Neil Conway 192ad63bd7 More janitorial work: remove the explicit casting of NULL literals to a
pointer type when it is not necessary to do so.

For future reference, casting NULL to a pointer type is only necessary
when (a) invoking a function AND either (b) the function has no prototype
OR (c) the function is a varargs function.
2004-01-07 18:56:30 +00:00

1365 lines
36 KiB
C

/*-------------------------------------------------------------------------
*
* rtree.c
* interface routines for the postgres rtree indexed access method.
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/rtree/rtree.c,v 1.82 2004/01/07 18:56:24 neilc Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/rtree.h"
#include "access/xlogutils.h"
#include "catalog/index.h"
#include "executor/executor.h"
#include "miscadmin.h"
/*
* XXX We assume that all datatypes indexable in rtrees are pass-by-reference.
* To fix this, you'd need to improve the IndexTupleGetDatum() macro, and
* do something with the various datum-pfreeing code. However, it's not that
* unreasonable an assumption in practice.
*/
#define IndexTupleGetDatum(itup) \
PointerGetDatum(((char *) (itup)) + sizeof(IndexTupleData))
/*
* Space-allocation macros. Note we count the item's line pointer in its size.
*/
#define RTPageAvailSpace \
(BLCKSZ - (sizeof(PageHeaderData) - sizeof(ItemIdData)) \
- MAXALIGN(sizeof(RTreePageOpaqueData)))
#define IndexTupleTotalSize(itup) \
(MAXALIGN(IndexTupleSize(itup)) + sizeof(ItemIdData))
#define IndexTupleAttSize(itup) \
(IndexTupleSize(itup) - sizeof(IndexTupleData))
/* results of rtpicksplit() */
typedef struct SPLITVEC
{
OffsetNumber *spl_left;
int spl_nleft;
Datum spl_ldatum;
OffsetNumber *spl_right;
int spl_nright;
Datum spl_rdatum;
} SPLITVEC;
/* for sorting tuples by cost, for picking split */
typedef struct SPLITCOST
{
OffsetNumber offset_number;
float cost_differential;
bool choose_left;
} SPLITCOST;
typedef struct RTSTATE
{
FmgrInfo unionFn; /* union function */
FmgrInfo sizeFn; /* size function */
FmgrInfo interFn; /* intersection function */
} RTSTATE;
/* Working state for rtbuild and its callback */
typedef struct
{
RTSTATE rtState;
double indtuples;
} RTBuildState;
/* non-export function prototypes */
static void rtbuildCallback(Relation index,
HeapTuple htup,
Datum *attdata,
char *nulls,
bool tupleIsAlive,
void *state);
static InsertIndexResult rtdoinsert(Relation r, IndexTuple itup,
RTSTATE *rtstate);
static void rttighten(Relation r, RTSTACK *stk, Datum datum, int att_size,
RTSTATE *rtstate);
static InsertIndexResult rtdosplit(Relation r, Buffer buffer, RTSTACK *stack,
IndexTuple itup, RTSTATE *rtstate);
static void rtintinsert(Relation r, RTSTACK *stk, IndexTuple ltup,
IndexTuple rtup, RTSTATE *rtstate);
static void rtnewroot(Relation r, IndexTuple lt, IndexTuple rt);
static void rtpicksplit(Relation r, Page page, SPLITVEC *v, IndexTuple itup,
RTSTATE *rtstate);
static void RTInitBuffer(Buffer b, uint32 f);
static OffsetNumber choose(Relation r, Page p, IndexTuple it,
RTSTATE *rtstate);
static int nospace(Page p, IndexTuple it);
static void initRtstate(RTSTATE *rtstate, Relation index);
static int qsort_comp_splitcost(const void *a, const void *b);
/*
* routine to build an index. Basically calls insert over and over
*/
Datum
rtbuild(PG_FUNCTION_ARGS)
{
Relation heap = (Relation) PG_GETARG_POINTER(0);
Relation index = (Relation) PG_GETARG_POINTER(1);
IndexInfo *indexInfo = (IndexInfo *) PG_GETARG_POINTER(2);
double reltuples;
RTBuildState buildstate;
Buffer buffer;
/* no locking is needed */
initRtstate(&buildstate.rtState, index);
/*
* We expect to be called exactly once for any index relation. If
* that's not the case, big trouble's what we have.
*/
if (RelationGetNumberOfBlocks(index) != 0)
elog(ERROR, "index \"%s\" already contains data",
RelationGetRelationName(index));
/* initialize the root page */
buffer = ReadBuffer(index, P_NEW);
RTInitBuffer(buffer, F_LEAF);
WriteBuffer(buffer);
/* build the index */
buildstate.indtuples = 0;
/* do the heap scan */
reltuples = IndexBuildHeapScan(heap, index, indexInfo,
rtbuildCallback, (void *) &buildstate);
/* okay, all heap tuples are indexed */
/*
* Since we just counted the tuples in the heap, we update its stats
* in pg_class to guarantee that the planner takes advantage of the
* index we just created. But, only update statistics during normal
* index definitions, not for indices on system catalogs created
* during bootstrap processing. We must close the relations before
* updating statistics to guarantee that the relcache entries are
* flushed when we increment the command counter in UpdateStats(). But
* we do not release any locks on the relations; those will be held
* until end of transaction.
*/
if (IsNormalProcessingMode())
{
Oid hrelid = RelationGetRelid(heap);
Oid irelid = RelationGetRelid(index);
heap_close(heap, NoLock);
index_close(index);
UpdateStats(hrelid, reltuples);
UpdateStats(irelid, buildstate.indtuples);
}
PG_RETURN_VOID();
}
/*
* Per-tuple callback from IndexBuildHeapScan
*/
static void
rtbuildCallback(Relation index,
HeapTuple htup,
Datum *attdata,
char *nulls,
bool tupleIsAlive,
void *state)
{
RTBuildState *buildstate = (RTBuildState *) state;
IndexTuple itup;
InsertIndexResult res;
/* form an index tuple and point it at the heap tuple */
itup = index_formtuple(RelationGetDescr(index), attdata, nulls);
itup->t_tid = htup->t_self;
/* rtree indexes don't index nulls, see notes in rtinsert */
if (IndexTupleHasNulls(itup))
{
pfree(itup);
return;
}
/*
* Since we already have the index relation locked, we call rtdoinsert
* directly. Normal access method calls dispatch through rtinsert,
* which locks the relation for write. This is the right thing to do
* if you're inserting single tups, but not when you're initializing
* the whole index at once.
*/
res = rtdoinsert(index, itup, &buildstate->rtState);
if (res)
pfree(res);
buildstate->indtuples += 1;
pfree(itup);
}
/*
* rtinsert -- wrapper for rtree tuple insertion.
*
* This is the public interface routine for tuple insertion in rtrees.
* It doesn't do any work; just locks the relation and passes the buck.
*/
Datum
rtinsert(PG_FUNCTION_ARGS)
{
Relation r = (Relation) PG_GETARG_POINTER(0);
Datum *datum = (Datum *) PG_GETARG_POINTER(1);
char *nulls = (char *) PG_GETARG_POINTER(2);
ItemPointer ht_ctid = (ItemPointer) PG_GETARG_POINTER(3);
#ifdef NOT_USED
Relation heapRel = (Relation) PG_GETARG_POINTER(4);
bool checkUnique = PG_GETARG_BOOL(5);
#endif
InsertIndexResult res;
IndexTuple itup;
RTSTATE rtState;
/* generate an index tuple */
itup = index_formtuple(RelationGetDescr(r), datum, nulls);
itup->t_tid = *ht_ctid;
/*
* Currently, rtrees do not support indexing NULLs; considerable
* infrastructure work would have to be done to do anything reasonable
* with a NULL.
*/
if (IndexTupleHasNulls(itup))
{
pfree(itup);
PG_RETURN_POINTER(NULL);
}
initRtstate(&rtState, r);
/*
* Since rtree is not marked "amconcurrent" in pg_am, caller should
* have acquired exclusive lock on index relation. We need no locking
* here.
*/
res = rtdoinsert(r, itup, &rtState);
PG_RETURN_POINTER(res);
}
static InsertIndexResult
rtdoinsert(Relation r, IndexTuple itup, RTSTATE *rtstate)
{
Page page;
Buffer buffer;
BlockNumber blk;
IndexTuple which;
OffsetNumber l;
RTSTACK *stack;
InsertIndexResult res;
RTreePageOpaque opaque;
Datum datum;
blk = P_ROOT;
buffer = InvalidBuffer;
stack = NULL;
do
{
/* let go of current buffer before getting next */
if (buffer != InvalidBuffer)
ReleaseBuffer(buffer);
/* get next buffer */
buffer = ReadBuffer(r, blk);
page = (Page) BufferGetPage(buffer);
opaque = (RTreePageOpaque) PageGetSpecialPointer(page);
if (!(opaque->flags & F_LEAF))
{
RTSTACK *n;
ItemId iid;
n = (RTSTACK *) palloc(sizeof(RTSTACK));
n->rts_parent = stack;
n->rts_blk = blk;
n->rts_child = choose(r, page, itup, rtstate);
stack = n;
iid = PageGetItemId(page, n->rts_child);
which = (IndexTuple) PageGetItem(page, iid);
blk = ItemPointerGetBlockNumber(&(which->t_tid));
}
} while (!(opaque->flags & F_LEAF));
if (nospace(page, itup))
{
/* need to do a split */
res = rtdosplit(r, buffer, stack, itup, rtstate);
freestack(stack);
WriteBuffer(buffer); /* don't forget to release buffer! */
return res;
}
/* add the item and write the buffer */
if (PageIsEmpty(page))
{
l = PageAddItem(page, (Item) itup, IndexTupleSize(itup),
FirstOffsetNumber,
LP_USED);
}
else
{
l = PageAddItem(page, (Item) itup, IndexTupleSize(itup),
OffsetNumberNext(PageGetMaxOffsetNumber(page)),
LP_USED);
}
if (l == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
WriteBuffer(buffer);
datum = IndexTupleGetDatum(itup);
/* now expand the page boundary in the parent to include the new child */
rttighten(r, stack, datum, IndexTupleAttSize(itup), rtstate);
freestack(stack);
/* build and return an InsertIndexResult for this insertion */
res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
ItemPointerSet(&(res->pointerData), blk, l);
return res;
}
static void
rttighten(Relation r,
RTSTACK *stk,
Datum datum,
int att_size,
RTSTATE *rtstate)
{
Datum oldud;
Datum tdatum;
Page p;
float old_size,
newd_size;
Buffer b;
if (stk == NULL)
return;
b = ReadBuffer(r, stk->rts_blk);
p = BufferGetPage(b);
oldud = IndexTupleGetDatum(PageGetItem(p,
PageGetItemId(p, stk->rts_child)));
FunctionCall2(&rtstate->sizeFn, oldud,
PointerGetDatum(&old_size));
datum = FunctionCall2(&rtstate->unionFn, oldud, datum);
FunctionCall2(&rtstate->sizeFn, datum,
PointerGetDatum(&newd_size));
/*
* If newd_size == 0 we have degenerate rectangles, so we don't know
* if there was any change, so we have to assume there was.
*/
if ((newd_size == 0) || (newd_size != old_size))
{
TupleDesc td = RelationGetDescr(r);
if (td->attrs[0]->attlen < 0)
{
/*
* This is an internal page, so 'oldud' had better be a union
* (constant-length) key, too. (See comment below.)
*/
Assert(VARSIZE(DatumGetPointer(datum)) ==
VARSIZE(DatumGetPointer(oldud)));
memmove(DatumGetPointer(oldud), DatumGetPointer(datum),
VARSIZE(DatumGetPointer(datum)));
}
else
{
memmove(DatumGetPointer(oldud), DatumGetPointer(datum),
att_size);
}
WriteBuffer(b);
/*
* The user may be defining an index on variable-sized data (like
* polygons). If so, we need to get a constant-sized datum for
* insertion on the internal page. We do this by calling the
* union proc, which is required to return a rectangle.
*/
tdatum = FunctionCall2(&rtstate->unionFn, datum, datum);
rttighten(r, stk->rts_parent, tdatum, att_size, rtstate);
pfree(DatumGetPointer(tdatum));
}
else
ReleaseBuffer(b);
pfree(DatumGetPointer(datum));
}
/*
* rtdosplit -- split a page in the tree.
*
* rtpicksplit does the interesting work of choosing the split.
* This routine just does the bit-pushing.
*/
static InsertIndexResult
rtdosplit(Relation r,
Buffer buffer,
RTSTACK *stack,
IndexTuple itup,
RTSTATE *rtstate)
{
Page p;
Buffer leftbuf,
rightbuf;
Page left,
right;
ItemId itemid;
IndexTuple item;
IndexTuple ltup,
rtup;
OffsetNumber maxoff;
OffsetNumber i;
OffsetNumber leftoff,
rightoff;
BlockNumber lbknum,
rbknum;
BlockNumber bufblock;
RTreePageOpaque opaque;
int blank;
InsertIndexResult res;
char *isnull;
SPLITVEC v;
OffsetNumber *spl_left,
*spl_right;
TupleDesc tupDesc;
int n;
OffsetNumber newitemoff;
p = (Page) BufferGetPage(buffer);
opaque = (RTreePageOpaque) PageGetSpecialPointer(p);
rtpicksplit(r, p, &v, itup, rtstate);
/*
* The root of the tree is the first block in the relation. If we're
* about to split the root, we need to do some hocus-pocus to enforce
* this guarantee.
*/
if (BufferGetBlockNumber(buffer) == P_ROOT)
{
leftbuf = ReadBuffer(r, P_NEW);
RTInitBuffer(leftbuf, opaque->flags);
lbknum = BufferGetBlockNumber(leftbuf);
left = (Page) BufferGetPage(leftbuf);
}
else
{
leftbuf = buffer;
IncrBufferRefCount(buffer);
lbknum = BufferGetBlockNumber(buffer);
left = (Page) PageGetTempPage(p, sizeof(RTreePageOpaqueData));
}
rightbuf = ReadBuffer(r, P_NEW);
RTInitBuffer(rightbuf, opaque->flags);
rbknum = BufferGetBlockNumber(rightbuf);
right = (Page) BufferGetPage(rightbuf);
spl_left = v.spl_left;
spl_right = v.spl_right;
leftoff = rightoff = FirstOffsetNumber;
maxoff = PageGetMaxOffsetNumber(p);
newitemoff = OffsetNumberNext(maxoff);
/* build an InsertIndexResult for this insertion */
res = (InsertIndexResult) palloc(sizeof(InsertIndexResultData));
/*
* spl_left contains a list of the offset numbers of the tuples that
* will go to the left page. For each offset number, get the tuple
* item, then add the item to the left page. Similarly for the right
* side.
*/
/* fill left node */
for (n = 0; n < v.spl_nleft; n++)
{
i = *spl_left;
if (i == newitemoff)
item = itup;
else
{
itemid = PageGetItemId(p, i);
item = (IndexTuple) PageGetItem(p, itemid);
}
if (PageAddItem(left, (Item) item, IndexTupleSize(item),
leftoff, LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
leftoff = OffsetNumberNext(leftoff);
if (i == newitemoff)
ItemPointerSet(&(res->pointerData), lbknum, leftoff);
spl_left++; /* advance in left split vector */
}
/* fill right node */
for (n = 0; n < v.spl_nright; n++)
{
i = *spl_right;
if (i == newitemoff)
item = itup;
else
{
itemid = PageGetItemId(p, i);
item = (IndexTuple) PageGetItem(p, itemid);
}
if (PageAddItem(right, (Item) item, IndexTupleSize(item),
rightoff, LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
rightoff = OffsetNumberNext(rightoff);
if (i == newitemoff)
ItemPointerSet(&(res->pointerData), rbknum, rightoff);
spl_right++; /* advance in right split vector */
}
/* Make sure we consumed all of the split vectors, and release 'em */
Assert(*spl_left == InvalidOffsetNumber);
Assert(*spl_right == InvalidOffsetNumber);
pfree(v.spl_left);
pfree(v.spl_right);
if ((bufblock = BufferGetBlockNumber(buffer)) != P_ROOT)
PageRestoreTempPage(left, p);
WriteBuffer(leftbuf);
WriteBuffer(rightbuf);
/*
* Okay, the page is split. We have three things left to do:
*
* 1) Adjust any active scans on this index to cope with changes we
* introduced in its structure by splitting this page.
*
* 2) "Tighten" the bounding box of the pointer to the left page in the
* parent node in the tree, if any. Since we moved a bunch of stuff
* off the left page, we expect it to get smaller. This happens in
* the internal insertion routine.
*
* 3) Insert a pointer to the right page in the parent. This may cause
* the parent to split. If it does, we need to repeat steps one and
* two for each split node in the tree.
*/
/* adjust active scans */
rtadjscans(r, RTOP_SPLIT, bufblock, FirstOffsetNumber);
tupDesc = r->rd_att;
isnull = (char *) palloc(r->rd_rel->relnatts);
for (blank = 0; blank < r->rd_rel->relnatts; blank++)
isnull[blank] = ' ';
ltup = (IndexTuple) index_formtuple(tupDesc,
&(v.spl_ldatum), isnull);
rtup = (IndexTuple) index_formtuple(tupDesc,
&(v.spl_rdatum), isnull);
pfree(isnull);
/* set pointers to new child pages in the internal index tuples */
ItemPointerSet(&(ltup->t_tid), lbknum, 1);
ItemPointerSet(&(rtup->t_tid), rbknum, 1);
rtintinsert(r, stack, ltup, rtup, rtstate);
pfree(ltup);
pfree(rtup);
return res;
}
static void
rtintinsert(Relation r,
RTSTACK *stk,
IndexTuple ltup,
IndexTuple rtup,
RTSTATE *rtstate)
{
IndexTuple old;
Buffer b;
Page p;
Datum ldatum,
rdatum,
newdatum;
InsertIndexResult res;
if (stk == NULL)
{
rtnewroot(r, ltup, rtup);
return;
}
b = ReadBuffer(r, stk->rts_blk);
p = BufferGetPage(b);
old = (IndexTuple) PageGetItem(p, PageGetItemId(p, stk->rts_child));
/*
* This is a hack. Right now, we force rtree internal keys to be
* constant size. To fix this, need delete the old key and add both
* left and right for the two new pages. The insertion of left may
* force a split if the new left key is bigger than the old key.
*/
if (IndexTupleSize(old) != IndexTupleSize(ltup))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("variable-length rtree keys are not supported")));
/* install pointer to left child */
memmove(old, ltup, IndexTupleSize(ltup));
if (nospace(p, rtup))
{
newdatum = IndexTupleGetDatum(ltup);
rttighten(r, stk->rts_parent, newdatum,
IndexTupleAttSize(ltup), rtstate);
res = rtdosplit(r, b, stk->rts_parent, rtup, rtstate);
WriteBuffer(b); /* don't forget to release buffer! -
* 01/31/94 */
pfree(res);
}
else
{
if (PageAddItem(p, (Item) rtup, IndexTupleSize(rtup),
PageGetMaxOffsetNumber(p),
LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
WriteBuffer(b);
ldatum = IndexTupleGetDatum(ltup);
rdatum = IndexTupleGetDatum(rtup);
newdatum = FunctionCall2(&rtstate->unionFn, ldatum, rdatum);
rttighten(r, stk->rts_parent, newdatum,
IndexTupleAttSize(rtup), rtstate);
pfree(DatumGetPointer(newdatum));
}
}
static void
rtnewroot(Relation r, IndexTuple lt, IndexTuple rt)
{
Buffer b;
Page p;
b = ReadBuffer(r, P_ROOT);
RTInitBuffer(b, 0);
p = BufferGetPage(b);
if (PageAddItem(p, (Item) lt, IndexTupleSize(lt),
FirstOffsetNumber,
LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
if (PageAddItem(p, (Item) rt, IndexTupleSize(rt),
OffsetNumberNext(FirstOffsetNumber),
LP_USED) == InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(r));
WriteBuffer(b);
}
/*
* Choose how to split an rtree page into two pages.
*
* We return two vectors of index item numbers, one for the items to be
* put on the left page, one for the items to be put on the right page.
* In addition, the item to be added (itup) is listed in the appropriate
* vector. It is represented by item number N+1 (N = # of items on page).
*
* Both vectors have a terminating sentinel value of InvalidOffsetNumber,
* but the sentinal value is no longer used, because the SPLITVEC
* vector also contains the length of each vector, and that information
* is now used to iterate over them in rtdosplit(). --kbb, 21 Sept 2001
*
* The bounding-box datums for the two new pages are also returned in *v.
*
* This is the quadratic-cost split algorithm Guttman describes in
* his paper. The reason we chose it is that you can implement this
* with less information about the data types on which you're operating.
*
* We must also deal with a consideration not found in Guttman's algorithm:
* variable-length data. In particular, the incoming item might be
* large enough that not just any split will work. In the worst case,
* our "split" may have to be the new item on one page and all the existing
* items on the other. Short of that, we have to take care that we do not
* make a split that leaves both pages too full for the new item.
*/
static void
rtpicksplit(Relation r,
Page page,
SPLITVEC *v,
IndexTuple itup,
RTSTATE *rtstate)
{
OffsetNumber maxoff,
newitemoff;
OffsetNumber i,
j;
IndexTuple item_1,
item_2;
Datum datum_alpha,
datum_beta;
Datum datum_l,
datum_r;
Datum union_d,
union_dl,
union_dr;
Datum inter_d;
bool firsttime;
float size_alpha,
size_beta,
size_union,
size_inter;
float size_waste,
waste;
float size_l,
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
Size newitemsz,
item_1_sz,
item_2_sz,
left_avail_space,
right_avail_space;
int total_num_tuples,
num_tuples_without_seeds,
max_after_split; /* in Guttman's lingo, (M - m) */
float diff; /* diff between cost of putting tuple left
* or right */
SPLITCOST *cost_vector;
int n;
/*
* First, make sure the new item is not so large that we can't
* possibly fit it on a page, even by itself. (It's sufficient to
* make this test here, since any oversize tuple must lead to a page
* split attempt.)
*/
newitemsz = IndexTupleTotalSize(itup);
if (newitemsz > RTPageAvailSpace)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index row size %lu exceeds rtree maximum, %lu",
(unsigned long) newitemsz,
(unsigned long) RTPageAvailSpace)));
maxoff = PageGetMaxOffsetNumber(page);
newitemoff = OffsetNumberNext(maxoff); /* phony index for new
* item */
total_num_tuples = newitemoff;
num_tuples_without_seeds = total_num_tuples - 2;
max_after_split = total_num_tuples / 2; /* works for m = M/2 */
/* Make arrays big enough for worst case, including sentinel */
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
datum_alpha = IndexTupleGetDatum(item_1);
item_1_sz = IndexTupleTotalSize(item_1);
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
item_2 = (IndexTuple) PageGetItem(page, PageGetItemId(page, j));
datum_beta = IndexTupleGetDatum(item_2);
item_2_sz = IndexTupleTotalSize(item_2);
/*
* Ignore seed pairs that don't leave room for the new item on
* either split page.
*/
if (newitemsz + item_1_sz > RTPageAvailSpace &&
newitemsz + item_2_sz > RTPageAvailSpace)
continue;
/* compute the wasted space by unioning these guys */
union_d = FunctionCall2(&rtstate->unionFn,
datum_alpha, datum_beta);
FunctionCall2(&rtstate->sizeFn, union_d,
PointerGetDatum(&size_union));
inter_d = FunctionCall2(&rtstate->interFn,
datum_alpha, datum_beta);
/*
* The interFn may return a NULL pointer (not an SQL null!) to
* indicate no intersection. sizeFn must cope with this.
*/
FunctionCall2(&rtstate->sizeFn, inter_d,
PointerGetDatum(&size_inter));
size_waste = size_union - size_inter;
if (DatumGetPointer(union_d) != NULL)
pfree(DatumGetPointer(union_d));
if (DatumGetPointer(inter_d) != NULL)
pfree(DatumGetPointer(inter_d));
/*
* are these a more promising split that what we've already
* seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
if (firsttime)
{
/*
* There is no possible split except to put the new item on its
* own page. Since we still have to compute the union rectangles,
* we play dumb and run through the split algorithm anyway,
* setting seed_1 = first item on page and seed_2 = new item.
*/
seed_1 = FirstOffsetNumber;
seed_2 = newitemoff;
}
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, seed_1));
datum_alpha = IndexTupleGetDatum(item_1);
datum_l = FunctionCall2(&rtstate->unionFn, datum_alpha, datum_alpha);
FunctionCall2(&rtstate->sizeFn, datum_l, PointerGetDatum(&size_l));
left_avail_space = RTPageAvailSpace - IndexTupleTotalSize(item_1);
if (seed_2 == newitemoff)
{
item_2 = itup;
/* Needn't leave room for new item in calculations below */
newitemsz = 0;
}
else
item_2 = (IndexTuple) PageGetItem(page, PageGetItemId(page, seed_2));
datum_beta = IndexTupleGetDatum(item_2);
datum_r = FunctionCall2(&rtstate->unionFn, datum_beta, datum_beta);
FunctionCall2(&rtstate->sizeFn, datum_r, PointerGetDatum(&size_r));
right_avail_space = RTPageAvailSpace - IndexTupleTotalSize(item_2);
/*
* Now split up the regions between the two seeds.
*
* The cost_vector array will contain hints for determining where each
* tuple should go. Each record in the array will contain a boolean,
* choose_left, that indicates which node the tuple prefers to be on,
* and the absolute difference in cost between putting the tuple in
* its favored node and in the other node.
*
* Later, we will sort the cost_vector in descending order by cost
* difference, and consider the tuples in that order for placement.
* That way, the tuples that *really* want to be in one node or the
* other get to choose first, and the tuples that don't really care
* choose last.
*
* First, build the cost_vector array. The new index tuple will also be
* handled in this loop, and represented in the array, with
* i==newitemoff.
*
* In the case of variable size tuples it is possible that we only have
* the two seeds and no other tuples, in which case we don't do any of
* this cost_vector stuff.
*/
/* to keep compiler quiet */
cost_vector = NULL;
if (num_tuples_without_seeds > 0)
{
cost_vector =
(SPLITCOST *) palloc(num_tuples_without_seeds * sizeof(SPLITCOST));
n = 0;
for (i = FirstOffsetNumber; i <= newitemoff; i = OffsetNumberNext(i))
{
/* Compute new union datums and sizes for both choices */
if ((i == seed_1) || (i == seed_2))
continue;
else if (i == newitemoff)
item_1 = itup;
else
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
datum_alpha = IndexTupleGetDatum(item_1);
union_dl = FunctionCall2(&rtstate->unionFn, datum_l, datum_alpha);
union_dr = FunctionCall2(&rtstate->unionFn, datum_r, datum_alpha);
FunctionCall2(&rtstate->sizeFn, union_dl,
PointerGetDatum(&size_alpha));
FunctionCall2(&rtstate->sizeFn, union_dr,
PointerGetDatum(&size_beta));
pfree(DatumGetPointer(union_dl));
pfree(DatumGetPointer(union_dr));
diff = (size_alpha - size_l) - (size_beta - size_r);
cost_vector[n].offset_number = i;
cost_vector[n].cost_differential = fabs(diff);
cost_vector[n].choose_left = (diff < 0);
n++;
}
/*
* Sort the array. The function qsort_comp_splitcost is set up
* "backwards", to provided descending order.
*/
qsort(cost_vector, num_tuples_without_seeds, sizeof(SPLITCOST),
&qsort_comp_splitcost);
}
/*
* Now make the final decisions about where each tuple will go, and
* build the vectors to return in the SPLITVEC record.
*
* The cost_vector array contains (descriptions of) all the tuples, in
* the order that we want to consider them, so we we just iterate
* through it and place each tuple in left or right nodes, according
* to the criteria described below.
*/
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
/*
* Place the seeds first. left avail space, left union, right avail
* space, and right union have already been adjusted for the seeds.
*/
*left++ = seed_1;
v->spl_nleft++;
*right++ = seed_2;
v->spl_nright++;
for (n = 0; n < num_tuples_without_seeds; n++)
{
bool left_feasible,
right_feasible,
choose_left;
/*
* We need to figure out which page needs the least enlargement in
* order to store the item.
*/
i = cost_vector[n].offset_number;
/* Compute new union datums and sizes for both possible additions */
if (i == newitemoff)
{
item_1 = itup;
/* Needn't leave room for new item anymore */
newitemsz = 0;
}
else
item_1 = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
item_1_sz = IndexTupleTotalSize(item_1);
datum_alpha = IndexTupleGetDatum(item_1);
union_dl = FunctionCall2(&rtstate->unionFn, datum_l, datum_alpha);
union_dr = FunctionCall2(&rtstate->unionFn, datum_r, datum_alpha);
FunctionCall2(&rtstate->sizeFn, union_dl,
PointerGetDatum(&size_alpha));
FunctionCall2(&rtstate->sizeFn, union_dr,
PointerGetDatum(&size_beta));
/*
* We prefer the page that shows smaller enlargement of its union
* area (Guttman's algorithm), but we must take care that at least
* one page will still have room for the new item after this one
* is added.
*
* (We know that all the old items together can fit on one page, so
* we need not worry about any other problem than failing to fit
* the new item.)
*
* Guttman's algorithm actually has two factors to consider (in
* order): 1. if one node has so many tuples already assigned to
* it that the other needs all the rest in order to satisfy the
* condition that neither node has fewer than m tuples, then that
* is decisive; 2. otherwise, choose the page that shows the
* smaller enlargement of its union area.
*
* I have chosen m = M/2, where M is the maximum number of tuples on
* a page. (Actually, this is only strictly true for fixed size
* tuples. For variable size tuples, there still might have to be
* only one tuple on a page, if it is really big. But even with
* variable size tuples we still try to get m as close as possible
* to M/2.)
*
* The question of which page shows the smaller enlargement of its
* union area has already been answered, and the answer stored in
* the choose_left field of the SPLITCOST record.
*/
left_feasible = (left_avail_space >= item_1_sz &&
((left_avail_space - item_1_sz) >= newitemsz ||
right_avail_space >= newitemsz));
right_feasible = (right_avail_space >= item_1_sz &&
((right_avail_space - item_1_sz) >= newitemsz ||
left_avail_space >= newitemsz));
if (left_feasible && right_feasible)
{
/*
* Both feasible, use Guttman's algorithm. First check the m
* condition described above, and if that doesn't apply,
* choose the page with the smaller enlargement of its union
* area.
*/
if (v->spl_nleft > max_after_split)
choose_left = false;
else if (v->spl_nright > max_after_split)
choose_left = true;
else
choose_left = cost_vector[n].choose_left;
}
else if (left_feasible)
choose_left = true;
else if (right_feasible)
choose_left = false;
else
{
elog(ERROR, "failed to find a workable rtree page split");
choose_left = false; /* keep compiler quiet */
}
if (choose_left)
{
pfree(DatumGetPointer(datum_l));
pfree(DatumGetPointer(union_dr));
datum_l = union_dl;
size_l = size_alpha;
left_avail_space -= item_1_sz;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(DatumGetPointer(datum_r));
pfree(DatumGetPointer(union_dl));
datum_r = union_dr;
size_r = size_beta;
right_avail_space -= item_1_sz;
*right++ = i;
v->spl_nright++;
}
}
if (num_tuples_without_seeds > 0)
pfree(cost_vector);
*left = *right = InvalidOffsetNumber; /* add ending sentinels */
v->spl_ldatum = datum_l;
v->spl_rdatum = datum_r;
}
static void
RTInitBuffer(Buffer b, uint32 f)
{
RTreePageOpaque opaque;
Page page;
Size pageSize;
pageSize = BufferGetPageSize(b);
page = BufferGetPage(b);
PageInit(page, pageSize, sizeof(RTreePageOpaqueData));
opaque = (RTreePageOpaque) PageGetSpecialPointer(page);
opaque->flags = f;
}
static OffsetNumber
choose(Relation r, Page p, IndexTuple it, RTSTATE *rtstate)
{
OffsetNumber maxoff;
OffsetNumber i;
Datum ud,
id;
Datum datum;
float usize,
dsize;
OffsetNumber which;
float which_grow;
id = IndexTupleGetDatum(it);
maxoff = PageGetMaxOffsetNumber(p);
which_grow = -1.0;
which = -1;
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
datum = IndexTupleGetDatum(PageGetItem(p, PageGetItemId(p, i)));
FunctionCall2(&rtstate->sizeFn, datum,
PointerGetDatum(&dsize));
ud = FunctionCall2(&rtstate->unionFn, datum, id);
FunctionCall2(&rtstate->sizeFn, ud,
PointerGetDatum(&usize));
pfree(DatumGetPointer(ud));
if (which_grow < 0 || usize - dsize < which_grow)
{
which = i;
which_grow = usize - dsize;
if (which_grow == 0)
break;
}
}
return which;
}
static int
nospace(Page p, IndexTuple it)
{
return PageGetFreeSpace(p) < IndexTupleSize(it);
}
void
freestack(RTSTACK *s)
{
RTSTACK *p;
while (s != NULL)
{
p = s->rts_parent;
pfree(s);
s = p;
}
}
/*
* Bulk deletion of all index entries pointing to a set of heap tuples.
* The set of target tuples is specified via a callback routine that tells
* whether any given heap tuple (identified by ItemPointer) is being deleted.
*
* Result: a palloc'd struct containing statistical info for VACUUM displays.
*/
Datum
rtbulkdelete(PG_FUNCTION_ARGS)
{
Relation rel = (Relation) PG_GETARG_POINTER(0);
IndexBulkDeleteCallback callback = (IndexBulkDeleteCallback) PG_GETARG_POINTER(1);
void *callback_state = (void *) PG_GETARG_POINTER(2);
IndexBulkDeleteResult *result;
BlockNumber num_pages;
double tuples_removed;
double num_index_tuples;
IndexScanDesc iscan;
tuples_removed = 0;
num_index_tuples = 0;
/*
* Since rtree is not marked "amconcurrent" in pg_am, caller should
* have acquired exclusive lock on index relation. We need no locking
* here.
*/
/*
* XXX generic implementation --- should be improved!
*/
/* walk through the entire index */
iscan = index_beginscan(NULL, rel, SnapshotAny, 0, NULL);
/* including killed tuples */
iscan->ignore_killed_tuples = false;
while (index_getnext_indexitem(iscan, ForwardScanDirection))
{
if (callback(&iscan->xs_ctup.t_self, callback_state))
{
ItemPointerData indextup = iscan->currentItemData;
BlockNumber blkno;
OffsetNumber offnum;
Buffer buf;
Page page;
blkno = ItemPointerGetBlockNumber(&indextup);
offnum = ItemPointerGetOffsetNumber(&indextup);
/* adjust any scans that will be affected by this deletion */
/* (namely, my own scan) */
rtadjscans(rel, RTOP_DEL, blkno, offnum);
/* delete the index tuple */
buf = ReadBuffer(rel, blkno);
page = BufferGetPage(buf);
PageIndexTupleDelete(page, offnum);
WriteBuffer(buf);
tuples_removed += 1;
}
else
num_index_tuples += 1;
}
index_endscan(iscan);
/* return statistics */
num_pages = RelationGetNumberOfBlocks(rel);
result = (IndexBulkDeleteResult *) palloc0(sizeof(IndexBulkDeleteResult));
result->num_pages = num_pages;
result->num_index_tuples = num_index_tuples;
result->tuples_removed = tuples_removed;
PG_RETURN_POINTER(result);
}
static void
initRtstate(RTSTATE *rtstate, Relation index)
{
fmgr_info_copy(&rtstate->unionFn,
index_getprocinfo(index, 1, RT_UNION_PROC),
CurrentMemoryContext);
fmgr_info_copy(&rtstate->sizeFn,
index_getprocinfo(index, 1, RT_SIZE_PROC),
CurrentMemoryContext);
fmgr_info_copy(&rtstate->interFn,
index_getprocinfo(index, 1, RT_INTER_PROC),
CurrentMemoryContext);
}
/* for sorting SPLITCOST records in descending order */
static int
qsort_comp_splitcost(const void *a, const void *b)
{
float diff =
((SPLITCOST *) a)->cost_differential -
((SPLITCOST *) b)->cost_differential;
if (diff < 0)
return 1;
else if (diff > 0)
return -1;
else
return 0;
}
#ifdef RTDEBUG
void
_rtdump(Relation r)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
BlockNumber blkno;
BlockNumber nblocks;
RTreePageOpaque po;
IndexTuple itup;
BlockNumber itblkno;
OffsetNumber itoffno;
Datum datum;
char *itkey;
nblocks = RelationGetNumberOfBlocks(r);
for (blkno = 0; blkno < nblocks; blkno++)
{
buf = ReadBuffer(r, blkno);
page = BufferGetPage(buf);
po = (RTreePageOpaque) PageGetSpecialPointer(page);
maxoff = PageGetMaxOffsetNumber(page);
printf("Page %d maxoff %d <%s>\n", blkno, maxoff,
(po->flags & F_LEAF ? "LEAF" : "INTERNAL"));
if (PageIsEmpty(page))
{
ReleaseBuffer(buf);
continue;
}
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
itup = (IndexTuple) PageGetItem(page, PageGetItemId(page, offnum));
itblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
itoffno = ItemPointerGetOffsetNumber(&(itup->t_tid));
datum = IndexTupleGetDatum(itup);
itkey = DatumGetCString(DirectFunctionCall1(box_out,
datum));
printf("\t[%d] size %d heap <%d,%d> key:%s\n",
offnum, IndexTupleSize(itup), itblkno, itoffno, itkey);
pfree(itkey);
}
ReleaseBuffer(buf);
}
}
#endif /* defined RTDEBUG */
void
rtree_redo(XLogRecPtr lsn, XLogRecord *record)
{
elog(PANIC, "rtree_redo: unimplemented");
}
void
rtree_undo(XLogRecPtr lsn, XLogRecord *record)
{
elog(PANIC, "rtree_undo: unimplemented");
}
void
rtree_desc(char *buf, uint8 xl_info, char *rec)
{
}