5193 lines
112 KiB
C
5193 lines
112 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* numeric.c
|
|
* An exact numeric data type for the Postgres database system
|
|
*
|
|
* Original coding 1998, Jan Wieck. Heavily revised 2003, Tom Lane.
|
|
*
|
|
* Many of the algorithmic ideas are borrowed from David M. Smith's "FM"
|
|
* multiple-precision math library, most recently published as Algorithm
|
|
* 786: Multiple-Precision Complex Arithmetic and Functions, ACM
|
|
* Transactions on Mathematical Software, Vol. 24, No. 4, December 1998,
|
|
* pages 359-367.
|
|
*
|
|
* Copyright (c) 1998-2004, PostgreSQL Global Development Group
|
|
*
|
|
* IDENTIFICATION
|
|
* $PostgreSQL: pgsql/src/backend/utils/adt/numeric.c,v 1.79 2004/08/30 02:54:39 momjian Exp $
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <ctype.h>
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <errno.h>
|
|
|
|
#include "catalog/pg_type.h"
|
|
#include "libpq/pqformat.h"
|
|
#include "utils/array.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/int8.h"
|
|
#include "utils/numeric.h"
|
|
|
|
/* ----------
|
|
* Uncomment the following to enable compilation of dump_numeric()
|
|
* and dump_var() and to get a dump of any result produced by make_result().
|
|
* ----------
|
|
#define NUMERIC_DEBUG
|
|
*/
|
|
|
|
|
|
/* ----------
|
|
* Local data types
|
|
*
|
|
* Numeric values are represented in a base-NBASE floating point format.
|
|
* Each "digit" ranges from 0 to NBASE-1. The type NumericDigit is signed
|
|
* and wide enough to store a digit. We assume that NBASE*NBASE can fit in
|
|
* an int. Although the purely calculational routines could handle any even
|
|
* NBASE that's less than sqrt(INT_MAX), in practice we are only interested
|
|
* in NBASE a power of ten, so that I/O conversions and decimal rounding
|
|
* are easy. Also, it's actually more efficient if NBASE is rather less than
|
|
* sqrt(INT_MAX), so that there is "headroom" for mul_var and div_var to
|
|
* postpone processing carries.
|
|
* ----------
|
|
*/
|
|
|
|
#if 0
|
|
#define NBASE 10
|
|
#define HALF_NBASE 5
|
|
#define DEC_DIGITS 1 /* decimal digits per NBASE digit */
|
|
#define MUL_GUARD_DIGITS 4 /* these are measured in NBASE digits */
|
|
#define DIV_GUARD_DIGITS 8
|
|
|
|
typedef signed char NumericDigit;
|
|
#endif
|
|
|
|
#if 0
|
|
#define NBASE 100
|
|
#define HALF_NBASE 50
|
|
#define DEC_DIGITS 2 /* decimal digits per NBASE digit */
|
|
#define MUL_GUARD_DIGITS 3 /* these are measured in NBASE digits */
|
|
#define DIV_GUARD_DIGITS 6
|
|
|
|
typedef signed char NumericDigit;
|
|
#endif
|
|
|
|
#if 1
|
|
#define NBASE 10000
|
|
#define HALF_NBASE 5000
|
|
#define DEC_DIGITS 4 /* decimal digits per NBASE digit */
|
|
#define MUL_GUARD_DIGITS 2 /* these are measured in NBASE digits */
|
|
#define DIV_GUARD_DIGITS 4
|
|
|
|
typedef int16 NumericDigit;
|
|
#endif
|
|
|
|
|
|
/* ----------
|
|
* The value represented by a NumericVar is determined by the sign, weight,
|
|
* ndigits, and digits[] array.
|
|
* Note: the first digit of a NumericVar's value is assumed to be multiplied
|
|
* by NBASE ** weight. Another way to say it is that there are weight+1
|
|
* digits before the decimal point. It is possible to have weight < 0.
|
|
*
|
|
* buf points at the physical start of the palloc'd digit buffer for the
|
|
* NumericVar. digits points at the first digit in actual use (the one
|
|
* with the specified weight). We normally leave an unused digit or two
|
|
* (preset to zeroes) between buf and digits, so that there is room to store
|
|
* a carry out of the top digit without special pushups. We just need to
|
|
* decrement digits (and increment weight) to make room for the carry digit.
|
|
* (There is no such extra space in a numeric value stored in the database,
|
|
* only in a NumericVar in memory.)
|
|
*
|
|
* If buf is NULL then the digit buffer isn't actually palloc'd and should
|
|
* not be freed --- see the constants below for an example.
|
|
*
|
|
* dscale, or display scale, is the nominal precision expressed as number
|
|
* of digits after the decimal point (it must always be >= 0 at present).
|
|
* dscale may be more than the number of physically stored fractional digits,
|
|
* implying that we have suppressed storage of significant trailing zeroes.
|
|
* It should never be less than the number of stored digits, since that would
|
|
* imply hiding digits that are present. NOTE that dscale is always expressed
|
|
* in *decimal* digits, and so it may correspond to a fractional number of
|
|
* base-NBASE digits --- divide by DEC_DIGITS to convert to NBASE digits.
|
|
*
|
|
* rscale, or result scale, is the target precision for a computation.
|
|
* Like dscale it is expressed as number of *decimal* digits after the decimal
|
|
* point, and is always >= 0 at present.
|
|
* Note that rscale is not stored in variables --- it's figured on-the-fly
|
|
* from the dscales of the inputs.
|
|
*
|
|
* NB: All the variable-level functions are written in a style that makes it
|
|
* possible to give one and the same variable as argument and destination.
|
|
* This is feasible because the digit buffer is separate from the variable.
|
|
* ----------
|
|
*/
|
|
typedef struct NumericVar
|
|
{
|
|
int ndigits; /* # of digits in digits[] - can be 0! */
|
|
int weight; /* weight of first digit */
|
|
int sign; /* NUMERIC_POS, NUMERIC_NEG, or
|
|
* NUMERIC_NAN */
|
|
int dscale; /* display scale */
|
|
NumericDigit *buf; /* start of palloc'd space for digits[] */
|
|
NumericDigit *digits; /* base-NBASE digits */
|
|
} NumericVar;
|
|
|
|
|
|
/* ----------
|
|
* Some preinitialized constants
|
|
* ----------
|
|
*/
|
|
static NumericDigit const_zero_data[1] = {0};
|
|
static NumericVar const_zero =
|
|
{0, 0, NUMERIC_POS, 0, NULL, const_zero_data};
|
|
|
|
static NumericDigit const_one_data[1] = {1};
|
|
static NumericVar const_one =
|
|
{1, 0, NUMERIC_POS, 0, NULL, const_one_data};
|
|
|
|
static NumericDigit const_two_data[1] = {2};
|
|
static NumericVar const_two =
|
|
{1, 0, NUMERIC_POS, 0, NULL, const_two_data};
|
|
|
|
#if DEC_DIGITS == 4
|
|
static NumericDigit const_zero_point_five_data[1] = {5000};
|
|
|
|
#elif DEC_DIGITS == 2
|
|
static NumericDigit const_zero_point_five_data[1] = {50};
|
|
|
|
#elif DEC_DIGITS == 1
|
|
static NumericDigit const_zero_point_five_data[1] = {5};
|
|
#endif
|
|
static NumericVar const_zero_point_five =
|
|
{1, -1, NUMERIC_POS, 1, NULL, const_zero_point_five_data};
|
|
|
|
#if DEC_DIGITS == 4
|
|
static NumericDigit const_zero_point_nine_data[1] = {9000};
|
|
|
|
#elif DEC_DIGITS == 2
|
|
static NumericDigit const_zero_point_nine_data[1] = {90};
|
|
|
|
#elif DEC_DIGITS == 1
|
|
static NumericDigit const_zero_point_nine_data[1] = {9};
|
|
#endif
|
|
static NumericVar const_zero_point_nine =
|
|
{1, -1, NUMERIC_POS, 1, NULL, const_zero_point_nine_data};
|
|
|
|
#if DEC_DIGITS == 4
|
|
static NumericDigit const_zero_point_01_data[1] = {100};
|
|
static NumericVar const_zero_point_01 =
|
|
{1, -1, NUMERIC_POS, 2, NULL, const_zero_point_01_data};
|
|
|
|
#elif DEC_DIGITS == 2
|
|
static NumericDigit const_zero_point_01_data[1] = {1};
|
|
static NumericVar const_zero_point_01 =
|
|
{1, -1, NUMERIC_POS, 2, NULL, const_zero_point_01_data};
|
|
|
|
#elif DEC_DIGITS == 1
|
|
static NumericDigit const_zero_point_01_data[1] = {1};
|
|
static NumericVar const_zero_point_01 =
|
|
{1, -2, NUMERIC_POS, 2, NULL, const_zero_point_01_data};
|
|
#endif
|
|
|
|
#if DEC_DIGITS == 4
|
|
static NumericDigit const_one_point_one_data[2] = {1, 1000};
|
|
|
|
#elif DEC_DIGITS == 2
|
|
static NumericDigit const_one_point_one_data[2] = {1, 10};
|
|
|
|
#elif DEC_DIGITS == 1
|
|
static NumericDigit const_one_point_one_data[2] = {1, 1};
|
|
#endif
|
|
static NumericVar const_one_point_one =
|
|
{2, 0, NUMERIC_POS, 1, NULL, const_one_point_one_data};
|
|
|
|
static NumericVar const_nan =
|
|
{0, 0, NUMERIC_NAN, 0, NULL, NULL};
|
|
|
|
#if DEC_DIGITS == 4
|
|
static const int round_powers[4] = {0, 1000, 100, 10};
|
|
#endif
|
|
|
|
|
|
/* ----------
|
|
* Local functions
|
|
* ----------
|
|
*/
|
|
|
|
#ifdef NUMERIC_DEBUG
|
|
static void dump_numeric(const char *str, Numeric num);
|
|
static void dump_var(const char *str, NumericVar *var);
|
|
|
|
#else
|
|
#define dump_numeric(s,n)
|
|
#define dump_var(s,v)
|
|
#endif
|
|
|
|
#define digitbuf_alloc(ndigits) \
|
|
((NumericDigit *) palloc((ndigits) * sizeof(NumericDigit)))
|
|
#define digitbuf_free(buf) \
|
|
do { \
|
|
if ((buf) != NULL) \
|
|
pfree(buf); \
|
|
} while (0)
|
|
|
|
#define init_var(v) MemSetAligned(v, 0, sizeof(NumericVar))
|
|
|
|
static void alloc_var(NumericVar *var, int ndigits);
|
|
static void free_var(NumericVar *var);
|
|
static void zero_var(NumericVar *var);
|
|
|
|
static void set_var_from_str(const char *str, NumericVar *dest);
|
|
static void set_var_from_num(Numeric value, NumericVar *dest);
|
|
static void set_var_from_var(NumericVar *value, NumericVar *dest);
|
|
static char *get_str_from_var(NumericVar *var, int dscale);
|
|
|
|
static Numeric make_result(NumericVar *var);
|
|
|
|
static void apply_typmod(NumericVar *var, int32 typmod);
|
|
|
|
static int32 numericvar_to_int4(NumericVar *var);
|
|
static bool numericvar_to_int8(NumericVar *var, int64 *result);
|
|
static void int8_to_numericvar(int64 val, NumericVar *var);
|
|
static double numeric_to_double_no_overflow(Numeric num);
|
|
static double numericvar_to_double_no_overflow(NumericVar *var);
|
|
|
|
static int cmp_numerics(Numeric num1, Numeric num2);
|
|
static int cmp_var(NumericVar *var1, NumericVar *var2);
|
|
static void add_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
|
|
static void sub_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
|
|
static void mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
|
|
int rscale);
|
|
static void div_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
|
|
int rscale);
|
|
static int select_div_scale(NumericVar *var1, NumericVar *var2);
|
|
static void mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result);
|
|
static void ceil_var(NumericVar *var, NumericVar *result);
|
|
static void floor_var(NumericVar *var, NumericVar *result);
|
|
|
|
static void sqrt_var(NumericVar *arg, NumericVar *result, int rscale);
|
|
static void exp_var(NumericVar *arg, NumericVar *result, int rscale);
|
|
static void exp_var_internal(NumericVar *arg, NumericVar *result, int rscale);
|
|
static void ln_var(NumericVar *arg, NumericVar *result, int rscale);
|
|
static void log_var(NumericVar *base, NumericVar *num, NumericVar *result);
|
|
static void power_var(NumericVar *base, NumericVar *exp, NumericVar *result);
|
|
static void power_var_int(NumericVar *base, int exp, NumericVar *result,
|
|
int rscale);
|
|
|
|
static int cmp_abs(NumericVar *var1, NumericVar *var2);
|
|
static void add_abs(NumericVar *var1, NumericVar *var2, NumericVar *result);
|
|
static void sub_abs(NumericVar *var1, NumericVar *var2, NumericVar *result);
|
|
static void round_var(NumericVar *var, int rscale);
|
|
static void trunc_var(NumericVar *var, int rscale);
|
|
static void strip_var(NumericVar *var);
|
|
static void compute_bucket(Numeric operand, Numeric bound1, Numeric bound2,
|
|
NumericVar *count_var, NumericVar *result_var);
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Input-, output- and rounding-functions
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/*
|
|
* numeric_in() -
|
|
*
|
|
* Input function for numeric data type
|
|
*/
|
|
Datum
|
|
numeric_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
|
|
#ifdef NOT_USED
|
|
Oid typelem = PG_GETARG_OID(1);
|
|
#endif
|
|
int32 typmod = PG_GETARG_INT32(2);
|
|
NumericVar value;
|
|
Numeric res;
|
|
|
|
/*
|
|
* Check for NaN
|
|
*/
|
|
if (pg_strcasecmp(str, "NaN") == 0)
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Use set_var_from_str() to parse the input string and return it in
|
|
* the packed DB storage format
|
|
*/
|
|
init_var(&value);
|
|
set_var_from_str(str, &value);
|
|
|
|
apply_typmod(&value, typmod);
|
|
|
|
res = make_result(&value);
|
|
free_var(&value);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_out() -
|
|
*
|
|
* Output function for numeric data type
|
|
*/
|
|
Datum
|
|
numeric_out(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
NumericVar x;
|
|
char *str;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_CSTRING(pstrdup("NaN"));
|
|
|
|
/*
|
|
* Get the number in the variable format.
|
|
*
|
|
* Even if we didn't need to change format, we'd still need to copy the
|
|
* value to have a modifiable copy for rounding. set_var_from_num()
|
|
* also guarantees there is extra digit space in case we produce a
|
|
* carry out from rounding.
|
|
*/
|
|
init_var(&x);
|
|
set_var_from_num(num, &x);
|
|
|
|
str = get_str_from_var(&x, x.dscale);
|
|
|
|
free_var(&x);
|
|
|
|
PG_RETURN_CSTRING(str);
|
|
}
|
|
|
|
/*
|
|
* numeric_recv - converts external binary format to numeric
|
|
*
|
|
* External format is a sequence of int16's:
|
|
* ndigits, weight, sign, dscale, NumericDigits.
|
|
*/
|
|
Datum
|
|
numeric_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
NumericVar value;
|
|
Numeric res;
|
|
int len,
|
|
i;
|
|
|
|
init_var(&value);
|
|
|
|
len = (uint16) pq_getmsgint(buf, sizeof(uint16));
|
|
if (len < 0 || len > NUMERIC_MAX_PRECISION + NUMERIC_MAX_RESULT_SCALE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid length in external \"numeric\" value")));
|
|
|
|
alloc_var(&value, len);
|
|
|
|
value.weight = (int16) pq_getmsgint(buf, sizeof(int16));
|
|
value.sign = (uint16) pq_getmsgint(buf, sizeof(uint16));
|
|
if (!(value.sign == NUMERIC_POS ||
|
|
value.sign == NUMERIC_NEG ||
|
|
value.sign == NUMERIC_NAN))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid sign in external \"numeric\" value")));
|
|
|
|
value.dscale = (uint16) pq_getmsgint(buf, sizeof(uint16));
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
NumericDigit d = pq_getmsgint(buf, sizeof(NumericDigit));
|
|
|
|
if (d < 0 || d >= NBASE)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_BINARY_REPRESENTATION),
|
|
errmsg("invalid digit in external \"numeric\" value")));
|
|
value.digits[i] = d;
|
|
}
|
|
|
|
res = make_result(&value);
|
|
free_var(&value);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
/*
|
|
* numeric_send - converts numeric to binary format
|
|
*/
|
|
Datum
|
|
numeric_send(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
NumericVar x;
|
|
StringInfoData buf;
|
|
int i;
|
|
|
|
init_var(&x);
|
|
set_var_from_num(num, &x);
|
|
|
|
pq_begintypsend(&buf);
|
|
|
|
pq_sendint(&buf, x.ndigits, sizeof(int16));
|
|
pq_sendint(&buf, x.weight, sizeof(int16));
|
|
pq_sendint(&buf, x.sign, sizeof(int16));
|
|
pq_sendint(&buf, x.dscale, sizeof(int16));
|
|
for (i = 0; i < x.ndigits; i++)
|
|
pq_sendint(&buf, x.digits[i], sizeof(NumericDigit));
|
|
|
|
free_var(&x);
|
|
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric() -
|
|
*
|
|
* This is a special function called by the Postgres database system
|
|
* before a value is stored in a tuple's attribute. The precision and
|
|
* scale of the attribute have to be applied on the value.
|
|
*/
|
|
Datum
|
|
numeric (PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
int32 typmod = PG_GETARG_INT32(1);
|
|
Numeric new;
|
|
int32 tmp_typmod;
|
|
int precision;
|
|
int scale;
|
|
int ddigits;
|
|
int maxdigits;
|
|
NumericVar var;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* If the value isn't a valid type modifier, simply return a copy of
|
|
* the input value
|
|
*/
|
|
if (typmod < (int32) (VARHDRSZ))
|
|
{
|
|
new = (Numeric) palloc(num->varlen);
|
|
memcpy(new, num, num->varlen);
|
|
PG_RETURN_NUMERIC(new);
|
|
}
|
|
|
|
/*
|
|
* Get the precision and scale out of the typmod value
|
|
*/
|
|
tmp_typmod = typmod - VARHDRSZ;
|
|
precision = (tmp_typmod >> 16) & 0xffff;
|
|
scale = tmp_typmod & 0xffff;
|
|
maxdigits = precision - scale;
|
|
|
|
/*
|
|
* If the number is certainly in bounds and due to the target scale no
|
|
* rounding could be necessary, just make a copy of the input and
|
|
* modify its scale fields. (Note we assume the existing dscale is
|
|
* honest...)
|
|
*/
|
|
ddigits = (num->n_weight + 1) * DEC_DIGITS;
|
|
if (ddigits <= maxdigits && scale >= NUMERIC_DSCALE(num))
|
|
{
|
|
new = (Numeric) palloc(num->varlen);
|
|
memcpy(new, num, num->varlen);
|
|
new->n_sign_dscale = NUMERIC_SIGN(new) |
|
|
((uint16) scale & NUMERIC_DSCALE_MASK);
|
|
PG_RETURN_NUMERIC(new);
|
|
}
|
|
|
|
/*
|
|
* We really need to fiddle with things - unpack the number into a
|
|
* variable and let apply_typmod() do it.
|
|
*/
|
|
init_var(&var);
|
|
|
|
set_var_from_num(num, &var);
|
|
apply_typmod(&var, typmod);
|
|
new = make_result(&var);
|
|
|
|
free_var(&var);
|
|
|
|
PG_RETURN_NUMERIC(new);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Sign manipulation, rounding and the like
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
Datum
|
|
numeric_abs(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Do it the easy way directly on the packed format
|
|
*/
|
|
res = (Numeric) palloc(num->varlen);
|
|
memcpy(res, num, num->varlen);
|
|
|
|
res->n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_uminus(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Do it the easy way directly on the packed format
|
|
*/
|
|
res = (Numeric) palloc(num->varlen);
|
|
memcpy(res, num, num->varlen);
|
|
|
|
/*
|
|
* The packed format is known to be totally zero digit trimmed always.
|
|
* So we can identify a ZERO by the fact that there are no digits at
|
|
* all. Do nothing to a zero.
|
|
*/
|
|
if (num->varlen != NUMERIC_HDRSZ)
|
|
{
|
|
/* Else, flip the sign */
|
|
if (NUMERIC_SIGN(num) == NUMERIC_POS)
|
|
res->n_sign_dscale = NUMERIC_NEG | NUMERIC_DSCALE(num);
|
|
else
|
|
res->n_sign_dscale = NUMERIC_POS | NUMERIC_DSCALE(num);
|
|
}
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_uplus(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
|
|
res = (Numeric) palloc(num->varlen);
|
|
memcpy(res, num, num->varlen);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
/*
|
|
* numeric_sign() -
|
|
*
|
|
* returns -1 if the argument is less than 0, 0 if the argument is equal
|
|
* to 0, and 1 if the argument is greater than zero.
|
|
*/
|
|
Datum
|
|
numeric_sign(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
init_var(&result);
|
|
|
|
/*
|
|
* The packed format is known to be totally zero digit trimmed always.
|
|
* So we can identify a ZERO by the fact that there are no digits at
|
|
* all.
|
|
*/
|
|
if (num->varlen == NUMERIC_HDRSZ)
|
|
set_var_from_var(&const_zero, &result);
|
|
else
|
|
{
|
|
/*
|
|
* And if there are some, we return a copy of ONE with the sign of
|
|
* our argument
|
|
*/
|
|
set_var_from_var(&const_one, &result);
|
|
result.sign = NUMERIC_SIGN(num);
|
|
}
|
|
|
|
res = make_result(&result);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_round() -
|
|
*
|
|
* Round a value to have 'scale' digits after the decimal point.
|
|
* We allow negative 'scale', implying rounding before the decimal
|
|
* point --- Oracle interprets rounding that way.
|
|
*/
|
|
Datum
|
|
numeric_round(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
int32 scale = PG_GETARG_INT32(1);
|
|
Numeric res;
|
|
NumericVar arg;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Limit the scale value to avoid possible overflow in calculations
|
|
*/
|
|
scale = Max(scale, -NUMERIC_MAX_RESULT_SCALE);
|
|
scale = Min(scale, NUMERIC_MAX_RESULT_SCALE);
|
|
|
|
/*
|
|
* Unpack the argument and round it at the proper digit position
|
|
*/
|
|
init_var(&arg);
|
|
set_var_from_num(num, &arg);
|
|
|
|
round_var(&arg, scale);
|
|
|
|
/* We don't allow negative output dscale */
|
|
if (scale < 0)
|
|
arg.dscale = 0;
|
|
|
|
/*
|
|
* Return the rounded result
|
|
*/
|
|
res = make_result(&arg);
|
|
|
|
free_var(&arg);
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_trunc() -
|
|
*
|
|
* Truncate a value to have 'scale' digits after the decimal point.
|
|
* We allow negative 'scale', implying a truncation before the decimal
|
|
* point --- Oracle interprets truncation that way.
|
|
*/
|
|
Datum
|
|
numeric_trunc(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
int32 scale = PG_GETARG_INT32(1);
|
|
Numeric res;
|
|
NumericVar arg;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Limit the scale value to avoid possible overflow in calculations
|
|
*/
|
|
scale = Max(scale, -NUMERIC_MAX_RESULT_SCALE);
|
|
scale = Min(scale, NUMERIC_MAX_RESULT_SCALE);
|
|
|
|
/*
|
|
* Unpack the argument and truncate it at the proper digit position
|
|
*/
|
|
init_var(&arg);
|
|
set_var_from_num(num, &arg);
|
|
|
|
trunc_var(&arg, scale);
|
|
|
|
/* We don't allow negative output dscale */
|
|
if (scale < 0)
|
|
arg.dscale = 0;
|
|
|
|
/*
|
|
* Return the truncated result
|
|
*/
|
|
res = make_result(&arg);
|
|
|
|
free_var(&arg);
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_ceil() -
|
|
*
|
|
* Return the smallest integer greater than or equal to the argument
|
|
*/
|
|
Datum
|
|
numeric_ceil(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num, &result);
|
|
ceil_var(&result, &result);
|
|
|
|
res = make_result(&result);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_floor() -
|
|
*
|
|
* Return the largest integer equal to or less than the argument
|
|
*/
|
|
Datum
|
|
numeric_floor(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num, &result);
|
|
floor_var(&result, &result);
|
|
|
|
res = make_result(&result);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
/*
|
|
* width_bucket_numeric() -
|
|
*
|
|
* 'bound1' and 'bound2' are the lower and upper bounds of the
|
|
* histogram's range, respectively. 'count' is the number of buckets
|
|
* in the histogram. width_bucket() returns an integer indicating the
|
|
* bucket number that 'operand' belongs in for an equiwidth histogram
|
|
* with the specified characteristics. An operand smaller than the
|
|
* lower bound is assigned to bucket 0. An operand greater than the
|
|
* upper bound is assigned to an additional bucket (with number
|
|
* count+1).
|
|
*/
|
|
Datum
|
|
width_bucket_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric operand = PG_GETARG_NUMERIC(0);
|
|
Numeric bound1 = PG_GETARG_NUMERIC(1);
|
|
Numeric bound2 = PG_GETARG_NUMERIC(2);
|
|
int32 count = PG_GETARG_INT32(3);
|
|
NumericVar count_var;
|
|
NumericVar result_var;
|
|
int32 result;
|
|
|
|
if (count <= 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("count must be greater than zero")));
|
|
|
|
init_var(&result_var);
|
|
init_var(&count_var);
|
|
|
|
/* Convert 'count' to a numeric, for ease of use later */
|
|
int8_to_numericvar((int64) count, &count_var);
|
|
|
|
switch (cmp_numerics(bound1, bound2))
|
|
{
|
|
case 0:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_WIDTH_BUCKET_FUNCTION),
|
|
errmsg("lower bound cannot equal upper bound")));
|
|
|
|
/* bound1 < bound2 */
|
|
case -1:
|
|
if (cmp_numerics(operand, bound1) < 0)
|
|
set_var_from_var(&const_zero, &result_var);
|
|
else if (cmp_numerics(operand, bound2) >= 0)
|
|
add_var(&count_var, &const_one, &result_var);
|
|
else
|
|
compute_bucket(operand, bound1, bound2,
|
|
&count_var, &result_var);
|
|
break;
|
|
|
|
/* bound1 > bound2 */
|
|
case 1:
|
|
if (cmp_numerics(operand, bound1) > 0)
|
|
set_var_from_var(&const_zero, &result_var);
|
|
else if (cmp_numerics(operand, bound2) <= 0)
|
|
add_var(&count_var, &const_one, &result_var);
|
|
else
|
|
compute_bucket(operand, bound1, bound2,
|
|
&count_var, &result_var);
|
|
break;
|
|
}
|
|
|
|
result = numericvar_to_int4(&result_var);
|
|
|
|
free_var(&count_var);
|
|
free_var(&result_var);
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* compute_bucket() -
|
|
*
|
|
* If 'operand' is not outside the bucket range, determine the correct
|
|
* bucket for it to go. The calculations performed by this function
|
|
* are derived directly from the SQL2003 spec.
|
|
*/
|
|
static void
|
|
compute_bucket(Numeric operand, Numeric bound1, Numeric bound2,
|
|
NumericVar *count_var, NumericVar *result_var)
|
|
{
|
|
NumericVar bound1_var;
|
|
NumericVar bound2_var;
|
|
NumericVar operand_var;
|
|
|
|
init_var(&bound1_var);
|
|
init_var(&bound2_var);
|
|
init_var(&operand_var);
|
|
|
|
set_var_from_num(bound1, &bound1_var);
|
|
set_var_from_num(bound2, &bound2_var);
|
|
set_var_from_num(operand, &operand_var);
|
|
|
|
if (cmp_var(&bound1_var, &bound2_var) < 0)
|
|
{
|
|
sub_var(&operand_var, &bound1_var, &operand_var);
|
|
sub_var(&bound2_var, &bound1_var, &bound2_var);
|
|
div_var(&operand_var, &bound2_var, result_var,
|
|
select_div_scale(&operand_var, &bound2_var));
|
|
}
|
|
else
|
|
{
|
|
sub_var(&bound1_var, &operand_var, &operand_var);
|
|
sub_var(&bound1_var, &bound2_var, &bound1_var);
|
|
div_var(&operand_var, &bound1_var, result_var,
|
|
select_div_scale(&operand_var, &bound1_var));
|
|
}
|
|
|
|
mul_var(result_var, count_var, result_var,
|
|
result_var->dscale + count_var->dscale);
|
|
add_var(result_var, &const_one, result_var);
|
|
floor_var(result_var, result_var);
|
|
|
|
free_var(&bound1_var);
|
|
free_var(&bound2_var);
|
|
free_var(&operand_var);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Comparison functions
|
|
*
|
|
* Note: btree indexes need these routines not to leak memory; therefore,
|
|
* be careful to free working copies of toasted datums. Most places don't
|
|
* need to be so careful.
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
Datum
|
|
numeric_cmp(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
int result;
|
|
|
|
result = cmp_numerics(num1, num2);
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
bool result;
|
|
|
|
result = cmp_numerics(num1, num2) == 0;
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
numeric_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
bool result;
|
|
|
|
result = cmp_numerics(num1, num2) != 0;
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
numeric_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
bool result;
|
|
|
|
result = cmp_numerics(num1, num2) > 0;
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
numeric_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
bool result;
|
|
|
|
result = cmp_numerics(num1, num2) >= 0;
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
numeric_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
bool result;
|
|
|
|
result = cmp_numerics(num1, num2) < 0;
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
Datum
|
|
numeric_le(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
bool result;
|
|
|
|
result = cmp_numerics(num1, num2) <= 0;
|
|
|
|
PG_FREE_IF_COPY(num1, 0);
|
|
PG_FREE_IF_COPY(num2, 1);
|
|
|
|
PG_RETURN_BOOL(result);
|
|
}
|
|
|
|
static int
|
|
cmp_numerics(Numeric num1, Numeric num2)
|
|
{
|
|
int result;
|
|
|
|
/*
|
|
* We consider all NANs to be equal and larger than any non-NAN. This
|
|
* is somewhat arbitrary; the important thing is to have a consistent
|
|
* sort order.
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1))
|
|
{
|
|
if (NUMERIC_IS_NAN(num2))
|
|
result = 0; /* NAN = NAN */
|
|
else
|
|
result = 1; /* NAN > non-NAN */
|
|
}
|
|
else if (NUMERIC_IS_NAN(num2))
|
|
{
|
|
result = -1; /* non-NAN < NAN */
|
|
}
|
|
else
|
|
{
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
result = cmp_var(&arg1, &arg2);
|
|
|
|
free_var(&arg1);
|
|
free_var(&arg2);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Basic arithmetic functions
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/*
|
|
* numeric_add() -
|
|
*
|
|
* Add two numerics
|
|
*/
|
|
Datum
|
|
numeric_add(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar result;
|
|
Numeric res;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Unpack the values, let add_var() compute the result and return it.
|
|
*/
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
add_var(&arg1, &arg2, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&arg1);
|
|
free_var(&arg2);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_sub() -
|
|
*
|
|
* Subtract one numeric from another
|
|
*/
|
|
Datum
|
|
numeric_sub(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar result;
|
|
Numeric res;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Unpack the values, let sub_var() compute the result and return it.
|
|
*/
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
sub_var(&arg1, &arg2, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&arg1);
|
|
free_var(&arg2);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_mul() -
|
|
*
|
|
* Calculate the product of two numerics
|
|
*/
|
|
Datum
|
|
numeric_mul(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar result;
|
|
Numeric res;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Unpack the values, let mul_var() compute the result and return it.
|
|
* Unlike add_var() and sub_var(), mul_var() will round its result. In
|
|
* the case of numeric_mul(), which is invoked for the * operator on
|
|
* numerics, we request exact representation for the product (rscale =
|
|
* sum(dscale of arg1, dscale of arg2)).
|
|
*/
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
mul_var(&arg1, &arg2, &result, arg1.dscale + arg2.dscale);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&arg1);
|
|
free_var(&arg2);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_div() -
|
|
*
|
|
* Divide one numeric into another
|
|
*/
|
|
Datum
|
|
numeric_div(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar result;
|
|
Numeric res;
|
|
int rscale;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Unpack the arguments
|
|
*/
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
/*
|
|
* Select scale for division result
|
|
*/
|
|
rscale = select_div_scale(&arg1, &arg2);
|
|
|
|
/*
|
|
* Do the divide and return the result
|
|
*/
|
|
div_var(&arg1, &arg2, &result, rscale);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&arg1);
|
|
free_var(&arg2);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_mod() -
|
|
*
|
|
* Calculate the modulo of two numerics
|
|
*/
|
|
Datum
|
|
numeric_mod(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
Numeric res;
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar result;
|
|
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
mod_var(&arg1, &arg2, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
free_var(&arg2);
|
|
free_var(&arg1);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_inc() -
|
|
*
|
|
* Increment a number by one
|
|
*/
|
|
Datum
|
|
numeric_inc(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
NumericVar arg;
|
|
Numeric res;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Compute the result and return it
|
|
*/
|
|
init_var(&arg);
|
|
|
|
set_var_from_num(num, &arg);
|
|
|
|
add_var(&arg, &const_one, &arg);
|
|
|
|
res = make_result(&arg);
|
|
|
|
free_var(&arg);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_smaller() -
|
|
*
|
|
* Return the smaller of two numbers
|
|
*/
|
|
Datum
|
|
numeric_smaller(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
|
|
/*
|
|
* Use cmp_numerics so that this will agree with the comparison
|
|
* operators, particularly as regards comparisons involving NaN.
|
|
*/
|
|
if (cmp_numerics(num1, num2) < 0)
|
|
PG_RETURN_NUMERIC(num1);
|
|
else
|
|
PG_RETURN_NUMERIC(num2);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_larger() -
|
|
*
|
|
* Return the larger of two numbers
|
|
*/
|
|
Datum
|
|
numeric_larger(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
|
|
/*
|
|
* Use cmp_numerics so that this will agree with the comparison
|
|
* operators, particularly as regards comparisons involving NaN.
|
|
*/
|
|
if (cmp_numerics(num1, num2) > 0)
|
|
PG_RETURN_NUMERIC(num1);
|
|
else
|
|
PG_RETURN_NUMERIC(num2);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Advanced math functions
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* numeric_fac()
|
|
*
|
|
* Compute factorial
|
|
*/
|
|
Datum
|
|
numeric_fac(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 num = PG_GETARG_INT64(0);
|
|
Numeric res;
|
|
NumericVar fact;
|
|
NumericVar result;
|
|
|
|
if (num <= 1)
|
|
{
|
|
res = make_result(&const_one);
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
init_var(&fact);
|
|
init_var(&result);
|
|
|
|
int8_to_numericvar(num, &result);
|
|
|
|
for (num = num - 1; num > 1; num--)
|
|
{
|
|
int8_to_numericvar(num, &fact);
|
|
|
|
mul_var(&result, &fact, &result, 0);
|
|
}
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&fact);
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_sqrt() -
|
|
*
|
|
* Compute the square root of a numeric.
|
|
*/
|
|
Datum
|
|
numeric_sqrt(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
NumericVar arg;
|
|
NumericVar result;
|
|
int sweight;
|
|
int rscale;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Unpack the argument and determine the result scale. We choose a
|
|
* scale to give at least NUMERIC_MIN_SIG_DIGITS significant digits;
|
|
* but in any case not less than the input's dscale.
|
|
*/
|
|
init_var(&arg);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num, &arg);
|
|
|
|
/* Assume the input was normalized, so arg.weight is accurate */
|
|
sweight = (arg.weight + 1) * DEC_DIGITS / 2 - 1;
|
|
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - sweight;
|
|
rscale = Max(rscale, arg.dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
/*
|
|
* Let sqrt_var() do the calculation and return the result.
|
|
*/
|
|
sqrt_var(&arg, &result, rscale);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
free_var(&arg);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_exp() -
|
|
*
|
|
* Raise e to the power of x
|
|
*/
|
|
Datum
|
|
numeric_exp(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
NumericVar arg;
|
|
NumericVar result;
|
|
int rscale;
|
|
double val;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Unpack the argument and determine the result scale. We choose a
|
|
* scale to give at least NUMERIC_MIN_SIG_DIGITS significant digits;
|
|
* but in any case not less than the input's dscale.
|
|
*/
|
|
init_var(&arg);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num, &arg);
|
|
|
|
/* convert input to float8, ignoring overflow */
|
|
val = numericvar_to_double_no_overflow(&arg);
|
|
|
|
/*
|
|
* log10(result) = num * log10(e), so this is approximately the
|
|
* decimal weight of the result:
|
|
*/
|
|
val *= 0.434294481903252;
|
|
|
|
/* limit to something that won't cause integer overflow */
|
|
val = Max(val, -NUMERIC_MAX_RESULT_SCALE);
|
|
val = Min(val, NUMERIC_MAX_RESULT_SCALE);
|
|
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - (int) val;
|
|
rscale = Max(rscale, arg.dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
/*
|
|
* Let exp_var() do the calculation and return the result.
|
|
*/
|
|
exp_var(&arg, &result, rscale);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
free_var(&arg);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_ln() -
|
|
*
|
|
* Compute the natural logarithm of x
|
|
*/
|
|
Datum
|
|
numeric_ln(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
Numeric res;
|
|
NumericVar arg;
|
|
NumericVar result;
|
|
int dec_digits;
|
|
int rscale;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
init_var(&arg);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num, &arg);
|
|
|
|
/* Approx decimal digits before decimal point */
|
|
dec_digits = (arg.weight + 1) * DEC_DIGITS;
|
|
|
|
if (dec_digits > 1)
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - (int) log10(dec_digits - 1);
|
|
else if (dec_digits < 1)
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - (int) log10(1 - dec_digits);
|
|
else
|
|
rscale = NUMERIC_MIN_SIG_DIGITS;
|
|
|
|
rscale = Max(rscale, arg.dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
ln_var(&arg, &result, rscale);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
free_var(&arg);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_log() -
|
|
*
|
|
* Compute the logarithm of x in a given base
|
|
*/
|
|
Datum
|
|
numeric_log(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
Numeric res;
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar result;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Initialize things
|
|
*/
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
|
|
/*
|
|
* Call log_var() to compute and return the result; note it handles
|
|
* scale selection itself.
|
|
*/
|
|
log_var(&arg1, &arg2, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
free_var(&arg2);
|
|
free_var(&arg1);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* numeric_power() -
|
|
*
|
|
* Raise b to the power of x
|
|
*/
|
|
Datum
|
|
numeric_power(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num1 = PG_GETARG_NUMERIC(0);
|
|
Numeric num2 = PG_GETARG_NUMERIC(1);
|
|
Numeric res;
|
|
NumericVar arg1;
|
|
NumericVar arg2;
|
|
NumericVar arg2_trunc;
|
|
NumericVar result;
|
|
|
|
/*
|
|
* Handle NaN
|
|
*/
|
|
if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/*
|
|
* Initialize things
|
|
*/
|
|
init_var(&arg1);
|
|
init_var(&arg2);
|
|
init_var(&arg2_trunc);
|
|
init_var(&result);
|
|
|
|
set_var_from_num(num1, &arg1);
|
|
set_var_from_num(num2, &arg2);
|
|
set_var_from_var(&arg2, &arg2_trunc);
|
|
|
|
trunc_var(&arg2_trunc, 0);
|
|
|
|
/*
|
|
* Return special SQLSTATE error codes for a few conditions mandated
|
|
* by the standard.
|
|
*/
|
|
if ((cmp_var(&arg1, &const_zero) == 0 &&
|
|
cmp_var(&arg2, &const_zero) < 0) ||
|
|
(cmp_var(&arg1, &const_zero) < 0 &&
|
|
cmp_var(&arg2, &arg2_trunc) != 0))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("invalid argument for power function")));
|
|
|
|
/*
|
|
* Call power_var() to compute and return the result; note it handles
|
|
* scale selection itself.
|
|
*/
|
|
power_var(&arg1, &arg2, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
free_var(&arg2);
|
|
free_var(&arg2_trunc);
|
|
free_var(&arg1);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Type conversion functions
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
Datum
|
|
int4_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 val = PG_GETARG_INT32(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
|
|
init_var(&result);
|
|
|
|
int8_to_numericvar((int64) val, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
NumericVar x;
|
|
int32 result;
|
|
|
|
/* XXX would it be better to return NULL? */
|
|
if (NUMERIC_IS_NAN(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot convert NaN to integer")));
|
|
|
|
/* Convert to variable format, then convert to int4 */
|
|
init_var(&x);
|
|
set_var_from_num(num, &x);
|
|
result = numericvar_to_int4(&x);
|
|
free_var(&x);
|
|
PG_RETURN_INT32(result);
|
|
}
|
|
|
|
/*
|
|
* Given a NumericVar, convert it to an int32. If the NumericVar
|
|
* exceeds the range of an int32, raise the appropriate error via
|
|
* ereport(). The input NumericVar is *not* free'd.
|
|
*/
|
|
static int32
|
|
numericvar_to_int4(NumericVar *var)
|
|
{
|
|
int32 result;
|
|
int64 val;
|
|
|
|
if (!numericvar_to_int8(var, &val))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
/* Down-convert to int4 */
|
|
result = (int32) val;
|
|
|
|
/* Test for overflow by reverse-conversion. */
|
|
if ((int64) result != val)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
return result;
|
|
}
|
|
|
|
Datum
|
|
int8_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 val = PG_GETARG_INT64(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
|
|
init_var(&result);
|
|
|
|
int8_to_numericvar(val, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_int8(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
NumericVar x;
|
|
int64 result;
|
|
|
|
/* XXX would it be better to return NULL? */
|
|
if (NUMERIC_IS_NAN(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot convert NaN to integer")));
|
|
|
|
/* Convert to variable format and thence to int8 */
|
|
init_var(&x);
|
|
set_var_from_num(num, &x);
|
|
|
|
if (!numericvar_to_int8(&x, &result))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
free_var(&x);
|
|
|
|
PG_RETURN_INT64(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
int2_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 val = PG_GETARG_INT16(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
|
|
init_var(&result);
|
|
|
|
int8_to_numericvar((int64) val, &result);
|
|
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
NumericVar x;
|
|
int64 val;
|
|
int16 result;
|
|
|
|
/* XXX would it be better to return NULL? */
|
|
if (NUMERIC_IS_NAN(num))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
|
|
errmsg("cannot convert NaN to integer")));
|
|
|
|
/* Convert to variable format and thence to int8 */
|
|
init_var(&x);
|
|
set_var_from_num(num, &x);
|
|
|
|
if (!numericvar_to_int8(&x, &val))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
free_var(&x);
|
|
|
|
/* Down-convert to int2 */
|
|
result = (int16) val;
|
|
|
|
/* Test for overflow by reverse-conversion. */
|
|
if ((int64) result != val)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("integer out of range")));
|
|
|
|
PG_RETURN_INT16(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
float8_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 val = PG_GETARG_FLOAT8(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
char buf[DBL_DIG + 100];
|
|
|
|
if (isnan(val))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
sprintf(buf, "%.*g", DBL_DIG, val);
|
|
|
|
init_var(&result);
|
|
|
|
set_var_from_str(buf, &result);
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_float8(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
char *tmp;
|
|
Datum result;
|
|
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
|
|
NumericGetDatum(num)));
|
|
|
|
result = DirectFunctionCall1(float8in, CStringGetDatum(tmp));
|
|
|
|
pfree(tmp);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
|
|
/* Convert numeric to float8; if out of range, return +/- HUGE_VAL */
|
|
Datum
|
|
numeric_float8_no_overflow(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
double val;
|
|
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_FLOAT8(get_float8_nan());
|
|
|
|
val = numeric_to_double_no_overflow(num);
|
|
|
|
PG_RETURN_FLOAT8(val);
|
|
}
|
|
|
|
Datum
|
|
float4_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 val = PG_GETARG_FLOAT4(0);
|
|
Numeric res;
|
|
NumericVar result;
|
|
char buf[FLT_DIG + 100];
|
|
|
|
if (isnan(val))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
sprintf(buf, "%.*g", FLT_DIG, val);
|
|
|
|
init_var(&result);
|
|
|
|
set_var_from_str(buf, &result);
|
|
res = make_result(&result);
|
|
|
|
free_var(&result);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
Datum
|
|
numeric_float4(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric num = PG_GETARG_NUMERIC(0);
|
|
char *tmp;
|
|
Datum result;
|
|
|
|
if (NUMERIC_IS_NAN(num))
|
|
PG_RETURN_FLOAT4(get_float4_nan());
|
|
|
|
tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
|
|
NumericGetDatum(num)));
|
|
|
|
result = DirectFunctionCall1(float4in, CStringGetDatum(tmp));
|
|
|
|
pfree(tmp);
|
|
|
|
PG_RETURN_DATUM(result);
|
|
}
|
|
|
|
|
|
Datum
|
|
text_numeric(PG_FUNCTION_ARGS)
|
|
{
|
|
text *str = PG_GETARG_TEXT_P(0);
|
|
int len;
|
|
char *s;
|
|
Datum result;
|
|
|
|
len = (VARSIZE(str) - VARHDRSZ);
|
|
s = palloc(len + 1);
|
|
memcpy(s, VARDATA(str), len);
|
|
*(s + len) = '\0';
|
|
|
|
result = DirectFunctionCall3(numeric_in, CStringGetDatum(s),
|
|
ObjectIdGetDatum(0), Int32GetDatum(-1));
|
|
|
|
pfree(s);
|
|
|
|
return result;
|
|
}
|
|
|
|
Datum
|
|
numeric_text(PG_FUNCTION_ARGS)
|
|
{
|
|
/* val is numeric, but easier to leave it as Datum */
|
|
Datum val = PG_GETARG_DATUM(0);
|
|
char *s;
|
|
int len;
|
|
text *result;
|
|
|
|
s = DatumGetCString(DirectFunctionCall1(numeric_out, val));
|
|
len = strlen(s);
|
|
|
|
result = (text *) palloc(VARHDRSZ + len);
|
|
|
|
VARATT_SIZEP(result) = len + VARHDRSZ;
|
|
memcpy(VARDATA(result), s, len);
|
|
|
|
pfree(s);
|
|
|
|
PG_RETURN_TEXT_P(result);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Aggregate functions
|
|
*
|
|
* The transition datatype for all these aggregates is a 3-element array
|
|
* of Numeric, holding the values N, sum(X), sum(X*X) in that order.
|
|
*
|
|
* We represent N as a numeric mainly to avoid having to build a special
|
|
* datatype; it's unlikely it'd overflow an int4, but ...
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
static ArrayType *
|
|
do_numeric_accum(ArrayType *transarray, Numeric newval)
|
|
{
|
|
Datum *transdatums;
|
|
int ndatums;
|
|
Datum N,
|
|
sumX,
|
|
sumX2;
|
|
ArrayType *result;
|
|
|
|
/* We assume the input is array of numeric */
|
|
deconstruct_array(transarray,
|
|
NUMERICOID, -1, false, 'i',
|
|
&transdatums, &ndatums);
|
|
if (ndatums != 3)
|
|
elog(ERROR, "expected 3-element numeric array");
|
|
N = transdatums[0];
|
|
sumX = transdatums[1];
|
|
sumX2 = transdatums[2];
|
|
|
|
N = DirectFunctionCall1(numeric_inc, N);
|
|
sumX = DirectFunctionCall2(numeric_add, sumX,
|
|
NumericGetDatum(newval));
|
|
sumX2 = DirectFunctionCall2(numeric_add, sumX2,
|
|
DirectFunctionCall2(numeric_mul,
|
|
NumericGetDatum(newval),
|
|
NumericGetDatum(newval)));
|
|
|
|
transdatums[0] = N;
|
|
transdatums[1] = sumX;
|
|
transdatums[2] = sumX2;
|
|
|
|
result = construct_array(transdatums, 3,
|
|
NUMERICOID, -1, false, 'i');
|
|
|
|
return result;
|
|
}
|
|
|
|
Datum
|
|
numeric_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Numeric newval = PG_GETARG_NUMERIC(1);
|
|
|
|
PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
|
|
}
|
|
|
|
/*
|
|
* Integer data types all use Numeric accumulators to share code and
|
|
* avoid risk of overflow. For int2 and int4 inputs, Numeric accumulation
|
|
* is overkill for the N and sum(X) values, but definitely not overkill
|
|
* for the sum(X*X) value. Hence, we use int2_accum and int4_accum only
|
|
* for stddev/variance --- there are faster special-purpose accumulator
|
|
* routines for SUM and AVG of these datatypes.
|
|
*/
|
|
|
|
Datum
|
|
int2_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Datum newval2 = PG_GETARG_DATUM(1);
|
|
Numeric newval;
|
|
|
|
newval = DatumGetNumeric(DirectFunctionCall1(int2_numeric, newval2));
|
|
|
|
PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
|
|
}
|
|
|
|
Datum
|
|
int4_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Datum newval4 = PG_GETARG_DATUM(1);
|
|
Numeric newval;
|
|
|
|
newval = DatumGetNumeric(DirectFunctionCall1(int4_numeric, newval4));
|
|
|
|
PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
|
|
}
|
|
|
|
Datum
|
|
int8_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Datum newval8 = PG_GETARG_DATUM(1);
|
|
Numeric newval;
|
|
|
|
newval = DatumGetNumeric(DirectFunctionCall1(int8_numeric, newval8));
|
|
|
|
PG_RETURN_ARRAYTYPE_P(do_numeric_accum(transarray, newval));
|
|
}
|
|
|
|
Datum
|
|
numeric_avg(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Datum *transdatums;
|
|
int ndatums;
|
|
Numeric N,
|
|
sumX;
|
|
|
|
/* We assume the input is array of numeric */
|
|
deconstruct_array(transarray,
|
|
NUMERICOID, -1, false, 'i',
|
|
&transdatums, &ndatums);
|
|
if (ndatums != 3)
|
|
elog(ERROR, "expected 3-element numeric array");
|
|
N = DatumGetNumeric(transdatums[0]);
|
|
sumX = DatumGetNumeric(transdatums[1]);
|
|
/* ignore sumX2 */
|
|
|
|
/* SQL92 defines AVG of no values to be NULL */
|
|
/* N is zero iff no digits (cf. numeric_uminus) */
|
|
if (N->varlen == NUMERIC_HDRSZ)
|
|
PG_RETURN_NULL();
|
|
|
|
PG_RETURN_DATUM(DirectFunctionCall2(numeric_div,
|
|
NumericGetDatum(sumX),
|
|
NumericGetDatum(N)));
|
|
}
|
|
|
|
Datum
|
|
numeric_variance(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Datum *transdatums;
|
|
int ndatums;
|
|
Numeric N,
|
|
sumX,
|
|
sumX2,
|
|
res;
|
|
NumericVar vN,
|
|
vsumX,
|
|
vsumX2,
|
|
vNminus1;
|
|
int rscale;
|
|
|
|
/* We assume the input is array of numeric */
|
|
deconstruct_array(transarray,
|
|
NUMERICOID, -1, false, 'i',
|
|
&transdatums, &ndatums);
|
|
if (ndatums != 3)
|
|
elog(ERROR, "expected 3-element numeric array");
|
|
N = DatumGetNumeric(transdatums[0]);
|
|
sumX = DatumGetNumeric(transdatums[1]);
|
|
sumX2 = DatumGetNumeric(transdatums[2]);
|
|
|
|
if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/* Sample variance is undefined when N is 0 or 1, so return NULL */
|
|
init_var(&vN);
|
|
set_var_from_num(N, &vN);
|
|
|
|
if (cmp_var(&vN, &const_one) <= 0)
|
|
{
|
|
free_var(&vN);
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
init_var(&vNminus1);
|
|
sub_var(&vN, &const_one, &vNminus1);
|
|
|
|
init_var(&vsumX);
|
|
set_var_from_num(sumX, &vsumX);
|
|
init_var(&vsumX2);
|
|
set_var_from_num(sumX2, &vsumX2);
|
|
|
|
/* compute rscale for mul_var calls */
|
|
rscale = vsumX.dscale * 2;
|
|
|
|
mul_var(&vsumX, &vsumX, &vsumX, rscale); /* vsumX = sumX * sumX */
|
|
mul_var(&vN, &vsumX2, &vsumX2, rscale); /* vsumX2 = N * sumX2 */
|
|
sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */
|
|
|
|
if (cmp_var(&vsumX2, &const_zero) <= 0)
|
|
{
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
res = make_result(&const_zero);
|
|
}
|
|
else
|
|
{
|
|
mul_var(&vN, &vNminus1, &vNminus1, 0); /* N * (N - 1) */
|
|
rscale = select_div_scale(&vsumX2, &vNminus1);
|
|
div_var(&vsumX2, &vNminus1, &vsumX, rscale); /* variance */
|
|
|
|
res = make_result(&vsumX);
|
|
}
|
|
|
|
free_var(&vN);
|
|
free_var(&vNminus1);
|
|
free_var(&vsumX);
|
|
free_var(&vsumX2);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
Datum
|
|
numeric_stddev(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Datum *transdatums;
|
|
int ndatums;
|
|
Numeric N,
|
|
sumX,
|
|
sumX2,
|
|
res;
|
|
NumericVar vN,
|
|
vsumX,
|
|
vsumX2,
|
|
vNminus1;
|
|
int rscale;
|
|
|
|
/* We assume the input is array of numeric */
|
|
deconstruct_array(transarray,
|
|
NUMERICOID, -1, false, 'i',
|
|
&transdatums, &ndatums);
|
|
if (ndatums != 3)
|
|
elog(ERROR, "expected 3-element numeric array");
|
|
N = DatumGetNumeric(transdatums[0]);
|
|
sumX = DatumGetNumeric(transdatums[1]);
|
|
sumX2 = DatumGetNumeric(transdatums[2]);
|
|
|
|
if (NUMERIC_IS_NAN(N) || NUMERIC_IS_NAN(sumX) || NUMERIC_IS_NAN(sumX2))
|
|
PG_RETURN_NUMERIC(make_result(&const_nan));
|
|
|
|
/* Sample stddev is undefined when N is 0 or 1, so return NULL */
|
|
init_var(&vN);
|
|
set_var_from_num(N, &vN);
|
|
|
|
if (cmp_var(&vN, &const_one) <= 0)
|
|
{
|
|
free_var(&vN);
|
|
PG_RETURN_NULL();
|
|
}
|
|
|
|
init_var(&vNminus1);
|
|
sub_var(&vN, &const_one, &vNminus1);
|
|
|
|
init_var(&vsumX);
|
|
set_var_from_num(sumX, &vsumX);
|
|
init_var(&vsumX2);
|
|
set_var_from_num(sumX2, &vsumX2);
|
|
|
|
/* compute rscale for mul_var calls */
|
|
rscale = vsumX.dscale * 2;
|
|
|
|
mul_var(&vsumX, &vsumX, &vsumX, rscale); /* vsumX = sumX * sumX */
|
|
mul_var(&vN, &vsumX2, &vsumX2, rscale); /* vsumX2 = N * sumX2 */
|
|
sub_var(&vsumX2, &vsumX, &vsumX2); /* N * sumX2 - sumX * sumX */
|
|
|
|
if (cmp_var(&vsumX2, &const_zero) <= 0)
|
|
{
|
|
/* Watch out for roundoff error producing a negative numerator */
|
|
res = make_result(&const_zero);
|
|
}
|
|
else
|
|
{
|
|
mul_var(&vN, &vNminus1, &vNminus1, 0); /* N * (N - 1) */
|
|
rscale = select_div_scale(&vsumX2, &vNminus1);
|
|
div_var(&vsumX2, &vNminus1, &vsumX, rscale); /* variance */
|
|
sqrt_var(&vsumX, &vsumX, rscale); /* stddev */
|
|
|
|
res = make_result(&vsumX);
|
|
}
|
|
|
|
free_var(&vN);
|
|
free_var(&vNminus1);
|
|
free_var(&vsumX);
|
|
free_var(&vsumX2);
|
|
|
|
PG_RETURN_NUMERIC(res);
|
|
}
|
|
|
|
|
|
/*
|
|
* SUM transition functions for integer datatypes.
|
|
*
|
|
* To avoid overflow, we use accumulators wider than the input datatype.
|
|
* A Numeric accumulator is needed for int8 input; for int4 and int2
|
|
* inputs, we use int8 accumulators which should be sufficient for practical
|
|
* purposes. (The latter two therefore don't really belong in this file,
|
|
* but we keep them here anyway.)
|
|
*
|
|
* Because SQL92 defines the SUM() of no values to be NULL, not zero,
|
|
* the initial condition of the transition data value needs to be NULL. This
|
|
* means we can't rely on ExecAgg to automatically insert the first non-null
|
|
* data value into the transition data: it doesn't know how to do the type
|
|
* conversion. The upshot is that these routines have to be marked non-strict
|
|
* and handle substitution of the first non-null input themselves.
|
|
*/
|
|
|
|
Datum
|
|
int2_sum(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 oldsum;
|
|
int64 newval;
|
|
|
|
if (PG_ARGISNULL(0))
|
|
{
|
|
/* No non-null input seen so far... */
|
|
if (PG_ARGISNULL(1))
|
|
PG_RETURN_NULL(); /* still no non-null */
|
|
/* This is the first non-null input. */
|
|
newval = (int64) PG_GETARG_INT16(1);
|
|
PG_RETURN_INT64(newval);
|
|
}
|
|
|
|
oldsum = PG_GETARG_INT64(0);
|
|
|
|
/* Leave sum unchanged if new input is null. */
|
|
if (PG_ARGISNULL(1))
|
|
PG_RETURN_INT64(oldsum);
|
|
|
|
/* OK to do the addition. */
|
|
newval = oldsum + (int64) PG_GETARG_INT16(1);
|
|
|
|
PG_RETURN_INT64(newval);
|
|
}
|
|
|
|
Datum
|
|
int4_sum(PG_FUNCTION_ARGS)
|
|
{
|
|
int64 oldsum;
|
|
int64 newval;
|
|
|
|
if (PG_ARGISNULL(0))
|
|
{
|
|
/* No non-null input seen so far... */
|
|
if (PG_ARGISNULL(1))
|
|
PG_RETURN_NULL(); /* still no non-null */
|
|
/* This is the first non-null input. */
|
|
newval = (int64) PG_GETARG_INT32(1);
|
|
PG_RETURN_INT64(newval);
|
|
}
|
|
|
|
oldsum = PG_GETARG_INT64(0);
|
|
|
|
/* Leave sum unchanged if new input is null. */
|
|
if (PG_ARGISNULL(1))
|
|
PG_RETURN_INT64(oldsum);
|
|
|
|
/* OK to do the addition. */
|
|
newval = oldsum + (int64) PG_GETARG_INT32(1);
|
|
|
|
PG_RETURN_INT64(newval);
|
|
}
|
|
|
|
Datum
|
|
int8_sum(PG_FUNCTION_ARGS)
|
|
{
|
|
Numeric oldsum;
|
|
Datum newval;
|
|
|
|
if (PG_ARGISNULL(0))
|
|
{
|
|
/* No non-null input seen so far... */
|
|
if (PG_ARGISNULL(1))
|
|
PG_RETURN_NULL(); /* still no non-null */
|
|
/* This is the first non-null input. */
|
|
newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1));
|
|
PG_RETURN_DATUM(newval);
|
|
}
|
|
|
|
oldsum = PG_GETARG_NUMERIC(0);
|
|
|
|
/* Leave sum unchanged if new input is null. */
|
|
if (PG_ARGISNULL(1))
|
|
PG_RETURN_NUMERIC(oldsum);
|
|
|
|
/* OK to do the addition. */
|
|
newval = DirectFunctionCall1(int8_numeric, PG_GETARG_DATUM(1));
|
|
|
|
PG_RETURN_DATUM(DirectFunctionCall2(numeric_add,
|
|
NumericGetDatum(oldsum), newval));
|
|
}
|
|
|
|
|
|
/*
|
|
* Routines for avg(int2) and avg(int4). The transition datatype
|
|
* is a two-element int8 array, holding count and sum.
|
|
*/
|
|
|
|
typedef struct Int8TransTypeData
|
|
{
|
|
#ifndef INT64_IS_BUSTED
|
|
int64 count;
|
|
int64 sum;
|
|
#else
|
|
/* "int64" isn't really 64 bits, so fake up properly-aligned fields */
|
|
int32 count;
|
|
int32 pad1;
|
|
int32 sum;
|
|
int32 pad2;
|
|
#endif
|
|
} Int8TransTypeData;
|
|
|
|
Datum
|
|
int2_avg_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);
|
|
int16 newval = PG_GETARG_INT16(1);
|
|
Int8TransTypeData *transdata;
|
|
|
|
/*
|
|
* We copied the input array, so it's okay to scribble on it directly.
|
|
*/
|
|
if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData))
|
|
elog(ERROR, "expected 2-element int8 array");
|
|
transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
|
|
|
|
transdata->count++;
|
|
transdata->sum += newval;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
|
|
Datum
|
|
int4_avg_accum(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P_COPY(0);
|
|
int32 newval = PG_GETARG_INT32(1);
|
|
Int8TransTypeData *transdata;
|
|
|
|
/*
|
|
* We copied the input array, so it's okay to scribble on it directly.
|
|
*/
|
|
if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData))
|
|
elog(ERROR, "expected 2-element int8 array");
|
|
transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
|
|
|
|
transdata->count++;
|
|
transdata->sum += newval;
|
|
|
|
PG_RETURN_ARRAYTYPE_P(transarray);
|
|
}
|
|
|
|
Datum
|
|
int8_avg(PG_FUNCTION_ARGS)
|
|
{
|
|
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
|
|
Int8TransTypeData *transdata;
|
|
Datum countd,
|
|
sumd;
|
|
|
|
if (ARR_SIZE(transarray) != ARR_OVERHEAD(1) + sizeof(Int8TransTypeData))
|
|
elog(ERROR, "expected 2-element int8 array");
|
|
transdata = (Int8TransTypeData *) ARR_DATA_PTR(transarray);
|
|
|
|
/* SQL92 defines AVG of no values to be NULL */
|
|
if (transdata->count == 0)
|
|
PG_RETURN_NULL();
|
|
|
|
countd = DirectFunctionCall1(int8_numeric,
|
|
Int64GetDatumFast(transdata->count));
|
|
sumd = DirectFunctionCall1(int8_numeric,
|
|
Int64GetDatumFast(transdata->sum));
|
|
|
|
PG_RETURN_DATUM(DirectFunctionCall2(numeric_div, sumd, countd));
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Debug support
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
#ifdef NUMERIC_DEBUG
|
|
|
|
/*
|
|
* dump_numeric() - Dump a value in the db storage format for debugging
|
|
*/
|
|
static void
|
|
dump_numeric(const char *str, Numeric num)
|
|
{
|
|
NumericDigit *digits = (NumericDigit *) num->n_data;
|
|
int ndigits;
|
|
int i;
|
|
|
|
ndigits = (num->varlen - NUMERIC_HDRSZ) / sizeof(NumericDigit);
|
|
|
|
printf("%s: NUMERIC w=%d d=%d ", str, num->n_weight, NUMERIC_DSCALE(num));
|
|
switch (NUMERIC_SIGN(num))
|
|
{
|
|
case NUMERIC_POS:
|
|
printf("POS");
|
|
break;
|
|
case NUMERIC_NEG:
|
|
printf("NEG");
|
|
break;
|
|
case NUMERIC_NAN:
|
|
printf("NaN");
|
|
break;
|
|
default:
|
|
printf("SIGN=0x%x", NUMERIC_SIGN(num));
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < ndigits; i++)
|
|
printf(" %0*d", DEC_DIGITS, digits[i]);
|
|
printf("\n");
|
|
}
|
|
|
|
|
|
/*
|
|
* dump_var() - Dump a value in the variable format for debugging
|
|
*/
|
|
static void
|
|
dump_var(const char *str, NumericVar *var)
|
|
{
|
|
int i;
|
|
|
|
printf("%s: VAR w=%d d=%d ", str, var->weight, var->dscale);
|
|
switch (var->sign)
|
|
{
|
|
case NUMERIC_POS:
|
|
printf("POS");
|
|
break;
|
|
case NUMERIC_NEG:
|
|
printf("NEG");
|
|
break;
|
|
case NUMERIC_NAN:
|
|
printf("NaN");
|
|
break;
|
|
default:
|
|
printf("SIGN=0x%x", var->sign);
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < var->ndigits; i++)
|
|
printf(" %0*d", DEC_DIGITS, var->digits[i]);
|
|
|
|
printf("\n");
|
|
}
|
|
#endif /* NUMERIC_DEBUG */
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Local functions follow
|
|
*
|
|
* In general, these do not support NaNs --- callers must eliminate
|
|
* the possibility of NaN first. (make_result() is an exception.)
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/*
|
|
* alloc_var() -
|
|
*
|
|
* Allocate a digit buffer of ndigits digits (plus a spare digit for rounding)
|
|
*/
|
|
static void
|
|
alloc_var(NumericVar *var, int ndigits)
|
|
{
|
|
digitbuf_free(var->buf);
|
|
var->buf = digitbuf_alloc(ndigits + 1);
|
|
var->buf[0] = 0; /* spare digit for rounding */
|
|
var->digits = var->buf + 1;
|
|
var->ndigits = ndigits;
|
|
}
|
|
|
|
|
|
/*
|
|
* free_var() -
|
|
*
|
|
* Return the digit buffer of a variable to the free pool
|
|
*/
|
|
static void
|
|
free_var(NumericVar *var)
|
|
{
|
|
digitbuf_free(var->buf);
|
|
var->buf = NULL;
|
|
var->digits = NULL;
|
|
var->sign = NUMERIC_NAN;
|
|
}
|
|
|
|
|
|
/*
|
|
* zero_var() -
|
|
*
|
|
* Set a variable to ZERO.
|
|
* Note: its dscale is not touched.
|
|
*/
|
|
static void
|
|
zero_var(NumericVar *var)
|
|
{
|
|
digitbuf_free(var->buf);
|
|
var->buf = NULL;
|
|
var->digits = NULL;
|
|
var->ndigits = 0;
|
|
var->weight = 0; /* by convention; doesn't really matter */
|
|
var->sign = NUMERIC_POS; /* anything but NAN... */
|
|
}
|
|
|
|
|
|
/*
|
|
* set_var_from_str()
|
|
*
|
|
* Parse a string and put the number into a variable
|
|
*/
|
|
static void
|
|
set_var_from_str(const char *str, NumericVar *dest)
|
|
{
|
|
const char *cp = str;
|
|
bool have_dp = FALSE;
|
|
int i;
|
|
unsigned char *decdigits;
|
|
int sign = NUMERIC_POS;
|
|
int dweight = -1;
|
|
int ddigits;
|
|
int dscale = 0;
|
|
int weight;
|
|
int ndigits;
|
|
int offset;
|
|
NumericDigit *digits;
|
|
|
|
/*
|
|
* We first parse the string to extract decimal digits and determine
|
|
* the correct decimal weight. Then convert to NBASE representation.
|
|
*/
|
|
|
|
/* skip leading spaces */
|
|
while (*cp)
|
|
{
|
|
if (!isspace((unsigned char) *cp))
|
|
break;
|
|
cp++;
|
|
}
|
|
|
|
switch (*cp)
|
|
{
|
|
case '+':
|
|
sign = NUMERIC_POS;
|
|
cp++;
|
|
break;
|
|
|
|
case '-':
|
|
sign = NUMERIC_NEG;
|
|
cp++;
|
|
break;
|
|
}
|
|
|
|
if (*cp == '.')
|
|
{
|
|
have_dp = TRUE;
|
|
cp++;
|
|
}
|
|
|
|
if (!isdigit((unsigned char) *cp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type numeric: \"%s\"", str)));
|
|
|
|
decdigits = (unsigned char *) palloc(strlen(cp) + DEC_DIGITS * 2);
|
|
|
|
/* leading padding for digit alignment later */
|
|
memset(decdigits, 0, DEC_DIGITS);
|
|
i = DEC_DIGITS;
|
|
|
|
while (*cp)
|
|
{
|
|
if (isdigit((unsigned char) *cp))
|
|
{
|
|
decdigits[i++] = *cp++ - '0';
|
|
if (!have_dp)
|
|
dweight++;
|
|
else
|
|
dscale++;
|
|
}
|
|
else if (*cp == '.')
|
|
{
|
|
if (have_dp)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type numeric: \"%s\"",
|
|
str)));
|
|
have_dp = TRUE;
|
|
cp++;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
ddigits = i - DEC_DIGITS;
|
|
/* trailing padding for digit alignment later */
|
|
memset(decdigits + i, 0, DEC_DIGITS - 1);
|
|
|
|
/* Handle exponent, if any */
|
|
if (*cp == 'e' || *cp == 'E')
|
|
{
|
|
long exponent;
|
|
char *endptr;
|
|
|
|
cp++;
|
|
exponent = strtol(cp, &endptr, 10);
|
|
if (endptr == cp)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type numeric: \"%s\"",
|
|
str)));
|
|
cp = endptr;
|
|
if (exponent > NUMERIC_MAX_PRECISION ||
|
|
exponent < -NUMERIC_MAX_PRECISION)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type numeric: \"%s\"",
|
|
str)));
|
|
dweight += (int) exponent;
|
|
dscale -= (int) exponent;
|
|
if (dscale < 0)
|
|
dscale = 0;
|
|
}
|
|
|
|
/* Should be nothing left but spaces */
|
|
while (*cp)
|
|
{
|
|
if (!isspace((unsigned char) *cp))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type numeric: \"%s\"",
|
|
str)));
|
|
cp++;
|
|
}
|
|
|
|
/*
|
|
* Okay, convert pure-decimal representation to base NBASE. First we
|
|
* need to determine the converted weight and ndigits. offset is the
|
|
* number of decimal zeroes to insert before the first given digit to
|
|
* have a correctly aligned first NBASE digit.
|
|
*/
|
|
if (dweight >= 0)
|
|
weight = (dweight + 1 + DEC_DIGITS - 1) / DEC_DIGITS - 1;
|
|
else
|
|
weight = -((-dweight - 1) / DEC_DIGITS + 1);
|
|
offset = (weight + 1) * DEC_DIGITS - (dweight + 1);
|
|
ndigits = (ddigits + offset + DEC_DIGITS - 1) / DEC_DIGITS;
|
|
|
|
alloc_var(dest, ndigits);
|
|
dest->sign = sign;
|
|
dest->weight = weight;
|
|
dest->dscale = dscale;
|
|
|
|
i = DEC_DIGITS - offset;
|
|
digits = dest->digits;
|
|
|
|
while (ndigits-- > 0)
|
|
{
|
|
#if DEC_DIGITS == 4
|
|
*digits++ = ((decdigits[i] * 10 + decdigits[i + 1]) * 10 +
|
|
decdigits[i + 2]) * 10 + decdigits[i + 3];
|
|
#elif DEC_DIGITS == 2
|
|
*digits++ = decdigits[i] * 10 + decdigits[i + 1];
|
|
#elif DEC_DIGITS == 1
|
|
*digits++ = decdigits[i];
|
|
#else
|
|
#error unsupported NBASE
|
|
#endif
|
|
i += DEC_DIGITS;
|
|
}
|
|
|
|
pfree(decdigits);
|
|
|
|
/* Strip any leading/trailing zeroes, and normalize weight if zero */
|
|
strip_var(dest);
|
|
}
|
|
|
|
|
|
/*
|
|
* set_var_from_num() -
|
|
*
|
|
* Convert the packed db format into a variable
|
|
*/
|
|
static void
|
|
set_var_from_num(Numeric num, NumericVar *dest)
|
|
{
|
|
int ndigits;
|
|
|
|
ndigits = (num->varlen - NUMERIC_HDRSZ) / sizeof(NumericDigit);
|
|
|
|
alloc_var(dest, ndigits);
|
|
|
|
dest->weight = num->n_weight;
|
|
dest->sign = NUMERIC_SIGN(num);
|
|
dest->dscale = NUMERIC_DSCALE(num);
|
|
|
|
memcpy(dest->digits, num->n_data, ndigits * sizeof(NumericDigit));
|
|
}
|
|
|
|
|
|
/*
|
|
* set_var_from_var() -
|
|
*
|
|
* Copy one variable into another
|
|
*/
|
|
static void
|
|
set_var_from_var(NumericVar *value, NumericVar *dest)
|
|
{
|
|
NumericDigit *newbuf;
|
|
|
|
newbuf = digitbuf_alloc(value->ndigits + 1);
|
|
newbuf[0] = 0; /* spare digit for rounding */
|
|
memcpy(newbuf + 1, value->digits, value->ndigits * sizeof(NumericDigit));
|
|
|
|
digitbuf_free(dest->buf);
|
|
|
|
memmove(dest, value, sizeof(NumericVar));
|
|
dest->buf = newbuf;
|
|
dest->digits = newbuf + 1;
|
|
}
|
|
|
|
|
|
/*
|
|
* get_str_from_var() -
|
|
*
|
|
* Convert a var to text representation (guts of numeric_out).
|
|
* CAUTION: var's contents may be modified by rounding!
|
|
* Returns a palloc'd string.
|
|
*/
|
|
static char *
|
|
get_str_from_var(NumericVar *var, int dscale)
|
|
{
|
|
char *str;
|
|
char *cp;
|
|
char *endcp;
|
|
int i;
|
|
int d;
|
|
NumericDigit dig;
|
|
|
|
#if DEC_DIGITS > 1
|
|
NumericDigit d1;
|
|
#endif
|
|
|
|
if (dscale < 0)
|
|
dscale = 0;
|
|
|
|
/*
|
|
* Check if we must round up before printing the value and do so.
|
|
*/
|
|
round_var(var, dscale);
|
|
|
|
/*
|
|
* Allocate space for the result.
|
|
*
|
|
* i is set to to # of decimal digits before decimal point. dscale is the
|
|
* # of decimal digits we will print after decimal point. We may
|
|
* generate as many as DEC_DIGITS-1 excess digits at the end, and in
|
|
* addition we need room for sign, decimal point, null terminator.
|
|
*/
|
|
i = (var->weight + 1) * DEC_DIGITS;
|
|
if (i <= 0)
|
|
i = 1;
|
|
|
|
str = palloc(i + dscale + DEC_DIGITS + 2);
|
|
cp = str;
|
|
|
|
/*
|
|
* Output a dash for negative values
|
|
*/
|
|
if (var->sign == NUMERIC_NEG)
|
|
*cp++ = '-';
|
|
|
|
/*
|
|
* Output all digits before the decimal point
|
|
*/
|
|
if (var->weight < 0)
|
|
{
|
|
d = var->weight + 1;
|
|
*cp++ = '0';
|
|
}
|
|
else
|
|
{
|
|
for (d = 0; d <= var->weight; d++)
|
|
{
|
|
dig = (d < var->ndigits) ? var->digits[d] : 0;
|
|
/* In the first digit, suppress extra leading decimal zeroes */
|
|
#if DEC_DIGITS == 4
|
|
{
|
|
bool putit = (d > 0);
|
|
|
|
d1 = dig / 1000;
|
|
dig -= d1 * 1000;
|
|
putit |= (d1 > 0);
|
|
if (putit)
|
|
*cp++ = d1 + '0';
|
|
d1 = dig / 100;
|
|
dig -= d1 * 100;
|
|
putit |= (d1 > 0);
|
|
if (putit)
|
|
*cp++ = d1 + '0';
|
|
d1 = dig / 10;
|
|
dig -= d1 * 10;
|
|
putit |= (d1 > 0);
|
|
if (putit)
|
|
*cp++ = d1 + '0';
|
|
*cp++ = dig + '0';
|
|
}
|
|
#elif DEC_DIGITS == 2
|
|
d1 = dig / 10;
|
|
dig -= d1 * 10;
|
|
if (d1 > 0 || d > 0)
|
|
*cp++ = d1 + '0';
|
|
*cp++ = dig + '0';
|
|
#elif DEC_DIGITS == 1
|
|
*cp++ = dig + '0';
|
|
#else
|
|
#error unsupported NBASE
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If requested, output a decimal point and all the digits that follow
|
|
* it. We initially put out a multiple of DEC_DIGITS digits, then
|
|
* truncate if needed.
|
|
*/
|
|
if (dscale > 0)
|
|
{
|
|
*cp++ = '.';
|
|
endcp = cp + dscale;
|
|
for (i = 0; i < dscale; d++, i += DEC_DIGITS)
|
|
{
|
|
dig = (d >= 0 && d < var->ndigits) ? var->digits[d] : 0;
|
|
#if DEC_DIGITS == 4
|
|
d1 = dig / 1000;
|
|
dig -= d1 * 1000;
|
|
*cp++ = d1 + '0';
|
|
d1 = dig / 100;
|
|
dig -= d1 * 100;
|
|
*cp++ = d1 + '0';
|
|
d1 = dig / 10;
|
|
dig -= d1 * 10;
|
|
*cp++ = d1 + '0';
|
|
*cp++ = dig + '0';
|
|
#elif DEC_DIGITS == 2
|
|
d1 = dig / 10;
|
|
dig -= d1 * 10;
|
|
*cp++ = d1 + '0';
|
|
*cp++ = dig + '0';
|
|
#elif DEC_DIGITS == 1
|
|
*cp++ = dig + '0';
|
|
#else
|
|
#error unsupported NBASE
|
|
#endif
|
|
}
|
|
cp = endcp;
|
|
}
|
|
|
|
/*
|
|
* terminate the string and return it
|
|
*/
|
|
*cp = '\0';
|
|
return str;
|
|
}
|
|
|
|
|
|
/*
|
|
* make_result() -
|
|
*
|
|
* Create the packed db numeric format in palloc()'d memory from
|
|
* a variable.
|
|
*/
|
|
static Numeric
|
|
make_result(NumericVar *var)
|
|
{
|
|
Numeric result;
|
|
NumericDigit *digits = var->digits;
|
|
int weight = var->weight;
|
|
int sign = var->sign;
|
|
int n;
|
|
Size len;
|
|
|
|
if (sign == NUMERIC_NAN)
|
|
{
|
|
result = (Numeric) palloc(NUMERIC_HDRSZ);
|
|
|
|
result->varlen = NUMERIC_HDRSZ;
|
|
result->n_weight = 0;
|
|
result->n_sign_dscale = NUMERIC_NAN;
|
|
|
|
dump_numeric("make_result()", result);
|
|
return result;
|
|
}
|
|
|
|
n = var->ndigits;
|
|
|
|
/* truncate leading zeroes */
|
|
while (n > 0 && *digits == 0)
|
|
{
|
|
digits++;
|
|
weight--;
|
|
n--;
|
|
}
|
|
/* truncate trailing zeroes */
|
|
while (n > 0 && digits[n - 1] == 0)
|
|
n--;
|
|
|
|
/* If zero result, force to weight=0 and positive sign */
|
|
if (n == 0)
|
|
{
|
|
weight = 0;
|
|
sign = NUMERIC_POS;
|
|
}
|
|
|
|
/* Build the result */
|
|
len = NUMERIC_HDRSZ + n * sizeof(NumericDigit);
|
|
result = (Numeric) palloc(len);
|
|
result->varlen = len;
|
|
result->n_weight = weight;
|
|
result->n_sign_dscale = sign | (var->dscale & NUMERIC_DSCALE_MASK);
|
|
|
|
memcpy(result->n_data, digits, n * sizeof(NumericDigit));
|
|
|
|
/* Check for overflow of int16 fields */
|
|
if (result->n_weight != weight ||
|
|
NUMERIC_DSCALE(result) != var->dscale)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("value overflows numeric format")));
|
|
|
|
dump_numeric("make_result()", result);
|
|
return result;
|
|
}
|
|
|
|
|
|
/*
|
|
* apply_typmod() -
|
|
*
|
|
* Do bounds checking and rounding according to the attributes
|
|
* typmod field.
|
|
*/
|
|
static void
|
|
apply_typmod(NumericVar *var, int32 typmod)
|
|
{
|
|
int precision;
|
|
int scale;
|
|
int maxdigits;
|
|
int ddigits;
|
|
int i;
|
|
|
|
/* Do nothing if we have a default typmod (-1) */
|
|
if (typmod < (int32) (VARHDRSZ))
|
|
return;
|
|
|
|
typmod -= VARHDRSZ;
|
|
precision = (typmod >> 16) & 0xffff;
|
|
scale = typmod & 0xffff;
|
|
maxdigits = precision - scale;
|
|
|
|
/* Round to target scale (and set var->dscale) */
|
|
round_var(var, scale);
|
|
|
|
/*
|
|
* Check for overflow - note we can't do this before rounding, because
|
|
* rounding could raise the weight. Also note that the var's weight
|
|
* could be inflated by leading zeroes, which will be stripped before
|
|
* storage but perhaps might not have been yet. In any case, we must
|
|
* recognize a true zero, whose weight doesn't mean anything.
|
|
*/
|
|
ddigits = (var->weight + 1) * DEC_DIGITS;
|
|
if (ddigits > maxdigits)
|
|
{
|
|
/* Determine true weight; and check for all-zero result */
|
|
for (i = 0; i < var->ndigits; i++)
|
|
{
|
|
NumericDigit dig = var->digits[i];
|
|
|
|
if (dig)
|
|
{
|
|
/* Adjust for any high-order decimal zero digits */
|
|
#if DEC_DIGITS == 4
|
|
if (dig < 10)
|
|
ddigits -= 3;
|
|
else if (dig < 100)
|
|
ddigits -= 2;
|
|
else if (dig < 1000)
|
|
ddigits -= 1;
|
|
#elif DEC_DIGITS == 2
|
|
if (dig < 10)
|
|
ddigits -= 1;
|
|
#elif DEC_DIGITS == 1
|
|
/* no adjustment */
|
|
#else
|
|
#error unsupported NBASE
|
|
#endif
|
|
if (ddigits > maxdigits)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("numeric field overflow"),
|
|
errdetail("The absolute value is greater than or equal to 10^%d for field with precision %d, scale %d.",
|
|
ddigits - 1, precision, scale)));
|
|
break;
|
|
}
|
|
ddigits -= DEC_DIGITS;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Convert numeric to int8, rounding if needed.
|
|
*
|
|
* If overflow, return FALSE (no error is raised). Return TRUE if okay.
|
|
*
|
|
* CAUTION: var's contents may be modified by rounding!
|
|
*/
|
|
static bool
|
|
numericvar_to_int8(NumericVar *var, int64 *result)
|
|
{
|
|
NumericDigit *digits;
|
|
int ndigits;
|
|
int weight;
|
|
int i;
|
|
int64 val,
|
|
oldval;
|
|
bool neg;
|
|
|
|
/* Round to nearest integer */
|
|
round_var(var, 0);
|
|
|
|
/* Check for zero input */
|
|
strip_var(var);
|
|
ndigits = var->ndigits;
|
|
if (ndigits == 0)
|
|
{
|
|
*result = 0;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* For input like 10000000000, we must treat stripped digits as real.
|
|
* So the loop assumes there are weight+1 digits before the decimal
|
|
* point.
|
|
*/
|
|
weight = var->weight;
|
|
Assert(weight >= 0 && ndigits <= weight + 1);
|
|
|
|
/* Construct the result */
|
|
digits = var->digits;
|
|
neg = (var->sign == NUMERIC_NEG);
|
|
val = digits[0];
|
|
for (i = 1; i <= weight; i++)
|
|
{
|
|
oldval = val;
|
|
val *= NBASE;
|
|
if (i < ndigits)
|
|
val += digits[i];
|
|
|
|
/*
|
|
* The overflow check is a bit tricky because we want to accept
|
|
* INT64_MIN, which will overflow the positive accumulator. We
|
|
* can detect this case easily though because INT64_MIN is the
|
|
* only nonzero value for which -val == val (on a two's complement
|
|
* machine, anyway).
|
|
*/
|
|
if ((val / NBASE) != oldval) /* possible overflow? */
|
|
{
|
|
if (!neg || (-val) != val || val == 0 || oldval < 0)
|
|
return false;
|
|
}
|
|
}
|
|
|
|
*result = neg ? -val : val;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Convert int8 value to numeric.
|
|
*/
|
|
static void
|
|
int8_to_numericvar(int64 val, NumericVar *var)
|
|
{
|
|
uint64 uval,
|
|
newuval;
|
|
NumericDigit *ptr;
|
|
int ndigits;
|
|
|
|
/* int8 can require at most 19 decimal digits; add one for safety */
|
|
alloc_var(var, 20 / DEC_DIGITS);
|
|
if (val < 0)
|
|
{
|
|
var->sign = NUMERIC_NEG;
|
|
uval = -val;
|
|
}
|
|
else
|
|
{
|
|
var->sign = NUMERIC_POS;
|
|
uval = val;
|
|
}
|
|
var->dscale = 0;
|
|
if (val == 0)
|
|
{
|
|
var->ndigits = 0;
|
|
var->weight = 0;
|
|
return;
|
|
}
|
|
ptr = var->digits + var->ndigits;
|
|
ndigits = 0;
|
|
do
|
|
{
|
|
ptr--;
|
|
ndigits++;
|
|
newuval = uval / NBASE;
|
|
*ptr = uval - newuval * NBASE;
|
|
uval = newuval;
|
|
} while (uval);
|
|
var->digits = ptr;
|
|
var->ndigits = ndigits;
|
|
var->weight = ndigits - 1;
|
|
}
|
|
|
|
/*
|
|
* Convert numeric to float8; if out of range, return +/- HUGE_VAL
|
|
*/
|
|
static double
|
|
numeric_to_double_no_overflow(Numeric num)
|
|
{
|
|
char *tmp;
|
|
double val;
|
|
char *endptr;
|
|
|
|
tmp = DatumGetCString(DirectFunctionCall1(numeric_out,
|
|
NumericGetDatum(num)));
|
|
|
|
/* unlike float8in, we ignore ERANGE from strtod */
|
|
val = strtod(tmp, &endptr);
|
|
if (*endptr != '\0')
|
|
{
|
|
/* shouldn't happen ... */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
tmp)));
|
|
}
|
|
|
|
pfree(tmp);
|
|
|
|
return val;
|
|
}
|
|
|
|
/* As above, but work from a NumericVar */
|
|
static double
|
|
numericvar_to_double_no_overflow(NumericVar *var)
|
|
{
|
|
char *tmp;
|
|
double val;
|
|
char *endptr;
|
|
|
|
tmp = get_str_from_var(var, var->dscale);
|
|
|
|
/* unlike float8in, we ignore ERANGE from strtod */
|
|
val = strtod(tmp, &endptr);
|
|
if (*endptr != '\0')
|
|
{
|
|
/* shouldn't happen ... */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type double precision: \"%s\"",
|
|
tmp)));
|
|
}
|
|
|
|
pfree(tmp);
|
|
|
|
return val;
|
|
}
|
|
|
|
|
|
/*
|
|
* cmp_var() -
|
|
*
|
|
* Compare two values on variable level. We assume zeroes have been
|
|
* truncated to no digits.
|
|
*/
|
|
static int
|
|
cmp_var(NumericVar *var1, NumericVar *var2)
|
|
{
|
|
if (var1->ndigits == 0)
|
|
{
|
|
if (var2->ndigits == 0)
|
|
return 0;
|
|
if (var2->sign == NUMERIC_NEG)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
if (var2->ndigits == 0)
|
|
{
|
|
if (var1->sign == NUMERIC_POS)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
|
|
if (var1->sign == NUMERIC_POS)
|
|
{
|
|
if (var2->sign == NUMERIC_NEG)
|
|
return 1;
|
|
return cmp_abs(var1, var2);
|
|
}
|
|
|
|
if (var2->sign == NUMERIC_POS)
|
|
return -1;
|
|
|
|
return cmp_abs(var2, var1);
|
|
}
|
|
|
|
|
|
/*
|
|
* add_var() -
|
|
*
|
|
* Full version of add functionality on variable level (handling signs).
|
|
* result might point to one of the operands too without danger.
|
|
*/
|
|
static void
|
|
add_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
|
|
{
|
|
/*
|
|
* Decide on the signs of the two variables what to do
|
|
*/
|
|
if (var1->sign == NUMERIC_POS)
|
|
{
|
|
if (var2->sign == NUMERIC_POS)
|
|
{
|
|
/*
|
|
* Both are positive result = +(ABS(var1) + ABS(var2))
|
|
*/
|
|
add_abs(var1, var2, result);
|
|
result->sign = NUMERIC_POS;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* var1 is positive, var2 is negative Must compare absolute
|
|
* values
|
|
*/
|
|
switch (cmp_abs(var1, var2))
|
|
{
|
|
case 0:
|
|
/* ----------
|
|
* ABS(var1) == ABS(var2)
|
|
* result = ZERO
|
|
* ----------
|
|
*/
|
|
zero_var(result);
|
|
result->dscale = Max(var1->dscale, var2->dscale);
|
|
break;
|
|
|
|
case 1:
|
|
/* ----------
|
|
* ABS(var1) > ABS(var2)
|
|
* result = +(ABS(var1) - ABS(var2))
|
|
* ----------
|
|
*/
|
|
sub_abs(var1, var2, result);
|
|
result->sign = NUMERIC_POS;
|
|
break;
|
|
|
|
case -1:
|
|
/* ----------
|
|
* ABS(var1) < ABS(var2)
|
|
* result = -(ABS(var2) - ABS(var1))
|
|
* ----------
|
|
*/
|
|
sub_abs(var2, var1, result);
|
|
result->sign = NUMERIC_NEG;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (var2->sign == NUMERIC_POS)
|
|
{
|
|
/* ----------
|
|
* var1 is negative, var2 is positive
|
|
* Must compare absolute values
|
|
* ----------
|
|
*/
|
|
switch (cmp_abs(var1, var2))
|
|
{
|
|
case 0:
|
|
/* ----------
|
|
* ABS(var1) == ABS(var2)
|
|
* result = ZERO
|
|
* ----------
|
|
*/
|
|
zero_var(result);
|
|
result->dscale = Max(var1->dscale, var2->dscale);
|
|
break;
|
|
|
|
case 1:
|
|
/* ----------
|
|
* ABS(var1) > ABS(var2)
|
|
* result = -(ABS(var1) - ABS(var2))
|
|
* ----------
|
|
*/
|
|
sub_abs(var1, var2, result);
|
|
result->sign = NUMERIC_NEG;
|
|
break;
|
|
|
|
case -1:
|
|
/* ----------
|
|
* ABS(var1) < ABS(var2)
|
|
* result = +(ABS(var2) - ABS(var1))
|
|
* ----------
|
|
*/
|
|
sub_abs(var2, var1, result);
|
|
result->sign = NUMERIC_POS;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* ----------
|
|
* Both are negative
|
|
* result = -(ABS(var1) + ABS(var2))
|
|
* ----------
|
|
*/
|
|
add_abs(var1, var2, result);
|
|
result->sign = NUMERIC_NEG;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* sub_var() -
|
|
*
|
|
* Full version of sub functionality on variable level (handling signs).
|
|
* result might point to one of the operands too without danger.
|
|
*/
|
|
static void
|
|
sub_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
|
|
{
|
|
/*
|
|
* Decide on the signs of the two variables what to do
|
|
*/
|
|
if (var1->sign == NUMERIC_POS)
|
|
{
|
|
if (var2->sign == NUMERIC_NEG)
|
|
{
|
|
/* ----------
|
|
* var1 is positive, var2 is negative
|
|
* result = +(ABS(var1) + ABS(var2))
|
|
* ----------
|
|
*/
|
|
add_abs(var1, var2, result);
|
|
result->sign = NUMERIC_POS;
|
|
}
|
|
else
|
|
{
|
|
/* ----------
|
|
* Both are positive
|
|
* Must compare absolute values
|
|
* ----------
|
|
*/
|
|
switch (cmp_abs(var1, var2))
|
|
{
|
|
case 0:
|
|
/* ----------
|
|
* ABS(var1) == ABS(var2)
|
|
* result = ZERO
|
|
* ----------
|
|
*/
|
|
zero_var(result);
|
|
result->dscale = Max(var1->dscale, var2->dscale);
|
|
break;
|
|
|
|
case 1:
|
|
/* ----------
|
|
* ABS(var1) > ABS(var2)
|
|
* result = +(ABS(var1) - ABS(var2))
|
|
* ----------
|
|
*/
|
|
sub_abs(var1, var2, result);
|
|
result->sign = NUMERIC_POS;
|
|
break;
|
|
|
|
case -1:
|
|
/* ----------
|
|
* ABS(var1) < ABS(var2)
|
|
* result = -(ABS(var2) - ABS(var1))
|
|
* ----------
|
|
*/
|
|
sub_abs(var2, var1, result);
|
|
result->sign = NUMERIC_NEG;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (var2->sign == NUMERIC_NEG)
|
|
{
|
|
/* ----------
|
|
* Both are negative
|
|
* Must compare absolute values
|
|
* ----------
|
|
*/
|
|
switch (cmp_abs(var1, var2))
|
|
{
|
|
case 0:
|
|
/* ----------
|
|
* ABS(var1) == ABS(var2)
|
|
* result = ZERO
|
|
* ----------
|
|
*/
|
|
zero_var(result);
|
|
result->dscale = Max(var1->dscale, var2->dscale);
|
|
break;
|
|
|
|
case 1:
|
|
/* ----------
|
|
* ABS(var1) > ABS(var2)
|
|
* result = -(ABS(var1) - ABS(var2))
|
|
* ----------
|
|
*/
|
|
sub_abs(var1, var2, result);
|
|
result->sign = NUMERIC_NEG;
|
|
break;
|
|
|
|
case -1:
|
|
/* ----------
|
|
* ABS(var1) < ABS(var2)
|
|
* result = +(ABS(var2) - ABS(var1))
|
|
* ----------
|
|
*/
|
|
sub_abs(var2, var1, result);
|
|
result->sign = NUMERIC_POS;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* ----------
|
|
* var1 is negative, var2 is positive
|
|
* result = -(ABS(var1) + ABS(var2))
|
|
* ----------
|
|
*/
|
|
add_abs(var1, var2, result);
|
|
result->sign = NUMERIC_NEG;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* mul_var() -
|
|
*
|
|
* Multiplication on variable level. Product of var1 * var2 is stored
|
|
* in result. Result is rounded to no more than rscale fractional digits.
|
|
*/
|
|
static void
|
|
mul_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
|
|
int rscale)
|
|
{
|
|
int res_ndigits;
|
|
int res_sign;
|
|
int res_weight;
|
|
int maxdigits;
|
|
int *dig;
|
|
int carry;
|
|
int maxdig;
|
|
int newdig;
|
|
NumericDigit *res_digits;
|
|
int i,
|
|
ri,
|
|
i1,
|
|
i2;
|
|
|
|
/* copy these values into local vars for speed in inner loop */
|
|
int var1ndigits = var1->ndigits;
|
|
int var2ndigits = var2->ndigits;
|
|
NumericDigit *var1digits = var1->digits;
|
|
NumericDigit *var2digits = var2->digits;
|
|
|
|
if (var1ndigits == 0 || var2ndigits == 0)
|
|
{
|
|
/* one or both inputs is zero; so is result */
|
|
zero_var(result);
|
|
result->dscale = rscale;
|
|
return;
|
|
}
|
|
|
|
/* Determine result sign and (maximum possible) weight */
|
|
if (var1->sign == var2->sign)
|
|
res_sign = NUMERIC_POS;
|
|
else
|
|
res_sign = NUMERIC_NEG;
|
|
res_weight = var1->weight + var2->weight + 2;
|
|
|
|
/*
|
|
* Determine number of result digits to compute. If the exact result
|
|
* would have more than rscale fractional digits, truncate the
|
|
* computation with MUL_GUARD_DIGITS guard digits. We do that by
|
|
* pretending that one or both inputs have fewer digits than they
|
|
* really do.
|
|
*/
|
|
res_ndigits = var1ndigits + var2ndigits + 1;
|
|
maxdigits = res_weight + 1 + (rscale * DEC_DIGITS) + MUL_GUARD_DIGITS;
|
|
if (res_ndigits > maxdigits)
|
|
{
|
|
if (maxdigits < 3)
|
|
{
|
|
/* no useful precision at all in the result... */
|
|
zero_var(result);
|
|
result->dscale = rscale;
|
|
return;
|
|
}
|
|
/* force maxdigits odd so that input ndigits can be equal */
|
|
if ((maxdigits & 1) == 0)
|
|
maxdigits++;
|
|
if (var1ndigits > var2ndigits)
|
|
{
|
|
var1ndigits -= res_ndigits - maxdigits;
|
|
if (var1ndigits < var2ndigits)
|
|
var1ndigits = var2ndigits = (var1ndigits + var2ndigits) / 2;
|
|
}
|
|
else
|
|
{
|
|
var2ndigits -= res_ndigits - maxdigits;
|
|
if (var2ndigits < var1ndigits)
|
|
var1ndigits = var2ndigits = (var1ndigits + var2ndigits) / 2;
|
|
}
|
|
res_ndigits = maxdigits;
|
|
Assert(res_ndigits == var1ndigits + var2ndigits + 1);
|
|
}
|
|
|
|
/*
|
|
* We do the arithmetic in an array "dig[]" of signed int's. Since
|
|
* INT_MAX is noticeably larger than NBASE*NBASE, this gives us
|
|
* headroom to avoid normalizing carries immediately.
|
|
*
|
|
* maxdig tracks the maximum possible value of any dig[] entry; when this
|
|
* threatens to exceed INT_MAX, we take the time to propagate carries.
|
|
* To avoid overflow in maxdig itself, it actually represents the max
|
|
* possible value divided by NBASE-1.
|
|
*/
|
|
dig = (int *) palloc0(res_ndigits * sizeof(int));
|
|
maxdig = 0;
|
|
|
|
ri = res_ndigits - 1;
|
|
for (i1 = var1ndigits - 1; i1 >= 0; ri--, i1--)
|
|
{
|
|
int var1digit = var1digits[i1];
|
|
|
|
if (var1digit == 0)
|
|
continue;
|
|
|
|
/* Time to normalize? */
|
|
maxdig += var1digit;
|
|
if (maxdig > INT_MAX / (NBASE - 1))
|
|
{
|
|
/* Yes, do it */
|
|
carry = 0;
|
|
for (i = res_ndigits - 1; i >= 0; i--)
|
|
{
|
|
newdig = dig[i] + carry;
|
|
if (newdig >= NBASE)
|
|
{
|
|
carry = newdig / NBASE;
|
|
newdig -= carry * NBASE;
|
|
}
|
|
else
|
|
carry = 0;
|
|
dig[i] = newdig;
|
|
}
|
|
Assert(carry == 0);
|
|
/* Reset maxdig to indicate new worst-case */
|
|
maxdig = 1 + var1digit;
|
|
}
|
|
|
|
/* Add appropriate multiple of var2 into the accumulator */
|
|
i = ri;
|
|
for (i2 = var2ndigits - 1; i2 >= 0; i2--)
|
|
dig[i--] += var1digit * var2digits[i2];
|
|
}
|
|
|
|
/*
|
|
* Now we do a final carry propagation pass to normalize the result,
|
|
* which we combine with storing the result digits into the output.
|
|
* Note that this is still done at full precision w/guard digits.
|
|
*/
|
|
alloc_var(result, res_ndigits);
|
|
res_digits = result->digits;
|
|
carry = 0;
|
|
for (i = res_ndigits - 1; i >= 0; i--)
|
|
{
|
|
newdig = dig[i] + carry;
|
|
if (newdig >= NBASE)
|
|
{
|
|
carry = newdig / NBASE;
|
|
newdig -= carry * NBASE;
|
|
}
|
|
else
|
|
carry = 0;
|
|
res_digits[i] = newdig;
|
|
}
|
|
Assert(carry == 0);
|
|
|
|
pfree(dig);
|
|
|
|
/*
|
|
* Finally, round the result to the requested precision.
|
|
*/
|
|
result->weight = res_weight;
|
|
result->sign = res_sign;
|
|
|
|
/* Round to target rscale (and set result->dscale) */
|
|
round_var(result, rscale);
|
|
|
|
/* Strip leading and trailing zeroes */
|
|
strip_var(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* div_var() -
|
|
*
|
|
* Division on variable level. Quotient of var1 / var2 is stored
|
|
* in result. Result is rounded to no more than rscale fractional digits.
|
|
*/
|
|
static void
|
|
div_var(NumericVar *var1, NumericVar *var2, NumericVar *result,
|
|
int rscale)
|
|
{
|
|
int div_ndigits;
|
|
int res_sign;
|
|
int res_weight;
|
|
int *div;
|
|
int qdigit;
|
|
int carry;
|
|
int maxdiv;
|
|
int newdig;
|
|
NumericDigit *res_digits;
|
|
double fdividend,
|
|
fdivisor,
|
|
fdivisorinverse,
|
|
fquotient;
|
|
int qi;
|
|
int i;
|
|
|
|
/* copy these values into local vars for speed in inner loop */
|
|
int var1ndigits = var1->ndigits;
|
|
int var2ndigits = var2->ndigits;
|
|
NumericDigit *var1digits = var1->digits;
|
|
NumericDigit *var2digits = var2->digits;
|
|
|
|
/*
|
|
* First of all division by zero check; we must not be handed an
|
|
* unnormalized divisor.
|
|
*/
|
|
if (var2ndigits == 0 || var2digits[0] == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
/*
|
|
* Now result zero check
|
|
*/
|
|
if (var1ndigits == 0)
|
|
{
|
|
zero_var(result);
|
|
result->dscale = rscale;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Determine the result sign, weight and number of digits to calculate
|
|
*/
|
|
if (var1->sign == var2->sign)
|
|
res_sign = NUMERIC_POS;
|
|
else
|
|
res_sign = NUMERIC_NEG;
|
|
res_weight = var1->weight - var2->weight + 1;
|
|
/* The number of accurate result digits we need to produce: */
|
|
div_ndigits = res_weight + 1 + (rscale + DEC_DIGITS - 1) / DEC_DIGITS;
|
|
/* Add guard digits for roundoff error */
|
|
div_ndigits += DIV_GUARD_DIGITS;
|
|
if (div_ndigits < DIV_GUARD_DIGITS)
|
|
div_ndigits = DIV_GUARD_DIGITS;
|
|
/* Must be at least var1ndigits, too, to simplify data-loading loop */
|
|
if (div_ndigits < var1ndigits)
|
|
div_ndigits = var1ndigits;
|
|
|
|
/*
|
|
* We do the arithmetic in an array "div[]" of signed int's. Since
|
|
* INT_MAX is noticeably larger than NBASE*NBASE, this gives us
|
|
* headroom to avoid normalizing carries immediately.
|
|
*
|
|
* We start with div[] containing one zero digit followed by the
|
|
* dividend's digits (plus appended zeroes to reach the desired
|
|
* precision including guard digits). Each step of the main loop
|
|
* computes an (approximate) quotient digit and stores it into div[],
|
|
* removing one position of dividend space. A final pass of carry
|
|
* propagation takes care of any mistaken quotient digits.
|
|
*/
|
|
div = (int *) palloc0((div_ndigits + 1) * sizeof(int));
|
|
for (i = 0; i < var1ndigits; i++)
|
|
div[i + 1] = var1digits[i];
|
|
|
|
/*
|
|
* We estimate each quotient digit using floating-point arithmetic,
|
|
* taking the first four digits of the (current) dividend and divisor.
|
|
* This must be float to avoid overflow.
|
|
*/
|
|
fdivisor = (double) var2digits[0];
|
|
for (i = 1; i < 4; i++)
|
|
{
|
|
fdivisor *= NBASE;
|
|
if (i < var2ndigits)
|
|
fdivisor += (double) var2digits[i];
|
|
}
|
|
fdivisorinverse = 1.0 / fdivisor;
|
|
|
|
/*
|
|
* maxdiv tracks the maximum possible absolute value of any div[]
|
|
* entry; when this threatens to exceed INT_MAX, we take the time to
|
|
* propagate carries. To avoid overflow in maxdiv itself, it actually
|
|
* represents the max possible abs. value divided by NBASE-1.
|
|
*/
|
|
maxdiv = 1;
|
|
|
|
/*
|
|
* Outer loop computes next quotient digit, which will go into div[qi]
|
|
*/
|
|
for (qi = 0; qi < div_ndigits; qi++)
|
|
{
|
|
/* Approximate the current dividend value */
|
|
fdividend = (double) div[qi];
|
|
for (i = 1; i < 4; i++)
|
|
{
|
|
fdividend *= NBASE;
|
|
if (qi + i <= div_ndigits)
|
|
fdividend += (double) div[qi + i];
|
|
}
|
|
/* Compute the (approximate) quotient digit */
|
|
fquotient = fdividend * fdivisorinverse;
|
|
qdigit = (fquotient >= 0.0) ? ((int) fquotient) :
|
|
(((int) fquotient) - 1); /* truncate towards -infinity */
|
|
|
|
if (qdigit != 0)
|
|
{
|
|
/* Do we need to normalize now? */
|
|
maxdiv += Abs(qdigit);
|
|
if (maxdiv > INT_MAX / (NBASE - 1))
|
|
{
|
|
/* Yes, do it */
|
|
carry = 0;
|
|
for (i = div_ndigits; i > qi; i--)
|
|
{
|
|
newdig = div[i] + carry;
|
|
if (newdig < 0)
|
|
{
|
|
carry = -((-newdig - 1) / NBASE) - 1;
|
|
newdig -= carry * NBASE;
|
|
}
|
|
else if (newdig >= NBASE)
|
|
{
|
|
carry = newdig / NBASE;
|
|
newdig -= carry * NBASE;
|
|
}
|
|
else
|
|
carry = 0;
|
|
div[i] = newdig;
|
|
}
|
|
newdig = div[qi] + carry;
|
|
div[qi] = newdig;
|
|
|
|
/*
|
|
* All the div[] digits except possibly div[qi] are now in
|
|
* the range 0..NBASE-1.
|
|
*/
|
|
maxdiv = Abs(newdig) / (NBASE - 1);
|
|
maxdiv = Max(maxdiv, 1);
|
|
|
|
/*
|
|
* Recompute the quotient digit since new info may have
|
|
* propagated into the top four dividend digits
|
|
*/
|
|
fdividend = (double) div[qi];
|
|
for (i = 1; i < 4; i++)
|
|
{
|
|
fdividend *= NBASE;
|
|
if (qi + i <= div_ndigits)
|
|
fdividend += (double) div[qi + i];
|
|
}
|
|
/* Compute the (approximate) quotient digit */
|
|
fquotient = fdividend * fdivisorinverse;
|
|
qdigit = (fquotient >= 0.0) ? ((int) fquotient) :
|
|
(((int) fquotient) - 1); /* truncate towards
|
|
* -infinity */
|
|
maxdiv += Abs(qdigit);
|
|
}
|
|
|
|
/* Subtract off the appropriate multiple of the divisor */
|
|
if (qdigit != 0)
|
|
{
|
|
int istop = Min(var2ndigits, div_ndigits - qi + 1);
|
|
|
|
for (i = 0; i < istop; i++)
|
|
div[qi + i] -= qdigit * var2digits[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The dividend digit we are about to replace might still be
|
|
* nonzero. Fold it into the next digit position. We don't need
|
|
* to worry about overflow here since this should nearly cancel
|
|
* with the subtraction of the divisor.
|
|
*/
|
|
div[qi + 1] += div[qi] * NBASE;
|
|
|
|
div[qi] = qdigit;
|
|
}
|
|
|
|
/*
|
|
* Approximate and store the last quotient digit (div[div_ndigits])
|
|
*/
|
|
fdividend = (double) div[qi];
|
|
for (i = 1; i < 4; i++)
|
|
fdividend *= NBASE;
|
|
fquotient = fdividend * fdivisorinverse;
|
|
qdigit = (fquotient >= 0.0) ? ((int) fquotient) :
|
|
(((int) fquotient) - 1); /* truncate towards -infinity */
|
|
div[qi] = qdigit;
|
|
|
|
/*
|
|
* Now we do a final carry propagation pass to normalize the result,
|
|
* which we combine with storing the result digits into the output.
|
|
* Note that this is still done at full precision w/guard digits.
|
|
*/
|
|
alloc_var(result, div_ndigits + 1);
|
|
res_digits = result->digits;
|
|
carry = 0;
|
|
for (i = div_ndigits; i >= 0; i--)
|
|
{
|
|
newdig = div[i] + carry;
|
|
if (newdig < 0)
|
|
{
|
|
carry = -((-newdig - 1) / NBASE) - 1;
|
|
newdig -= carry * NBASE;
|
|
}
|
|
else if (newdig >= NBASE)
|
|
{
|
|
carry = newdig / NBASE;
|
|
newdig -= carry * NBASE;
|
|
}
|
|
else
|
|
carry = 0;
|
|
res_digits[i] = newdig;
|
|
}
|
|
Assert(carry == 0);
|
|
|
|
pfree(div);
|
|
|
|
/*
|
|
* Finally, round the result to the requested precision.
|
|
*/
|
|
result->weight = res_weight;
|
|
result->sign = res_sign;
|
|
|
|
/* Round to target rscale (and set result->dscale) */
|
|
round_var(result, rscale);
|
|
|
|
/* Strip leading and trailing zeroes */
|
|
strip_var(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* Default scale selection for division
|
|
*
|
|
* Returns the appropriate result scale for the division result.
|
|
*/
|
|
static int
|
|
select_div_scale(NumericVar *var1, NumericVar *var2)
|
|
{
|
|
int weight1,
|
|
weight2,
|
|
qweight,
|
|
i;
|
|
NumericDigit firstdigit1,
|
|
firstdigit2;
|
|
int rscale;
|
|
|
|
/*
|
|
* The result scale of a division isn't specified in any SQL standard.
|
|
* For PostgreSQL we select a result scale that will give at least
|
|
* NUMERIC_MIN_SIG_DIGITS significant digits, so that numeric gives a
|
|
* result no less accurate than float8; but use a scale not less than
|
|
* either input's display scale.
|
|
*/
|
|
|
|
/* Get the actual (normalized) weight and first digit of each input */
|
|
|
|
weight1 = 0; /* values to use if var1 is zero */
|
|
firstdigit1 = 0;
|
|
for (i = 0; i < var1->ndigits; i++)
|
|
{
|
|
firstdigit1 = var1->digits[i];
|
|
if (firstdigit1 != 0)
|
|
{
|
|
weight1 = var1->weight - i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
weight2 = 0; /* values to use if var2 is zero */
|
|
firstdigit2 = 0;
|
|
for (i = 0; i < var2->ndigits; i++)
|
|
{
|
|
firstdigit2 = var2->digits[i];
|
|
if (firstdigit2 != 0)
|
|
{
|
|
weight2 = var2->weight - i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Estimate weight of quotient. If the two first digits are equal, we
|
|
* can't be sure, but assume that var1 is less than var2.
|
|
*/
|
|
qweight = weight1 - weight2;
|
|
if (firstdigit1 <= firstdigit2)
|
|
qweight--;
|
|
|
|
/* Select result scale */
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - qweight * DEC_DIGITS;
|
|
rscale = Max(rscale, var1->dscale);
|
|
rscale = Max(rscale, var2->dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
return rscale;
|
|
}
|
|
|
|
|
|
/*
|
|
* mod_var() -
|
|
*
|
|
* Calculate the modulo of two numerics at variable level
|
|
*/
|
|
static void
|
|
mod_var(NumericVar *var1, NumericVar *var2, NumericVar *result)
|
|
{
|
|
NumericVar tmp;
|
|
int rscale;
|
|
|
|
init_var(&tmp);
|
|
|
|
/* ---------
|
|
* We do this using the equation
|
|
* mod(x,y) = x - trunc(x/y)*y
|
|
* We set rscale the same way numeric_div and numeric_mul do
|
|
* to get the right answer from the equation. The final result,
|
|
* however, need not be displayed to more precision than the inputs.
|
|
* ----------
|
|
*/
|
|
rscale = select_div_scale(var1, var2);
|
|
|
|
div_var(var1, var2, &tmp, rscale);
|
|
|
|
trunc_var(&tmp, 0);
|
|
|
|
mul_var(var2, &tmp, &tmp, var2->dscale + tmp.dscale);
|
|
|
|
sub_var(var1, &tmp, result);
|
|
|
|
round_var(result, Max(var1->dscale, var2->dscale));
|
|
|
|
free_var(&tmp);
|
|
}
|
|
|
|
|
|
/*
|
|
* ceil_var() -
|
|
*
|
|
* Return the smallest integer greater than or equal to the argument
|
|
* on variable level
|
|
*/
|
|
static void
|
|
ceil_var(NumericVar *var, NumericVar *result)
|
|
{
|
|
NumericVar tmp;
|
|
|
|
init_var(&tmp);
|
|
set_var_from_var(var, &tmp);
|
|
|
|
trunc_var(&tmp, 0);
|
|
|
|
if (var->sign == NUMERIC_POS && cmp_var(var, &tmp) != 0)
|
|
add_var(&tmp, &const_one, &tmp);
|
|
|
|
set_var_from_var(&tmp, result);
|
|
free_var(&tmp);
|
|
}
|
|
|
|
|
|
/*
|
|
* floor_var() -
|
|
*
|
|
* Return the largest integer equal to or less than the argument
|
|
* on variable level
|
|
*/
|
|
static void
|
|
floor_var(NumericVar *var, NumericVar *result)
|
|
{
|
|
NumericVar tmp;
|
|
|
|
init_var(&tmp);
|
|
set_var_from_var(var, &tmp);
|
|
|
|
trunc_var(&tmp, 0);
|
|
|
|
if (var->sign == NUMERIC_NEG && cmp_var(var, &tmp) != 0)
|
|
sub_var(&tmp, &const_one, &tmp);
|
|
|
|
set_var_from_var(&tmp, result);
|
|
free_var(&tmp);
|
|
}
|
|
|
|
|
|
/*
|
|
* sqrt_var() -
|
|
*
|
|
* Compute the square root of x using Newton's algorithm
|
|
*/
|
|
static void
|
|
sqrt_var(NumericVar *arg, NumericVar *result, int rscale)
|
|
{
|
|
NumericVar tmp_arg;
|
|
NumericVar tmp_val;
|
|
NumericVar last_val;
|
|
int local_rscale;
|
|
int stat;
|
|
|
|
local_rscale = rscale + 8;
|
|
|
|
stat = cmp_var(arg, &const_zero);
|
|
if (stat == 0)
|
|
{
|
|
zero_var(result);
|
|
result->dscale = rscale;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* SQL2003 defines sqrt() in terms of power, so we need to emit the
|
|
* right SQLSTATE error code if the operand is negative.
|
|
*/
|
|
if (stat < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_POWER_FUNCTION),
|
|
errmsg("cannot take square root of a negative number")));
|
|
|
|
init_var(&tmp_arg);
|
|
init_var(&tmp_val);
|
|
init_var(&last_val);
|
|
|
|
/* Copy arg in case it is the same var as result */
|
|
set_var_from_var(arg, &tmp_arg);
|
|
|
|
/*
|
|
* Initialize the result to the first guess
|
|
*/
|
|
alloc_var(result, 1);
|
|
result->digits[0] = tmp_arg.digits[0] / 2;
|
|
if (result->digits[0] == 0)
|
|
result->digits[0] = 1;
|
|
result->weight = tmp_arg.weight / 2;
|
|
result->sign = NUMERIC_POS;
|
|
|
|
set_var_from_var(result, &last_val);
|
|
|
|
for (;;)
|
|
{
|
|
div_var(&tmp_arg, result, &tmp_val, local_rscale);
|
|
|
|
add_var(result, &tmp_val, result);
|
|
mul_var(result, &const_zero_point_five, result, local_rscale);
|
|
|
|
if (cmp_var(&last_val, result) == 0)
|
|
break;
|
|
set_var_from_var(result, &last_val);
|
|
}
|
|
|
|
free_var(&last_val);
|
|
free_var(&tmp_val);
|
|
free_var(&tmp_arg);
|
|
|
|
/* Round to requested precision */
|
|
round_var(result, rscale);
|
|
}
|
|
|
|
|
|
/*
|
|
* exp_var() -
|
|
*
|
|
* Raise e to the power of x
|
|
*/
|
|
static void
|
|
exp_var(NumericVar *arg, NumericVar *result, int rscale)
|
|
{
|
|
NumericVar x;
|
|
int xintval;
|
|
bool xneg = FALSE;
|
|
int local_rscale;
|
|
|
|
/*----------
|
|
* We separate the integral and fraction parts of x, then compute
|
|
* e^x = e^xint * e^xfrac
|
|
* where e = exp(1) and e^xfrac = exp(xfrac) are computed by
|
|
* exp_var_internal; the limited range of inputs allows that routine
|
|
* to do a good job with a simple Taylor series. Raising e^xint is
|
|
* done by repeated multiplications in power_var_int.
|
|
*----------
|
|
*/
|
|
init_var(&x);
|
|
|
|
set_var_from_var(arg, &x);
|
|
|
|
if (x.sign == NUMERIC_NEG)
|
|
{
|
|
xneg = TRUE;
|
|
x.sign = NUMERIC_POS;
|
|
}
|
|
|
|
/* Extract the integer part, remove it from x */
|
|
xintval = 0;
|
|
while (x.weight >= 0)
|
|
{
|
|
xintval *= NBASE;
|
|
if (x.ndigits > 0)
|
|
{
|
|
xintval += x.digits[0];
|
|
x.digits++;
|
|
x.ndigits--;
|
|
}
|
|
x.weight--;
|
|
/* Guard against overflow */
|
|
if (xintval >= NUMERIC_MAX_RESULT_SCALE * 3)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
|
|
errmsg("argument for function \"exp\" too big")));
|
|
}
|
|
|
|
/* Select an appropriate scale for internal calculation */
|
|
local_rscale = rscale + MUL_GUARD_DIGITS * 2;
|
|
|
|
/* Compute e^xfrac */
|
|
exp_var_internal(&x, result, local_rscale);
|
|
|
|
/* If there's an integer part, multiply by e^xint */
|
|
if (xintval > 0)
|
|
{
|
|
NumericVar e;
|
|
|
|
init_var(&e);
|
|
exp_var_internal(&const_one, &e, local_rscale);
|
|
power_var_int(&e, xintval, &e, local_rscale);
|
|
mul_var(&e, result, result, local_rscale);
|
|
free_var(&e);
|
|
}
|
|
|
|
/* Compensate for input sign, and round to requested rscale */
|
|
if (xneg)
|
|
div_var(&const_one, result, result, rscale);
|
|
else
|
|
round_var(result, rscale);
|
|
|
|
free_var(&x);
|
|
}
|
|
|
|
|
|
/*
|
|
* exp_var_internal() -
|
|
*
|
|
* Raise e to the power of x, where 0 <= x <= 1
|
|
*
|
|
* NB: the result should be good to at least rscale digits, but it has
|
|
* *not* been rounded off; the caller must do that if wanted.
|
|
*/
|
|
static void
|
|
exp_var_internal(NumericVar *arg, NumericVar *result, int rscale)
|
|
{
|
|
NumericVar x;
|
|
NumericVar xpow;
|
|
NumericVar ifac;
|
|
NumericVar elem;
|
|
NumericVar ni;
|
|
int ndiv2 = 0;
|
|
int local_rscale;
|
|
|
|
init_var(&x);
|
|
init_var(&xpow);
|
|
init_var(&ifac);
|
|
init_var(&elem);
|
|
init_var(&ni);
|
|
|
|
set_var_from_var(arg, &x);
|
|
|
|
Assert(x.sign == NUMERIC_POS);
|
|
|
|
local_rscale = rscale + 8;
|
|
|
|
/* Reduce input into range 0 <= x <= 0.01 */
|
|
while (cmp_var(&x, &const_zero_point_01) > 0)
|
|
{
|
|
ndiv2++;
|
|
local_rscale++;
|
|
mul_var(&x, &const_zero_point_five, &x, x.dscale + 1);
|
|
}
|
|
|
|
/*
|
|
* Use the Taylor series
|
|
*
|
|
* exp(x) = 1 + x + x^2/2! + x^3/3! + ...
|
|
*
|
|
* Given the limited range of x, this should converge reasonably quickly.
|
|
* We run the series until the terms fall below the local_rscale
|
|
* limit.
|
|
*/
|
|
add_var(&const_one, &x, result);
|
|
set_var_from_var(&x, &xpow);
|
|
set_var_from_var(&const_one, &ifac);
|
|
set_var_from_var(&const_one, &ni);
|
|
|
|
for (;;)
|
|
{
|
|
add_var(&ni, &const_one, &ni);
|
|
mul_var(&xpow, &x, &xpow, local_rscale);
|
|
mul_var(&ifac, &ni, &ifac, 0);
|
|
div_var(&xpow, &ifac, &elem, local_rscale);
|
|
|
|
if (elem.ndigits == 0)
|
|
break;
|
|
|
|
add_var(result, &elem, result);
|
|
}
|
|
|
|
/* Compensate for argument range reduction */
|
|
while (ndiv2-- > 0)
|
|
mul_var(result, result, result, local_rscale);
|
|
|
|
free_var(&x);
|
|
free_var(&xpow);
|
|
free_var(&ifac);
|
|
free_var(&elem);
|
|
free_var(&ni);
|
|
}
|
|
|
|
|
|
/*
|
|
* ln_var() -
|
|
*
|
|
* Compute the natural log of x
|
|
*/
|
|
static void
|
|
ln_var(NumericVar *arg, NumericVar *result, int rscale)
|
|
{
|
|
NumericVar x;
|
|
NumericVar xx;
|
|
NumericVar ni;
|
|
NumericVar elem;
|
|
NumericVar fact;
|
|
int local_rscale;
|
|
int cmp;
|
|
|
|
cmp = cmp_var(arg, &const_zero);
|
|
if (cmp == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of zero")));
|
|
else if (cmp < 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_ARGUMENT_FOR_LOG),
|
|
errmsg("cannot take logarithm of a negative number")));
|
|
|
|
local_rscale = rscale + 8;
|
|
|
|
init_var(&x);
|
|
init_var(&xx);
|
|
init_var(&ni);
|
|
init_var(&elem);
|
|
init_var(&fact);
|
|
|
|
set_var_from_var(arg, &x);
|
|
set_var_from_var(&const_two, &fact);
|
|
|
|
/* Reduce input into range 0.9 < x < 1.1 */
|
|
while (cmp_var(&x, &const_zero_point_nine) <= 0)
|
|
{
|
|
local_rscale++;
|
|
sqrt_var(&x, &x, local_rscale);
|
|
mul_var(&fact, &const_two, &fact, 0);
|
|
}
|
|
while (cmp_var(&x, &const_one_point_one) >= 0)
|
|
{
|
|
local_rscale++;
|
|
sqrt_var(&x, &x, local_rscale);
|
|
mul_var(&fact, &const_two, &fact, 0);
|
|
}
|
|
|
|
/*
|
|
* We use the Taylor series for 0.5 * ln((1+z)/(1-z)),
|
|
*
|
|
* z + z^3/3 + z^5/5 + ...
|
|
*
|
|
* where z = (x-1)/(x+1) is in the range (approximately) -0.053 .. 0.048
|
|
* due to the above range-reduction of x.
|
|
*
|
|
* The convergence of this is not as fast as one would like, but is
|
|
* tolerable given that z is small.
|
|
*/
|
|
sub_var(&x, &const_one, result);
|
|
add_var(&x, &const_one, &elem);
|
|
div_var(result, &elem, result, local_rscale);
|
|
set_var_from_var(result, &xx);
|
|
mul_var(result, result, &x, local_rscale);
|
|
|
|
set_var_from_var(&const_one, &ni);
|
|
|
|
for (;;)
|
|
{
|
|
add_var(&ni, &const_two, &ni);
|
|
mul_var(&xx, &x, &xx, local_rscale);
|
|
div_var(&xx, &ni, &elem, local_rscale);
|
|
|
|
if (elem.ndigits == 0)
|
|
break;
|
|
|
|
add_var(result, &elem, result);
|
|
|
|
if (elem.weight < (result->weight - local_rscale * 2 / DEC_DIGITS))
|
|
break;
|
|
}
|
|
|
|
/* Compensate for argument range reduction, round to requested rscale */
|
|
mul_var(result, &fact, result, rscale);
|
|
|
|
free_var(&x);
|
|
free_var(&xx);
|
|
free_var(&ni);
|
|
free_var(&elem);
|
|
free_var(&fact);
|
|
}
|
|
|
|
|
|
/*
|
|
* log_var() -
|
|
*
|
|
* Compute the logarithm of num in a given base.
|
|
*
|
|
* Note: this routine chooses dscale of the result.
|
|
*/
|
|
static void
|
|
log_var(NumericVar *base, NumericVar *num, NumericVar *result)
|
|
{
|
|
NumericVar ln_base;
|
|
NumericVar ln_num;
|
|
int dec_digits;
|
|
int rscale;
|
|
int local_rscale;
|
|
|
|
init_var(&ln_base);
|
|
init_var(&ln_num);
|
|
|
|
/* Set scale for ln() calculations --- compare numeric_ln() */
|
|
|
|
/* Approx decimal digits before decimal point */
|
|
dec_digits = (num->weight + 1) * DEC_DIGITS;
|
|
|
|
if (dec_digits > 1)
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - (int) log10(dec_digits - 1);
|
|
else if (dec_digits < 1)
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - (int) log10(1 - dec_digits);
|
|
else
|
|
rscale = NUMERIC_MIN_SIG_DIGITS;
|
|
|
|
rscale = Max(rscale, base->dscale);
|
|
rscale = Max(rscale, num->dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
local_rscale = rscale + 8;
|
|
|
|
/* Form natural logarithms */
|
|
ln_var(base, &ln_base, local_rscale);
|
|
ln_var(num, &ln_num, local_rscale);
|
|
|
|
ln_base.dscale = rscale;
|
|
ln_num.dscale = rscale;
|
|
|
|
/* Select scale for division result */
|
|
rscale = select_div_scale(&ln_num, &ln_base);
|
|
|
|
div_var(&ln_num, &ln_base, result, rscale);
|
|
|
|
free_var(&ln_num);
|
|
free_var(&ln_base);
|
|
}
|
|
|
|
|
|
/*
|
|
* power_var() -
|
|
*
|
|
* Raise base to the power of exp
|
|
*
|
|
* Note: this routine chooses dscale of the result.
|
|
*/
|
|
static void
|
|
power_var(NumericVar *base, NumericVar *exp, NumericVar *result)
|
|
{
|
|
NumericVar ln_base;
|
|
NumericVar ln_num;
|
|
int dec_digits;
|
|
int rscale;
|
|
int local_rscale;
|
|
double val;
|
|
|
|
/* If exp can be represented as an integer, use power_var_int */
|
|
if (exp->ndigits == 0 || exp->ndigits <= exp->weight + 1)
|
|
{
|
|
/* exact integer, but does it fit in int? */
|
|
NumericVar x;
|
|
int64 expval64;
|
|
|
|
/* must copy because numericvar_to_int8() scribbles on input */
|
|
init_var(&x);
|
|
set_var_from_var(exp, &x);
|
|
if (numericvar_to_int8(&x, &expval64))
|
|
{
|
|
int expval = (int) expval64;
|
|
|
|
/* Test for overflow by reverse-conversion. */
|
|
if ((int64) expval == expval64)
|
|
{
|
|
/* Okay, select rscale */
|
|
rscale = NUMERIC_MIN_SIG_DIGITS;
|
|
rscale = Max(rscale, base->dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
power_var_int(base, expval, result, rscale);
|
|
|
|
free_var(&x);
|
|
return;
|
|
}
|
|
}
|
|
free_var(&x);
|
|
}
|
|
|
|
init_var(&ln_base);
|
|
init_var(&ln_num);
|
|
|
|
/* Set scale for ln() calculation --- need extra accuracy here */
|
|
|
|
/* Approx decimal digits before decimal point */
|
|
dec_digits = (base->weight + 1) * DEC_DIGITS;
|
|
|
|
if (dec_digits > 1)
|
|
rscale = NUMERIC_MIN_SIG_DIGITS * 2 - (int) log10(dec_digits - 1);
|
|
else if (dec_digits < 1)
|
|
rscale = NUMERIC_MIN_SIG_DIGITS * 2 - (int) log10(1 - dec_digits);
|
|
else
|
|
rscale = NUMERIC_MIN_SIG_DIGITS * 2;
|
|
|
|
rscale = Max(rscale, base->dscale * 2);
|
|
rscale = Max(rscale, exp->dscale * 2);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE * 2);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE * 2);
|
|
|
|
local_rscale = rscale + 8;
|
|
|
|
ln_var(base, &ln_base, local_rscale);
|
|
|
|
mul_var(&ln_base, exp, &ln_num, local_rscale);
|
|
|
|
/* Set scale for exp() -- compare numeric_exp() */
|
|
|
|
/* convert input to float8, ignoring overflow */
|
|
val = numericvar_to_double_no_overflow(&ln_num);
|
|
|
|
/*
|
|
* log10(result) = num * log10(e), so this is approximately the
|
|
* weight:
|
|
*/
|
|
val *= 0.434294481903252;
|
|
|
|
/* limit to something that won't cause integer overflow */
|
|
val = Max(val, -NUMERIC_MAX_RESULT_SCALE);
|
|
val = Min(val, NUMERIC_MAX_RESULT_SCALE);
|
|
|
|
rscale = NUMERIC_MIN_SIG_DIGITS - (int) val;
|
|
rscale = Max(rscale, base->dscale);
|
|
rscale = Max(rscale, exp->dscale);
|
|
rscale = Max(rscale, NUMERIC_MIN_DISPLAY_SCALE);
|
|
rscale = Min(rscale, NUMERIC_MAX_DISPLAY_SCALE);
|
|
|
|
exp_var(&ln_num, result, rscale);
|
|
|
|
free_var(&ln_num);
|
|
free_var(&ln_base);
|
|
}
|
|
|
|
/*
|
|
* power_var_int() -
|
|
*
|
|
* Raise base to the power of exp, where exp is an integer.
|
|
*/
|
|
static void
|
|
power_var_int(NumericVar *base, int exp, NumericVar *result, int rscale)
|
|
{
|
|
bool neg;
|
|
NumericVar base_prod;
|
|
int local_rscale;
|
|
|
|
/* Detect some special cases, particularly 0^0. */
|
|
|
|
switch (exp)
|
|
{
|
|
case 0:
|
|
if (base->ndigits == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_FLOATING_POINT_EXCEPTION),
|
|
errmsg("zero raised to zero is undefined")));
|
|
set_var_from_var(&const_one, result);
|
|
result->dscale = rscale; /* no need to round */
|
|
return;
|
|
case 1:
|
|
set_var_from_var(base, result);
|
|
round_var(result, rscale);
|
|
return;
|
|
case -1:
|
|
div_var(&const_one, base, result, rscale);
|
|
return;
|
|
case 2:
|
|
mul_var(base, base, result, rscale);
|
|
return;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* The general case repeatedly multiplies base according to the bit
|
|
* pattern of exp. We do the multiplications with some extra
|
|
* precision.
|
|
*/
|
|
neg = (exp < 0);
|
|
exp = Abs(exp);
|
|
|
|
local_rscale = rscale + MUL_GUARD_DIGITS * 2;
|
|
|
|
init_var(&base_prod);
|
|
set_var_from_var(base, &base_prod);
|
|
|
|
if (exp & 1)
|
|
set_var_from_var(base, result);
|
|
else
|
|
set_var_from_var(&const_one, result);
|
|
|
|
while ((exp >>= 1) > 0)
|
|
{
|
|
mul_var(&base_prod, &base_prod, &base_prod, local_rscale);
|
|
if (exp & 1)
|
|
mul_var(&base_prod, result, result, local_rscale);
|
|
}
|
|
|
|
free_var(&base_prod);
|
|
|
|
/* Compensate for input sign, and round to requested rscale */
|
|
if (neg)
|
|
div_var(&const_one, result, result, rscale);
|
|
else
|
|
round_var(result, rscale);
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------
|
|
*
|
|
* Following are the lowest level functions that operate unsigned
|
|
* on the variable level
|
|
*
|
|
* ----------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
/* ----------
|
|
* cmp_abs() -
|
|
*
|
|
* Compare the absolute values of var1 and var2
|
|
* Returns: -1 for ABS(var1) < ABS(var2)
|
|
* 0 for ABS(var1) == ABS(var2)
|
|
* 1 for ABS(var1) > ABS(var2)
|
|
* ----------
|
|
*/
|
|
static int
|
|
cmp_abs(NumericVar *var1, NumericVar *var2)
|
|
{
|
|
NumericDigit *var1digits = var1->digits;
|
|
NumericDigit *var2digits = var2->digits;
|
|
int i1 = 0;
|
|
int i2 = 0;
|
|
int w1 = var1->weight;
|
|
int w2 = var2->weight;
|
|
|
|
/* Check any digits before the first common digit */
|
|
|
|
while (w1 > w2 && i1 < var1->ndigits)
|
|
{
|
|
if (var1digits[i1++] != 0)
|
|
return 1;
|
|
w1--;
|
|
}
|
|
while (w2 > w1 && i2 < var2->ndigits)
|
|
{
|
|
if (var2digits[i2++] != 0)
|
|
return -1;
|
|
w2--;
|
|
}
|
|
|
|
/* At this point, either w1 == w2 or we've run out of digits */
|
|
|
|
if (w1 == w2)
|
|
{
|
|
while (i1 < var1->ndigits && i2 < var2->ndigits)
|
|
{
|
|
int stat = var1digits[i1++] - var2digits[i2++];
|
|
|
|
if (stat)
|
|
{
|
|
if (stat > 0)
|
|
return 1;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* At this point, we've run out of digits on one side or the other; so
|
|
* any remaining nonzero digits imply that side is larger
|
|
*/
|
|
while (i1 < var1->ndigits)
|
|
{
|
|
if (var1digits[i1++] != 0)
|
|
return 1;
|
|
}
|
|
while (i2 < var2->ndigits)
|
|
{
|
|
if (var2digits[i2++] != 0)
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* add_abs() -
|
|
*
|
|
* Add the absolute values of two variables into result.
|
|
* result might point to one of the operands without danger.
|
|
*/
|
|
static void
|
|
add_abs(NumericVar *var1, NumericVar *var2, NumericVar *result)
|
|
{
|
|
NumericDigit *res_buf;
|
|
NumericDigit *res_digits;
|
|
int res_ndigits;
|
|
int res_weight;
|
|
int res_rscale,
|
|
rscale1,
|
|
rscale2;
|
|
int res_dscale;
|
|
int i,
|
|
i1,
|
|
i2;
|
|
int carry = 0;
|
|
|
|
/* copy these values into local vars for speed in inner loop */
|
|
int var1ndigits = var1->ndigits;
|
|
int var2ndigits = var2->ndigits;
|
|
NumericDigit *var1digits = var1->digits;
|
|
NumericDigit *var2digits = var2->digits;
|
|
|
|
res_weight = Max(var1->weight, var2->weight) + 1;
|
|
|
|
res_dscale = Max(var1->dscale, var2->dscale);
|
|
|
|
/* Note: here we are figuring rscale in base-NBASE digits */
|
|
rscale1 = var1->ndigits - var1->weight - 1;
|
|
rscale2 = var2->ndigits - var2->weight - 1;
|
|
res_rscale = Max(rscale1, rscale2);
|
|
|
|
res_ndigits = res_rscale + res_weight + 1;
|
|
if (res_ndigits <= 0)
|
|
res_ndigits = 1;
|
|
|
|
res_buf = digitbuf_alloc(res_ndigits + 1);
|
|
res_buf[0] = 0; /* spare digit for later rounding */
|
|
res_digits = res_buf + 1;
|
|
|
|
i1 = res_rscale + var1->weight + 1;
|
|
i2 = res_rscale + var2->weight + 1;
|
|
for (i = res_ndigits - 1; i >= 0; i--)
|
|
{
|
|
i1--;
|
|
i2--;
|
|
if (i1 >= 0 && i1 < var1ndigits)
|
|
carry += var1digits[i1];
|
|
if (i2 >= 0 && i2 < var2ndigits)
|
|
carry += var2digits[i2];
|
|
|
|
if (carry >= NBASE)
|
|
{
|
|
res_digits[i] = carry - NBASE;
|
|
carry = 1;
|
|
}
|
|
else
|
|
{
|
|
res_digits[i] = carry;
|
|
carry = 0;
|
|
}
|
|
}
|
|
|
|
Assert(carry == 0); /* else we failed to allow for carry out */
|
|
|
|
digitbuf_free(result->buf);
|
|
result->ndigits = res_ndigits;
|
|
result->buf = res_buf;
|
|
result->digits = res_digits;
|
|
result->weight = res_weight;
|
|
result->dscale = res_dscale;
|
|
|
|
/* Remove leading/trailing zeroes */
|
|
strip_var(result);
|
|
}
|
|
|
|
|
|
/*
|
|
* sub_abs()
|
|
*
|
|
* Subtract the absolute value of var2 from the absolute value of var1
|
|
* and store in result. result might point to one of the operands
|
|
* without danger.
|
|
*
|
|
* ABS(var1) MUST BE GREATER OR EQUAL ABS(var2) !!!
|
|
*/
|
|
static void
|
|
sub_abs(NumericVar *var1, NumericVar *var2, NumericVar *result)
|
|
{
|
|
NumericDigit *res_buf;
|
|
NumericDigit *res_digits;
|
|
int res_ndigits;
|
|
int res_weight;
|
|
int res_rscale,
|
|
rscale1,
|
|
rscale2;
|
|
int res_dscale;
|
|
int i,
|
|
i1,
|
|
i2;
|
|
int borrow = 0;
|
|
|
|
/* copy these values into local vars for speed in inner loop */
|
|
int var1ndigits = var1->ndigits;
|
|
int var2ndigits = var2->ndigits;
|
|
NumericDigit *var1digits = var1->digits;
|
|
NumericDigit *var2digits = var2->digits;
|
|
|
|
res_weight = var1->weight;
|
|
|
|
res_dscale = Max(var1->dscale, var2->dscale);
|
|
|
|
/* Note: here we are figuring rscale in base-NBASE digits */
|
|
rscale1 = var1->ndigits - var1->weight - 1;
|
|
rscale2 = var2->ndigits - var2->weight - 1;
|
|
res_rscale = Max(rscale1, rscale2);
|
|
|
|
res_ndigits = res_rscale + res_weight + 1;
|
|
if (res_ndigits <= 0)
|
|
res_ndigits = 1;
|
|
|
|
res_buf = digitbuf_alloc(res_ndigits + 1);
|
|
res_buf[0] = 0; /* spare digit for later rounding */
|
|
res_digits = res_buf + 1;
|
|
|
|
i1 = res_rscale + var1->weight + 1;
|
|
i2 = res_rscale + var2->weight + 1;
|
|
for (i = res_ndigits - 1; i >= 0; i--)
|
|
{
|
|
i1--;
|
|
i2--;
|
|
if (i1 >= 0 && i1 < var1ndigits)
|
|
borrow += var1digits[i1];
|
|
if (i2 >= 0 && i2 < var2ndigits)
|
|
borrow -= var2digits[i2];
|
|
|
|
if (borrow < 0)
|
|
{
|
|
res_digits[i] = borrow + NBASE;
|
|
borrow = -1;
|
|
}
|
|
else
|
|
{
|
|
res_digits[i] = borrow;
|
|
borrow = 0;
|
|
}
|
|
}
|
|
|
|
Assert(borrow == 0); /* else caller gave us var1 < var2 */
|
|
|
|
digitbuf_free(result->buf);
|
|
result->ndigits = res_ndigits;
|
|
result->buf = res_buf;
|
|
result->digits = res_digits;
|
|
result->weight = res_weight;
|
|
result->dscale = res_dscale;
|
|
|
|
/* Remove leading/trailing zeroes */
|
|
strip_var(result);
|
|
}
|
|
|
|
/*
|
|
* round_var
|
|
*
|
|
* Round the value of a variable to no more than rscale decimal digits
|
|
* after the decimal point. NOTE: we allow rscale < 0 here, implying
|
|
* rounding before the decimal point.
|
|
*/
|
|
static void
|
|
round_var(NumericVar *var, int rscale)
|
|
{
|
|
NumericDigit *digits = var->digits;
|
|
int di;
|
|
int ndigits;
|
|
int carry;
|
|
|
|
var->dscale = rscale;
|
|
|
|
/* decimal digits wanted */
|
|
di = (var->weight + 1) * DEC_DIGITS + rscale;
|
|
|
|
/*
|
|
* If di = 0, the value loses all digits, but could round up to 1 if
|
|
* its first extra digit is >= 5. If di < 0 the result must be 0.
|
|
*/
|
|
if (di < 0)
|
|
{
|
|
var->ndigits = 0;
|
|
var->weight = 0;
|
|
var->sign = NUMERIC_POS;
|
|
}
|
|
else
|
|
{
|
|
/* NBASE digits wanted */
|
|
ndigits = (di + DEC_DIGITS - 1) / DEC_DIGITS;
|
|
|
|
/* 0, or number of decimal digits to keep in last NBASE digit */
|
|
di %= DEC_DIGITS;
|
|
|
|
if (ndigits < var->ndigits ||
|
|
(ndigits == var->ndigits && di > 0))
|
|
{
|
|
var->ndigits = ndigits;
|
|
|
|
#if DEC_DIGITS == 1
|
|
/* di must be zero */
|
|
carry = (digits[ndigits] >= HALF_NBASE) ? 1 : 0;
|
|
#else
|
|
if (di == 0)
|
|
carry = (digits[ndigits] >= HALF_NBASE) ? 1 : 0;
|
|
else
|
|
{
|
|
/* Must round within last NBASE digit */
|
|
int extra,
|
|
pow10;
|
|
|
|
#if DEC_DIGITS == 4
|
|
pow10 = round_powers[di];
|
|
#elif DEC_DIGITS == 2
|
|
pow10 = 10;
|
|
#else
|
|
#error unsupported NBASE
|
|
#endif
|
|
extra = digits[--ndigits] % pow10;
|
|
digits[ndigits] -= extra;
|
|
carry = 0;
|
|
if (extra >= pow10 / 2)
|
|
{
|
|
pow10 += digits[ndigits];
|
|
if (pow10 >= NBASE)
|
|
{
|
|
pow10 -= NBASE;
|
|
carry = 1;
|
|
}
|
|
digits[ndigits] = pow10;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Propagate carry if needed */
|
|
while (carry)
|
|
{
|
|
carry += digits[--ndigits];
|
|
if (carry >= NBASE)
|
|
{
|
|
digits[ndigits] = carry - NBASE;
|
|
carry = 1;
|
|
}
|
|
else
|
|
{
|
|
digits[ndigits] = carry;
|
|
carry = 0;
|
|
}
|
|
}
|
|
|
|
if (ndigits < 0)
|
|
{
|
|
Assert(ndigits == -1); /* better not have added > 1 digit */
|
|
Assert(var->digits > var->buf);
|
|
var->digits--;
|
|
var->ndigits++;
|
|
var->weight++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* trunc_var
|
|
*
|
|
* Truncate the value of a variable at rscale decimal digits after the
|
|
* decimal point. NOTE: we allow rscale < 0 here, implying
|
|
* truncation before the decimal point.
|
|
*/
|
|
static void
|
|
trunc_var(NumericVar *var, int rscale)
|
|
{
|
|
int di;
|
|
int ndigits;
|
|
|
|
var->dscale = rscale;
|
|
|
|
/* decimal digits wanted */
|
|
di = (var->weight + 1) * DEC_DIGITS + rscale;
|
|
|
|
/*
|
|
* If di <= 0, the value loses all digits.
|
|
*/
|
|
if (di <= 0)
|
|
{
|
|
var->ndigits = 0;
|
|
var->weight = 0;
|
|
var->sign = NUMERIC_POS;
|
|
}
|
|
else
|
|
{
|
|
/* NBASE digits wanted */
|
|
ndigits = (di + DEC_DIGITS - 1) / DEC_DIGITS;
|
|
|
|
if (ndigits <= var->ndigits)
|
|
{
|
|
var->ndigits = ndigits;
|
|
|
|
#if DEC_DIGITS == 1
|
|
/* no within-digit stuff to worry about */
|
|
#else
|
|
/* 0, or number of decimal digits to keep in last NBASE digit */
|
|
di %= DEC_DIGITS;
|
|
|
|
if (di > 0)
|
|
{
|
|
/* Must truncate within last NBASE digit */
|
|
NumericDigit *digits = var->digits;
|
|
int extra,
|
|
pow10;
|
|
|
|
#if DEC_DIGITS == 4
|
|
pow10 = round_powers[di];
|
|
#elif DEC_DIGITS == 2
|
|
pow10 = 10;
|
|
#else
|
|
#error unsupported NBASE
|
|
#endif
|
|
extra = digits[--ndigits] % pow10;
|
|
digits[ndigits] -= extra;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* strip_var
|
|
*
|
|
* Strip any leading and trailing zeroes from a numeric variable
|
|
*/
|
|
static void
|
|
strip_var(NumericVar *var)
|
|
{
|
|
NumericDigit *digits = var->digits;
|
|
int ndigits = var->ndigits;
|
|
|
|
/* Strip leading zeroes */
|
|
while (ndigits > 0 && *digits == 0)
|
|
{
|
|
digits++;
|
|
var->weight--;
|
|
ndigits--;
|
|
}
|
|
|
|
/* Strip trailing zeroes */
|
|
while (ndigits > 0 && digits[ndigits - 1] == 0)
|
|
ndigits--;
|
|
|
|
/* If it's zero, normalize the sign and weight */
|
|
if (ndigits == 0)
|
|
{
|
|
var->sign = NUMERIC_POS;
|
|
var->weight = 0;
|
|
}
|
|
|
|
var->digits = digits;
|
|
var->ndigits = ndigits;
|
|
}
|