
Reported-by: Michael Paquier Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz Backpatch-through: 12
3060 lines
90 KiB
C
3060 lines
90 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execMain.c
|
|
* top level executor interface routines
|
|
*
|
|
* INTERFACE ROUTINES
|
|
* ExecutorStart()
|
|
* ExecutorRun()
|
|
* ExecutorFinish()
|
|
* ExecutorEnd()
|
|
*
|
|
* These four procedures are the external interface to the executor.
|
|
* In each case, the query descriptor is required as an argument.
|
|
*
|
|
* ExecutorStart must be called at the beginning of execution of any
|
|
* query plan and ExecutorEnd must always be called at the end of
|
|
* execution of a plan (unless it is aborted due to error).
|
|
*
|
|
* ExecutorRun accepts direction and count arguments that specify whether
|
|
* the plan is to be executed forwards, backwards, and for how many tuples.
|
|
* In some cases ExecutorRun may be called multiple times to process all
|
|
* the tuples for a plan. It is also acceptable to stop short of executing
|
|
* the whole plan (but only if it is a SELECT).
|
|
*
|
|
* ExecutorFinish must be called after the final ExecutorRun call and
|
|
* before ExecutorEnd. This can be omitted only in case of EXPLAIN,
|
|
* which should also omit ExecutorRun.
|
|
*
|
|
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/execMain.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/heapam.h"
|
|
#include "access/htup_details.h"
|
|
#include "access/sysattr.h"
|
|
#include "access/tableam.h"
|
|
#include "access/transam.h"
|
|
#include "access/xact.h"
|
|
#include "catalog/namespace.h"
|
|
#include "catalog/partition.h"
|
|
#include "catalog/pg_publication.h"
|
|
#include "commands/matview.h"
|
|
#include "commands/trigger.h"
|
|
#include "executor/execdebug.h"
|
|
#include "executor/nodeSubplan.h"
|
|
#include "foreign/fdwapi.h"
|
|
#include "jit/jit.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "parser/parse_relation.h"
|
|
#include "parser/parsetree.h"
|
|
#include "storage/bufmgr.h"
|
|
#include "storage/lmgr.h"
|
|
#include "tcop/utility.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/backend_status.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/memutils.h"
|
|
#include "utils/partcache.h"
|
|
#include "utils/rls.h"
|
|
#include "utils/ruleutils.h"
|
|
#include "utils/snapmgr.h"
|
|
|
|
|
|
/* Hooks for plugins to get control in ExecutorStart/Run/Finish/End */
|
|
ExecutorStart_hook_type ExecutorStart_hook = NULL;
|
|
ExecutorRun_hook_type ExecutorRun_hook = NULL;
|
|
ExecutorFinish_hook_type ExecutorFinish_hook = NULL;
|
|
ExecutorEnd_hook_type ExecutorEnd_hook = NULL;
|
|
|
|
/* Hook for plugin to get control in ExecCheckPermissions() */
|
|
ExecutorCheckPerms_hook_type ExecutorCheckPerms_hook = NULL;
|
|
|
|
/* decls for local routines only used within this module */
|
|
static void InitPlan(QueryDesc *queryDesc, int eflags);
|
|
static void CheckValidRowMarkRel(Relation rel, RowMarkType markType);
|
|
static void ExecPostprocessPlan(EState *estate);
|
|
static void ExecEndPlan(PlanState *planstate, EState *estate);
|
|
static void ExecutePlan(EState *estate, PlanState *planstate,
|
|
bool use_parallel_mode,
|
|
CmdType operation,
|
|
bool sendTuples,
|
|
uint64 numberTuples,
|
|
ScanDirection direction,
|
|
DestReceiver *dest,
|
|
bool execute_once);
|
|
static bool ExecCheckOneRelPerms(RTEPermissionInfo *perminfo);
|
|
static bool ExecCheckPermissionsModified(Oid relOid, Oid userid,
|
|
Bitmapset *modifiedCols,
|
|
AclMode requiredPerms);
|
|
static void ExecCheckXactReadOnly(PlannedStmt *plannedstmt);
|
|
static char *ExecBuildSlotValueDescription(Oid reloid,
|
|
TupleTableSlot *slot,
|
|
TupleDesc tupdesc,
|
|
Bitmapset *modifiedCols,
|
|
int maxfieldlen);
|
|
static void EvalPlanQualStart(EPQState *epqstate, Plan *planTree);
|
|
|
|
/* end of local decls */
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorStart
|
|
*
|
|
* This routine must be called at the beginning of any execution of any
|
|
* query plan
|
|
*
|
|
* Takes a QueryDesc previously created by CreateQueryDesc (which is separate
|
|
* only because some places use QueryDescs for utility commands). The tupDesc
|
|
* field of the QueryDesc is filled in to describe the tuples that will be
|
|
* returned, and the internal fields (estate and planstate) are set up.
|
|
*
|
|
* eflags contains flag bits as described in executor.h.
|
|
*
|
|
* NB: the CurrentMemoryContext when this is called will become the parent
|
|
* of the per-query context used for this Executor invocation.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorStart is called. Such a plugin would
|
|
* normally call standard_ExecutorStart().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorStart(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
/*
|
|
* In some cases (e.g. an EXECUTE statement) a query execution will skip
|
|
* parse analysis, which means that the query_id won't be reported. Note
|
|
* that it's harmless to report the query_id multiple times, as the call
|
|
* will be ignored if the top level query_id has already been reported.
|
|
*/
|
|
pgstat_report_query_id(queryDesc->plannedstmt->queryId, false);
|
|
|
|
if (ExecutorStart_hook)
|
|
(*ExecutorStart_hook) (queryDesc, eflags);
|
|
else
|
|
standard_ExecutorStart(queryDesc, eflags);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorStart(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks: queryDesc must not be started already */
|
|
Assert(queryDesc != NULL);
|
|
Assert(queryDesc->estate == NULL);
|
|
|
|
/*
|
|
* If the transaction is read-only, we need to check if any writes are
|
|
* planned to non-temporary tables. EXPLAIN is considered read-only.
|
|
*
|
|
* Don't allow writes in parallel mode. Supporting UPDATE and DELETE
|
|
* would require (a) storing the combo CID hash in shared memory, rather
|
|
* than synchronizing it just once at the start of parallelism, and (b) an
|
|
* alternative to heap_update()'s reliance on xmax for mutual exclusion.
|
|
* INSERT may have no such troubles, but we forbid it to simplify the
|
|
* checks.
|
|
*
|
|
* We have lower-level defenses in CommandCounterIncrement and elsewhere
|
|
* against performing unsafe operations in parallel mode, but this gives a
|
|
* more user-friendly error message.
|
|
*/
|
|
if ((XactReadOnly || IsInParallelMode()) &&
|
|
!(eflags & EXEC_FLAG_EXPLAIN_ONLY))
|
|
ExecCheckXactReadOnly(queryDesc->plannedstmt);
|
|
|
|
/*
|
|
* Build EState, switch into per-query memory context for startup.
|
|
*/
|
|
estate = CreateExecutorState();
|
|
queryDesc->estate = estate;
|
|
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* Fill in external parameters, if any, from queryDesc; and allocate
|
|
* workspace for internal parameters
|
|
*/
|
|
estate->es_param_list_info = queryDesc->params;
|
|
|
|
if (queryDesc->plannedstmt->paramExecTypes != NIL)
|
|
{
|
|
int nParamExec;
|
|
|
|
nParamExec = list_length(queryDesc->plannedstmt->paramExecTypes);
|
|
estate->es_param_exec_vals = (ParamExecData *)
|
|
palloc0(nParamExec * sizeof(ParamExecData));
|
|
}
|
|
|
|
/* We now require all callers to provide sourceText */
|
|
Assert(queryDesc->sourceText != NULL);
|
|
estate->es_sourceText = queryDesc->sourceText;
|
|
|
|
/*
|
|
* Fill in the query environment, if any, from queryDesc.
|
|
*/
|
|
estate->es_queryEnv = queryDesc->queryEnv;
|
|
|
|
/*
|
|
* If non-read-only query, set the command ID to mark output tuples with
|
|
*/
|
|
switch (queryDesc->operation)
|
|
{
|
|
case CMD_SELECT:
|
|
|
|
/*
|
|
* SELECT FOR [KEY] UPDATE/SHARE and modifying CTEs need to mark
|
|
* tuples
|
|
*/
|
|
if (queryDesc->plannedstmt->rowMarks != NIL ||
|
|
queryDesc->plannedstmt->hasModifyingCTE)
|
|
estate->es_output_cid = GetCurrentCommandId(true);
|
|
|
|
/*
|
|
* A SELECT without modifying CTEs can't possibly queue triggers,
|
|
* so force skip-triggers mode. This is just a marginal efficiency
|
|
* hack, since AfterTriggerBeginQuery/AfterTriggerEndQuery aren't
|
|
* all that expensive, but we might as well do it.
|
|
*/
|
|
if (!queryDesc->plannedstmt->hasModifyingCTE)
|
|
eflags |= EXEC_FLAG_SKIP_TRIGGERS;
|
|
break;
|
|
|
|
case CMD_INSERT:
|
|
case CMD_DELETE:
|
|
case CMD_UPDATE:
|
|
case CMD_MERGE:
|
|
estate->es_output_cid = GetCurrentCommandId(true);
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unrecognized operation code: %d",
|
|
(int) queryDesc->operation);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy other important information into the EState
|
|
*/
|
|
estate->es_snapshot = RegisterSnapshot(queryDesc->snapshot);
|
|
estate->es_crosscheck_snapshot = RegisterSnapshot(queryDesc->crosscheck_snapshot);
|
|
estate->es_top_eflags = eflags;
|
|
estate->es_instrument = queryDesc->instrument_options;
|
|
estate->es_jit_flags = queryDesc->plannedstmt->jitFlags;
|
|
|
|
/*
|
|
* Set up an AFTER-trigger statement context, unless told not to, or
|
|
* unless it's EXPLAIN-only mode (when ExecutorFinish won't be called).
|
|
*/
|
|
if (!(eflags & (EXEC_FLAG_SKIP_TRIGGERS | EXEC_FLAG_EXPLAIN_ONLY)))
|
|
AfterTriggerBeginQuery();
|
|
|
|
/*
|
|
* Initialize the plan state tree
|
|
*/
|
|
InitPlan(queryDesc, eflags);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRun
|
|
*
|
|
* This is the main routine of the executor module. It accepts
|
|
* the query descriptor from the traffic cop and executes the
|
|
* query plan.
|
|
*
|
|
* ExecutorStart must have been called already.
|
|
*
|
|
* If direction is NoMovementScanDirection then nothing is done
|
|
* except to start up/shut down the destination. Otherwise,
|
|
* we retrieve up to 'count' tuples in the specified direction.
|
|
*
|
|
* Note: count = 0 is interpreted as no portal limit, i.e., run to
|
|
* completion. Also note that the count limit is only applied to
|
|
* retrieved tuples, not for instance to those inserted/updated/deleted
|
|
* by a ModifyTable plan node.
|
|
*
|
|
* There is no return value, but output tuples (if any) are sent to
|
|
* the destination receiver specified in the QueryDesc; and the number
|
|
* of tuples processed at the top level can be found in
|
|
* estate->es_processed. The total number of tuples processed in all
|
|
* the ExecutorRun calls can be found in estate->es_total_processed.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorRun is called. Such a plugin would
|
|
* normally call standard_ExecutorRun().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorRun(QueryDesc *queryDesc,
|
|
ScanDirection direction, uint64 count,
|
|
bool execute_once)
|
|
{
|
|
if (ExecutorRun_hook)
|
|
(*ExecutorRun_hook) (queryDesc, direction, count, execute_once);
|
|
else
|
|
standard_ExecutorRun(queryDesc, direction, count, execute_once);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorRun(QueryDesc *queryDesc,
|
|
ScanDirection direction, uint64 count, bool execute_once)
|
|
{
|
|
EState *estate;
|
|
CmdType operation;
|
|
DestReceiver *dest;
|
|
bool sendTuples;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Allow instrumentation of Executor overall runtime */
|
|
if (queryDesc->totaltime)
|
|
InstrStartNode(queryDesc->totaltime);
|
|
|
|
/*
|
|
* extract information from the query descriptor and the query feature.
|
|
*/
|
|
operation = queryDesc->operation;
|
|
dest = queryDesc->dest;
|
|
|
|
/*
|
|
* startup tuple receiver, if we will be emitting tuples
|
|
*/
|
|
estate->es_processed = 0;
|
|
|
|
sendTuples = (operation == CMD_SELECT ||
|
|
queryDesc->plannedstmt->hasReturning);
|
|
|
|
if (sendTuples)
|
|
dest->rStartup(dest, operation, queryDesc->tupDesc);
|
|
|
|
/*
|
|
* run plan
|
|
*/
|
|
if (!ScanDirectionIsNoMovement(direction))
|
|
{
|
|
if (execute_once && queryDesc->already_executed)
|
|
elog(ERROR, "can't re-execute query flagged for single execution");
|
|
queryDesc->already_executed = true;
|
|
|
|
ExecutePlan(estate,
|
|
queryDesc->planstate,
|
|
queryDesc->plannedstmt->parallelModeNeeded,
|
|
operation,
|
|
sendTuples,
|
|
count,
|
|
direction,
|
|
dest,
|
|
execute_once);
|
|
}
|
|
|
|
/*
|
|
* Update es_total_processed to keep track of the number of tuples
|
|
* processed across multiple ExecutorRun() calls.
|
|
*/
|
|
estate->es_total_processed += estate->es_processed;
|
|
|
|
/*
|
|
* shutdown tuple receiver, if we started it
|
|
*/
|
|
if (sendTuples)
|
|
dest->rShutdown(dest);
|
|
|
|
if (queryDesc->totaltime)
|
|
InstrStopNode(queryDesc->totaltime, estate->es_processed);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorFinish
|
|
*
|
|
* This routine must be called after the last ExecutorRun call.
|
|
* It performs cleanup such as firing AFTER triggers. It is
|
|
* separate from ExecutorEnd because EXPLAIN ANALYZE needs to
|
|
* include these actions in the total runtime.
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorFinish is called. Such a plugin would
|
|
* normally call standard_ExecutorFinish().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorFinish(QueryDesc *queryDesc)
|
|
{
|
|
if (ExecutorFinish_hook)
|
|
(*ExecutorFinish_hook) (queryDesc);
|
|
else
|
|
standard_ExecutorFinish(queryDesc);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorFinish(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
Assert(!(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/* This should be run once and only once per Executor instance */
|
|
Assert(!estate->es_finished);
|
|
|
|
/* Switch into per-query memory context */
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/* Allow instrumentation of Executor overall runtime */
|
|
if (queryDesc->totaltime)
|
|
InstrStartNode(queryDesc->totaltime);
|
|
|
|
/* Run ModifyTable nodes to completion */
|
|
ExecPostprocessPlan(estate);
|
|
|
|
/* Execute queued AFTER triggers, unless told not to */
|
|
if (!(estate->es_top_eflags & EXEC_FLAG_SKIP_TRIGGERS))
|
|
AfterTriggerEndQuery(estate);
|
|
|
|
if (queryDesc->totaltime)
|
|
InstrStopNode(queryDesc->totaltime, 0);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
estate->es_finished = true;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorEnd
|
|
*
|
|
* This routine must be called at the end of execution of any
|
|
* query plan
|
|
*
|
|
* We provide a function hook variable that lets loadable plugins
|
|
* get control when ExecutorEnd is called. Such a plugin would
|
|
* normally call standard_ExecutorEnd().
|
|
*
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
if (ExecutorEnd_hook)
|
|
(*ExecutorEnd_hook) (queryDesc);
|
|
else
|
|
standard_ExecutorEnd(queryDesc);
|
|
}
|
|
|
|
void
|
|
standard_ExecutorEnd(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/*
|
|
* Check that ExecutorFinish was called, unless in EXPLAIN-only mode. This
|
|
* Assert is needed because ExecutorFinish is new as of 9.1, and callers
|
|
* might forget to call it.
|
|
*/
|
|
Assert(estate->es_finished ||
|
|
(estate->es_top_eflags & EXEC_FLAG_EXPLAIN_ONLY));
|
|
|
|
/*
|
|
* Switch into per-query memory context to run ExecEndPlan
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
ExecEndPlan(queryDesc->planstate, estate);
|
|
|
|
/* do away with our snapshots */
|
|
UnregisterSnapshot(estate->es_snapshot);
|
|
UnregisterSnapshot(estate->es_crosscheck_snapshot);
|
|
|
|
/*
|
|
* Must switch out of context before destroying it
|
|
*/
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* Release EState and per-query memory context. This should release
|
|
* everything the executor has allocated.
|
|
*/
|
|
FreeExecutorState(estate);
|
|
|
|
/* Reset queryDesc fields that no longer point to anything */
|
|
queryDesc->tupDesc = NULL;
|
|
queryDesc->estate = NULL;
|
|
queryDesc->planstate = NULL;
|
|
queryDesc->totaltime = NULL;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutorRewind
|
|
*
|
|
* This routine may be called on an open queryDesc to rewind it
|
|
* to the start.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
void
|
|
ExecutorRewind(QueryDesc *queryDesc)
|
|
{
|
|
EState *estate;
|
|
MemoryContext oldcontext;
|
|
|
|
/* sanity checks */
|
|
Assert(queryDesc != NULL);
|
|
|
|
estate = queryDesc->estate;
|
|
|
|
Assert(estate != NULL);
|
|
|
|
/* It's probably not sensible to rescan updating queries */
|
|
Assert(queryDesc->operation == CMD_SELECT);
|
|
|
|
/*
|
|
* Switch into per-query memory context
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
/*
|
|
* rescan plan
|
|
*/
|
|
ExecReScan(queryDesc->planstate);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecCheckPermissions
|
|
* Check access permissions of relations mentioned in a query
|
|
*
|
|
* Returns true if permissions are adequate. Otherwise, throws an appropriate
|
|
* error if ereport_on_violation is true, or simply returns false otherwise.
|
|
*
|
|
* Note that this does NOT address row-level security policies (aka: RLS). If
|
|
* rows will be returned to the user as a result of this permission check
|
|
* passing, then RLS also needs to be consulted (and check_enable_rls()).
|
|
*
|
|
* See rewrite/rowsecurity.c.
|
|
*
|
|
* NB: rangeTable is no longer used by us, but kept around for the hooks that
|
|
* might still want to look at the RTEs.
|
|
*/
|
|
bool
|
|
ExecCheckPermissions(List *rangeTable, List *rteperminfos,
|
|
bool ereport_on_violation)
|
|
{
|
|
ListCell *l;
|
|
bool result = true;
|
|
|
|
#ifdef USE_ASSERT_CHECKING
|
|
Bitmapset *indexset = NULL;
|
|
|
|
/* Check that rteperminfos is consistent with rangeTable */
|
|
foreach(l, rangeTable)
|
|
{
|
|
RangeTblEntry *rte = lfirst_node(RangeTblEntry, l);
|
|
|
|
if (rte->perminfoindex != 0)
|
|
{
|
|
/* Sanity checks */
|
|
|
|
/*
|
|
* Only relation RTEs and subquery RTEs that were once relation
|
|
* RTEs (views) have their perminfoindex set.
|
|
*/
|
|
Assert(rte->rtekind == RTE_RELATION ||
|
|
(rte->rtekind == RTE_SUBQUERY &&
|
|
rte->relkind == RELKIND_VIEW));
|
|
|
|
(void) getRTEPermissionInfo(rteperminfos, rte);
|
|
/* Many-to-one mapping not allowed */
|
|
Assert(!bms_is_member(rte->perminfoindex, indexset));
|
|
indexset = bms_add_member(indexset, rte->perminfoindex);
|
|
}
|
|
}
|
|
|
|
/* All rteperminfos are referenced */
|
|
Assert(bms_num_members(indexset) == list_length(rteperminfos));
|
|
#endif
|
|
|
|
foreach(l, rteperminfos)
|
|
{
|
|
RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
|
|
|
|
Assert(OidIsValid(perminfo->relid));
|
|
result = ExecCheckOneRelPerms(perminfo);
|
|
if (!result)
|
|
{
|
|
if (ereport_on_violation)
|
|
aclcheck_error(ACLCHECK_NO_PRIV,
|
|
get_relkind_objtype(get_rel_relkind(perminfo->relid)),
|
|
get_rel_name(perminfo->relid));
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (ExecutorCheckPerms_hook)
|
|
result = (*ExecutorCheckPerms_hook) (rangeTable, rteperminfos,
|
|
ereport_on_violation);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* ExecCheckOneRelPerms
|
|
* Check access permissions for a single relation.
|
|
*/
|
|
static bool
|
|
ExecCheckOneRelPerms(RTEPermissionInfo *perminfo)
|
|
{
|
|
AclMode requiredPerms;
|
|
AclMode relPerms;
|
|
AclMode remainingPerms;
|
|
Oid userid;
|
|
Oid relOid = perminfo->relid;
|
|
|
|
requiredPerms = perminfo->requiredPerms;
|
|
Assert(requiredPerms != 0);
|
|
|
|
/*
|
|
* userid to check as: current user unless we have a setuid indication.
|
|
*
|
|
* Note: GetUserId() is presently fast enough that there's no harm in
|
|
* calling it separately for each relation. If that stops being true, we
|
|
* could call it once in ExecCheckPermissions and pass the userid down
|
|
* from there. But for now, no need for the extra clutter.
|
|
*/
|
|
userid = OidIsValid(perminfo->checkAsUser) ?
|
|
perminfo->checkAsUser : GetUserId();
|
|
|
|
/*
|
|
* We must have *all* the requiredPerms bits, but some of the bits can be
|
|
* satisfied from column-level rather than relation-level permissions.
|
|
* First, remove any bits that are satisfied by relation permissions.
|
|
*/
|
|
relPerms = pg_class_aclmask(relOid, userid, requiredPerms, ACLMASK_ALL);
|
|
remainingPerms = requiredPerms & ~relPerms;
|
|
if (remainingPerms != 0)
|
|
{
|
|
int col = -1;
|
|
|
|
/*
|
|
* If we lack any permissions that exist only as relation permissions,
|
|
* we can fail straight away.
|
|
*/
|
|
if (remainingPerms & ~(ACL_SELECT | ACL_INSERT | ACL_UPDATE))
|
|
return false;
|
|
|
|
/*
|
|
* Check to see if we have the needed privileges at column level.
|
|
*
|
|
* Note: failures just report a table-level error; it would be nicer
|
|
* to report a column-level error if we have some but not all of the
|
|
* column privileges.
|
|
*/
|
|
if (remainingPerms & ACL_SELECT)
|
|
{
|
|
/*
|
|
* When the query doesn't explicitly reference any columns (for
|
|
* example, SELECT COUNT(*) FROM table), allow the query if we
|
|
* have SELECT on any column of the rel, as per SQL spec.
|
|
*/
|
|
if (bms_is_empty(perminfo->selectedCols))
|
|
{
|
|
if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
|
|
ACLMASK_ANY) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
|
|
while ((col = bms_next_member(perminfo->selectedCols, col)) >= 0)
|
|
{
|
|
/* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
|
|
AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
|
|
|
|
if (attno == InvalidAttrNumber)
|
|
{
|
|
/* Whole-row reference, must have priv on all cols */
|
|
if (pg_attribute_aclcheck_all(relOid, userid, ACL_SELECT,
|
|
ACLMASK_ALL) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (pg_attribute_aclcheck(relOid, attno, userid,
|
|
ACL_SELECT) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Basically the same for the mod columns, for both INSERT and UPDATE
|
|
* privilege as specified by remainingPerms.
|
|
*/
|
|
if (remainingPerms & ACL_INSERT &&
|
|
!ExecCheckPermissionsModified(relOid,
|
|
userid,
|
|
perminfo->insertedCols,
|
|
ACL_INSERT))
|
|
return false;
|
|
|
|
if (remainingPerms & ACL_UPDATE &&
|
|
!ExecCheckPermissionsModified(relOid,
|
|
userid,
|
|
perminfo->updatedCols,
|
|
ACL_UPDATE))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* ExecCheckPermissionsModified
|
|
* Check INSERT or UPDATE access permissions for a single relation (these
|
|
* are processed uniformly).
|
|
*/
|
|
static bool
|
|
ExecCheckPermissionsModified(Oid relOid, Oid userid, Bitmapset *modifiedCols,
|
|
AclMode requiredPerms)
|
|
{
|
|
int col = -1;
|
|
|
|
/*
|
|
* When the query doesn't explicitly update any columns, allow the query
|
|
* if we have permission on any column of the rel. This is to handle
|
|
* SELECT FOR UPDATE as well as possible corner cases in UPDATE.
|
|
*/
|
|
if (bms_is_empty(modifiedCols))
|
|
{
|
|
if (pg_attribute_aclcheck_all(relOid, userid, requiredPerms,
|
|
ACLMASK_ANY) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
|
|
while ((col = bms_next_member(modifiedCols, col)) >= 0)
|
|
{
|
|
/* bit #s are offset by FirstLowInvalidHeapAttributeNumber */
|
|
AttrNumber attno = col + FirstLowInvalidHeapAttributeNumber;
|
|
|
|
if (attno == InvalidAttrNumber)
|
|
{
|
|
/* whole-row reference can't happen here */
|
|
elog(ERROR, "whole-row update is not implemented");
|
|
}
|
|
else
|
|
{
|
|
if (pg_attribute_aclcheck(relOid, attno, userid,
|
|
requiredPerms) != ACLCHECK_OK)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check that the query does not imply any writes to non-temp tables;
|
|
* unless we're in parallel mode, in which case don't even allow writes
|
|
* to temp tables.
|
|
*
|
|
* Note: in a Hot Standby this would need to reject writes to temp
|
|
* tables just as we do in parallel mode; but an HS standby can't have created
|
|
* any temp tables in the first place, so no need to check that.
|
|
*/
|
|
static void
|
|
ExecCheckXactReadOnly(PlannedStmt *plannedstmt)
|
|
{
|
|
ListCell *l;
|
|
|
|
/*
|
|
* Fail if write permissions are requested in parallel mode for table
|
|
* (temp or non-temp), otherwise fail for any non-temp table.
|
|
*/
|
|
foreach(l, plannedstmt->permInfos)
|
|
{
|
|
RTEPermissionInfo *perminfo = lfirst_node(RTEPermissionInfo, l);
|
|
|
|
if ((perminfo->requiredPerms & (~ACL_SELECT)) == 0)
|
|
continue;
|
|
|
|
if (isTempNamespace(get_rel_namespace(perminfo->relid)))
|
|
continue;
|
|
|
|
PreventCommandIfReadOnly(CreateCommandName((Node *) plannedstmt));
|
|
}
|
|
|
|
if (plannedstmt->commandType != CMD_SELECT || plannedstmt->hasModifyingCTE)
|
|
PreventCommandIfParallelMode(CreateCommandName((Node *) plannedstmt));
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------
|
|
* InitPlan
|
|
*
|
|
* Initializes the query plan: open files, allocate storage
|
|
* and start up the rule manager
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
InitPlan(QueryDesc *queryDesc, int eflags)
|
|
{
|
|
CmdType operation = queryDesc->operation;
|
|
PlannedStmt *plannedstmt = queryDesc->plannedstmt;
|
|
Plan *plan = plannedstmt->planTree;
|
|
List *rangeTable = plannedstmt->rtable;
|
|
EState *estate = queryDesc->estate;
|
|
PlanState *planstate;
|
|
TupleDesc tupType;
|
|
ListCell *l;
|
|
int i;
|
|
|
|
/*
|
|
* Do permissions checks
|
|
*/
|
|
ExecCheckPermissions(rangeTable, plannedstmt->permInfos, true);
|
|
|
|
/*
|
|
* initialize the node's execution state
|
|
*/
|
|
ExecInitRangeTable(estate, rangeTable, plannedstmt->permInfos);
|
|
|
|
estate->es_plannedstmt = plannedstmt;
|
|
|
|
/*
|
|
* Next, build the ExecRowMark array from the PlanRowMark(s), if any.
|
|
*/
|
|
if (plannedstmt->rowMarks)
|
|
{
|
|
estate->es_rowmarks = (ExecRowMark **)
|
|
palloc0(estate->es_range_table_size * sizeof(ExecRowMark *));
|
|
foreach(l, plannedstmt->rowMarks)
|
|
{
|
|
PlanRowMark *rc = (PlanRowMark *) lfirst(l);
|
|
Oid relid;
|
|
Relation relation;
|
|
ExecRowMark *erm;
|
|
|
|
/* ignore "parent" rowmarks; they are irrelevant at runtime */
|
|
if (rc->isParent)
|
|
continue;
|
|
|
|
/* get relation's OID (will produce InvalidOid if subquery) */
|
|
relid = exec_rt_fetch(rc->rti, estate)->relid;
|
|
|
|
/* open relation, if we need to access it for this mark type */
|
|
switch (rc->markType)
|
|
{
|
|
case ROW_MARK_EXCLUSIVE:
|
|
case ROW_MARK_NOKEYEXCLUSIVE:
|
|
case ROW_MARK_SHARE:
|
|
case ROW_MARK_KEYSHARE:
|
|
case ROW_MARK_REFERENCE:
|
|
relation = ExecGetRangeTableRelation(estate, rc->rti);
|
|
break;
|
|
case ROW_MARK_COPY:
|
|
/* no physical table access is required */
|
|
relation = NULL;
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized markType: %d", rc->markType);
|
|
relation = NULL; /* keep compiler quiet */
|
|
break;
|
|
}
|
|
|
|
/* Check that relation is a legal target for marking */
|
|
if (relation)
|
|
CheckValidRowMarkRel(relation, rc->markType);
|
|
|
|
erm = (ExecRowMark *) palloc(sizeof(ExecRowMark));
|
|
erm->relation = relation;
|
|
erm->relid = relid;
|
|
erm->rti = rc->rti;
|
|
erm->prti = rc->prti;
|
|
erm->rowmarkId = rc->rowmarkId;
|
|
erm->markType = rc->markType;
|
|
erm->strength = rc->strength;
|
|
erm->waitPolicy = rc->waitPolicy;
|
|
erm->ermActive = false;
|
|
ItemPointerSetInvalid(&(erm->curCtid));
|
|
erm->ermExtra = NULL;
|
|
|
|
Assert(erm->rti > 0 && erm->rti <= estate->es_range_table_size &&
|
|
estate->es_rowmarks[erm->rti - 1] == NULL);
|
|
|
|
estate->es_rowmarks[erm->rti - 1] = erm;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize the executor's tuple table to empty.
|
|
*/
|
|
estate->es_tupleTable = NIL;
|
|
|
|
/* signal that this EState is not used for EPQ */
|
|
estate->es_epq_active = NULL;
|
|
|
|
/*
|
|
* Initialize private state information for each SubPlan. We must do this
|
|
* before running ExecInitNode on the main query tree, since
|
|
* ExecInitSubPlan expects to be able to find these entries.
|
|
*/
|
|
Assert(estate->es_subplanstates == NIL);
|
|
i = 1; /* subplan indices count from 1 */
|
|
foreach(l, plannedstmt->subplans)
|
|
{
|
|
Plan *subplan = (Plan *) lfirst(l);
|
|
PlanState *subplanstate;
|
|
int sp_eflags;
|
|
|
|
/*
|
|
* A subplan will never need to do BACKWARD scan nor MARK/RESTORE. If
|
|
* it is a parameterless subplan (not initplan), we suggest that it be
|
|
* prepared to handle REWIND efficiently; otherwise there is no need.
|
|
*/
|
|
sp_eflags = eflags
|
|
& ~(EXEC_FLAG_REWIND | EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK);
|
|
if (bms_is_member(i, plannedstmt->rewindPlanIDs))
|
|
sp_eflags |= EXEC_FLAG_REWIND;
|
|
|
|
subplanstate = ExecInitNode(subplan, estate, sp_eflags);
|
|
|
|
estate->es_subplanstates = lappend(estate->es_subplanstates,
|
|
subplanstate);
|
|
|
|
i++;
|
|
}
|
|
|
|
/*
|
|
* Initialize the private state information for all the nodes in the query
|
|
* tree. This opens files, allocates storage and leaves us ready to start
|
|
* processing tuples.
|
|
*/
|
|
planstate = ExecInitNode(plan, estate, eflags);
|
|
|
|
/*
|
|
* Get the tuple descriptor describing the type of tuples to return.
|
|
*/
|
|
tupType = ExecGetResultType(planstate);
|
|
|
|
/*
|
|
* Initialize the junk filter if needed. SELECT queries need a filter if
|
|
* there are any junk attrs in the top-level tlist.
|
|
*/
|
|
if (operation == CMD_SELECT)
|
|
{
|
|
bool junk_filter_needed = false;
|
|
ListCell *tlist;
|
|
|
|
foreach(tlist, plan->targetlist)
|
|
{
|
|
TargetEntry *tle = (TargetEntry *) lfirst(tlist);
|
|
|
|
if (tle->resjunk)
|
|
{
|
|
junk_filter_needed = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (junk_filter_needed)
|
|
{
|
|
JunkFilter *j;
|
|
TupleTableSlot *slot;
|
|
|
|
slot = ExecInitExtraTupleSlot(estate, NULL, &TTSOpsVirtual);
|
|
j = ExecInitJunkFilter(planstate->plan->targetlist,
|
|
slot);
|
|
estate->es_junkFilter = j;
|
|
|
|
/* Want to return the cleaned tuple type */
|
|
tupType = j->jf_cleanTupType;
|
|
}
|
|
}
|
|
|
|
queryDesc->tupDesc = tupType;
|
|
queryDesc->planstate = planstate;
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed result relation is a legal target for the operation
|
|
*
|
|
* Generally the parser and/or planner should have noticed any such mistake
|
|
* already, but let's make sure.
|
|
*
|
|
* Note: when changing this function, you probably also need to look at
|
|
* CheckValidRowMarkRel.
|
|
*/
|
|
void
|
|
CheckValidResultRel(ResultRelInfo *resultRelInfo, CmdType operation)
|
|
{
|
|
Relation resultRel = resultRelInfo->ri_RelationDesc;
|
|
TriggerDesc *trigDesc = resultRel->trigdesc;
|
|
FdwRoutine *fdwroutine;
|
|
|
|
switch (resultRel->rd_rel->relkind)
|
|
{
|
|
case RELKIND_RELATION:
|
|
case RELKIND_PARTITIONED_TABLE:
|
|
CheckCmdReplicaIdentity(resultRel, operation);
|
|
break;
|
|
case RELKIND_SEQUENCE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change sequence \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change TOAST relation \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
|
|
/*
|
|
* Okay only if there's a suitable INSTEAD OF trigger. Messages
|
|
* here should match rewriteHandler.c's rewriteTargetView and
|
|
* RewriteQuery, except that we omit errdetail because we haven't
|
|
* got the information handy (and given that we really shouldn't
|
|
* get here anyway, it's not worth great exertion to get).
|
|
*/
|
|
switch (operation)
|
|
{
|
|
case CMD_INSERT:
|
|
if (!trigDesc || !trigDesc->trig_insert_instead_row)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot insert into view \"%s\"",
|
|
RelationGetRelationName(resultRel)),
|
|
errhint("To enable inserting into the view, provide an INSTEAD OF INSERT trigger or an unconditional ON INSERT DO INSTEAD rule.")));
|
|
break;
|
|
case CMD_UPDATE:
|
|
if (!trigDesc || !trigDesc->trig_update_instead_row)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot update view \"%s\"",
|
|
RelationGetRelationName(resultRel)),
|
|
errhint("To enable updating the view, provide an INSTEAD OF UPDATE trigger or an unconditional ON UPDATE DO INSTEAD rule.")));
|
|
break;
|
|
case CMD_DELETE:
|
|
if (!trigDesc || !trigDesc->trig_delete_instead_row)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("cannot delete from view \"%s\"",
|
|
RelationGetRelationName(resultRel)),
|
|
errhint("To enable deleting from the view, provide an INSTEAD OF DELETE trigger or an unconditional ON DELETE DO INSTEAD rule.")));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized CmdType: %d", (int) operation);
|
|
break;
|
|
}
|
|
break;
|
|
case RELKIND_MATVIEW:
|
|
if (!MatViewIncrementalMaintenanceIsEnabled())
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change materialized view \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case RELKIND_FOREIGN_TABLE:
|
|
/* Okay only if the FDW supports it */
|
|
fdwroutine = resultRelInfo->ri_FdwRoutine;
|
|
switch (operation)
|
|
{
|
|
case CMD_INSERT:
|
|
if (fdwroutine->ExecForeignInsert == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot insert into foreign table \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_INSERT)) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow inserts",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case CMD_UPDATE:
|
|
if (fdwroutine->ExecForeignUpdate == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot update foreign table \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_UPDATE)) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow updates",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
case CMD_DELETE:
|
|
if (fdwroutine->ExecForeignDelete == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot delete from foreign table \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
if (fdwroutine->IsForeignRelUpdatable != NULL &&
|
|
(fdwroutine->IsForeignRelUpdatable(resultRel) & (1 << CMD_DELETE)) == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
|
|
errmsg("foreign table \"%s\" does not allow deletes",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized CmdType: %d", (int) operation);
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot change relation \"%s\"",
|
|
RelationGetRelationName(resultRel))));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check that a proposed rowmark target relation is a legal target
|
|
*
|
|
* In most cases parser and/or planner should have noticed this already, but
|
|
* they don't cover all cases.
|
|
*/
|
|
static void
|
|
CheckValidRowMarkRel(Relation rel, RowMarkType markType)
|
|
{
|
|
FdwRoutine *fdwroutine;
|
|
|
|
switch (rel->rd_rel->relkind)
|
|
{
|
|
case RELKIND_RELATION:
|
|
case RELKIND_PARTITIONED_TABLE:
|
|
/* OK */
|
|
break;
|
|
case RELKIND_SEQUENCE:
|
|
/* Must disallow this because we don't vacuum sequences */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in sequence \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_TOASTVALUE:
|
|
/* We could allow this, but there seems no good reason to */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in TOAST relation \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_VIEW:
|
|
/* Should not get here; planner should have expanded the view */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in view \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_MATVIEW:
|
|
/* Allow referencing a matview, but not actual locking clauses */
|
|
if (markType != ROW_MARK_REFERENCE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in materialized view \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
case RELKIND_FOREIGN_TABLE:
|
|
/* Okay only if the FDW supports it */
|
|
fdwroutine = GetFdwRoutineForRelation(rel, false);
|
|
if (fdwroutine->RefetchForeignRow == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot lock rows in foreign table \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
default:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
|
|
errmsg("cannot lock rows in relation \"%s\"",
|
|
RelationGetRelationName(rel))));
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize ResultRelInfo data for one result relation
|
|
*
|
|
* Caution: before Postgres 9.1, this function included the relkind checking
|
|
* that's now in CheckValidResultRel, and it also did ExecOpenIndices if
|
|
* appropriate. Be sure callers cover those needs.
|
|
*/
|
|
void
|
|
InitResultRelInfo(ResultRelInfo *resultRelInfo,
|
|
Relation resultRelationDesc,
|
|
Index resultRelationIndex,
|
|
ResultRelInfo *partition_root_rri,
|
|
int instrument_options)
|
|
{
|
|
MemSet(resultRelInfo, 0, sizeof(ResultRelInfo));
|
|
resultRelInfo->type = T_ResultRelInfo;
|
|
resultRelInfo->ri_RangeTableIndex = resultRelationIndex;
|
|
resultRelInfo->ri_RelationDesc = resultRelationDesc;
|
|
resultRelInfo->ri_NumIndices = 0;
|
|
resultRelInfo->ri_IndexRelationDescs = NULL;
|
|
resultRelInfo->ri_IndexRelationInfo = NULL;
|
|
/* make a copy so as not to depend on relcache info not changing... */
|
|
resultRelInfo->ri_TrigDesc = CopyTriggerDesc(resultRelationDesc->trigdesc);
|
|
if (resultRelInfo->ri_TrigDesc)
|
|
{
|
|
int n = resultRelInfo->ri_TrigDesc->numtriggers;
|
|
|
|
resultRelInfo->ri_TrigFunctions = (FmgrInfo *)
|
|
palloc0(n * sizeof(FmgrInfo));
|
|
resultRelInfo->ri_TrigWhenExprs = (ExprState **)
|
|
palloc0(n * sizeof(ExprState *));
|
|
if (instrument_options)
|
|
resultRelInfo->ri_TrigInstrument = InstrAlloc(n, instrument_options, false);
|
|
}
|
|
else
|
|
{
|
|
resultRelInfo->ri_TrigFunctions = NULL;
|
|
resultRelInfo->ri_TrigWhenExprs = NULL;
|
|
resultRelInfo->ri_TrigInstrument = NULL;
|
|
}
|
|
if (resultRelationDesc->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
|
|
resultRelInfo->ri_FdwRoutine = GetFdwRoutineForRelation(resultRelationDesc, true);
|
|
else
|
|
resultRelInfo->ri_FdwRoutine = NULL;
|
|
|
|
/* The following fields are set later if needed */
|
|
resultRelInfo->ri_RowIdAttNo = 0;
|
|
resultRelInfo->ri_extraUpdatedCols = NULL;
|
|
resultRelInfo->ri_projectNew = NULL;
|
|
resultRelInfo->ri_newTupleSlot = NULL;
|
|
resultRelInfo->ri_oldTupleSlot = NULL;
|
|
resultRelInfo->ri_projectNewInfoValid = false;
|
|
resultRelInfo->ri_FdwState = NULL;
|
|
resultRelInfo->ri_usesFdwDirectModify = false;
|
|
resultRelInfo->ri_ConstraintExprs = NULL;
|
|
resultRelInfo->ri_GeneratedExprsI = NULL;
|
|
resultRelInfo->ri_GeneratedExprsU = NULL;
|
|
resultRelInfo->ri_projectReturning = NULL;
|
|
resultRelInfo->ri_onConflictArbiterIndexes = NIL;
|
|
resultRelInfo->ri_onConflict = NULL;
|
|
resultRelInfo->ri_ReturningSlot = NULL;
|
|
resultRelInfo->ri_TrigOldSlot = NULL;
|
|
resultRelInfo->ri_TrigNewSlot = NULL;
|
|
resultRelInfo->ri_matchedMergeAction = NIL;
|
|
resultRelInfo->ri_notMatchedMergeAction = NIL;
|
|
|
|
/*
|
|
* Only ExecInitPartitionInfo() and ExecInitPartitionDispatchInfo() pass
|
|
* non-NULL partition_root_rri. For child relations that are part of the
|
|
* initial query rather than being dynamically added by tuple routing,
|
|
* this field is filled in ExecInitModifyTable().
|
|
*/
|
|
resultRelInfo->ri_RootResultRelInfo = partition_root_rri;
|
|
/* Set by ExecGetRootToChildMap */
|
|
resultRelInfo->ri_RootToChildMap = NULL;
|
|
resultRelInfo->ri_RootToChildMapValid = false;
|
|
/* Set by ExecInitRoutingInfo */
|
|
resultRelInfo->ri_PartitionTupleSlot = NULL;
|
|
resultRelInfo->ri_ChildToRootMap = NULL;
|
|
resultRelInfo->ri_ChildToRootMapValid = false;
|
|
resultRelInfo->ri_CopyMultiInsertBuffer = NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecGetTriggerResultRel
|
|
* Get a ResultRelInfo for a trigger target relation.
|
|
*
|
|
* Most of the time, triggers are fired on one of the result relations of the
|
|
* query, and so we can just return a member of the es_result_relations array,
|
|
* or the es_tuple_routing_result_relations list (if any). (Note: in self-join
|
|
* situations there might be multiple members with the same OID; if so it
|
|
* doesn't matter which one we pick.)
|
|
*
|
|
* However, it is sometimes necessary to fire triggers on other relations;
|
|
* this happens mainly when an RI update trigger queues additional triggers
|
|
* on other relations, which will be processed in the context of the outer
|
|
* query. For efficiency's sake, we want to have a ResultRelInfo for those
|
|
* triggers too; that can avoid repeated re-opening of the relation. (It
|
|
* also provides a way for EXPLAIN ANALYZE to report the runtimes of such
|
|
* triggers.) So we make additional ResultRelInfo's as needed, and save them
|
|
* in es_trig_target_relations.
|
|
*/
|
|
ResultRelInfo *
|
|
ExecGetTriggerResultRel(EState *estate, Oid relid,
|
|
ResultRelInfo *rootRelInfo)
|
|
{
|
|
ResultRelInfo *rInfo;
|
|
ListCell *l;
|
|
Relation rel;
|
|
MemoryContext oldcontext;
|
|
|
|
/* Search through the query result relations */
|
|
foreach(l, estate->es_opened_result_relations)
|
|
{
|
|
rInfo = lfirst(l);
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
|
|
return rInfo;
|
|
}
|
|
|
|
/*
|
|
* Search through the result relations that were created during tuple
|
|
* routing, if any.
|
|
*/
|
|
foreach(l, estate->es_tuple_routing_result_relations)
|
|
{
|
|
rInfo = (ResultRelInfo *) lfirst(l);
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
|
|
return rInfo;
|
|
}
|
|
|
|
/* Nope, but maybe we already made an extra ResultRelInfo for it */
|
|
foreach(l, estate->es_trig_target_relations)
|
|
{
|
|
rInfo = (ResultRelInfo *) lfirst(l);
|
|
if (RelationGetRelid(rInfo->ri_RelationDesc) == relid)
|
|
return rInfo;
|
|
}
|
|
/* Nope, so we need a new one */
|
|
|
|
/*
|
|
* Open the target relation's relcache entry. We assume that an
|
|
* appropriate lock is still held by the backend from whenever the trigger
|
|
* event got queued, so we need take no new lock here. Also, we need not
|
|
* recheck the relkind, so no need for CheckValidResultRel.
|
|
*/
|
|
rel = table_open(relid, NoLock);
|
|
|
|
/*
|
|
* Make the new entry in the right context.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
rInfo = makeNode(ResultRelInfo);
|
|
InitResultRelInfo(rInfo,
|
|
rel,
|
|
0, /* dummy rangetable index */
|
|
rootRelInfo,
|
|
estate->es_instrument);
|
|
estate->es_trig_target_relations =
|
|
lappend(estate->es_trig_target_relations, rInfo);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/*
|
|
* Currently, we don't need any index information in ResultRelInfos used
|
|
* only for triggers, so no need to call ExecOpenIndices.
|
|
*/
|
|
|
|
return rInfo;
|
|
}
|
|
|
|
/*
|
|
* Return the ancestor relations of a given leaf partition result relation
|
|
* up to and including the query's root target relation.
|
|
*
|
|
* These work much like the ones opened by ExecGetTriggerResultRel, except
|
|
* that we need to keep them in a separate list.
|
|
*
|
|
* These are closed by ExecCloseResultRelations.
|
|
*/
|
|
List *
|
|
ExecGetAncestorResultRels(EState *estate, ResultRelInfo *resultRelInfo)
|
|
{
|
|
ResultRelInfo *rootRelInfo = resultRelInfo->ri_RootResultRelInfo;
|
|
Relation partRel = resultRelInfo->ri_RelationDesc;
|
|
Oid rootRelOid;
|
|
|
|
if (!partRel->rd_rel->relispartition)
|
|
elog(ERROR, "cannot find ancestors of a non-partition result relation");
|
|
Assert(rootRelInfo != NULL);
|
|
rootRelOid = RelationGetRelid(rootRelInfo->ri_RelationDesc);
|
|
if (resultRelInfo->ri_ancestorResultRels == NIL)
|
|
{
|
|
ListCell *lc;
|
|
List *oids = get_partition_ancestors(RelationGetRelid(partRel));
|
|
List *ancResultRels = NIL;
|
|
|
|
foreach(lc, oids)
|
|
{
|
|
Oid ancOid = lfirst_oid(lc);
|
|
Relation ancRel;
|
|
ResultRelInfo *rInfo;
|
|
|
|
/*
|
|
* Ignore the root ancestor here, and use ri_RootResultRelInfo
|
|
* (below) for it instead. Also, we stop climbing up the
|
|
* hierarchy when we find the table that was mentioned in the
|
|
* query.
|
|
*/
|
|
if (ancOid == rootRelOid)
|
|
break;
|
|
|
|
/*
|
|
* All ancestors up to the root target relation must have been
|
|
* locked by the planner or AcquireExecutorLocks().
|
|
*/
|
|
ancRel = table_open(ancOid, NoLock);
|
|
rInfo = makeNode(ResultRelInfo);
|
|
|
|
/* dummy rangetable index */
|
|
InitResultRelInfo(rInfo, ancRel, 0, NULL,
|
|
estate->es_instrument);
|
|
ancResultRels = lappend(ancResultRels, rInfo);
|
|
}
|
|
ancResultRels = lappend(ancResultRels, rootRelInfo);
|
|
resultRelInfo->ri_ancestorResultRels = ancResultRels;
|
|
}
|
|
|
|
/* We must have found some ancestor */
|
|
Assert(resultRelInfo->ri_ancestorResultRels != NIL);
|
|
|
|
return resultRelInfo->ri_ancestorResultRels;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecPostprocessPlan
|
|
*
|
|
* Give plan nodes a final chance to execute before shutdown
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecPostprocessPlan(EState *estate)
|
|
{
|
|
ListCell *lc;
|
|
|
|
/*
|
|
* Make sure nodes run forward.
|
|
*/
|
|
estate->es_direction = ForwardScanDirection;
|
|
|
|
/*
|
|
* Run any secondary ModifyTable nodes to completion, in case the main
|
|
* query did not fetch all rows from them. (We do this to ensure that
|
|
* such nodes have predictable results.)
|
|
*/
|
|
foreach(lc, estate->es_auxmodifytables)
|
|
{
|
|
PlanState *ps = (PlanState *) lfirst(lc);
|
|
|
|
for (;;)
|
|
{
|
|
TupleTableSlot *slot;
|
|
|
|
/* Reset the per-output-tuple exprcontext each time */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
slot = ExecProcNode(ps);
|
|
|
|
if (TupIsNull(slot))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecEndPlan
|
|
*
|
|
* Cleans up the query plan -- closes files and frees up storage
|
|
*
|
|
* NOTE: we are no longer very worried about freeing storage per se
|
|
* in this code; FreeExecutorState should be guaranteed to release all
|
|
* memory that needs to be released. What we are worried about doing
|
|
* is closing relations and dropping buffer pins. Thus, for example,
|
|
* tuple tables must be cleared or dropped to ensure pins are released.
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecEndPlan(PlanState *planstate, EState *estate)
|
|
{
|
|
ListCell *l;
|
|
|
|
/*
|
|
* shut down the node-type-specific query processing
|
|
*/
|
|
ExecEndNode(planstate);
|
|
|
|
/*
|
|
* for subplans too
|
|
*/
|
|
foreach(l, estate->es_subplanstates)
|
|
{
|
|
PlanState *subplanstate = (PlanState *) lfirst(l);
|
|
|
|
ExecEndNode(subplanstate);
|
|
}
|
|
|
|
/*
|
|
* destroy the executor's tuple table. Actually we only care about
|
|
* releasing buffer pins and tupdesc refcounts; there's no need to pfree
|
|
* the TupleTableSlots, since the containing memory context is about to go
|
|
* away anyway.
|
|
*/
|
|
ExecResetTupleTable(estate->es_tupleTable, false);
|
|
|
|
/*
|
|
* Close any Relations that have been opened for range table entries or
|
|
* result relations.
|
|
*/
|
|
ExecCloseResultRelations(estate);
|
|
ExecCloseRangeTableRelations(estate);
|
|
}
|
|
|
|
/*
|
|
* Close any relations that have been opened for ResultRelInfos.
|
|
*/
|
|
void
|
|
ExecCloseResultRelations(EState *estate)
|
|
{
|
|
ListCell *l;
|
|
|
|
/*
|
|
* close indexes of result relation(s) if any. (Rels themselves are
|
|
* closed in ExecCloseRangeTableRelations())
|
|
*
|
|
* In addition, close the stub RTs that may be in each resultrel's
|
|
* ri_ancestorResultRels.
|
|
*/
|
|
foreach(l, estate->es_opened_result_relations)
|
|
{
|
|
ResultRelInfo *resultRelInfo = lfirst(l);
|
|
ListCell *lc;
|
|
|
|
ExecCloseIndices(resultRelInfo);
|
|
foreach(lc, resultRelInfo->ri_ancestorResultRels)
|
|
{
|
|
ResultRelInfo *rInfo = lfirst(lc);
|
|
|
|
/*
|
|
* Ancestors with RTI > 0 (should only be the root ancestor) are
|
|
* closed by ExecCloseRangeTableRelations.
|
|
*/
|
|
if (rInfo->ri_RangeTableIndex > 0)
|
|
continue;
|
|
|
|
table_close(rInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
}
|
|
|
|
/* Close any relations that have been opened by ExecGetTriggerResultRel(). */
|
|
foreach(l, estate->es_trig_target_relations)
|
|
{
|
|
ResultRelInfo *resultRelInfo = (ResultRelInfo *) lfirst(l);
|
|
|
|
/*
|
|
* Assert this is a "dummy" ResultRelInfo, see above. Otherwise we
|
|
* might be issuing a duplicate close against a Relation opened by
|
|
* ExecGetRangeTableRelation.
|
|
*/
|
|
Assert(resultRelInfo->ri_RangeTableIndex == 0);
|
|
|
|
/*
|
|
* Since ExecGetTriggerResultRel doesn't call ExecOpenIndices for
|
|
* these rels, we needn't call ExecCloseIndices either.
|
|
*/
|
|
Assert(resultRelInfo->ri_NumIndices == 0);
|
|
|
|
table_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Close all relations opened by ExecGetRangeTableRelation().
|
|
*
|
|
* We do not release any locks we might hold on those rels.
|
|
*/
|
|
void
|
|
ExecCloseRangeTableRelations(EState *estate)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < estate->es_range_table_size; i++)
|
|
{
|
|
if (estate->es_relations[i])
|
|
table_close(estate->es_relations[i], NoLock);
|
|
}
|
|
}
|
|
|
|
/* ----------------------------------------------------------------
|
|
* ExecutePlan
|
|
*
|
|
* Processes the query plan until we have retrieved 'numberTuples' tuples,
|
|
* moving in the specified direction.
|
|
*
|
|
* Runs to completion if numberTuples is 0
|
|
*
|
|
* Note: the ctid attribute is a 'junk' attribute that is removed before the
|
|
* user can see it
|
|
* ----------------------------------------------------------------
|
|
*/
|
|
static void
|
|
ExecutePlan(EState *estate,
|
|
PlanState *planstate,
|
|
bool use_parallel_mode,
|
|
CmdType operation,
|
|
bool sendTuples,
|
|
uint64 numberTuples,
|
|
ScanDirection direction,
|
|
DestReceiver *dest,
|
|
bool execute_once)
|
|
{
|
|
TupleTableSlot *slot;
|
|
uint64 current_tuple_count;
|
|
|
|
/*
|
|
* initialize local variables
|
|
*/
|
|
current_tuple_count = 0;
|
|
|
|
/*
|
|
* Set the direction.
|
|
*/
|
|
estate->es_direction = direction;
|
|
|
|
/*
|
|
* If the plan might potentially be executed multiple times, we must force
|
|
* it to run without parallelism, because we might exit early.
|
|
*/
|
|
if (!execute_once)
|
|
use_parallel_mode = false;
|
|
|
|
estate->es_use_parallel_mode = use_parallel_mode;
|
|
if (use_parallel_mode)
|
|
EnterParallelMode();
|
|
|
|
/*
|
|
* Loop until we've processed the proper number of tuples from the plan.
|
|
*/
|
|
for (;;)
|
|
{
|
|
/* Reset the per-output-tuple exprcontext */
|
|
ResetPerTupleExprContext(estate);
|
|
|
|
/*
|
|
* Execute the plan and obtain a tuple
|
|
*/
|
|
slot = ExecProcNode(planstate);
|
|
|
|
/*
|
|
* if the tuple is null, then we assume there is nothing more to
|
|
* process so we just end the loop...
|
|
*/
|
|
if (TupIsNull(slot))
|
|
break;
|
|
|
|
/*
|
|
* If we have a junk filter, then project a new tuple with the junk
|
|
* removed.
|
|
*
|
|
* Store this new "clean" tuple in the junkfilter's resultSlot.
|
|
* (Formerly, we stored it back over the "dirty" tuple, which is WRONG
|
|
* because that tuple slot has the wrong descriptor.)
|
|
*/
|
|
if (estate->es_junkFilter != NULL)
|
|
slot = ExecFilterJunk(estate->es_junkFilter, slot);
|
|
|
|
/*
|
|
* If we are supposed to send the tuple somewhere, do so. (In
|
|
* practice, this is probably always the case at this point.)
|
|
*/
|
|
if (sendTuples)
|
|
{
|
|
/*
|
|
* If we are not able to send the tuple, we assume the destination
|
|
* has closed and no more tuples can be sent. If that's the case,
|
|
* end the loop.
|
|
*/
|
|
if (!dest->receiveSlot(slot, dest))
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Count tuples processed, if this is a SELECT. (For other operation
|
|
* types, the ModifyTable plan node must count the appropriate
|
|
* events.)
|
|
*/
|
|
if (operation == CMD_SELECT)
|
|
(estate->es_processed)++;
|
|
|
|
/*
|
|
* check our tuple count.. if we've processed the proper number then
|
|
* quit, else loop again and process more tuples. Zero numberTuples
|
|
* means no limit.
|
|
*/
|
|
current_tuple_count++;
|
|
if (numberTuples && numberTuples == current_tuple_count)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we know we won't need to back up, we can release resources at this
|
|
* point.
|
|
*/
|
|
if (!(estate->es_top_eflags & EXEC_FLAG_BACKWARD))
|
|
ExecShutdownNode(planstate);
|
|
|
|
if (use_parallel_mode)
|
|
ExitParallelMode();
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecRelCheck --- check that tuple meets constraints for result relation
|
|
*
|
|
* Returns NULL if OK, else name of failed check constraint
|
|
*/
|
|
static const char *
|
|
ExecRelCheck(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
int ncheck = rel->rd_att->constr->num_check;
|
|
ConstrCheck *check = rel->rd_att->constr->check;
|
|
ExprContext *econtext;
|
|
MemoryContext oldContext;
|
|
int i;
|
|
|
|
/*
|
|
* CheckConstraintFetch let this pass with only a warning, but now we
|
|
* should fail rather than possibly failing to enforce an important
|
|
* constraint.
|
|
*/
|
|
if (ncheck != rel->rd_rel->relchecks)
|
|
elog(ERROR, "%d pg_constraint record(s) missing for relation \"%s\"",
|
|
rel->rd_rel->relchecks - ncheck, RelationGetRelationName(rel));
|
|
|
|
/*
|
|
* If first time through for this result relation, build expression
|
|
* nodetrees for rel's constraint expressions. Keep them in the per-query
|
|
* memory context so they'll survive throughout the query.
|
|
*/
|
|
if (resultRelInfo->ri_ConstraintExprs == NULL)
|
|
{
|
|
oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
resultRelInfo->ri_ConstraintExprs =
|
|
(ExprState **) palloc(ncheck * sizeof(ExprState *));
|
|
for (i = 0; i < ncheck; i++)
|
|
{
|
|
Expr *checkconstr;
|
|
|
|
checkconstr = stringToNode(check[i].ccbin);
|
|
resultRelInfo->ri_ConstraintExprs[i] =
|
|
ExecPrepareExpr(checkconstr, estate);
|
|
}
|
|
MemoryContextSwitchTo(oldContext);
|
|
}
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* And evaluate the constraints */
|
|
for (i = 0; i < ncheck; i++)
|
|
{
|
|
ExprState *checkconstr = resultRelInfo->ri_ConstraintExprs[i];
|
|
|
|
/*
|
|
* NOTE: SQL specifies that a NULL result from a constraint expression
|
|
* is not to be treated as a failure. Therefore, use ExecCheck not
|
|
* ExecQual.
|
|
*/
|
|
if (!ExecCheck(checkconstr, econtext))
|
|
return check[i].ccname;
|
|
}
|
|
|
|
/* NULL result means no error */
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecPartitionCheck --- check that tuple meets the partition constraint.
|
|
*
|
|
* Returns true if it meets the partition constraint. If the constraint
|
|
* fails and we're asked to emit an error, do so and don't return; otherwise
|
|
* return false.
|
|
*/
|
|
bool
|
|
ExecPartitionCheck(ResultRelInfo *resultRelInfo, TupleTableSlot *slot,
|
|
EState *estate, bool emitError)
|
|
{
|
|
ExprContext *econtext;
|
|
bool success;
|
|
|
|
/*
|
|
* If first time through, build expression state tree for the partition
|
|
* check expression. (In the corner case where the partition check
|
|
* expression is empty, ie there's a default partition and nothing else,
|
|
* we'll be fooled into executing this code each time through. But it's
|
|
* pretty darn cheap in that case, so we don't worry about it.)
|
|
*/
|
|
if (resultRelInfo->ri_PartitionCheckExpr == NULL)
|
|
{
|
|
/*
|
|
* Ensure that the qual tree and prepared expression are in the
|
|
* query-lifespan context.
|
|
*/
|
|
MemoryContext oldcxt = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
List *qual = RelationGetPartitionQual(resultRelInfo->ri_RelationDesc);
|
|
|
|
resultRelInfo->ri_PartitionCheckExpr = ExecPrepareCheck(qual, estate);
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/*
|
|
* As in case of the cataloged constraints, we treat a NULL result as
|
|
* success here, not a failure.
|
|
*/
|
|
success = ExecCheck(resultRelInfo->ri_PartitionCheckExpr, econtext);
|
|
|
|
/* if asked to emit error, don't actually return on failure */
|
|
if (!success && emitError)
|
|
ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
|
|
|
|
return success;
|
|
}
|
|
|
|
/*
|
|
* ExecPartitionCheckEmitError - Form and emit an error message after a failed
|
|
* partition constraint check.
|
|
*/
|
|
void
|
|
ExecPartitionCheckEmitError(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot,
|
|
EState *estate)
|
|
{
|
|
Oid root_relid;
|
|
TupleDesc tupdesc;
|
|
char *val_desc;
|
|
Bitmapset *modifiedCols;
|
|
|
|
/*
|
|
* If the tuple has been routed, it's been converted to the partition's
|
|
* rowtype, which might differ from the root table's. We must convert it
|
|
* back to the root table's rowtype so that val_desc in the error message
|
|
* matches the input tuple.
|
|
*/
|
|
if (resultRelInfo->ri_RootResultRelInfo)
|
|
{
|
|
ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
|
|
TupleDesc old_tupdesc;
|
|
AttrMap *map;
|
|
|
|
root_relid = RelationGetRelid(rootrel->ri_RelationDesc);
|
|
tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
|
|
|
|
old_tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
|
|
/* a reverse map */
|
|
map = build_attrmap_by_name_if_req(old_tupdesc, tupdesc, false);
|
|
|
|
/*
|
|
* Partition-specific slot's tupdesc can't be changed, so allocate a
|
|
* new one.
|
|
*/
|
|
if (map != NULL)
|
|
slot = execute_attr_map_slot(map, slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
|
|
ExecGetUpdatedCols(rootrel, estate));
|
|
}
|
|
else
|
|
{
|
|
root_relid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
|
|
tupdesc = RelationGetDescr(resultRelInfo->ri_RelationDesc);
|
|
modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
|
|
ExecGetUpdatedCols(resultRelInfo, estate));
|
|
}
|
|
|
|
val_desc = ExecBuildSlotValueDescription(root_relid,
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates partition constraint",
|
|
RelationGetRelationName(resultRelInfo->ri_RelationDesc)),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
|
|
errtable(resultRelInfo->ri_RelationDesc)));
|
|
}
|
|
|
|
/*
|
|
* ExecConstraints - check constraints of the tuple in 'slot'
|
|
*
|
|
* This checks the traditional NOT NULL and check constraints.
|
|
*
|
|
* The partition constraint is *NOT* checked.
|
|
*
|
|
* Note: 'slot' contains the tuple to check the constraints of, which may
|
|
* have been converted from the original input tuple after tuple routing.
|
|
* 'resultRelInfo' is the final result relation, after tuple routing.
|
|
*/
|
|
void
|
|
ExecConstraints(ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
TupleConstr *constr = tupdesc->constr;
|
|
Bitmapset *modifiedCols;
|
|
|
|
Assert(constr); /* we should not be called otherwise */
|
|
|
|
if (constr->has_not_null)
|
|
{
|
|
int natts = tupdesc->natts;
|
|
int attrChk;
|
|
|
|
for (attrChk = 1; attrChk <= natts; attrChk++)
|
|
{
|
|
Form_pg_attribute att = TupleDescAttr(tupdesc, attrChk - 1);
|
|
|
|
if (att->attnotnull && slot_attisnull(slot, attrChk))
|
|
{
|
|
char *val_desc;
|
|
Relation orig_rel = rel;
|
|
TupleDesc orig_tupdesc = RelationGetDescr(rel);
|
|
|
|
/*
|
|
* If the tuple has been routed, it's been converted to the
|
|
* partition's rowtype, which might differ from the root
|
|
* table's. We must convert it back to the root table's
|
|
* rowtype so that val_desc shown error message matches the
|
|
* input tuple.
|
|
*/
|
|
if (resultRelInfo->ri_RootResultRelInfo)
|
|
{
|
|
ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
|
|
AttrMap *map;
|
|
|
|
tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
|
|
/* a reverse map */
|
|
map = build_attrmap_by_name_if_req(orig_tupdesc,
|
|
tupdesc,
|
|
false);
|
|
|
|
/*
|
|
* Partition-specific slot's tupdesc can't be changed, so
|
|
* allocate a new one.
|
|
*/
|
|
if (map != NULL)
|
|
slot = execute_attr_map_slot(map, slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
|
|
ExecGetUpdatedCols(rootrel, estate));
|
|
rel = rootrel->ri_RelationDesc;
|
|
}
|
|
else
|
|
modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
|
|
ExecGetUpdatedCols(resultRelInfo, estate));
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NOT_NULL_VIOLATION),
|
|
errmsg("null value in column \"%s\" of relation \"%s\" violates not-null constraint",
|
|
NameStr(att->attname),
|
|
RelationGetRelationName(orig_rel)),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
|
|
errtablecol(orig_rel, attrChk)));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (rel->rd_rel->relchecks > 0)
|
|
{
|
|
const char *failed;
|
|
|
|
if ((failed = ExecRelCheck(resultRelInfo, slot, estate)) != NULL)
|
|
{
|
|
char *val_desc;
|
|
Relation orig_rel = rel;
|
|
|
|
/* See the comment above. */
|
|
if (resultRelInfo->ri_RootResultRelInfo)
|
|
{
|
|
ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
|
|
TupleDesc old_tupdesc = RelationGetDescr(rel);
|
|
AttrMap *map;
|
|
|
|
tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
|
|
/* a reverse map */
|
|
map = build_attrmap_by_name_if_req(old_tupdesc,
|
|
tupdesc,
|
|
false);
|
|
|
|
/*
|
|
* Partition-specific slot's tupdesc can't be changed, so
|
|
* allocate a new one.
|
|
*/
|
|
if (map != NULL)
|
|
slot = execute_attr_map_slot(map, slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
|
|
ExecGetUpdatedCols(rootrel, estate));
|
|
rel = rootrel->ri_RelationDesc;
|
|
}
|
|
else
|
|
modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
|
|
ExecGetUpdatedCols(resultRelInfo, estate));
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("new row for relation \"%s\" violates check constraint \"%s\"",
|
|
RelationGetRelationName(orig_rel), failed),
|
|
val_desc ? errdetail("Failing row contains %s.", val_desc) : 0,
|
|
errtableconstraint(orig_rel, failed)));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecWithCheckOptions -- check that tuple satisfies any WITH CHECK OPTIONs
|
|
* of the specified kind.
|
|
*
|
|
* Note that this needs to be called multiple times to ensure that all kinds of
|
|
* WITH CHECK OPTIONs are handled (both those from views which have the WITH
|
|
* CHECK OPTION set and from row-level security policies). See ExecInsert()
|
|
* and ExecUpdate().
|
|
*/
|
|
void
|
|
ExecWithCheckOptions(WCOKind kind, ResultRelInfo *resultRelInfo,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
Relation rel = resultRelInfo->ri_RelationDesc;
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
ExprContext *econtext;
|
|
ListCell *l1,
|
|
*l2;
|
|
|
|
/*
|
|
* We will use the EState's per-tuple context for evaluating constraint
|
|
* expressions (creating it if it's not already there).
|
|
*/
|
|
econtext = GetPerTupleExprContext(estate);
|
|
|
|
/* Arrange for econtext's scan tuple to be the tuple under test */
|
|
econtext->ecxt_scantuple = slot;
|
|
|
|
/* Check each of the constraints */
|
|
forboth(l1, resultRelInfo->ri_WithCheckOptions,
|
|
l2, resultRelInfo->ri_WithCheckOptionExprs)
|
|
{
|
|
WithCheckOption *wco = (WithCheckOption *) lfirst(l1);
|
|
ExprState *wcoExpr = (ExprState *) lfirst(l2);
|
|
|
|
/*
|
|
* Skip any WCOs which are not the kind we are looking for at this
|
|
* time.
|
|
*/
|
|
if (wco->kind != kind)
|
|
continue;
|
|
|
|
/*
|
|
* WITH CHECK OPTION checks are intended to ensure that the new tuple
|
|
* is visible (in the case of a view) or that it passes the
|
|
* 'with-check' policy (in the case of row security). If the qual
|
|
* evaluates to NULL or FALSE, then the new tuple won't be included in
|
|
* the view or doesn't pass the 'with-check' policy for the table.
|
|
*/
|
|
if (!ExecQual(wcoExpr, econtext))
|
|
{
|
|
char *val_desc;
|
|
Bitmapset *modifiedCols;
|
|
|
|
switch (wco->kind)
|
|
{
|
|
/*
|
|
* For WITH CHECK OPTIONs coming from views, we might be
|
|
* able to provide the details on the row, depending on
|
|
* the permissions on the relation (that is, if the user
|
|
* could view it directly anyway). For RLS violations, we
|
|
* don't include the data since we don't know if the user
|
|
* should be able to view the tuple as that depends on the
|
|
* USING policy.
|
|
*/
|
|
case WCO_VIEW_CHECK:
|
|
/* See the comment in ExecConstraints(). */
|
|
if (resultRelInfo->ri_RootResultRelInfo)
|
|
{
|
|
ResultRelInfo *rootrel = resultRelInfo->ri_RootResultRelInfo;
|
|
TupleDesc old_tupdesc = RelationGetDescr(rel);
|
|
AttrMap *map;
|
|
|
|
tupdesc = RelationGetDescr(rootrel->ri_RelationDesc);
|
|
/* a reverse map */
|
|
map = build_attrmap_by_name_if_req(old_tupdesc,
|
|
tupdesc,
|
|
false);
|
|
|
|
/*
|
|
* Partition-specific slot's tupdesc can't be changed,
|
|
* so allocate a new one.
|
|
*/
|
|
if (map != NULL)
|
|
slot = execute_attr_map_slot(map, slot,
|
|
MakeTupleTableSlot(tupdesc, &TTSOpsVirtual));
|
|
|
|
modifiedCols = bms_union(ExecGetInsertedCols(rootrel, estate),
|
|
ExecGetUpdatedCols(rootrel, estate));
|
|
rel = rootrel->ri_RelationDesc;
|
|
}
|
|
else
|
|
modifiedCols = bms_union(ExecGetInsertedCols(resultRelInfo, estate),
|
|
ExecGetUpdatedCols(resultRelInfo, estate));
|
|
val_desc = ExecBuildSlotValueDescription(RelationGetRelid(rel),
|
|
slot,
|
|
tupdesc,
|
|
modifiedCols,
|
|
64);
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_WITH_CHECK_OPTION_VIOLATION),
|
|
errmsg("new row violates check option for view \"%s\"",
|
|
wco->relname),
|
|
val_desc ? errdetail("Failing row contains %s.",
|
|
val_desc) : 0));
|
|
break;
|
|
case WCO_RLS_INSERT_CHECK:
|
|
case WCO_RLS_UPDATE_CHECK:
|
|
if (wco->polname != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy \"%s\" for table \"%s\"",
|
|
wco->polname, wco->relname)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy for table \"%s\"",
|
|
wco->relname)));
|
|
break;
|
|
case WCO_RLS_MERGE_UPDATE_CHECK:
|
|
case WCO_RLS_MERGE_DELETE_CHECK:
|
|
if (wco->polname != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("target row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
|
|
wco->polname, wco->relname)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("target row violates row-level security policy (USING expression) for table \"%s\"",
|
|
wco->relname)));
|
|
break;
|
|
case WCO_RLS_CONFLICT_CHECK:
|
|
if (wco->polname != NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy \"%s\" (USING expression) for table \"%s\"",
|
|
wco->polname, wco->relname)));
|
|
else
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
|
|
errmsg("new row violates row-level security policy (USING expression) for table \"%s\"",
|
|
wco->relname)));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unrecognized WCO kind: %u", wco->kind);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecBuildSlotValueDescription -- construct a string representing a tuple
|
|
*
|
|
* This is intentionally very similar to BuildIndexValueDescription, but
|
|
* unlike that function, we truncate long field values (to at most maxfieldlen
|
|
* bytes). That seems necessary here since heap field values could be very
|
|
* long, whereas index entries typically aren't so wide.
|
|
*
|
|
* Also, unlike the case with index entries, we need to be prepared to ignore
|
|
* dropped columns. We used to use the slot's tuple descriptor to decode the
|
|
* data, but the slot's descriptor doesn't identify dropped columns, so we
|
|
* now need to be passed the relation's descriptor.
|
|
*
|
|
* Note that, like BuildIndexValueDescription, if the user does not have
|
|
* permission to view any of the columns involved, a NULL is returned. Unlike
|
|
* BuildIndexValueDescription, if the user has access to view a subset of the
|
|
* column involved, that subset will be returned with a key identifying which
|
|
* columns they are.
|
|
*/
|
|
static char *
|
|
ExecBuildSlotValueDescription(Oid reloid,
|
|
TupleTableSlot *slot,
|
|
TupleDesc tupdesc,
|
|
Bitmapset *modifiedCols,
|
|
int maxfieldlen)
|
|
{
|
|
StringInfoData buf;
|
|
StringInfoData collist;
|
|
bool write_comma = false;
|
|
bool write_comma_collist = false;
|
|
int i;
|
|
AclResult aclresult;
|
|
bool table_perm = false;
|
|
bool any_perm = false;
|
|
|
|
/*
|
|
* Check if RLS is enabled and should be active for the relation; if so,
|
|
* then don't return anything. Otherwise, go through normal permission
|
|
* checks.
|
|
*/
|
|
if (check_enable_rls(reloid, InvalidOid, true) == RLS_ENABLED)
|
|
return NULL;
|
|
|
|
initStringInfo(&buf);
|
|
|
|
appendStringInfoChar(&buf, '(');
|
|
|
|
/*
|
|
* Check if the user has permissions to see the row. Table-level SELECT
|
|
* allows access to all columns. If the user does not have table-level
|
|
* SELECT then we check each column and include those the user has SELECT
|
|
* rights on. Additionally, we always include columns the user provided
|
|
* data for.
|
|
*/
|
|
aclresult = pg_class_aclcheck(reloid, GetUserId(), ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
{
|
|
/* Set up the buffer for the column list */
|
|
initStringInfo(&collist);
|
|
appendStringInfoChar(&collist, '(');
|
|
}
|
|
else
|
|
table_perm = any_perm = true;
|
|
|
|
/* Make sure the tuple is fully deconstructed */
|
|
slot_getallattrs(slot);
|
|
|
|
for (i = 0; i < tupdesc->natts; i++)
|
|
{
|
|
bool column_perm = false;
|
|
char *val;
|
|
int vallen;
|
|
Form_pg_attribute att = TupleDescAttr(tupdesc, i);
|
|
|
|
/* ignore dropped columns */
|
|
if (att->attisdropped)
|
|
continue;
|
|
|
|
if (!table_perm)
|
|
{
|
|
/*
|
|
* No table-level SELECT, so need to make sure they either have
|
|
* SELECT rights on the column or that they have provided the data
|
|
* for the column. If not, omit this column from the error
|
|
* message.
|
|
*/
|
|
aclresult = pg_attribute_aclcheck(reloid, att->attnum,
|
|
GetUserId(), ACL_SELECT);
|
|
if (bms_is_member(att->attnum - FirstLowInvalidHeapAttributeNumber,
|
|
modifiedCols) || aclresult == ACLCHECK_OK)
|
|
{
|
|
column_perm = any_perm = true;
|
|
|
|
if (write_comma_collist)
|
|
appendStringInfoString(&collist, ", ");
|
|
else
|
|
write_comma_collist = true;
|
|
|
|
appendStringInfoString(&collist, NameStr(att->attname));
|
|
}
|
|
}
|
|
|
|
if (table_perm || column_perm)
|
|
{
|
|
if (slot->tts_isnull[i])
|
|
val = "null";
|
|
else
|
|
{
|
|
Oid foutoid;
|
|
bool typisvarlena;
|
|
|
|
getTypeOutputInfo(att->atttypid,
|
|
&foutoid, &typisvarlena);
|
|
val = OidOutputFunctionCall(foutoid, slot->tts_values[i]);
|
|
}
|
|
|
|
if (write_comma)
|
|
appendStringInfoString(&buf, ", ");
|
|
else
|
|
write_comma = true;
|
|
|
|
/* truncate if needed */
|
|
vallen = strlen(val);
|
|
if (vallen <= maxfieldlen)
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
else
|
|
{
|
|
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
appendStringInfoString(&buf, "...");
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If we end up with zero columns being returned, then return NULL. */
|
|
if (!any_perm)
|
|
return NULL;
|
|
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
if (!table_perm)
|
|
{
|
|
appendStringInfoString(&collist, ") = ");
|
|
appendBinaryStringInfo(&collist, buf.data, buf.len);
|
|
|
|
return collist.data;
|
|
}
|
|
|
|
return buf.data;
|
|
}
|
|
|
|
|
|
/*
|
|
* ExecUpdateLockMode -- find the appropriate UPDATE tuple lock mode for a
|
|
* given ResultRelInfo
|
|
*/
|
|
LockTupleMode
|
|
ExecUpdateLockMode(EState *estate, ResultRelInfo *relinfo)
|
|
{
|
|
Bitmapset *keyCols;
|
|
Bitmapset *updatedCols;
|
|
|
|
/*
|
|
* Compute lock mode to use. If columns that are part of the key have not
|
|
* been modified, then we can use a weaker lock, allowing for better
|
|
* concurrency.
|
|
*/
|
|
updatedCols = ExecGetAllUpdatedCols(relinfo, estate);
|
|
keyCols = RelationGetIndexAttrBitmap(relinfo->ri_RelationDesc,
|
|
INDEX_ATTR_BITMAP_KEY);
|
|
|
|
if (bms_overlap(keyCols, updatedCols))
|
|
return LockTupleExclusive;
|
|
|
|
return LockTupleNoKeyExclusive;
|
|
}
|
|
|
|
/*
|
|
* ExecFindRowMark -- find the ExecRowMark struct for given rangetable index
|
|
*
|
|
* If no such struct, either return NULL or throw error depending on missing_ok
|
|
*/
|
|
ExecRowMark *
|
|
ExecFindRowMark(EState *estate, Index rti, bool missing_ok)
|
|
{
|
|
if (rti > 0 && rti <= estate->es_range_table_size &&
|
|
estate->es_rowmarks != NULL)
|
|
{
|
|
ExecRowMark *erm = estate->es_rowmarks[rti - 1];
|
|
|
|
if (erm)
|
|
return erm;
|
|
}
|
|
if (!missing_ok)
|
|
elog(ERROR, "failed to find ExecRowMark for rangetable index %u", rti);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* ExecBuildAuxRowMark -- create an ExecAuxRowMark struct
|
|
*
|
|
* Inputs are the underlying ExecRowMark struct and the targetlist of the
|
|
* input plan node (not planstate node!). We need the latter to find out
|
|
* the column numbers of the resjunk columns.
|
|
*/
|
|
ExecAuxRowMark *
|
|
ExecBuildAuxRowMark(ExecRowMark *erm, List *targetlist)
|
|
{
|
|
ExecAuxRowMark *aerm = (ExecAuxRowMark *) palloc0(sizeof(ExecAuxRowMark));
|
|
char resname[32];
|
|
|
|
aerm->rowmark = erm;
|
|
|
|
/* Look up the resjunk columns associated with this rowmark */
|
|
if (erm->markType != ROW_MARK_COPY)
|
|
{
|
|
/* need ctid for all methods other than COPY */
|
|
snprintf(resname, sizeof(resname), "ctid%u", erm->rowmarkId);
|
|
aerm->ctidAttNo = ExecFindJunkAttributeInTlist(targetlist,
|
|
resname);
|
|
if (!AttributeNumberIsValid(aerm->ctidAttNo))
|
|
elog(ERROR, "could not find junk %s column", resname);
|
|
}
|
|
else
|
|
{
|
|
/* need wholerow if COPY */
|
|
snprintf(resname, sizeof(resname), "wholerow%u", erm->rowmarkId);
|
|
aerm->wholeAttNo = ExecFindJunkAttributeInTlist(targetlist,
|
|
resname);
|
|
if (!AttributeNumberIsValid(aerm->wholeAttNo))
|
|
elog(ERROR, "could not find junk %s column", resname);
|
|
}
|
|
|
|
/* if child rel, need tableoid */
|
|
if (erm->rti != erm->prti)
|
|
{
|
|
snprintf(resname, sizeof(resname), "tableoid%u", erm->rowmarkId);
|
|
aerm->toidAttNo = ExecFindJunkAttributeInTlist(targetlist,
|
|
resname);
|
|
if (!AttributeNumberIsValid(aerm->toidAttNo))
|
|
elog(ERROR, "could not find junk %s column", resname);
|
|
}
|
|
|
|
return aerm;
|
|
}
|
|
|
|
|
|
/*
|
|
* EvalPlanQual logic --- recheck modified tuple(s) to see if we want to
|
|
* process the updated version under READ COMMITTED rules.
|
|
*
|
|
* See backend/executor/README for some info about how this works.
|
|
*/
|
|
|
|
|
|
/*
|
|
* Check the updated version of a tuple to see if we want to process it under
|
|
* READ COMMITTED rules.
|
|
*
|
|
* epqstate - state for EvalPlanQual rechecking
|
|
* relation - table containing tuple
|
|
* rti - rangetable index of table containing tuple
|
|
* inputslot - tuple for processing - this can be the slot from
|
|
* EvalPlanQualSlot() for this rel, for increased efficiency.
|
|
*
|
|
* This tests whether the tuple in inputslot still matches the relevant
|
|
* quals. For that result to be useful, typically the input tuple has to be
|
|
* last row version (otherwise the result isn't particularly useful) and
|
|
* locked (otherwise the result might be out of date). That's typically
|
|
* achieved by using table_tuple_lock() with the
|
|
* TUPLE_LOCK_FLAG_FIND_LAST_VERSION flag.
|
|
*
|
|
* Returns a slot containing the new candidate update/delete tuple, or
|
|
* NULL if we determine we shouldn't process the row.
|
|
*/
|
|
TupleTableSlot *
|
|
EvalPlanQual(EPQState *epqstate, Relation relation,
|
|
Index rti, TupleTableSlot *inputslot)
|
|
{
|
|
TupleTableSlot *slot;
|
|
TupleTableSlot *testslot;
|
|
|
|
Assert(rti > 0);
|
|
|
|
/*
|
|
* Need to run a recheck subquery. Initialize or reinitialize EPQ state.
|
|
*/
|
|
EvalPlanQualBegin(epqstate);
|
|
|
|
/*
|
|
* Callers will often use the EvalPlanQualSlot to store the tuple to avoid
|
|
* an unnecessary copy.
|
|
*/
|
|
testslot = EvalPlanQualSlot(epqstate, relation, rti);
|
|
if (testslot != inputslot)
|
|
ExecCopySlot(testslot, inputslot);
|
|
|
|
/*
|
|
* Mark that an EPQ tuple is available for this relation. (If there is
|
|
* more than one result relation, the others remain marked as having no
|
|
* tuple available.)
|
|
*/
|
|
epqstate->relsubs_done[rti - 1] = false;
|
|
epqstate->relsubs_blocked[rti - 1] = false;
|
|
|
|
/*
|
|
* Run the EPQ query. We assume it will return at most one tuple.
|
|
*/
|
|
slot = EvalPlanQualNext(epqstate);
|
|
|
|
/*
|
|
* If we got a tuple, force the slot to materialize the tuple so that it
|
|
* is not dependent on any local state in the EPQ query (in particular,
|
|
* it's highly likely that the slot contains references to any pass-by-ref
|
|
* datums that may be present in copyTuple). As with the next step, this
|
|
* is to guard against early re-use of the EPQ query.
|
|
*/
|
|
if (!TupIsNull(slot))
|
|
ExecMaterializeSlot(slot);
|
|
|
|
/*
|
|
* Clear out the test tuple, and mark that no tuple is available here.
|
|
* This is needed in case the EPQ state is re-used to test a tuple for a
|
|
* different target relation.
|
|
*/
|
|
ExecClearTuple(testslot);
|
|
epqstate->relsubs_blocked[rti - 1] = true;
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualInit -- initialize during creation of a plan state node
|
|
* that might need to invoke EPQ processing.
|
|
*
|
|
* If the caller intends to use EvalPlanQual(), resultRelations should be
|
|
* a list of RT indexes of potential target relations for EvalPlanQual(),
|
|
* and we will arrange that the other listed relations don't return any
|
|
* tuple during an EvalPlanQual() call. Otherwise resultRelations
|
|
* should be NIL.
|
|
*
|
|
* Note: subplan/auxrowmarks can be NULL/NIL if they will be set later
|
|
* with EvalPlanQualSetPlan.
|
|
*/
|
|
void
|
|
EvalPlanQualInit(EPQState *epqstate, EState *parentestate,
|
|
Plan *subplan, List *auxrowmarks,
|
|
int epqParam, List *resultRelations)
|
|
{
|
|
Index rtsize = parentestate->es_range_table_size;
|
|
|
|
/* initialize data not changing over EPQState's lifetime */
|
|
epqstate->parentestate = parentestate;
|
|
epqstate->epqParam = epqParam;
|
|
epqstate->resultRelations = resultRelations;
|
|
|
|
/*
|
|
* Allocate space to reference a slot for each potential rti - do so now
|
|
* rather than in EvalPlanQualBegin(), as done for other dynamically
|
|
* allocated resources, so EvalPlanQualSlot() can be used to hold tuples
|
|
* that *may* need EPQ later, without forcing the overhead of
|
|
* EvalPlanQualBegin().
|
|
*/
|
|
epqstate->tuple_table = NIL;
|
|
epqstate->relsubs_slot = (TupleTableSlot **)
|
|
palloc0(rtsize * sizeof(TupleTableSlot *));
|
|
|
|
/* ... and remember data that EvalPlanQualBegin will need */
|
|
epqstate->plan = subplan;
|
|
epqstate->arowMarks = auxrowmarks;
|
|
|
|
/* ... and mark the EPQ state inactive */
|
|
epqstate->origslot = NULL;
|
|
epqstate->recheckestate = NULL;
|
|
epqstate->recheckplanstate = NULL;
|
|
epqstate->relsubs_rowmark = NULL;
|
|
epqstate->relsubs_done = NULL;
|
|
epqstate->relsubs_blocked = NULL;
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualSetPlan -- set or change subplan of an EPQState.
|
|
*
|
|
* We used to need this so that ModifyTable could deal with multiple subplans.
|
|
* It could now be refactored out of existence.
|
|
*/
|
|
void
|
|
EvalPlanQualSetPlan(EPQState *epqstate, Plan *subplan, List *auxrowmarks)
|
|
{
|
|
/* If we have a live EPQ query, shut it down */
|
|
EvalPlanQualEnd(epqstate);
|
|
/* And set/change the plan pointer */
|
|
epqstate->plan = subplan;
|
|
/* The rowmarks depend on the plan, too */
|
|
epqstate->arowMarks = auxrowmarks;
|
|
}
|
|
|
|
/*
|
|
* Return, and create if necessary, a slot for an EPQ test tuple.
|
|
*
|
|
* Note this only requires EvalPlanQualInit() to have been called,
|
|
* EvalPlanQualBegin() is not necessary.
|
|
*/
|
|
TupleTableSlot *
|
|
EvalPlanQualSlot(EPQState *epqstate,
|
|
Relation relation, Index rti)
|
|
{
|
|
TupleTableSlot **slot;
|
|
|
|
Assert(relation);
|
|
Assert(rti > 0 && rti <= epqstate->parentestate->es_range_table_size);
|
|
slot = &epqstate->relsubs_slot[rti - 1];
|
|
|
|
if (*slot == NULL)
|
|
{
|
|
MemoryContext oldcontext;
|
|
|
|
oldcontext = MemoryContextSwitchTo(epqstate->parentestate->es_query_cxt);
|
|
*slot = table_slot_create(relation, &epqstate->tuple_table);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
return *slot;
|
|
}
|
|
|
|
/*
|
|
* Fetch the current row value for a non-locked relation, identified by rti,
|
|
* that needs to be scanned by an EvalPlanQual operation. origslot must have
|
|
* been set to contain the current result row (top-level row) that we need to
|
|
* recheck. Returns true if a substitution tuple was found, false if not.
|
|
*/
|
|
bool
|
|
EvalPlanQualFetchRowMark(EPQState *epqstate, Index rti, TupleTableSlot *slot)
|
|
{
|
|
ExecAuxRowMark *earm = epqstate->relsubs_rowmark[rti - 1];
|
|
ExecRowMark *erm = earm->rowmark;
|
|
Datum datum;
|
|
bool isNull;
|
|
|
|
Assert(earm != NULL);
|
|
Assert(epqstate->origslot != NULL);
|
|
|
|
if (RowMarkRequiresRowShareLock(erm->markType))
|
|
elog(ERROR, "EvalPlanQual doesn't support locking rowmarks");
|
|
|
|
/* if child rel, must check whether it produced this row */
|
|
if (erm->rti != erm->prti)
|
|
{
|
|
Oid tableoid;
|
|
|
|
datum = ExecGetJunkAttribute(epqstate->origslot,
|
|
earm->toidAttNo,
|
|
&isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull)
|
|
return false;
|
|
|
|
tableoid = DatumGetObjectId(datum);
|
|
|
|
Assert(OidIsValid(erm->relid));
|
|
if (tableoid != erm->relid)
|
|
{
|
|
/* this child is inactive right now */
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (erm->markType == ROW_MARK_REFERENCE)
|
|
{
|
|
Assert(erm->relation != NULL);
|
|
|
|
/* fetch the tuple's ctid */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot,
|
|
earm->ctidAttNo,
|
|
&isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull)
|
|
return false;
|
|
|
|
/* fetch requests on foreign tables must be passed to their FDW */
|
|
if (erm->relation->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
|
|
{
|
|
FdwRoutine *fdwroutine;
|
|
bool updated = false;
|
|
|
|
fdwroutine = GetFdwRoutineForRelation(erm->relation, false);
|
|
/* this should have been checked already, but let's be safe */
|
|
if (fdwroutine->RefetchForeignRow == NULL)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot lock rows in foreign table \"%s\"",
|
|
RelationGetRelationName(erm->relation))));
|
|
|
|
fdwroutine->RefetchForeignRow(epqstate->recheckestate,
|
|
erm,
|
|
datum,
|
|
slot,
|
|
&updated);
|
|
if (TupIsNull(slot))
|
|
elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
|
|
|
|
/*
|
|
* Ideally we'd insist on updated == false here, but that assumes
|
|
* that FDWs can track that exactly, which they might not be able
|
|
* to. So just ignore the flag.
|
|
*/
|
|
return true;
|
|
}
|
|
else
|
|
{
|
|
/* ordinary table, fetch the tuple */
|
|
if (!table_tuple_fetch_row_version(erm->relation,
|
|
(ItemPointer) DatumGetPointer(datum),
|
|
SnapshotAny, slot))
|
|
elog(ERROR, "failed to fetch tuple for EvalPlanQual recheck");
|
|
return true;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Assert(erm->markType == ROW_MARK_COPY);
|
|
|
|
/* fetch the whole-row Var for the relation */
|
|
datum = ExecGetJunkAttribute(epqstate->origslot,
|
|
earm->wholeAttNo,
|
|
&isNull);
|
|
/* non-locked rels could be on the inside of outer joins */
|
|
if (isNull)
|
|
return false;
|
|
|
|
ExecStoreHeapTupleDatum(datum, slot);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fetch the next row (if any) from EvalPlanQual testing
|
|
*
|
|
* (In practice, there should never be more than one row...)
|
|
*/
|
|
TupleTableSlot *
|
|
EvalPlanQualNext(EPQState *epqstate)
|
|
{
|
|
MemoryContext oldcontext;
|
|
TupleTableSlot *slot;
|
|
|
|
oldcontext = MemoryContextSwitchTo(epqstate->recheckestate->es_query_cxt);
|
|
slot = ExecProcNode(epqstate->recheckplanstate);
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
return slot;
|
|
}
|
|
|
|
/*
|
|
* Initialize or reset an EvalPlanQual state tree
|
|
*/
|
|
void
|
|
EvalPlanQualBegin(EPQState *epqstate)
|
|
{
|
|
EState *parentestate = epqstate->parentestate;
|
|
EState *recheckestate = epqstate->recheckestate;
|
|
|
|
if (recheckestate == NULL)
|
|
{
|
|
/* First time through, so create a child EState */
|
|
EvalPlanQualStart(epqstate, epqstate->plan);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* We already have a suitable child EPQ tree, so just reset it.
|
|
*/
|
|
Index rtsize = parentestate->es_range_table_size;
|
|
PlanState *rcplanstate = epqstate->recheckplanstate;
|
|
|
|
/*
|
|
* Reset the relsubs_done[] flags to equal relsubs_blocked[], so that
|
|
* the EPQ run will never attempt to fetch tuples from blocked target
|
|
* relations.
|
|
*/
|
|
memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
|
|
rtsize * sizeof(bool));
|
|
|
|
/* Recopy current values of parent parameters */
|
|
if (parentestate->es_plannedstmt->paramExecTypes != NIL)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Force evaluation of any InitPlan outputs that could be needed
|
|
* by the subplan, just in case they got reset since
|
|
* EvalPlanQualStart (see comments therein).
|
|
*/
|
|
ExecSetParamPlanMulti(rcplanstate->plan->extParam,
|
|
GetPerTupleExprContext(parentestate));
|
|
|
|
i = list_length(parentestate->es_plannedstmt->paramExecTypes);
|
|
|
|
while (--i >= 0)
|
|
{
|
|
/* copy value if any, but not execPlan link */
|
|
recheckestate->es_param_exec_vals[i].value =
|
|
parentestate->es_param_exec_vals[i].value;
|
|
recheckestate->es_param_exec_vals[i].isnull =
|
|
parentestate->es_param_exec_vals[i].isnull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark child plan tree as needing rescan at all scan nodes. The
|
|
* first ExecProcNode will take care of actually doing the rescan.
|
|
*/
|
|
rcplanstate->chgParam = bms_add_member(rcplanstate->chgParam,
|
|
epqstate->epqParam);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start execution of an EvalPlanQual plan tree.
|
|
*
|
|
* This is a cut-down version of ExecutorStart(): we copy some state from
|
|
* the top-level estate rather than initializing it fresh.
|
|
*/
|
|
static void
|
|
EvalPlanQualStart(EPQState *epqstate, Plan *planTree)
|
|
{
|
|
EState *parentestate = epqstate->parentestate;
|
|
Index rtsize = parentestate->es_range_table_size;
|
|
EState *rcestate;
|
|
MemoryContext oldcontext;
|
|
ListCell *l;
|
|
|
|
epqstate->recheckestate = rcestate = CreateExecutorState();
|
|
|
|
oldcontext = MemoryContextSwitchTo(rcestate->es_query_cxt);
|
|
|
|
/* signal that this is an EState for executing EPQ */
|
|
rcestate->es_epq_active = epqstate;
|
|
|
|
/*
|
|
* Child EPQ EStates share the parent's copy of unchanging state such as
|
|
* the snapshot, rangetable, and external Param info. They need their own
|
|
* copies of local state, including a tuple table, es_param_exec_vals,
|
|
* result-rel info, etc.
|
|
*/
|
|
rcestate->es_direction = ForwardScanDirection;
|
|
rcestate->es_snapshot = parentestate->es_snapshot;
|
|
rcestate->es_crosscheck_snapshot = parentestate->es_crosscheck_snapshot;
|
|
rcestate->es_range_table = parentestate->es_range_table;
|
|
rcestate->es_range_table_size = parentestate->es_range_table_size;
|
|
rcestate->es_relations = parentestate->es_relations;
|
|
rcestate->es_rowmarks = parentestate->es_rowmarks;
|
|
rcestate->es_rteperminfos = parentestate->es_rteperminfos;
|
|
rcestate->es_plannedstmt = parentestate->es_plannedstmt;
|
|
rcestate->es_junkFilter = parentestate->es_junkFilter;
|
|
rcestate->es_output_cid = parentestate->es_output_cid;
|
|
rcestate->es_queryEnv = parentestate->es_queryEnv;
|
|
|
|
/*
|
|
* ResultRelInfos needed by subplans are initialized from scratch when the
|
|
* subplans themselves are initialized.
|
|
*/
|
|
rcestate->es_result_relations = NULL;
|
|
/* es_trig_target_relations must NOT be copied */
|
|
rcestate->es_top_eflags = parentestate->es_top_eflags;
|
|
rcestate->es_instrument = parentestate->es_instrument;
|
|
/* es_auxmodifytables must NOT be copied */
|
|
|
|
/*
|
|
* The external param list is simply shared from parent. The internal
|
|
* param workspace has to be local state, but we copy the initial values
|
|
* from the parent, so as to have access to any param values that were
|
|
* already set from other parts of the parent's plan tree.
|
|
*/
|
|
rcestate->es_param_list_info = parentestate->es_param_list_info;
|
|
if (parentestate->es_plannedstmt->paramExecTypes != NIL)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Force evaluation of any InitPlan outputs that could be needed by
|
|
* the subplan. (With more complexity, maybe we could postpone this
|
|
* till the subplan actually demands them, but it doesn't seem worth
|
|
* the trouble; this is a corner case already, since usually the
|
|
* InitPlans would have been evaluated before reaching EvalPlanQual.)
|
|
*
|
|
* This will not touch output params of InitPlans that occur somewhere
|
|
* within the subplan tree, only those that are attached to the
|
|
* ModifyTable node or above it and are referenced within the subplan.
|
|
* That's OK though, because the planner would only attach such
|
|
* InitPlans to a lower-level SubqueryScan node, and EPQ execution
|
|
* will not descend into a SubqueryScan.
|
|
*
|
|
* The EState's per-output-tuple econtext is sufficiently short-lived
|
|
* for this, since it should get reset before there is any chance of
|
|
* doing EvalPlanQual again.
|
|
*/
|
|
ExecSetParamPlanMulti(planTree->extParam,
|
|
GetPerTupleExprContext(parentestate));
|
|
|
|
/* now make the internal param workspace ... */
|
|
i = list_length(parentestate->es_plannedstmt->paramExecTypes);
|
|
rcestate->es_param_exec_vals = (ParamExecData *)
|
|
palloc0(i * sizeof(ParamExecData));
|
|
/* ... and copy down all values, whether really needed or not */
|
|
while (--i >= 0)
|
|
{
|
|
/* copy value if any, but not execPlan link */
|
|
rcestate->es_param_exec_vals[i].value =
|
|
parentestate->es_param_exec_vals[i].value;
|
|
rcestate->es_param_exec_vals[i].isnull =
|
|
parentestate->es_param_exec_vals[i].isnull;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initialize private state information for each SubPlan. We must do this
|
|
* before running ExecInitNode on the main query tree, since
|
|
* ExecInitSubPlan expects to be able to find these entries. Some of the
|
|
* SubPlans might not be used in the part of the plan tree we intend to
|
|
* run, but since it's not easy to tell which, we just initialize them
|
|
* all.
|
|
*/
|
|
Assert(rcestate->es_subplanstates == NIL);
|
|
foreach(l, parentestate->es_plannedstmt->subplans)
|
|
{
|
|
Plan *subplan = (Plan *) lfirst(l);
|
|
PlanState *subplanstate;
|
|
|
|
subplanstate = ExecInitNode(subplan, rcestate, 0);
|
|
rcestate->es_subplanstates = lappend(rcestate->es_subplanstates,
|
|
subplanstate);
|
|
}
|
|
|
|
/*
|
|
* Build an RTI indexed array of rowmarks, so that
|
|
* EvalPlanQualFetchRowMark() can efficiently access the to be fetched
|
|
* rowmark.
|
|
*/
|
|
epqstate->relsubs_rowmark = (ExecAuxRowMark **)
|
|
palloc0(rtsize * sizeof(ExecAuxRowMark *));
|
|
foreach(l, epqstate->arowMarks)
|
|
{
|
|
ExecAuxRowMark *earm = (ExecAuxRowMark *) lfirst(l);
|
|
|
|
epqstate->relsubs_rowmark[earm->rowmark->rti - 1] = earm;
|
|
}
|
|
|
|
/*
|
|
* Initialize per-relation EPQ tuple states. Result relations, if any,
|
|
* get marked as blocked; others as not-fetched.
|
|
*/
|
|
epqstate->relsubs_done = palloc_array(bool, rtsize);
|
|
epqstate->relsubs_blocked = palloc0_array(bool, rtsize);
|
|
|
|
foreach(l, epqstate->resultRelations)
|
|
{
|
|
int rtindex = lfirst_int(l);
|
|
|
|
Assert(rtindex > 0 && rtindex <= rtsize);
|
|
epqstate->relsubs_blocked[rtindex - 1] = true;
|
|
}
|
|
|
|
memcpy(epqstate->relsubs_done, epqstate->relsubs_blocked,
|
|
rtsize * sizeof(bool));
|
|
|
|
/*
|
|
* Initialize the private state information for all the nodes in the part
|
|
* of the plan tree we need to run. This opens files, allocates storage
|
|
* and leaves us ready to start processing tuples.
|
|
*/
|
|
epqstate->recheckplanstate = ExecInitNode(planTree, rcestate, 0);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
}
|
|
|
|
/*
|
|
* EvalPlanQualEnd -- shut down at termination of parent plan state node,
|
|
* or if we are done with the current EPQ child.
|
|
*
|
|
* This is a cut-down version of ExecutorEnd(); basically we want to do most
|
|
* of the normal cleanup, but *not* close result relations (which we are
|
|
* just sharing from the outer query). We do, however, have to close any
|
|
* result and trigger target relations that got opened, since those are not
|
|
* shared. (There probably shouldn't be any of the latter, but just in
|
|
* case...)
|
|
*/
|
|
void
|
|
EvalPlanQualEnd(EPQState *epqstate)
|
|
{
|
|
EState *estate = epqstate->recheckestate;
|
|
Index rtsize;
|
|
MemoryContext oldcontext;
|
|
ListCell *l;
|
|
|
|
rtsize = epqstate->parentestate->es_range_table_size;
|
|
|
|
/*
|
|
* We may have a tuple table, even if EPQ wasn't started, because we allow
|
|
* use of EvalPlanQualSlot() without calling EvalPlanQualBegin().
|
|
*/
|
|
if (epqstate->tuple_table != NIL)
|
|
{
|
|
memset(epqstate->relsubs_slot, 0,
|
|
rtsize * sizeof(TupleTableSlot *));
|
|
ExecResetTupleTable(epqstate->tuple_table, true);
|
|
epqstate->tuple_table = NIL;
|
|
}
|
|
|
|
/* EPQ wasn't started, nothing further to do */
|
|
if (estate == NULL)
|
|
return;
|
|
|
|
oldcontext = MemoryContextSwitchTo(estate->es_query_cxt);
|
|
|
|
ExecEndNode(epqstate->recheckplanstate);
|
|
|
|
foreach(l, estate->es_subplanstates)
|
|
{
|
|
PlanState *subplanstate = (PlanState *) lfirst(l);
|
|
|
|
ExecEndNode(subplanstate);
|
|
}
|
|
|
|
/* throw away the per-estate tuple table, some node may have used it */
|
|
ExecResetTupleTable(estate->es_tupleTable, false);
|
|
|
|
/* Close any result and trigger target relations attached to this EState */
|
|
ExecCloseResultRelations(estate);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
FreeExecutorState(estate);
|
|
|
|
/* Mark EPQState idle */
|
|
epqstate->origslot = NULL;
|
|
epqstate->recheckestate = NULL;
|
|
epqstate->recheckplanstate = NULL;
|
|
epqstate->relsubs_rowmark = NULL;
|
|
epqstate->relsubs_done = NULL;
|
|
epqstate->relsubs_blocked = NULL;
|
|
}
|