|
/* Initial scan to find sortable values */
|
|
for (i = 0; i < samplerows; i++)
|
|
{
|
|
Datum value;
|
|
bool isnull;
|
|
|
|
vacuum_delay_point();
|
|
|
|
value = fetchfunc(stats, i, &isnull);
|
|
|
|
/* Check for null/nonnull */
|
|
if (isnull)
|
|
{
|
|
null_cnt++;
|
|
continue;
|
|
}
|
|
nonnull_cnt++;
|
|
|
|
/*
|
|
* If it's a variable-width field, add up widths for average width
|
|
* calculation. Note that if the value is toasted, we use the
|
|
* toasted width. We don't bother with this calculation if it's a
|
|
* fixed-width type.
|
|
*/
|
|
if (is_varlena)
|
|
{
|
|
total_width += VARSIZE(DatumGetPointer(value));
|
|
|
|
/*
|
|
* If the value is toasted, we want to detoast it just once to
|
|
* avoid repeated detoastings and resultant excess memory
|
|
* usage during the comparisons. Also, check to see if the
|
|
* value is excessively wide, and if so don't detoast at all
|
|
* --- just ignore the value.
|
|
*/
|
|
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
|
|
{
|
|
toowide_cnt++;
|
|
continue;
|
|
}
|
|
value = PointerGetDatum(PG_DETOAST_DATUM(value));
|
|
}
|
|
else if (is_varwidth)
|
|
{
|
|
/* must be cstring */
|
|
total_width += strlen(DatumGetCString(value)) + 1;
|
|
}
|
|
|
|
/* Add it to the list to be sorted */
|
|
values[values_cnt].value = value;
|
|
values[values_cnt].tupno = values_cnt;
|
|
tupnoLink[values_cnt] = values_cnt;
|
|
values_cnt++;
|
|
}
|
|
|
|
/* We can only compute valid stats if we found some sortable values. */
|
|
if (values_cnt > 0)
|
|
{
|
|
int ndistinct, /* # distinct values in sample */
|
|
nmultiple, /* # that appear multiple times */
|
|
num_hist,
|
|
dups_cnt;
|
|
int slot_idx = 0;
|
|
|
|
/* Sort the collected values */
|
|
datumCmpFn = &f_cmpfn;
|
|
datumCmpFnKind = cmpFnKind;
|
|
datumCmpTupnoLink = tupnoLink;
|
|
qsort((void *) values, values_cnt,
|
|
sizeof(ScalarItem), compare_scalars);
|
|
|
|
/*
|
|
* Now scan the values in order, find the most common ones, and
|
|
* also accumulate ordering-correlation statistics.
|
|
*
|
|
* To determine which are most common, we first have to count the
|
|
* number of duplicates of each value. The duplicates are
|
|
* adjacent in the sorted list, so a brute-force approach is to
|
|
* compare successive datum values until we find two that are not
|
|
* equal. However, that requires N-1 invocations of the datum
|
|
* comparison routine, which are completely redundant with work
|
|
* that was done during the sort. (The sort algorithm must at
|
|
* some point have compared each pair of items that are adjacent
|
|
* in the sorted order; otherwise it could not know that it's
|
|
* ordered the pair correctly.) We exploit this by having
|
|
* compare_scalars remember the highest tupno index that each
|
|
* ScalarItem has been found equal to. At the end of the sort, a
|
|
* ScalarItem's tupnoLink will still point to itself if and only
|
|
* if it is the last item of its group of duplicates (since the
|
|
* group will be ordered by tupno).
|
|
*/
|
|
corr_xysum = 0;
|
|
ndistinct = 0;
|
|
nmultiple = 0;
|
|
dups_cnt = 0;
|
|
for (i = 0; i < values_cnt; i++)
|
|
{
|
|
int tupno = values[i].tupno;
|
|
|
|
corr_xysum += ((double) i) * ((double) tupno);
|
|
dups_cnt++;
|
|
if (tupnoLink[tupno] == tupno)
|
|
{
|
|
/* Reached end of duplicates of this value */
|
|
ndistinct++;
|
|
if (dups_cnt > 1)
|
|
{
|
|
nmultiple++;
|
|
if (track_cnt < num_mcv ||
|
|
dups_cnt > track[track_cnt - 1].count)
|
|
{
|
|
/*
|
|
* Found a new item for the mcv list; find its
|
|
* position, bubbling down old items if needed.
|
|
* Loop invariant is that j points at an empty/
|
|
* replaceable slot.
|
|
*/
|
|
int j;
|
|
|
|
if (track_cnt < num_mcv)
|
|
track_cnt++;
|
|
for (j = track_cnt - 1; j > 0; j--)
|
|
{
|
|
if (dups_cnt <= track[j - 1].count)
|
|
break;
|
|
track[j].count = track[j - 1].count;
|
|
track[j].first = track[j - 1].first;
|
|
}
|
|
track[j].count = dups_cnt;
|
|
track[j].first = i + 1 - dups_cnt;
|
|
}
|
|
}
|
|
dups_cnt = 0;
|
|
}
|
|
}
|
|
|
|
stats->stats_valid = true;
|
|
/* Do the simple null-frac and width stats */
|
|
stats->stanullfrac = (double) null_cnt / (double) samplerows;
|
|
if (is_varwidth)
|
|
stats->stawidth = total_width / (double) nonnull_cnt;
|
|
else
|
|
stats->stawidth = stats->attrtype->typlen;
|
|
|
|
if (nmultiple == 0)
|
|
{
|
|
/* If we found no repeated values, assume it's a unique column */
|
|
stats->stadistinct = -1.0;
|
|
}
|
|
else if (toowide_cnt == 0 && nmultiple == ndistinct)
|
|
{
|
|
/*
|
|
* Every value in the sample appeared more than once. Assume
|
|
* the column has just these values.
|
|
*/
|
|
stats->stadistinct = ndistinct;
|
|
}
|
|
else
|
|
{
|
|
/*----------
|
|
* Estimate the number of distinct values using the estimator
|
|
* proposed by Haas and Stokes in IBM Research Report RJ 10025:
|
|
* n*d / (n - f1 + f1*n/N)
|
|
* where f1 is the number of distinct values that occurred
|
|
* exactly once in our sample of n rows (from a total of N),
|
|
* and d is the total number of distinct values in the sample.
|
|
* This is their Duj1 estimator; the other estimators they
|
|
* recommend are considerably more complex, and are numerically
|
|
* very unstable when n is much smaller than N.
|
|
*
|
|
* Overwidth values are assumed to have been distinct.
|
|
*----------
|
|
*/
|
|
int f1 = ndistinct - nmultiple + toowide_cnt;
|
|
int d = f1 + nmultiple;
|
|
double numer,
|
|
denom,
|
|
stadistinct;
|
|
|
|
numer = (double) samplerows *(double) d;
|
|
|
|
denom = (double) (samplerows - f1) +
|
|
(double) f1 *(double) samplerows / totalrows;
|
|
|
|
stadistinct = numer / denom;
|
|
/* Clamp to sane range in case of roundoff error */
|
|
if (stadistinct < (double) d)
|
|
stadistinct = (double) d;
|
|
if (stadistinct > totalrows)
|
|
stadistinct = totalrows;
|
|
stats->stadistinct = floor(stadistinct + 0.5);
|
|
}
|
|
|
|
/*
|
|
* If we estimated the number of distinct values at more than 10%
|
|
* of the total row count (a very arbitrary limit), then assume
|
|
* that stadistinct should scale with the row count rather than be
|
|
* a fixed value.
|
|
*/
|
|
if (stats->stadistinct > 0.1 * totalrows)
|
|
stats->stadistinct = -(stats->stadistinct / totalrows);
|
|
|
|
/*
|
|
* Decide how many values are worth storing as most-common values.
|
|
* If we are able to generate a complete MCV list (all the values
|
|
* in the sample will fit, and we think these are all the ones in
|
|
* the table), then do so. Otherwise, store only those values
|
|
* that are significantly more common than the (estimated)
|
|
* average. We set the threshold rather arbitrarily at 25% more
|
|
* than average, with at least 2 instances in the sample. Also,
|
|
* we won't suppress values that have a frequency of at least 1/K
|
|
* where K is the intended number of histogram bins; such values
|
|
* might otherwise cause us to emit duplicate histogram bin
|
|
* boundaries.
|
|
*/
|
|
if (track_cnt == ndistinct && toowide_cnt == 0 &&
|
|
stats->stadistinct > 0 &&
|
|
track_cnt <= num_mcv)
|
|
{
|
|
/* Track list includes all values seen, and all will fit */
|
|
num_mcv = track_cnt;
|
|
}
|
|
else
|
|
{
|
|
double ndistinct = stats->stadistinct;
|
|
double avgcount,
|
|
mincount,
|
|
maxmincount;
|
|
|
|
if (ndistinct < 0)
|
|
ndistinct = -ndistinct * totalrows;
|
|
/* estimate # of occurrences in sample of a typical value */
|
|
avgcount = (double) samplerows / ndistinct;
|
|
/* set minimum threshold count to store a value */
|
|
mincount = avgcount * 1.25;
|
|
if (mincount < 2)
|
|
mincount = 2;
|
|
/* don't let threshold exceed 1/K, however */
|
|
maxmincount = (double) samplerows / (double) num_bins;
|
|
if (mincount > maxmincount)
|
|
mincount = maxmincount;
|
|
if (num_mcv > track_cnt)
|
|
num_mcv = track_cnt;
|
|
for (i = 0; i < num_mcv; i++)
|
|
{
|
|
if (track[i].count < mincount)
|
|
{
|
|
num_mcv = i;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Generate MCV slot entry */
|
|
if (num_mcv > 0)
|
|
{
|
|
MemoryContext old_context;
|
|
Datum *mcv_values;
|
|
float4 *mcv_freqs;
|
|
|
|
/* Must copy the target values into anl_context */
|
|
old_context = MemoryContextSwitchTo(stats->anl_context);
|
|
mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
|
|
mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
|
|
for (i = 0; i < num_mcv; i++)
|
|
{
|
|
mcv_values[i] = datumCopy(values[track[i].first].value,
|
|
stats->attr->attbyval,
|
|
stats->attr->attlen);
|
|
mcv_freqs[i] = (double) track[i].count / (double) samplerows;
|
|
}
|
|
MemoryContextSwitchTo(old_context);
|
|
|
|
stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
|
|
stats->staop[slot_idx] = mystats->eqopr;
|
|
stats->stanumbers[slot_idx] = mcv_freqs;
|
|
stats->numnumbers[slot_idx] = num_mcv;
|
|
stats->stavalues[slot_idx] = mcv_values;
|
|
stats->numvalues[slot_idx] = num_mcv;
|
|
slot_idx++;
|
|
}
|
|
|
|
/*
|
|
* Generate a histogram slot entry if there are at least two
|
|
* distinct values not accounted for in the MCV list. (This
|
|
* ensures the histogram won't collapse to empty or a singleton.)
|
|
*/
|
|
num_hist = ndistinct - num_mcv;
|
|
if (num_hist > num_bins)
|
|
num_hist = num_bins + 1;
|
|
if (num_hist >= 2)
|
|
{
|
|
MemoryContext old_context;
|
|
Datum *hist_values;
|
|
int nvals;
|
|
|
|
/* Sort the MCV items into position order to speed next loop */
|
|
qsort((void *) track, num_mcv,
|
|
sizeof(ScalarMCVItem), compare_mcvs);
|
|
|
|
/*
|
|
* Collapse out the MCV items from the values[] array.
|
|
*
|
|
* Note we destroy the values[] array here... but we don't need
|
|
* it for anything more. We do, however, still need
|
|
* values_cnt. nvals will be the number of remaining entries
|
|
* in values[].
|
|
*/
|
|
if (num_mcv > 0)
|
|
{
|
|
int src,
|
|
dest;
|
|
int j;
|
|
|
|
src = dest = 0;
|
|
j = 0; /* index of next interesting MCV item */
|
|
while (src < values_cnt)
|
|
{
|
|
int ncopy;
|
|
|
|
if (j < num_mcv)
|
|
{
|
|
int first = track[j].first;
|
|
|
|
if (src >= first)
|
|
{
|
|
/* advance past this MCV item */
|
|
src = first + track[j].count;
|
|
j++;
|
|
continue;
|
|
}
|
|
ncopy = first - src;
|
|
}
|
|
else
|
|
ncopy = values_cnt - src;
|
|
memmove(&values[dest], &values[src],
|
|
ncopy * sizeof(ScalarItem));
|
|
src += ncopy;
|
|
dest += ncopy;
|
|
}
|
|
nvals = dest;
|
|
}
|
|
else
|
|
nvals = values_cnt;
|
|
Assert(nvals >= num_hist);
|
|
|
|
/* Must copy the target values into anl_context */
|
|
old_context = MemoryContextSwitchTo(stats->anl_context);
|
|
hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
|
|
for (i = 0; i < num_hist; i++)
|
|
{
|
|
int pos;
|
|
|
|
pos = (i * (nvals - 1)) / (num_hist - 1);
|
|
hist_values[i] = datumCopy(values[pos].value,
|
|
stats->attr->attbyval,
|
|
stats->attr->attlen);
|
|
}
|
|
MemoryContextSwitchTo(old_context);
|
|
|
|
stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
|
|
stats->staop[slot_idx] = mystats->ltopr;
|
|
stats->stavalues[slot_idx] = hist_values;
|
|
stats->numvalues[slot_idx] = num_hist;
|
|
slot_idx++;
|
|
}
|
|
|
|
/* Generate a correlation entry if there are multiple values */
|
|
if (values_cnt > 1)
|
|
{
|
|
MemoryContext old_context;
|
|
float4 *corrs;
|
|
double corr_xsum,
|
|
corr_x2sum;
|
|
|
|
/* Must copy the target values into anl_context */
|
|
old_context = MemoryContextSwitchTo(stats->anl_context);
|
|
corrs = (float4 *) palloc(sizeof(float4));
|
|
MemoryContextSwitchTo(old_context);
|
|
|
|
/*----------
|
|
* Since we know the x and y value sets are both
|
|
* 0, 1, ..., values_cnt-1
|
|
* we have sum(x) = sum(y) =
|
|
* (values_cnt-1)*values_cnt / 2
|
|
* and sum(x^2) = sum(y^2) =
|
|
* (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
|
|
*----------
|
|
*/
|
|
corr_xsum = ((double) (values_cnt - 1)) *
|
|
((double) values_cnt) / 2.0;
|
|
corr_x2sum = ((double) (values_cnt - 1)) *
|
|
((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
|
|
|
|
/* And the correlation coefficient reduces to */
|
|
corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
|
|
(values_cnt * corr_x2sum - corr_xsum * corr_xsum);
|
|
|
|
stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
|
|
stats->staop[slot_idx] = mystats->ltopr;
|
|
stats->stanumbers[slot_idx] = corrs;
|
|
stats->numnumbers[slot_idx] = 1;
|
|
slot_idx++;
|
|
}
|
|
}
|
|
|
|
/* We don't need to bother cleaning up any of our temporary palloc's */
|
|
}
|
|
|
|
/*
|
|
* qsort comparator for sorting ScalarItems
|
|
*
|
|
* Aside from sorting the items, we update the datumCmpTupnoLink[] array
|
|
* whenever two ScalarItems are found to contain equal datums. The array
|
|
* is indexed by tupno; for each ScalarItem, it contains the highest
|
|
* tupno that that item's datum has been found to be equal to. This allows
|
|
* us to avoid additional comparisons in compute_scalar_stats().
|
|
*/
|
|
static int
|
|
compare_scalars(const void *a, const void *b)
|
|
{
|
|
Datum da = ((ScalarItem *) a)->value;
|
|
int ta = ((ScalarItem *) a)->tupno;
|
|
Datum db = ((ScalarItem *) b)->value;
|
|
int tb = ((ScalarItem *) b)->tupno;
|
|
int32 compare;
|
|
|
|
compare = ApplySortFunction(datumCmpFn, datumCmpFnKind,
|
|
da, false, db, false);
|
|
if (compare != 0)
|
|
return compare;
|
|
|
|
/*
|
|
* The two datums are equal, so update datumCmpTupnoLink[].
|
|
*/
|
|
if (datumCmpTupnoLink[ta] < tb)
|
|
datumCmpTupnoLink[ta] = tb;
|
|
if (datumCmpTupnoLink[tb] < ta)
|
|
datumCmpTupnoLink[tb] = ta;
|
|
|
|
/*
|
|
* For equal datums, sort by tupno
|
|
*/
|
|
return ta - tb;
|
|
}
|
|
|
|
/*
|
|
* qsort comparator for sorting ScalarMCVItems by position
|
|
*/
|
|
static int
|
|
compare_mcvs(const void *a, const void *b)
|
|
{
|
|
int da = ((ScalarMCVItem *) a)->first;
|
|
int db = ((ScalarMCVItem *) b)->first;
|
|
|
|
return da - db;
|
|
}
|