1033 lines
25 KiB
C

/*-------------------------------------------------------------------------
*
* rtree.c
* interface routines for the postgres rtree indexed access method.
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/rtree/Attic/rtree.c,v 1.36 1999/07/17 20:16:45 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/rtree.h"
#include "catalog/index.h"
#include "executor/executor.h"
#include "utils/geo_decls.h"
typedef struct SPLITVEC
{
OffsetNumber *spl_left;
int spl_nleft;
char *spl_ldatum;
OffsetNumber *spl_right;
int spl_nright;
char *spl_rdatum;
} SPLITVEC;
typedef struct RTSTATE
{
FmgrInfo unionFn; /* union function */
FmgrInfo sizeFn; /* size function */
FmgrInfo interFn; /* intersection function */
} RTSTATE;
/* non-export function prototypes */
static InsertIndexResult rtdoinsert(Relation r, IndexTuple itup,
RTSTATE *rtstate);
static void rttighten(Relation r, RTSTACK *stk, char *datum, int att_size,
RTSTATE *rtstate);
static InsertIndexResult dosplit(Relation r, Buffer buffer, RTSTACK *stack,
IndexTuple itup, RTSTATE *rtstate);
static void rtintinsert(Relation r, RTSTACK *stk, IndexTuple ltup,
IndexTuple rtup, RTSTATE *rtstate);
static void rtnewroot(Relation r, IndexTuple lt, IndexTuple rt);
static void picksplit(Relation r, Page page, SPLITVEC *v, IndexTuple itup,
RTSTATE *rtstate);
static void RTInitBuffer(Buffer b, uint32 f);
static OffsetNumber choose(Relation r, Page p, IndexTuple it,
RTSTATE *rtstate);
static int nospace(Page p, IndexTuple it);
static void initRtstate(RTSTATE *rtstate, Relation index);
void
rtbuild(Relation heap,
Relation index,
int natts,
AttrNumber *attnum,
IndexStrategy istrat,
uint16 pcount,
Datum *params,
FuncIndexInfo *finfo,
PredInfo *predInfo)
{
HeapScanDesc scan;
AttrNumber i;
HeapTuple htup;
IndexTuple itup;
TupleDesc hd,
id;
InsertIndexResult res;
Datum *d;
bool *nulls;
Buffer buffer = InvalidBuffer;
int nb,
nh,
ni;
#ifndef OMIT_PARTIAL_INDEX
ExprContext *econtext;
TupleTable tupleTable;
TupleTableSlot *slot;
#endif
Oid hrelid,
irelid;
Node *pred,
*oldPred;
RTSTATE rtState;
initRtstate(&rtState, index);
pred = predInfo->pred;
oldPred = predInfo->oldPred;
/*
* We expect to be called exactly once for any index relation. If
* that's not the case, big trouble's what we have.
*/
if (oldPred == NULL && (nb = RelationGetNumberOfBlocks(index)) != 0)
elog(ERROR, "%s already contains data", index->rd_rel->relname.data);
/* initialize the root page (if this is a new index) */
if (oldPred == NULL)
{
buffer = ReadBuffer(index, P_NEW);
RTInitBuffer(buffer, F_LEAF);
WriteBuffer(buffer);
}
/* init the tuple descriptors and get set for a heap scan */
hd = RelationGetDescr(heap);
id = RelationGetDescr(index);
d = (Datum *) palloc(natts * sizeof(*d));
nulls = (bool *) palloc(natts * sizeof(*nulls));
/*
* If this is a predicate (partial) index, we will need to evaluate
* the predicate using ExecQual, which requires the current tuple to
* be in a slot of a TupleTable. In addition, ExecQual must have an
* ExprContext referring to that slot. Here, we initialize dummy
* TupleTable and ExprContext objects for this purpose. --Nels, Feb
* '92
*/
#ifndef OMIT_PARTIAL_INDEX
if (pred != NULL || oldPred != NULL)
{
tupleTable = ExecCreateTupleTable(1);
slot = ExecAllocTableSlot(tupleTable);
econtext = makeNode(ExprContext);
FillDummyExprContext(econtext, slot, hd, buffer);
}
else
{
econtext = NULL;
tupleTable = NULL;
slot = NULL;
}
#endif /* OMIT_PARTIAL_INDEX */
/* count the tuples as we insert them */
nh = ni = 0;
scan = heap_beginscan(heap, 0, SnapshotNow, 0, (ScanKey) NULL);
while (HeapTupleIsValid(htup = heap_getnext(scan, 0)))
{
nh++;
/*
* If oldPred != NULL, this is an EXTEND INDEX command, so skip
* this tuple if it was already in the existing partial index
*/
if (oldPred != NULL)
{
#ifndef OMIT_PARTIAL_INDEX
/* SetSlotContents(slot, htup); */
slot->val = htup;
if (ExecQual((List *) oldPred, econtext) == true)
{
ni++;
continue;
}
#endif /* OMIT_PARTIAL_INDEX */
}
/*
* Skip this tuple if it doesn't satisfy the partial-index
* predicate
*/
if (pred != NULL)
{
#ifndef OMIT_PARTIAL_INDEX
/* SetSlotContents(slot, htup); */
slot->val = htup;
if (ExecQual((List *) pred, econtext) == false)
continue;
#endif /* OMIT_PARTIAL_INDEX */
}
ni++;
/*
* For the current heap tuple, extract all the attributes we use
* in this index, and note which are null.
*/
for (i = 1; i <= natts; i++)
{
int attoff;
bool attnull;
/*
* Offsets are from the start of the tuple, and are
* zero-based; indices are one-based. The next call returns i
* - 1. That's data hiding for you.
*/
attoff = AttrNumberGetAttrOffset(i);
/*
* d[attoff] = HeapTupleGetAttributeValue(htup, buffer,
*/
d[attoff] = GetIndexValue(htup,
hd,
attoff,
attnum,
finfo,
&attnull);
nulls[attoff] = (attnull ? 'n' : ' ');
}
/* form an index tuple and point it at the heap tuple */
itup = index_formtuple(id, &d[0], nulls);
itup->t_tid = htup->t_self;
/*
* Since we already have the index relation locked, we call
* rtdoinsert directly. Normal access method calls dispatch
* through rtinsert, which locks the relation for write. This is
* the right thing to do if you're inserting single tups, but not
* when you're initializing the whole index at once.
*/
res = rtdoinsert(index, itup, &rtState);
pfree(itup);
pfree(res);
}
/* okay, all heap tuples are indexed */
heap_endscan(scan);
if (pred != NULL || oldPred != NULL)
{
#ifndef OMIT_PARTIAL_INDEX
ExecDestroyTupleTable(tupleTable, true);
pfree(econtext);
#endif /* OMIT_PARTIAL_INDEX */
}
/*
* Since we just counted the tuples in the heap, we update its stats
* in pg_relation to guarantee that the planner takes advantage of the
* index we just created. UpdateStats() does a
* CommandCounterIncrement(), which flushes changed entries from the
* system relcache. The act of constructing an index changes these
* heap and index tuples in the system catalogs, so they need to be
* flushed. We close them to guarantee that they will be.
*/
hrelid = RelationGetRelid(heap);
irelid = RelationGetRelid(index);
heap_close(heap);
index_close(index);
UpdateStats(hrelid, nh, true);
UpdateStats(irelid, ni, false);
if (oldPred != NULL)
{
if (ni == nh)
pred = NULL;
UpdateIndexPredicate(irelid, oldPred, pred);
}
/* be tidy */
pfree(nulls);
pfree(d);
}
/*
* rtinsert -- wrapper for rtree tuple insertion.
*
* This is the public interface routine for tuple insertion in rtrees.
* It doesn't do any work; just locks the relation and passes the buck.
*/
InsertIndexResult
rtinsert(Relation r, Datum *datum, char *nulls, ItemPointer ht_ctid, Relation heapRel)
{
InsertIndexResult res;
IndexTuple itup;
RTSTATE rtState;
/* generate an index tuple */
itup = index_formtuple(RelationGetDescr(r), datum, nulls);
itup->t_tid = *ht_ctid;
initRtstate(&rtState, r);
/*
* Notes in ExecUtils:ExecOpenIndices()
*
* RelationSetLockForWrite(r);
*/
res = rtdoinsert(r, itup, &rtState);
return res;
}
static InsertIndexResult
rtdoinsert(Relation r, IndexTuple itup, RTSTATE *rtstate)
{
Page page;
Buffer buffer;
BlockNumber blk;
IndexTuple which;
OffsetNumber l;
RTSTACK *stack;
InsertIndexResult res;
RTreePageOpaque opaque;
char *datum;
blk = P_ROOT;
buffer = InvalidBuffer;
stack = (RTSTACK *) NULL;
do
{
/* let go of current buffer before getting next */
if (buffer != InvalidBuffer)
ReleaseBuffer(buffer);
/* get next buffer */
buffer = ReadBuffer(r, blk);
page = (Page) BufferGetPage(buffer);
opaque = (RTreePageOpaque) PageGetSpecialPointer(page);
if (!(opaque->flags & F_LEAF))
{
RTSTACK *n;
ItemId iid;
n = (RTSTACK *) palloc(sizeof(RTSTACK));
n->rts_parent = stack;
n->rts_blk = blk;
n->rts_child = choose(r, page, itup, rtstate);
stack = n;
iid = PageGetItemId(page, n->rts_child);
which = (IndexTuple) PageGetItem(page, iid);
blk = ItemPointerGetBlockNumber(&(which->t_tid));
}
} while (!(opaque->flags & F_LEAF));
if (nospace(page, itup))
{
/* need to do a split */
res = dosplit(r, buffer, stack, itup, rtstate);
freestack(stack);
WriteBuffer(buffer); /* don't forget to release buffer! */
return res;
}
/* add the item and write the buffer */
if (PageIsEmpty(page))
{
l = PageAddItem(page, (Item) itup, IndexTupleSize(itup),
FirstOffsetNumber,
LP_USED);
}
else
{
l = PageAddItem(page, (Item) itup, IndexTupleSize(itup),
OffsetNumberNext(PageGetMaxOffsetNumber(page)),
LP_USED);
}
WriteBuffer(buffer);
datum = (((char *) itup) + sizeof(IndexTupleData));
/* now expand the page boundary in the parent to include the new child */
rttighten(r, stack, datum,
(IndexTupleSize(itup) - sizeof(IndexTupleData)), rtstate);
freestack(stack);
/* build and return an InsertIndexResult for this insertion */
res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
ItemPointerSet(&(res->pointerData), blk, l);
return res;
}
static void
rttighten(Relation r,
RTSTACK *stk,
char *datum,
int att_size,
RTSTATE *rtstate)
{
char *oldud;
char *tdatum;
Page p;
float old_size,
newd_size;
Buffer b;
if (stk == (RTSTACK *) NULL)
return;
b = ReadBuffer(r, stk->rts_blk);
p = BufferGetPage(b);
oldud = (char *) PageGetItem(p, PageGetItemId(p, stk->rts_child));
oldud += sizeof(IndexTupleData);
(*fmgr_faddr(&rtstate->sizeFn)) (oldud, &old_size);
datum = (char *) (*fmgr_faddr(&rtstate->unionFn)) (oldud, datum);
(*fmgr_faddr(&rtstate->sizeFn)) (datum, &newd_size);
if (newd_size != old_size)
{
TupleDesc td = RelationGetDescr(r);
if (td->attrs[0]->attlen < 0)
{
/*
* This is an internal page, so 'oldud' had better be a union
* (constant-length) key, too. (See comment below.)
*/
Assert(VARSIZE(datum) == VARSIZE(oldud));
memmove(oldud, datum, VARSIZE(datum));
}
else
memmove(oldud, datum, att_size);
WriteBuffer(b);
/*
* The user may be defining an index on variable-sized data (like
* polygons). If so, we need to get a constant-sized datum for
* insertion on the internal page. We do this by calling the
* union proc, which is guaranteed to return a rectangle.
*/
tdatum = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum, datum);
rttighten(r, stk->rts_parent, tdatum, att_size, rtstate);
pfree(tdatum);
}
else
ReleaseBuffer(b);
pfree(datum);
}
/*
* dosplit -- split a page in the tree.
*
* This is the quadratic-cost split algorithm Guttman describes in
* his paper. The reason we chose it is that you can implement this
* with less information about the data types on which you're operating.
*/
static InsertIndexResult
dosplit(Relation r,
Buffer buffer,
RTSTACK *stack,
IndexTuple itup,
RTSTATE *rtstate)
{
Page p;
Buffer leftbuf,
rightbuf;
Page left,
right;
ItemId itemid;
IndexTuple item;
IndexTuple ltup,
rtup;
OffsetNumber maxoff;
OffsetNumber i;
OffsetNumber leftoff,
rightoff;
BlockNumber lbknum,
rbknum;
BlockNumber bufblock;
RTreePageOpaque opaque;
int blank;
InsertIndexResult res;
char *isnull;
SPLITVEC v;
TupleDesc tupDesc;
isnull = (char *) palloc(r->rd_rel->relnatts);
for (blank = 0; blank < r->rd_rel->relnatts; blank++)
isnull[blank] = ' ';
p = (Page) BufferGetPage(buffer);
opaque = (RTreePageOpaque) PageGetSpecialPointer(p);
/*
* The root of the tree is the first block in the relation. If we're
* about to split the root, we need to do some hocus-pocus to enforce
* this guarantee.
*/
if (BufferGetBlockNumber(buffer) == P_ROOT)
{
leftbuf = ReadBuffer(r, P_NEW);
RTInitBuffer(leftbuf, opaque->flags);
lbknum = BufferGetBlockNumber(leftbuf);
left = (Page) BufferGetPage(leftbuf);
}
else
{
leftbuf = buffer;
IncrBufferRefCount(buffer);
lbknum = BufferGetBlockNumber(buffer);
left = (Page) PageGetTempPage(p, sizeof(RTreePageOpaqueData));
}
rightbuf = ReadBuffer(r, P_NEW);
RTInitBuffer(rightbuf, opaque->flags);
rbknum = BufferGetBlockNumber(rightbuf);
right = (Page) BufferGetPage(rightbuf);
picksplit(r, p, &v, itup, rtstate);
leftoff = rightoff = FirstOffsetNumber;
maxoff = PageGetMaxOffsetNumber(p);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
itemid = PageGetItemId(p, i);
item = (IndexTuple) PageGetItem(p, itemid);
if (i == *(v.spl_left))
{
PageAddItem(left, (Item) item, IndexTupleSize(item),
leftoff, LP_USED);
leftoff = OffsetNumberNext(leftoff);
v.spl_left++; /* advance in left split vector */
}
else
{
PageAddItem(right, (Item) item, IndexTupleSize(item),
rightoff, LP_USED);
rightoff = OffsetNumberNext(rightoff);
v.spl_right++; /* advance in right split vector */
}
}
/* build an InsertIndexResult for this insertion */
res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
/* now insert the new index tuple */
if (*(v.spl_left) != FirstOffsetNumber)
{
PageAddItem(left, (Item) itup, IndexTupleSize(itup),
leftoff, LP_USED);
leftoff = OffsetNumberNext(leftoff);
ItemPointerSet(&(res->pointerData), lbknum, leftoff);
}
else
{
PageAddItem(right, (Item) itup, IndexTupleSize(itup),
rightoff, LP_USED);
rightoff = OffsetNumberNext(rightoff);
ItemPointerSet(&(res->pointerData), rbknum, rightoff);
}
if ((bufblock = BufferGetBlockNumber(buffer)) != P_ROOT)
PageRestoreTempPage(left, p);
WriteBuffer(leftbuf);
WriteBuffer(rightbuf);
/*
* Okay, the page is split. We have three things left to do:
*
* 1) Adjust any active scans on this index to cope with changes we
* introduced in its structure by splitting this page.
*
* 2) "Tighten" the bounding box of the pointer to the left page in the
* parent node in the tree, if any. Since we moved a bunch of stuff
* off the left page, we expect it to get smaller. This happens in
* the internal insertion routine.
*
* 3) Insert a pointer to the right page in the parent. This may cause
* the parent to split. If it does, we need to repeat steps one and
* two for each split node in the tree.
*/
/* adjust active scans */
rtadjscans(r, RTOP_SPLIT, bufblock, FirstOffsetNumber);
tupDesc = r->rd_att;
ltup = (IndexTuple) index_formtuple(tupDesc,
(Datum *) &(v.spl_ldatum), isnull);
rtup = (IndexTuple) index_formtuple(tupDesc,
(Datum *) &(v.spl_rdatum), isnull);
pfree(isnull);
/* set pointers to new child pages in the internal index tuples */
ItemPointerSet(&(ltup->t_tid), lbknum, 1);
ItemPointerSet(&(rtup->t_tid), rbknum, 1);
rtintinsert(r, stack, ltup, rtup, rtstate);
pfree(ltup);
pfree(rtup);
return res;
}
static void
rtintinsert(Relation r,
RTSTACK *stk,
IndexTuple ltup,
IndexTuple rtup,
RTSTATE *rtstate)
{
IndexTuple old;
Buffer b;
Page p;
char *ldatum,
*rdatum,
*newdatum;
InsertIndexResult res;
if (stk == (RTSTACK *) NULL)
{
rtnewroot(r, ltup, rtup);
return;
}
b = ReadBuffer(r, stk->rts_blk);
p = BufferGetPage(b);
old = (IndexTuple) PageGetItem(p, PageGetItemId(p, stk->rts_child));
/*
* This is a hack. Right now, we force rtree keys to be constant
* size. To fix this, need delete the old key and add both left and
* right for the two new pages. The insertion of left may force a
* split if the new left key is bigger than the old key.
*/
if (IndexTupleSize(old) != IndexTupleSize(ltup))
elog(ERROR, "Variable-length rtree keys are not supported.");
/* install pointer to left child */
memmove(old, ltup, IndexTupleSize(ltup));
if (nospace(p, rtup))
{
newdatum = (((char *) ltup) + sizeof(IndexTupleData));
rttighten(r, stk->rts_parent, newdatum,
(IndexTupleSize(ltup) - sizeof(IndexTupleData)), rtstate);
res = dosplit(r, b, stk->rts_parent, rtup, rtstate);
WriteBuffer(b); /* don't forget to release buffer! -
* 01/31/94 */
pfree(res);
}
else
{
PageAddItem(p, (Item) rtup, IndexTupleSize(rtup),
PageGetMaxOffsetNumber(p), LP_USED);
WriteBuffer(b);
ldatum = (((char *) ltup) + sizeof(IndexTupleData));
rdatum = (((char *) rtup) + sizeof(IndexTupleData));
newdatum = (char *) (*fmgr_faddr(&rtstate->unionFn)) (ldatum, rdatum);
rttighten(r, stk->rts_parent, newdatum,
(IndexTupleSize(rtup) - sizeof(IndexTupleData)), rtstate);
pfree(newdatum);
}
}
static void
rtnewroot(Relation r, IndexTuple lt, IndexTuple rt)
{
Buffer b;
Page p;
b = ReadBuffer(r, P_ROOT);
RTInitBuffer(b, 0);
p = BufferGetPage(b);
PageAddItem(p, (Item) lt, IndexTupleSize(lt),
FirstOffsetNumber, LP_USED);
PageAddItem(p, (Item) rt, IndexTupleSize(rt),
OffsetNumberNext(FirstOffsetNumber), LP_USED);
WriteBuffer(b);
}
static void
picksplit(Relation r,
Page page,
SPLITVEC *v,
IndexTuple itup,
RTSTATE *rtstate)
{
OffsetNumber maxoff;
OffsetNumber i,
j;
IndexTuple item_1,
item_2;
char *datum_alpha,
*datum_beta;
char *datum_l,
*datum_r;
char *union_d,
*union_dl,
*union_dr;
char *inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
maxoff = PageGetMaxOffsetNumber(page);
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
datum_alpha = ((char *) item_1) + sizeof(IndexTupleData);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
item_2 = (IndexTuple) PageGetItem(page, PageGetItemId(page, j));
datum_beta = ((char *) item_2) + sizeof(IndexTupleData);
/* compute the wasted space by unioning these guys */
union_d = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum_alpha, datum_beta);
(*fmgr_faddr(&rtstate->sizeFn)) (union_d, &size_union);
inter_d = (char *) (*fmgr_faddr(&rtstate->interFn)) (datum_alpha, datum_beta);
(*fmgr_faddr(&rtstate->sizeFn)) (inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
if (inter_d != (char *) NULL)
pfree(inter_d);
/*
* are these a more promising split that what we've already
* seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, seed_1));
datum_alpha = ((char *) item_1) + sizeof(IndexTupleData);
datum_l = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum_alpha, datum_alpha);
(*fmgr_faddr(&rtstate->sizeFn)) (datum_l, &size_l);
item_2 = (IndexTuple) PageGetItem(page, PageGetItemId(page, seed_2));
datum_beta = ((char *) item_2) + sizeof(IndexTupleData);
datum_r = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum_beta, datum_beta);
(*fmgr_faddr(&rtstate->sizeFn)) (datum_r, &size_r);
/*
* Now split up the regions between the two seeds. An important
* property of this split algorithm is that the split vector v has the
* indices of items to be split in order in its left and right
* vectors. We exploit this property by doing a merge in the code
* that actually splits the page.
*
* For efficiency, we also place the new index tuple in this loop. This
* is handled at the very end, when we have placed all the existing
* tuples and i == maxoff + 1.
*/
maxoff = OffsetNumberNext(maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
/*
* If we've already decided where to place this item, just put it
* on the right list. Otherwise, we need to figure out which page
* needs the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
if (i == maxoff)
item_1 = itup;
else
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
datum_alpha = ((char *) item_1) + sizeof(IndexTupleData);
union_dl = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum_l, datum_alpha);
union_dr = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum_r, datum_alpha);
(*fmgr_faddr(&rtstate->sizeFn)) (union_dl, &size_alpha);
(*fmgr_faddr(&rtstate->sizeFn)) (union_dr, &size_beta);
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r)
{
pfree(datum_l);
pfree(union_dr);
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(datum_r);
pfree(union_dl);
datum_r = union_dr;
size_r = size_alpha;
*right++ = i;
v->spl_nright++;
}
}
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
v->spl_ldatum = datum_l;
v->spl_rdatum = datum_r;
}
static void
RTInitBuffer(Buffer b, uint32 f)
{
RTreePageOpaque opaque;
Page page;
Size pageSize;
pageSize = BufferGetPageSize(b);
page = BufferGetPage(b);
MemSet(page, 0, (int) pageSize);
PageInit(page, pageSize, sizeof(RTreePageOpaqueData));
opaque = (RTreePageOpaque) PageGetSpecialPointer(page);
opaque->flags = f;
}
static OffsetNumber
choose(Relation r, Page p, IndexTuple it, RTSTATE *rtstate)
{
OffsetNumber maxoff;
OffsetNumber i;
char *ud,
*id;
char *datum;
float usize,
dsize;
OffsetNumber which;
float which_grow;
id = ((char *) it) + sizeof(IndexTupleData);
maxoff = PageGetMaxOffsetNumber(p);
which_grow = -1.0;
which = -1;
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
datum = (char *) PageGetItem(p, PageGetItemId(p, i));
datum += sizeof(IndexTupleData);
(*fmgr_faddr(&rtstate->sizeFn)) (datum, &dsize);
ud = (char *) (*fmgr_faddr(&rtstate->unionFn)) (datum, id);
(*fmgr_faddr(&rtstate->sizeFn)) (ud, &usize);
pfree(ud);
if (which_grow < 0 || usize - dsize < which_grow)
{
which = i;
which_grow = usize - dsize;
if (which_grow == 0)
break;
}
}
return which;
}
static int
nospace(Page p, IndexTuple it)
{
return PageGetFreeSpace(p) < IndexTupleSize(it);
}
void
freestack(RTSTACK *s)
{
RTSTACK *p;
while (s != (RTSTACK *) NULL)
{
p = s->rts_parent;
pfree(s);
s = p;
}
}
char *
rtdelete(Relation r, ItemPointer tid)
{
BlockNumber blkno;
OffsetNumber offnum;
Buffer buf;
Page page;
/*
* Notes in ExecUtils:ExecOpenIndices() Also note that only vacuum
* deletes index tuples now...
*
* RelationSetLockForWrite(r);
*/
blkno = ItemPointerGetBlockNumber(tid);
offnum = ItemPointerGetOffsetNumber(tid);
/* adjust any scans that will be affected by this deletion */
rtadjscans(r, RTOP_DEL, blkno, offnum);
/* delete the index tuple */
buf = ReadBuffer(r, blkno);
page = BufferGetPage(buf);
PageIndexTupleDelete(page, offnum);
WriteBuffer(buf);
return (char *) NULL;
}
static void
initRtstate(RTSTATE *rtstate, Relation index)
{
RegProcedure union_proc,
size_proc,
inter_proc;
union_proc = index_getprocid(index, 1, RT_UNION_PROC);
size_proc = index_getprocid(index, 1, RT_SIZE_PROC);
inter_proc = index_getprocid(index, 1, RT_INTER_PROC);
fmgr_info(union_proc, &rtstate->unionFn);
fmgr_info(size_proc, &rtstate->sizeFn);
fmgr_info(inter_proc, &rtstate->interFn);
return;
}
#ifdef RTDEBUG
void
_rtdump(Relation r)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
BlockNumber blkno;
BlockNumber nblocks;
RTreePageOpaque po;
IndexTuple itup;
BlockNumber itblkno;
OffsetNumber itoffno;
char *datum;
char *itkey;
nblocks = RelationGetNumberOfBlocks(r);
for (blkno = 0; blkno < nblocks; blkno++)
{
buf = ReadBuffer(r, blkno);
page = BufferGetPage(buf);
po = (RTreePageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
printf("Page %d maxoff %d <%s>\n", blkno, maxoff,
(po->flags & F_LEAF ? "LEAF" : "INTERNAL"));
if (PageIsEmpty(page))
{
ReleaseBuffer(buf);
continue;
}
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
itblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
itoffno = ItemPointerGetOffsetNumber(&(itup->t_tid));
datum = ((char *) itup);
datum += sizeof(IndexTupleData);
itkey = (char *) box_out((BOX *) datum);
printf("\t[%d] size %d heap <%d,%d> key:%s\n",
offnum, IndexTupleSize(itup), itblkno, itoffno, itkey);
pfree(itkey);
}
ReleaseBuffer(buf);
}
}
#endif /* defined RTDEBUG */