990 lines
27 KiB
C

/*-------------------------------------------------------------------------
*
* planner.c
* The query optimizer external interface.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/planner.c,v 1.61 1999/07/17 20:17:15 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include <sys/types.h>
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/internal.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
static List *make_subplanTargetList(Query *parse, List *tlist,
AttrNumber **groupColIdx);
static Plan *make_groupplan(List *group_tlist, bool tuplePerGroup,
List *groupClause, AttrNumber *grpColIdx,
Plan *subplan);
static bool need_sortplan(List *sortcls, Plan *plan);
static Plan *make_sortplan(List *tlist, List *sortcls, Plan *plannode);
/*****************************************************************************
*
* Query optimizer entry point
*
*****************************************************************************/
Plan *
planner(Query *parse)
{
Plan *result_plan;
/* Initialize state for subselects */
PlannerQueryLevel = 1;
PlannerInitPlan = NULL;
PlannerParamVar = NULL;
PlannerPlanId = 0;
transformKeySetQuery(parse);
result_plan = union_planner(parse);
Assert(PlannerQueryLevel == 1);
if (PlannerPlanId > 0)
{
result_plan->initPlan = PlannerInitPlan;
(void) SS_finalize_plan(result_plan);
}
result_plan->nParamExec = length(PlannerParamVar);
return result_plan;
}
/*
* union_planner
*
* Invokes the planner on union queries if there are any left,
* recursing if necessary to get them all, then processes normal plans.
*
* Returns a query plan.
*
*/
Plan *
union_planner(Query *parse)
{
List *tlist = parse->targetList;
List *rangetable = parse->rtable;
Plan *result_plan = (Plan *) NULL;
AttrNumber *groupColIdx = NULL;
Index rt_index;
if (parse->unionClause)
{
result_plan = (Plan *) plan_union_queries(parse);
/* XXX do we need to do this? bjm 12/19/97 */
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
}
else if ((rt_index = first_inherit_rt_entry(rangetable)) != -1)
{
List *sub_tlist;
/*
* Generate appropriate target list for subplan; may be different
* from tlist if grouping or aggregation is needed.
*/
sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
/*
* Recursively plan the subqueries needed for inheritance
*/
result_plan = (Plan *) plan_inherit_queries(parse, sub_tlist,
rt_index);
/*
* Fix up outer target list. NOTE: unlike the case for non-inherited
* query, we pass the unfixed tlist to subplans, which do their own
* fixing. But we still want to fix the outer target list afterwards.
* I *think* this is correct --- doing the fix before recursing is
* definitely wrong, because preprocess_targetlist() will do the
* wrong thing if invoked twice on the same list. Maybe that is a bug?
* tgl 6/6/99
*/
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
if (parse->rowMark != NULL)
elog(ERROR, "SELECT FOR UPDATE is not supported for inherit queries");
}
else
{
List *sub_tlist;
/* Preprocess targetlist in case we are inside an INSERT/UPDATE. */
tlist = preprocess_targetlist(tlist,
parse->commandType,
parse->resultRelation,
parse->rtable);
/*
* Add row-mark targets for UPDATE (should this be done in
* preprocess_targetlist?)
*/
if (parse->rowMark != NULL)
{
List *l;
foreach(l, parse->rowMark)
{
RowMark *rowmark = (RowMark *) lfirst(l);
TargetEntry *ctid;
Resdom *resdom;
Var *var;
char *resname;
if (!(rowmark->info & ROW_MARK_FOR_UPDATE))
continue;
resname = (char *) palloc(32);
sprintf(resname, "ctid%u", rowmark->rti);
resdom = makeResdom(length(tlist) + 1,
TIDOID,
-1,
resname,
0,
0,
true);
var = makeVar(rowmark->rti, -1, TIDOID,
-1, 0, rowmark->rti, -1);
ctid = makeTargetEntry(resdom, (Node *) var);
tlist = lappend(tlist, ctid);
}
}
/*
* Generate appropriate target list for subplan; may be different
* from tlist if grouping or aggregation is needed.
*/
sub_tlist = make_subplanTargetList(parse, tlist, &groupColIdx);
/* Generate the (sub) plan */
result_plan = query_planner(parse,
parse->commandType,
sub_tlist,
(List *) parse->qual);
}
/* query_planner returns NULL if it thinks plan is bogus */
if (! result_plan)
elog(ERROR, "union_planner: failed to create plan");
/*
* If we have a GROUP BY clause, insert a group node (with the
* appropriate sort node.)
*/
if (parse->groupClause)
{
bool tuplePerGroup;
List *group_tlist;
/*
* Decide whether how many tuples per group the Group node needs
* to return. (Needs only one tuple per group if no aggregate is
* present. Otherwise, need every tuple from the group to do the
* aggregation.) Note tuplePerGroup is named backwards :-(
*/
tuplePerGroup = parse->hasAggs;
/*
* If there are aggregates then the Group node should just return
* the same (simplified) tlist as the subplan, which we indicate
* to make_groupplan by passing NIL. If there are no aggregates
* then the Group node had better compute the final tlist.
*/
group_tlist = parse->hasAggs ? NIL : tlist;
result_plan = make_groupplan(group_tlist,
tuplePerGroup,
parse->groupClause,
groupColIdx,
result_plan);
}
/*
* If we have a HAVING clause, do the necessary things with it.
*/
if (parse->havingQual)
{
/* convert the havingQual to conjunctive normal form (cnf) */
parse->havingQual = (Node *) cnfify((Expr *) parse->havingQual, true);
if (parse->hasSubLinks)
{
/*
* There may be a subselect in the havingQual, so we have to
* process it using the same function as for a subselect in
* 'where'
*/
parse->havingQual = SS_process_sublinks(parse->havingQual);
/*
* Check for ungrouped variables passed to subplans. (Probably
* this should be done for the targetlist as well???)
*/
check_having_for_ungrouped_vars(parse->havingQual,
parse->groupClause,
parse->targetList);
}
/* Calculate the opfids from the opnos */
parse->havingQual = (Node *) fix_opids((List *) parse->havingQual);
}
/*
* If aggregate is present, insert the agg node
*/
if (parse->hasAggs)
{
result_plan = (Plan *) make_agg(tlist, result_plan);
/* HAVING clause, if any, becomes qual of the Agg node */
result_plan->qual = (List *) parse->havingQual;
/*
* Update vars to refer to subplan result tuples, find Aggrefs,
* make sure there is an Aggref in every HAVING clause.
*/
if (!set_agg_tlist_references((Agg *) result_plan))
elog(ERROR, "SELECT/HAVING requires aggregates to be valid");
/*
* Check that we actually found some aggregates, else executor
* will die unpleasantly. (This defends against possible bugs in
* parser or rewrite that might cause hasAggs to be incorrectly
* set 'true'. It's not easy to recover here, since we've already
* made decisions assuming there will be an Agg node.)
*/
if (((Agg *) result_plan)->aggs == NIL)
elog(ERROR, "union_planner: query is marked hasAggs, but I don't see any");
}
/*
* For now, before we hand back the plan, check to see if there is a
* user-specified sort that needs to be done. Eventually, this will
* be moved into the guts of the planner s.t. user specified sorts
* will be considered as part of the planning process. Since we can
* only make use of user-specified sorts in special cases, we can do
* the optimization step later.
*/
if (parse->uniqueFlag)
{
Plan *sortplan = make_sortplan(tlist, parse->sortClause, result_plan);
return ((Plan *) make_unique(tlist, sortplan, parse->uniqueFlag));
}
else
{
if (parse->sortClause && need_sortplan(parse->sortClause, result_plan))
return (make_sortplan(tlist, parse->sortClause, result_plan));
else
return ((Plan *) result_plan);
}
}
/*---------------
* make_subplanTargetList
* Generate appropriate target lists when grouping is required.
*
* When union_planner inserts Aggregate and/or Group/Sort plan nodes above
* the result of query_planner, we typically need to pass a different
* target list to query_planner than the outer plan nodes should have.
* This routine generates the correct target list for the subplan, and
* if necessary modifies the target list for the inserted nodes as well.
*
* The initial target list passed from the parser already contains entries
* for all ORDER BY and GROUP BY expressions, but it will not have entries
* for variables used only in HAVING clauses; so we need to add those
* variables to the subplan target list. Also, if we are doing either
* grouping or aggregation, we flatten all expressions except GROUP BY items
* into their component variables; the other expressions will be computed by
* the inserted nodes rather than by the subplan. For example,
* given a query like
* SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
* we want to pass this targetlist to the subplan:
* a+b,c,d
* where the a+b target will be used by the Sort/Group steps, and the
* c and d targets will be needed to compute the aggregate results.
*
* 'parse' is the query being processed.
* 'tlist' is the query's target list. CAUTION: list elements may be
* modified by this routine!
* 'groupColIdx' receives an array of column numbers for the GROUP BY
* expressions (if there are any) in the subplan's target list.
*
* The result is the targetlist to be passed to the subplan. Also,
* the parent tlist is modified so that any nontrivial targetlist items that
* exactly match GROUP BY items are replaced by simple Var nodes referencing
* those outputs of the subplan. This avoids redundant recalculations in
* cases like
* SELECT a+1, ... GROUP BY a+1
* Note, however, that other varnodes in the parent's targetlist (and
* havingQual, if any) will still need to be updated to refer to outputs
* of the subplan. This routine is quite large enough already, so we do
* that later.
*---------------
*/
static List *
make_subplanTargetList(Query *parse,
List *tlist,
AttrNumber **groupColIdx)
{
List *sub_tlist;
List *prnt_tlist;
List *sl,
*gl;
List *glc = NIL;
List *extravars = NIL;
int numCols;
AttrNumber *grpColIdx = NULL;
int next_resno = 1;
*groupColIdx = NULL;
/*
* If we're not grouping or aggregating, nothing to do here;
* query_planner should receive the unmodified target list.
*/
if (!parse->hasAggs && !parse->groupClause && !parse->havingQual)
return tlist;
/*
* If grouping, make a working copy of groupClause list (which we use
* just to verify that we found all the groupClause items in tlist).
* Also allocate space to remember where the group columns are in the
* subplan tlist.
*/
numCols = length(parse->groupClause);
if (numCols > 0)
{
glc = listCopy(parse->groupClause);
grpColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
*groupColIdx = grpColIdx;
}
sub_tlist = new_unsorted_tlist(tlist); /* make a modifiable copy */
/*
* Step 1: build grpColIdx by finding targetlist items that match
* GroupBy entries. If there are aggregates, remove non-GroupBy items
* from sub_tlist, and reset its resnos accordingly. When we leave an
* expression in the subplan tlist, modify the parent tlist to copy
* the value from the subplan output rather than re-evaluating it.
*/
prnt_tlist = tlist; /* scans parent tlist in sync with sl */
foreach(sl, sub_tlist)
{
TargetEntry *te = (TargetEntry *) lfirst(sl);
TargetEntry *parentte = (TargetEntry *) lfirst(prnt_tlist);
Resdom *resdom = te->resdom;
bool keepInSubPlan = true;
bool foundGroupClause = false;
int keyno = 0;
foreach(gl, parse->groupClause)
{
GroupClause *grpcl = (GroupClause *) lfirst(gl);
keyno++; /* sort key # for this GroupClause */
if (grpcl->tleGroupref == resdom->resgroupref)
{
/* Found a matching groupclause; record info for sorting */
foundGroupClause = true;
resdom->reskey = keyno;
resdom->reskeyop = get_opcode(grpcl->grpOpoid);
grpColIdx[keyno - 1] = next_resno;
/*
* Remove groupclause from our list of unmatched
* groupclauses. NB: this depends on having used a shallow
* listCopy() above.
*/
glc = lremove((void *) grpcl, glc);
break;
}
}
if (!foundGroupClause)
{
/*
* Non-GroupBy entry: remove it from subplan if there are
* aggregates in query - it will be evaluated by Aggregate
* plan. But do not remove simple-Var entries; we'd just have
* to add them back anyway, and we risk confusing
* INSERT/UPDATE.
*/
if (parse->hasAggs && !IsA(te->expr, Var))
keepInSubPlan = false;
}
if (keepInSubPlan)
{
/* Assign new sequential resnos to subplan tlist items */
resdom->resno = next_resno++;
if (!IsA(parentte->expr, Var))
{
/*
* Since the item is being computed in the subplan, we can
* just make a Var node to reference it in the outer plan,
* rather than recomputing it there. Note we use varnoold
* = -1 as a flag to let replace_vars_with_subplan_refs
* know it needn't change this Var node. If it's only a
* Var anyway, we leave it alone for now;
* replace_vars_with_subplan_refs will fix it later.
*/
parentte->expr = (Node *) makeVar(1, resdom->resno,
resdom->restype,
resdom->restypmod,
0, -1, resdom->resno);
}
}
else
{
/*
* Remove this tlist item from the subplan, but remember the
* vars it needs. The outer tlist item probably needs
* changes, but that will happen later.
*/
sub_tlist = lremove(te, sub_tlist);
extravars = nconc(extravars, pull_var_clause(te->expr));
}
prnt_tlist = lnext(prnt_tlist);
}
/* We should have found all the GROUP BY clauses in the tlist. */
if (length(glc) != 0)
elog(ERROR, "make_subplanTargetList: GROUP BY attribute not found in target list");
/*
* Add subplan targets for any variables needed by removed tlist
* entries that aren't otherwise mentioned in the subplan target list.
* We'll also need targets for any variables seen only in HAVING.
*/
extravars = nconc(extravars, pull_var_clause(parse->havingQual));
foreach(gl, extravars)
{
Var *v = (Var *) lfirst(gl);
if (tlist_member(v, sub_tlist) == NULL)
{
/*
* Make sure sub_tlist element is a fresh object not shared
* with any other structure; not sure if anything will break
* if it is shared, but better to be safe...
*/
sub_tlist = lappend(sub_tlist,
create_tl_element((Var *) copyObject(v),
next_resno));
next_resno++;
}
}
return sub_tlist;
}
static Plan *
make_groupplan(List *group_tlist,
bool tuplePerGroup,
List *groupClause,
AttrNumber *grpColIdx,
Plan *subplan)
{
List *sort_tlist;
List *sl;
Sort *sortplan;
Group *grpplan;
int numCols = length(groupClause);
/*
* Make the targetlist for the Sort node; it always just references
* each of the corresponding target items of the subplan. We need to
* ensure that simple Vars in the subplan's target list are
* recognizable by replace_vars_with_subplan_refs when it's applied to
* the Sort/Group target list, so copy up their varnoold/varoattno.
*/
sort_tlist = NIL;
foreach(sl, subplan->targetlist)
{
TargetEntry *te = (TargetEntry *) lfirst(sl);
Resdom *resdom = te->resdom;
Var *newvar;
if (IsA(te->expr, Var))
{
Var *subvar = (Var *) te->expr;
newvar = makeVar(1, resdom->resno,
resdom->restype, resdom->restypmod,
0, subvar->varnoold, subvar->varoattno);
}
else
{
newvar = makeVar(1, resdom->resno,
resdom->restype, resdom->restypmod,
0, -1, resdom->resno);
}
sort_tlist = lappend(sort_tlist,
makeTargetEntry((Resdom *) copyObject(resdom),
(Node *) newvar));
}
/*
* Make the Sort node
*/
sortplan = make_sort(sort_tlist,
_NONAME_RELATION_ID_,
subplan,
numCols);
sortplan->plan.cost = subplan->cost; /* XXX assume no cost */
/*
* If the caller gave us a target list, use it after fixing the
* variables. If not, we need the same sort of "repeater" tlist as for
* the Sort node.
*/
if (group_tlist)
{
group_tlist = copyObject(group_tlist); /* necessary?? */
replace_tlist_with_subplan_refs(group_tlist,
(Index) 0,
subplan->targetlist);
}
else
group_tlist = copyObject(sort_tlist);
/*
* Make the Group node
*/
grpplan = make_group(group_tlist, tuplePerGroup, numCols,
grpColIdx, sortplan);
return (Plan *) grpplan;
}
/*
* make_sortplan
* Returns a sortplan which is basically a SORT node attached to the
* top of the plan returned from the planner. It also adds the
* cost of sorting into the plan.
*
* sortkeys: ( resdom1 resdom2 resdom3 ...)
* sortops: (sortop1 sortop2 sortop3 ...)
*/
static Plan *
make_sortplan(List *tlist, List *sortcls, Plan *plannode)
{
Plan *sortplan = (Plan *) NULL;
List *temp_tlist = NIL;
List *i = NIL;
Resdom *resnode = (Resdom *) NULL;
Resdom *resdom = (Resdom *) NULL;
int keyno = 1;
/*
* First make a copy of the tlist so that we don't corrupt the the
* original .
*/
temp_tlist = new_unsorted_tlist(tlist);
foreach(i, sortcls)
{
SortClause *sortcl = (SortClause *) lfirst(i);
resnode = sortcl->resdom;
resdom = tlist_resdom(temp_tlist, resnode);
/*
* Order the resdom keys and replace the operator OID for each key
* with the regproc OID.
*/
resdom->reskey = keyno;
resdom->reskeyop = get_opcode(sortcl->opoid);
keyno += 1;
}
sortplan = (Plan *) make_sort(temp_tlist,
_NONAME_RELATION_ID_,
(Plan *) plannode,
length(sortcls));
/*
* XXX Assuming that an internal sort has no. cost. This is wrong, but
* given that at this point, we don't know the no. of tuples returned,
* etc, we can't do better than to add a constant cost. This will be
* fixed once we move the sort further into the planner, but for now
* ... functionality....
*/
sortplan->cost = plannode->cost;
return sortplan;
}
/*
* pg_checkretval() -- check return value of a list of sql parse
* trees.
*
* The return value of a sql function is the value returned by
* the final query in the function. We do some ad-hoc define-time
* type checking here to be sure that the user is returning the
* type he claims.
*
* XXX Why is this function in this module?
*/
void
pg_checkretval(Oid rettype, List *queryTreeList)
{
Query *parse;
List *tlist;
List *rt;
int cmd;
Type typ;
Resdom *resnode;
Relation reln;
Oid relid;
Oid tletype;
int relnatts;
int i;
/* find the final query */
parse = (Query *) nth(length(queryTreeList) - 1, queryTreeList);
/*
* test 1: if the last query is a utility invocation, then there had
* better not be a return value declared.
*/
if (parse->commandType == CMD_UTILITY)
{
if (rettype == InvalidOid)
return;
else
elog(ERROR, "return type mismatch in function decl: final query is a catalog utility");
}
/* okay, it's an ordinary query */
tlist = parse->targetList;
rt = parse->rtable;
cmd = parse->commandType;
/*
* test 2: if the function is declared to return no value, then the
* final query had better not be a retrieve.
*/
if (rettype == InvalidOid)
{
if (cmd == CMD_SELECT)
elog(ERROR,
"function declared with no return type, but final query is a retrieve");
else
return;
}
/* by here, the function is declared to return some type */
if ((typ = typeidType(rettype)) == NULL)
elog(ERROR, "can't find return type %u for function\n", rettype);
/*
* test 3: if the function is declared to return a value, then the
* final query had better be a retrieve.
*/
if (cmd != CMD_SELECT)
elog(ERROR, "function declared to return type %s, but final query is not a retrieve", typeTypeName(typ));
/*
* test 4: for base type returns, the target list should have exactly
* one entry, and its type should agree with what the user declared.
*/
if (typeTypeRelid(typ) == InvalidOid)
{
if (ExecTargetListLength(tlist) > 1)
elog(ERROR, "function declared to return %s returns multiple values in final retrieve", typeTypeName(typ));
resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
if (resnode->restype != rettype)
elog(ERROR, "return type mismatch in function: declared to return %s, returns %s", typeTypeName(typ), typeidTypeName(resnode->restype));
/* by here, base return types match */
return;
}
/*
* If the target list is of length 1, and the type of the varnode in
* the target list is the same as the declared return type, this is
* okay. This can happen, for example, where the body of the function
* is 'retrieve (x = func2())', where func2 has the same return type
* as the function that's calling it.
*/
if (ExecTargetListLength(tlist) == 1)
{
resnode = (Resdom *) ((TargetEntry *) lfirst(tlist))->resdom;
if (resnode->restype == rettype)
return;
}
/*
* By here, the procedure returns a (set of) tuples. This part of the
* typechecking is a hack. We look up the relation that is the
* declared return type, and be sure that attributes 1 .. n in the
* target list match the declared types.
*/
reln = heap_open(typeTypeRelid(typ));
if (!RelationIsValid(reln))
elog(ERROR, "cannot open relation relid %u", typeTypeRelid(typ));
relid = reln->rd_id;
relnatts = reln->rd_rel->relnatts;
if (ExecTargetListLength(tlist) != relnatts)
elog(ERROR, "function declared to return type %s does not retrieve (%s.*)", typeTypeName(typ), typeTypeName(typ));
/* expect attributes 1 .. n in order */
for (i = 1; i <= relnatts; i++)
{
TargetEntry *tle = lfirst(tlist);
Node *thenode = tle->expr;
tlist = lnext(tlist);
tletype = exprType(thenode);
#ifdef NOT_USED /* fix me */
/* this is tedious */
if (IsA(thenode, Var))
tletype = (Oid) ((Var *) thenode)->vartype;
else if (IsA(thenode, Const))
tletype = (Oid) ((Const *) thenode)->consttype;
else if (IsA(thenode, Param))
tletype = (Oid) ((Param *) thenode)->paramtype;
else if (IsA(thenode, Expr))
tletype = Expr;
else if (IsA(thenode, LispList))
{
thenode = lfirst(thenode);
if (IsA(thenode, Oper))
tletype = (Oid) get_opresulttype((Oper *) thenode);
else if (IsA(thenode, Func))
tletype = (Oid) get_functype((Func *) thenode);
else
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
}
else
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
#endif
/* reach right in there, why don't you? */
if (tletype != reln->rd_att->attrs[i - 1]->atttypid)
elog(ERROR, "function declared to return type %s does not retrieve (%s.all)", typeTypeName(typ), typeTypeName(typ));
}
heap_close(reln);
/* success */
return;
}
/* ----------
* Support function for need_sortplan
* ----------
*/
static TargetEntry *
get_matching_tle(Plan *plan, Resdom *resdom)
{
List *i;
TargetEntry *tle;
foreach(i, plan->targetlist)
{
tle = (TargetEntry *) lfirst(i);
if (tle->resdom->resno == resdom->resno)
return tle;
}
return NULL;
}
/* ----------
* Check if a user requested ORDER BY is already satisfied by
* the choosen index scan.
*
* Returns TRUE if sort is required, FALSE if can be omitted.
* ----------
*/
static bool
need_sortplan(List *sortcls, Plan *plan)
{
Relation indexRel;
IndexScan *indexScan;
Oid indexId;
List *i;
HeapTuple htup;
Form_pg_index index_tup;
int key_no = 0;
/* ----------
* Must be an IndexScan
* ----------
*/
if (nodeTag(plan) != T_IndexScan)
return TRUE;
indexScan = (IndexScan *) plan;
/* ----------
* Should not have left- or righttree
* ----------
*/
if (plan->lefttree != NULL)
return TRUE;
if (plan->righttree != NULL)
return TRUE;
/* ----------
* Must be a single index scan
* ----------
*/
if (length(indexScan->indxid) != 1)
return TRUE;
/* ----------
* Indices can only have up to 8 attributes. So an ORDER BY using
* more that 8 attributes could never be satisfied by an index.
* ----------
*/
if (length(sortcls) > 8)
return TRUE;
/* ----------
* The choosen Index must be a btree
* ----------
*/
indexId = lfirsti(indexScan->indxid);
indexRel = index_open(indexId);
if (strcmp(nameout(&(indexRel->rd_am->amname)), "btree") != 0)
{
heap_close(indexRel);
return TRUE;
}
heap_close(indexRel);
/* ----------
* Fetch the index tuple
* ----------
*/
htup = SearchSysCacheTuple(INDEXRELID,
ObjectIdGetDatum(indexId), 0, 0, 0);
if (!HeapTupleIsValid(htup))
elog(ERROR, "cache lookup for index %u failed", indexId);
index_tup = (Form_pg_index) GETSTRUCT(htup);
/* ----------
* Check if all the sort clauses match the attributes in the index
* ----------
*/
foreach(i, sortcls)
{
SortClause *sortcl;
Resdom *resdom;
TargetEntry *tle;
Var *var;
sortcl = (SortClause *) lfirst(i);
resdom = sortcl->resdom;
tle = get_matching_tle(plan, resdom);
if (tle == NULL)
{
/* ----------
* Could this happen?
* ----------
*/
return TRUE;
}
if (nodeTag(tle->expr) != T_Var)
{
/* ----------
* The target list expression isn't a var, so it
* cannot be the indexed attribute
* ----------
*/
return TRUE;
}
var = (Var *) (tle->expr);
if (var->varno != indexScan->scan.scanrelid)
{
/* ----------
* This Var isn't from the scan relation. So it isn't
* that of the index
* ----------
*/
return TRUE;
}
if (var->varattno != index_tup->indkey[key_no])
{
/* ----------
* It isn't the indexed attribute.
* ----------
*/
return TRUE;
}
if (oprid(oper("<", resdom->restype, resdom->restype, FALSE)) != sortcl->opoid)
{
/* ----------
* Sort order isn't in ascending order.
* ----------
*/
return TRUE;
}
key_no++;
}
/* ----------
* Index matches ORDER BY - sort not required
* ----------
*/
return FALSE;
}