postgres/src/backend/executor/nodeIndexscan.c
Tom Lane 0d54d6ac44 Clean up handling of tuple descriptors so that result-tuple descriptors
allocated by plan nodes are not leaked at end of query.  This doesn't
really matter for normal queries, but it sure does for queries invoked
repetitively inside SQL functions.  Clean up some other grotty code
associated with tupdescs, and fix a few other memory leaks exposed by
tests with simple SQL functions.
2001-01-29 00:39:20 +00:00

1086 lines
30 KiB
C

/*-------------------------------------------------------------------------
*
* nodeIndexscan.c
* Routines to support indexes and indexed scans of relations
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.57 2001/01/29 00:39:19 tgl Exp $
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecIndexScan scans a relation using indices
* ExecIndexNext using index to retrieve next tuple
* ExecInitIndexScan creates and initializes state info.
* ExecIndexReScan rescans the indexed relation.
* ExecEndIndexScan releases all storage.
* ExecIndexMarkPos marks scan position.
* ExecIndexRestrPos restores scan position.
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "executor/execdebug.h"
#include "executor/nodeIndexscan.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "parser/parsetree.h"
/* ----------------
* Misc stuff to move to executor.h soon -cim 6/5/90
* ----------------
*/
#define NO_OP 0
#define LEFT_OP 1
#define RIGHT_OP 2
static TupleTableSlot *IndexNext(IndexScan *node);
/* ----------------------------------------------------------------
* IndexNext
*
* Retrieve a tuple from the IndexScan node's currentRelation
* using the indices in the IndexScanState information.
*
* note: the old code mentions 'Primary indices'. to my knowledge
* we only support a single secondary index. -cim 9/11/89
*
* old comments:
* retrieve a tuple from relation using the indices given.
* The indices are used in the order they appear in 'indices'.
* The indices may be primary or secondary indices:
* * primary index -- scan the relation 'relID' using keys supplied.
* * secondary index -- scan the index relation to get the 'tid' for
* a tuple in the relation 'relID'.
* If the current index(pointed by 'indexPtr') fails to return a
* tuple, the next index in the indices is used.
*
* bug fix so that it should retrieve on a null scan key.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
IndexNext(IndexScan *node)
{
EState *estate;
CommonScanState *scanstate;
IndexScanState *indexstate;
ExprContext *econtext;
ScanDirection direction;
Snapshot snapshot;
IndexScanDescPtr scanDescs;
IndexScanDesc scandesc;
Relation heapRelation;
RetrieveIndexResult result;
HeapTuple tuple;
TupleTableSlot *slot;
Buffer buffer = InvalidBuffer;
int numIndices;
bool bBackward;
int indexNumber;
/* ----------------
* extract necessary information from index scan node
* ----------------
*/
estate = node->scan.plan.state;
direction = estate->es_direction;
if (ScanDirectionIsBackward(node->indxorderdir))
{
if (ScanDirectionIsForward(direction))
direction = BackwardScanDirection;
else if (ScanDirectionIsBackward(direction))
direction = ForwardScanDirection;
}
snapshot = estate->es_snapshot;
scanstate = node->scan.scanstate;
indexstate = node->indxstate;
scanDescs = indexstate->iss_ScanDescs;
heapRelation = scanstate->css_currentRelation;
numIndices = indexstate->iss_NumIndices;
econtext = scanstate->cstate.cs_ExprContext;
slot = scanstate->css_ScanTupleSlot;
/*
* Check if we are evaluating PlanQual for tuple of this relation.
* Additional checking is not good, but no other way for now. We could
* introduce new nodes for this case and handle IndexScan --> NewNode
* switching in Init/ReScan plan...
*/
if (estate->es_evTuple != NULL &&
estate->es_evTuple[node->scan.scanrelid - 1] != NULL)
{
List *qual;
ExecClearTuple(slot);
if (estate->es_evTupleNull[node->scan.scanrelid - 1])
return slot; /* return empty slot */
ExecStoreTuple(estate->es_evTuple[node->scan.scanrelid - 1],
slot, InvalidBuffer, false);
/* Does the tuple meet any of the OR'd indxqual conditions? */
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
foreach(qual, node->indxqualorig)
{
if (ExecQual((List *) lfirst(qual), econtext, false))
break;
}
if (qual == NIL) /* would not be returned by indices */
slot->val = NULL;
/* Flag for the next call that no more tuples */
estate->es_evTupleNull[node->scan.scanrelid - 1] = true;
return slot;
}
tuple = &(indexstate->iss_htup);
/* ----------------
* ok, now that we have what we need, fetch an index tuple.
* if scanning this index succeeded then return the
* appropriate heap tuple.. else return NULL.
* ----------------
*/
bBackward = ScanDirectionIsBackward(direction);
if (bBackward)
{
indexNumber = numIndices - indexstate->iss_IndexPtr - 1;
if (indexNumber < 0)
{
indexNumber = 0;
indexstate->iss_IndexPtr = numIndices - 1;
}
}
else
{
if ((indexNumber = indexstate->iss_IndexPtr) < 0)
{
indexNumber = 0;
indexstate->iss_IndexPtr = 0;
}
}
while (indexNumber < numIndices)
{
scandesc = scanDescs[indexstate->iss_IndexPtr];
while ((result = index_getnext(scandesc, direction)) != NULL)
{
tuple->t_self = result->heap_iptr;
heap_fetch(heapRelation, snapshot, tuple, &buffer);
pfree(result);
if (tuple->t_data != NULL)
{
bool prev_matches = false;
int prev_index;
List *qual;
/*
* store the scanned tuple in the scan tuple slot of the
* scan state. Eventually we will only do this and not
* return a tuple. Note: we pass 'false' because tuples
* returned by amgetnext are pointers onto disk pages and
* must not be pfree()'d.
*/
ExecStoreTuple(tuple, /* tuple to store */
slot, /* slot to store in */
buffer, /* buffer associated with tuple */
false); /* don't pfree */
/*
* At this point we have an extra pin on the buffer,
* because ExecStoreTuple incremented the pin count. Drop
* our local pin.
*/
ReleaseBuffer(buffer);
/*
* We must check to see if the current tuple was already
* matched by an earlier index, so we don't double-report
* it. We do this by passing the tuple through ExecQual
* and checking for failure with all previous
* qualifications.
*/
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
qual = node->indxqualorig;
for (prev_index = 0; prev_index < indexstate->iss_IndexPtr;
prev_index++)
{
if (ExecQual((List *) lfirst(qual), econtext, false))
{
prev_matches = true;
break;
}
qual = lnext(qual);
}
if (!prev_matches)
return slot; /* OK to return tuple */
/* Duplicate tuple, so drop it and loop back for another */
ExecClearTuple(slot);
}
}
if (indexNumber < numIndices)
{
indexNumber++;
if (bBackward)
indexstate->iss_IndexPtr--;
else
indexstate->iss_IndexPtr++;
}
}
/* ----------------
* if we get here it means the index scan failed so we
* are at the end of the scan..
* ----------------
*/
return ExecClearTuple(slot);
}
/* ----------------------------------------------------------------
* ExecIndexScan(node)
*
* old comments:
* Scans the relation using primary or secondary indices and returns
* the next qualifying tuple in the direction specified.
* It calls ExecScan() and passes it the access methods which returns
* the next tuple using the indices.
*
* Conditions:
* -- the "cursor" maintained by the AMI is positioned at the tuple
* returned previously.
*
* Initial States:
* -- the relation indicated is opened for scanning so that the
* "cursor" is positioned before the first qualifying tuple.
* -- all index realtions are opened for scanning.
* -- indexPtr points to the first index.
* -- state variable ruleFlag = nil.
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecIndexScan(IndexScan *node)
{
IndexScanState *indexstate = node->indxstate;
/* ----------------
* If we have runtime keys and they've not already been set up,
* do it now.
* ----------------
*/
if (indexstate->iss_RuntimeKeyInfo && !indexstate->iss_RuntimeKeysReady)
ExecReScan((Plan *) node, NULL, NULL);
/* ----------------
* use IndexNext as access method
* ----------------
*/
return ExecScan(&node->scan, (ExecScanAccessMtd) IndexNext);
}
/* ----------------------------------------------------------------
* ExecIndexReScan(node)
*
* Recalculates the value of the scan keys whose value depends on
* information known at runtime and rescans the indexed relation.
* Updating the scan key was formerly done separately in
* ExecUpdateIndexScanKeys. Integrating it into ReScan makes
* rescans of indices and relations/general streams more uniform.
*
* ----------------------------------------------------------------
*/
void
ExecIndexReScan(IndexScan *node, ExprContext *exprCtxt, Plan *parent)
{
EState *estate;
IndexScanState *indexstate;
ExprContext *econtext;
ScanDirection direction;
IndexScanDescPtr scanDescs;
ScanKey *scanKeys;
IndexScanDesc scan;
ScanKey skey;
int numIndices;
int i;
int **runtimeKeyInfo;
int *numScanKeys;
List *indxqual;
List *qual;
int n_keys;
ScanKey scan_keys;
int *run_keys;
int j;
Expr *clause;
Node *scanexpr;
Datum scanvalue;
bool isNull;
estate = node->scan.plan.state;
indexstate = node->indxstate;
econtext = indexstate->iss_RuntimeContext; /* context for runtime keys */
direction = estate->es_direction;
numIndices = indexstate->iss_NumIndices;
scanDescs = indexstate->iss_ScanDescs;
scanKeys = indexstate->iss_ScanKeys;
runtimeKeyInfo = indexstate->iss_RuntimeKeyInfo;
numScanKeys = indexstate->iss_NumScanKeys;
if (ScanDirectionIsBackward(node->indxorderdir))
indexstate->iss_IndexPtr = numIndices;
else
indexstate->iss_IndexPtr = -1;
if (econtext)
{
/*
* If we are being passed an outer tuple,
* save it for runtime key calc
*/
if (exprCtxt != NULL)
econtext->ecxt_outertuple = exprCtxt->ecxt_outertuple;
/*
* Reset the runtime-key context so we don't leak memory as
* each outer tuple is scanned. Note this assumes that we
* will recalculate *all* runtime keys on each call.
*/
ResetExprContext(econtext);
}
/* If this is re-scanning of PlanQual ... */
if (estate->es_evTuple != NULL &&
estate->es_evTuple[node->scan.scanrelid - 1] != NULL)
{
estate->es_evTupleNull[node->scan.scanrelid - 1] = false;
return;
}
/*
* get the index qualifications and recalculate the appropriate values
*/
indxqual = node->indxqual;
for (i = 0; i < numIndices; i++)
{
qual = lfirst(indxqual);
indxqual = lnext(indxqual);
n_keys = numScanKeys[i];
scan_keys = (ScanKey) scanKeys[i];
if (runtimeKeyInfo)
{
run_keys = runtimeKeyInfo[i];
for (j = 0; j < n_keys; j++)
{
/*
* If we have a run-time key, then extract the run-time
* expression and evaluate it with respect to the current
* outer tuple. We then stick the result into the scan
* key.
*
* Note: the result of the eval could be a pass-by-ref
* value that's stored in the outer scan's tuple, not in
* econtext->ecxt_per_tuple_memory. We assume that the
* outer tuple will stay put throughout our scan. If this
* is wrong, we could copy the result into our context
* explicitly, but I think that's not necessary...
*/
if (run_keys[j] != NO_OP)
{
clause = nth(j, qual);
scanexpr = (run_keys[j] == RIGHT_OP) ?
(Node *) get_rightop(clause) :
(Node *) get_leftop(clause);
scanvalue = ExecEvalExprSwitchContext(scanexpr,
econtext,
&isNull,
NULL);
scan_keys[j].sk_argument = scanvalue;
if (isNull)
scan_keys[j].sk_flags |= SK_ISNULL;
else
scan_keys[j].sk_flags &= ~SK_ISNULL;
}
}
}
scan = scanDescs[i];
skey = scanKeys[i];
index_rescan(scan, direction, skey);
}
if (runtimeKeyInfo)
indexstate->iss_RuntimeKeysReady = true;
}
/* ----------------------------------------------------------------
* ExecEndIndexScan
*
* old comments
* Releases any storage allocated through C routines.
* Returns nothing.
* ----------------------------------------------------------------
*/
void
ExecEndIndexScan(IndexScan *node)
{
CommonScanState *scanstate;
IndexScanState *indexstate;
int **runtimeKeyInfo;
ScanKey *scanKeys;
List *indxqual;
int *numScanKeys;
int numIndices;
int i;
scanstate = node->scan.scanstate;
indexstate = node->indxstate;
indxqual = node->indxqual;
runtimeKeyInfo = indexstate->iss_RuntimeKeyInfo;
/* ----------------
* extract information from the node
* ----------------
*/
numIndices = indexstate->iss_NumIndices;
scanKeys = indexstate->iss_ScanKeys;
numScanKeys = indexstate->iss_NumScanKeys;
/* ----------------
* Free the projection info and the scan attribute info
*
* Note: we don't ExecFreeResultType(scanstate)
* because the rule manager depends on the tupType
* returned by ExecMain(). So for now, this
* is freed at end-transaction time. -cim 6/2/91
* ----------------
*/
ExecFreeProjectionInfo(&scanstate->cstate);
ExecFreeExprContext(&scanstate->cstate);
if (indexstate->iss_RuntimeContext)
FreeExprContext(indexstate->iss_RuntimeContext);
/* ----------------
* close the heap and index relations
* ----------------
*/
ExecCloseR((Plan *) node);
/* ----------------
* free the scan keys used in scanning the indices
* ----------------
*/
for (i = 0; i < numIndices; i++)
{
if (scanKeys[i] != NULL)
pfree(scanKeys[i]);
}
pfree(scanKeys);
pfree(numScanKeys);
if (runtimeKeyInfo)
{
for (i = 0; i < numIndices; i++)
{
if (runtimeKeyInfo[i] != NULL)
pfree(runtimeKeyInfo[i]);
}
pfree(runtimeKeyInfo);
}
/* ----------------
* clear out tuple table slots
* ----------------
*/
ExecClearTuple(scanstate->cstate.cs_ResultTupleSlot);
ExecClearTuple(scanstate->css_ScanTupleSlot);
}
/* ----------------------------------------------------------------
* ExecIndexMarkPos
*
* old comments
* Marks scan position by marking the current index.
* Returns nothing.
* ----------------------------------------------------------------
*/
void
ExecIndexMarkPos(IndexScan *node)
{
IndexScanState *indexstate;
IndexScanDescPtr indexScanDescs;
IndexScanDesc scanDesc;
int indexPtr;
indexstate = node->indxstate;
indexPtr = indexstate->iss_MarkIndexPtr = indexstate->iss_IndexPtr;
indexScanDescs = indexstate->iss_ScanDescs;
scanDesc = indexScanDescs[indexPtr];
#ifdef NOT_USED
IndexScanMarkPosition(scanDesc);
#endif
index_markpos(scanDesc);
}
/* ----------------------------------------------------------------
* ExecIndexRestrPos
*
* old comments
* Restores scan position by restoring the current index.
* Returns nothing.
*
* XXX Assumes previously marked scan position belongs to current index
* ----------------------------------------------------------------
*/
void
ExecIndexRestrPos(IndexScan *node)
{
IndexScanState *indexstate;
IndexScanDescPtr indexScanDescs;
IndexScanDesc scanDesc;
int indexPtr;
indexstate = node->indxstate;
indexPtr = indexstate->iss_IndexPtr = indexstate->iss_MarkIndexPtr;
indexScanDescs = indexstate->iss_ScanDescs;
scanDesc = indexScanDescs[indexPtr];
#ifdef NOT_USED
IndexScanRestorePosition(scanDesc);
#endif
index_restrpos(scanDesc);
}
/* ----------------------------------------------------------------
* ExecInitIndexScan
*
* Initializes the index scan's state information, creates
* scan keys, and opens the base and index relations.
*
* Note: index scans have 2 sets of state information because
* we have to keep track of the base relation and the
* index relations.
*
* old comments
* Creates the run-time state information for the node and
* sets the relation id to contain relevant descriptors.
*
* Parameters:
* node: IndexNode node produced by the planner.
* estate: the execution state initialized in InitPlan.
* ----------------------------------------------------------------
*/
bool
ExecInitIndexScan(IndexScan *node, EState *estate, Plan *parent)
{
IndexScanState *indexstate;
CommonScanState *scanstate;
List *indxqual;
List *indxid;
int i;
int numIndices;
int indexPtr;
ScanKey *scanKeys;
int *numScanKeys;
RelationPtr relationDescs;
IndexScanDescPtr scanDescs;
int **runtimeKeyInfo;
bool have_runtime_keys;
List *rangeTable;
RangeTblEntry *rtentry;
Index relid;
Oid reloid;
Relation currentRelation;
HeapScanDesc currentScanDesc;
ScanDirection direction;
/* ----------------
* assign execution state to node
* ----------------
*/
node->scan.plan.state = estate;
/* --------------------------------
* Part 1) initialize scan state
*
* create new CommonScanState for node
* --------------------------------
*/
scanstate = makeNode(CommonScanState);
node->scan.scanstate = scanstate;
/* ----------------
* Miscellaneous initialization
*
* + create expression context for node
* ----------------
*/
ExecAssignExprContext(estate, &scanstate->cstate);
#define INDEXSCAN_NSLOTS 3
/* ----------------
* tuple table initialization
* ----------------
*/
ExecInitResultTupleSlot(estate, &scanstate->cstate);
ExecInitScanTupleSlot(estate, scanstate);
/* ----------------
* initialize projection info. result type comes from scan desc
* below..
* ----------------
*/
ExecAssignProjectionInfo((Plan *) node, &scanstate->cstate);
/* --------------------------------
* Part 2) initialize index scan state
*
* create new IndexScanState for node
* --------------------------------
*/
indexstate = makeNode(IndexScanState);
indexstate->iss_NumIndices = 0;
indexstate->iss_IndexPtr = -1;
indexstate->iss_ScanKeys = NULL;
indexstate->iss_NumScanKeys = NULL;
indexstate->iss_RuntimeKeyInfo = NULL;
indexstate->iss_RuntimeContext = NULL;
indexstate->iss_RuntimeKeysReady = false;
indexstate->iss_RelationDescs = NULL;
indexstate->iss_ScanDescs = NULL;
node->indxstate = indexstate;
/* ----------------
* get the index node information
* ----------------
*/
indxid = node->indxid;
numIndices = length(indxid);
indexPtr = -1;
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
/* ----------------
* scanKeys is used to keep track of the ScanKey's. This is needed
* because a single scan may use several indices and each index has
* its own ScanKey.
* ----------------
*/
numScanKeys = (int *) palloc(numIndices * sizeof(int));
scanKeys = (ScanKey *) palloc(numIndices * sizeof(ScanKey));
relationDescs = (RelationPtr) palloc(numIndices * sizeof(Relation));
scanDescs = (IndexScanDescPtr) palloc(numIndices * sizeof(IndexScanDesc));
/* ----------------
* initialize space for runtime key info (may not be needed)
* ----------------
*/
have_runtime_keys = false;
runtimeKeyInfo = (int **) palloc(numIndices * sizeof(int *));
/* ----------------
* build the index scan keys from the index qualification
* ----------------
*/
indxqual = node->indxqual;
for (i = 0; i < numIndices; i++)
{
int j;
List *qual;
int n_keys;
ScanKey scan_keys;
int *run_keys;
qual = lfirst(indxqual);
indxqual = lnext(indxqual);
n_keys = length(qual);
scan_keys = (n_keys <= 0) ? (ScanKey) NULL :
(ScanKey) palloc(n_keys * sizeof(ScanKeyData));
run_keys = (n_keys <= 0) ? (int *) NULL :
(int *) palloc(n_keys * sizeof(int));
CXT1_printf("ExecInitIndexScan: context is %d\n", CurrentMemoryContext);
/* ----------------
* for each opclause in the given qual,
* convert each qual's opclause into a single scan key
* ----------------
*/
for (j = 0; j < n_keys; j++)
{
Expr *clause; /* one clause of index qual */
Oper *op; /* operator used in clause */
Node *leftop; /* expr on lhs of operator */
Node *rightop;/* expr on rhs ... */
bits16 flags = 0;
int scanvar;/* which var identifies varattno */
AttrNumber varattno = 0; /* att number used in scan */
Oid opid; /* operator id used in scan */
Datum scanvalue = 0; /* value used in scan (if const) */
/* ----------------
* extract clause information from the qualification
* ----------------
*/
clause = nth(j, qual);
op = (Oper *) clause->oper;
if (!IsA(clause, Expr) ||!IsA(op, Oper))
elog(ERROR, "ExecInitIndexScan: indxqual not an opclause!");
opid = op->opid;
/* ----------------
* Here we figure out the contents of the index qual.
* The usual case is (var op const) or (const op var)
* which means we form a scan key for the attribute
* listed in the var node and use the value of the const.
*
* If we don't have a const node, then it means that
* one of the var nodes refers to the "scan" tuple and
* is used to determine which attribute to scan, and the
* other expression is used to calculate the value used in
* scanning the index.
*
* This means our index scan's scan key is a function of
* information obtained during the execution of the plan
* in which case we need to recalculate the index scan key
* at run time.
*
* Hence, we set have_runtime_keys to true and then set
* the appropriate flag in run_keys to LEFT_OP or RIGHT_OP.
* The corresponding scan keys are recomputed at run time.
*
* XXX Although this code *thinks* it can handle an indexqual
* with the indexkey on either side, in fact it cannot.
* Indexscans only work with quals that have the indexkey on
* the left (the planner/optimizer makes sure it never passes
* anything else). The reason: the scankey machinery has no
* provision for distinguishing which side of the operator is
* the indexed attribute and which is the compared-to constant.
* It just assumes that the attribute is on the left :-(
*
* I am leaving this code able to support both ways, even though
* half of it is dead code, on the off chance that someone will
* fix the scankey machinery someday --- tgl 8/11/99.
* ----------------
*/
scanvar = NO_OP;
run_keys[j] = NO_OP;
/* ----------------
* determine information in leftop
* ----------------
*/
leftop = (Node *) get_leftop(clause);
if (leftop && IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
Assert(leftop != NULL);
if (IsA(leftop, Var) && var_is_rel((Var *) leftop))
{
/* ----------------
* if the leftop is a "rel-var", then it means
* that it is a var node which tells us which
* attribute to use for our scan key.
* ----------------
*/
varattno = ((Var *) leftop)->varattno;
scanvar = LEFT_OP;
}
else if (IsA(leftop, Const))
{
/* ----------------
* if the leftop is a const node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
scanvalue = ((Const *) leftop)->constvalue;
if (((Const *) leftop)->constisnull)
flags |= SK_ISNULL;
}
else if (IsA(leftop, Param))
{
bool isnull;
/* ----------------
* if the leftop is a Param node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
/* Life was so easy before ... subselects */
if (((Param *) leftop)->paramkind == PARAM_EXEC)
{
/* treat Param as runtime key */
have_runtime_keys = true;
run_keys[j] = LEFT_OP;
}
else
{
/* treat Param like a constant */
scanvalue = ExecEvalParam((Param *) leftop,
scanstate->cstate.cs_ExprContext,
&isnull);
if (isnull)
flags |= SK_ISNULL;
}
}
else
{
/* ----------------
* otherwise, the leftop contains an expression evaluable
* at runtime to figure out the value to place in our
* scan key.
* ----------------
*/
have_runtime_keys = true;
run_keys[j] = LEFT_OP;
}
/* ----------------
* now determine information in rightop
* ----------------
*/
rightop = (Node *) get_rightop(clause);
if (rightop && IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
Assert(rightop != NULL);
if (IsA(rightop, Var) && var_is_rel((Var *) rightop))
{
/* ----------------
* here we make sure only one op identifies the
* scan-attribute...
* ----------------
*/
if (scanvar == LEFT_OP)
elog(ERROR, "ExecInitIndexScan: %s",
"both left and right op's are rel-vars");
/* ----------------
* if the rightop is a "rel-var", then it means
* that it is a var node which tells us which
* attribute to use for our scan key.
* ----------------
*/
varattno = ((Var *) rightop)->varattno;
scanvar = RIGHT_OP;
}
else if (IsA(rightop, Const))
{
/* ----------------
* if the rightop is a const node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
scanvalue = ((Const *) rightop)->constvalue;
if (((Const *) rightop)->constisnull)
flags |= SK_ISNULL;
}
else if (IsA(rightop, Param))
{
bool isnull;
/* ----------------
* if the rightop is a Param node then it means
* it identifies the value to place in our scan key.
* ----------------
*/
/* Life was so easy before ... subselects */
if (((Param *) rightop)->paramkind == PARAM_EXEC)
{
/* treat Param as runtime key */
have_runtime_keys = true;
run_keys[j] = RIGHT_OP;
}
else
{
/* treat Param like a constant */
scanvalue = ExecEvalParam((Param *) rightop,
scanstate->cstate.cs_ExprContext,
&isnull);
if (isnull)
flags |= SK_ISNULL;
}
}
else
{
/* ----------------
* otherwise, the rightop contains an expression evaluable
* at runtime to figure out the value to place in our
* scan key.
* ----------------
*/
have_runtime_keys = true;
run_keys[j] = RIGHT_OP;
}
/* ----------------
* now check that at least one op tells us the scan
* attribute...
* ----------------
*/
if (scanvar == NO_OP)
elog(ERROR, "ExecInitIndexScan: %s",
"neither leftop nor rightop refer to scan relation");
/* ----------------
* initialize the scan key's fields appropriately
* ----------------
*/
ScanKeyEntryInitialize(&scan_keys[j],
flags,
varattno, /* attribute number to
* scan */
(RegProcedure) opid, /* reg proc to use */
scanvalue); /* constant */
}
/* ----------------
* store the key information into our arrays.
* ----------------
*/
numScanKeys[i] = n_keys;
scanKeys[i] = scan_keys;
runtimeKeyInfo[i] = run_keys;
}
indexstate->iss_NumIndices = numIndices;
if (ScanDirectionIsBackward(node->indxorderdir))
indexPtr = numIndices;
indexstate->iss_IndexPtr = indexPtr;
indexstate->iss_ScanKeys = scanKeys;
indexstate->iss_NumScanKeys = numScanKeys;
/* ----------------
* If all of our keys have the form (op var const) , then we have no
* runtime keys so we store NULL in the runtime key info.
* Otherwise runtime key info contains an array of pointers
* (one for each index) to arrays of flags (one for each key)
* which indicate that the qual needs to be evaluated at runtime.
* -cim 10/24/89
*
* If we do have runtime keys, we need an ExprContext to evaluate them;
* the node's standard context won't do because we want to reset that
* context for every tuple. So, build another context just like the
* other one...
* -tgl 7/11/00
* ----------------
*/
if (have_runtime_keys)
{
ExprContext *stdecontext = scanstate->cstate.cs_ExprContext;
ExecAssignExprContext(estate, &scanstate->cstate);
indexstate->iss_RuntimeKeyInfo = runtimeKeyInfo;
indexstate->iss_RuntimeContext = scanstate->cstate.cs_ExprContext;
scanstate->cstate.cs_ExprContext = stdecontext;
}
else
{
indexstate->iss_RuntimeKeyInfo = NULL;
indexstate->iss_RuntimeContext = NULL;
/* Get rid of the speculatively-allocated flag arrays, too */
for (i = 0; i < numIndices; i++)
{
if (runtimeKeyInfo[i] != NULL)
pfree(runtimeKeyInfo[i]);
}
pfree(runtimeKeyInfo);
}
/* ----------------
* get the range table and direction information
* from the execution state (these are needed to
* open the relations).
* ----------------
*/
rangeTable = estate->es_range_table;
direction = estate->es_direction;
/* ----------------
* open the base relation
* ----------------
*/
relid = node->scan.scanrelid;
rtentry = rt_fetch(relid, rangeTable);
reloid = rtentry->relid;
ExecOpenScanR(reloid, /* relation */
0, /* nkeys */
(ScanKey) NULL, /* scan key */
0, /* is index */
direction, /* scan direction */
estate->es_snapshot, /* */
&currentRelation, /* return: rel desc */
(Pointer *) &currentScanDesc); /* return: scan desc */
if (!RelationGetForm(currentRelation)->relhasindex)
elog(ERROR, "indexes of the relation %u was inactivated", reloid);
scanstate->css_currentRelation = currentRelation;
scanstate->css_currentScanDesc = currentScanDesc;
/* ----------------
* get the scan type from the relation descriptor.
* ----------------
*/
ExecAssignScanType(scanstate, RelationGetDescr(currentRelation), false);
ExecAssignResultTypeFromTL((Plan *) node, &scanstate->cstate);
/* ----------------
* open the index relations and initialize
* relation and scan descriptors.
* ----------------
*/
for (i = 0; i < numIndices; i++)
{
Oid indexOid = (Oid) nthi(i, indxid);
if (indexOid != 0)
{
ExecOpenScanR(indexOid, /* relation */
numScanKeys[i], /* nkeys */
scanKeys[i], /* scan key */
true, /* is index */
direction, /* scan direction */
estate->es_snapshot,
&(relationDescs[i]), /* return: rel desc */
(Pointer *) &(scanDescs[i]));
/* return: scan desc */
}
}
indexstate->iss_RelationDescs = relationDescs;
indexstate->iss_ScanDescs = scanDescs;
/* ----------------
* all done.
* ----------------
*/
return TRUE;
}
int
ExecCountSlotsIndexScan(IndexScan *node)
{
return ExecCountSlotsNode(outerPlan((Plan *) node)) +
ExecCountSlotsNode(innerPlan((Plan *) node)) + INDEXSCAN_NSLOTS;
}