
A lot of files only included heapam.h for relation_open, heap_open etc - replace the heapam.h include in those files with the narrower header. Author: Andres Freund Discussion: https://postgr.es/m/20190111000539.xbv7s6w7ilcvm7dp@alap3.anarazel.de
1992 lines
62 KiB
C
1992 lines
62 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execPartition.c
|
|
* Support routines for partitioning.
|
|
*
|
|
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/execPartition.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/table.h"
|
|
#include "catalog/partition.h"
|
|
#include "catalog/pg_inherits.h"
|
|
#include "catalog/pg_type.h"
|
|
#include "executor/execPartition.h"
|
|
#include "executor/executor.h"
|
|
#include "foreign/fdwapi.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "nodes/makefuncs.h"
|
|
#include "partitioning/partbounds.h"
|
|
#include "partitioning/partprune.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/partcache.h"
|
|
#include "utils/rel.h"
|
|
#include "utils/rls.h"
|
|
#include "utils/ruleutils.h"
|
|
|
|
|
|
/*-----------------------
|
|
* PartitionTupleRouting - Encapsulates all information required to
|
|
* route a tuple inserted into a partitioned table to one of its leaf
|
|
* partitions.
|
|
*
|
|
* partition_root
|
|
* The partitioned table that's the target of the command.
|
|
*
|
|
* partition_dispatch_info
|
|
* Array of 'max_dispatch' elements containing a pointer to a
|
|
* PartitionDispatch object for every partitioned table touched by tuple
|
|
* routing. The entry for the target partitioned table is *always*
|
|
* present in the 0th element of this array. See comment for
|
|
* PartitionDispatchData->indexes for details on how this array is
|
|
* indexed.
|
|
*
|
|
* num_dispatch
|
|
* The current number of items stored in the 'partition_dispatch_info'
|
|
* array. Also serves as the index of the next free array element for
|
|
* new PartitionDispatch objects that need to be stored.
|
|
*
|
|
* max_dispatch
|
|
* The current allocated size of the 'partition_dispatch_info' array.
|
|
*
|
|
* partitions
|
|
* Array of 'max_partitions' elements containing a pointer to a
|
|
* ResultRelInfo for every leaf partitions touched by tuple routing.
|
|
* Some of these are pointers to ResultRelInfos which are borrowed out of
|
|
* 'subplan_resultrel_htab'. The remainder have been built especially
|
|
* for tuple routing. See comment for PartitionDispatchData->indexes for
|
|
* details on how this array is indexed.
|
|
*
|
|
* num_partitions
|
|
* The current number of items stored in the 'partitions' array. Also
|
|
* serves as the index of the next free array element for new
|
|
* ResultRelInfo objects that need to be stored.
|
|
*
|
|
* max_partitions
|
|
* The current allocated size of the 'partitions' array.
|
|
*
|
|
* subplan_resultrel_htab
|
|
* Hash table to store subplan ResultRelInfos by Oid. This is used to
|
|
* cache ResultRelInfos from subplans of an UPDATE ModifyTable node;
|
|
* NULL in other cases. Some of these may be useful for tuple routing
|
|
* to save having to build duplicates.
|
|
*
|
|
* memcxt
|
|
* Memory context used to allocate subsidiary structs.
|
|
*-----------------------
|
|
*/
|
|
struct PartitionTupleRouting
|
|
{
|
|
Relation partition_root;
|
|
PartitionDispatch *partition_dispatch_info;
|
|
int num_dispatch;
|
|
int max_dispatch;
|
|
ResultRelInfo **partitions;
|
|
int num_partitions;
|
|
int max_partitions;
|
|
HTAB *subplan_resultrel_htab;
|
|
MemoryContext memcxt;
|
|
};
|
|
|
|
/*-----------------------
|
|
* PartitionDispatch - information about one partitioned table in a partition
|
|
* hierarchy required to route a tuple to any of its partitions. A
|
|
* PartitionDispatch is always encapsulated inside a PartitionTupleRouting
|
|
* struct and stored inside its 'partition_dispatch_info' array.
|
|
*
|
|
* reldesc
|
|
* Relation descriptor of the table
|
|
*
|
|
* key
|
|
* Partition key information of the table
|
|
*
|
|
* keystate
|
|
* Execution state required for expressions in the partition key
|
|
*
|
|
* partdesc
|
|
* Partition descriptor of the table
|
|
*
|
|
* tupslot
|
|
* A standalone TupleTableSlot initialized with this table's tuple
|
|
* descriptor, or NULL if no tuple conversion between the parent is
|
|
* required.
|
|
*
|
|
* tupmap
|
|
* TupleConversionMap to convert from the parent's rowtype to this table's
|
|
* rowtype (when extracting the partition key of a tuple just before
|
|
* routing it through this table). A NULL value is stored if no tuple
|
|
* conversion is required.
|
|
*
|
|
* indexes
|
|
* Array of partdesc->nparts elements. For leaf partitions the index
|
|
* corresponds to the partition's ResultRelInfo in the encapsulating
|
|
* PartitionTupleRouting's partitions array. For partitioned partitions,
|
|
* the index corresponds to the PartitionDispatch for it in its
|
|
* partition_dispatch_info array. -1 indicates we've not yet allocated
|
|
* anything in PartitionTupleRouting for the partition.
|
|
*-----------------------
|
|
*/
|
|
typedef struct PartitionDispatchData
|
|
{
|
|
Relation reldesc;
|
|
PartitionKey key;
|
|
List *keystate; /* list of ExprState */
|
|
PartitionDesc partdesc;
|
|
TupleTableSlot *tupslot;
|
|
AttrNumber *tupmap;
|
|
int indexes[FLEXIBLE_ARRAY_MEMBER];
|
|
} PartitionDispatchData;
|
|
|
|
/* struct to hold result relations coming from UPDATE subplans */
|
|
typedef struct SubplanResultRelHashElem
|
|
{
|
|
Oid relid; /* hash key -- must be first */
|
|
ResultRelInfo *rri;
|
|
} SubplanResultRelHashElem;
|
|
|
|
|
|
static void ExecHashSubPlanResultRelsByOid(ModifyTableState *mtstate,
|
|
PartitionTupleRouting *proute);
|
|
static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
|
|
EState *estate, PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *rootResultRelInfo,
|
|
int partidx);
|
|
static void ExecInitRoutingInfo(ModifyTableState *mtstate,
|
|
EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *partRelInfo,
|
|
int partidx);
|
|
static PartitionDispatch ExecInitPartitionDispatchInfo(PartitionTupleRouting *proute,
|
|
Oid partoid, PartitionDispatch parent_pd, int partidx);
|
|
static void FormPartitionKeyDatum(PartitionDispatch pd,
|
|
TupleTableSlot *slot,
|
|
EState *estate,
|
|
Datum *values,
|
|
bool *isnull);
|
|
static int get_partition_for_tuple(PartitionDispatch pd, Datum *values,
|
|
bool *isnull);
|
|
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
|
|
Datum *values,
|
|
bool *isnull,
|
|
int maxfieldlen);
|
|
static List *adjust_partition_tlist(List *tlist, TupleConversionMap *map);
|
|
static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
|
|
PartitionedRelPruningData *pprune,
|
|
bool initial_prune,
|
|
Bitmapset **validsubplans);
|
|
|
|
|
|
/*
|
|
* ExecSetupPartitionTupleRouting - sets up information needed during
|
|
* tuple routing for partitioned tables, encapsulates it in
|
|
* PartitionTupleRouting, and returns it.
|
|
*
|
|
* Note that all the relations in the partition tree are locked using the
|
|
* RowExclusiveLock mode upon return from this function.
|
|
*
|
|
* Callers must use the returned PartitionTupleRouting during calls to
|
|
* ExecFindPartition(). The actual ResultRelInfo for a partition is only
|
|
* allocated when the partition is found for the first time.
|
|
*
|
|
* The current memory context is used to allocate this struct and all
|
|
* subsidiary structs that will be allocated from it later on. Typically
|
|
* it should be estate->es_query_cxt.
|
|
*/
|
|
PartitionTupleRouting *
|
|
ExecSetupPartitionTupleRouting(ModifyTableState *mtstate, Relation rel)
|
|
{
|
|
PartitionTupleRouting *proute;
|
|
ModifyTable *node = mtstate ? (ModifyTable *) mtstate->ps.plan : NULL;
|
|
|
|
/* Lock all the partitions. */
|
|
(void) find_all_inheritors(RelationGetRelid(rel), RowExclusiveLock, NULL);
|
|
|
|
/*
|
|
* Here we attempt to expend as little effort as possible in setting up
|
|
* the PartitionTupleRouting. Each partition's ResultRelInfo is built on
|
|
* demand, only when we actually need to route a tuple to that partition.
|
|
* The reason for this is that a common case is for INSERT to insert a
|
|
* single tuple into a partitioned table and this must be fast.
|
|
*/
|
|
proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting));
|
|
proute->partition_root = rel;
|
|
proute->memcxt = CurrentMemoryContext;
|
|
/* Rest of members initialized by zeroing */
|
|
|
|
/*
|
|
* Initialize this table's PartitionDispatch object. Here we pass in the
|
|
* parent as NULL as we don't need to care about any parent of the target
|
|
* partitioned table.
|
|
*/
|
|
ExecInitPartitionDispatchInfo(proute, RelationGetRelid(rel), NULL, 0);
|
|
|
|
/*
|
|
* If performing an UPDATE with tuple routing, we can reuse partition
|
|
* sub-plan result rels. We build a hash table to map the OIDs of
|
|
* partitions present in mtstate->resultRelInfo to their ResultRelInfos.
|
|
* Every time a tuple is routed to a partition that we've yet to set the
|
|
* ResultRelInfo for, before we go to the trouble of making one, we check
|
|
* for a pre-made one in the hash table.
|
|
*/
|
|
if (node && node->operation == CMD_UPDATE)
|
|
ExecHashSubPlanResultRelsByOid(mtstate, proute);
|
|
|
|
return proute;
|
|
}
|
|
|
|
/*
|
|
* ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
|
|
* the tuple contained in *slot should belong to.
|
|
*
|
|
* If the partition's ResultRelInfo does not yet exist in 'proute' then we set
|
|
* one up or reuse one from mtstate's resultRelInfo array. When reusing a
|
|
* ResultRelInfo from the mtstate we verify that the relation is a valid
|
|
* target for INSERTs and then set up a PartitionRoutingInfo for it.
|
|
*
|
|
* rootResultRelInfo is the relation named in the query.
|
|
*
|
|
* estate must be non-NULL; we'll need it to compute any expressions in the
|
|
* partition keys. Also, its per-tuple contexts are used as evaluation
|
|
* scratch space.
|
|
*
|
|
* If no leaf partition is found, this routine errors out with the appropriate
|
|
* error message. An error may also be raised if the found target partition
|
|
* is not a valid target for an INSERT.
|
|
*/
|
|
ResultRelInfo *
|
|
ExecFindPartition(ModifyTableState *mtstate,
|
|
ResultRelInfo *rootResultRelInfo,
|
|
PartitionTupleRouting *proute,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
PartitionDispatch *pd = proute->partition_dispatch_info;
|
|
Datum values[PARTITION_MAX_KEYS];
|
|
bool isnull[PARTITION_MAX_KEYS];
|
|
Relation rel;
|
|
PartitionDispatch dispatch;
|
|
PartitionDesc partdesc;
|
|
ExprContext *ecxt = GetPerTupleExprContext(estate);
|
|
TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;
|
|
TupleTableSlot *myslot = NULL;
|
|
MemoryContext oldcxt;
|
|
|
|
/* use per-tuple context here to avoid leaking memory */
|
|
oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
|
|
|
|
/*
|
|
* First check the root table's partition constraint, if any. No point in
|
|
* routing the tuple if it doesn't belong in the root table itself.
|
|
*/
|
|
if (rootResultRelInfo->ri_PartitionCheck)
|
|
ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
|
|
|
|
/* start with the root partitioned table */
|
|
dispatch = pd[0];
|
|
while (true)
|
|
{
|
|
AttrNumber *map = dispatch->tupmap;
|
|
int partidx = -1;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
rel = dispatch->reldesc;
|
|
partdesc = dispatch->partdesc;
|
|
|
|
/*
|
|
* Convert the tuple to this parent's layout, if different from the
|
|
* current relation.
|
|
*/
|
|
myslot = dispatch->tupslot;
|
|
if (myslot != NULL)
|
|
{
|
|
Assert(map != NULL);
|
|
slot = execute_attr_map_slot(map, slot, myslot);
|
|
}
|
|
|
|
/*
|
|
* Extract partition key from tuple. Expression evaluation machinery
|
|
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
|
|
* point to the correct tuple slot. The slot might have changed from
|
|
* what was used for the parent table if the table of the current
|
|
* partitioning level has different tuple descriptor from the parent.
|
|
* So update ecxt_scantuple accordingly.
|
|
*/
|
|
ecxt->ecxt_scantuple = slot;
|
|
FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
|
|
|
|
/*
|
|
* If this partitioned table has no partitions or no partition for
|
|
* these values, error out.
|
|
*/
|
|
if (partdesc->nparts == 0 ||
|
|
(partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
|
|
{
|
|
char *val_desc;
|
|
|
|
val_desc = ExecBuildSlotPartitionKeyDescription(rel,
|
|
values, isnull, 64);
|
|
Assert(OidIsValid(RelationGetRelid(rel)));
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("no partition of relation \"%s\" found for row",
|
|
RelationGetRelationName(rel)),
|
|
val_desc ?
|
|
errdetail("Partition key of the failing row contains %s.",
|
|
val_desc) : 0));
|
|
}
|
|
|
|
if (partdesc->is_leaf[partidx])
|
|
{
|
|
ResultRelInfo *rri;
|
|
|
|
/*
|
|
* Look to see if we've already got a ResultRelInfo for this
|
|
* partition.
|
|
*/
|
|
if (likely(dispatch->indexes[partidx] >= 0))
|
|
{
|
|
/* ResultRelInfo already built */
|
|
Assert(dispatch->indexes[partidx] < proute->num_partitions);
|
|
rri = proute->partitions[dispatch->indexes[partidx]];
|
|
}
|
|
else
|
|
{
|
|
bool found = false;
|
|
|
|
/*
|
|
* We have not yet set up a ResultRelInfo for this partition,
|
|
* but if we have a subplan hash table, we might have one
|
|
* there. If not, we'll have to create one.
|
|
*/
|
|
if (proute->subplan_resultrel_htab)
|
|
{
|
|
Oid partoid = partdesc->oids[partidx];
|
|
SubplanResultRelHashElem *elem;
|
|
|
|
elem = hash_search(proute->subplan_resultrel_htab,
|
|
&partoid, HASH_FIND, NULL);
|
|
if (elem)
|
|
{
|
|
found = true;
|
|
rri = elem->rri;
|
|
|
|
/* Verify this ResultRelInfo allows INSERTs */
|
|
CheckValidResultRel(rri, CMD_INSERT);
|
|
|
|
/* Set up the PartitionRoutingInfo for it */
|
|
ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
|
|
rri, partidx);
|
|
}
|
|
}
|
|
|
|
/* We need to create a new one. */
|
|
if (!found)
|
|
rri = ExecInitPartitionInfo(mtstate, estate, proute,
|
|
dispatch,
|
|
rootResultRelInfo, partidx);
|
|
}
|
|
|
|
/* Release the tuple in the lowest parent's dedicated slot. */
|
|
if (slot == myslot)
|
|
ExecClearTuple(myslot);
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
ecxt->ecxt_scantuple = ecxt_scantuple_old;
|
|
return rri;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Partition is a sub-partitioned table; get the PartitionDispatch
|
|
*/
|
|
if (likely(dispatch->indexes[partidx] >= 0))
|
|
{
|
|
/* Already built. */
|
|
Assert(dispatch->indexes[partidx] < proute->num_dispatch);
|
|
|
|
/*
|
|
* Move down to the next partition level and search again
|
|
* until we find a leaf partition that matches this tuple
|
|
*/
|
|
dispatch = pd[dispatch->indexes[partidx]];
|
|
}
|
|
else
|
|
{
|
|
/* Not yet built. Do that now. */
|
|
PartitionDispatch subdispatch;
|
|
|
|
/*
|
|
* Create the new PartitionDispatch. We pass the current one
|
|
* in as the parent PartitionDispatch
|
|
*/
|
|
subdispatch = ExecInitPartitionDispatchInfo(proute,
|
|
partdesc->oids[partidx],
|
|
dispatch, partidx);
|
|
Assert(dispatch->indexes[partidx] >= 0 &&
|
|
dispatch->indexes[partidx] < proute->num_dispatch);
|
|
dispatch = subdispatch;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecHashSubPlanResultRelsByOid
|
|
* Build a hash table to allow fast lookups of subplan ResultRelInfos by
|
|
* partition Oid. We also populate the subplan ResultRelInfo with an
|
|
* ri_PartitionRoot.
|
|
*/
|
|
static void
|
|
ExecHashSubPlanResultRelsByOid(ModifyTableState *mtstate,
|
|
PartitionTupleRouting *proute)
|
|
{
|
|
HASHCTL ctl;
|
|
HTAB *htab;
|
|
int i;
|
|
|
|
memset(&ctl, 0, sizeof(ctl));
|
|
ctl.keysize = sizeof(Oid);
|
|
ctl.entrysize = sizeof(SubplanResultRelHashElem);
|
|
ctl.hcxt = CurrentMemoryContext;
|
|
|
|
htab = hash_create("PartitionTupleRouting table", mtstate->mt_nplans,
|
|
&ctl, HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
|
|
proute->subplan_resultrel_htab = htab;
|
|
|
|
/* Hash all subplans by their Oid */
|
|
for (i = 0; i < mtstate->mt_nplans; i++)
|
|
{
|
|
ResultRelInfo *rri = &mtstate->resultRelInfo[i];
|
|
bool found;
|
|
Oid partoid = RelationGetRelid(rri->ri_RelationDesc);
|
|
SubplanResultRelHashElem *elem;
|
|
|
|
elem = (SubplanResultRelHashElem *)
|
|
hash_search(htab, &partoid, HASH_ENTER, &found);
|
|
Assert(!found);
|
|
elem->rri = rri;
|
|
|
|
/*
|
|
* This is required in order to convert the partition's tuple to be
|
|
* compatible with the root partitioned table's tuple descriptor. When
|
|
* generating the per-subplan result rels, this was not set.
|
|
*/
|
|
rri->ri_PartitionRoot = proute->partition_root;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ExecInitPartitionInfo
|
|
* Initialize ResultRelInfo and other information for a partition
|
|
* and store it in the next empty slot in the proute->partitions array.
|
|
*
|
|
* Returns the ResultRelInfo
|
|
*/
|
|
static ResultRelInfo *
|
|
ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *rootResultRelInfo,
|
|
int partidx)
|
|
{
|
|
ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
|
|
Relation rootrel = rootResultRelInfo->ri_RelationDesc,
|
|
partrel;
|
|
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
|
|
ResultRelInfo *leaf_part_rri;
|
|
MemoryContext oldcxt;
|
|
AttrNumber *part_attnos = NULL;
|
|
bool found_whole_row;
|
|
|
|
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
|
|
|
/*
|
|
* We locked all the partitions in ExecSetupPartitionTupleRouting
|
|
* including the leaf partitions.
|
|
*/
|
|
partrel = heap_open(dispatch->partdesc->oids[partidx], NoLock);
|
|
|
|
leaf_part_rri = makeNode(ResultRelInfo);
|
|
InitResultRelInfo(leaf_part_rri,
|
|
partrel,
|
|
node ? node->rootRelation : 1,
|
|
rootrel,
|
|
estate->es_instrument);
|
|
|
|
/*
|
|
* Verify result relation is a valid target for an INSERT. An UPDATE of a
|
|
* partition-key becomes a DELETE+INSERT operation, so this check is still
|
|
* required when the operation is CMD_UPDATE.
|
|
*/
|
|
CheckValidResultRel(leaf_part_rri, CMD_INSERT);
|
|
|
|
/*
|
|
* Open partition indices. The user may have asked to check for conflicts
|
|
* within this leaf partition and do "nothing" instead of throwing an
|
|
* error. Be prepared in that case by initializing the index information
|
|
* needed by ExecInsert() to perform speculative insertions.
|
|
*/
|
|
if (partrel->rd_rel->relhasindex &&
|
|
leaf_part_rri->ri_IndexRelationDescs == NULL)
|
|
ExecOpenIndices(leaf_part_rri,
|
|
(node != NULL &&
|
|
node->onConflictAction != ONCONFLICT_NONE));
|
|
|
|
/*
|
|
* Build WITH CHECK OPTION constraints for the partition. Note that we
|
|
* didn't build the withCheckOptionList for partitions within the planner,
|
|
* but simple translation of varattnos will suffice. This only occurs for
|
|
* the INSERT case or in the case of UPDATE tuple routing where we didn't
|
|
* find a result rel to reuse in ExecSetupPartitionTupleRouting().
|
|
*/
|
|
if (node && node->withCheckOptionLists != NIL)
|
|
{
|
|
List *wcoList;
|
|
List *wcoExprs = NIL;
|
|
ListCell *ll;
|
|
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
|
|
|
|
/*
|
|
* In the case of INSERT on a partitioned table, there is only one
|
|
* plan. Likewise, there is only one WCO list, not one per partition.
|
|
* For UPDATE, there are as many WCO lists as there are plans.
|
|
*/
|
|
Assert((node->operation == CMD_INSERT &&
|
|
list_length(node->withCheckOptionLists) == 1 &&
|
|
list_length(node->plans) == 1) ||
|
|
(node->operation == CMD_UPDATE &&
|
|
list_length(node->withCheckOptionLists) ==
|
|
list_length(node->plans)));
|
|
|
|
/*
|
|
* Use the WCO list of the first plan as a reference to calculate
|
|
* attno's for the WCO list of this partition. In the INSERT case,
|
|
* that refers to the root partitioned table, whereas in the UPDATE
|
|
* tuple routing case, that refers to the first partition in the
|
|
* mtstate->resultRelInfo array. In any case, both that relation and
|
|
* this partition should have the same columns, so we should be able
|
|
* to map attributes successfully.
|
|
*/
|
|
wcoList = linitial(node->withCheckOptionLists);
|
|
|
|
/*
|
|
* Convert Vars in it to contain this partition's attribute numbers.
|
|
*/
|
|
part_attnos =
|
|
convert_tuples_by_name_map(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
gettext_noop("could not convert row type"));
|
|
wcoList = (List *)
|
|
map_variable_attnos((Node *) wcoList,
|
|
firstVarno, 0,
|
|
part_attnos,
|
|
RelationGetDescr(firstResultRel)->natts,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
|
|
foreach(ll, wcoList)
|
|
{
|
|
WithCheckOption *wco = castNode(WithCheckOption, lfirst(ll));
|
|
ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
|
|
&mtstate->ps);
|
|
|
|
wcoExprs = lappend(wcoExprs, wcoExpr);
|
|
}
|
|
|
|
leaf_part_rri->ri_WithCheckOptions = wcoList;
|
|
leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
|
|
}
|
|
|
|
/*
|
|
* Build the RETURNING projection for the partition. Note that we didn't
|
|
* build the returningList for partitions within the planner, but simple
|
|
* translation of varattnos will suffice. This only occurs for the INSERT
|
|
* case or in the case of UPDATE tuple routing where we didn't find a
|
|
* result rel to reuse in ExecSetupPartitionTupleRouting().
|
|
*/
|
|
if (node && node->returningLists != NIL)
|
|
{
|
|
TupleTableSlot *slot;
|
|
ExprContext *econtext;
|
|
List *returningList;
|
|
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
|
|
|
|
/* See the comment above for WCO lists. */
|
|
Assert((node->operation == CMD_INSERT &&
|
|
list_length(node->returningLists) == 1 &&
|
|
list_length(node->plans) == 1) ||
|
|
(node->operation == CMD_UPDATE &&
|
|
list_length(node->returningLists) ==
|
|
list_length(node->plans)));
|
|
|
|
/*
|
|
* Use the RETURNING list of the first plan as a reference to
|
|
* calculate attno's for the RETURNING list of this partition. See
|
|
* the comment above for WCO lists for more details on why this is
|
|
* okay.
|
|
*/
|
|
returningList = linitial(node->returningLists);
|
|
|
|
/*
|
|
* Convert Vars in it to contain this partition's attribute numbers.
|
|
*/
|
|
if (part_attnos == NULL)
|
|
part_attnos =
|
|
convert_tuples_by_name_map(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
gettext_noop("could not convert row type"));
|
|
returningList = (List *)
|
|
map_variable_attnos((Node *) returningList,
|
|
firstVarno, 0,
|
|
part_attnos,
|
|
RelationGetDescr(firstResultRel)->natts,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
|
|
leaf_part_rri->ri_returningList = returningList;
|
|
|
|
/*
|
|
* Initialize the projection itself.
|
|
*
|
|
* Use the slot and the expression context that would have been set up
|
|
* in ExecInitModifyTable() for projection's output.
|
|
*/
|
|
Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
|
|
slot = mtstate->ps.ps_ResultTupleSlot;
|
|
Assert(mtstate->ps.ps_ExprContext != NULL);
|
|
econtext = mtstate->ps.ps_ExprContext;
|
|
leaf_part_rri->ri_projectReturning =
|
|
ExecBuildProjectionInfo(returningList, econtext, slot,
|
|
&mtstate->ps, RelationGetDescr(partrel));
|
|
}
|
|
|
|
/* Set up information needed for routing tuples to the partition. */
|
|
ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
|
|
leaf_part_rri, partidx);
|
|
|
|
/*
|
|
* If there is an ON CONFLICT clause, initialize state for it.
|
|
*/
|
|
if (node && node->onConflictAction != ONCONFLICT_NONE)
|
|
{
|
|
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
|
|
TupleDesc partrelDesc = RelationGetDescr(partrel);
|
|
ExprContext *econtext = mtstate->ps.ps_ExprContext;
|
|
ListCell *lc;
|
|
List *arbiterIndexes = NIL;
|
|
|
|
/*
|
|
* If there is a list of arbiter indexes, map it to a list of indexes
|
|
* in the partition. We do that by scanning the partition's index
|
|
* list and searching for ancestry relationships to each index in the
|
|
* ancestor table.
|
|
*/
|
|
if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) > 0)
|
|
{
|
|
List *childIdxs;
|
|
|
|
childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc);
|
|
|
|
foreach(lc, childIdxs)
|
|
{
|
|
Oid childIdx = lfirst_oid(lc);
|
|
List *ancestors;
|
|
ListCell *lc2;
|
|
|
|
ancestors = get_partition_ancestors(childIdx);
|
|
foreach(lc2, rootResultRelInfo->ri_onConflictArbiterIndexes)
|
|
{
|
|
if (list_member_oid(ancestors, lfirst_oid(lc2)))
|
|
arbiterIndexes = lappend_oid(arbiterIndexes, childIdx);
|
|
}
|
|
list_free(ancestors);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the resulting lists are of inequal length, something is wrong.
|
|
* (This shouldn't happen, since arbiter index selection should not
|
|
* pick up an invalid index.)
|
|
*/
|
|
if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
|
|
list_length(arbiterIndexes))
|
|
elog(ERROR, "invalid arbiter index list");
|
|
leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
|
|
|
|
/*
|
|
* In the DO UPDATE case, we have some more state to initialize.
|
|
*/
|
|
if (node->onConflictAction == ONCONFLICT_UPDATE)
|
|
{
|
|
TupleConversionMap *map;
|
|
|
|
map = leaf_part_rri->ri_PartitionInfo->pi_RootToPartitionMap;
|
|
|
|
Assert(node->onConflictSet != NIL);
|
|
Assert(rootResultRelInfo->ri_onConflict != NULL);
|
|
|
|
/*
|
|
* If the partition's tuple descriptor matches exactly the root
|
|
* parent (the common case), we can simply re-use the parent's ON
|
|
* CONFLICT SET state, skipping a bunch of work. Otherwise, we
|
|
* need to create state specific to this partition.
|
|
*/
|
|
if (map == NULL)
|
|
leaf_part_rri->ri_onConflict = rootResultRelInfo->ri_onConflict;
|
|
else
|
|
{
|
|
List *onconflset;
|
|
TupleDesc tupDesc;
|
|
bool found_whole_row;
|
|
|
|
leaf_part_rri->ri_onConflict = makeNode(OnConflictSetState);
|
|
|
|
/*
|
|
* Translate expressions in onConflictSet to account for
|
|
* different attribute numbers. For that, map partition
|
|
* varattnos twice: first to catch the EXCLUDED
|
|
* pseudo-relation (INNER_VAR), and second to handle the main
|
|
* target relation (firstVarno).
|
|
*/
|
|
onconflset = (List *) copyObject((Node *) node->onConflictSet);
|
|
if (part_attnos == NULL)
|
|
part_attnos =
|
|
convert_tuples_by_name_map(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
gettext_noop("could not convert row type"));
|
|
onconflset = (List *)
|
|
map_variable_attnos((Node *) onconflset,
|
|
INNER_VAR, 0,
|
|
part_attnos,
|
|
RelationGetDescr(firstResultRel)->natts,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
onconflset = (List *)
|
|
map_variable_attnos((Node *) onconflset,
|
|
firstVarno, 0,
|
|
part_attnos,
|
|
RelationGetDescr(firstResultRel)->natts,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
|
|
/* Finally, adjust this tlist to match the partition. */
|
|
onconflset = adjust_partition_tlist(onconflset, map);
|
|
|
|
/*
|
|
* Build UPDATE SET's projection info. The user of this
|
|
* projection is responsible for setting the slot's tupdesc!
|
|
* We set aside a tupdesc that's good for the common case of a
|
|
* partition that's tupdesc-equal to the partitioned table;
|
|
* partitions of different tupdescs must generate their own.
|
|
*/
|
|
tupDesc = ExecTypeFromTL(onconflset);
|
|
ExecSetSlotDescriptor(mtstate->mt_conflproj, tupDesc);
|
|
leaf_part_rri->ri_onConflict->oc_ProjInfo =
|
|
ExecBuildProjectionInfo(onconflset, econtext,
|
|
mtstate->mt_conflproj,
|
|
&mtstate->ps, partrelDesc);
|
|
leaf_part_rri->ri_onConflict->oc_ProjTupdesc = tupDesc;
|
|
|
|
/*
|
|
* If there is a WHERE clause, initialize state where it will
|
|
* be evaluated, mapping the attribute numbers appropriately.
|
|
* As with onConflictSet, we need to map partition varattnos
|
|
* to the partition's tupdesc.
|
|
*/
|
|
if (node->onConflictWhere)
|
|
{
|
|
List *clause;
|
|
|
|
clause = copyObject((List *) node->onConflictWhere);
|
|
clause = (List *)
|
|
map_variable_attnos((Node *) clause,
|
|
INNER_VAR, 0,
|
|
part_attnos,
|
|
RelationGetDescr(firstResultRel)->natts,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
clause = (List *)
|
|
map_variable_attnos((Node *) clause,
|
|
firstVarno, 0,
|
|
part_attnos,
|
|
RelationGetDescr(firstResultRel)->natts,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
leaf_part_rri->ri_onConflict->oc_WhereClause =
|
|
ExecInitQual((List *) clause, &mtstate->ps);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since we've just initialized this ResultRelInfo, it's not in any list
|
|
* attached to the estate as yet. Add it, so that it can be found later.
|
|
*
|
|
* Note that the entries in this list appear in no predetermined order,
|
|
* because partition result rels are initialized as and when they're
|
|
* needed.
|
|
*/
|
|
MemoryContextSwitchTo(estate->es_query_cxt);
|
|
estate->es_tuple_routing_result_relations =
|
|
lappend(estate->es_tuple_routing_result_relations,
|
|
leaf_part_rri);
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return leaf_part_rri;
|
|
}
|
|
|
|
/*
|
|
* ExecInitRoutingInfo
|
|
* Set up information needed for translating tuples between root
|
|
* partitioned table format and partition format, and keep track of it
|
|
* in PartitionTupleRouting.
|
|
*/
|
|
static void
|
|
ExecInitRoutingInfo(ModifyTableState *mtstate,
|
|
EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *partRelInfo,
|
|
int partidx)
|
|
{
|
|
MemoryContext oldcxt;
|
|
PartitionRoutingInfo *partrouteinfo;
|
|
int rri_index;
|
|
|
|
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
|
|
|
partrouteinfo = palloc(sizeof(PartitionRoutingInfo));
|
|
|
|
/*
|
|
* Set up a tuple conversion map to convert a tuple routed to the
|
|
* partition from the parent's type to the partition's.
|
|
*/
|
|
partrouteinfo->pi_RootToPartitionMap =
|
|
convert_tuples_by_name(RelationGetDescr(partRelInfo->ri_PartitionRoot),
|
|
RelationGetDescr(partRelInfo->ri_RelationDesc),
|
|
gettext_noop("could not convert row type"));
|
|
|
|
/*
|
|
* If a partition has a different rowtype than the root parent, initialize
|
|
* a slot dedicated to storing this partition's tuples. The slot is used
|
|
* for various operations that are applied to tuples after routing, such
|
|
* as checking constraints.
|
|
*/
|
|
if (partrouteinfo->pi_RootToPartitionMap != NULL)
|
|
{
|
|
Relation partrel = partRelInfo->ri_RelationDesc;
|
|
|
|
/*
|
|
* Initialize the slot itself setting its descriptor to this
|
|
* partition's TupleDesc; TupleDesc reference will be released at the
|
|
* end of the command.
|
|
*/
|
|
partrouteinfo->pi_PartitionTupleSlot =
|
|
ExecInitExtraTupleSlot(estate, RelationGetDescr(partrel),
|
|
&TTSOpsHeapTuple);
|
|
}
|
|
else
|
|
partrouteinfo->pi_PartitionTupleSlot = NULL;
|
|
|
|
/*
|
|
* Also, if transition capture is required, store a map to convert tuples
|
|
* from partition's rowtype to the root partition table's.
|
|
*/
|
|
if (mtstate &&
|
|
(mtstate->mt_transition_capture || mtstate->mt_oc_transition_capture))
|
|
{
|
|
partrouteinfo->pi_PartitionToRootMap =
|
|
convert_tuples_by_name(RelationGetDescr(partRelInfo->ri_RelationDesc),
|
|
RelationGetDescr(partRelInfo->ri_PartitionRoot),
|
|
gettext_noop("could not convert row type"));
|
|
}
|
|
else
|
|
partrouteinfo->pi_PartitionToRootMap = NULL;
|
|
|
|
/*
|
|
* If the partition is a foreign table, let the FDW init itself for
|
|
* routing tuples to the partition.
|
|
*/
|
|
if (partRelInfo->ri_FdwRoutine != NULL &&
|
|
partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
|
|
partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
|
|
|
|
partRelInfo->ri_PartitionInfo = partrouteinfo;
|
|
|
|
/*
|
|
* Keep track of it in the PartitionTupleRouting->partitions array.
|
|
*/
|
|
Assert(dispatch->indexes[partidx] == -1);
|
|
|
|
rri_index = proute->num_partitions++;
|
|
|
|
/* Allocate or enlarge the array, as needed */
|
|
if (proute->num_partitions >= proute->max_partitions)
|
|
{
|
|
if (proute->max_partitions == 0)
|
|
{
|
|
proute->max_partitions = 8;
|
|
proute->partitions = (ResultRelInfo **)
|
|
palloc(sizeof(ResultRelInfo *) * proute->max_partitions);
|
|
}
|
|
else
|
|
{
|
|
proute->max_partitions *= 2;
|
|
proute->partitions = (ResultRelInfo **)
|
|
repalloc(proute->partitions, sizeof(ResultRelInfo *) *
|
|
proute->max_partitions);
|
|
}
|
|
}
|
|
|
|
proute->partitions[rri_index] = partRelInfo;
|
|
dispatch->indexes[partidx] = rri_index;
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* ExecInitPartitionDispatchInfo
|
|
* Initialize PartitionDispatch for a partitioned table and store it in
|
|
* the next available slot in the proute->partition_dispatch_info array.
|
|
* Also, record the index into this array in the parent_pd->indexes[]
|
|
* array in the partidx element so that we can properly retrieve the
|
|
* newly created PartitionDispatch later.
|
|
*/
|
|
static PartitionDispatch
|
|
ExecInitPartitionDispatchInfo(PartitionTupleRouting *proute, Oid partoid,
|
|
PartitionDispatch parent_pd, int partidx)
|
|
{
|
|
Relation rel;
|
|
PartitionDesc partdesc;
|
|
PartitionDispatch pd;
|
|
int dispatchidx;
|
|
MemoryContext oldcxt;
|
|
|
|
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
|
|
|
if (partoid != RelationGetRelid(proute->partition_root))
|
|
rel = heap_open(partoid, NoLock);
|
|
else
|
|
rel = proute->partition_root;
|
|
partdesc = RelationGetPartitionDesc(rel);
|
|
|
|
pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
|
|
partdesc->nparts * sizeof(int));
|
|
pd->reldesc = rel;
|
|
pd->key = RelationGetPartitionKey(rel);
|
|
pd->keystate = NIL;
|
|
pd->partdesc = partdesc;
|
|
if (parent_pd != NULL)
|
|
{
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
|
|
/*
|
|
* For sub-partitioned tables where the column order differs from its
|
|
* direct parent partitioned table, we must store a tuple table slot
|
|
* initialized with its tuple descriptor and a tuple conversion map to
|
|
* convert a tuple from its parent's rowtype to its own. This is to
|
|
* make sure that we are looking at the correct row using the correct
|
|
* tuple descriptor when computing its partition key for tuple
|
|
* routing.
|
|
*/
|
|
pd->tupmap = convert_tuples_by_name_map_if_req(RelationGetDescr(parent_pd->reldesc),
|
|
tupdesc,
|
|
gettext_noop("could not convert row type"));
|
|
pd->tupslot = pd->tupmap ?
|
|
MakeSingleTupleTableSlot(tupdesc, &TTSOpsHeapTuple) : NULL;
|
|
}
|
|
else
|
|
{
|
|
/* Not required for the root partitioned table */
|
|
pd->tupmap = NULL;
|
|
pd->tupslot = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize with -1 to signify that the corresponding partition's
|
|
* ResultRelInfo or PartitionDispatch has not been created yet.
|
|
*/
|
|
memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
|
|
|
|
/* Track in PartitionTupleRouting for later use */
|
|
dispatchidx = proute->num_dispatch++;
|
|
|
|
/* Allocate or enlarge the array, as needed */
|
|
if (proute->num_dispatch >= proute->max_dispatch)
|
|
{
|
|
if (proute->max_dispatch == 0)
|
|
{
|
|
proute->max_dispatch = 4;
|
|
proute->partition_dispatch_info = (PartitionDispatch *)
|
|
palloc(sizeof(PartitionDispatch) * proute->max_dispatch);
|
|
}
|
|
else
|
|
{
|
|
proute->max_dispatch *= 2;
|
|
proute->partition_dispatch_info = (PartitionDispatch *)
|
|
repalloc(proute->partition_dispatch_info,
|
|
sizeof(PartitionDispatch) * proute->max_dispatch);
|
|
}
|
|
}
|
|
proute->partition_dispatch_info[dispatchidx] = pd;
|
|
|
|
/*
|
|
* Finally, if setting up a PartitionDispatch for a sub-partitioned table,
|
|
* install a downlink in the parent to allow quick descent.
|
|
*/
|
|
if (parent_pd)
|
|
{
|
|
Assert(parent_pd->indexes[partidx] == -1);
|
|
parent_pd->indexes[partidx] = dispatchidx;
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return pd;
|
|
}
|
|
|
|
/*
|
|
* ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
|
|
* routing.
|
|
*
|
|
* Close all the partitioned tables, leaf partitions, and their indices.
|
|
*/
|
|
void
|
|
ExecCleanupTupleRouting(ModifyTableState *mtstate,
|
|
PartitionTupleRouting *proute)
|
|
{
|
|
HTAB *htab = proute->subplan_resultrel_htab;
|
|
int i;
|
|
|
|
/*
|
|
* Remember, proute->partition_dispatch_info[0] corresponds to the root
|
|
* partitioned table, which we must not try to close, because it is the
|
|
* main target table of the query that will be closed by callers such as
|
|
* ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
|
|
* partitioned table.
|
|
*/
|
|
for (i = 1; i < proute->num_dispatch; i++)
|
|
{
|
|
PartitionDispatch pd = proute->partition_dispatch_info[i];
|
|
|
|
heap_close(pd->reldesc, NoLock);
|
|
|
|
if (pd->tupslot)
|
|
ExecDropSingleTupleTableSlot(pd->tupslot);
|
|
}
|
|
|
|
for (i = 0; i < proute->num_partitions; i++)
|
|
{
|
|
ResultRelInfo *resultRelInfo = proute->partitions[i];
|
|
|
|
/*
|
|
* Check if this result rel is one belonging to the node's subplans,
|
|
* if so, let ExecEndPlan() clean it up.
|
|
*/
|
|
if (htab)
|
|
{
|
|
Oid partoid;
|
|
bool found;
|
|
|
|
partoid = RelationGetRelid(resultRelInfo->ri_RelationDesc);
|
|
|
|
(void) hash_search(htab, &partoid, HASH_FIND, &found);
|
|
if (found)
|
|
continue;
|
|
}
|
|
|
|
/* Allow any FDWs to shut down if they've been exercised */
|
|
if (resultRelInfo->ri_FdwRoutine != NULL &&
|
|
resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
|
|
resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
|
|
resultRelInfo);
|
|
|
|
ExecCloseIndices(resultRelInfo);
|
|
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
}
|
|
|
|
/* ----------------
|
|
* FormPartitionKeyDatum
|
|
* Construct values[] and isnull[] arrays for the partition key
|
|
* of a tuple.
|
|
*
|
|
* pd Partition dispatch object of the partitioned table
|
|
* slot Heap tuple from which to extract partition key
|
|
* estate executor state for evaluating any partition key
|
|
* expressions (must be non-NULL)
|
|
* values Array of partition key Datums (output area)
|
|
* isnull Array of is-null indicators (output area)
|
|
*
|
|
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
|
|
* the heap tuple passed in.
|
|
* ----------------
|
|
*/
|
|
static void
|
|
FormPartitionKeyDatum(PartitionDispatch pd,
|
|
TupleTableSlot *slot,
|
|
EState *estate,
|
|
Datum *values,
|
|
bool *isnull)
|
|
{
|
|
ListCell *partexpr_item;
|
|
int i;
|
|
|
|
if (pd->key->partexprs != NIL && pd->keystate == NIL)
|
|
{
|
|
/* Check caller has set up context correctly */
|
|
Assert(estate != NULL &&
|
|
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
|
|
|
|
/* First time through, set up expression evaluation state */
|
|
pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
|
|
}
|
|
|
|
partexpr_item = list_head(pd->keystate);
|
|
for (i = 0; i < pd->key->partnatts; i++)
|
|
{
|
|
AttrNumber keycol = pd->key->partattrs[i];
|
|
Datum datum;
|
|
bool isNull;
|
|
|
|
if (keycol != 0)
|
|
{
|
|
/* Plain column; get the value directly from the heap tuple */
|
|
datum = slot_getattr(slot, keycol, &isNull);
|
|
}
|
|
else
|
|
{
|
|
/* Expression; need to evaluate it */
|
|
if (partexpr_item == NULL)
|
|
elog(ERROR, "wrong number of partition key expressions");
|
|
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
|
|
GetPerTupleExprContext(estate),
|
|
&isNull);
|
|
partexpr_item = lnext(partexpr_item);
|
|
}
|
|
values[i] = datum;
|
|
isnull[i] = isNull;
|
|
}
|
|
|
|
if (partexpr_item != NULL)
|
|
elog(ERROR, "wrong number of partition key expressions");
|
|
}
|
|
|
|
/*
|
|
* get_partition_for_tuple
|
|
* Finds partition of relation which accepts the partition key specified
|
|
* in values and isnull
|
|
*
|
|
* Return value is index of the partition (>= 0 and < partdesc->nparts) if one
|
|
* found or -1 if none found.
|
|
*/
|
|
static int
|
|
get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull)
|
|
{
|
|
int bound_offset;
|
|
int part_index = -1;
|
|
PartitionKey key = pd->key;
|
|
PartitionDesc partdesc = pd->partdesc;
|
|
PartitionBoundInfo boundinfo = partdesc->boundinfo;
|
|
|
|
/* Route as appropriate based on partitioning strategy. */
|
|
switch (key->strategy)
|
|
{
|
|
case PARTITION_STRATEGY_HASH:
|
|
{
|
|
int greatest_modulus;
|
|
uint64 rowHash;
|
|
|
|
greatest_modulus = get_hash_partition_greatest_modulus(boundinfo);
|
|
rowHash = compute_partition_hash_value(key->partnatts,
|
|
key->partsupfunc,
|
|
values, isnull);
|
|
|
|
part_index = boundinfo->indexes[rowHash % greatest_modulus];
|
|
}
|
|
break;
|
|
|
|
case PARTITION_STRATEGY_LIST:
|
|
if (isnull[0])
|
|
{
|
|
if (partition_bound_accepts_nulls(boundinfo))
|
|
part_index = boundinfo->null_index;
|
|
}
|
|
else
|
|
{
|
|
bool equal = false;
|
|
|
|
bound_offset = partition_list_bsearch(key->partsupfunc,
|
|
key->partcollation,
|
|
boundinfo,
|
|
values[0], &equal);
|
|
if (bound_offset >= 0 && equal)
|
|
part_index = boundinfo->indexes[bound_offset];
|
|
}
|
|
break;
|
|
|
|
case PARTITION_STRATEGY_RANGE:
|
|
{
|
|
bool equal = false,
|
|
range_partkey_has_null = false;
|
|
int i;
|
|
|
|
/*
|
|
* No range includes NULL, so this will be accepted by the
|
|
* default partition if there is one, and otherwise rejected.
|
|
*/
|
|
for (i = 0; i < key->partnatts; i++)
|
|
{
|
|
if (isnull[i])
|
|
{
|
|
range_partkey_has_null = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!range_partkey_has_null)
|
|
{
|
|
bound_offset = partition_range_datum_bsearch(key->partsupfunc,
|
|
key->partcollation,
|
|
boundinfo,
|
|
key->partnatts,
|
|
values,
|
|
&equal);
|
|
|
|
/*
|
|
* The bound at bound_offset is less than or equal to the
|
|
* tuple value, so the bound at offset+1 is the upper
|
|
* bound of the partition we're looking for, if there
|
|
* actually exists one.
|
|
*/
|
|
part_index = boundinfo->indexes[bound_offset + 1];
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unexpected partition strategy: %d",
|
|
(int) key->strategy);
|
|
}
|
|
|
|
/*
|
|
* part_index < 0 means we failed to find a partition of this parent. Use
|
|
* the default partition, if there is one.
|
|
*/
|
|
if (part_index < 0)
|
|
part_index = boundinfo->default_index;
|
|
|
|
return part_index;
|
|
}
|
|
|
|
/*
|
|
* ExecBuildSlotPartitionKeyDescription
|
|
*
|
|
* This works very much like BuildIndexValueDescription() and is currently
|
|
* used for building error messages when ExecFindPartition() fails to find
|
|
* partition for a row.
|
|
*/
|
|
static char *
|
|
ExecBuildSlotPartitionKeyDescription(Relation rel,
|
|
Datum *values,
|
|
bool *isnull,
|
|
int maxfieldlen)
|
|
{
|
|
StringInfoData buf;
|
|
PartitionKey key = RelationGetPartitionKey(rel);
|
|
int partnatts = get_partition_natts(key);
|
|
int i;
|
|
Oid relid = RelationGetRelid(rel);
|
|
AclResult aclresult;
|
|
|
|
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
|
|
return NULL;
|
|
|
|
/* If the user has table-level access, just go build the description. */
|
|
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
{
|
|
/*
|
|
* Step through the columns of the partition key and make sure the
|
|
* user has SELECT rights on all of them.
|
|
*/
|
|
for (i = 0; i < partnatts; i++)
|
|
{
|
|
AttrNumber attnum = get_partition_col_attnum(key, i);
|
|
|
|
/*
|
|
* If this partition key column is an expression, we return no
|
|
* detail rather than try to figure out what column(s) the
|
|
* expression includes and if the user has SELECT rights on them.
|
|
*/
|
|
if (attnum == InvalidAttrNumber ||
|
|
pg_attribute_aclcheck(relid, attnum, GetUserId(),
|
|
ACL_SELECT) != ACLCHECK_OK)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
initStringInfo(&buf);
|
|
appendStringInfo(&buf, "(%s) = (",
|
|
pg_get_partkeydef_columns(relid, true));
|
|
|
|
for (i = 0; i < partnatts; i++)
|
|
{
|
|
char *val;
|
|
int vallen;
|
|
|
|
if (isnull[i])
|
|
val = "null";
|
|
else
|
|
{
|
|
Oid foutoid;
|
|
bool typisvarlena;
|
|
|
|
getTypeOutputInfo(get_partition_col_typid(key, i),
|
|
&foutoid, &typisvarlena);
|
|
val = OidOutputFunctionCall(foutoid, values[i]);
|
|
}
|
|
|
|
if (i > 0)
|
|
appendStringInfoString(&buf, ", ");
|
|
|
|
/* truncate if needed */
|
|
vallen = strlen(val);
|
|
if (vallen <= maxfieldlen)
|
|
appendStringInfoString(&buf, val);
|
|
else
|
|
{
|
|
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
appendStringInfoString(&buf, "...");
|
|
}
|
|
}
|
|
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
return buf.data;
|
|
}
|
|
|
|
/*
|
|
* adjust_partition_tlist
|
|
* Adjust the targetlist entries for a given partition to account for
|
|
* attribute differences between parent and the partition
|
|
*
|
|
* The expressions have already been fixed, but here we fix the list to make
|
|
* target resnos match the partition's attribute numbers. This results in a
|
|
* copy of the original target list in which the entries appear in resno
|
|
* order, including both the existing entries (that may have their resno
|
|
* changed in-place) and the newly added entries for columns that don't exist
|
|
* in the parent.
|
|
*
|
|
* Scribbles on the input tlist, so callers must make sure to make a copy
|
|
* before passing it to us.
|
|
*/
|
|
static List *
|
|
adjust_partition_tlist(List *tlist, TupleConversionMap *map)
|
|
{
|
|
List *new_tlist = NIL;
|
|
TupleDesc tupdesc = map->outdesc;
|
|
AttrNumber *attrMap = map->attrMap;
|
|
AttrNumber attrno;
|
|
|
|
for (attrno = 1; attrno <= tupdesc->natts; attrno++)
|
|
{
|
|
Form_pg_attribute att_tup = TupleDescAttr(tupdesc, attrno - 1);
|
|
TargetEntry *tle;
|
|
|
|
if (attrMap[attrno - 1] != InvalidAttrNumber)
|
|
{
|
|
Assert(!att_tup->attisdropped);
|
|
|
|
/*
|
|
* Use the corresponding entry from the parent's tlist, adjusting
|
|
* the resno the match the partition's attno.
|
|
*/
|
|
tle = (TargetEntry *) list_nth(tlist, attrMap[attrno - 1] - 1);
|
|
tle->resno = attrno;
|
|
}
|
|
else
|
|
{
|
|
Const *expr;
|
|
|
|
/*
|
|
* For a dropped attribute in the partition, generate a dummy
|
|
* entry with resno matching the partition's attno.
|
|
*/
|
|
Assert(att_tup->attisdropped);
|
|
expr = makeConst(INT4OID,
|
|
-1,
|
|
InvalidOid,
|
|
sizeof(int32),
|
|
(Datum) 0,
|
|
true, /* isnull */
|
|
true /* byval */ );
|
|
tle = makeTargetEntry((Expr *) expr,
|
|
attrno,
|
|
pstrdup(NameStr(att_tup->attname)),
|
|
false);
|
|
}
|
|
|
|
new_tlist = lappend(new_tlist, tle);
|
|
}
|
|
|
|
return new_tlist;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* Run-Time Partition Pruning Support.
|
|
*
|
|
* The following series of functions exist to support the removal of unneeded
|
|
* subplans for queries against partitioned tables. The supporting functions
|
|
* here are designed to work with any plan type which supports an arbitrary
|
|
* number of subplans, e.g. Append, MergeAppend.
|
|
*
|
|
* When pruning involves comparison of a partition key to a constant, it's
|
|
* done by the planner. However, if we have a comparison to a non-constant
|
|
* but not volatile expression, that presents an opportunity for run-time
|
|
* pruning by the executor, allowing irrelevant partitions to be skipped
|
|
* dynamically.
|
|
*
|
|
* We must distinguish expressions containing PARAM_EXEC Params from
|
|
* expressions that don't contain those. Even though a PARAM_EXEC Param is
|
|
* considered to be a stable expression, it can change value from one plan
|
|
* node scan to the next during query execution. Stable comparison
|
|
* expressions that don't involve such Params allow partition pruning to be
|
|
* done once during executor startup. Expressions that do involve such Params
|
|
* require us to prune separately for each scan of the parent plan node.
|
|
*
|
|
* Note that pruning away unneeded subplans during executor startup has the
|
|
* added benefit of not having to initialize the unneeded subplans at all.
|
|
*
|
|
*
|
|
* Functions:
|
|
*
|
|
* ExecCreatePartitionPruneState:
|
|
* Creates the PartitionPruneState required by each of the two pruning
|
|
* functions. Details stored include how to map the partition index
|
|
* returned by the partition pruning code into subplan indexes.
|
|
*
|
|
* ExecFindInitialMatchingSubPlans:
|
|
* Returns indexes of matching subplans. Partition pruning is attempted
|
|
* without any evaluation of expressions containing PARAM_EXEC Params.
|
|
* This function must be called during executor startup for the parent
|
|
* plan before the subplans themselves are initialized. Subplans which
|
|
* are found not to match by this function must be removed from the
|
|
* plan's list of subplans during execution, as this function performs a
|
|
* remap of the partition index to subplan index map and the newly
|
|
* created map provides indexes only for subplans which remain after
|
|
* calling this function.
|
|
*
|
|
* ExecFindMatchingSubPlans:
|
|
* Returns indexes of matching subplans after evaluating all available
|
|
* expressions. This function can only be called during execution and
|
|
* must be called again each time the value of a Param listed in
|
|
* PartitionPruneState's 'execparamids' changes.
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* ExecCreatePartitionPruneState
|
|
* Build the data structure required for calling
|
|
* ExecFindInitialMatchingSubPlans and ExecFindMatchingSubPlans.
|
|
*
|
|
* 'planstate' is the parent plan node's execution state.
|
|
*
|
|
* 'partitionpruneinfo' is a PartitionPruneInfo as generated by
|
|
* make_partition_pruneinfo. Here we build a PartitionPruneState containing a
|
|
* PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
|
|
* partitionpruneinfo->prune_infos), each of which contains a
|
|
* PartitionedRelPruningData for each PartitionedRelPruneInfo appearing in
|
|
* that sublist. This two-level system is needed to keep from confusing the
|
|
* different hierarchies when a UNION ALL contains multiple partitioned tables
|
|
* as children. The data stored in each PartitionedRelPruningData can be
|
|
* re-used each time we re-evaluate which partitions match the pruning steps
|
|
* provided in each PartitionedRelPruneInfo.
|
|
*/
|
|
PartitionPruneState *
|
|
ExecCreatePartitionPruneState(PlanState *planstate,
|
|
PartitionPruneInfo *partitionpruneinfo)
|
|
{
|
|
EState *estate = planstate->state;
|
|
PartitionPruneState *prunestate;
|
|
int n_part_hierarchies;
|
|
ListCell *lc;
|
|
int i;
|
|
|
|
n_part_hierarchies = list_length(partitionpruneinfo->prune_infos);
|
|
Assert(n_part_hierarchies > 0);
|
|
|
|
/*
|
|
* Allocate the data structure
|
|
*/
|
|
prunestate = (PartitionPruneState *)
|
|
palloc(offsetof(PartitionPruneState, partprunedata) +
|
|
sizeof(PartitionPruningData *) * n_part_hierarchies);
|
|
|
|
prunestate->execparamids = NULL;
|
|
/* other_subplans can change at runtime, so we need our own copy */
|
|
prunestate->other_subplans = bms_copy(partitionpruneinfo->other_subplans);
|
|
prunestate->do_initial_prune = false; /* may be set below */
|
|
prunestate->do_exec_prune = false; /* may be set below */
|
|
prunestate->num_partprunedata = n_part_hierarchies;
|
|
|
|
/*
|
|
* Create a short-term memory context which we'll use when making calls to
|
|
* the partition pruning functions. This avoids possible memory leaks,
|
|
* since the pruning functions call comparison functions that aren't under
|
|
* our control.
|
|
*/
|
|
prunestate->prune_context =
|
|
AllocSetContextCreate(CurrentMemoryContext,
|
|
"Partition Prune",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
i = 0;
|
|
foreach(lc, partitionpruneinfo->prune_infos)
|
|
{
|
|
List *partrelpruneinfos = lfirst_node(List, lc);
|
|
int npartrelpruneinfos = list_length(partrelpruneinfos);
|
|
PartitionPruningData *prunedata;
|
|
ListCell *lc2;
|
|
int j;
|
|
|
|
prunedata = (PartitionPruningData *)
|
|
palloc(offsetof(PartitionPruningData, partrelprunedata) +
|
|
npartrelpruneinfos * sizeof(PartitionedRelPruningData));
|
|
prunestate->partprunedata[i] = prunedata;
|
|
prunedata->num_partrelprunedata = npartrelpruneinfos;
|
|
|
|
j = 0;
|
|
foreach(lc2, partrelpruneinfos)
|
|
{
|
|
PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
|
|
PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
|
|
PartitionPruneContext *context = &pprune->context;
|
|
Relation partrel;
|
|
PartitionDesc partdesc;
|
|
PartitionKey partkey;
|
|
int partnatts;
|
|
int n_steps;
|
|
ListCell *lc3;
|
|
|
|
/*
|
|
* We must copy the subplan_map rather than pointing directly to
|
|
* the plan's version, as we may end up making modifications to it
|
|
* later.
|
|
*/
|
|
pprune->subplan_map = palloc(sizeof(int) * pinfo->nparts);
|
|
memcpy(pprune->subplan_map, pinfo->subplan_map,
|
|
sizeof(int) * pinfo->nparts);
|
|
|
|
/* We can use the subpart_map verbatim, since we never modify it */
|
|
pprune->subpart_map = pinfo->subpart_map;
|
|
|
|
/* present_parts is also subject to later modification */
|
|
pprune->present_parts = bms_copy(pinfo->present_parts);
|
|
|
|
/*
|
|
* We can rely on the copies of the partitioned table's partition
|
|
* key and partition descriptor appearing in its relcache entry,
|
|
* because that entry will be held open and locked for the
|
|
* duration of this executor run.
|
|
*/
|
|
partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex);
|
|
partkey = RelationGetPartitionKey(partrel);
|
|
partdesc = RelationGetPartitionDesc(partrel);
|
|
|
|
n_steps = list_length(pinfo->pruning_steps);
|
|
|
|
context->strategy = partkey->strategy;
|
|
context->partnatts = partnatts = partkey->partnatts;
|
|
context->nparts = pinfo->nparts;
|
|
context->boundinfo = partdesc->boundinfo;
|
|
context->partcollation = partkey->partcollation;
|
|
context->partsupfunc = partkey->partsupfunc;
|
|
|
|
/* We'll look up type-specific support functions as needed */
|
|
context->stepcmpfuncs = (FmgrInfo *)
|
|
palloc0(sizeof(FmgrInfo) * n_steps * partnatts);
|
|
|
|
context->ppccontext = CurrentMemoryContext;
|
|
context->planstate = planstate;
|
|
|
|
/* Initialize expression state for each expression we need */
|
|
context->exprstates = (ExprState **)
|
|
palloc0(sizeof(ExprState *) * n_steps * partnatts);
|
|
foreach(lc3, pinfo->pruning_steps)
|
|
{
|
|
PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc3);
|
|
ListCell *lc4;
|
|
int keyno;
|
|
|
|
/* not needed for other step kinds */
|
|
if (!IsA(step, PartitionPruneStepOp))
|
|
continue;
|
|
|
|
Assert(list_length(step->exprs) <= partnatts);
|
|
|
|
keyno = 0;
|
|
foreach(lc4, step->exprs)
|
|
{
|
|
Expr *expr = (Expr *) lfirst(lc4);
|
|
|
|
/* not needed for Consts */
|
|
if (!IsA(expr, Const))
|
|
{
|
|
int stateidx = PruneCxtStateIdx(partnatts,
|
|
step->step.step_id,
|
|
keyno);
|
|
|
|
context->exprstates[stateidx] =
|
|
ExecInitExpr(expr, context->planstate);
|
|
}
|
|
keyno++;
|
|
}
|
|
}
|
|
|
|
/* Array is not modified at runtime, so just point to plan's copy */
|
|
context->exprhasexecparam = pinfo->hasexecparam;
|
|
|
|
pprune->pruning_steps = pinfo->pruning_steps;
|
|
pprune->do_initial_prune = pinfo->do_initial_prune;
|
|
pprune->do_exec_prune = pinfo->do_exec_prune;
|
|
|
|
/* Record if pruning would be useful at any level */
|
|
prunestate->do_initial_prune |= pinfo->do_initial_prune;
|
|
prunestate->do_exec_prune |= pinfo->do_exec_prune;
|
|
|
|
/*
|
|
* Accumulate the IDs of all PARAM_EXEC Params affecting the
|
|
* partitioning decisions at this plan node.
|
|
*/
|
|
prunestate->execparamids = bms_add_members(prunestate->execparamids,
|
|
pinfo->execparamids);
|
|
|
|
j++;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
return prunestate;
|
|
}
|
|
|
|
/*
|
|
* ExecFindInitialMatchingSubPlans
|
|
* Identify the set of subplans that cannot be eliminated by initial
|
|
* pruning, disregarding any pruning constraints involving PARAM_EXEC
|
|
* Params.
|
|
*
|
|
* If additional pruning passes will be required (because of PARAM_EXEC
|
|
* Params), we must also update the translation data that allows conversion
|
|
* of partition indexes into subplan indexes to account for the unneeded
|
|
* subplans having been removed.
|
|
*
|
|
* Must only be called once per 'prunestate', and only if initial pruning
|
|
* is required.
|
|
*
|
|
* 'nsubplans' must be passed as the total number of unpruned subplans.
|
|
*/
|
|
Bitmapset *
|
|
ExecFindInitialMatchingSubPlans(PartitionPruneState *prunestate, int nsubplans)
|
|
{
|
|
Bitmapset *result = NULL;
|
|
MemoryContext oldcontext;
|
|
int i;
|
|
|
|
/* Caller error if we get here without do_initial_prune */
|
|
Assert(prunestate->do_initial_prune);
|
|
|
|
/*
|
|
* Switch to a temp context to avoid leaking memory in the executor's
|
|
* query-lifespan memory context.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
|
|
|
|
/*
|
|
* For each hierarchy, do the pruning tests, and add nondeletable
|
|
* subplans' indexes to "result".
|
|
*/
|
|
for (i = 0; i < prunestate->num_partprunedata; i++)
|
|
{
|
|
PartitionPruningData *prunedata;
|
|
PartitionedRelPruningData *pprune;
|
|
|
|
prunedata = prunestate->partprunedata[i];
|
|
pprune = &prunedata->partrelprunedata[0];
|
|
|
|
/* Perform pruning without using PARAM_EXEC Params */
|
|
find_matching_subplans_recurse(prunedata, pprune, true, &result);
|
|
|
|
/* Expression eval may have used space in node's ps_ExprContext too */
|
|
ResetExprContext(pprune->context.planstate->ps_ExprContext);
|
|
}
|
|
|
|
/* Add in any subplans that partition pruning didn't account for */
|
|
result = bms_add_members(result, prunestate->other_subplans);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Copy result out of the temp context before we reset it */
|
|
result = bms_copy(result);
|
|
|
|
MemoryContextReset(prunestate->prune_context);
|
|
|
|
/*
|
|
* If exec-time pruning is required and we pruned subplans above, then we
|
|
* must re-sequence the subplan indexes so that ExecFindMatchingSubPlans
|
|
* properly returns the indexes from the subplans which will remain after
|
|
* execution of this function.
|
|
*
|
|
* We can safely skip this when !do_exec_prune, even though that leaves
|
|
* invalid data in prunestate, because that data won't be consulted again
|
|
* (cf initial Assert in ExecFindMatchingSubPlans).
|
|
*/
|
|
if (prunestate->do_exec_prune && bms_num_members(result) < nsubplans)
|
|
{
|
|
int *new_subplan_indexes;
|
|
Bitmapset *new_other_subplans;
|
|
int i;
|
|
int newidx;
|
|
|
|
/*
|
|
* First we must build a temporary array which maps old subplan
|
|
* indexes to new ones. For convenience of initialization, we use
|
|
* 1-based indexes in this array and leave pruned items as 0.
|
|
*/
|
|
new_subplan_indexes = (int *) palloc0(sizeof(int) * nsubplans);
|
|
newidx = 1;
|
|
i = -1;
|
|
while ((i = bms_next_member(result, i)) >= 0)
|
|
{
|
|
Assert(i < nsubplans);
|
|
new_subplan_indexes[i] = newidx++;
|
|
}
|
|
|
|
/*
|
|
* Now we can update each PartitionedRelPruneInfo's subplan_map with
|
|
* new subplan indexes. We must also recompute its present_parts
|
|
* bitmap.
|
|
*/
|
|
for (i = 0; i < prunestate->num_partprunedata; i++)
|
|
{
|
|
PartitionPruningData *prunedata = prunestate->partprunedata[i];
|
|
int j;
|
|
|
|
/*
|
|
* Within each hierarchy, we perform this loop in back-to-front
|
|
* order so that we determine present_parts for the lowest-level
|
|
* partitioned tables first. This way we can tell whether a
|
|
* sub-partitioned table's partitions were entirely pruned so we
|
|
* can exclude it from the current level's present_parts.
|
|
*/
|
|
for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
|
|
{
|
|
PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
|
|
int nparts = pprune->context.nparts;
|
|
int k;
|
|
|
|
/* We just rebuild present_parts from scratch */
|
|
bms_free(pprune->present_parts);
|
|
pprune->present_parts = NULL;
|
|
|
|
for (k = 0; k < nparts; k++)
|
|
{
|
|
int oldidx = pprune->subplan_map[k];
|
|
int subidx;
|
|
|
|
/*
|
|
* If this partition existed as a subplan then change the
|
|
* old subplan index to the new subplan index. The new
|
|
* index may become -1 if the partition was pruned above,
|
|
* or it may just come earlier in the subplan list due to
|
|
* some subplans being removed earlier in the list. If
|
|
* it's a subpartition, add it to present_parts unless
|
|
* it's entirely pruned.
|
|
*/
|
|
if (oldidx >= 0)
|
|
{
|
|
Assert(oldidx < nsubplans);
|
|
pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
|
|
|
|
if (new_subplan_indexes[oldidx] > 0)
|
|
pprune->present_parts =
|
|
bms_add_member(pprune->present_parts, k);
|
|
}
|
|
else if ((subidx = pprune->subpart_map[k]) >= 0)
|
|
{
|
|
PartitionedRelPruningData *subprune;
|
|
|
|
subprune = &prunedata->partrelprunedata[subidx];
|
|
|
|
if (!bms_is_empty(subprune->present_parts))
|
|
pprune->present_parts =
|
|
bms_add_member(pprune->present_parts, k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We must also recompute the other_subplans set, since indexes in it
|
|
* may change.
|
|
*/
|
|
new_other_subplans = NULL;
|
|
i = -1;
|
|
while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
|
|
new_other_subplans = bms_add_member(new_other_subplans,
|
|
new_subplan_indexes[i] - 1);
|
|
|
|
bms_free(prunestate->other_subplans);
|
|
prunestate->other_subplans = new_other_subplans;
|
|
|
|
pfree(new_subplan_indexes);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* ExecFindMatchingSubPlans
|
|
* Determine which subplans match the pruning steps detailed in
|
|
* 'prunestate' for the current comparison expression values.
|
|
*
|
|
* Here we assume we may evaluate PARAM_EXEC Params.
|
|
*/
|
|
Bitmapset *
|
|
ExecFindMatchingSubPlans(PartitionPruneState *prunestate)
|
|
{
|
|
Bitmapset *result = NULL;
|
|
MemoryContext oldcontext;
|
|
int i;
|
|
|
|
/*
|
|
* If !do_exec_prune, we've got problems because
|
|
* ExecFindInitialMatchingSubPlans will not have bothered to update
|
|
* prunestate for whatever pruning it did.
|
|
*/
|
|
Assert(prunestate->do_exec_prune);
|
|
|
|
/*
|
|
* Switch to a temp context to avoid leaking memory in the executor's
|
|
* query-lifespan memory context.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
|
|
|
|
/*
|
|
* For each hierarchy, do the pruning tests, and add nondeletable
|
|
* subplans' indexes to "result".
|
|
*/
|
|
for (i = 0; i < prunestate->num_partprunedata; i++)
|
|
{
|
|
PartitionPruningData *prunedata;
|
|
PartitionedRelPruningData *pprune;
|
|
|
|
prunedata = prunestate->partprunedata[i];
|
|
pprune = &prunedata->partrelprunedata[0];
|
|
|
|
find_matching_subplans_recurse(prunedata, pprune, false, &result);
|
|
|
|
/* Expression eval may have used space in node's ps_ExprContext too */
|
|
ResetExprContext(pprune->context.planstate->ps_ExprContext);
|
|
}
|
|
|
|
/* Add in any subplans that partition pruning didn't account for */
|
|
result = bms_add_members(result, prunestate->other_subplans);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Copy result out of the temp context before we reset it */
|
|
result = bms_copy(result);
|
|
|
|
MemoryContextReset(prunestate->prune_context);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* find_matching_subplans_recurse
|
|
* Recursive worker function for ExecFindMatchingSubPlans and
|
|
* ExecFindInitialMatchingSubPlans
|
|
*
|
|
* Adds valid (non-prunable) subplan IDs to *validsubplans
|
|
*/
|
|
static void
|
|
find_matching_subplans_recurse(PartitionPruningData *prunedata,
|
|
PartitionedRelPruningData *pprune,
|
|
bool initial_prune,
|
|
Bitmapset **validsubplans)
|
|
{
|
|
Bitmapset *partset;
|
|
int i;
|
|
|
|
/* Guard against stack overflow due to overly deep partition hierarchy. */
|
|
check_stack_depth();
|
|
|
|
/* Only prune if pruning would be useful at this level. */
|
|
if (initial_prune ? pprune->do_initial_prune : pprune->do_exec_prune)
|
|
{
|
|
PartitionPruneContext *context = &pprune->context;
|
|
|
|
/* Set whether we can evaluate PARAM_EXEC Params or not */
|
|
context->evalexecparams = !initial_prune;
|
|
|
|
partset = get_matching_partitions(context,
|
|
pprune->pruning_steps);
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If no pruning is to be done, just include all partitions at this
|
|
* level.
|
|
*/
|
|
partset = pprune->present_parts;
|
|
}
|
|
|
|
/* Translate partset into subplan indexes */
|
|
i = -1;
|
|
while ((i = bms_next_member(partset, i)) >= 0)
|
|
{
|
|
if (pprune->subplan_map[i] >= 0)
|
|
*validsubplans = bms_add_member(*validsubplans,
|
|
pprune->subplan_map[i]);
|
|
else
|
|
{
|
|
int partidx = pprune->subpart_map[i];
|
|
|
|
if (partidx >= 0)
|
|
find_matching_subplans_recurse(prunedata,
|
|
&prunedata->partrelprunedata[partidx],
|
|
initial_prune, validsubplans);
|
|
else
|
|
{
|
|
/*
|
|
* We get here if the planner already pruned all the sub-
|
|
* partitions for this partition. Silently ignore this
|
|
* partition in this case. The end result is the same: we
|
|
* would have pruned all partitions just the same, but we
|
|
* don't have any pruning steps to execute to verify this.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
}
|