990 lines
27 KiB
C
990 lines
27 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* planner.c
|
|
* The query optimizer external interface.
|
|
*
|
|
* Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.61 1999/07/17 20:17:15 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include <sys/types.h>
|
|
|
|
#include "postgres.h"
|
|
|
|
#include "access/genam.h"
|
|
#include "access/heapam.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/executor.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "optimizer/clauses.h"
|
|
#include "optimizer/internal.h"
|
|
#include "optimizer/planmain.h"
|
|
#include "optimizer/planner.h"
|
|
#include "optimizer/prep.h"
|
|
#include "optimizer/subselect.h"
|
|
#include "optimizer/tlist.h"
|
|
#include "optimizer/var.h"
|
|
#include "parser/parse_expr.h"
|
|
#include "parser/parse_oper.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/syscache.h"
|
|
|
|
static List *make_subplanTargetList(Query *parse, List *tlist,
|
|
AttrNumber **groupColIdx);
|
|
static Plan *make_groupplan(List *group_tlist, bool tuplePerGroup,
|
|
List *groupClause, AttrNumber *grpColIdx,
|
|
Plan *subplan);
|
|
static bool need_sortplan(List *sortcls, Plan *plan);
|
|
static Plan *make_sortplan(List *tlist, List *sortcls, Plan *plannode);
|
|
|
|
/*****************************************************************************
|
|
*
|
|
* Query optimizer entry point
|
|
*
|
|
*****************************************************************************/
|
|
Plan *
|
|
planner(Query *parse)
|
|
{
|
|
Plan *result_plan;
|
|
|
|
/* Initialize state for subselects */
|
|
PlannerQueryLevel = 1;
|
|
PlannerInitPlan = NULL;
|
|
PlannerParamVar = NULL;
|
|
PlannerPlanId = 0;
|
|
|
|
transformKeySetQuery(parse);
|
|
result_plan = union_planner(parse);
|
|
|
|
Assert(PlannerQueryLevel == 1);
|
|
if (PlannerPlanId > 0)
|
|
{
|
|
result_plan->initPlan = PlannerInitPlan;
|
|
(void) SS_finalize_plan(result_plan);
|
|
}
|
|
result_plan->nParamExec = length(PlannerParamVar);
|
|
|
|
return result_plan;
|
|
}
|
|
|
|
/*
|
|
* union_planner
|
|
*
|
|
* Invokes the planner on union queries if there are any left,
|
|
* recursing if necessary to get them all, then processes normal plans.
|
|
*
|
|
* Returns a query plan.
|
|
*
|
|
*/
|
|
Plan *
|
|
union_planner(Query *parse)
|
|
{
|
|
List *tlist = parse->targetList;
|
|
List *rangetable = parse->rtable;
|
|
Plan *result_plan = (Plan *) NULL;
|
|
AttrNumber *groupColIdx = NULL;
|
|
Index rt_index;
|
|
|
|
if (parse->unionClause)
|
|
{
|
|
result_plan = (Plan *) plan_union_queries(parse);
|
|
/* XXX do we need to do this? bjm 12/19/97 */
|
|
tlist = preprocess_targetlist(tlist,
|
|
parse->commandType,
|
|
parse->resultRelation,
|
|
parse->rtable);
|
|
}
|
|
else if ((rt_index = first_inherit_rt_entry(rangetable)) != -1)
|
|
{
|
|
List *sub_tlist;
|
|
|
|
/*
|
|
* Generate appropriate target list for subplan; may be different
|
|
* from tlist if grouping or aggregation is needed.
|
|
*/
|
|
sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
|
|
|
|
/*
|
|
* Recursively plan the subqueries needed for inheritance
|
|
*/
|
|
result_plan = (Plan *) plan_inherit_queries(parse, sub_tlist,
|
|
rt_index);
|
|
|
|
/*
|
|
* Fix up outer target list. NOTE: unlike the case for non-inherited
|
|
* query, we pass the unfixed tlist to subplans, which do their own
|
|
* fixing. But we still want to fix the outer target list afterwards.
|
|
* I *think* this is correct --- doing the fix before recursing is
|
|
* definitely wrong, because preprocess_targetlist() will do the
|
|
* wrong thing if invoked twice on the same list. Maybe that is a bug?
|
|
* tgl 6/6/99
|
|
*/
|
|
tlist = preprocess_targetlist(tlist,
|
|
parse->commandType,
|
|
parse->resultRelation,
|
|
parse->rtable);
|
|
|
|
if (parse->rowMark != NULL)
|
|
elog(ERROR, "SELECT FOR UPDATE is not supported for inherit queries");
|
|
}
|
|
else
|
|
{
|
|
List *sub_tlist;
|
|
|
|
/* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
|
|
tlist = preprocess_targetlist(tlist,
|
|
parse->commandType,
|
|
parse->resultRelation,
|
|
parse->rtable);
|
|
|
|
/*
|
|
* Add row-mark targets for UPDATE (should this be done in
|
|
* preprocess_targetlist?)
|
|
*/
|
|
if (parse->rowMark != NULL)
|
|
{
|
|
List *l;
|
|
|
|
foreach(l, parse->rowMark)
|
|
{
|
|
RowMark *rowmark = (RowMark *) lfirst(l);
|
|
TargetEntry *ctid;
|
|
Resdom *resdom;
|
|
Var *var;
|
|
char *resname;
|
|
|
|
if (!(rowmark->info & ROW_MARK_FOR_UPDATE))
|
|
continue;
|
|
|
|
resname = (char *) palloc(32);
|
|
sprintf(resname, "ctid%u", rowmark->rti);
|
|
resdom = makeResdom(length(tlist) + 1,
|
|
TIDOID,
|
|
-1,
|
|
resname,
|
|
0,
|
|
0,
|
|
true);
|
|
|
|
var = makeVar(rowmark->rti, -1, TIDOID,
|
|
-1, 0, rowmark->rti, -1);
|
|
|
|
ctid = makeTargetEntry(resdom, (Node *) var);
|
|
tlist = lappend(tlist, ctid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate appropriate target list for subplan; may be different
|
|
* from tlist if grouping or aggregation is needed.
|
|
*/
|
|
sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
|
|
|
|
/* Generate the (sub) plan */
|
|
result_plan = query_planner(parse,
|
|
parse->commandType,
|
|
sub_tlist,
|
|
(List *) parse->qual);
|
|
}
|
|
|
|
/* query_planner returns NULL if it thinks plan is bogus */
|
|
if (! result_plan)
|
|
elog(ERROR, "union_planner: failed to create plan");
|
|
|
|
/*
|
|
* If we have a GROUP BY clause, insert a group node (with the
|
|
* appropriate sort node.)
|
|
*/
|
|
if (parse->groupClause)
|
|
{
|
|
bool tuplePerGroup;
|
|
List *group_tlist;
|
|
|
|
/*
|
|
* Decide whether how many tuples per group the Group node needs
|
|
* to return. (Needs only one tuple per group if no aggregate is
|
|
* present. Otherwise, need every tuple from the group to do the
|
|
* aggregation.) Note tuplePerGroup is named backwards :-(
|
|
*/
|
|
tuplePerGroup = parse->hasAggs;
|
|
|
|
/*
|
|
* If there are aggregates then the Group node should just return
|
|
* the same (simplified) tlist as the subplan, which we indicate
|
|
* to make_groupplan by passing NIL. If there are no aggregates
|
|
* then the Group node had better compute the final tlist.
|
|
*/
|
|
group_tlist = parse->hasAggs ? NIL : tlist;
|
|
|
|
result_plan = make_groupplan(group_tlist,
|
|
tuplePerGroup,
|
|
parse->groupClause,
|
|
groupColIdx,
|
|
result_plan);
|
|
}
|
|
|
|
/*
|
|
* If we have a HAVING clause, do the necessary things with it.
|
|
*/
|
|
if (parse->havingQual)
|
|
{
|
|
/* convert the havingQual to conjunctive normal form (cnf) */
|
|
parse->havingQual = (Node *) cnfify((Expr *) parse->havingQual, true);
|
|
|
|
if (parse->hasSubLinks)
|
|
{
|
|
/*
|
|
* There may be a subselect in the havingQual, so we have to
|
|
* process it using the same function as for a subselect in
|
|
* 'where'
|
|
*/
|
|
parse->havingQual = SS_process_sublinks(parse->havingQual);
|
|
|
|
/*
|
|
* Check for ungrouped variables passed to subplans. (Probably
|
|
* this should be done for the targetlist as well???)
|
|
*/
|
|
check_having_for_ungrouped_vars(parse->havingQual,
|
|
parse->groupClause,
|
|
parse->targetList);
|
|
}
|
|
|
|
/* Calculate the opfids from the opnos */
|
|
parse->havingQual = (Node *) fix_opids((List *) parse->havingQual);
|
|
}
|
|
|
|
/*
|
|
* If aggregate is present, insert the agg node
|
|
*/
|
|
if (parse->hasAggs)
|
|
{
|
|
result_plan = (Plan *) make_agg(tlist, result_plan);
|
|
|
|
/* HAVING clause, if any, becomes qual of the Agg node */
|
|
result_plan->qual = (List *) parse->havingQual;
|
|
|
|
/*
|
|
* Update vars to refer to subplan result tuples, find Aggrefs,
|
|
* make sure there is an Aggref in every HAVING clause.
|
|
*/
|
|
if (!set_agg_tlist_references((Agg *) result_plan))
|
|
elog(ERROR, "SELECT/HAVING requires aggregates to be valid");
|
|
|
|
/*
|
|
* Check that we actually found some aggregates, else executor
|
|
* will die unpleasantly. (This defends against possible bugs in
|
|
* parser or rewrite that might cause hasAggs to be incorrectly
|
|
* set 'true'. It's not easy to recover here, since we've already
|
|
* made decisions assuming there will be an Agg node.)
|
|
*/
|
|
if (((Agg *) result_plan)->aggs == NIL)
|
|
elog(ERROR, "union_planner: query is marked hasAggs, but I don't see any");
|
|
}
|
|
|
|
/*
|
|
* For now, before we hand back the plan, check to see if there is a
|
|
* user-specified sort that needs to be done. Eventually, this will
|
|
* be moved into the guts of the planner s.t. user specified sorts
|
|
* will be considered as part of the planning process. Since we can
|
|
* only make use of user-specified sorts in special cases, we can do
|
|
* the optimization step later.
|
|
*/
|
|
|
|
if (parse->uniqueFlag)
|
|
{
|
|
Plan *sortplan = make_sortplan(tlist, parse->sortClause, result_plan);
|
|
|
|
return ((Plan *) make_unique(tlist, sortplan, parse->uniqueFlag));
|
|
}
|
|
else
|
|
{
|
|
if (parse->sortClause && need_sortplan(parse->sortClause, result_plan))
|
|
return (make_sortplan(tlist, parse->sortClause, result_plan));
|
|
else
|
|
return ((Plan *) result_plan);
|
|
}
|
|
|
|
}
|
|
|
|
/*---------------
|
|
* make_subplanTargetList
|
|
* Generate appropriate target lists when grouping is required.
|
|
*
|
|
* When union_planner inserts Aggregate and/or Group/Sort plan nodes above
|
|
* the result of query_planner, we typically need to pass a different
|
|
* target list to query_planner than the outer plan nodes should have.
|
|
* This routine generates the correct target list for the subplan, and
|
|
* if necessary modifies the target list for the inserted nodes as well.
|
|
*
|
|
* The initial target list passed from the parser already contains entries
|
|
* for all ORDER BY and GROUP BY expressions, but it will not have entries
|
|
* for variables used only in HAVING clauses; so we need to add those
|
|
* variables to the subplan target list. Also, if we are doing either
|
|
* grouping or aggregation, we flatten all expressions except GROUP BY items
|
|
* into their component variables; the other expressions will be computed by
|
|
* the inserted nodes rather than by the subplan. For example,
|
|
* given a query like
|
|
* SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
|
|
* we want to pass this targetlist to the subplan:
|
|
* a+b,c,d
|
|
* where the a+b target will be used by the Sort/Group steps, and the
|
|
* c and d targets will be needed to compute the aggregate results.
|
|
*
|
|
* 'parse' is the query being processed.
|
|
* 'tlist' is the query's target list. CAUTION: list elements may be
|
|
* modified by this routine!
|
|
* 'groupColIdx' receives an array of column numbers for the GROUP BY
|
|
* expressions (if there are any) in the subplan's target list.
|
|
*
|
|
* The result is the targetlist to be passed to the subplan. Also,
|
|
* the parent tlist is modified so that any nontrivial targetlist items that
|
|
* exactly match GROUP BY items are replaced by simple Var nodes referencing
|
|
* those outputs of the subplan. This avoids redundant recalculations in
|
|
* cases like
|
|
* SELECT a+1, ... GROUP BY a+1
|
|
* Note, however, that other varnodes in the parent's targetlist (and
|
|
* havingQual, if any) will still need to be updated to refer to outputs
|
|
* of the subplan. This routine is quite large enough already, so we do
|
|
* that later.
|
|
*---------------
|
|
*/
|
|
static List *
|
|
make_subplanTargetList(Query *parse,
|
|
List *tlist,
|
|
AttrNumber **groupColIdx)
|
|
{
|
|
List *sub_tlist;
|
|
List *prnt_tlist;
|
|
List *sl,
|
|
*gl;
|
|
List *glc = NIL;
|
|
List *extravars = NIL;
|
|
int numCols;
|
|
AttrNumber *grpColIdx = NULL;
|
|
int next_resno = 1;
|
|
|
|
*groupColIdx = NULL;
|
|
|
|
/*
|
|
* If we're not grouping or aggregating, nothing to do here;
|
|
* query_planner should receive the unmodified target list.
|
|
*/
|
|
if (!parse->hasAggs && !parse->groupClause && !parse->havingQual)
|
|
return tlist;
|
|
|
|
/*
|
|
* If grouping, make a working copy of groupClause list (which we use
|
|
* just to verify that we found all the groupClause items in tlist).
|
|
* Also allocate space to remember where the group columns are in the
|
|
* subplan tlist.
|
|
*/
|
|
numCols = length(parse->groupClause);
|
|
if (numCols > 0)
|
|
{
|
|
glc = listCopy(parse->groupClause);
|
|
grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
|
|
*groupColIdx = grpColIdx;
|
|
}
|
|
|
|
sub_tlist = new_unsorted_tlist(tlist); /* make a modifiable copy */
|
|
|
|
/*
|
|
* Step 1: build grpColIdx by finding targetlist items that match
|
|
* GroupBy entries. If there are aggregates, remove non-GroupBy items
|
|
* from sub_tlist, and reset its resnos accordingly. When we leave an
|
|
* expression in the subplan tlist, modify the parent tlist to copy
|
|
* the value from the subplan output rather than re-evaluating it.
|
|
*/
|
|
prnt_tlist = tlist; /* scans parent tlist in sync with sl */
|
|
foreach(sl, sub_tlist)
|
|
{
|
|
TargetEntry *te = (TargetEntry *) lfirst(sl);
|
|
TargetEntry *parentte = (TargetEntry *) lfirst(prnt_tlist);
|
|
Resdom *resdom = te->resdom;
|
|
bool keepInSubPlan = true;
|
|
bool foundGroupClause = false;
|
|
int keyno = 0;
|
|
|
|
foreach(gl, parse->groupClause)
|
|
{
|
|
GroupClause *grpcl = (GroupClause *) lfirst(gl);
|
|
|
|
keyno++; /* sort key # for this GroupClause */
|
|
if (grpcl->tleGroupref == resdom->resgroupref)
|
|
{
|
|
/* Found a matching groupclause; record info for sorting */
|
|
foundGroupClause = true;
|
|
resdom->reskey = keyno;
|
|
resdom->reskeyop = get_opcode(grpcl->grpOpoid);
|
|
grpColIdx[keyno - 1] = next_resno;
|
|
|
|
/*
|
|
* Remove groupclause from our list of unmatched
|
|
* groupclauses. NB: this depends on having used a shallow
|
|
* listCopy() above.
|
|
*/
|
|
glc = lremove((void *) grpcl, glc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!foundGroupClause)
|
|
{
|
|
|
|
/*
|
|
* Non-GroupBy entry: remove it from subplan if there are
|
|
* aggregates in query - it will be evaluated by Aggregate
|
|
* plan. But do not remove simple-Var entries; we'd just have
|
|
* to add them back anyway, and we risk confusing
|
|
* INSERT/UPDATE.
|
|
*/
|
|
if (parse->hasAggs && !IsA(te->expr, Var))
|
|
keepInSubPlan = false;
|
|
}
|
|
|
|
if (keepInSubPlan)
|
|
{
|
|
/* Assign new sequential resnos to subplan tlist items */
|
|
resdom->resno = next_resno++;
|
|
if (!IsA(parentte->expr, Var))
|
|
{
|
|
|
|
/*
|
|
* Since the item is being computed in the subplan, we can
|
|
* just make a Var node to reference it in the outer plan,
|
|
* rather than recomputing it there. Note we use varnoold
|
|
* = -1 as a flag to let replace_vars_with_subplan_refs
|
|
* know it needn't change this Var node. If it's only a
|
|
* Var anyway, we leave it alone for now;
|
|
* replace_vars_with_subplan_refs will fix it later.
|
|
*/
|
|
parentte->expr = (Node *) makeVar(1, resdom->resno,
|
|
resdom->restype,
|
|
resdom->restypmod,
|
|
0, -1, resdom->resno);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
|
|
/*
|
|
* Remove this tlist item from the subplan, but remember the
|
|
* vars it needs. The outer tlist item probably needs
|
|
* changes, but that will happen later.
|
|
*/
|
|
sub_tlist = lremove(te, sub_tlist);
|
|
extravars = nconc(extravars, pull_var_clause(te->expr));
|
|
}
|
|
|
|
prnt_tlist = lnext(prnt_tlist);
|
|
}
|
|
|
|
/* We should have found all the GROUP BY clauses in the tlist. */
|
|
if (length(glc) != 0)
|
|
elog(ERROR, "make_subplanTargetList: GROUP BY attribute not found in target list");
|
|
|
|
/*
|
|
* Add subplan targets for any variables needed by removed tlist
|
|
* entries that aren't otherwise mentioned in the subplan target list.
|
|
* We'll also need targets for any variables seen only in HAVING.
|
|
*/
|
|
extravars = nconc(extravars, pull_var_clause(parse->havingQual));
|
|
|
|
foreach(gl, extravars)
|
|
{
|
|
Var *v = (Var *) lfirst(gl);
|
|
|
|
if (tlist_member(v, sub_tlist) == NULL)
|
|
{
|
|
|
|
/*
|
|
* Make sure sub_tlist element is a fresh object not shared
|
|
* with any other structure; not sure if anything will break
|
|
* if it is shared, but better to be safe...
|
|
*/
|
|
sub_tlist = lappend(sub_tlist,
|
|
create_tl_element((Var *) copyObject(v),
|
|
next_resno));
|
|
next_resno++;
|
|
}
|
|
}
|
|
|
|
return sub_tlist;
|
|
}
|
|
|
|
static Plan *
|
|
make_groupplan(List *group_tlist,
|
|
bool tuplePerGroup,
|
|
List *groupClause,
|
|
AttrNumber *grpColIdx,
|
|
Plan *subplan)
|
|
{
|
|
List *sort_tlist;
|
|
List *sl;
|
|
Sort *sortplan;
|
|
Group *grpplan;
|
|
int numCols = length(groupClause);
|
|
|
|
/*
|
|
* Make the targetlist for the Sort node; it always just references
|
|
* each of the corresponding target items of the subplan. We need to
|
|
* ensure that simple Vars in the subplan's target list are
|
|
* recognizable by replace_vars_with_subplan_refs when it's applied to
|
|
* the Sort/Group target list, so copy up their varnoold/varoattno.
|
|
*/
|
|
sort_tlist = NIL;
|
|
foreach(sl, subplan->targetlist)
|
|
{
|
|
TargetEntry *te = (TargetEntry *) lfirst(sl);
|
|
Resdom *resdom = te->resdom;
|
|
Var *newvar;
|
|
|
|
if (IsA(te->expr, Var))
|
|
{
|
|
Var *subvar = (Var *) te->expr;
|
|
|
|
newvar = makeVar(1, resdom->resno,
|
|
resdom->restype, resdom->restypmod,
|
|
0, subvar->varnoold, subvar->varoattno);
|
|
}
|
|
else
|
|
{
|
|
newvar = makeVar(1, resdom->resno,
|
|
resdom->restype, resdom->restypmod,
|
|
0, -1, resdom->resno);
|
|
}
|
|
|
|
sort_tlist = lappend(sort_tlist,
|
|
makeTargetEntry((Resdom *) copyObject(resdom),
|
|
(Node *) newvar));
|
|
}
|
|
|
|
/*
|
|
* Make the Sort node
|
|
*/
|
|
sortplan = make_sort(sort_tlist,
|
|
_NONAME_RELATION_ID_,
|
|
subplan,
|
|
numCols);
|
|
sortplan->plan.cost = subplan->cost; /* XXX assume no cost */
|
|
|
|
/*
|
|
* If the caller gave us a target list, use it after fixing the
|
|
* variables. If not, we need the same sort of "repeater" tlist as for
|
|
* the Sort node.
|
|
*/
|
|
if (group_tlist)
|
|
{
|
|
group_tlist = copyObject(group_tlist); /* necessary?? */
|
|
replace_tlist_with_subplan_refs(group_tlist,
|
|
(Index) 0,
|
|
subplan->targetlist);
|
|
}
|
|
else
|
|
group_tlist = copyObject(sort_tlist);
|
|
|
|
/*
|
|
* Make the Group node
|
|
*/
|
|
grpplan = make_group(group_tlist, tuplePerGroup, numCols,
|
|
grpColIdx, sortplan);
|
|
|
|
return (Plan *) grpplan;
|
|
}
|
|
|
|
/*
|
|
* make_sortplan
|
|
* Returns a sortplan which is basically a SORT node attached to the
|
|
* top of the plan returned from the planner. It also adds the
|
|
* cost of sorting into the plan.
|
|
*
|
|
* sortkeys: ( resdom1 resdom2 resdom3 ...)
|
|
* sortops: (sortop1 sortop2 sortop3 ...)
|
|
*/
|
|
static Plan *
|
|
make_sortplan(List *tlist, List *sortcls, Plan *plannode)
|
|
{
|
|
Plan *sortplan = (Plan *) NULL;
|
|
List *temp_tlist = NIL;
|
|
List *i = NIL;
|
|
Resdom *resnode = (Resdom *) NULL;
|
|
Resdom *resdom = (Resdom *) NULL;
|
|
int keyno = 1;
|
|
|
|
/*
|
|
* First make a copy of the tlist so that we don't corrupt the the
|
|
* original .
|
|
*/
|
|
|
|
temp_tlist = new_unsorted_tlist(tlist);
|
|
|
|
foreach(i, sortcls)
|
|
{
|
|
SortClause *sortcl = (SortClause *) lfirst(i);
|
|
|
|
resnode = sortcl->resdom;
|
|
resdom = tlist_resdom(temp_tlist, resnode);
|
|
|
|
/*
|
|
* Order the resdom keys and replace the operator OID for each key
|
|
* with the regproc OID.
|
|
*/
|
|
resdom->reskey = keyno;
|
|
resdom->reskeyop = get_opcode(sortcl->opoid);
|
|
keyno += 1;
|
|
}
|
|
|
|
sortplan = (Plan *) make_sort(temp_tlist,
|
|
_NONAME_RELATION_ID_,
|
|
(Plan *) plannode,
|
|
length(sortcls));
|
|
|
|
/*
|
|
* XXX Assuming that an internal sort has no. cost. This is wrong, but
|
|
* given that at this point, we don't know the no. of tuples returned,
|
|
* etc, we can't do better than to add a constant cost. This will be
|
|
* fixed once we move the sort further into the planner, but for now
|
|
* ... functionality....
|
|
*/
|
|
|
|
sortplan->cost = plannode->cost;
|
|
|
|
return sortplan;
|
|
}
|
|
|
|
/*
|
|
* pg_checkretval() -- check return value of a list of sql parse
|
|
* trees.
|
|
*
|
|
* The return value of a sql function is the value returned by
|
|
* the final query in the function. We do some ad-hoc define-time
|
|
* type checking here to be sure that the user is returning the
|
|
* type he claims.
|
|
*
|
|
* XXX Why is this function in this module?
|
|
*/
|
|
void
|
|
pg_checkretval(Oid rettype, List *queryTreeList)
|
|
{
|
|
Query *parse;
|
|
List *tlist;
|
|
List *rt;
|
|
int cmd;
|
|
Type typ;
|
|
Resdom *resnode;
|
|
Relation reln;
|
|
Oid relid;
|
|
Oid tletype;
|
|
int relnatts;
|
|
int i;
|
|
|
|
/* find the final query */
|
|
parse = (Query *) nth(length(queryTreeList) - 1, queryTreeList);
|
|
|
|
/*
|
|
* test 1: if the last query is a utility invocation, then there had
|
|
* better not be a return value declared.
|
|
*/
|
|
if (parse->commandType == CMD_UTILITY)
|
|
{
|
|
if (rettype == InvalidOid)
|
|
return;
|
|
else
|
|
elog(ERROR, "return type mismatch in function decl: final query is a catalog utility");
|
|
}
|
|
|
|
/* okay, it's an ordinary query */
|
|
tlist = parse->targetList;
|
|
rt = parse->rtable;
|
|
cmd = parse->commandType;
|
|
|
|
/*
|
|
* test 2: if the function is declared to return no value, then the
|
|
* final query had better not be a retrieve.
|
|
*/
|
|
if (rettype == InvalidOid)
|
|
{
|
|
if (cmd == CMD_SELECT)
|
|
elog(ERROR,
|
|
"function declared with no return type, but final query is a retrieve");
|
|
else
|
|
return;
|
|
}
|
|
|
|
/* by here, the function is declared to return some type */
|
|
if ((typ = typeidType(rettype)) == NULL)
|
|
elog(ERROR, "can't find return type %u for function\n", rettype);
|
|
|
|
/*
|
|
* test 3: if the function is declared to return a value, then the
|
|
* final query had better be a retrieve.
|
|
*/
|
|
if (cmd != CMD_SELECT)
|
|
elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ));
|
|
|
|
/*
|
|
* test 4: for base type returns, the target list should have exactly
|
|
* one entry, and its type should agree with what the user declared.
|
|
*/
|
|
|
|
if (typeTypeRelid(typ) == InvalidOid)
|
|
{
|
|
if (ExecTargetListLength(tlist) > 1)
|
|
elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ));
|
|
|
|
resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
|
|
if (resnode->restype != rettype)
|
|
elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype));
|
|
|
|
/* by here, base return types match */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If the target list is of length 1, and the type of the varnode in
|
|
* the target list is the same as the declared return type, this is
|
|
* okay. This can happen, for example, where the body of the function
|
|
* is 'retrieve (x = func2())', where func2 has the same return type
|
|
* as the function that's calling it.
|
|
*/
|
|
if (ExecTargetListLength(tlist) == 1)
|
|
{
|
|
resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
|
|
if (resnode->restype == rettype)
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* By here, the procedure returns a (set of) tuples. This part of the
|
|
* typechecking is a hack. We look up the relation that is the
|
|
* declared return type, and be sure that attributes 1 .. n in the
|
|
* target list match the declared types.
|
|
*/
|
|
reln = heap_open(typeTypeRelid(typ));
|
|
|
|
if (!RelationIsValid(reln))
|
|
elog(ERROR, "cannot open relation relid %u", typeTypeRelid(typ));
|
|
|
|
relid = reln->rd_id;
|
|
relnatts = reln->rd_rel->relnatts;
|
|
|
|
if (ExecTargetListLength(tlist) != relnatts)
|
|
elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ));
|
|
|
|
/* expect attributes 1 .. n in order */
|
|
for (i = 1; i <= relnatts; i++)
|
|
{
|
|
TargetEntry *tle = lfirst(tlist);
|
|
Node *thenode = tle->expr;
|
|
|
|
tlist = lnext(tlist);
|
|
tletype = exprType(thenode);
|
|
|
|
#ifdef NOT_USED /* fix me */
|
|
/* this is tedious */
|
|
if (IsA(thenode, Var))
|
|
tletype = (Oid) ((Var *) thenode)->vartype;
|
|
else if (IsA(thenode, Const))
|
|
tletype = (Oid) ((Const *) thenode)->consttype;
|
|
else if (IsA(thenode, Param))
|
|
tletype = (Oid) ((Param *) thenode)->paramtype;
|
|
else if (IsA(thenode, Expr))
|
|
tletype = Expr;
|
|
|
|
else if (IsA(thenode, LispList))
|
|
{
|
|
thenode = lfirst(thenode);
|
|
if (IsA(thenode, Oper))
|
|
tletype = (Oid) get_opresulttype((Oper *) thenode);
|
|
else if (IsA(thenode, Func))
|
|
tletype = (Oid) get_functype((Func *) thenode);
|
|
else
|
|
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
|
|
}
|
|
else
|
|
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
|
|
#endif
|
|
/* reach right in there, why don't you? */
|
|
if (tletype != reln->rd_att->attrs[i - 1]->atttypid)
|
|
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
|
|
}
|
|
|
|
heap_close(reln);
|
|
|
|
/* success */
|
|
return;
|
|
}
|
|
|
|
|
|
/* ----------
|
|
* Support function for need_sortplan
|
|
* ----------
|
|
*/
|
|
static TargetEntry *
|
|
get_matching_tle(Plan *plan, Resdom *resdom)
|
|
{
|
|
List *i;
|
|
TargetEntry *tle;
|
|
|
|
foreach(i, plan->targetlist)
|
|
{
|
|
tle = (TargetEntry *) lfirst(i);
|
|
if (tle->resdom->resno == resdom->resno)
|
|
return tle;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* ----------
|
|
* Check if a user requested ORDER BY is already satisfied by
|
|
* the choosen index scan.
|
|
*
|
|
* Returns TRUE if sort is required, FALSE if can be omitted.
|
|
* ----------
|
|
*/
|
|
static bool
|
|
need_sortplan(List *sortcls, Plan *plan)
|
|
{
|
|
Relation indexRel;
|
|
IndexScan *indexScan;
|
|
Oid indexId;
|
|
List *i;
|
|
HeapTuple htup;
|
|
Form_pg_index index_tup;
|
|
int key_no = 0;
|
|
|
|
/* ----------
|
|
* Must be an IndexScan
|
|
* ----------
|
|
*/
|
|
if (nodeTag(plan) != T_IndexScan)
|
|
return TRUE;
|
|
|
|
indexScan = (IndexScan *) plan;
|
|
|
|
/* ----------
|
|
* Should not have left- or righttree
|
|
* ----------
|
|
*/
|
|
if (plan->lefttree != NULL)
|
|
return TRUE;
|
|
if (plan->righttree != NULL)
|
|
return TRUE;
|
|
|
|
/* ----------
|
|
* Must be a single index scan
|
|
* ----------
|
|
*/
|
|
if (length(indexScan->indxid) != 1)
|
|
return TRUE;
|
|
|
|
/* ----------
|
|
* Indices can only have up to 8 attributes. So an ORDER BY using
|
|
* more that 8 attributes could never be satisfied by an index.
|
|
* ----------
|
|
*/
|
|
if (length(sortcls) > 8)
|
|
return TRUE;
|
|
|
|
/* ----------
|
|
* The choosen Index must be a btree
|
|
* ----------
|
|
*/
|
|
indexId = lfirsti(indexScan->indxid);
|
|
|
|
indexRel = index_open(indexId);
|
|
if (strcmp(nameout(&(indexRel->rd_am->amname)), "btree") != 0)
|
|
{
|
|
heap_close(indexRel);
|
|
return TRUE;
|
|
}
|
|
heap_close(indexRel);
|
|
|
|
/* ----------
|
|
* Fetch the index tuple
|
|
* ----------
|
|
*/
|
|
htup = SearchSysCacheTuple(INDEXRELID,
|
|
ObjectIdGetDatum(indexId), 0, 0, 0);
|
|
if (!HeapTupleIsValid(htup))
|
|
elog(ERROR, "cache lookup for index %u failed", indexId);
|
|
index_tup = (Form_pg_index) GETSTRUCT(htup);
|
|
|
|
/* ----------
|
|
* Check if all the sort clauses match the attributes in the index
|
|
* ----------
|
|
*/
|
|
foreach(i, sortcls)
|
|
{
|
|
SortClause *sortcl;
|
|
Resdom *resdom;
|
|
TargetEntry *tle;
|
|
Var *var;
|
|
|
|
sortcl = (SortClause *) lfirst(i);
|
|
|
|
resdom = sortcl->resdom;
|
|
tle = get_matching_tle(plan, resdom);
|
|
if (tle == NULL)
|
|
{
|
|
/* ----------
|
|
* Could this happen?
|
|
* ----------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
if (nodeTag(tle->expr) != T_Var)
|
|
{
|
|
/* ----------
|
|
* The target list expression isn't a var, so it
|
|
* cannot be the indexed attribute
|
|
* ----------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
var = (Var *) (tle->expr);
|
|
|
|
if (var->varno != indexScan->scan.scanrelid)
|
|
{
|
|
/* ----------
|
|
* This Var isn't from the scan relation. So it isn't
|
|
* that of the index
|
|
* ----------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
|
|
if (var->varattno != index_tup->indkey[key_no])
|
|
{
|
|
/* ----------
|
|
* It isn't the indexed attribute.
|
|
* ----------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
|
|
if (oprid(oper("<", resdom->restype, resdom->restype, FALSE)) != sortcl->opoid)
|
|
{
|
|
/* ----------
|
|
* Sort order isn't in ascending order.
|
|
* ----------
|
|
*/
|
|
return TRUE;
|
|
}
|
|
|
|
key_no++;
|
|
}
|
|
|
|
/* ----------
|
|
* Index matches ORDER BY - sort not required
|
|
* ----------
|
|
*/
|
|
return FALSE;
|
|
}
|