
Keep the code that pertains to the 'json' data type in json.c, but move the lexing and parsing code to a new file jsonapi.c, a name I chose because the corresponding prototypes are in jsonapi.h. This seems like a logical division, because the JSON lexer and parser are also used by the 'jsonb' data type, but the SQL-callable functions in json.c are a separate thing. Also, the new jsonapi.c file needs to include far fewer header files than json.c, which seems like a good sign that this is an appropriate place to insert an abstraction boundary. I took the opportunity to remove a few apparently-unneeded includes from json.c at the same time. Patch by me, reviewed by David Steele, Mark Dilger, and Andrew Dunstan. The previous commit was, too, but I forgot to note it in the commit message. Discussion: http://postgr.es/m/CA+TgmoYfOXhd27MUDGioVh6QtpD0C1K-f6ObSA10AWiHBAL5bA@mail.gmail.com
1217 lines
32 KiB
C
1217 lines
32 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* jsonapi.c
|
|
* JSON parser and lexer interfaces
|
|
*
|
|
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/utils/adt/jsonapi.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "utils/jsonapi.h"
|
|
|
|
/*
|
|
* The context of the parser is maintained by the recursive descent
|
|
* mechanism, but is passed explicitly to the error reporting routine
|
|
* for better diagnostics.
|
|
*/
|
|
typedef enum /* contexts of JSON parser */
|
|
{
|
|
JSON_PARSE_VALUE, /* expecting a value */
|
|
JSON_PARSE_STRING, /* expecting a string (for a field name) */
|
|
JSON_PARSE_ARRAY_START, /* saw '[', expecting value or ']' */
|
|
JSON_PARSE_ARRAY_NEXT, /* saw array element, expecting ',' or ']' */
|
|
JSON_PARSE_OBJECT_START, /* saw '{', expecting label or '}' */
|
|
JSON_PARSE_OBJECT_LABEL, /* saw object label, expecting ':' */
|
|
JSON_PARSE_OBJECT_NEXT, /* saw object value, expecting ',' or '}' */
|
|
JSON_PARSE_OBJECT_COMMA, /* saw object ',', expecting next label */
|
|
JSON_PARSE_END /* saw the end of a document, expect nothing */
|
|
} JsonParseContext;
|
|
|
|
static inline void json_lex_string(JsonLexContext *lex);
|
|
static inline void json_lex_number(JsonLexContext *lex, char *s,
|
|
bool *num_err, int *total_len);
|
|
static inline void parse_scalar(JsonLexContext *lex, JsonSemAction *sem);
|
|
static void parse_object_field(JsonLexContext *lex, JsonSemAction *sem);
|
|
static void parse_object(JsonLexContext *lex, JsonSemAction *sem);
|
|
static void parse_array_element(JsonLexContext *lex, JsonSemAction *sem);
|
|
static void parse_array(JsonLexContext *lex, JsonSemAction *sem);
|
|
static void report_parse_error(JsonParseContext ctx, JsonLexContext *lex) pg_attribute_noreturn();
|
|
static void report_invalid_token(JsonLexContext *lex) pg_attribute_noreturn();
|
|
static int report_json_context(JsonLexContext *lex);
|
|
static char *extract_mb_char(char *s);
|
|
|
|
/* the null action object used for pure validation */
|
|
JsonSemAction nullSemAction =
|
|
{
|
|
NULL, NULL, NULL, NULL, NULL,
|
|
NULL, NULL, NULL, NULL, NULL
|
|
};
|
|
|
|
/* Recursive Descent parser support routines */
|
|
|
|
/*
|
|
* lex_peek
|
|
*
|
|
* what is the current look_ahead token?
|
|
*/
|
|
static inline JsonTokenType
|
|
lex_peek(JsonLexContext *lex)
|
|
{
|
|
return lex->token_type;
|
|
}
|
|
|
|
/*
|
|
* lex_accept
|
|
*
|
|
* accept the look_ahead token and move the lexer to the next token if the
|
|
* look_ahead token matches the token parameter. In that case, and if required,
|
|
* also hand back the de-escaped lexeme.
|
|
*
|
|
* returns true if the token matched, false otherwise.
|
|
*/
|
|
static inline bool
|
|
lex_accept(JsonLexContext *lex, JsonTokenType token, char **lexeme)
|
|
{
|
|
if (lex->token_type == token)
|
|
{
|
|
if (lexeme != NULL)
|
|
{
|
|
if (lex->token_type == JSON_TOKEN_STRING)
|
|
{
|
|
if (lex->strval != NULL)
|
|
*lexeme = pstrdup(lex->strval->data);
|
|
}
|
|
else
|
|
{
|
|
int len = (lex->token_terminator - lex->token_start);
|
|
char *tokstr = palloc(len + 1);
|
|
|
|
memcpy(tokstr, lex->token_start, len);
|
|
tokstr[len] = '\0';
|
|
*lexeme = tokstr;
|
|
}
|
|
}
|
|
json_lex(lex);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* lex_accept
|
|
*
|
|
* move the lexer to the next token if the current look_ahead token matches
|
|
* the parameter token. Otherwise, report an error.
|
|
*/
|
|
static inline void
|
|
lex_expect(JsonParseContext ctx, JsonLexContext *lex, JsonTokenType token)
|
|
{
|
|
if (!lex_accept(lex, token, NULL))
|
|
report_parse_error(ctx, lex);
|
|
}
|
|
|
|
/* chars to consider as part of an alphanumeric token */
|
|
#define JSON_ALPHANUMERIC_CHAR(c) \
|
|
(((c) >= 'a' && (c) <= 'z') || \
|
|
((c) >= 'A' && (c) <= 'Z') || \
|
|
((c) >= '0' && (c) <= '9') || \
|
|
(c) == '_' || \
|
|
IS_HIGHBIT_SET(c))
|
|
|
|
/*
|
|
* Utility function to check if a string is a valid JSON number.
|
|
*
|
|
* str is of length len, and need not be null-terminated.
|
|
*/
|
|
bool
|
|
IsValidJsonNumber(const char *str, int len)
|
|
{
|
|
bool numeric_error;
|
|
int total_len;
|
|
JsonLexContext dummy_lex;
|
|
|
|
if (len <= 0)
|
|
return false;
|
|
|
|
/*
|
|
* json_lex_number expects a leading '-' to have been eaten already.
|
|
*
|
|
* having to cast away the constness of str is ugly, but there's not much
|
|
* easy alternative.
|
|
*/
|
|
if (*str == '-')
|
|
{
|
|
dummy_lex.input = unconstify(char *, str) +1;
|
|
dummy_lex.input_length = len - 1;
|
|
}
|
|
else
|
|
{
|
|
dummy_lex.input = unconstify(char *, str);
|
|
dummy_lex.input_length = len;
|
|
}
|
|
|
|
json_lex_number(&dummy_lex, dummy_lex.input, &numeric_error, &total_len);
|
|
|
|
return (!numeric_error) && (total_len == dummy_lex.input_length);
|
|
}
|
|
|
|
/*
|
|
* makeJsonLexContext
|
|
*
|
|
* lex constructor, with or without StringInfo object
|
|
* for de-escaped lexemes.
|
|
*
|
|
* Without is better as it makes the processing faster, so only make one
|
|
* if really required.
|
|
*
|
|
* If you already have the json as a text* value, use the first of these
|
|
* functions, otherwise use makeJsonLexContextCstringLen().
|
|
*/
|
|
JsonLexContext *
|
|
makeJsonLexContext(text *json, bool need_escapes)
|
|
{
|
|
return makeJsonLexContextCstringLen(VARDATA_ANY(json),
|
|
VARSIZE_ANY_EXHDR(json),
|
|
need_escapes);
|
|
}
|
|
|
|
JsonLexContext *
|
|
makeJsonLexContextCstringLen(char *json, int len, bool need_escapes)
|
|
{
|
|
JsonLexContext *lex = palloc0(sizeof(JsonLexContext));
|
|
|
|
lex->input = lex->token_terminator = lex->line_start = json;
|
|
lex->line_number = 1;
|
|
lex->input_length = len;
|
|
if (need_escapes)
|
|
lex->strval = makeStringInfo();
|
|
return lex;
|
|
}
|
|
|
|
/*
|
|
* pg_parse_json
|
|
*
|
|
* Publicly visible entry point for the JSON parser.
|
|
*
|
|
* lex is a lexing context, set up for the json to be processed by calling
|
|
* makeJsonLexContext(). sem is a structure of function pointers to semantic
|
|
* action routines to be called at appropriate spots during parsing, and a
|
|
* pointer to a state object to be passed to those routines.
|
|
*/
|
|
void
|
|
pg_parse_json(JsonLexContext *lex, JsonSemAction *sem)
|
|
{
|
|
JsonTokenType tok;
|
|
|
|
/* get the initial token */
|
|
json_lex(lex);
|
|
|
|
tok = lex_peek(lex);
|
|
|
|
/* parse by recursive descent */
|
|
switch (tok)
|
|
{
|
|
case JSON_TOKEN_OBJECT_START:
|
|
parse_object(lex, sem);
|
|
break;
|
|
case JSON_TOKEN_ARRAY_START:
|
|
parse_array(lex, sem);
|
|
break;
|
|
default:
|
|
parse_scalar(lex, sem); /* json can be a bare scalar */
|
|
}
|
|
|
|
lex_expect(JSON_PARSE_END, lex, JSON_TOKEN_END);
|
|
|
|
}
|
|
|
|
/*
|
|
* json_count_array_elements
|
|
*
|
|
* Returns number of array elements in lex context at start of array token
|
|
* until end of array token at same nesting level.
|
|
*
|
|
* Designed to be called from array_start routines.
|
|
*/
|
|
int
|
|
json_count_array_elements(JsonLexContext *lex)
|
|
{
|
|
JsonLexContext copylex;
|
|
int count;
|
|
|
|
/*
|
|
* It's safe to do this with a shallow copy because the lexical routines
|
|
* don't scribble on the input. They do scribble on the other pointers
|
|
* etc, so doing this with a copy makes that safe.
|
|
*/
|
|
memcpy(©lex, lex, sizeof(JsonLexContext));
|
|
copylex.strval = NULL; /* not interested in values here */
|
|
copylex.lex_level++;
|
|
|
|
count = 0;
|
|
lex_expect(JSON_PARSE_ARRAY_START, ©lex, JSON_TOKEN_ARRAY_START);
|
|
if (lex_peek(©lex) != JSON_TOKEN_ARRAY_END)
|
|
{
|
|
do
|
|
{
|
|
count++;
|
|
parse_array_element(©lex, &nullSemAction);
|
|
}
|
|
while (lex_accept(©lex, JSON_TOKEN_COMMA, NULL));
|
|
}
|
|
lex_expect(JSON_PARSE_ARRAY_NEXT, ©lex, JSON_TOKEN_ARRAY_END);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Recursive Descent parse routines. There is one for each structural
|
|
* element in a json document:
|
|
* - scalar (string, number, true, false, null)
|
|
* - array ( [ ] )
|
|
* - array element
|
|
* - object ( { } )
|
|
* - object field
|
|
*/
|
|
static inline void
|
|
parse_scalar(JsonLexContext *lex, JsonSemAction *sem)
|
|
{
|
|
char *val = NULL;
|
|
json_scalar_action sfunc = sem->scalar;
|
|
char **valaddr;
|
|
JsonTokenType tok = lex_peek(lex);
|
|
|
|
valaddr = sfunc == NULL ? NULL : &val;
|
|
|
|
/* a scalar must be a string, a number, true, false, or null */
|
|
switch (tok)
|
|
{
|
|
case JSON_TOKEN_TRUE:
|
|
lex_accept(lex, JSON_TOKEN_TRUE, valaddr);
|
|
break;
|
|
case JSON_TOKEN_FALSE:
|
|
lex_accept(lex, JSON_TOKEN_FALSE, valaddr);
|
|
break;
|
|
case JSON_TOKEN_NULL:
|
|
lex_accept(lex, JSON_TOKEN_NULL, valaddr);
|
|
break;
|
|
case JSON_TOKEN_NUMBER:
|
|
lex_accept(lex, JSON_TOKEN_NUMBER, valaddr);
|
|
break;
|
|
case JSON_TOKEN_STRING:
|
|
lex_accept(lex, JSON_TOKEN_STRING, valaddr);
|
|
break;
|
|
default:
|
|
report_parse_error(JSON_PARSE_VALUE, lex);
|
|
}
|
|
|
|
if (sfunc != NULL)
|
|
(*sfunc) (sem->semstate, val, tok);
|
|
}
|
|
|
|
static void
|
|
parse_object_field(JsonLexContext *lex, JsonSemAction *sem)
|
|
{
|
|
/*
|
|
* An object field is "fieldname" : value where value can be a scalar,
|
|
* object or array. Note: in user-facing docs and error messages, we
|
|
* generally call a field name a "key".
|
|
*/
|
|
|
|
char *fname = NULL; /* keep compiler quiet */
|
|
json_ofield_action ostart = sem->object_field_start;
|
|
json_ofield_action oend = sem->object_field_end;
|
|
bool isnull;
|
|
char **fnameaddr = NULL;
|
|
JsonTokenType tok;
|
|
|
|
if (ostart != NULL || oend != NULL)
|
|
fnameaddr = &fname;
|
|
|
|
if (!lex_accept(lex, JSON_TOKEN_STRING, fnameaddr))
|
|
report_parse_error(JSON_PARSE_STRING, lex);
|
|
|
|
lex_expect(JSON_PARSE_OBJECT_LABEL, lex, JSON_TOKEN_COLON);
|
|
|
|
tok = lex_peek(lex);
|
|
isnull = tok == JSON_TOKEN_NULL;
|
|
|
|
if (ostart != NULL)
|
|
(*ostart) (sem->semstate, fname, isnull);
|
|
|
|
switch (tok)
|
|
{
|
|
case JSON_TOKEN_OBJECT_START:
|
|
parse_object(lex, sem);
|
|
break;
|
|
case JSON_TOKEN_ARRAY_START:
|
|
parse_array(lex, sem);
|
|
break;
|
|
default:
|
|
parse_scalar(lex, sem);
|
|
}
|
|
|
|
if (oend != NULL)
|
|
(*oend) (sem->semstate, fname, isnull);
|
|
}
|
|
|
|
static void
|
|
parse_object(JsonLexContext *lex, JsonSemAction *sem)
|
|
{
|
|
/*
|
|
* an object is a possibly empty sequence of object fields, separated by
|
|
* commas and surrounded by curly braces.
|
|
*/
|
|
json_struct_action ostart = sem->object_start;
|
|
json_struct_action oend = sem->object_end;
|
|
JsonTokenType tok;
|
|
|
|
check_stack_depth();
|
|
|
|
if (ostart != NULL)
|
|
(*ostart) (sem->semstate);
|
|
|
|
/*
|
|
* Data inside an object is at a higher nesting level than the object
|
|
* itself. Note that we increment this after we call the semantic routine
|
|
* for the object start and restore it before we call the routine for the
|
|
* object end.
|
|
*/
|
|
lex->lex_level++;
|
|
|
|
/* we know this will succeed, just clearing the token */
|
|
lex_expect(JSON_PARSE_OBJECT_START, lex, JSON_TOKEN_OBJECT_START);
|
|
|
|
tok = lex_peek(lex);
|
|
switch (tok)
|
|
{
|
|
case JSON_TOKEN_STRING:
|
|
parse_object_field(lex, sem);
|
|
while (lex_accept(lex, JSON_TOKEN_COMMA, NULL))
|
|
parse_object_field(lex, sem);
|
|
break;
|
|
case JSON_TOKEN_OBJECT_END:
|
|
break;
|
|
default:
|
|
/* case of an invalid initial token inside the object */
|
|
report_parse_error(JSON_PARSE_OBJECT_START, lex);
|
|
}
|
|
|
|
lex_expect(JSON_PARSE_OBJECT_NEXT, lex, JSON_TOKEN_OBJECT_END);
|
|
|
|
lex->lex_level--;
|
|
|
|
if (oend != NULL)
|
|
(*oend) (sem->semstate);
|
|
}
|
|
|
|
static void
|
|
parse_array_element(JsonLexContext *lex, JsonSemAction *sem)
|
|
{
|
|
json_aelem_action astart = sem->array_element_start;
|
|
json_aelem_action aend = sem->array_element_end;
|
|
JsonTokenType tok = lex_peek(lex);
|
|
|
|
bool isnull;
|
|
|
|
isnull = tok == JSON_TOKEN_NULL;
|
|
|
|
if (astart != NULL)
|
|
(*astart) (sem->semstate, isnull);
|
|
|
|
/* an array element is any object, array or scalar */
|
|
switch (tok)
|
|
{
|
|
case JSON_TOKEN_OBJECT_START:
|
|
parse_object(lex, sem);
|
|
break;
|
|
case JSON_TOKEN_ARRAY_START:
|
|
parse_array(lex, sem);
|
|
break;
|
|
default:
|
|
parse_scalar(lex, sem);
|
|
}
|
|
|
|
if (aend != NULL)
|
|
(*aend) (sem->semstate, isnull);
|
|
}
|
|
|
|
static void
|
|
parse_array(JsonLexContext *lex, JsonSemAction *sem)
|
|
{
|
|
/*
|
|
* an array is a possibly empty sequence of array elements, separated by
|
|
* commas and surrounded by square brackets.
|
|
*/
|
|
json_struct_action astart = sem->array_start;
|
|
json_struct_action aend = sem->array_end;
|
|
|
|
check_stack_depth();
|
|
|
|
if (astart != NULL)
|
|
(*astart) (sem->semstate);
|
|
|
|
/*
|
|
* Data inside an array is at a higher nesting level than the array
|
|
* itself. Note that we increment this after we call the semantic routine
|
|
* for the array start and restore it before we call the routine for the
|
|
* array end.
|
|
*/
|
|
lex->lex_level++;
|
|
|
|
lex_expect(JSON_PARSE_ARRAY_START, lex, JSON_TOKEN_ARRAY_START);
|
|
if (lex_peek(lex) != JSON_TOKEN_ARRAY_END)
|
|
{
|
|
|
|
parse_array_element(lex, sem);
|
|
|
|
while (lex_accept(lex, JSON_TOKEN_COMMA, NULL))
|
|
parse_array_element(lex, sem);
|
|
}
|
|
|
|
lex_expect(JSON_PARSE_ARRAY_NEXT, lex, JSON_TOKEN_ARRAY_END);
|
|
|
|
lex->lex_level--;
|
|
|
|
if (aend != NULL)
|
|
(*aend) (sem->semstate);
|
|
}
|
|
|
|
/*
|
|
* Lex one token from the input stream.
|
|
*/
|
|
void
|
|
json_lex(JsonLexContext *lex)
|
|
{
|
|
char *s;
|
|
int len;
|
|
|
|
/* Skip leading whitespace. */
|
|
s = lex->token_terminator;
|
|
len = s - lex->input;
|
|
while (len < lex->input_length &&
|
|
(*s == ' ' || *s == '\t' || *s == '\n' || *s == '\r'))
|
|
{
|
|
if (*s == '\n')
|
|
++lex->line_number;
|
|
++s;
|
|
++len;
|
|
}
|
|
lex->token_start = s;
|
|
|
|
/* Determine token type. */
|
|
if (len >= lex->input_length)
|
|
{
|
|
lex->token_start = NULL;
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s;
|
|
lex->token_type = JSON_TOKEN_END;
|
|
}
|
|
else
|
|
switch (*s)
|
|
{
|
|
/* Single-character token, some kind of punctuation mark. */
|
|
case '{':
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
lex->token_type = JSON_TOKEN_OBJECT_START;
|
|
break;
|
|
case '}':
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
lex->token_type = JSON_TOKEN_OBJECT_END;
|
|
break;
|
|
case '[':
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
lex->token_type = JSON_TOKEN_ARRAY_START;
|
|
break;
|
|
case ']':
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
lex->token_type = JSON_TOKEN_ARRAY_END;
|
|
break;
|
|
case ',':
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
lex->token_type = JSON_TOKEN_COMMA;
|
|
break;
|
|
case ':':
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
lex->token_type = JSON_TOKEN_COLON;
|
|
break;
|
|
case '"':
|
|
/* string */
|
|
json_lex_string(lex);
|
|
lex->token_type = JSON_TOKEN_STRING;
|
|
break;
|
|
case '-':
|
|
/* Negative number. */
|
|
json_lex_number(lex, s + 1, NULL, NULL);
|
|
lex->token_type = JSON_TOKEN_NUMBER;
|
|
break;
|
|
case '0':
|
|
case '1':
|
|
case '2':
|
|
case '3':
|
|
case '4':
|
|
case '5':
|
|
case '6':
|
|
case '7':
|
|
case '8':
|
|
case '9':
|
|
/* Positive number. */
|
|
json_lex_number(lex, s, NULL, NULL);
|
|
lex->token_type = JSON_TOKEN_NUMBER;
|
|
break;
|
|
default:
|
|
{
|
|
char *p;
|
|
|
|
/*
|
|
* We're not dealing with a string, number, legal
|
|
* punctuation mark, or end of string. The only legal
|
|
* tokens we might find here are true, false, and null,
|
|
* but for error reporting purposes we scan until we see a
|
|
* non-alphanumeric character. That way, we can report
|
|
* the whole word as an unexpected token, rather than just
|
|
* some unintuitive prefix thereof.
|
|
*/
|
|
for (p = s; p - s < lex->input_length - len && JSON_ALPHANUMERIC_CHAR(*p); p++)
|
|
/* skip */ ;
|
|
|
|
/*
|
|
* We got some sort of unexpected punctuation or an
|
|
* otherwise unexpected character, so just complain about
|
|
* that one character.
|
|
*/
|
|
if (p == s)
|
|
{
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
report_invalid_token(lex);
|
|
}
|
|
|
|
/*
|
|
* We've got a real alphanumeric token here. If it
|
|
* happens to be true, false, or null, all is well. If
|
|
* not, error out.
|
|
*/
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = p;
|
|
if (p - s == 4)
|
|
{
|
|
if (memcmp(s, "true", 4) == 0)
|
|
lex->token_type = JSON_TOKEN_TRUE;
|
|
else if (memcmp(s, "null", 4) == 0)
|
|
lex->token_type = JSON_TOKEN_NULL;
|
|
else
|
|
report_invalid_token(lex);
|
|
}
|
|
else if (p - s == 5 && memcmp(s, "false", 5) == 0)
|
|
lex->token_type = JSON_TOKEN_FALSE;
|
|
else
|
|
report_invalid_token(lex);
|
|
|
|
}
|
|
} /* end of switch */
|
|
}
|
|
|
|
/*
|
|
* The next token in the input stream is known to be a string; lex it.
|
|
*/
|
|
static inline void
|
|
json_lex_string(JsonLexContext *lex)
|
|
{
|
|
char *s;
|
|
int len;
|
|
int hi_surrogate = -1;
|
|
|
|
if (lex->strval != NULL)
|
|
resetStringInfo(lex->strval);
|
|
|
|
Assert(lex->input_length > 0);
|
|
s = lex->token_start;
|
|
len = lex->token_start - lex->input;
|
|
for (;;)
|
|
{
|
|
s++;
|
|
len++;
|
|
/* Premature end of the string. */
|
|
if (len >= lex->input_length)
|
|
{
|
|
lex->token_terminator = s;
|
|
report_invalid_token(lex);
|
|
}
|
|
else if (*s == '"')
|
|
break;
|
|
else if ((unsigned char) *s < 32)
|
|
{
|
|
/* Per RFC4627, these characters MUST be escaped. */
|
|
/* Since *s isn't printable, exclude it from the context string */
|
|
lex->token_terminator = s;
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Character with value 0x%02x must be escaped.",
|
|
(unsigned char) *s),
|
|
report_json_context(lex)));
|
|
}
|
|
else if (*s == '\\')
|
|
{
|
|
/* OK, we have an escape character. */
|
|
s++;
|
|
len++;
|
|
if (len >= lex->input_length)
|
|
{
|
|
lex->token_terminator = s;
|
|
report_invalid_token(lex);
|
|
}
|
|
else if (*s == 'u')
|
|
{
|
|
int i;
|
|
int ch = 0;
|
|
|
|
for (i = 1; i <= 4; i++)
|
|
{
|
|
s++;
|
|
len++;
|
|
if (len >= lex->input_length)
|
|
{
|
|
lex->token_terminator = s;
|
|
report_invalid_token(lex);
|
|
}
|
|
else if (*s >= '0' && *s <= '9')
|
|
ch = (ch * 16) + (*s - '0');
|
|
else if (*s >= 'a' && *s <= 'f')
|
|
ch = (ch * 16) + (*s - 'a') + 10;
|
|
else if (*s >= 'A' && *s <= 'F')
|
|
ch = (ch * 16) + (*s - 'A') + 10;
|
|
else
|
|
{
|
|
lex->token_terminator = s + pg_mblen(s);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s",
|
|
"json"),
|
|
errdetail("\"\\u\" must be followed by four hexadecimal digits."),
|
|
report_json_context(lex)));
|
|
}
|
|
}
|
|
if (lex->strval != NULL)
|
|
{
|
|
char utf8str[5];
|
|
int utf8len;
|
|
|
|
if (ch >= 0xd800 && ch <= 0xdbff)
|
|
{
|
|
if (hi_surrogate != -1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s",
|
|
"json"),
|
|
errdetail("Unicode high surrogate must not follow a high surrogate."),
|
|
report_json_context(lex)));
|
|
hi_surrogate = (ch & 0x3ff) << 10;
|
|
continue;
|
|
}
|
|
else if (ch >= 0xdc00 && ch <= 0xdfff)
|
|
{
|
|
if (hi_surrogate == -1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Unicode low surrogate must follow a high surrogate."),
|
|
report_json_context(lex)));
|
|
ch = 0x10000 + hi_surrogate + (ch & 0x3ff);
|
|
hi_surrogate = -1;
|
|
}
|
|
|
|
if (hi_surrogate != -1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Unicode low surrogate must follow a high surrogate."),
|
|
report_json_context(lex)));
|
|
|
|
/*
|
|
* For UTF8, replace the escape sequence by the actual
|
|
* utf8 character in lex->strval. Do this also for other
|
|
* encodings if the escape designates an ASCII character,
|
|
* otherwise raise an error.
|
|
*/
|
|
|
|
if (ch == 0)
|
|
{
|
|
/* We can't allow this, since our TEXT type doesn't */
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNTRANSLATABLE_CHARACTER),
|
|
errmsg("unsupported Unicode escape sequence"),
|
|
errdetail("\\u0000 cannot be converted to text."),
|
|
report_json_context(lex)));
|
|
}
|
|
else if (GetDatabaseEncoding() == PG_UTF8)
|
|
{
|
|
unicode_to_utf8(ch, (unsigned char *) utf8str);
|
|
utf8len = pg_utf_mblen((unsigned char *) utf8str);
|
|
appendBinaryStringInfo(lex->strval, utf8str, utf8len);
|
|
}
|
|
else if (ch <= 0x007f)
|
|
{
|
|
/*
|
|
* This is the only way to designate things like a
|
|
* form feed character in JSON, so it's useful in all
|
|
* encodings.
|
|
*/
|
|
appendStringInfoChar(lex->strval, (char) ch);
|
|
}
|
|
else
|
|
{
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_UNTRANSLATABLE_CHARACTER),
|
|
errmsg("unsupported Unicode escape sequence"),
|
|
errdetail("Unicode escape values cannot be used for code point values above 007F when the server encoding is not UTF8."),
|
|
report_json_context(lex)));
|
|
}
|
|
|
|
}
|
|
}
|
|
else if (lex->strval != NULL)
|
|
{
|
|
if (hi_surrogate != -1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s",
|
|
"json"),
|
|
errdetail("Unicode low surrogate must follow a high surrogate."),
|
|
report_json_context(lex)));
|
|
|
|
switch (*s)
|
|
{
|
|
case '"':
|
|
case '\\':
|
|
case '/':
|
|
appendStringInfoChar(lex->strval, *s);
|
|
break;
|
|
case 'b':
|
|
appendStringInfoChar(lex->strval, '\b');
|
|
break;
|
|
case 'f':
|
|
appendStringInfoChar(lex->strval, '\f');
|
|
break;
|
|
case 'n':
|
|
appendStringInfoChar(lex->strval, '\n');
|
|
break;
|
|
case 'r':
|
|
appendStringInfoChar(lex->strval, '\r');
|
|
break;
|
|
case 't':
|
|
appendStringInfoChar(lex->strval, '\t');
|
|
break;
|
|
default:
|
|
/* Not a valid string escape, so error out. */
|
|
lex->token_terminator = s + pg_mblen(s);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s",
|
|
"json"),
|
|
errdetail("Escape sequence \"\\%s\" is invalid.",
|
|
extract_mb_char(s)),
|
|
report_json_context(lex)));
|
|
}
|
|
}
|
|
else if (strchr("\"\\/bfnrt", *s) == NULL)
|
|
{
|
|
/*
|
|
* Simpler processing if we're not bothered about de-escaping
|
|
*
|
|
* It's very tempting to remove the strchr() call here and
|
|
* replace it with a switch statement, but testing so far has
|
|
* shown it's not a performance win.
|
|
*/
|
|
lex->token_terminator = s + pg_mblen(s);
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Escape sequence \"\\%s\" is invalid.",
|
|
extract_mb_char(s)),
|
|
report_json_context(lex)));
|
|
}
|
|
|
|
}
|
|
else if (lex->strval != NULL)
|
|
{
|
|
if (hi_surrogate != -1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Unicode low surrogate must follow a high surrogate."),
|
|
report_json_context(lex)));
|
|
|
|
appendStringInfoChar(lex->strval, *s);
|
|
}
|
|
|
|
}
|
|
|
|
if (hi_surrogate != -1)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Unicode low surrogate must follow a high surrogate."),
|
|
report_json_context(lex)));
|
|
|
|
/* Hooray, we found the end of the string! */
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s + 1;
|
|
}
|
|
|
|
/*
|
|
* The next token in the input stream is known to be a number; lex it.
|
|
*
|
|
* In JSON, a number consists of four parts:
|
|
*
|
|
* (1) An optional minus sign ('-').
|
|
*
|
|
* (2) Either a single '0', or a string of one or more digits that does not
|
|
* begin with a '0'.
|
|
*
|
|
* (3) An optional decimal part, consisting of a period ('.') followed by
|
|
* one or more digits. (Note: While this part can be omitted
|
|
* completely, it's not OK to have only the decimal point without
|
|
* any digits afterwards.)
|
|
*
|
|
* (4) An optional exponent part, consisting of 'e' or 'E', optionally
|
|
* followed by '+' or '-', followed by one or more digits. (Note:
|
|
* As with the decimal part, if 'e' or 'E' is present, it must be
|
|
* followed by at least one digit.)
|
|
*
|
|
* The 's' argument to this function points to the ostensible beginning
|
|
* of part 2 - i.e. the character after any optional minus sign, or the
|
|
* first character of the string if there is none.
|
|
*
|
|
* If num_err is not NULL, we return an error flag to *num_err rather than
|
|
* raising an error for a badly-formed number. Also, if total_len is not NULL
|
|
* the distance from lex->input to the token end+1 is returned to *total_len.
|
|
*/
|
|
static inline void
|
|
json_lex_number(JsonLexContext *lex, char *s,
|
|
bool *num_err, int *total_len)
|
|
{
|
|
bool error = false;
|
|
int len = s - lex->input;
|
|
|
|
/* Part (1): leading sign indicator. */
|
|
/* Caller already did this for us; so do nothing. */
|
|
|
|
/* Part (2): parse main digit string. */
|
|
if (len < lex->input_length && *s == '0')
|
|
{
|
|
s++;
|
|
len++;
|
|
}
|
|
else if (len < lex->input_length && *s >= '1' && *s <= '9')
|
|
{
|
|
do
|
|
{
|
|
s++;
|
|
len++;
|
|
} while (len < lex->input_length && *s >= '0' && *s <= '9');
|
|
}
|
|
else
|
|
error = true;
|
|
|
|
/* Part (3): parse optional decimal portion. */
|
|
if (len < lex->input_length && *s == '.')
|
|
{
|
|
s++;
|
|
len++;
|
|
if (len == lex->input_length || *s < '0' || *s > '9')
|
|
error = true;
|
|
else
|
|
{
|
|
do
|
|
{
|
|
s++;
|
|
len++;
|
|
} while (len < lex->input_length && *s >= '0' && *s <= '9');
|
|
}
|
|
}
|
|
|
|
/* Part (4): parse optional exponent. */
|
|
if (len < lex->input_length && (*s == 'e' || *s == 'E'))
|
|
{
|
|
s++;
|
|
len++;
|
|
if (len < lex->input_length && (*s == '+' || *s == '-'))
|
|
{
|
|
s++;
|
|
len++;
|
|
}
|
|
if (len == lex->input_length || *s < '0' || *s > '9')
|
|
error = true;
|
|
else
|
|
{
|
|
do
|
|
{
|
|
s++;
|
|
len++;
|
|
} while (len < lex->input_length && *s >= '0' && *s <= '9');
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check for trailing garbage. As in json_lex(), any alphanumeric stuff
|
|
* here should be considered part of the token for error-reporting
|
|
* purposes.
|
|
*/
|
|
for (; len < lex->input_length && JSON_ALPHANUMERIC_CHAR(*s); s++, len++)
|
|
error = true;
|
|
|
|
if (total_len != NULL)
|
|
*total_len = len;
|
|
|
|
if (num_err != NULL)
|
|
{
|
|
/* let the caller handle any error */
|
|
*num_err = error;
|
|
}
|
|
else
|
|
{
|
|
/* return token endpoint */
|
|
lex->prev_token_terminator = lex->token_terminator;
|
|
lex->token_terminator = s;
|
|
/* handle error if any */
|
|
if (error)
|
|
report_invalid_token(lex);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Report a parse error.
|
|
*
|
|
* lex->token_start and lex->token_terminator must identify the current token.
|
|
*/
|
|
static void
|
|
report_parse_error(JsonParseContext ctx, JsonLexContext *lex)
|
|
{
|
|
char *token;
|
|
int toklen;
|
|
|
|
/* Handle case where the input ended prematurely. */
|
|
if (lex->token_start == NULL || lex->token_type == JSON_TOKEN_END)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("The input string ended unexpectedly."),
|
|
report_json_context(lex)));
|
|
|
|
/* Separate out the current token. */
|
|
toklen = lex->token_terminator - lex->token_start;
|
|
token = palloc(toklen + 1);
|
|
memcpy(token, lex->token_start, toklen);
|
|
token[toklen] = '\0';
|
|
|
|
/* Complain, with the appropriate detail message. */
|
|
if (ctx == JSON_PARSE_END)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected end of input, but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
else
|
|
{
|
|
switch (ctx)
|
|
{
|
|
case JSON_PARSE_VALUE:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected JSON value, but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_STRING:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected string, but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_ARRAY_START:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected array element or \"]\", but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_ARRAY_NEXT:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected \",\" or \"]\", but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_OBJECT_START:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected string or \"}\", but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_OBJECT_LABEL:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected \":\", but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_OBJECT_NEXT:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected \",\" or \"}\", but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
case JSON_PARSE_OBJECT_COMMA:
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Expected string, but found \"%s\".",
|
|
token),
|
|
report_json_context(lex)));
|
|
break;
|
|
default:
|
|
elog(ERROR, "unexpected json parse state: %d", ctx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Report an invalid input token.
|
|
*
|
|
* lex->token_start and lex->token_terminator must identify the token.
|
|
*/
|
|
static void
|
|
report_invalid_token(JsonLexContext *lex)
|
|
{
|
|
char *token;
|
|
int toklen;
|
|
|
|
/* Separate out the offending token. */
|
|
toklen = lex->token_terminator - lex->token_start;
|
|
token = palloc(toklen + 1);
|
|
memcpy(token, lex->token_start, toklen);
|
|
token[toklen] = '\0';
|
|
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for type %s", "json"),
|
|
errdetail("Token \"%s\" is invalid.", token),
|
|
report_json_context(lex)));
|
|
}
|
|
|
|
/*
|
|
* Report a CONTEXT line for bogus JSON input.
|
|
*
|
|
* lex->token_terminator must be set to identify the spot where we detected
|
|
* the error. Note that lex->token_start might be NULL, in case we recognized
|
|
* error at EOF.
|
|
*
|
|
* The return value isn't meaningful, but we make it non-void so that this
|
|
* can be invoked inside ereport().
|
|
*/
|
|
static int
|
|
report_json_context(JsonLexContext *lex)
|
|
{
|
|
const char *context_start;
|
|
const char *context_end;
|
|
const char *line_start;
|
|
int line_number;
|
|
char *ctxt;
|
|
int ctxtlen;
|
|
const char *prefix;
|
|
const char *suffix;
|
|
|
|
/* Choose boundaries for the part of the input we will display */
|
|
context_start = lex->input;
|
|
context_end = lex->token_terminator;
|
|
line_start = context_start;
|
|
line_number = 1;
|
|
for (;;)
|
|
{
|
|
/* Always advance over newlines */
|
|
if (context_start < context_end && *context_start == '\n')
|
|
{
|
|
context_start++;
|
|
line_start = context_start;
|
|
line_number++;
|
|
continue;
|
|
}
|
|
/* Otherwise, done as soon as we are close enough to context_end */
|
|
if (context_end - context_start < 50)
|
|
break;
|
|
/* Advance to next multibyte character */
|
|
if (IS_HIGHBIT_SET(*context_start))
|
|
context_start += pg_mblen(context_start);
|
|
else
|
|
context_start++;
|
|
}
|
|
|
|
/*
|
|
* We add "..." to indicate that the excerpt doesn't start at the
|
|
* beginning of the line ... but if we're within 3 characters of the
|
|
* beginning of the line, we might as well just show the whole line.
|
|
*/
|
|
if (context_start - line_start <= 3)
|
|
context_start = line_start;
|
|
|
|
/* Get a null-terminated copy of the data to present */
|
|
ctxtlen = context_end - context_start;
|
|
ctxt = palloc(ctxtlen + 1);
|
|
memcpy(ctxt, context_start, ctxtlen);
|
|
ctxt[ctxtlen] = '\0';
|
|
|
|
/*
|
|
* Show the context, prefixing "..." if not starting at start of line, and
|
|
* suffixing "..." if not ending at end of line.
|
|
*/
|
|
prefix = (context_start > line_start) ? "..." : "";
|
|
suffix = (lex->token_type != JSON_TOKEN_END && context_end - lex->input < lex->input_length && *context_end != '\n' && *context_end != '\r') ? "..." : "";
|
|
|
|
return errcontext("JSON data, line %d: %s%s%s",
|
|
line_number, prefix, ctxt, suffix);
|
|
}
|
|
|
|
/*
|
|
* Extract a single, possibly multi-byte char from the input string.
|
|
*/
|
|
static char *
|
|
extract_mb_char(char *s)
|
|
{
|
|
char *res;
|
|
int len;
|
|
|
|
len = pg_mblen(s);
|
|
res = palloc(len + 1);
|
|
memcpy(res, s, len);
|
|
res[len] = '\0';
|
|
|
|
return res;
|
|
}
|