798 lines
16 KiB
C
798 lines
16 KiB
C
/*
|
|
* cash.c
|
|
* Written by D'Arcy J.M. Cain
|
|
*
|
|
* Functions to allow input and output of money normally but store
|
|
* and handle it as int4s
|
|
*
|
|
* A slightly modified version of this file and a discussion of the
|
|
* workings can be found in the book "Software Solutions in C" by
|
|
* Dale Schumacher, Academic Press, ISBN: 0-12-632360-7.
|
|
*
|
|
* $Header: /cvsroot/pgsql/src/backend/utils/adt/cash.c,v 1.59 2003/07/27 04:53:03 tgl Exp $
|
|
*/
|
|
|
|
#include "postgres.h"
|
|
|
|
#include <limits.h>
|
|
#include <ctype.h>
|
|
#include <math.h>
|
|
#include <locale.h>
|
|
|
|
#include "libpq/pqformat.h"
|
|
#include "miscadmin.h"
|
|
#include "utils/builtins.h"
|
|
#include "utils/cash.h"
|
|
#include "utils/pg_locale.h"
|
|
|
|
|
|
static const char *num_word(Cash value);
|
|
|
|
/* when we go to 64 bit values we will have to modify this */
|
|
#define CASH_BUFSZ 24
|
|
|
|
#define TERMINATOR (CASH_BUFSZ - 1)
|
|
#define LAST_PAREN (TERMINATOR - 1)
|
|
#define LAST_DIGIT (LAST_PAREN - 1)
|
|
|
|
|
|
/*
|
|
* Cash is a pass-by-ref SQL type, so we must pass and return pointers.
|
|
* These macros and support routine hide the pass-by-refness.
|
|
*/
|
|
#define PG_GETARG_CASH(n) (* ((Cash *) PG_GETARG_POINTER(n)))
|
|
#define PG_RETURN_CASH(x) return CashGetDatum(x)
|
|
|
|
static Datum
|
|
CashGetDatum(Cash value)
|
|
{
|
|
Cash *result = (Cash *) palloc(sizeof(Cash));
|
|
|
|
*result = value;
|
|
return PointerGetDatum(result);
|
|
}
|
|
|
|
|
|
/* cash_in()
|
|
* Convert a string to a cash data type.
|
|
* Format is [$]###[,]###[.##]
|
|
* Examples: 123.45 $123.45 $123,456.78
|
|
*
|
|
* This is currently implemented as a 32-bit integer.
|
|
* XXX HACK It looks as though some of the symbols for
|
|
* monetary values returned by localeconv() can be multiple
|
|
* bytes/characters. This code assumes one byte only. - tgl 97/04/14
|
|
* XXX UNHACK Allow the currency symbol to be multibyte.
|
|
* - thomas 1998-03-01
|
|
*/
|
|
Datum
|
|
cash_in(PG_FUNCTION_ARGS)
|
|
{
|
|
char *str = PG_GETARG_CSTRING(0);
|
|
Cash result;
|
|
Cash value = 0;
|
|
Cash dec = 0;
|
|
Cash sgn = 1;
|
|
int seen_dot = 0;
|
|
const char *s = str;
|
|
int fpoint;
|
|
char *csymbol;
|
|
char dsymbol,
|
|
ssymbol,
|
|
psymbol,
|
|
*nsymbol;
|
|
|
|
struct lconv *lconvert = PGLC_localeconv();
|
|
|
|
/*
|
|
* frac_digits will be CHAR_MAX in some locales, notably C. However,
|
|
* just testing for == CHAR_MAX is risky, because of compilers like
|
|
* gcc that "helpfully" let you alter the platform-standard definition
|
|
* of whether char is signed or not. If we are so unfortunate as to
|
|
* get compiled with a nonstandard -fsigned-char or -funsigned-char
|
|
* switch, then our idea of CHAR_MAX will not agree with libc's. The
|
|
* safest course is not to test for CHAR_MAX at all, but to impose a
|
|
* range check for plausible frac_digits values.
|
|
*/
|
|
fpoint = lconvert->frac_digits;
|
|
if (fpoint < 0 || fpoint > 10)
|
|
fpoint = 2; /* best guess in this case, I think */
|
|
|
|
dsymbol = ((*lconvert->mon_decimal_point != '\0') ? *lconvert->mon_decimal_point : '.');
|
|
ssymbol = ((*lconvert->mon_thousands_sep != '\0') ? *lconvert->mon_thousands_sep : ',');
|
|
csymbol = ((*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$");
|
|
psymbol = ((*lconvert->positive_sign != '\0') ? *lconvert->positive_sign : '+');
|
|
nsymbol = ((*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-");
|
|
|
|
#ifdef CASHDEBUG
|
|
printf("cashin- precision '%d'; decimal '%c'; thousands '%c'; currency '%s'; positive '%c'; negative '%s'\n",
|
|
fpoint, dsymbol, ssymbol, csymbol, psymbol, nsymbol);
|
|
#endif
|
|
|
|
/* we need to add all sorts of checking here. For now just */
|
|
/* strip all leading whitespace and any leading currency symbol */
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
if (strncmp(s, csymbol, strlen(csymbol)) == 0)
|
|
s += strlen(csymbol);
|
|
|
|
#ifdef CASHDEBUG
|
|
printf("cashin- string is '%s'\n", s);
|
|
#endif
|
|
|
|
/* a leading minus or paren signifies a negative number */
|
|
/* again, better heuristics needed */
|
|
if (strncmp(s, nsymbol, strlen(nsymbol)) == 0)
|
|
{
|
|
sgn = -1;
|
|
s += strlen(nsymbol);
|
|
#ifdef CASHDEBUG
|
|
printf("cashin- negative symbol; string is '%s'\n", s);
|
|
#endif
|
|
}
|
|
else if (*s == '(')
|
|
{
|
|
sgn = -1;
|
|
s++;
|
|
|
|
}
|
|
else if (*s == psymbol)
|
|
s++;
|
|
|
|
#ifdef CASHDEBUG
|
|
printf("cashin- string is '%s'\n", s);
|
|
#endif
|
|
|
|
while (isspace((unsigned char) *s))
|
|
s++;
|
|
if (strncmp(s, csymbol, strlen(csymbol)) == 0)
|
|
s += strlen(csymbol);
|
|
|
|
#ifdef CASHDEBUG
|
|
printf("cashin- string is '%s'\n", s);
|
|
#endif
|
|
|
|
for (;; s++)
|
|
{
|
|
/* we look for digits as int4 as we have less */
|
|
/* than the required number of decimal places */
|
|
if (isdigit((unsigned char) *s) && dec < fpoint)
|
|
{
|
|
value = (value * 10) + *s - '0';
|
|
|
|
if (seen_dot)
|
|
dec++;
|
|
|
|
/* decimal point? then start counting fractions... */
|
|
}
|
|
else if (*s == dsymbol && !seen_dot)
|
|
{
|
|
seen_dot = 1;
|
|
|
|
/* "thousands" separator? then skip... */
|
|
}
|
|
else if (*s == ssymbol)
|
|
{
|
|
|
|
}
|
|
else
|
|
{
|
|
/* round off */
|
|
if (isdigit((unsigned char) *s) && *s >= '5')
|
|
value++;
|
|
|
|
/* adjust for less than required decimal places */
|
|
for (; dec < fpoint; dec++)
|
|
value *= 10;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
while (isspace((unsigned char) *s) || *s == '0' || *s == ')')
|
|
s++;
|
|
|
|
if (*s != '\0')
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
|
|
errmsg("invalid input syntax for money: \"%s\"", str)));
|
|
|
|
result = (value * sgn);
|
|
|
|
#ifdef CASHDEBUG
|
|
printf("cashin- result is %d\n", result);
|
|
#endif
|
|
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_out()
|
|
* Function to convert cash to a dollars and cents representation.
|
|
* XXX HACK This code appears to assume US conventions for
|
|
* positive-valued amounts. - tgl 97/04/14
|
|
*/
|
|
Datum
|
|
cash_out(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash value = PG_GETARG_CASH(0);
|
|
char *result;
|
|
char buf[CASH_BUFSZ];
|
|
int minus = 0;
|
|
int count = LAST_DIGIT;
|
|
int point_pos;
|
|
int comma_position = 0;
|
|
int points,
|
|
mon_group;
|
|
char comma;
|
|
char *csymbol,
|
|
dsymbol,
|
|
*nsymbol;
|
|
char convention;
|
|
|
|
struct lconv *lconvert = PGLC_localeconv();
|
|
|
|
/* see comments about frac_digits in cash_in() */
|
|
points = lconvert->frac_digits;
|
|
if (points < 0 || points > 10)
|
|
points = 2; /* best guess in this case, I think */
|
|
|
|
/*
|
|
* As with frac_digits, must apply a range check to mon_grouping to
|
|
* avoid being fooled by variant CHAR_MAX values.
|
|
*/
|
|
mon_group = *lconvert->mon_grouping;
|
|
if (mon_group <= 0 || mon_group > 6)
|
|
mon_group = 3;
|
|
|
|
comma = ((*lconvert->mon_thousands_sep != '\0') ? *lconvert->mon_thousands_sep : ',');
|
|
convention = lconvert->n_sign_posn;
|
|
dsymbol = ((*lconvert->mon_decimal_point != '\0') ? *lconvert->mon_decimal_point : '.');
|
|
csymbol = ((*lconvert->currency_symbol != '\0') ? lconvert->currency_symbol : "$");
|
|
nsymbol = ((*lconvert->negative_sign != '\0') ? lconvert->negative_sign : "-");
|
|
|
|
point_pos = LAST_DIGIT - points;
|
|
|
|
/* allow more than three decimal points and separate them */
|
|
if (comma)
|
|
{
|
|
point_pos -= (points - 1) / mon_group;
|
|
comma_position = point_pos % (mon_group + 1);
|
|
}
|
|
|
|
/* we work with positive amounts and add the minus sign at the end */
|
|
if (value < 0)
|
|
{
|
|
minus = 1;
|
|
value = -value;
|
|
}
|
|
|
|
/* allow for trailing negative strings */
|
|
MemSet(buf, ' ', CASH_BUFSZ);
|
|
buf[TERMINATOR] = buf[LAST_PAREN] = '\0';
|
|
|
|
while (value || count > (point_pos - 2))
|
|
{
|
|
if (points && count == point_pos)
|
|
buf[count--] = dsymbol;
|
|
else if (comma && count % (mon_group + 1) == comma_position)
|
|
buf[count--] = comma;
|
|
|
|
buf[count--] = ((unsigned int) value % 10) + '0';
|
|
value = ((unsigned int) value) / 10;
|
|
}
|
|
|
|
strncpy((buf + count - strlen(csymbol) + 1), csymbol, strlen(csymbol));
|
|
count -= strlen(csymbol) - 1;
|
|
|
|
if (buf[LAST_DIGIT] == ',')
|
|
buf[LAST_DIGIT] = buf[LAST_PAREN];
|
|
|
|
/* see if we need to signify negative amount */
|
|
if (minus)
|
|
{
|
|
if (!PointerIsValid(result = palloc(CASH_BUFSZ + 2 - count + strlen(nsymbol))))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OUT_OF_MEMORY),
|
|
errmsg("out of memory")));
|
|
|
|
/* Position code of 0 means use parens */
|
|
if (convention == 0)
|
|
sprintf(result, "(%s)", buf + count);
|
|
else if (convention == 2)
|
|
sprintf(result, "%s%s", buf + count, nsymbol);
|
|
else
|
|
sprintf(result, "%s%s", nsymbol, buf + count);
|
|
}
|
|
else
|
|
{
|
|
if (!PointerIsValid(result = palloc(CASH_BUFSZ + 2 - count)))
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_OUT_OF_MEMORY),
|
|
errmsg("out of memory")));
|
|
|
|
strcpy(result, buf + count);
|
|
}
|
|
|
|
PG_RETURN_CSTRING(result);
|
|
}
|
|
|
|
/*
|
|
* cash_recv - converts external binary format to cash
|
|
*/
|
|
Datum
|
|
cash_recv(PG_FUNCTION_ARGS)
|
|
{
|
|
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
|
|
|
|
PG_RETURN_CASH((Cash) pq_getmsgint(buf, sizeof(Cash)));
|
|
}
|
|
|
|
/*
|
|
* cash_send - converts cash to binary format
|
|
*/
|
|
Datum
|
|
cash_send(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash arg1 = PG_GETARG_CASH(0);
|
|
StringInfoData buf;
|
|
|
|
pq_begintypsend(&buf);
|
|
pq_sendint(&buf, arg1, sizeof(Cash));
|
|
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
|
|
}
|
|
|
|
|
|
Datum
|
|
cash_eq(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
|
|
PG_RETURN_BOOL(c1 == c2);
|
|
}
|
|
|
|
Datum
|
|
cash_ne(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
|
|
PG_RETURN_BOOL(c1 != c2);
|
|
}
|
|
|
|
Datum
|
|
cash_lt(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
|
|
PG_RETURN_BOOL(c1 < c2);
|
|
}
|
|
|
|
Datum
|
|
cash_le(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
|
|
PG_RETURN_BOOL(c1 <= c2);
|
|
}
|
|
|
|
Datum
|
|
cash_gt(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
|
|
PG_RETURN_BOOL(c1 > c2);
|
|
}
|
|
|
|
Datum
|
|
cash_ge(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
|
|
PG_RETURN_BOOL(c1 >= c2);
|
|
}
|
|
|
|
|
|
/* cash_pl()
|
|
* Add two cash values.
|
|
*/
|
|
Datum
|
|
cash_pl(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = c1 + c2;
|
|
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_mi()
|
|
* Subtract two cash values.
|
|
*/
|
|
Datum
|
|
cash_mi(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = c1 - c2;
|
|
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_mul_flt8()
|
|
* Multiply cash by float8.
|
|
*/
|
|
Datum
|
|
cash_mul_flt8(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
float8 f = PG_GETARG_FLOAT8(1);
|
|
Cash result;
|
|
|
|
result = c * f;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* flt8_mul_cash()
|
|
* Multiply float8 by cash.
|
|
*/
|
|
Datum
|
|
flt8_mul_cash(PG_FUNCTION_ARGS)
|
|
{
|
|
float8 f = PG_GETARG_FLOAT8(0);
|
|
Cash c = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = f * c;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_div_flt8()
|
|
* Divide cash by float8.
|
|
*
|
|
* XXX Don't know if rounding or truncating is correct behavior.
|
|
* Round for now. - tgl 97/04/15
|
|
*/
|
|
Datum
|
|
cash_div_flt8(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
float8 f = PG_GETARG_FLOAT8(1);
|
|
Cash result;
|
|
|
|
if (f == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = rint(c / f);
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
/* cash_mul_flt4()
|
|
* Multiply cash by float4.
|
|
*/
|
|
Datum
|
|
cash_mul_flt4(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
float4 f = PG_GETARG_FLOAT4(1);
|
|
Cash result;
|
|
|
|
result = c * f;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* flt4_mul_cash()
|
|
* Multiply float4 by cash.
|
|
*/
|
|
Datum
|
|
flt4_mul_cash(PG_FUNCTION_ARGS)
|
|
{
|
|
float4 f = PG_GETARG_FLOAT4(0);
|
|
Cash c = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = f * c;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_div_flt4()
|
|
* Divide cash by float4.
|
|
*
|
|
* XXX Don't know if rounding or truncating is correct behavior.
|
|
* Round for now. - tgl 97/04/15
|
|
*/
|
|
Datum
|
|
cash_div_flt4(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
float4 f = PG_GETARG_FLOAT4(1);
|
|
Cash result;
|
|
|
|
if (f == 0.0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = rint(c / f);
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_mul_int4()
|
|
* Multiply cash by int4.
|
|
*/
|
|
Datum
|
|
cash_mul_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
int32 i = PG_GETARG_INT32(1);
|
|
Cash result;
|
|
|
|
result = c * i;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* int4_mul_cash()
|
|
* Multiply int4 by cash.
|
|
*/
|
|
Datum
|
|
int4_mul_cash(PG_FUNCTION_ARGS)
|
|
{
|
|
int32 i = PG_GETARG_INT32(0);
|
|
Cash c = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = i * c;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_div_int4()
|
|
* Divide cash by 4-byte integer.
|
|
*
|
|
* XXX Don't know if rounding or truncating is correct behavior.
|
|
* Round for now. - tgl 97/04/15
|
|
*/
|
|
Datum
|
|
cash_div_int4(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
int32 i = PG_GETARG_INT32(1);
|
|
Cash result;
|
|
|
|
if (i == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = rint(c / i);
|
|
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_mul_int2()
|
|
* Multiply cash by int2.
|
|
*/
|
|
Datum
|
|
cash_mul_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
int16 s = PG_GETARG_INT16(1);
|
|
Cash result;
|
|
|
|
result = c * s;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
/* int2_mul_cash()
|
|
* Multiply int2 by cash.
|
|
*/
|
|
Datum
|
|
int2_mul_cash(PG_FUNCTION_ARGS)
|
|
{
|
|
int16 s = PG_GETARG_INT16(0);
|
|
Cash c = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = s * c;
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
/* cash_div_int2()
|
|
* Divide cash by int2.
|
|
*
|
|
* XXX Don't know if rounding or truncating is correct behavior.
|
|
* Round for now. - tgl 97/04/15
|
|
*/
|
|
Datum
|
|
cash_div_int2(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c = PG_GETARG_CASH(0);
|
|
int16 s = PG_GETARG_INT16(1);
|
|
Cash result;
|
|
|
|
if (s == 0)
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_DIVISION_BY_ZERO),
|
|
errmsg("division by zero")));
|
|
|
|
result = rint(c / s);
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
/* cashlarger()
|
|
* Return larger of two cash values.
|
|
*/
|
|
Datum
|
|
cashlarger(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = (c1 > c2) ? c1 : c2;
|
|
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
/* cashsmaller()
|
|
* Return smaller of two cash values.
|
|
*/
|
|
Datum
|
|
cashsmaller(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash c1 = PG_GETARG_CASH(0);
|
|
Cash c2 = PG_GETARG_CASH(1);
|
|
Cash result;
|
|
|
|
result = (c1 < c2) ? c1 : c2;
|
|
|
|
PG_RETURN_CASH(result);
|
|
}
|
|
|
|
|
|
/* cash_words()
|
|
* This converts a int4 as well but to a representation using words
|
|
* Obviously way North American centric - sorry
|
|
*/
|
|
Datum
|
|
cash_words(PG_FUNCTION_ARGS)
|
|
{
|
|
Cash value = PG_GETARG_CASH(0);
|
|
unsigned int val;
|
|
char buf[256];
|
|
char *p = buf;
|
|
Cash m0;
|
|
Cash m1;
|
|
Cash m2;
|
|
Cash m3;
|
|
text *result;
|
|
|
|
/* work with positive numbers */
|
|
if (value < 0)
|
|
{
|
|
value = -value;
|
|
strcpy(buf, "minus ");
|
|
p += 6;
|
|
}
|
|
else
|
|
buf[0] = '\0';
|
|
|
|
/* Now treat as unsigned, to avoid trouble at INT_MIN */
|
|
val = (unsigned int) value;
|
|
|
|
m0 = val % 100; /* cents */
|
|
m1 = (val / 100) % 1000; /* hundreds */
|
|
m2 = (val / 100000) % 1000; /* thousands */
|
|
m3 = val / 100000000 % 1000; /* millions */
|
|
|
|
if (m3)
|
|
{
|
|
strcat(buf, num_word(m3));
|
|
strcat(buf, " million ");
|
|
}
|
|
|
|
if (m2)
|
|
{
|
|
strcat(buf, num_word(m2));
|
|
strcat(buf, " thousand ");
|
|
}
|
|
|
|
if (m1)
|
|
strcat(buf, num_word(m1));
|
|
|
|
if (!*p)
|
|
strcat(buf, "zero");
|
|
|
|
strcat(buf, (val / 100) == 1 ? " dollar and " : " dollars and ");
|
|
strcat(buf, num_word(m0));
|
|
strcat(buf, m0 == 1 ? " cent" : " cents");
|
|
|
|
/* capitalize output */
|
|
buf[0] = toupper((unsigned char) buf[0]);
|
|
|
|
/* make a text type for output */
|
|
result = (text *) palloc(strlen(buf) + VARHDRSZ);
|
|
VARATT_SIZEP(result) = strlen(buf) + VARHDRSZ;
|
|
memcpy(VARDATA(result), buf, strlen(buf));
|
|
|
|
PG_RETURN_TEXT_P(result);
|
|
}
|
|
|
|
|
|
/*************************************************************************
|
|
* Private routines
|
|
************************************************************************/
|
|
|
|
static const char *
|
|
num_word(Cash value)
|
|
{
|
|
static char buf[128];
|
|
static const char *small[] = {
|
|
"zero", "one", "two", "three", "four", "five", "six", "seven",
|
|
"eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen",
|
|
"fifteen", "sixteen", "seventeen", "eighteen", "nineteen", "twenty",
|
|
"thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"
|
|
};
|
|
const char **big = small + 18;
|
|
int tu = value % 100;
|
|
|
|
/* deal with the simple cases first */
|
|
if (value <= 20)
|
|
return small[value];
|
|
|
|
/* is it an even multiple of 100? */
|
|
if (!tu)
|
|
{
|
|
sprintf(buf, "%s hundred", small[value / 100]);
|
|
return buf;
|
|
}
|
|
|
|
/* more than 99? */
|
|
if (value > 99)
|
|
{
|
|
/* is it an even multiple of 10 other than 10? */
|
|
if (value % 10 == 0 && tu > 10)
|
|
sprintf(buf, "%s hundred %s",
|
|
small[value / 100], big[tu / 10]);
|
|
else if (tu < 20)
|
|
sprintf(buf, "%s hundred and %s",
|
|
small[value / 100], small[tu]);
|
|
else
|
|
sprintf(buf, "%s hundred %s %s",
|
|
small[value / 100], big[tu / 10], small[tu % 10]);
|
|
|
|
}
|
|
else
|
|
{
|
|
/* is it an even multiple of 10 other than 10? */
|
|
if (value % 10 == 0 && tu > 10)
|
|
sprintf(buf, "%s", big[tu / 10]);
|
|
else if (tu < 20)
|
|
sprintf(buf, "%s", small[tu]);
|
|
else
|
|
sprintf(buf, "%s %s", big[tu / 10], small[tu % 10]);
|
|
}
|
|
|
|
return buf;
|
|
} /* num_word() */
|