Simon Riggs 29eedd3122 Adjust GetLockConflicts() so that it uses TopMemoryContext when
executed InHotStandby. Cleaner solution than using malloc or palloc
depending upon situation, as proposed by Tom.
2010-01-29 19:45:12 +00:00

2741 lines
78 KiB
C

/*-------------------------------------------------------------------------
*
* lock.c
* POSTGRES primary lock mechanism
*
* Portions Copyright (c) 1996-2010, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/storage/lmgr/lock.c,v 1.193 2010/01/29 19:45:12 sriggs Exp $
*
* NOTES
* A lock table is a shared memory hash table. When
* a process tries to acquire a lock of a type that conflicts
* with existing locks, it is put to sleep using the routines
* in storage/lmgr/proc.c.
*
* For the most part, this code should be invoked via lmgr.c
* or another lock-management module, not directly.
*
* Interface:
*
* InitLocks(), GetLocksMethodTable(),
* LockAcquire(), LockRelease(), LockReleaseAll(),
* LockCheckConflicts(), GrantLock()
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <signal.h>
#include <unistd.h>
#include "access/transam.h"
#include "access/twophase.h"
#include "access/twophase_rmgr.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "pgstat.h"
#include "storage/standby.h"
#include "utils/memutils.h"
#include "utils/ps_status.h"
#include "utils/resowner.h"
/* This configuration variable is used to set the lock table size */
int max_locks_per_xact; /* set by guc.c */
#define NLOCKENTS() \
mul_size(max_locks_per_xact, add_size(MaxBackends, max_prepared_xacts))
/*
* Data structures defining the semantics of the standard lock methods.
*
* The conflict table defines the semantics of the various lock modes.
*/
static const LOCKMASK LockConflicts[] = {
0,
/* AccessShareLock */
(1 << AccessExclusiveLock),
/* RowShareLock */
(1 << ExclusiveLock) | (1 << AccessExclusiveLock),
/* RowExclusiveLock */
(1 << ShareLock) | (1 << ShareRowExclusiveLock) |
(1 << ExclusiveLock) | (1 << AccessExclusiveLock),
/* ShareUpdateExclusiveLock */
(1 << ShareUpdateExclusiveLock) |
(1 << ShareLock) | (1 << ShareRowExclusiveLock) |
(1 << ExclusiveLock) | (1 << AccessExclusiveLock),
/* ShareLock */
(1 << RowExclusiveLock) | (1 << ShareUpdateExclusiveLock) |
(1 << ShareRowExclusiveLock) |
(1 << ExclusiveLock) | (1 << AccessExclusiveLock),
/* ShareRowExclusiveLock */
(1 << RowExclusiveLock) | (1 << ShareUpdateExclusiveLock) |
(1 << ShareLock) | (1 << ShareRowExclusiveLock) |
(1 << ExclusiveLock) | (1 << AccessExclusiveLock),
/* ExclusiveLock */
(1 << RowShareLock) |
(1 << RowExclusiveLock) | (1 << ShareUpdateExclusiveLock) |
(1 << ShareLock) | (1 << ShareRowExclusiveLock) |
(1 << ExclusiveLock) | (1 << AccessExclusiveLock),
/* AccessExclusiveLock */
(1 << AccessShareLock) | (1 << RowShareLock) |
(1 << RowExclusiveLock) | (1 << ShareUpdateExclusiveLock) |
(1 << ShareLock) | (1 << ShareRowExclusiveLock) |
(1 << ExclusiveLock) | (1 << AccessExclusiveLock)
};
/* Names of lock modes, for debug printouts */
static const char *const lock_mode_names[] =
{
"INVALID",
"AccessShareLock",
"RowShareLock",
"RowExclusiveLock",
"ShareUpdateExclusiveLock",
"ShareLock",
"ShareRowExclusiveLock",
"ExclusiveLock",
"AccessExclusiveLock"
};
#ifndef LOCK_DEBUG
static bool Dummy_trace = false;
#endif
static const LockMethodData default_lockmethod = {
AccessExclusiveLock, /* highest valid lock mode number */
true,
LockConflicts,
lock_mode_names,
#ifdef LOCK_DEBUG
&Trace_locks
#else
&Dummy_trace
#endif
};
static const LockMethodData user_lockmethod = {
AccessExclusiveLock, /* highest valid lock mode number */
false,
LockConflicts,
lock_mode_names,
#ifdef LOCK_DEBUG
&Trace_userlocks
#else
&Dummy_trace
#endif
};
/*
* map from lock method id to the lock table data structures
*/
static const LockMethod LockMethods[] = {
NULL,
&default_lockmethod,
&user_lockmethod
};
/* Record that's written to 2PC state file when a lock is persisted */
typedef struct TwoPhaseLockRecord
{
LOCKTAG locktag;
LOCKMODE lockmode;
} TwoPhaseLockRecord;
/*
* Pointers to hash tables containing lock state
*
* The LockMethodLockHash and LockMethodProcLockHash hash tables are in
* shared memory; LockMethodLocalHash is local to each backend.
*/
static HTAB *LockMethodLockHash;
static HTAB *LockMethodProcLockHash;
static HTAB *LockMethodLocalHash;
/* private state for GrantAwaitedLock */
static LOCALLOCK *awaitedLock;
static ResourceOwner awaitedOwner;
#ifdef LOCK_DEBUG
/*------
* The following configuration options are available for lock debugging:
*
* TRACE_LOCKS -- give a bunch of output what's going on in this file
* TRACE_USERLOCKS -- same but for user locks
* TRACE_LOCK_OIDMIN-- do not trace locks for tables below this oid
* (use to avoid output on system tables)
* TRACE_LOCK_TABLE -- trace locks on this table (oid) unconditionally
* DEBUG_DEADLOCKS -- currently dumps locks at untimely occasions ;)
*
* Furthermore, but in storage/lmgr/lwlock.c:
* TRACE_LWLOCKS -- trace lightweight locks (pretty useless)
*
* Define LOCK_DEBUG at compile time to get all these enabled.
* --------
*/
int Trace_lock_oidmin = FirstNormalObjectId;
bool Trace_locks = false;
bool Trace_userlocks = false;
int Trace_lock_table = 0;
bool Debug_deadlocks = false;
inline static bool
LOCK_DEBUG_ENABLED(const LOCKTAG *tag)
{
return
(*(LockMethods[tag->locktag_lockmethodid]->trace_flag) &&
((Oid) tag->locktag_field2 >= (Oid) Trace_lock_oidmin))
|| (Trace_lock_table &&
(tag->locktag_field2 == Trace_lock_table));
}
inline static void
LOCK_PRINT(const char *where, const LOCK *lock, LOCKMODE type)
{
if (LOCK_DEBUG_ENABLED(&lock->tag))
elog(LOG,
"%s: lock(%p) id(%u,%u,%u,%u,%u,%u) grantMask(%x) "
"req(%d,%d,%d,%d,%d,%d,%d)=%d "
"grant(%d,%d,%d,%d,%d,%d,%d)=%d wait(%d) type(%s)",
where, lock,
lock->tag.locktag_field1, lock->tag.locktag_field2,
lock->tag.locktag_field3, lock->tag.locktag_field4,
lock->tag.locktag_type, lock->tag.locktag_lockmethodid,
lock->grantMask,
lock->requested[1], lock->requested[2], lock->requested[3],
lock->requested[4], lock->requested[5], lock->requested[6],
lock->requested[7], lock->nRequested,
lock->granted[1], lock->granted[2], lock->granted[3],
lock->granted[4], lock->granted[5], lock->granted[6],
lock->granted[7], lock->nGranted,
lock->waitProcs.size,
LockMethods[LOCK_LOCKMETHOD(*lock)]->lockModeNames[type]);
}
inline static void
PROCLOCK_PRINT(const char *where, const PROCLOCK *proclockP)
{
if (LOCK_DEBUG_ENABLED(&proclockP->tag.myLock->tag))
elog(LOG,
"%s: proclock(%p) lock(%p) method(%u) proc(%p) hold(%x)",
where, proclockP, proclockP->tag.myLock,
PROCLOCK_LOCKMETHOD(*(proclockP)),
proclockP->tag.myProc, (int) proclockP->holdMask);
}
#else /* not LOCK_DEBUG */
#define LOCK_PRINT(where, lock, type)
#define PROCLOCK_PRINT(where, proclockP)
#endif /* not LOCK_DEBUG */
static uint32 proclock_hash(const void *key, Size keysize);
static void RemoveLocalLock(LOCALLOCK *locallock);
static void GrantLockLocal(LOCALLOCK *locallock, ResourceOwner owner);
static void WaitOnLock(LOCALLOCK *locallock, ResourceOwner owner);
static bool UnGrantLock(LOCK *lock, LOCKMODE lockmode,
PROCLOCK *proclock, LockMethod lockMethodTable);
static void CleanUpLock(LOCK *lock, PROCLOCK *proclock,
LockMethod lockMethodTable, uint32 hashcode,
bool wakeupNeeded);
/*
* InitLocks -- Initialize the lock manager's data structures.
*
* This is called from CreateSharedMemoryAndSemaphores(), which see for
* more comments. In the normal postmaster case, the shared hash tables
* are created here, as well as a locallock hash table that will remain
* unused and empty in the postmaster itself. Backends inherit the pointers
* to the shared tables via fork(), and also inherit an image of the locallock
* hash table, which they proceed to use. In the EXEC_BACKEND case, each
* backend re-executes this code to obtain pointers to the already existing
* shared hash tables and to create its locallock hash table.
*/
void
InitLocks(void)
{
HASHCTL info;
int hash_flags;
long init_table_size,
max_table_size;
/*
* Compute init/max size to request for lock hashtables. Note these
* calculations must agree with LockShmemSize!
*/
max_table_size = NLOCKENTS();
init_table_size = max_table_size / 2;
/*
* Allocate hash table for LOCK structs. This stores per-locked-object
* information.
*/
MemSet(&info, 0, sizeof(info));
info.keysize = sizeof(LOCKTAG);
info.entrysize = sizeof(LOCK);
info.hash = tag_hash;
info.num_partitions = NUM_LOCK_PARTITIONS;
hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_PARTITION);
LockMethodLockHash = ShmemInitHash("LOCK hash",
init_table_size,
max_table_size,
&info,
hash_flags);
if (!LockMethodLockHash)
elog(FATAL, "could not initialize lock hash table");
/* Assume an average of 2 holders per lock */
max_table_size *= 2;
init_table_size *= 2;
/*
* Allocate hash table for PROCLOCK structs. This stores
* per-lock-per-holder information.
*/
info.keysize = sizeof(PROCLOCKTAG);
info.entrysize = sizeof(PROCLOCK);
info.hash = proclock_hash;
info.num_partitions = NUM_LOCK_PARTITIONS;
hash_flags = (HASH_ELEM | HASH_FUNCTION | HASH_PARTITION);
LockMethodProcLockHash = ShmemInitHash("PROCLOCK hash",
init_table_size,
max_table_size,
&info,
hash_flags);
if (!LockMethodProcLockHash)
elog(FATAL, "could not initialize proclock hash table");
/*
* Allocate non-shared hash table for LOCALLOCK structs. This stores lock
* counts and resource owner information.
*
* The non-shared table could already exist in this process (this occurs
* when the postmaster is recreating shared memory after a backend crash).
* If so, delete and recreate it. (We could simply leave it, since it
* ought to be empty in the postmaster, but for safety let's zap it.)
*/
if (LockMethodLocalHash)
hash_destroy(LockMethodLocalHash);
info.keysize = sizeof(LOCALLOCKTAG);
info.entrysize = sizeof(LOCALLOCK);
info.hash = tag_hash;
hash_flags = (HASH_ELEM | HASH_FUNCTION);
LockMethodLocalHash = hash_create("LOCALLOCK hash",
128,
&info,
hash_flags);
}
/*
* Fetch the lock method table associated with a given lock
*/
LockMethod
GetLocksMethodTable(const LOCK *lock)
{
LOCKMETHODID lockmethodid = LOCK_LOCKMETHOD(*lock);
Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods));
return LockMethods[lockmethodid];
}
/*
* Compute the hash code associated with a LOCKTAG.
*
* To avoid unnecessary recomputations of the hash code, we try to do this
* just once per function, and then pass it around as needed. Aside from
* passing the hashcode to hash_search_with_hash_value(), we can extract
* the lock partition number from the hashcode.
*/
uint32
LockTagHashCode(const LOCKTAG *locktag)
{
return get_hash_value(LockMethodLockHash, (const void *) locktag);
}
/*
* Compute the hash code associated with a PROCLOCKTAG.
*
* Because we want to use just one set of partition locks for both the
* LOCK and PROCLOCK hash tables, we have to make sure that PROCLOCKs
* fall into the same partition number as their associated LOCKs.
* dynahash.c expects the partition number to be the low-order bits of
* the hash code, and therefore a PROCLOCKTAG's hash code must have the
* same low-order bits as the associated LOCKTAG's hash code. We achieve
* this with this specialized hash function.
*/
static uint32
proclock_hash(const void *key, Size keysize)
{
const PROCLOCKTAG *proclocktag = (const PROCLOCKTAG *) key;
uint32 lockhash;
Datum procptr;
Assert(keysize == sizeof(PROCLOCKTAG));
/* Look into the associated LOCK object, and compute its hash code */
lockhash = LockTagHashCode(&proclocktag->myLock->tag);
/*
* To make the hash code also depend on the PGPROC, we xor the proc
* struct's address into the hash code, left-shifted so that the
* partition-number bits don't change. Since this is only a hash, we
* don't care if we lose high-order bits of the address; use an
* intermediate variable to suppress cast-pointer-to-int warnings.
*/
procptr = PointerGetDatum(proclocktag->myProc);
lockhash ^= ((uint32) procptr) << LOG2_NUM_LOCK_PARTITIONS;
return lockhash;
}
/*
* Compute the hash code associated with a PROCLOCKTAG, given the hashcode
* for its underlying LOCK.
*
* We use this just to avoid redundant calls of LockTagHashCode().
*/
static inline uint32
ProcLockHashCode(const PROCLOCKTAG *proclocktag, uint32 hashcode)
{
uint32 lockhash = hashcode;
Datum procptr;
/*
* This must match proclock_hash()!
*/
procptr = PointerGetDatum(proclocktag->myProc);
lockhash ^= ((uint32) procptr) << LOG2_NUM_LOCK_PARTITIONS;
return lockhash;
}
/*
* LockAcquire -- Check for lock conflicts, sleep if conflict found,
* set lock if/when no conflicts.
*
* Inputs:
* locktag: unique identifier for the lockable object
* lockmode: lock mode to acquire
* sessionLock: if true, acquire lock for session not current transaction
* dontWait: if true, don't wait to acquire lock
*
* Returns one of:
* LOCKACQUIRE_NOT_AVAIL lock not available, and dontWait=true
* LOCKACQUIRE_OK lock successfully acquired
* LOCKACQUIRE_ALREADY_HELD incremented count for lock already held
*
* In the normal case where dontWait=false and the caller doesn't need to
* distinguish a freshly acquired lock from one already taken earlier in
* this same transaction, there is no need to examine the return value.
*
* Side Effects: The lock is acquired and recorded in lock tables.
*
* NOTE: if we wait for the lock, there is no way to abort the wait
* short of aborting the transaction.
*/
LockAcquireResult
LockAcquire(const LOCKTAG *locktag,
LOCKMODE lockmode,
bool sessionLock,
bool dontWait)
{
return LockAcquireExtended(locktag, lockmode, sessionLock, dontWait, true);
}
/*
* LockAcquireExtended - allows us to specify additional options
*
* reportMemoryError specifies whether a lock request that fills the
* lock table should generate an ERROR or not. This allows a priority
* caller to note that the lock table is full and then begin taking
* extreme action to reduce the number of other lock holders before
* retrying the action.
*/
LockAcquireResult
LockAcquireExtended(const LOCKTAG *locktag,
LOCKMODE lockmode,
bool sessionLock,
bool dontWait,
bool reportMemoryError)
{
LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
LockMethod lockMethodTable;
LOCALLOCKTAG localtag;
LOCALLOCK *locallock;
LOCK *lock;
PROCLOCK *proclock;
PROCLOCKTAG proclocktag;
bool found;
ResourceOwner owner;
uint32 hashcode;
uint32 proclock_hashcode;
int partition;
LWLockId partitionLock;
int status;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
lockMethodTable = LockMethods[lockmethodid];
if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
elog(ERROR, "unrecognized lock mode: %d", lockmode);
if (RecoveryInProgress() && !InRecovery &&
(locktag->locktag_type == LOCKTAG_OBJECT ||
locktag->locktag_type == LOCKTAG_RELATION ) &&
lockmode > RowExclusiveLock)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("cannot acquire lockmode %s on database objects while recovery is in progress",
lockMethodTable->lockModeNames[lockmode]),
errhint("Only RowExclusiveLock or less can be acquired on database objects during recovery.")));
#ifdef LOCK_DEBUG
if (LOCK_DEBUG_ENABLED(locktag))
elog(LOG, "LockAcquire: lock [%u,%u] %s",
locktag->locktag_field1, locktag->locktag_field2,
lockMethodTable->lockModeNames[lockmode]);
#endif
/* Session locks are never transactional, else check table */
if (!sessionLock && lockMethodTable->transactional)
owner = CurrentResourceOwner;
else
owner = NULL;
/*
* Find or create a LOCALLOCK entry for this lock and lockmode
*/
MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */
localtag.lock = *locktag;
localtag.mode = lockmode;
locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash,
(void *) &localtag,
HASH_ENTER, &found);
/*
* if it's a new locallock object, initialize it
*/
if (!found)
{
locallock->lock = NULL;
locallock->proclock = NULL;
locallock->hashcode = LockTagHashCode(&(localtag.lock));
locallock->nLocks = 0;
locallock->numLockOwners = 0;
locallock->maxLockOwners = 8;
locallock->lockOwners = NULL;
locallock->lockOwners = (LOCALLOCKOWNER *)
MemoryContextAlloc(TopMemoryContext,
locallock->maxLockOwners * sizeof(LOCALLOCKOWNER));
}
else
{
/* Make sure there will be room to remember the lock */
if (locallock->numLockOwners >= locallock->maxLockOwners)
{
int newsize = locallock->maxLockOwners * 2;
locallock->lockOwners = (LOCALLOCKOWNER *)
repalloc(locallock->lockOwners,
newsize * sizeof(LOCALLOCKOWNER));
locallock->maxLockOwners = newsize;
}
}
/*
* If we already hold the lock, we can just increase the count locally.
*/
if (locallock->nLocks > 0)
{
GrantLockLocal(locallock, owner);
return LOCKACQUIRE_ALREADY_HELD;
}
/*
* Otherwise we've got to mess with the shared lock table.
*/
hashcode = locallock->hashcode;
partition = LockHashPartition(hashcode);
partitionLock = LockHashPartitionLock(hashcode);
LWLockAcquire(partitionLock, LW_EXCLUSIVE);
/*
* Find or create a lock with this tag.
*
* Note: if the locallock object already existed, it might have a pointer
* to the lock already ... but we probably should not assume that that
* pointer is valid, since a lock object with no locks can go away
* anytime.
*/
lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash,
(void *) locktag,
hashcode,
HASH_ENTER_NULL,
&found);
if (!lock)
{
LWLockRelease(partitionLock);
if (reportMemoryError)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory"),
errhint("You might need to increase max_locks_per_transaction.")));
else
return LOCKACQUIRE_NOT_AVAIL;
}
locallock->lock = lock;
/*
* if it's a new lock object, initialize it
*/
if (!found)
{
lock->grantMask = 0;
lock->waitMask = 0;
SHMQueueInit(&(lock->procLocks));
ProcQueueInit(&(lock->waitProcs));
lock->nRequested = 0;
lock->nGranted = 0;
MemSet(lock->requested, 0, sizeof(int) * MAX_LOCKMODES);
MemSet(lock->granted, 0, sizeof(int) * MAX_LOCKMODES);
LOCK_PRINT("LockAcquire: new", lock, lockmode);
}
else
{
LOCK_PRINT("LockAcquire: found", lock, lockmode);
Assert((lock->nRequested >= 0) && (lock->requested[lockmode] >= 0));
Assert((lock->nGranted >= 0) && (lock->granted[lockmode] >= 0));
Assert(lock->nGranted <= lock->nRequested);
}
/*
* Create the hash key for the proclock table.
*/
proclocktag.myLock = lock;
proclocktag.myProc = MyProc;
proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode);
/*
* Find or create a proclock entry with this tag
*/
proclock = (PROCLOCK *) hash_search_with_hash_value(LockMethodProcLockHash,
(void *) &proclocktag,
proclock_hashcode,
HASH_ENTER_NULL,
&found);
if (!proclock)
{
/* Ooops, not enough shmem for the proclock */
if (lock->nRequested == 0)
{
/*
* There are no other requestors of this lock, so garbage-collect
* the lock object. We *must* do this to avoid a permanent leak
* of shared memory, because there won't be anything to cause
* anyone to release the lock object later.
*/
Assert(SHMQueueEmpty(&(lock->procLocks)));
if (!hash_search_with_hash_value(LockMethodLockHash,
(void *) &(lock->tag),
hashcode,
HASH_REMOVE,
NULL))
elog(PANIC, "lock table corrupted");
}
LWLockRelease(partitionLock);
if (reportMemoryError)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory"),
errhint("You might need to increase max_locks_per_transaction.")));
else
return LOCKACQUIRE_NOT_AVAIL;
}
locallock->proclock = proclock;
/*
* If new, initialize the new entry
*/
if (!found)
{
proclock->holdMask = 0;
proclock->releaseMask = 0;
/* Add proclock to appropriate lists */
SHMQueueInsertBefore(&lock->procLocks, &proclock->lockLink);
SHMQueueInsertBefore(&(MyProc->myProcLocks[partition]),
&proclock->procLink);
PROCLOCK_PRINT("LockAcquire: new", proclock);
}
else
{
PROCLOCK_PRINT("LockAcquire: found", proclock);
Assert((proclock->holdMask & ~lock->grantMask) == 0);
#ifdef CHECK_DEADLOCK_RISK
/*
* Issue warning if we already hold a lower-level lock on this object
* and do not hold a lock of the requested level or higher. This
* indicates a deadlock-prone coding practice (eg, we'd have a
* deadlock if another backend were following the same code path at
* about the same time).
*
* This is not enabled by default, because it may generate log entries
* about user-level coding practices that are in fact safe in context.
* It can be enabled to help find system-level problems.
*
* XXX Doing numeric comparison on the lockmodes is a hack; it'd be
* better to use a table. For now, though, this works.
*/
{
int i;
for (i = lockMethodTable->numLockModes; i > 0; i--)
{
if (proclock->holdMask & LOCKBIT_ON(i))
{
if (i >= (int) lockmode)
break; /* safe: we have a lock >= req level */
elog(LOG, "deadlock risk: raising lock level"
" from %s to %s on object %u/%u/%u",
lockMethodTable->lockModeNames[i],
lockMethodTable->lockModeNames[lockmode],
lock->tag.locktag_field1, lock->tag.locktag_field2,
lock->tag.locktag_field3);
break;
}
}
}
#endif /* CHECK_DEADLOCK_RISK */
}
/*
* lock->nRequested and lock->requested[] count the total number of
* requests, whether granted or waiting, so increment those immediately.
* The other counts don't increment till we get the lock.
*/
lock->nRequested++;
lock->requested[lockmode]++;
Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0));
/*
* We shouldn't already hold the desired lock; else locallock table is
* broken.
*/
if (proclock->holdMask & LOCKBIT_ON(lockmode))
elog(ERROR, "lock %s on object %u/%u/%u is already held",
lockMethodTable->lockModeNames[lockmode],
lock->tag.locktag_field1, lock->tag.locktag_field2,
lock->tag.locktag_field3);
/*
* If lock requested conflicts with locks requested by waiters, must join
* wait queue. Otherwise, check for conflict with already-held locks.
* (That's last because most complex check.)
*/
if (lockMethodTable->conflictTab[lockmode] & lock->waitMask)
status = STATUS_FOUND;
else
status = LockCheckConflicts(lockMethodTable, lockmode,
lock, proclock, MyProc);
if (status == STATUS_OK)
{
/* No conflict with held or previously requested locks */
GrantLock(lock, proclock, lockmode);
GrantLockLocal(locallock, owner);
}
else
{
Assert(status == STATUS_FOUND);
/*
* We can't acquire the lock immediately. If caller specified no
* blocking, remove useless table entries and return NOT_AVAIL without
* waiting.
*/
if (dontWait)
{
if (proclock->holdMask == 0)
{
SHMQueueDelete(&proclock->lockLink);
SHMQueueDelete(&proclock->procLink);
if (!hash_search_with_hash_value(LockMethodProcLockHash,
(void *) &(proclock->tag),
proclock_hashcode,
HASH_REMOVE,
NULL))
elog(PANIC, "proclock table corrupted");
}
else
PROCLOCK_PRINT("LockAcquire: NOWAIT", proclock);
lock->nRequested--;
lock->requested[lockmode]--;
LOCK_PRINT("LockAcquire: conditional lock failed", lock, lockmode);
Assert((lock->nRequested > 0) && (lock->requested[lockmode] >= 0));
Assert(lock->nGranted <= lock->nRequested);
LWLockRelease(partitionLock);
if (locallock->nLocks == 0)
RemoveLocalLock(locallock);
return LOCKACQUIRE_NOT_AVAIL;
}
/*
* Set bitmask of locks this process already holds on this object.
*/
MyProc->heldLocks = proclock->holdMask;
/*
* Sleep till someone wakes me up.
*/
TRACE_POSTGRESQL_LOCK_WAIT_START(locktag->locktag_field1,
locktag->locktag_field2,
locktag->locktag_field3,
locktag->locktag_field4,
locktag->locktag_type,
lockmode);
WaitOnLock(locallock, owner);
TRACE_POSTGRESQL_LOCK_WAIT_DONE(locktag->locktag_field1,
locktag->locktag_field2,
locktag->locktag_field3,
locktag->locktag_field4,
locktag->locktag_type,
lockmode);
/*
* NOTE: do not do any material change of state between here and
* return. All required changes in locktable state must have been
* done when the lock was granted to us --- see notes in WaitOnLock.
*/
/*
* Check the proclock entry status, in case something in the ipc
* communication doesn't work correctly.
*/
if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
{
PROCLOCK_PRINT("LockAcquire: INCONSISTENT", proclock);
LOCK_PRINT("LockAcquire: INCONSISTENT", lock, lockmode);
/* Should we retry ? */
LWLockRelease(partitionLock);
elog(ERROR, "LockAcquire failed");
}
PROCLOCK_PRINT("LockAcquire: granted", proclock);
LOCK_PRINT("LockAcquire: granted", lock, lockmode);
}
LWLockRelease(partitionLock);
/*
* Emit a WAL record if acquisition of this lock need to be replayed in
* a standby server. Only AccessExclusiveLocks can conflict with lock
* types that read-only transactions can acquire in a standby server.
*
* Make sure this definition matches the one GetRunningTransactionLocks().
*/
if (lockmode >= AccessExclusiveLock &&
locktag->locktag_type == LOCKTAG_RELATION &&
!RecoveryInProgress() &&
XLogStandbyInfoActive())
{
/*
* Decode the locktag back to the original values, to avoid
* sending lots of empty bytes with every message. See
* lock.h to check how a locktag is defined for LOCKTAG_RELATION
*/
LogAccessExclusiveLock(locktag->locktag_field1,
locktag->locktag_field2);
}
return LOCKACQUIRE_OK;
}
/*
* Subroutine to free a locallock entry
*/
static void
RemoveLocalLock(LOCALLOCK *locallock)
{
pfree(locallock->lockOwners);
locallock->lockOwners = NULL;
if (!hash_search(LockMethodLocalHash,
(void *) &(locallock->tag),
HASH_REMOVE, NULL))
elog(WARNING, "locallock table corrupted");
}
/*
* LockCheckConflicts -- test whether requested lock conflicts
* with those already granted
*
* Returns STATUS_FOUND if conflict, STATUS_OK if no conflict.
*
* NOTES:
* Here's what makes this complicated: one process's locks don't
* conflict with one another, no matter what purpose they are held for
* (eg, session and transaction locks do not conflict).
* So, we must subtract off our own locks when determining whether the
* requested new lock conflicts with those already held.
*/
int
LockCheckConflicts(LockMethod lockMethodTable,
LOCKMODE lockmode,
LOCK *lock,
PROCLOCK *proclock,
PGPROC *proc)
{
int numLockModes = lockMethodTable->numLockModes;
LOCKMASK myLocks;
LOCKMASK otherLocks;
int i;
/*
* first check for global conflicts: If no locks conflict with my request,
* then I get the lock.
*
* Checking for conflict: lock->grantMask represents the types of
* currently held locks. conflictTable[lockmode] has a bit set for each
* type of lock that conflicts with request. Bitwise compare tells if
* there is a conflict.
*/
if (!(lockMethodTable->conflictTab[lockmode] & lock->grantMask))
{
PROCLOCK_PRINT("LockCheckConflicts: no conflict", proclock);
return STATUS_OK;
}
/*
* Rats. Something conflicts. But it could still be my own lock. We have
* to construct a conflict mask that does not reflect our own locks, but
* only lock types held by other processes.
*/
myLocks = proclock->holdMask;
otherLocks = 0;
for (i = 1; i <= numLockModes; i++)
{
int myHolding = (myLocks & LOCKBIT_ON(i)) ? 1 : 0;
if (lock->granted[i] > myHolding)
otherLocks |= LOCKBIT_ON(i);
}
/*
* now check again for conflicts. 'otherLocks' describes the types of
* locks held by other processes. If one of these conflicts with the kind
* of lock that I want, there is a conflict and I have to sleep.
*/
if (!(lockMethodTable->conflictTab[lockmode] & otherLocks))
{
/* no conflict. OK to get the lock */
PROCLOCK_PRINT("LockCheckConflicts: resolved", proclock);
return STATUS_OK;
}
PROCLOCK_PRINT("LockCheckConflicts: conflicting", proclock);
return STATUS_FOUND;
}
/*
* GrantLock -- update the lock and proclock data structures to show
* the lock request has been granted.
*
* NOTE: if proc was blocked, it also needs to be removed from the wait list
* and have its waitLock/waitProcLock fields cleared. That's not done here.
*
* NOTE: the lock grant also has to be recorded in the associated LOCALLOCK
* table entry; but since we may be awaking some other process, we can't do
* that here; it's done by GrantLockLocal, instead.
*/
void
GrantLock(LOCK *lock, PROCLOCK *proclock, LOCKMODE lockmode)
{
lock->nGranted++;
lock->granted[lockmode]++;
lock->grantMask |= LOCKBIT_ON(lockmode);
if (lock->granted[lockmode] == lock->requested[lockmode])
lock->waitMask &= LOCKBIT_OFF(lockmode);
proclock->holdMask |= LOCKBIT_ON(lockmode);
LOCK_PRINT("GrantLock", lock, lockmode);
Assert((lock->nGranted > 0) && (lock->granted[lockmode] > 0));
Assert(lock->nGranted <= lock->nRequested);
}
/*
* UnGrantLock -- opposite of GrantLock.
*
* Updates the lock and proclock data structures to show that the lock
* is no longer held nor requested by the current holder.
*
* Returns true if there were any waiters waiting on the lock that
* should now be woken up with ProcLockWakeup.
*/
static bool
UnGrantLock(LOCK *lock, LOCKMODE lockmode,
PROCLOCK *proclock, LockMethod lockMethodTable)
{
bool wakeupNeeded = false;
Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0));
Assert((lock->nGranted > 0) && (lock->granted[lockmode] > 0));
Assert(lock->nGranted <= lock->nRequested);
/*
* fix the general lock stats
*/
lock->nRequested--;
lock->requested[lockmode]--;
lock->nGranted--;
lock->granted[lockmode]--;
if (lock->granted[lockmode] == 0)
{
/* change the conflict mask. No more of this lock type. */
lock->grantMask &= LOCKBIT_OFF(lockmode);
}
LOCK_PRINT("UnGrantLock: updated", lock, lockmode);
/*
* We need only run ProcLockWakeup if the released lock conflicts with at
* least one of the lock types requested by waiter(s). Otherwise whatever
* conflict made them wait must still exist. NOTE: before MVCC, we could
* skip wakeup if lock->granted[lockmode] was still positive. But that's
* not true anymore, because the remaining granted locks might belong to
* some waiter, who could now be awakened because he doesn't conflict with
* his own locks.
*/
if (lockMethodTable->conflictTab[lockmode] & lock->waitMask)
wakeupNeeded = true;
/*
* Now fix the per-proclock state.
*/
proclock->holdMask &= LOCKBIT_OFF(lockmode);
PROCLOCK_PRINT("UnGrantLock: updated", proclock);
return wakeupNeeded;
}
/*
* CleanUpLock -- clean up after releasing a lock. We garbage-collect the
* proclock and lock objects if possible, and call ProcLockWakeup if there
* are remaining requests and the caller says it's OK. (Normally, this
* should be called after UnGrantLock, and wakeupNeeded is the result from
* UnGrantLock.)
*
* The appropriate partition lock must be held at entry, and will be
* held at exit.
*/
static void
CleanUpLock(LOCK *lock, PROCLOCK *proclock,
LockMethod lockMethodTable, uint32 hashcode,
bool wakeupNeeded)
{
/*
* If this was my last hold on this lock, delete my entry in the proclock
* table.
*/
if (proclock->holdMask == 0)
{
uint32 proclock_hashcode;
PROCLOCK_PRINT("CleanUpLock: deleting", proclock);
SHMQueueDelete(&proclock->lockLink);
SHMQueueDelete(&proclock->procLink);
proclock_hashcode = ProcLockHashCode(&proclock->tag, hashcode);
if (!hash_search_with_hash_value(LockMethodProcLockHash,
(void *) &(proclock->tag),
proclock_hashcode,
HASH_REMOVE,
NULL))
elog(PANIC, "proclock table corrupted");
}
if (lock->nRequested == 0)
{
/*
* The caller just released the last lock, so garbage-collect the lock
* object.
*/
LOCK_PRINT("CleanUpLock: deleting", lock, 0);
Assert(SHMQueueEmpty(&(lock->procLocks)));
if (!hash_search_with_hash_value(LockMethodLockHash,
(void *) &(lock->tag),
hashcode,
HASH_REMOVE,
NULL))
elog(PANIC, "lock table corrupted");
}
else if (wakeupNeeded)
{
/* There are waiters on this lock, so wake them up. */
ProcLockWakeup(lockMethodTable, lock);
}
}
/*
* GrantLockLocal -- update the locallock data structures to show
* the lock request has been granted.
*
* We expect that LockAcquire made sure there is room to add a new
* ResourceOwner entry.
*/
static void
GrantLockLocal(LOCALLOCK *locallock, ResourceOwner owner)
{
LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
int i;
Assert(locallock->numLockOwners < locallock->maxLockOwners);
/* Count the total */
locallock->nLocks++;
/* Count the per-owner lock */
for (i = 0; i < locallock->numLockOwners; i++)
{
if (lockOwners[i].owner == owner)
{
lockOwners[i].nLocks++;
return;
}
}
lockOwners[i].owner = owner;
lockOwners[i].nLocks = 1;
locallock->numLockOwners++;
}
/*
* GrantAwaitedLock -- call GrantLockLocal for the lock we are doing
* WaitOnLock on.
*
* proc.c needs this for the case where we are booted off the lock by
* timeout, but discover that someone granted us the lock anyway.
*
* We could just export GrantLockLocal, but that would require including
* resowner.h in lock.h, which creates circularity.
*/
void
GrantAwaitedLock(void)
{
GrantLockLocal(awaitedLock, awaitedOwner);
}
/*
* WaitOnLock -- wait to acquire a lock
*
* Caller must have set MyProc->heldLocks to reflect locks already held
* on the lockable object by this process.
*
* The appropriate partition lock must be held at entry.
*/
static void
WaitOnLock(LOCALLOCK *locallock, ResourceOwner owner)
{
LOCKMETHODID lockmethodid = LOCALLOCK_LOCKMETHOD(*locallock);
LockMethod lockMethodTable = LockMethods[lockmethodid];
char *volatile new_status = NULL;
LOCK_PRINT("WaitOnLock: sleeping on lock",
locallock->lock, locallock->tag.mode);
/* Report change to waiting status */
if (update_process_title)
{
const char *old_status;
int len;
old_status = get_ps_display(&len);
new_status = (char *) palloc(len + 8 + 1);
memcpy(new_status, old_status, len);
strcpy(new_status + len, " waiting");
set_ps_display(new_status, false);
new_status[len] = '\0'; /* truncate off " waiting" */
}
pgstat_report_waiting(true);
awaitedLock = locallock;
awaitedOwner = owner;
/*
* NOTE: Think not to put any shared-state cleanup after the call to
* ProcSleep, in either the normal or failure path. The lock state must
* be fully set by the lock grantor, or by CheckDeadLock if we give up
* waiting for the lock. This is necessary because of the possibility
* that a cancel/die interrupt will interrupt ProcSleep after someone else
* grants us the lock, but before we've noticed it. Hence, after granting,
* the locktable state must fully reflect the fact that we own the lock;
* we can't do additional work on return.
*
* We can and do use a PG_TRY block to try to clean up after failure, but
* this still has a major limitation: elog(FATAL) can occur while waiting
* (eg, a "die" interrupt), and then control won't come back here. So all
* cleanup of essential state should happen in LockWaitCancel, not here.
* We can use PG_TRY to clear the "waiting" status flags, since doing that
* is unimportant if the process exits.
*/
PG_TRY();
{
if (ProcSleep(locallock, lockMethodTable) != STATUS_OK)
{
/*
* We failed as a result of a deadlock, see CheckDeadLock(). Quit
* now.
*/
awaitedLock = NULL;
LOCK_PRINT("WaitOnLock: aborting on lock",
locallock->lock, locallock->tag.mode);
LWLockRelease(LockHashPartitionLock(locallock->hashcode));
/*
* Now that we aren't holding the partition lock, we can give an
* error report including details about the detected deadlock.
*/
DeadLockReport();
/* not reached */
}
}
PG_CATCH();
{
/* In this path, awaitedLock remains set until LockWaitCancel */
/* Report change to non-waiting status */
pgstat_report_waiting(false);
if (update_process_title)
{
set_ps_display(new_status, false);
pfree(new_status);
}
/* and propagate the error */
PG_RE_THROW();
}
PG_END_TRY();
awaitedLock = NULL;
/* Report change to non-waiting status */
pgstat_report_waiting(false);
if (update_process_title)
{
set_ps_display(new_status, false);
pfree(new_status);
}
LOCK_PRINT("WaitOnLock: wakeup on lock",
locallock->lock, locallock->tag.mode);
}
/*
* Remove a proc from the wait-queue it is on (caller must know it is on one).
* This is only used when the proc has failed to get the lock, so we set its
* waitStatus to STATUS_ERROR.
*
* Appropriate partition lock must be held by caller. Also, caller is
* responsible for signaling the proc if needed.
*
* NB: this does not clean up any locallock object that may exist for the lock.
*/
void
RemoveFromWaitQueue(PGPROC *proc, uint32 hashcode)
{
LOCK *waitLock = proc->waitLock;
PROCLOCK *proclock = proc->waitProcLock;
LOCKMODE lockmode = proc->waitLockMode;
LOCKMETHODID lockmethodid = LOCK_LOCKMETHOD(*waitLock);
/* Make sure proc is waiting */
Assert(proc->waitStatus == STATUS_WAITING);
Assert(proc->links.next != NULL);
Assert(waitLock);
Assert(waitLock->waitProcs.size > 0);
Assert(0 < lockmethodid && lockmethodid < lengthof(LockMethods));
/* Remove proc from lock's wait queue */
SHMQueueDelete(&(proc->links));
waitLock->waitProcs.size--;
/* Undo increments of request counts by waiting process */
Assert(waitLock->nRequested > 0);
Assert(waitLock->nRequested > proc->waitLock->nGranted);
waitLock->nRequested--;
Assert(waitLock->requested[lockmode] > 0);
waitLock->requested[lockmode]--;
/* don't forget to clear waitMask bit if appropriate */
if (waitLock->granted[lockmode] == waitLock->requested[lockmode])
waitLock->waitMask &= LOCKBIT_OFF(lockmode);
/* Clean up the proc's own state, and pass it the ok/fail signal */
proc->waitLock = NULL;
proc->waitProcLock = NULL;
proc->waitStatus = STATUS_ERROR;
/*
* Delete the proclock immediately if it represents no already-held locks.
* (This must happen now because if the owner of the lock decides to
* release it, and the requested/granted counts then go to zero,
* LockRelease expects there to be no remaining proclocks.) Then see if
* any other waiters for the lock can be woken up now.
*/
CleanUpLock(waitLock, proclock,
LockMethods[lockmethodid], hashcode,
true);
}
/*
* LockRelease -- look up 'locktag' and release one 'lockmode' lock on it.
* Release a session lock if 'sessionLock' is true, else release a
* regular transaction lock.
*
* Side Effects: find any waiting processes that are now wakable,
* grant them their requested locks and awaken them.
* (We have to grant the lock here to avoid a race between
* the waking process and any new process to
* come along and request the lock.)
*/
bool
LockRelease(const LOCKTAG *locktag, LOCKMODE lockmode, bool sessionLock)
{
LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
LockMethod lockMethodTable;
LOCALLOCKTAG localtag;
LOCALLOCK *locallock;
LOCK *lock;
PROCLOCK *proclock;
LWLockId partitionLock;
bool wakeupNeeded;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
lockMethodTable = LockMethods[lockmethodid];
if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
elog(ERROR, "unrecognized lock mode: %d", lockmode);
#ifdef LOCK_DEBUG
if (LOCK_DEBUG_ENABLED(locktag))
elog(LOG, "LockRelease: lock [%u,%u] %s",
locktag->locktag_field1, locktag->locktag_field2,
lockMethodTable->lockModeNames[lockmode]);
#endif
/*
* Find the LOCALLOCK entry for this lock and lockmode
*/
MemSet(&localtag, 0, sizeof(localtag)); /* must clear padding */
localtag.lock = *locktag;
localtag.mode = lockmode;
locallock = (LOCALLOCK *) hash_search(LockMethodLocalHash,
(void *) &localtag,
HASH_FIND, NULL);
/*
* let the caller print its own error message, too. Do not ereport(ERROR).
*/
if (!locallock || locallock->nLocks <= 0)
{
elog(WARNING, "you don't own a lock of type %s",
lockMethodTable->lockModeNames[lockmode]);
return FALSE;
}
/*
* Decrease the count for the resource owner.
*/
{
LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
ResourceOwner owner;
int i;
/* Session locks are never transactional, else check table */
if (!sessionLock && lockMethodTable->transactional)
owner = CurrentResourceOwner;
else
owner = NULL;
for (i = locallock->numLockOwners - 1; i >= 0; i--)
{
if (lockOwners[i].owner == owner)
{
Assert(lockOwners[i].nLocks > 0);
if (--lockOwners[i].nLocks == 0)
{
/* compact out unused slot */
locallock->numLockOwners--;
if (i < locallock->numLockOwners)
lockOwners[i] = lockOwners[locallock->numLockOwners];
}
break;
}
}
if (i < 0)
{
/* don't release a lock belonging to another owner */
elog(WARNING, "you don't own a lock of type %s",
lockMethodTable->lockModeNames[lockmode]);
return FALSE;
}
}
/*
* Decrease the total local count. If we're still holding the lock, we're
* done.
*/
locallock->nLocks--;
if (locallock->nLocks > 0)
return TRUE;
/*
* Otherwise we've got to mess with the shared lock table.
*/
partitionLock = LockHashPartitionLock(locallock->hashcode);
LWLockAcquire(partitionLock, LW_EXCLUSIVE);
/*
* We don't need to re-find the lock or proclock, since we kept their
* addresses in the locallock table, and they couldn't have been removed
* while we were holding a lock on them.
*/
lock = locallock->lock;
LOCK_PRINT("LockRelease: found", lock, lockmode);
proclock = locallock->proclock;
PROCLOCK_PRINT("LockRelease: found", proclock);
/*
* Double-check that we are actually holding a lock of the type we want to
* release.
*/
if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
{
PROCLOCK_PRINT("LockRelease: WRONGTYPE", proclock);
LWLockRelease(partitionLock);
elog(WARNING, "you don't own a lock of type %s",
lockMethodTable->lockModeNames[lockmode]);
RemoveLocalLock(locallock);
return FALSE;
}
/*
* Do the releasing. CleanUpLock will waken any now-wakable waiters.
*/
wakeupNeeded = UnGrantLock(lock, lockmode, proclock, lockMethodTable);
CleanUpLock(lock, proclock,
lockMethodTable, locallock->hashcode,
wakeupNeeded);
LWLockRelease(partitionLock);
RemoveLocalLock(locallock);
return TRUE;
}
/*
* LockReleaseAll -- Release all locks of the specified lock method that
* are held by the current process.
*
* Well, not necessarily *all* locks. The available behaviors are:
* allLocks == true: release all locks including session locks.
* allLocks == false: release all non-session locks.
*/
void
LockReleaseAll(LOCKMETHODID lockmethodid, bool allLocks)
{
HASH_SEQ_STATUS status;
LockMethod lockMethodTable;
int i,
numLockModes;
LOCALLOCK *locallock;
LOCK *lock;
PROCLOCK *proclock;
int partition;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
lockMethodTable = LockMethods[lockmethodid];
#ifdef LOCK_DEBUG
if (*(lockMethodTable->trace_flag))
elog(LOG, "LockReleaseAll: lockmethod=%d", lockmethodid);
#endif
numLockModes = lockMethodTable->numLockModes;
/*
* First we run through the locallock table and get rid of unwanted
* entries, then we scan the process's proclocks and get rid of those. We
* do this separately because we may have multiple locallock entries
* pointing to the same proclock, and we daren't end up with any dangling
* pointers.
*/
hash_seq_init(&status, LockMethodLocalHash);
while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
{
if (locallock->proclock == NULL || locallock->lock == NULL)
{
/*
* We must've run out of shared memory while trying to set up this
* lock. Just forget the local entry.
*/
Assert(locallock->nLocks == 0);
RemoveLocalLock(locallock);
continue;
}
/* Ignore items that are not of the lockmethod to be removed */
if (LOCALLOCK_LOCKMETHOD(*locallock) != lockmethodid)
continue;
/*
* If we are asked to release all locks, we can just zap the entry.
* Otherwise, must scan to see if there are session locks. We assume
* there is at most one lockOwners entry for session locks.
*/
if (!allLocks)
{
LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
/* If it's above array position 0, move it down to 0 */
for (i = locallock->numLockOwners - 1; i > 0; i--)
{
if (lockOwners[i].owner == NULL)
{
lockOwners[0] = lockOwners[i];
break;
}
}
if (locallock->numLockOwners > 0 &&
lockOwners[0].owner == NULL &&
lockOwners[0].nLocks > 0)
{
/* Fix the locallock to show just the session locks */
locallock->nLocks = lockOwners[0].nLocks;
locallock->numLockOwners = 1;
/* We aren't deleting this locallock, so done */
continue;
}
}
/* Mark the proclock to show we need to release this lockmode */
if (locallock->nLocks > 0)
locallock->proclock->releaseMask |= LOCKBIT_ON(locallock->tag.mode);
/* And remove the locallock hashtable entry */
RemoveLocalLock(locallock);
}
/*
* Now, scan each lock partition separately.
*/
for (partition = 0; partition < NUM_LOCK_PARTITIONS; partition++)
{
LWLockId partitionLock = FirstLockMgrLock + partition;
SHM_QUEUE *procLocks = &(MyProc->myProcLocks[partition]);
proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
offsetof(PROCLOCK, procLink));
if (!proclock)
continue; /* needn't examine this partition */
LWLockAcquire(partitionLock, LW_EXCLUSIVE);
while (proclock)
{
bool wakeupNeeded = false;
PROCLOCK *nextplock;
/* Get link first, since we may unlink/delete this proclock */
nextplock = (PROCLOCK *)
SHMQueueNext(procLocks, &proclock->procLink,
offsetof(PROCLOCK, procLink));
Assert(proclock->tag.myProc == MyProc);
lock = proclock->tag.myLock;
/* Ignore items that are not of the lockmethod to be removed */
if (LOCK_LOCKMETHOD(*lock) != lockmethodid)
goto next_item;
/*
* In allLocks mode, force release of all locks even if locallock
* table had problems
*/
if (allLocks)
proclock->releaseMask = proclock->holdMask;
else
Assert((proclock->releaseMask & ~proclock->holdMask) == 0);
/*
* Ignore items that have nothing to be released, unless they have
* holdMask == 0 and are therefore recyclable
*/
if (proclock->releaseMask == 0 && proclock->holdMask != 0)
goto next_item;
PROCLOCK_PRINT("LockReleaseAll", proclock);
LOCK_PRINT("LockReleaseAll", lock, 0);
Assert(lock->nRequested >= 0);
Assert(lock->nGranted >= 0);
Assert(lock->nGranted <= lock->nRequested);
Assert((proclock->holdMask & ~lock->grantMask) == 0);
/*
* Release the previously-marked lock modes
*/
for (i = 1; i <= numLockModes; i++)
{
if (proclock->releaseMask & LOCKBIT_ON(i))
wakeupNeeded |= UnGrantLock(lock, i, proclock,
lockMethodTable);
}
Assert((lock->nRequested >= 0) && (lock->nGranted >= 0));
Assert(lock->nGranted <= lock->nRequested);
LOCK_PRINT("LockReleaseAll: updated", lock, 0);
proclock->releaseMask = 0;
/* CleanUpLock will wake up waiters if needed. */
CleanUpLock(lock, proclock,
lockMethodTable,
LockTagHashCode(&lock->tag),
wakeupNeeded);
next_item:
proclock = nextplock;
} /* loop over PROCLOCKs within this partition */
LWLockRelease(partitionLock);
} /* loop over partitions */
#ifdef LOCK_DEBUG
if (*(lockMethodTable->trace_flag))
elog(LOG, "LockReleaseAll done");
#endif
}
/*
* LockReleaseCurrentOwner
* Release all locks belonging to CurrentResourceOwner
*/
void
LockReleaseCurrentOwner(void)
{
HASH_SEQ_STATUS status;
LOCALLOCK *locallock;
LOCALLOCKOWNER *lockOwners;
int i;
hash_seq_init(&status, LockMethodLocalHash);
while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
{
/* Ignore items that must be nontransactional */
if (!LockMethods[LOCALLOCK_LOCKMETHOD(*locallock)]->transactional)
continue;
/* Scan to see if there are any locks belonging to current owner */
lockOwners = locallock->lockOwners;
for (i = locallock->numLockOwners - 1; i >= 0; i--)
{
if (lockOwners[i].owner == CurrentResourceOwner)
{
Assert(lockOwners[i].nLocks > 0);
if (lockOwners[i].nLocks < locallock->nLocks)
{
/*
* We will still hold this lock after forgetting this
* ResourceOwner.
*/
locallock->nLocks -= lockOwners[i].nLocks;
/* compact out unused slot */
locallock->numLockOwners--;
if (i < locallock->numLockOwners)
lockOwners[i] = lockOwners[locallock->numLockOwners];
}
else
{
Assert(lockOwners[i].nLocks == locallock->nLocks);
/* We want to call LockRelease just once */
lockOwners[i].nLocks = 1;
locallock->nLocks = 1;
if (!LockRelease(&locallock->tag.lock,
locallock->tag.mode,
false))
elog(WARNING, "LockReleaseCurrentOwner: failed??");
}
break;
}
}
}
}
/*
* LockReassignCurrentOwner
* Reassign all locks belonging to CurrentResourceOwner to belong
* to its parent resource owner
*/
void
LockReassignCurrentOwner(void)
{
ResourceOwner parent = ResourceOwnerGetParent(CurrentResourceOwner);
HASH_SEQ_STATUS status;
LOCALLOCK *locallock;
LOCALLOCKOWNER *lockOwners;
Assert(parent != NULL);
hash_seq_init(&status, LockMethodLocalHash);
while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
{
int i;
int ic = -1;
int ip = -1;
/* Ignore items that must be nontransactional */
if (!LockMethods[LOCALLOCK_LOCKMETHOD(*locallock)]->transactional)
continue;
/*
* Scan to see if there are any locks belonging to current owner or
* its parent
*/
lockOwners = locallock->lockOwners;
for (i = locallock->numLockOwners - 1; i >= 0; i--)
{
if (lockOwners[i].owner == CurrentResourceOwner)
ic = i;
else if (lockOwners[i].owner == parent)
ip = i;
}
if (ic < 0)
continue; /* no current locks */
if (ip < 0)
{
/* Parent has no slot, so just give it child's slot */
lockOwners[ic].owner = parent;
}
else
{
/* Merge child's count with parent's */
lockOwners[ip].nLocks += lockOwners[ic].nLocks;
/* compact out unused slot */
locallock->numLockOwners--;
if (ic < locallock->numLockOwners)
lockOwners[ic] = lockOwners[locallock->numLockOwners];
}
}
}
/*
* GetLockConflicts
* Get an array of VirtualTransactionIds of xacts currently holding locks
* that would conflict with the specified lock/lockmode.
* xacts merely awaiting such a lock are NOT reported.
*
* The result array is palloc'd and is terminated with an invalid VXID.
*
* Of course, the result could be out of date by the time it's returned,
* so use of this function has to be thought about carefully.
*
* Note we never include the current xact's vxid in the result array,
* since an xact never blocks itself. Also, prepared transactions are
* ignored, which is a bit more debatable but is appropriate for current
* uses of the result.
*/
VirtualTransactionId *
GetLockConflicts(const LOCKTAG *locktag, LOCKMODE lockmode)
{
static VirtualTransactionId *vxids;
LOCKMETHODID lockmethodid = locktag->locktag_lockmethodid;
LockMethod lockMethodTable;
LOCK *lock;
LOCKMASK conflictMask;
SHM_QUEUE *procLocks;
PROCLOCK *proclock;
uint32 hashcode;
LWLockId partitionLock;
int count = 0;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
lockMethodTable = LockMethods[lockmethodid];
if (lockmode <= 0 || lockmode > lockMethodTable->numLockModes)
elog(ERROR, "unrecognized lock mode: %d", lockmode);
/*
* Allocate memory to store results, and fill with InvalidVXID. We only
* need enough space for MaxBackends + a terminator, since prepared xacts
* don't count. InHotStandby allocate once in TopMemoryContext.
*/
if (InHotStandby)
{
if (vxids == NULL)
vxids = (VirtualTransactionId *)
MemoryContextAlloc(TopMemoryContext,
sizeof(VirtualTransactionId) * (MaxBackends + 1));
}
else
vxids = (VirtualTransactionId *)
palloc0(sizeof(VirtualTransactionId) * (MaxBackends + 1));
/*
* Look up the lock object matching the tag.
*/
hashcode = LockTagHashCode(locktag);
partitionLock = LockHashPartitionLock(hashcode);
LWLockAcquire(partitionLock, LW_SHARED);
lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash,
(void *) locktag,
hashcode,
HASH_FIND,
NULL);
if (!lock)
{
/*
* If the lock object doesn't exist, there is nothing holding a lock
* on this lockable object.
*/
LWLockRelease(partitionLock);
return vxids;
}
/*
* Examine each existing holder (or awaiter) of the lock.
*/
conflictMask = lockMethodTable->conflictTab[lockmode];
procLocks = &(lock->procLocks);
proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
offsetof(PROCLOCK, lockLink));
while (proclock)
{
if (conflictMask & proclock->holdMask)
{
PGPROC *proc = proclock->tag.myProc;
/* A backend never blocks itself */
if (proc != MyProc)
{
VirtualTransactionId vxid;
GET_VXID_FROM_PGPROC(vxid, *proc);
/*
* If we see an invalid VXID, then either the xact has already
* committed (or aborted), or it's a prepared xact. In either
* case we may ignore it.
*/
if (VirtualTransactionIdIsValid(vxid))
vxids[count++] = vxid;
}
}
proclock = (PROCLOCK *) SHMQueueNext(procLocks, &proclock->lockLink,
offsetof(PROCLOCK, lockLink));
}
LWLockRelease(partitionLock);
if (count > MaxBackends) /* should never happen */
elog(PANIC, "too many conflicting locks found");
return vxids;
}
/*
* AtPrepare_Locks
* Do the preparatory work for a PREPARE: make 2PC state file records
* for all locks currently held.
*
* Non-transactional locks are ignored, as are VXID locks.
*
* There are some special cases that we error out on: we can't be holding
* any session locks (should be OK since only VACUUM uses those) and we
* can't be holding any locks on temporary objects (since that would mess
* up the current backend if it tries to exit before the prepared xact is
* committed).
*/
void
AtPrepare_Locks(void)
{
HASH_SEQ_STATUS status;
LOCALLOCK *locallock;
/*
* We don't need to touch shared memory for this --- all the necessary
* state information is in the locallock table.
*/
hash_seq_init(&status, LockMethodLocalHash);
while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
{
TwoPhaseLockRecord record;
LOCALLOCKOWNER *lockOwners = locallock->lockOwners;
int i;
/* Ignore nontransactional locks */
if (!LockMethods[LOCALLOCK_LOCKMETHOD(*locallock)]->transactional)
continue;
/*
* Ignore VXID locks. We don't want those to be held by prepared
* transactions, since they aren't meaningful after a restart.
*/
if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION)
continue;
/* Ignore it if we don't actually hold the lock */
if (locallock->nLocks <= 0)
continue;
/* Scan to verify there are no session locks */
for (i = locallock->numLockOwners - 1; i >= 0; i--)
{
/* elog not ereport since this should not happen */
if (lockOwners[i].owner == NULL)
elog(ERROR, "cannot PREPARE when session locks exist");
}
/*
* Create a 2PC record.
*/
memcpy(&(record.locktag), &(locallock->tag.lock), sizeof(LOCKTAG));
record.lockmode = locallock->tag.mode;
RegisterTwoPhaseRecord(TWOPHASE_RM_LOCK_ID, 0,
&record, sizeof(TwoPhaseLockRecord));
}
}
/*
* PostPrepare_Locks
* Clean up after successful PREPARE
*
* Here, we want to transfer ownership of our locks to a dummy PGPROC
* that's now associated with the prepared transaction, and we want to
* clean out the corresponding entries in the LOCALLOCK table.
*
* Note: by removing the LOCALLOCK entries, we are leaving dangling
* pointers in the transaction's resource owner. This is OK at the
* moment since resowner.c doesn't try to free locks retail at a toplevel
* transaction commit or abort. We could alternatively zero out nLocks
* and leave the LOCALLOCK entries to be garbage-collected by LockReleaseAll,
* but that probably costs more cycles.
*/
void
PostPrepare_Locks(TransactionId xid)
{
PGPROC *newproc = TwoPhaseGetDummyProc(xid);
HASH_SEQ_STATUS status;
LOCALLOCK *locallock;
LOCK *lock;
PROCLOCK *proclock;
PROCLOCKTAG proclocktag;
bool found;
int partition;
/* This is a critical section: any error means big trouble */
START_CRIT_SECTION();
/*
* First we run through the locallock table and get rid of unwanted
* entries, then we scan the process's proclocks and transfer them to the
* target proc.
*
* We do this separately because we may have multiple locallock entries
* pointing to the same proclock, and we daren't end up with any dangling
* pointers.
*/
hash_seq_init(&status, LockMethodLocalHash);
while ((locallock = (LOCALLOCK *) hash_seq_search(&status)) != NULL)
{
if (locallock->proclock == NULL || locallock->lock == NULL)
{
/*
* We must've run out of shared memory while trying to set up this
* lock. Just forget the local entry.
*/
Assert(locallock->nLocks == 0);
RemoveLocalLock(locallock);
continue;
}
/* Ignore nontransactional locks */
if (!LockMethods[LOCALLOCK_LOCKMETHOD(*locallock)]->transactional)
continue;
/* Ignore VXID locks */
if (locallock->tag.lock.locktag_type == LOCKTAG_VIRTUALTRANSACTION)
continue;
/* We already checked there are no session locks */
/* Mark the proclock to show we need to release this lockmode */
if (locallock->nLocks > 0)
locallock->proclock->releaseMask |= LOCKBIT_ON(locallock->tag.mode);
/* And remove the locallock hashtable entry */
RemoveLocalLock(locallock);
}
/*
* Now, scan each lock partition separately.
*/
for (partition = 0; partition < NUM_LOCK_PARTITIONS; partition++)
{
LWLockId partitionLock = FirstLockMgrLock + partition;
SHM_QUEUE *procLocks = &(MyProc->myProcLocks[partition]);
proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
offsetof(PROCLOCK, procLink));
if (!proclock)
continue; /* needn't examine this partition */
LWLockAcquire(partitionLock, LW_EXCLUSIVE);
while (proclock)
{
PROCLOCK *nextplock;
LOCKMASK holdMask;
PROCLOCK *newproclock;
/* Get link first, since we may unlink/delete this proclock */
nextplock = (PROCLOCK *)
SHMQueueNext(procLocks, &proclock->procLink,
offsetof(PROCLOCK, procLink));
Assert(proclock->tag.myProc == MyProc);
lock = proclock->tag.myLock;
/* Ignore nontransactional locks */
if (!LockMethods[LOCK_LOCKMETHOD(*lock)]->transactional)
goto next_item;
/* Ignore VXID locks */
if (lock->tag.locktag_type == LOCKTAG_VIRTUALTRANSACTION)
goto next_item;
PROCLOCK_PRINT("PostPrepare_Locks", proclock);
LOCK_PRINT("PostPrepare_Locks", lock, 0);
Assert(lock->nRequested >= 0);
Assert(lock->nGranted >= 0);
Assert(lock->nGranted <= lock->nRequested);
Assert((proclock->holdMask & ~lock->grantMask) == 0);
/*
* Since there were no session locks, we should be releasing all
* locks
*/
if (proclock->releaseMask != proclock->holdMask)
elog(PANIC, "we seem to have dropped a bit somewhere");
holdMask = proclock->holdMask;
/*
* We cannot simply modify proclock->tag.myProc to reassign
* ownership of the lock, because that's part of the hash key and
* the proclock would then be in the wrong hash chain. So, unlink
* and delete the old proclock; create a new one with the right
* contents; and link it into place. We do it in this order to be
* certain we won't run out of shared memory (the way dynahash.c
* works, the deleted object is certain to be available for
* reallocation).
*/
SHMQueueDelete(&proclock->lockLink);
SHMQueueDelete(&proclock->procLink);
if (!hash_search(LockMethodProcLockHash,
(void *) &(proclock->tag),
HASH_REMOVE, NULL))
elog(PANIC, "proclock table corrupted");
/*
* Create the hash key for the new proclock table.
*/
proclocktag.myLock = lock;
proclocktag.myProc = newproc;
newproclock = (PROCLOCK *) hash_search(LockMethodProcLockHash,
(void *) &proclocktag,
HASH_ENTER_NULL, &found);
if (!newproclock)
ereport(PANIC, /* should not happen */
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory"),
errdetail("Not enough memory for reassigning the prepared transaction's locks.")));
/*
* If new, initialize the new entry
*/
if (!found)
{
newproclock->holdMask = 0;
newproclock->releaseMask = 0;
/* Add new proclock to appropriate lists */
SHMQueueInsertBefore(&lock->procLocks, &newproclock->lockLink);
SHMQueueInsertBefore(&(newproc->myProcLocks[partition]),
&newproclock->procLink);
PROCLOCK_PRINT("PostPrepare_Locks: new", newproclock);
}
else
{
PROCLOCK_PRINT("PostPrepare_Locks: found", newproclock);
Assert((newproclock->holdMask & ~lock->grantMask) == 0);
}
/*
* Pass over the identified lock ownership.
*/
Assert((newproclock->holdMask & holdMask) == 0);
newproclock->holdMask |= holdMask;
next_item:
proclock = nextplock;
} /* loop over PROCLOCKs within this partition */
LWLockRelease(partitionLock);
} /* loop over partitions */
END_CRIT_SECTION();
}
/*
* Estimate shared-memory space used for lock tables
*/
Size
LockShmemSize(void)
{
Size size = 0;
long max_table_size;
/* lock hash table */
max_table_size = NLOCKENTS();
size = add_size(size, hash_estimate_size(max_table_size, sizeof(LOCK)));
/* proclock hash table */
max_table_size *= 2;
size = add_size(size, hash_estimate_size(max_table_size, sizeof(PROCLOCK)));
/*
* Since NLOCKENTS is only an estimate, add 10% safety margin.
*/
size = add_size(size, size / 10);
return size;
}
/*
* GetLockStatusData - Return a summary of the lock manager's internal
* status, for use in a user-level reporting function.
*
* The return data consists of an array of PROCLOCK objects, with the
* associated PGPROC and LOCK objects for each. Note that multiple
* copies of the same PGPROC and/or LOCK objects are likely to appear.
* It is the caller's responsibility to match up duplicates if wanted.
*
* The design goal is to hold the LWLocks for as short a time as possible;
* thus, this function simply makes a copy of the necessary data and releases
* the locks, allowing the caller to contemplate and format the data for as
* long as it pleases.
*/
LockData *
GetLockStatusData(void)
{
LockData *data;
PROCLOCK *proclock;
HASH_SEQ_STATUS seqstat;
int els;
int el;
int i;
data = (LockData *) palloc(sizeof(LockData));
/*
* Acquire lock on the entire shared lock data structure. We can't
* operate one partition at a time if we want to deliver a self-consistent
* view of the state.
*
* Since this is a read-only operation, we take shared instead of
* exclusive lock. There's not a whole lot of point to this, because all
* the normal operations require exclusive lock, but it doesn't hurt
* anything either. It will at least allow two backends to do
* GetLockStatusData in parallel.
*
* Must grab LWLocks in partition-number order to avoid LWLock deadlock.
*/
for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
LWLockAcquire(FirstLockMgrLock + i, LW_SHARED);
/* Now we can safely count the number of proclocks */
els = hash_get_num_entries(LockMethodProcLockHash);
data->nelements = els;
data->proclocks = (PROCLOCK *) palloc(sizeof(PROCLOCK) * els);
data->procs = (PGPROC *) palloc(sizeof(PGPROC) * els);
data->locks = (LOCK *) palloc(sizeof(LOCK) * els);
/* Now scan the tables to copy the data */
hash_seq_init(&seqstat, LockMethodProcLockHash);
el = 0;
while ((proclock = (PROCLOCK *) hash_seq_search(&seqstat)))
{
PGPROC *proc = proclock->tag.myProc;
LOCK *lock = proclock->tag.myLock;
memcpy(&(data->proclocks[el]), proclock, sizeof(PROCLOCK));
memcpy(&(data->procs[el]), proc, sizeof(PGPROC));
memcpy(&(data->locks[el]), lock, sizeof(LOCK));
el++;
}
/*
* And release locks. We do this in reverse order for two reasons: (1)
* Anyone else who needs more than one of the locks will be trying to lock
* them in increasing order; we don't want to release the other process
* until it can get all the locks it needs. (2) This avoids O(N^2)
* behavior inside LWLockRelease.
*/
for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
LWLockRelease(FirstLockMgrLock + i);
Assert(el == data->nelements);
return data;
}
/*
* Returns a list of currently held AccessExclusiveLocks, for use
* by GetRunningTransactionData().
*/
xl_standby_lock *
GetRunningTransactionLocks(int *nlocks)
{
PROCLOCK *proclock;
HASH_SEQ_STATUS seqstat;
int i;
int index;
int els;
xl_standby_lock *accessExclusiveLocks;
/*
* Acquire lock on the entire shared lock data structure.
*
* Must grab LWLocks in partition-number order to avoid LWLock deadlock.
*/
for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
LWLockAcquire(FirstLockMgrLock + i, LW_SHARED);
/* Now scan the tables to copy the data */
hash_seq_init(&seqstat, LockMethodProcLockHash);
/* Now we can safely count the number of proclocks */
els = hash_get_num_entries(LockMethodProcLockHash);
/*
* Allocating enough space for all locks in the lock table is overkill,
* but it's more convenient and faster than having to enlarge the array.
*/
accessExclusiveLocks = palloc(els * sizeof(xl_standby_lock));
/*
* If lock is a currently granted AccessExclusiveLock then
* it will have just one proclock holder, so locks are never
* accessed twice in this particular case. Don't copy this code
* for use elsewhere because in the general case this will
* give you duplicate locks when looking at non-exclusive lock types.
*/
index = 0;
while ((proclock = (PROCLOCK *) hash_seq_search(&seqstat)))
{
/* make sure this definition matches the one used in LockAcquire */
if ((proclock->holdMask & LOCKBIT_ON(AccessExclusiveLock)) &&
proclock->tag.myLock->tag.locktag_type == LOCKTAG_RELATION)
{
PGPROC *proc = proclock->tag.myProc;
LOCK *lock = proclock->tag.myLock;
accessExclusiveLocks[index].xid = proc->xid;
accessExclusiveLocks[index].dbOid = lock->tag.locktag_field1;
accessExclusiveLocks[index].relOid = lock->tag.locktag_field2;
index++;
}
}
/*
* And release locks. We do this in reverse order for two reasons: (1)
* Anyone else who needs more than one of the locks will be trying to lock
* them in increasing order; we don't want to release the other process
* until it can get all the locks it needs. (2) This avoids O(N^2)
* behavior inside LWLockRelease.
*/
for (i = NUM_LOCK_PARTITIONS; --i >= 0;)
LWLockRelease(FirstLockMgrLock + i);
*nlocks = index;
return accessExclusiveLocks;
}
/* Provide the textual name of any lock mode */
const char *
GetLockmodeName(LOCKMETHODID lockmethodid, LOCKMODE mode)
{
Assert(lockmethodid > 0 && lockmethodid < lengthof(LockMethods));
Assert(mode > 0 && mode <= LockMethods[lockmethodid]->numLockModes);
return LockMethods[lockmethodid]->lockModeNames[mode];
}
#ifdef LOCK_DEBUG
/*
* Dump all locks in the given proc's myProcLocks lists.
*
* Caller is responsible for having acquired appropriate LWLocks.
*/
void
DumpLocks(PGPROC *proc)
{
SHM_QUEUE *procLocks;
PROCLOCK *proclock;
LOCK *lock;
int i;
if (proc == NULL)
return;
if (proc->waitLock)
LOCK_PRINT("DumpLocks: waiting on", proc->waitLock, 0);
for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
{
procLocks = &(proc->myProcLocks[i]);
proclock = (PROCLOCK *) SHMQueueNext(procLocks, procLocks,
offsetof(PROCLOCK, procLink));
while (proclock)
{
Assert(proclock->tag.myProc == proc);
lock = proclock->tag.myLock;
PROCLOCK_PRINT("DumpLocks", proclock);
LOCK_PRINT("DumpLocks", lock, 0);
proclock = (PROCLOCK *)
SHMQueueNext(procLocks, &proclock->procLink,
offsetof(PROCLOCK, procLink));
}
}
}
/*
* Dump all lmgr locks.
*
* Caller is responsible for having acquired appropriate LWLocks.
*/
void
DumpAllLocks(void)
{
PGPROC *proc;
PROCLOCK *proclock;
LOCK *lock;
HASH_SEQ_STATUS status;
proc = MyProc;
if (proc && proc->waitLock)
LOCK_PRINT("DumpAllLocks: waiting on", proc->waitLock, 0);
hash_seq_init(&status, LockMethodProcLockHash);
while ((proclock = (PROCLOCK *) hash_seq_search(&status)) != NULL)
{
PROCLOCK_PRINT("DumpAllLocks", proclock);
lock = proclock->tag.myLock;
if (lock)
LOCK_PRINT("DumpAllLocks", lock, 0);
else
elog(LOG, "DumpAllLocks: proclock->tag.myLock = NULL");
}
}
#endif /* LOCK_DEBUG */
/*
* LOCK 2PC resource manager's routines
*/
/*
* Re-acquire a lock belonging to a transaction that was prepared.
*
* Because this function is run at db startup, re-acquiring the locks should
* never conflict with running transactions because there are none. We
* assume that the lock state represented by the stored 2PC files is legal.
*
* When switching from Hot Standby mode to normal operation, the locks will
* be already held by the startup process. The locks are acquired for the new
* procs without checking for conflicts, so we don'get a conflict between the
* startup process and the dummy procs, even though we will momentarily have
* a situation where two procs are holding the same AccessExclusiveLock,
* which isn't normally possible because the conflict. If we're in standby
* mode, but a recovery snapshot hasn't been established yet, it's possible
* that some but not all of the locks are already held by the startup process.
*
* This approach is simple, but also a bit dangerous, because if there isn't
* enough shared memory to acquire the locks, an error will be thrown, which
* is promoted to FATAL and recovery will abort, bringing down postmaster.
* A safer approach would be to transfer the locks like we do in
* AtPrepare_Locks, but then again, in hot standby mode it's possible for
* read-only backends to use up all the shared lock memory anyway, so that
* replaying the WAL record that needs to acquire a lock will throw an error
* and PANIC anyway.
*/
void
lock_twophase_recover(TransactionId xid, uint16 info,
void *recdata, uint32 len)
{
TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata;
PGPROC *proc = TwoPhaseGetDummyProc(xid);
LOCKTAG *locktag;
LOCKMODE lockmode;
LOCKMETHODID lockmethodid;
LOCK *lock;
PROCLOCK *proclock;
PROCLOCKTAG proclocktag;
bool found;
uint32 hashcode;
uint32 proclock_hashcode;
int partition;
LWLockId partitionLock;
LockMethod lockMethodTable;
Assert(len == sizeof(TwoPhaseLockRecord));
locktag = &rec->locktag;
lockmode = rec->lockmode;
lockmethodid = locktag->locktag_lockmethodid;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
lockMethodTable = LockMethods[lockmethodid];
hashcode = LockTagHashCode(locktag);
partition = LockHashPartition(hashcode);
partitionLock = LockHashPartitionLock(hashcode);
LWLockAcquire(partitionLock, LW_EXCLUSIVE);
/*
* Find or create a lock with this tag.
*/
lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash,
(void *) locktag,
hashcode,
HASH_ENTER_NULL,
&found);
if (!lock)
{
LWLockRelease(partitionLock);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory"),
errhint("You might need to increase max_locks_per_transaction.")));
}
/*
* if it's a new lock object, initialize it
*/
if (!found)
{
lock->grantMask = 0;
lock->waitMask = 0;
SHMQueueInit(&(lock->procLocks));
ProcQueueInit(&(lock->waitProcs));
lock->nRequested = 0;
lock->nGranted = 0;
MemSet(lock->requested, 0, sizeof(int) * MAX_LOCKMODES);
MemSet(lock->granted, 0, sizeof(int) * MAX_LOCKMODES);
LOCK_PRINT("lock_twophase_recover: new", lock, lockmode);
}
else
{
LOCK_PRINT("lock_twophase_recover: found", lock, lockmode);
Assert((lock->nRequested >= 0) && (lock->requested[lockmode] >= 0));
Assert((lock->nGranted >= 0) && (lock->granted[lockmode] >= 0));
Assert(lock->nGranted <= lock->nRequested);
}
/*
* Create the hash key for the proclock table.
*/
proclocktag.myLock = lock;
proclocktag.myProc = proc;
proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode);
/*
* Find or create a proclock entry with this tag
*/
proclock = (PROCLOCK *) hash_search_with_hash_value(LockMethodProcLockHash,
(void *) &proclocktag,
proclock_hashcode,
HASH_ENTER_NULL,
&found);
if (!proclock)
{
/* Ooops, not enough shmem for the proclock */
if (lock->nRequested == 0)
{
/*
* There are no other requestors of this lock, so garbage-collect
* the lock object. We *must* do this to avoid a permanent leak
* of shared memory, because there won't be anything to cause
* anyone to release the lock object later.
*/
Assert(SHMQueueEmpty(&(lock->procLocks)));
if (!hash_search_with_hash_value(LockMethodLockHash,
(void *) &(lock->tag),
hashcode,
HASH_REMOVE,
NULL))
elog(PANIC, "lock table corrupted");
}
LWLockRelease(partitionLock);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory"),
errhint("You might need to increase max_locks_per_transaction.")));
}
/*
* If new, initialize the new entry
*/
if (!found)
{
proclock->holdMask = 0;
proclock->releaseMask = 0;
/* Add proclock to appropriate lists */
SHMQueueInsertBefore(&lock->procLocks, &proclock->lockLink);
SHMQueueInsertBefore(&(proc->myProcLocks[partition]),
&proclock->procLink);
PROCLOCK_PRINT("lock_twophase_recover: new", proclock);
}
else
{
PROCLOCK_PRINT("lock_twophase_recover: found", proclock);
Assert((proclock->holdMask & ~lock->grantMask) == 0);
}
/*
* lock->nRequested and lock->requested[] count the total number of
* requests, whether granted or waiting, so increment those immediately.
*/
lock->nRequested++;
lock->requested[lockmode]++;
Assert((lock->nRequested > 0) && (lock->requested[lockmode] > 0));
/*
* We shouldn't already hold the desired lock.
*/
if (proclock->holdMask & LOCKBIT_ON(lockmode))
elog(ERROR, "lock %s on object %u/%u/%u is already held",
lockMethodTable->lockModeNames[lockmode],
lock->tag.locktag_field1, lock->tag.locktag_field2,
lock->tag.locktag_field3);
/*
* We ignore any possible conflicts and just grant ourselves the lock.
* Not only because we don't bother, but also to avoid deadlocks when
* switching from standby to normal mode. See function comment.
*/
GrantLock(lock, proclock, lockmode);
LWLockRelease(partitionLock);
}
/*
* Re-acquire a lock belonging to a transaction that was prepared, when
* when starting up into hot standby mode.
*/
void
lock_twophase_standby_recover(TransactionId xid, uint16 info,
void *recdata, uint32 len)
{
TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata;
LOCKTAG *locktag;
LOCKMODE lockmode;
LOCKMETHODID lockmethodid;
Assert(len == sizeof(TwoPhaseLockRecord));
locktag = &rec->locktag;
lockmode = rec->lockmode;
lockmethodid = locktag->locktag_lockmethodid;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
if (lockmode == AccessExclusiveLock &&
locktag->locktag_type == LOCKTAG_RELATION)
{
StandbyAcquireAccessExclusiveLock(xid,
locktag->locktag_field1 /* dboid */,
locktag->locktag_field2 /* reloid */);
}
}
/*
* 2PC processing routine for COMMIT PREPARED case.
*
* Find and release the lock indicated by the 2PC record.
*/
void
lock_twophase_postcommit(TransactionId xid, uint16 info,
void *recdata, uint32 len)
{
TwoPhaseLockRecord *rec = (TwoPhaseLockRecord *) recdata;
PGPROC *proc = TwoPhaseGetDummyProc(xid);
LOCKTAG *locktag;
LOCKMODE lockmode;
LOCKMETHODID lockmethodid;
LOCK *lock;
PROCLOCK *proclock;
PROCLOCKTAG proclocktag;
uint32 hashcode;
uint32 proclock_hashcode;
LWLockId partitionLock;
LockMethod lockMethodTable;
bool wakeupNeeded;
Assert(len == sizeof(TwoPhaseLockRecord));
locktag = &rec->locktag;
lockmode = rec->lockmode;
lockmethodid = locktag->locktag_lockmethodid;
if (lockmethodid <= 0 || lockmethodid >= lengthof(LockMethods))
elog(ERROR, "unrecognized lock method: %d", lockmethodid);
lockMethodTable = LockMethods[lockmethodid];
hashcode = LockTagHashCode(locktag);
partitionLock = LockHashPartitionLock(hashcode);
LWLockAcquire(partitionLock, LW_EXCLUSIVE);
/*
* Re-find the lock object (it had better be there).
*/
lock = (LOCK *) hash_search_with_hash_value(LockMethodLockHash,
(void *) locktag,
hashcode,
HASH_FIND,
NULL);
if (!lock)
elog(PANIC, "failed to re-find shared lock object");
/*
* Re-find the proclock object (ditto).
*/
proclocktag.myLock = lock;
proclocktag.myProc = proc;
proclock_hashcode = ProcLockHashCode(&proclocktag, hashcode);
proclock = (PROCLOCK *) hash_search_with_hash_value(LockMethodProcLockHash,
(void *) &proclocktag,
proclock_hashcode,
HASH_FIND,
NULL);
if (!proclock)
elog(PANIC, "failed to re-find shared proclock object");
/*
* Double-check that we are actually holding a lock of the type we want to
* release.
*/
if (!(proclock->holdMask & LOCKBIT_ON(lockmode)))
{
PROCLOCK_PRINT("lock_twophase_postcommit: WRONGTYPE", proclock);
LWLockRelease(partitionLock);
elog(WARNING, "you don't own a lock of type %s",
lockMethodTable->lockModeNames[lockmode]);
return;
}
/*
* Do the releasing. CleanUpLock will waken any now-wakable waiters.
*/
wakeupNeeded = UnGrantLock(lock, lockmode, proclock, lockMethodTable);
CleanUpLock(lock, proclock,
lockMethodTable, hashcode,
wakeupNeeded);
LWLockRelease(partitionLock);
}
/*
* 2PC processing routine for ROLLBACK PREPARED case.
*
* This is actually just the same as the COMMIT case.
*/
void
lock_twophase_postabort(TransactionId xid, uint16 info,
void *recdata, uint32 len)
{
lock_twophase_postcommit(xid, info, recdata, len);
}