
This is a trivial update containing only cosmetic changes. The point is just to get back to being synced with an official release of tzcode, rather than some ad-hoc point in their commit history, which is where commit 47f849a3c left it.
1856 lines
43 KiB
C
1856 lines
43 KiB
C
/*
|
|
* This file is in the public domain, so clarified as of
|
|
* 1996-06-05 by Arthur David Olson.
|
|
*
|
|
* IDENTIFICATION
|
|
* src/timezone/localtime.c
|
|
*/
|
|
|
|
/*
|
|
* Leap second handling from Bradley White.
|
|
* POSIX-style TZ environment variable handling from Guy Harris.
|
|
*/
|
|
|
|
/* this file needs to build in both frontend and backend contexts */
|
|
#include "c.h"
|
|
|
|
#include <fcntl.h>
|
|
|
|
#include "datatype/timestamp.h"
|
|
#include "pgtz.h"
|
|
|
|
#include "private.h"
|
|
#include "tzfile.h"
|
|
|
|
|
|
#ifndef WILDABBR
|
|
/*
|
|
* Someone might make incorrect use of a time zone abbreviation:
|
|
* 1. They might reference tzname[0] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 2. They might reference tzname[1] before calling tzset (explicitly
|
|
* or implicitly).
|
|
* 3. They might reference tzname[1] after setting to a time zone
|
|
* in which Daylight Saving Time is never observed.
|
|
* 4. They might reference tzname[0] after setting to a time zone
|
|
* in which Standard Time is never observed.
|
|
* 5. They might reference tm.TM_ZONE after calling offtime.
|
|
* What's best to do in the above cases is open to debate;
|
|
* for now, we just set things up so that in any of the five cases
|
|
* WILDABBR is used. Another possibility: initialize tzname[0] to the
|
|
* string "tzname[0] used before set", and similarly for the other cases.
|
|
* And another: initialize tzname[0] to "ERA", with an explanation in the
|
|
* manual page of what this "time zone abbreviation" means (doing this so
|
|
* that tzname[0] has the "normal" length of three characters).
|
|
*/
|
|
#define WILDABBR " "
|
|
#endif /* !defined WILDABBR */
|
|
|
|
static const char wildabbr[] = WILDABBR;
|
|
|
|
static const char gmt[] = "GMT";
|
|
|
|
/*
|
|
* PG: We cache the result of trying to load the TZDEFRULES zone here.
|
|
* tzdefrules_loaded is 0 if not tried yet, +1 if good, -1 if failed.
|
|
*/
|
|
static struct state tzdefrules_s;
|
|
static int tzdefrules_loaded = 0;
|
|
|
|
/*
|
|
* The DST rules to use if TZ has no rules and we can't load TZDEFRULES.
|
|
* Default to US rules as of 2017-05-07.
|
|
* POSIX 1003.1 section 8.1.1 says that the default DST rules are
|
|
* implementation dependent; for historical reasons, US rules are a
|
|
* common default.
|
|
*/
|
|
#define TZDEFRULESTRING ",M3.2.0,M11.1.0"
|
|
|
|
/* structs ttinfo, lsinfo, state have been moved to pgtz.h */
|
|
|
|
enum r_type
|
|
{
|
|
JULIAN_DAY, /* Jn = Julian day */
|
|
DAY_OF_YEAR, /* n = day of year */
|
|
MONTH_NTH_DAY_OF_WEEK /* Mm.n.d = month, week, day of week */
|
|
};
|
|
|
|
struct rule
|
|
{
|
|
enum r_type r_type; /* type of rule */
|
|
int r_day; /* day number of rule */
|
|
int r_week; /* week number of rule */
|
|
int r_mon; /* month number of rule */
|
|
int32 r_time; /* transition time of rule */
|
|
};
|
|
|
|
/*
|
|
* Prototypes for static functions.
|
|
*/
|
|
|
|
static struct pg_tm *gmtsub(pg_time_t const *, int32, struct pg_tm *);
|
|
static bool increment_overflow(int *, int);
|
|
static bool increment_overflow_time(pg_time_t *, int32);
|
|
static struct pg_tm *timesub(pg_time_t const *, int32, struct state const *,
|
|
struct pg_tm *);
|
|
static bool typesequiv(struct state const *, int, int);
|
|
|
|
|
|
/*
|
|
* Section 4.12.3 of X3.159-1989 requires that
|
|
* Except for the strftime function, these functions [asctime,
|
|
* ctime, gmtime, localtime] return values in one of two static
|
|
* objects: a broken-down time structure and an array of char.
|
|
* Thanks to Paul Eggert for noting this.
|
|
*/
|
|
|
|
static struct pg_tm tm;
|
|
|
|
/* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND. */
|
|
static void
|
|
init_ttinfo(struct ttinfo *s, int32 gmtoff, bool isdst, int abbrind)
|
|
{
|
|
s->tt_gmtoff = gmtoff;
|
|
s->tt_isdst = isdst;
|
|
s->tt_abbrind = abbrind;
|
|
s->tt_ttisstd = false;
|
|
s->tt_ttisgmt = false;
|
|
}
|
|
|
|
static int32
|
|
detzcode(const char *codep)
|
|
{
|
|
int32 result;
|
|
int i;
|
|
int32 one = 1;
|
|
int32 halfmaxval = one << (32 - 2);
|
|
int32 maxval = halfmaxval - 1 + halfmaxval;
|
|
int32 minval = -1 - maxval;
|
|
|
|
result = codep[0] & 0x7f;
|
|
for (i = 1; i < 4; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
|
|
if (codep[0] & 0x80)
|
|
{
|
|
/*
|
|
* Do two's-complement negation even on non-two's-complement machines.
|
|
* If the result would be minval - 1, return minval.
|
|
*/
|
|
result -= !TWOS_COMPLEMENT(int32) &&result != 0;
|
|
result += minval;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static int64
|
|
detzcode64(const char *codep)
|
|
{
|
|
uint64 result;
|
|
int i;
|
|
int64 one = 1;
|
|
int64 halfmaxval = one << (64 - 2);
|
|
int64 maxval = halfmaxval - 1 + halfmaxval;
|
|
int64 minval = -TWOS_COMPLEMENT(int64) -maxval;
|
|
|
|
result = codep[0] & 0x7f;
|
|
for (i = 1; i < 8; ++i)
|
|
result = (result << 8) | (codep[i] & 0xff);
|
|
|
|
if (codep[0] & 0x80)
|
|
{
|
|
/*
|
|
* Do two's-complement negation even on non-two's-complement machines.
|
|
* If the result would be minval - 1, return minval.
|
|
*/
|
|
result -= !TWOS_COMPLEMENT(int64) &&result != 0;
|
|
result += minval;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static bool
|
|
differ_by_repeat(const pg_time_t t1, const pg_time_t t0)
|
|
{
|
|
if (TYPE_BIT(pg_time_t) -TYPE_SIGNED(pg_time_t) <SECSPERREPEAT_BITS)
|
|
return 0;
|
|
return t1 - t0 == SECSPERREPEAT;
|
|
}
|
|
|
|
/* Input buffer for data read from a compiled tz file. */
|
|
union input_buffer
|
|
{
|
|
/* The first part of the buffer, interpreted as a header. */
|
|
struct tzhead tzhead;
|
|
|
|
/* The entire buffer. */
|
|
char buf[2 * sizeof(struct tzhead) + 2 * sizeof(struct state)
|
|
+ 4 * TZ_MAX_TIMES];
|
|
};
|
|
|
|
/* Local storage needed for 'tzloadbody'. */
|
|
union local_storage
|
|
{
|
|
/* The results of analyzing the file's contents after it is opened. */
|
|
struct file_analysis
|
|
{
|
|
/* The input buffer. */
|
|
union input_buffer u;
|
|
|
|
/* A temporary state used for parsing a TZ string in the file. */
|
|
struct state st;
|
|
} u;
|
|
|
|
/* We don't need the "fullname" member */
|
|
};
|
|
|
|
/* Load tz data from the file named NAME into *SP. Read extended
|
|
* format if DOEXTEND. Use *LSP for temporary storage. Return 0 on
|
|
* success, an errno value on failure.
|
|
* PG: If "canonname" is not NULL, then on success the canonical spelling of
|
|
* given name is stored there (the buffer must be > TZ_STRLEN_MAX bytes!).
|
|
*/
|
|
static int
|
|
tzloadbody(char const *name, char *canonname, struct state *sp, bool doextend,
|
|
union local_storage *lsp)
|
|
{
|
|
int i;
|
|
int fid;
|
|
int stored;
|
|
ssize_t nread;
|
|
union input_buffer *up = &lsp->u.u;
|
|
int tzheadsize = sizeof(struct tzhead);
|
|
|
|
sp->goback = sp->goahead = false;
|
|
|
|
if (!name)
|
|
{
|
|
name = TZDEFAULT;
|
|
if (!name)
|
|
return EINVAL;
|
|
}
|
|
|
|
if (name[0] == ':')
|
|
++name;
|
|
|
|
fid = pg_open_tzfile(name, canonname);
|
|
if (fid < 0)
|
|
return ENOENT; /* pg_open_tzfile may not set errno */
|
|
|
|
nread = read(fid, up->buf, sizeof up->buf);
|
|
if (nread < tzheadsize)
|
|
{
|
|
int err = nread < 0 ? errno : EINVAL;
|
|
|
|
close(fid);
|
|
return err;
|
|
}
|
|
if (close(fid) < 0)
|
|
return errno;
|
|
for (stored = 4; stored <= 8; stored *= 2)
|
|
{
|
|
int32 ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt);
|
|
int32 ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt);
|
|
int64 prevtr = 0;
|
|
int32 prevcorr = 0;
|
|
int32 leapcnt = detzcode(up->tzhead.tzh_leapcnt);
|
|
int32 timecnt = detzcode(up->tzhead.tzh_timecnt);
|
|
int32 typecnt = detzcode(up->tzhead.tzh_typecnt);
|
|
int32 charcnt = detzcode(up->tzhead.tzh_charcnt);
|
|
char const *p = up->buf + tzheadsize;
|
|
|
|
if (!(0 <= leapcnt && leapcnt < TZ_MAX_LEAPS
|
|
&& 0 < typecnt && typecnt < TZ_MAX_TYPES
|
|
&& 0 <= timecnt && timecnt < TZ_MAX_TIMES
|
|
&& 0 <= charcnt && charcnt < TZ_MAX_CHARS
|
|
&& (ttisstdcnt == typecnt || ttisstdcnt == 0)
|
|
&& (ttisgmtcnt == typecnt || ttisgmtcnt == 0)))
|
|
return EINVAL;
|
|
if (nread
|
|
< (tzheadsize /* struct tzhead */
|
|
+ timecnt * stored /* ats */
|
|
+ timecnt /* types */
|
|
+ typecnt * 6 /* ttinfos */
|
|
+ charcnt /* chars */
|
|
+ leapcnt * (stored + 4) /* lsinfos */
|
|
+ ttisstdcnt /* ttisstds */
|
|
+ ttisgmtcnt)) /* ttisgmts */
|
|
return EINVAL;
|
|
sp->leapcnt = leapcnt;
|
|
sp->timecnt = timecnt;
|
|
sp->typecnt = typecnt;
|
|
sp->charcnt = charcnt;
|
|
|
|
/*
|
|
* Read transitions, discarding those out of pg_time_t range. But
|
|
* pretend the last transition before TIME_T_MIN occurred at
|
|
* TIME_T_MIN.
|
|
*/
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
int64 at
|
|
= stored == 4 ? detzcode(p) : detzcode64(p);
|
|
|
|
sp->types[i] = at <= TIME_T_MAX;
|
|
if (sp->types[i])
|
|
{
|
|
pg_time_t attime
|
|
= ((TYPE_SIGNED(pg_time_t) ? at < TIME_T_MIN : at < 0)
|
|
? TIME_T_MIN : at);
|
|
|
|
if (timecnt && attime <= sp->ats[timecnt - 1])
|
|
{
|
|
if (attime < sp->ats[timecnt - 1])
|
|
return EINVAL;
|
|
sp->types[i - 1] = 0;
|
|
timecnt--;
|
|
}
|
|
sp->ats[timecnt++] = attime;
|
|
}
|
|
p += stored;
|
|
}
|
|
|
|
timecnt = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
unsigned char typ = *p++;
|
|
|
|
if (sp->typecnt <= typ)
|
|
return EINVAL;
|
|
if (sp->types[i])
|
|
sp->types[timecnt++] = typ;
|
|
}
|
|
sp->timecnt = timecnt;
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
unsigned char isdst,
|
|
abbrind;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
ttisp->tt_gmtoff = detzcode(p);
|
|
p += 4;
|
|
isdst = *p++;
|
|
if (!(isdst < 2))
|
|
return EINVAL;
|
|
ttisp->tt_isdst = isdst;
|
|
abbrind = *p++;
|
|
if (!(abbrind < sp->charcnt))
|
|
return EINVAL;
|
|
ttisp->tt_abbrind = abbrind;
|
|
}
|
|
for (i = 0; i < sp->charcnt; ++i)
|
|
sp->chars[i] = *p++;
|
|
sp->chars[i] = '\0'; /* ensure '\0' at end */
|
|
|
|
/* Read leap seconds, discarding those out of pg_time_t range. */
|
|
leapcnt = 0;
|
|
for (i = 0; i < sp->leapcnt; ++i)
|
|
{
|
|
int64 tr = stored == 4 ? detzcode(p) : detzcode64(p);
|
|
int32 corr = detzcode(p + stored);
|
|
|
|
p += stored + 4;
|
|
/* Leap seconds cannot occur before the Epoch. */
|
|
if (tr < 0)
|
|
return EINVAL;
|
|
if (tr <= TIME_T_MAX)
|
|
{
|
|
/*
|
|
* Leap seconds cannot occur more than once per UTC month, and
|
|
* UTC months are at least 28 days long (minus 1 second for a
|
|
* negative leap second). Each leap second's correction must
|
|
* differ from the previous one's by 1 second.
|
|
*/
|
|
if (tr - prevtr < 28 * SECSPERDAY - 1
|
|
|| (corr != prevcorr - 1 && corr != prevcorr + 1))
|
|
return EINVAL;
|
|
sp->lsis[leapcnt].ls_trans = prevtr = tr;
|
|
sp->lsis[leapcnt].ls_corr = prevcorr = corr;
|
|
leapcnt++;
|
|
}
|
|
}
|
|
sp->leapcnt = leapcnt;
|
|
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisstdcnt == 0)
|
|
ttisp->tt_ttisstd = false;
|
|
else
|
|
{
|
|
if (*p != true && *p != false)
|
|
return EINVAL;
|
|
ttisp->tt_ttisstd = *p++;
|
|
}
|
|
}
|
|
for (i = 0; i < sp->typecnt; ++i)
|
|
{
|
|
struct ttinfo *ttisp;
|
|
|
|
ttisp = &sp->ttis[i];
|
|
if (ttisgmtcnt == 0)
|
|
ttisp->tt_ttisgmt = false;
|
|
else
|
|
{
|
|
if (*p != true && *p != false)
|
|
return EINVAL;
|
|
ttisp->tt_ttisgmt = *p++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this is an old file, we're done.
|
|
*/
|
|
if (up->tzhead.tzh_version[0] == '\0')
|
|
break;
|
|
nread -= p - up->buf;
|
|
memmove(up->buf, p, nread);
|
|
}
|
|
if (doextend && nread > 2 &&
|
|
up->buf[0] == '\n' && up->buf[nread - 1] == '\n' &&
|
|
sp->typecnt + 2 <= TZ_MAX_TYPES)
|
|
{
|
|
struct state *ts = &lsp->u.st;
|
|
|
|
up->buf[nread - 1] = '\0';
|
|
if (tzparse(&up->buf[1], ts, false)
|
|
&& ts->typecnt == 2)
|
|
{
|
|
/*
|
|
* Attempt to reuse existing abbreviations. Without this,
|
|
* America/Anchorage would be right on the edge after 2037 when
|
|
* TZ_MAX_CHARS is 50, as sp->charcnt equals 40 (for LMT AST AWT
|
|
* APT AHST AHDT YST AKDT AKST) and ts->charcnt equals 10 (for
|
|
* AKST AKDT). Reusing means sp->charcnt can stay 40 in this
|
|
* example.
|
|
*/
|
|
int gotabbr = 0;
|
|
int charcnt = sp->charcnt;
|
|
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
char *tsabbr = ts->chars + ts->ttis[i].tt_abbrind;
|
|
int j;
|
|
|
|
for (j = 0; j < charcnt; j++)
|
|
if (strcmp(sp->chars + j, tsabbr) == 0)
|
|
{
|
|
ts->ttis[i].tt_abbrind = j;
|
|
gotabbr++;
|
|
break;
|
|
}
|
|
if (!(j < charcnt))
|
|
{
|
|
int tsabbrlen = strlen(tsabbr);
|
|
|
|
if (j + tsabbrlen < TZ_MAX_CHARS)
|
|
{
|
|
strcpy(sp->chars + j, tsabbr);
|
|
charcnt = j + tsabbrlen + 1;
|
|
ts->ttis[i].tt_abbrind = j;
|
|
gotabbr++;
|
|
}
|
|
}
|
|
}
|
|
if (gotabbr == 2)
|
|
{
|
|
sp->charcnt = charcnt;
|
|
|
|
/*
|
|
* Ignore any trailing, no-op transitions generated by zic as
|
|
* they don't help here and can run afoul of bugs in zic 2016j
|
|
* or earlier.
|
|
*/
|
|
while (1 < sp->timecnt
|
|
&& (sp->types[sp->timecnt - 1]
|
|
== sp->types[sp->timecnt - 2]))
|
|
sp->timecnt--;
|
|
|
|
for (i = 0; i < ts->timecnt; i++)
|
|
if (sp->ats[sp->timecnt - 1] < ts->ats[i])
|
|
break;
|
|
while (i < ts->timecnt
|
|
&& sp->timecnt < TZ_MAX_TIMES)
|
|
{
|
|
sp->ats[sp->timecnt] = ts->ats[i];
|
|
sp->types[sp->timecnt] = (sp->typecnt
|
|
+ ts->types[i]);
|
|
sp->timecnt++;
|
|
i++;
|
|
}
|
|
sp->ttis[sp->typecnt++] = ts->ttis[0];
|
|
sp->ttis[sp->typecnt++] = ts->ttis[1];
|
|
}
|
|
}
|
|
}
|
|
if (sp->timecnt > 1)
|
|
{
|
|
for (i = 1; i < sp->timecnt; ++i)
|
|
if (typesequiv(sp, sp->types[i], sp->types[0]) &&
|
|
differ_by_repeat(sp->ats[i], sp->ats[0]))
|
|
{
|
|
sp->goback = true;
|
|
break;
|
|
}
|
|
for (i = sp->timecnt - 2; i >= 0; --i)
|
|
if (typesequiv(sp, sp->types[sp->timecnt - 1],
|
|
sp->types[i]) &&
|
|
differ_by_repeat(sp->ats[sp->timecnt - 1],
|
|
sp->ats[i]))
|
|
{
|
|
sp->goahead = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If type 0 is unused in transitions, it's the type to use for early
|
|
* times.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
if (sp->types[i] == 0)
|
|
break;
|
|
i = i < sp->timecnt ? -1 : 0;
|
|
|
|
/*
|
|
* Absent the above, if there are transition times and the first
|
|
* transition is to a daylight time find the standard type less than and
|
|
* closest to the type of the first transition.
|
|
*/
|
|
if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst)
|
|
{
|
|
i = sp->types[0];
|
|
while (--i >= 0)
|
|
if (!sp->ttis[i].tt_isdst)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If no result yet, find the first standard type. If there is none, punt
|
|
* to type zero.
|
|
*/
|
|
if (i < 0)
|
|
{
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
}
|
|
sp->defaulttype = i;
|
|
return 0;
|
|
}
|
|
|
|
/* Load tz data from the file named NAME into *SP. Read extended
|
|
* format if DOEXTEND. Return 0 on success, an errno value on failure.
|
|
* PG: If "canonname" is not NULL, then on success the canonical spelling of
|
|
* given name is stored there (the buffer must be > TZ_STRLEN_MAX bytes!).
|
|
*/
|
|
int
|
|
tzload(const char *name, char *canonname, struct state *sp, bool doextend)
|
|
{
|
|
union local_storage *lsp = malloc(sizeof *lsp);
|
|
|
|
if (!lsp)
|
|
return errno;
|
|
else
|
|
{
|
|
int err = tzloadbody(name, canonname, sp, doextend, lsp);
|
|
|
|
free(lsp);
|
|
return err;
|
|
}
|
|
}
|
|
|
|
static bool
|
|
typesequiv(const struct state *sp, int a, int b)
|
|
{
|
|
bool result;
|
|
|
|
if (sp == NULL ||
|
|
a < 0 || a >= sp->typecnt ||
|
|
b < 0 || b >= sp->typecnt)
|
|
result = false;
|
|
else
|
|
{
|
|
const struct ttinfo *ap = &sp->ttis[a];
|
|
const struct ttinfo *bp = &sp->ttis[b];
|
|
|
|
result = ap->tt_gmtoff == bp->tt_gmtoff &&
|
|
ap->tt_isdst == bp->tt_isdst &&
|
|
ap->tt_ttisstd == bp->tt_ttisstd &&
|
|
ap->tt_ttisgmt == bp->tt_ttisgmt &&
|
|
strcmp(&sp->chars[ap->tt_abbrind],
|
|
&sp->chars[bp->tt_abbrind]) == 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const int mon_lengths[2][MONSPERYEAR] = {
|
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
|
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}
|
|
};
|
|
|
|
static const int year_lengths[2] = {
|
|
DAYSPERNYEAR, DAYSPERLYEAR
|
|
};
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, scan until a character that is not
|
|
* a valid character in a zone name is found. Return a pointer to that
|
|
* character.
|
|
*/
|
|
static const char *
|
|
getzname(const char *strp)
|
|
{
|
|
char c;
|
|
|
|
while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' &&
|
|
c != '+')
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into an extended time zone string, scan until the ending
|
|
* delimiter of the zone name is located. Return a pointer to the delimiter.
|
|
*
|
|
* As with getzname above, the legal character set is actually quite
|
|
* restricted, with other characters producing undefined results.
|
|
* We don't do any checking here; checking is done later in common-case code.
|
|
*/
|
|
static const char *
|
|
getqzname(const char *strp, int delim)
|
|
{
|
|
int c;
|
|
|
|
while ((c = *strp) != '\0' && c != delim)
|
|
++strp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a number from that string.
|
|
* Check that the number is within a specified range; if it is not, return
|
|
* NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number.
|
|
*/
|
|
static const char *
|
|
getnum(const char *strp, int *nump, int min, int max)
|
|
{
|
|
char c;
|
|
int num;
|
|
|
|
if (strp == NULL || !is_digit(c = *strp))
|
|
return NULL;
|
|
num = 0;
|
|
do
|
|
{
|
|
num = num * 10 + (c - '0');
|
|
if (num > max)
|
|
return NULL; /* illegal value */
|
|
c = *++strp;
|
|
} while (is_digit(c));
|
|
if (num < min)
|
|
return NULL; /* illegal value */
|
|
*nump = num;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a number of seconds,
|
|
* in hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the number
|
|
* of seconds.
|
|
*/
|
|
static const char *
|
|
getsecs(const char *strp, int32 *secsp)
|
|
{
|
|
int num;
|
|
|
|
/*
|
|
* 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like
|
|
* "M10.4.6/26", which does not conform to Posix, but which specifies the
|
|
* equivalent of "02:00 on the first Sunday on or after 23 Oct".
|
|
*/
|
|
strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp = num * (int32) SECSPERHOUR;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
strp = getnum(strp, &num, 0, MINSPERHOUR - 1);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num * SECSPERMIN;
|
|
if (*strp == ':')
|
|
{
|
|
++strp;
|
|
/* 'SECSPERMIN' allows for leap seconds. */
|
|
strp = getnum(strp, &num, 0, SECSPERMIN);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
*secsp += num;
|
|
}
|
|
}
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract an offset, in
|
|
* [+-]hh[:mm[:ss]] form, from the string.
|
|
* If any error occurs, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the time.
|
|
*/
|
|
static const char *
|
|
getoffset(const char *strp, int32 *offsetp)
|
|
{
|
|
bool neg = false;
|
|
|
|
if (*strp == '-')
|
|
{
|
|
neg = true;
|
|
++strp;
|
|
}
|
|
else if (*strp == '+')
|
|
++strp;
|
|
strp = getsecs(strp, offsetp);
|
|
if (strp == NULL)
|
|
return NULL; /* illegal time */
|
|
if (neg)
|
|
*offsetp = -*offsetp;
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a pointer into a time zone string, extract a rule in the form
|
|
* date[/time]. See POSIX section 8 for the format of "date" and "time".
|
|
* If a valid rule is not found, return NULL.
|
|
* Otherwise, return a pointer to the first character not part of the rule.
|
|
*/
|
|
static const char *
|
|
getrule(const char *strp, struct rule *rulep)
|
|
{
|
|
if (*strp == 'J')
|
|
{
|
|
/*
|
|
* Julian day.
|
|
*/
|
|
rulep->r_type = JULIAN_DAY;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR);
|
|
}
|
|
else if (*strp == 'M')
|
|
{
|
|
/*
|
|
* Month, week, day.
|
|
*/
|
|
rulep->r_type = MONTH_NTH_DAY_OF_WEEK;
|
|
++strp;
|
|
strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_week, 1, 5);
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp++ != '.')
|
|
return NULL;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1);
|
|
}
|
|
else if (is_digit(*strp))
|
|
{
|
|
/*
|
|
* Day of year.
|
|
*/
|
|
rulep->r_type = DAY_OF_YEAR;
|
|
strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1);
|
|
}
|
|
else
|
|
return NULL; /* invalid format */
|
|
if (strp == NULL)
|
|
return NULL;
|
|
if (*strp == '/')
|
|
{
|
|
/*
|
|
* Time specified.
|
|
*/
|
|
++strp;
|
|
strp = getoffset(strp, &rulep->r_time);
|
|
}
|
|
else
|
|
rulep->r_time = 2 * SECSPERHOUR; /* default = 2:00:00 */
|
|
return strp;
|
|
}
|
|
|
|
/*
|
|
* Given a year, a rule, and the offset from UT at the time that rule takes
|
|
* effect, calculate the year-relative time that rule takes effect.
|
|
*/
|
|
static int32
|
|
transtime(int year, const struct rule *rulep,
|
|
int32 offset)
|
|
{
|
|
bool leapyear;
|
|
int32 value;
|
|
int i;
|
|
int d,
|
|
m1,
|
|
yy0,
|
|
yy1,
|
|
yy2,
|
|
dow;
|
|
|
|
INITIALIZE(value);
|
|
leapyear = isleap(year);
|
|
switch (rulep->r_type)
|
|
{
|
|
|
|
case JULIAN_DAY:
|
|
|
|
/*
|
|
* Jn - Julian day, 1 == January 1, 60 == March 1 even in leap
|
|
* years. In non-leap years, or if the day number is 59 or less,
|
|
* just add SECSPERDAY times the day number-1 to the time of
|
|
* January 1, midnight, to get the day.
|
|
*/
|
|
value = (rulep->r_day - 1) * SECSPERDAY;
|
|
if (leapyear && rulep->r_day >= 60)
|
|
value += SECSPERDAY;
|
|
break;
|
|
|
|
case DAY_OF_YEAR:
|
|
|
|
/*
|
|
* n - day of year. Just add SECSPERDAY times the day number to
|
|
* the time of January 1, midnight, to get the day.
|
|
*/
|
|
value = rulep->r_day * SECSPERDAY;
|
|
break;
|
|
|
|
case MONTH_NTH_DAY_OF_WEEK:
|
|
|
|
/*
|
|
* Mm.n.d - nth "dth day" of month m.
|
|
*/
|
|
|
|
/*
|
|
* Use Zeller's Congruence to get day-of-week of first day of
|
|
* month.
|
|
*/
|
|
m1 = (rulep->r_mon + 9) % 12 + 1;
|
|
yy0 = (rulep->r_mon <= 2) ? (year - 1) : year;
|
|
yy1 = yy0 / 100;
|
|
yy2 = yy0 % 100;
|
|
dow = ((26 * m1 - 2) / 10 +
|
|
1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7;
|
|
if (dow < 0)
|
|
dow += DAYSPERWEEK;
|
|
|
|
/*
|
|
* "dow" is the day-of-week of the first day of the month. Get the
|
|
* day-of-month (zero-origin) of the first "dow" day of the month.
|
|
*/
|
|
d = rulep->r_day - dow;
|
|
if (d < 0)
|
|
d += DAYSPERWEEK;
|
|
for (i = 1; i < rulep->r_week; ++i)
|
|
{
|
|
if (d + DAYSPERWEEK >=
|
|
mon_lengths[(int) leapyear][rulep->r_mon - 1])
|
|
break;
|
|
d += DAYSPERWEEK;
|
|
}
|
|
|
|
/*
|
|
* "d" is the day-of-month (zero-origin) of the day we want.
|
|
*/
|
|
value = d * SECSPERDAY;
|
|
for (i = 0; i < rulep->r_mon - 1; ++i)
|
|
value += mon_lengths[(int) leapyear][i] * SECSPERDAY;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* "value" is the year-relative time of 00:00:00 UT on the day in
|
|
* question. To get the year-relative time of the specified local time on
|
|
* that day, add the transition time and the current offset from UT.
|
|
*/
|
|
return value + rulep->r_time + offset;
|
|
}
|
|
|
|
/*
|
|
* Given a POSIX section 8-style TZ string, fill in the rule tables as
|
|
* appropriate.
|
|
* Returns true on success, false on failure.
|
|
*/
|
|
bool
|
|
tzparse(const char *name, struct state *sp, bool lastditch)
|
|
{
|
|
const char *stdname;
|
|
const char *dstname = NULL;
|
|
size_t stdlen;
|
|
size_t dstlen;
|
|
size_t charcnt;
|
|
int32 stdoffset;
|
|
int32 dstoffset;
|
|
char *cp;
|
|
bool load_ok;
|
|
|
|
stdname = name;
|
|
if (lastditch)
|
|
{
|
|
/*
|
|
* This is intentionally somewhat different from the IANA code. We do
|
|
* not want to invoke tzload() in the lastditch case: we can't assume
|
|
* pg_open_tzfile() is sane yet, and we don't care about leap seconds
|
|
* anyway.
|
|
*/
|
|
stdlen = strlen(name); /* length of standard zone name */
|
|
name += stdlen;
|
|
if (stdlen >= sizeof sp->chars)
|
|
stdlen = (sizeof sp->chars) - 1;
|
|
charcnt = stdlen + 1;
|
|
stdoffset = 0;
|
|
sp->goback = sp->goahead = false; /* simulate failed tzload() */
|
|
load_ok = false;
|
|
}
|
|
else
|
|
{
|
|
if (*name == '<')
|
|
{
|
|
name++;
|
|
stdname = name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return false;
|
|
stdlen = name - stdname;
|
|
name++;
|
|
}
|
|
else
|
|
{
|
|
name = getzname(name);
|
|
stdlen = name - stdname;
|
|
}
|
|
if (*name == '\0') /* we allow empty STD abbrev, unlike IANA */
|
|
return false;
|
|
name = getoffset(name, &stdoffset);
|
|
if (name == NULL)
|
|
return false;
|
|
charcnt = stdlen + 1;
|
|
if (sizeof sp->chars < charcnt)
|
|
return false;
|
|
|
|
/*
|
|
* This bit also differs from the IANA code, which doesn't make any
|
|
* attempt to avoid repetitive loadings of the TZDEFRULES zone.
|
|
*/
|
|
if (tzdefrules_loaded == 0)
|
|
{
|
|
if (tzload(TZDEFRULES, NULL, &tzdefrules_s, false) == 0)
|
|
tzdefrules_loaded = 1;
|
|
else
|
|
tzdefrules_loaded = -1;
|
|
}
|
|
load_ok = (tzdefrules_loaded > 0);
|
|
if (load_ok)
|
|
memcpy(sp, &tzdefrules_s, sizeof(struct state));
|
|
}
|
|
if (!load_ok)
|
|
sp->leapcnt = 0; /* so, we're off a little */
|
|
if (*name != '\0')
|
|
{
|
|
if (*name == '<')
|
|
{
|
|
dstname = ++name;
|
|
name = getqzname(name, '>');
|
|
if (*name != '>')
|
|
return false;
|
|
dstlen = name - dstname;
|
|
name++;
|
|
}
|
|
else
|
|
{
|
|
dstname = name;
|
|
name = getzname(name);
|
|
dstlen = name - dstname; /* length of DST zone name */
|
|
}
|
|
if (!dstlen)
|
|
return false;
|
|
charcnt += dstlen + 1;
|
|
if (sizeof sp->chars < charcnt)
|
|
return false;
|
|
if (*name != '\0' && *name != ',' && *name != ';')
|
|
{
|
|
name = getoffset(name, &dstoffset);
|
|
if (name == NULL)
|
|
return false;
|
|
}
|
|
else
|
|
dstoffset = stdoffset - SECSPERHOUR;
|
|
if (*name == '\0' && !load_ok)
|
|
name = TZDEFRULESTRING;
|
|
if (*name == ',' || *name == ';')
|
|
{
|
|
struct rule start;
|
|
struct rule end;
|
|
int year;
|
|
int yearlim;
|
|
int timecnt;
|
|
pg_time_t janfirst;
|
|
int32 janoffset = 0;
|
|
int yearbeg;
|
|
|
|
++name;
|
|
if ((name = getrule(name, &start)) == NULL)
|
|
return false;
|
|
if (*name++ != ',')
|
|
return false;
|
|
if ((name = getrule(name, &end)) == NULL)
|
|
return false;
|
|
if (*name != '\0')
|
|
return false;
|
|
sp->typecnt = 2; /* standard time and DST */
|
|
|
|
/*
|
|
* Two transitions per year, from EPOCH_YEAR forward.
|
|
*/
|
|
init_ttinfo(&sp->ttis[0], -dstoffset, true, stdlen + 1);
|
|
init_ttinfo(&sp->ttis[1], -stdoffset, false, 0);
|
|
sp->defaulttype = 0;
|
|
timecnt = 0;
|
|
janfirst = 0;
|
|
yearbeg = EPOCH_YEAR;
|
|
|
|
do
|
|
{
|
|
int32 yearsecs
|
|
= year_lengths[isleap(yearbeg - 1)] * SECSPERDAY;
|
|
|
|
yearbeg--;
|
|
if (increment_overflow_time(&janfirst, -yearsecs))
|
|
{
|
|
janoffset = -yearsecs;
|
|
break;
|
|
}
|
|
} while (EPOCH_YEAR - YEARSPERREPEAT / 2 < yearbeg);
|
|
|
|
yearlim = yearbeg + YEARSPERREPEAT + 1;
|
|
for (year = yearbeg; year < yearlim; year++)
|
|
{
|
|
int32
|
|
starttime = transtime(year, &start, stdoffset),
|
|
endtime = transtime(year, &end, dstoffset);
|
|
int32
|
|
yearsecs = (year_lengths[isleap(year)]
|
|
* SECSPERDAY);
|
|
bool reversed = endtime < starttime;
|
|
|
|
if (reversed)
|
|
{
|
|
int32 swap = starttime;
|
|
|
|
starttime = endtime;
|
|
endtime = swap;
|
|
}
|
|
if (reversed
|
|
|| (starttime < endtime
|
|
&& (endtime - starttime
|
|
< (yearsecs
|
|
+ (stdoffset - dstoffset)))))
|
|
{
|
|
if (TZ_MAX_TIMES - 2 < timecnt)
|
|
break;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (!increment_overflow_time
|
|
(&sp->ats[timecnt],
|
|
janoffset + starttime))
|
|
sp->types[timecnt++] = reversed;
|
|
else if (janoffset)
|
|
sp->defaulttype = reversed;
|
|
sp->ats[timecnt] = janfirst;
|
|
if (!increment_overflow_time
|
|
(&sp->ats[timecnt],
|
|
janoffset + endtime))
|
|
{
|
|
sp->types[timecnt++] = !reversed;
|
|
yearlim = year + YEARSPERREPEAT + 1;
|
|
}
|
|
else if (janoffset)
|
|
sp->defaulttype = !reversed;
|
|
}
|
|
if (increment_overflow_time
|
|
(&janfirst, janoffset + yearsecs))
|
|
break;
|
|
janoffset = 0;
|
|
}
|
|
sp->timecnt = timecnt;
|
|
if (!timecnt)
|
|
sp->typecnt = 1; /* Perpetual DST. */
|
|
else if (YEARSPERREPEAT < year - yearbeg)
|
|
sp->goback = sp->goahead = true;
|
|
}
|
|
else
|
|
{
|
|
int32 theirstdoffset;
|
|
int32 theirdstoffset;
|
|
int32 theiroffset;
|
|
bool isdst;
|
|
int i;
|
|
int j;
|
|
|
|
if (*name != '\0')
|
|
return false;
|
|
|
|
/*
|
|
* Initial values of theirstdoffset and theirdstoffset.
|
|
*/
|
|
theirstdoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (!sp->ttis[j].tt_isdst)
|
|
{
|
|
theirstdoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
theirdstoffset = 0;
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
if (sp->ttis[j].tt_isdst)
|
|
{
|
|
theirdstoffset =
|
|
-sp->ttis[j].tt_gmtoff;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initially we're assumed to be in standard time.
|
|
*/
|
|
isdst = false;
|
|
theiroffset = theirstdoffset;
|
|
|
|
/*
|
|
* Now juggle transition times and types tracking offsets as you
|
|
* do.
|
|
*/
|
|
for (i = 0; i < sp->timecnt; ++i)
|
|
{
|
|
j = sp->types[i];
|
|
sp->types[i] = sp->ttis[j].tt_isdst;
|
|
if (sp->ttis[j].tt_ttisgmt)
|
|
{
|
|
/* No adjustment to transition time */
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If summer time is in effect, and the transition time
|
|
* was not specified as standard time, add the summer time
|
|
* offset to the transition time; otherwise, add the
|
|
* standard time offset to the transition time.
|
|
*/
|
|
|
|
/*
|
|
* Transitions from DST to DDST will effectively disappear
|
|
* since POSIX provides for only one DST offset.
|
|
*/
|
|
if (isdst && !sp->ttis[j].tt_ttisstd)
|
|
{
|
|
sp->ats[i] += dstoffset -
|
|
theirdstoffset;
|
|
}
|
|
else
|
|
{
|
|
sp->ats[i] += stdoffset -
|
|
theirstdoffset;
|
|
}
|
|
}
|
|
theiroffset = -sp->ttis[j].tt_gmtoff;
|
|
if (sp->ttis[j].tt_isdst)
|
|
theirdstoffset = theiroffset;
|
|
else
|
|
theirstdoffset = theiroffset;
|
|
}
|
|
|
|
/*
|
|
* Finally, fill in ttis.
|
|
*/
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1);
|
|
sp->typecnt = 2;
|
|
sp->defaulttype = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
dstlen = 0;
|
|
sp->typecnt = 1; /* only standard time */
|
|
sp->timecnt = 0;
|
|
init_ttinfo(&sp->ttis[0], -stdoffset, false, 0);
|
|
sp->defaulttype = 0;
|
|
}
|
|
sp->charcnt = charcnt;
|
|
cp = sp->chars;
|
|
memcpy(cp, stdname, stdlen);
|
|
cp += stdlen;
|
|
*cp++ = '\0';
|
|
if (dstlen != 0)
|
|
{
|
|
memcpy(cp, dstname, dstlen);
|
|
*(cp + dstlen) = '\0';
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void
|
|
gmtload(struct state *sp)
|
|
{
|
|
if (tzload(gmt, NULL, sp, true) != 0)
|
|
tzparse(gmt, sp, true);
|
|
}
|
|
|
|
|
|
/*
|
|
* The easy way to behave "as if no library function calls" localtime
|
|
* is to not call it, so we drop its guts into "localsub", which can be
|
|
* freely called. (And no, the PANS doesn't require the above behavior,
|
|
* but it *is* desirable.)
|
|
*/
|
|
static struct pg_tm *
|
|
localsub(struct state const *sp, pg_time_t const *timep,
|
|
struct pg_tm *tmp)
|
|
{
|
|
const struct ttinfo *ttisp;
|
|
int i;
|
|
struct pg_tm *result;
|
|
const pg_time_t t = *timep;
|
|
|
|
if (sp == NULL)
|
|
return gmtsub(timep, 0, tmp);
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
|
|
{
|
|
pg_time_t newt = t;
|
|
pg_time_t seconds;
|
|
pg_time_t years;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else
|
|
seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT;
|
|
seconds = years * AVGSECSPERYEAR;
|
|
if (t < sp->ats[0])
|
|
newt += seconds;
|
|
else
|
|
newt -= seconds;
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1])
|
|
return NULL; /* "cannot happen" */
|
|
result = localsub(sp, &newt, tmp);
|
|
if (result)
|
|
{
|
|
int64 newy;
|
|
|
|
newy = result->tm_year;
|
|
if (t < sp->ats[0])
|
|
newy -= years;
|
|
else
|
|
newy += years;
|
|
if (!(INT_MIN <= newy && newy <= INT_MAX))
|
|
return NULL;
|
|
result->tm_year = newy;
|
|
}
|
|
return result;
|
|
}
|
|
if (sp->timecnt == 0 || t < sp->ats[0])
|
|
{
|
|
i = sp->defaulttype;
|
|
}
|
|
else
|
|
{
|
|
int lo = 1;
|
|
int hi = sp->timecnt;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
i = (int) sp->types[lo - 1];
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
|
|
result = timesub(&t, ttisp->tt_gmtoff, sp, tmp);
|
|
if (result)
|
|
{
|
|
result->tm_isdst = ttisp->tt_isdst;
|
|
result->tm_zone = (char *) &sp->chars[ttisp->tt_abbrind];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
|
|
struct pg_tm *
|
|
pg_localtime(const pg_time_t *timep, const pg_tz *tz)
|
|
{
|
|
return localsub(&tz->state, timep, &tm);
|
|
}
|
|
|
|
|
|
/*
|
|
* gmtsub is to gmtime as localsub is to localtime.
|
|
*
|
|
* Except we have a private "struct state" for GMT, so no sp is passed in.
|
|
*/
|
|
static struct pg_tm *
|
|
gmtsub(pg_time_t const *timep, int32 offset, struct pg_tm *tmp)
|
|
{
|
|
struct pg_tm *result;
|
|
|
|
/* GMT timezone state data is kept here */
|
|
static struct state gmtmem;
|
|
static bool gmt_is_set = false;
|
|
#define gmtptr (&gmtmem)
|
|
|
|
if (!gmt_is_set)
|
|
{
|
|
gmt_is_set = true;
|
|
gmtload(gmtptr);
|
|
}
|
|
result = timesub(timep, offset, gmtptr, tmp);
|
|
|
|
/*
|
|
* Could get fancy here and deliver something such as "+xx" or "-xx" if
|
|
* offset is non-zero, but this is no time for a treasure hunt.
|
|
*/
|
|
if (offset != 0)
|
|
tmp->tm_zone = wildabbr;
|
|
else
|
|
tmp->tm_zone = gmtptr->chars;
|
|
|
|
return result;
|
|
}
|
|
|
|
struct pg_tm *
|
|
pg_gmtime(const pg_time_t *timep)
|
|
{
|
|
return gmtsub(timep, 0, &tm);
|
|
}
|
|
|
|
/*
|
|
* Return the number of leap years through the end of the given year
|
|
* where, to make the math easy, the answer for year zero is defined as zero.
|
|
*/
|
|
static int
|
|
leaps_thru_end_of_nonneg(int y)
|
|
{
|
|
return y / 4 - y / 100 + y / 400;
|
|
}
|
|
|
|
static int
|
|
leaps_thru_end_of(const int y)
|
|
{
|
|
return (y < 0
|
|
? -1 - leaps_thru_end_of_nonneg(-1 - y)
|
|
: leaps_thru_end_of_nonneg(y));
|
|
}
|
|
|
|
static struct pg_tm *
|
|
timesub(const pg_time_t *timep, int32 offset,
|
|
const struct state *sp, struct pg_tm *tmp)
|
|
{
|
|
const struct lsinfo *lp;
|
|
pg_time_t tdays;
|
|
int idays; /* unsigned would be so 2003 */
|
|
int64 rem;
|
|
int y;
|
|
const int *ip;
|
|
int64 corr;
|
|
bool hit;
|
|
int i;
|
|
|
|
corr = 0;
|
|
hit = false;
|
|
i = (sp == NULL) ? 0 : sp->leapcnt;
|
|
while (--i >= 0)
|
|
{
|
|
lp = &sp->lsis[i];
|
|
if (*timep >= lp->ls_trans)
|
|
{
|
|
corr = lp->ls_corr;
|
|
hit = (*timep == lp->ls_trans
|
|
&& (i == 0 ? 0 : lp[-1].ls_corr) < corr);
|
|
break;
|
|
}
|
|
}
|
|
y = EPOCH_YEAR;
|
|
tdays = *timep / SECSPERDAY;
|
|
rem = *timep % SECSPERDAY;
|
|
while (tdays < 0 || tdays >= year_lengths[isleap(y)])
|
|
{
|
|
int newy;
|
|
pg_time_t tdelta;
|
|
int idelta;
|
|
int leapdays;
|
|
|
|
tdelta = tdays / DAYSPERLYEAR;
|
|
if (!((!TYPE_SIGNED(pg_time_t) ||INT_MIN <= tdelta)
|
|
&& tdelta <= INT_MAX))
|
|
goto out_of_range;
|
|
idelta = tdelta;
|
|
if (idelta == 0)
|
|
idelta = (tdays < 0) ? -1 : 1;
|
|
newy = y;
|
|
if (increment_overflow(&newy, idelta))
|
|
goto out_of_range;
|
|
leapdays = leaps_thru_end_of(newy - 1) -
|
|
leaps_thru_end_of(y - 1);
|
|
tdays -= ((pg_time_t) newy - y) * DAYSPERNYEAR;
|
|
tdays -= leapdays;
|
|
y = newy;
|
|
}
|
|
|
|
/*
|
|
* Given the range, we can now fearlessly cast...
|
|
*/
|
|
idays = tdays;
|
|
rem += offset - corr;
|
|
while (rem < 0)
|
|
{
|
|
rem += SECSPERDAY;
|
|
--idays;
|
|
}
|
|
while (rem >= SECSPERDAY)
|
|
{
|
|
rem -= SECSPERDAY;
|
|
++idays;
|
|
}
|
|
while (idays < 0)
|
|
{
|
|
if (increment_overflow(&y, -1))
|
|
goto out_of_range;
|
|
idays += year_lengths[isleap(y)];
|
|
}
|
|
while (idays >= year_lengths[isleap(y)])
|
|
{
|
|
idays -= year_lengths[isleap(y)];
|
|
if (increment_overflow(&y, 1))
|
|
goto out_of_range;
|
|
}
|
|
tmp->tm_year = y;
|
|
if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE))
|
|
goto out_of_range;
|
|
tmp->tm_yday = idays;
|
|
|
|
/*
|
|
* The "extra" mods below avoid overflow problems.
|
|
*/
|
|
tmp->tm_wday = EPOCH_WDAY +
|
|
((y - EPOCH_YEAR) % DAYSPERWEEK) *
|
|
(DAYSPERNYEAR % DAYSPERWEEK) +
|
|
leaps_thru_end_of(y - 1) -
|
|
leaps_thru_end_of(EPOCH_YEAR - 1) +
|
|
idays;
|
|
tmp->tm_wday %= DAYSPERWEEK;
|
|
if (tmp->tm_wday < 0)
|
|
tmp->tm_wday += DAYSPERWEEK;
|
|
tmp->tm_hour = (int) (rem / SECSPERHOUR);
|
|
rem %= SECSPERHOUR;
|
|
tmp->tm_min = (int) (rem / SECSPERMIN);
|
|
|
|
/*
|
|
* A positive leap second requires a special representation. This uses
|
|
* "... ??:59:60" et seq.
|
|
*/
|
|
tmp->tm_sec = (int) (rem % SECSPERMIN) + hit;
|
|
ip = mon_lengths[isleap(y)];
|
|
for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon))
|
|
idays -= ip[tmp->tm_mon];
|
|
tmp->tm_mday = (int) (idays + 1);
|
|
tmp->tm_isdst = 0;
|
|
tmp->tm_gmtoff = offset;
|
|
return tmp;
|
|
|
|
out_of_range:
|
|
errno = EOVERFLOW;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Normalize logic courtesy Paul Eggert.
|
|
*/
|
|
|
|
static bool
|
|
increment_overflow(int *ip, int j)
|
|
{
|
|
int const i = *ip;
|
|
|
|
/*----------
|
|
* If i >= 0 there can only be overflow if i + j > INT_MAX
|
|
* or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow.
|
|
* If i < 0 there can only be overflow if i + j < INT_MIN
|
|
* or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow.
|
|
*----------
|
|
*/
|
|
if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i))
|
|
return true;
|
|
*ip += j;
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
increment_overflow_time(pg_time_t *tp, int32 j)
|
|
{
|
|
/*----------
|
|
* This is like
|
|
* 'if (! (TIME_T_MIN <= *tp + j && *tp + j <= TIME_T_MAX)) ...',
|
|
* except that it does the right thing even if *tp + j would overflow.
|
|
*----------
|
|
*/
|
|
if (!(j < 0
|
|
? (TYPE_SIGNED(pg_time_t) ? TIME_T_MIN - j <= *tp : -1 - j < *tp)
|
|
: *tp <= TIME_T_MAX - j))
|
|
return true;
|
|
*tp += j;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Find the next DST transition time in the given zone after the given time
|
|
*
|
|
* *timep and *tz are input arguments, the other parameters are output values.
|
|
*
|
|
* When the function result is 1, *boundary is set to the pg_time_t
|
|
* representation of the next DST transition time after *timep,
|
|
* *before_gmtoff and *before_isdst are set to the GMT offset and isdst
|
|
* state prevailing just before that boundary (in particular, the state
|
|
* prevailing at *timep), and *after_gmtoff and *after_isdst are set to
|
|
* the state prevailing just after that boundary.
|
|
*
|
|
* When the function result is 0, there is no known DST transition
|
|
* after *timep, but *before_gmtoff and *before_isdst indicate the GMT
|
|
* offset and isdst state prevailing at *timep. (This would occur in
|
|
* DST-less time zones, or if a zone has permanently ceased using DST.)
|
|
*
|
|
* A function result of -1 indicates failure (this case does not actually
|
|
* occur in our current implementation).
|
|
*/
|
|
int
|
|
pg_next_dst_boundary(const pg_time_t *timep,
|
|
long int *before_gmtoff,
|
|
int *before_isdst,
|
|
pg_time_t *boundary,
|
|
long int *after_gmtoff,
|
|
int *after_isdst,
|
|
const pg_tz *tz)
|
|
{
|
|
const struct state *sp;
|
|
const struct ttinfo *ttisp;
|
|
int i;
|
|
int j;
|
|
const pg_time_t t = *timep;
|
|
|
|
sp = &tz->state;
|
|
if (sp->timecnt == 0)
|
|
{
|
|
/* non-DST zone, use lowest-numbered standard type */
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
return 0;
|
|
}
|
|
if ((sp->goback && t < sp->ats[0]) ||
|
|
(sp->goahead && t > sp->ats[sp->timecnt - 1]))
|
|
{
|
|
/* For values outside the transition table, extrapolate */
|
|
pg_time_t newt = t;
|
|
pg_time_t seconds;
|
|
pg_time_t tcycles;
|
|
int64 icycles;
|
|
int result;
|
|
|
|
if (t < sp->ats[0])
|
|
seconds = sp->ats[0] - t;
|
|
else
|
|
seconds = t - sp->ats[sp->timecnt - 1];
|
|
--seconds;
|
|
tcycles = seconds / YEARSPERREPEAT / AVGSECSPERYEAR;
|
|
++tcycles;
|
|
icycles = tcycles;
|
|
if (tcycles - icycles >= 1 || icycles - tcycles >= 1)
|
|
return -1;
|
|
seconds = icycles;
|
|
seconds *= YEARSPERREPEAT;
|
|
seconds *= AVGSECSPERYEAR;
|
|
if (t < sp->ats[0])
|
|
newt += seconds;
|
|
else
|
|
newt -= seconds;
|
|
if (newt < sp->ats[0] ||
|
|
newt > sp->ats[sp->timecnt - 1])
|
|
return -1; /* "cannot happen" */
|
|
|
|
result = pg_next_dst_boundary(&newt, before_gmtoff,
|
|
before_isdst,
|
|
boundary,
|
|
after_gmtoff,
|
|
after_isdst,
|
|
tz);
|
|
if (t < sp->ats[0])
|
|
*boundary -= seconds;
|
|
else
|
|
*boundary += seconds;
|
|
return result;
|
|
}
|
|
|
|
if (t >= sp->ats[sp->timecnt - 1])
|
|
{
|
|
/* No known transition > t, so use last known segment's type */
|
|
i = sp->types[sp->timecnt - 1];
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
return 0;
|
|
}
|
|
if (t < sp->ats[0])
|
|
{
|
|
/* For "before", use lowest-numbered standard type */
|
|
i = 0;
|
|
while (sp->ttis[i].tt_isdst)
|
|
if (++i >= sp->typecnt)
|
|
{
|
|
i = 0;
|
|
break;
|
|
}
|
|
ttisp = &sp->ttis[i];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
*boundary = sp->ats[0];
|
|
/* And for "after", use the first segment's type */
|
|
i = sp->types[0];
|
|
ttisp = &sp->ttis[i];
|
|
*after_gmtoff = ttisp->tt_gmtoff;
|
|
*after_isdst = ttisp->tt_isdst;
|
|
return 1;
|
|
}
|
|
/* Else search to find the boundary following t */
|
|
{
|
|
int lo = 1;
|
|
int hi = sp->timecnt - 1;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
i = lo;
|
|
}
|
|
j = sp->types[i - 1];
|
|
ttisp = &sp->ttis[j];
|
|
*before_gmtoff = ttisp->tt_gmtoff;
|
|
*before_isdst = ttisp->tt_isdst;
|
|
*boundary = sp->ats[i];
|
|
j = sp->types[i];
|
|
ttisp = &sp->ttis[j];
|
|
*after_gmtoff = ttisp->tt_gmtoff;
|
|
*after_isdst = ttisp->tt_isdst;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Identify a timezone abbreviation's meaning in the given zone
|
|
*
|
|
* Determine the GMT offset and DST flag associated with the abbreviation.
|
|
* This is generally used only when the abbreviation has actually changed
|
|
* meaning over time; therefore, we also take a UTC cutoff time, and return
|
|
* the meaning in use at or most recently before that time, or the meaning
|
|
* in first use after that time if the abbrev was never used before that.
|
|
*
|
|
* On success, returns true and sets *gmtoff and *isdst. If the abbreviation
|
|
* was never used at all in this zone, returns false.
|
|
*
|
|
* Note: abbrev is matched case-sensitively; it should be all-upper-case.
|
|
*/
|
|
bool
|
|
pg_interpret_timezone_abbrev(const char *abbrev,
|
|
const pg_time_t *timep,
|
|
long int *gmtoff,
|
|
int *isdst,
|
|
const pg_tz *tz)
|
|
{
|
|
const struct state *sp;
|
|
const char *abbrs;
|
|
const struct ttinfo *ttisp;
|
|
int abbrind;
|
|
int cutoff;
|
|
int i;
|
|
const pg_time_t t = *timep;
|
|
|
|
sp = &tz->state;
|
|
|
|
/*
|
|
* Locate the abbreviation in the zone's abbreviation list. We assume
|
|
* there are not duplicates in the list.
|
|
*/
|
|
abbrs = sp->chars;
|
|
abbrind = 0;
|
|
while (abbrind < sp->charcnt)
|
|
{
|
|
if (strcmp(abbrev, abbrs + abbrind) == 0)
|
|
break;
|
|
while (abbrs[abbrind] != '\0')
|
|
abbrind++;
|
|
abbrind++;
|
|
}
|
|
if (abbrind >= sp->charcnt)
|
|
return false; /* not there! */
|
|
|
|
/*
|
|
* Unlike pg_next_dst_boundary, we needn't sweat about extrapolation
|
|
* (goback/goahead zones). Finding the newest or oldest meaning of the
|
|
* abbreviation should get us what we want, since extrapolation would just
|
|
* be repeating the newest or oldest meanings.
|
|
*
|
|
* Use binary search to locate the first transition > cutoff time.
|
|
*/
|
|
{
|
|
int lo = 0;
|
|
int hi = sp->timecnt;
|
|
|
|
while (lo < hi)
|
|
{
|
|
int mid = (lo + hi) >> 1;
|
|
|
|
if (t < sp->ats[mid])
|
|
hi = mid;
|
|
else
|
|
lo = mid + 1;
|
|
}
|
|
cutoff = lo;
|
|
}
|
|
|
|
/*
|
|
* Scan backwards to find the latest interval using the given abbrev
|
|
* before the cutoff time.
|
|
*/
|
|
for (i = cutoff - 1; i >= 0; i--)
|
|
{
|
|
ttisp = &sp->ttis[sp->types[i]];
|
|
if (ttisp->tt_abbrind == abbrind)
|
|
{
|
|
*gmtoff = ttisp->tt_gmtoff;
|
|
*isdst = ttisp->tt_isdst;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Not there, so scan forwards to find the first one after.
|
|
*/
|
|
for (i = cutoff; i < sp->timecnt; i++)
|
|
{
|
|
ttisp = &sp->ttis[sp->types[i]];
|
|
if (ttisp->tt_abbrind == abbrind)
|
|
{
|
|
*gmtoff = ttisp->tt_gmtoff;
|
|
*isdst = ttisp->tt_isdst;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false; /* hm, not actually used in any interval? */
|
|
}
|
|
|
|
/*
|
|
* If the given timezone uses only one GMT offset, store that offset
|
|
* into *gmtoff and return true, else return false.
|
|
*/
|
|
bool
|
|
pg_get_timezone_offset(const pg_tz *tz, long int *gmtoff)
|
|
{
|
|
/*
|
|
* The zone could have more than one ttinfo, if it's historically used
|
|
* more than one abbreviation. We return true as long as they all have
|
|
* the same gmtoff.
|
|
*/
|
|
const struct state *sp;
|
|
int i;
|
|
|
|
sp = &tz->state;
|
|
for (i = 1; i < sp->typecnt; i++)
|
|
{
|
|
if (sp->ttis[i].tt_gmtoff != sp->ttis[0].tt_gmtoff)
|
|
return false;
|
|
}
|
|
*gmtoff = sp->ttis[0].tt_gmtoff;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Return the name of the current timezone
|
|
*/
|
|
const char *
|
|
pg_get_timezone_name(pg_tz *tz)
|
|
{
|
|
if (tz)
|
|
return tz->TZname;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Check whether timezone is acceptable.
|
|
*
|
|
* What we are doing here is checking for leap-second-aware timekeeping.
|
|
* We need to reject such TZ settings because they'll wreak havoc with our
|
|
* date/time arithmetic.
|
|
*/
|
|
bool
|
|
pg_tz_acceptable(pg_tz *tz)
|
|
{
|
|
struct pg_tm *tt;
|
|
pg_time_t time2000;
|
|
|
|
/*
|
|
* To detect leap-second timekeeping, run pg_localtime for what should be
|
|
* GMT midnight, 2000-01-01. Insist that the tm_sec value be zero; any
|
|
* other result has to be due to leap seconds.
|
|
*/
|
|
time2000 = (POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
|
|
tt = pg_localtime(&time2000, tz);
|
|
if (!tt || tt->tm_sec != 0)
|
|
return false;
|
|
|
|
return true;
|
|
}
|