
This allows MERGE commands to include WHEN NOT MATCHED BY SOURCE actions, which operate on rows that exist in the target relation, but not in the data source. These actions can execute UPDATE, DELETE, or DO NOTHING sub-commands. This is in contrast to already-supported WHEN NOT MATCHED actions, which operate on rows that exist in the data source, but not in the target relation. To make this distinction clearer, such actions may now be written as WHEN NOT MATCHED BY TARGET. Writing WHEN NOT MATCHED without specifying BY SOURCE or BY TARGET is equivalent to writing WHEN NOT MATCHED BY TARGET. Dean Rasheed, reviewed by Alvaro Herrera, Ted Yu and Vik Fearing. Discussion: https://postgr.es/m/CAEZATCWqnKGc57Y_JanUBHQXNKcXd7r=0R4NEZUVwP+syRkWbA@mail.gmail.com
2407 lines
77 KiB
C
2407 lines
77 KiB
C
/*-------------------------------------------------------------------------
|
|
*
|
|
* execPartition.c
|
|
* Support routines for partitioning.
|
|
*
|
|
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
|
|
* Portions Copyright (c) 1994, Regents of the University of California
|
|
*
|
|
* IDENTIFICATION
|
|
* src/backend/executor/execPartition.c
|
|
*
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
#include "postgres.h"
|
|
|
|
#include "access/table.h"
|
|
#include "access/tableam.h"
|
|
#include "catalog/partition.h"
|
|
#include "executor/execPartition.h"
|
|
#include "executor/executor.h"
|
|
#include "executor/nodeModifyTable.h"
|
|
#include "foreign/fdwapi.h"
|
|
#include "mb/pg_wchar.h"
|
|
#include "miscadmin.h"
|
|
#include "partitioning/partbounds.h"
|
|
#include "partitioning/partdesc.h"
|
|
#include "partitioning/partprune.h"
|
|
#include "rewrite/rewriteManip.h"
|
|
#include "utils/acl.h"
|
|
#include "utils/lsyscache.h"
|
|
#include "utils/partcache.h"
|
|
#include "utils/rls.h"
|
|
#include "utils/ruleutils.h"
|
|
|
|
|
|
/*-----------------------
|
|
* PartitionTupleRouting - Encapsulates all information required to
|
|
* route a tuple inserted into a partitioned table to one of its leaf
|
|
* partitions.
|
|
*
|
|
* partition_root
|
|
* The partitioned table that's the target of the command.
|
|
*
|
|
* partition_dispatch_info
|
|
* Array of 'max_dispatch' elements containing a pointer to a
|
|
* PartitionDispatch object for every partitioned table touched by tuple
|
|
* routing. The entry for the target partitioned table is *always*
|
|
* present in the 0th element of this array. See comment for
|
|
* PartitionDispatchData->indexes for details on how this array is
|
|
* indexed.
|
|
*
|
|
* nonleaf_partitions
|
|
* Array of 'max_dispatch' elements containing pointers to fake
|
|
* ResultRelInfo objects for nonleaf partitions, useful for checking
|
|
* the partition constraint.
|
|
*
|
|
* num_dispatch
|
|
* The current number of items stored in the 'partition_dispatch_info'
|
|
* array. Also serves as the index of the next free array element for
|
|
* new PartitionDispatch objects that need to be stored.
|
|
*
|
|
* max_dispatch
|
|
* The current allocated size of the 'partition_dispatch_info' array.
|
|
*
|
|
* partitions
|
|
* Array of 'max_partitions' elements containing a pointer to a
|
|
* ResultRelInfo for every leaf partition touched by tuple routing.
|
|
* Some of these are pointers to ResultRelInfos which are borrowed out of
|
|
* the owning ModifyTableState node. The remainder have been built
|
|
* especially for tuple routing. See comment for
|
|
* PartitionDispatchData->indexes for details on how this array is
|
|
* indexed.
|
|
*
|
|
* is_borrowed_rel
|
|
* Array of 'max_partitions' booleans recording whether a given entry
|
|
* in 'partitions' is a ResultRelInfo pointer borrowed from the owning
|
|
* ModifyTableState node, rather than being built here.
|
|
*
|
|
* num_partitions
|
|
* The current number of items stored in the 'partitions' array. Also
|
|
* serves as the index of the next free array element for new
|
|
* ResultRelInfo objects that need to be stored.
|
|
*
|
|
* max_partitions
|
|
* The current allocated size of the 'partitions' array.
|
|
*
|
|
* memcxt
|
|
* Memory context used to allocate subsidiary structs.
|
|
*-----------------------
|
|
*/
|
|
struct PartitionTupleRouting
|
|
{
|
|
Relation partition_root;
|
|
PartitionDispatch *partition_dispatch_info;
|
|
ResultRelInfo **nonleaf_partitions;
|
|
int num_dispatch;
|
|
int max_dispatch;
|
|
ResultRelInfo **partitions;
|
|
bool *is_borrowed_rel;
|
|
int num_partitions;
|
|
int max_partitions;
|
|
MemoryContext memcxt;
|
|
};
|
|
|
|
/*-----------------------
|
|
* PartitionDispatch - information about one partitioned table in a partition
|
|
* hierarchy required to route a tuple to any of its partitions. A
|
|
* PartitionDispatch is always encapsulated inside a PartitionTupleRouting
|
|
* struct and stored inside its 'partition_dispatch_info' array.
|
|
*
|
|
* reldesc
|
|
* Relation descriptor of the table
|
|
*
|
|
* key
|
|
* Partition key information of the table
|
|
*
|
|
* keystate
|
|
* Execution state required for expressions in the partition key
|
|
*
|
|
* partdesc
|
|
* Partition descriptor of the table
|
|
*
|
|
* tupslot
|
|
* A standalone TupleTableSlot initialized with this table's tuple
|
|
* descriptor, or NULL if no tuple conversion between the parent is
|
|
* required.
|
|
*
|
|
* tupmap
|
|
* TupleConversionMap to convert from the parent's rowtype to this table's
|
|
* rowtype (when extracting the partition key of a tuple just before
|
|
* routing it through this table). A NULL value is stored if no tuple
|
|
* conversion is required.
|
|
*
|
|
* indexes
|
|
* Array of partdesc->nparts elements. For leaf partitions the index
|
|
* corresponds to the partition's ResultRelInfo in the encapsulating
|
|
* PartitionTupleRouting's partitions array. For partitioned partitions,
|
|
* the index corresponds to the PartitionDispatch for it in its
|
|
* partition_dispatch_info array. -1 indicates we've not yet allocated
|
|
* anything in PartitionTupleRouting for the partition.
|
|
*-----------------------
|
|
*/
|
|
typedef struct PartitionDispatchData
|
|
{
|
|
Relation reldesc;
|
|
PartitionKey key;
|
|
List *keystate; /* list of ExprState */
|
|
PartitionDesc partdesc;
|
|
TupleTableSlot *tupslot;
|
|
AttrMap *tupmap;
|
|
int indexes[FLEXIBLE_ARRAY_MEMBER];
|
|
} PartitionDispatchData;
|
|
|
|
|
|
static ResultRelInfo *ExecInitPartitionInfo(ModifyTableState *mtstate,
|
|
EState *estate, PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *rootResultRelInfo,
|
|
int partidx);
|
|
static void ExecInitRoutingInfo(ModifyTableState *mtstate,
|
|
EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *partRelInfo,
|
|
int partidx,
|
|
bool is_borrowed_rel);
|
|
static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
Oid partoid, PartitionDispatch parent_pd,
|
|
int partidx, ResultRelInfo *rootResultRelInfo);
|
|
static void FormPartitionKeyDatum(PartitionDispatch pd,
|
|
TupleTableSlot *slot,
|
|
EState *estate,
|
|
Datum *values,
|
|
bool *isnull);
|
|
static int get_partition_for_tuple(PartitionDispatch pd, Datum *values,
|
|
bool *isnull);
|
|
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
|
|
Datum *values,
|
|
bool *isnull,
|
|
int maxfieldlen);
|
|
static List *adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri);
|
|
static List *adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap);
|
|
static PartitionPruneState *CreatePartitionPruneState(PlanState *planstate,
|
|
PartitionPruneInfo *pruneinfo);
|
|
static void InitPartitionPruneContext(PartitionPruneContext *context,
|
|
List *pruning_steps,
|
|
PartitionDesc partdesc,
|
|
PartitionKey partkey,
|
|
PlanState *planstate,
|
|
ExprContext *econtext);
|
|
static void PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
|
|
Bitmapset *initially_valid_subplans,
|
|
int n_total_subplans);
|
|
static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
|
|
PartitionedRelPruningData *pprune,
|
|
bool initial_prune,
|
|
Bitmapset **validsubplans);
|
|
|
|
|
|
/*
|
|
* ExecSetupPartitionTupleRouting - sets up information needed during
|
|
* tuple routing for partitioned tables, encapsulates it in
|
|
* PartitionTupleRouting, and returns it.
|
|
*
|
|
* Callers must use the returned PartitionTupleRouting during calls to
|
|
* ExecFindPartition(). The actual ResultRelInfo for a partition is only
|
|
* allocated when the partition is found for the first time.
|
|
*
|
|
* The current memory context is used to allocate this struct and all
|
|
* subsidiary structs that will be allocated from it later on. Typically
|
|
* it should be estate->es_query_cxt.
|
|
*/
|
|
PartitionTupleRouting *
|
|
ExecSetupPartitionTupleRouting(EState *estate, Relation rel)
|
|
{
|
|
PartitionTupleRouting *proute;
|
|
|
|
/*
|
|
* Here we attempt to expend as little effort as possible in setting up
|
|
* the PartitionTupleRouting. Each partition's ResultRelInfo is built on
|
|
* demand, only when we actually need to route a tuple to that partition.
|
|
* The reason for this is that a common case is for INSERT to insert a
|
|
* single tuple into a partitioned table and this must be fast.
|
|
*/
|
|
proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting));
|
|
proute->partition_root = rel;
|
|
proute->memcxt = CurrentMemoryContext;
|
|
/* Rest of members initialized by zeroing */
|
|
|
|
/*
|
|
* Initialize this table's PartitionDispatch object. Here we pass in the
|
|
* parent as NULL as we don't need to care about any parent of the target
|
|
* partitioned table.
|
|
*/
|
|
ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
|
|
NULL, 0, NULL);
|
|
|
|
return proute;
|
|
}
|
|
|
|
/*
|
|
* ExecFindPartition -- Return the ResultRelInfo for the leaf partition that
|
|
* the tuple contained in *slot should belong to.
|
|
*
|
|
* If the partition's ResultRelInfo does not yet exist in 'proute' then we set
|
|
* one up or reuse one from mtstate's resultRelInfo array. When reusing a
|
|
* ResultRelInfo from the mtstate we verify that the relation is a valid
|
|
* target for INSERTs and initialize tuple routing information.
|
|
*
|
|
* rootResultRelInfo is the relation named in the query.
|
|
*
|
|
* estate must be non-NULL; we'll need it to compute any expressions in the
|
|
* partition keys. Also, its per-tuple contexts are used as evaluation
|
|
* scratch space.
|
|
*
|
|
* If no leaf partition is found, this routine errors out with the appropriate
|
|
* error message. An error may also be raised if the found target partition
|
|
* is not a valid target for an INSERT.
|
|
*/
|
|
ResultRelInfo *
|
|
ExecFindPartition(ModifyTableState *mtstate,
|
|
ResultRelInfo *rootResultRelInfo,
|
|
PartitionTupleRouting *proute,
|
|
TupleTableSlot *slot, EState *estate)
|
|
{
|
|
PartitionDispatch *pd = proute->partition_dispatch_info;
|
|
Datum values[PARTITION_MAX_KEYS];
|
|
bool isnull[PARTITION_MAX_KEYS];
|
|
Relation rel;
|
|
PartitionDispatch dispatch;
|
|
PartitionDesc partdesc;
|
|
ExprContext *ecxt = GetPerTupleExprContext(estate);
|
|
TupleTableSlot *ecxt_scantuple_saved = ecxt->ecxt_scantuple;
|
|
TupleTableSlot *rootslot = slot;
|
|
TupleTableSlot *myslot = NULL;
|
|
MemoryContext oldcxt;
|
|
ResultRelInfo *rri = NULL;
|
|
|
|
/* use per-tuple context here to avoid leaking memory */
|
|
oldcxt = MemoryContextSwitchTo(GetPerTupleMemoryContext(estate));
|
|
|
|
/*
|
|
* First check the root table's partition constraint, if any. No point in
|
|
* routing the tuple if it doesn't belong in the root table itself.
|
|
*/
|
|
if (rootResultRelInfo->ri_RelationDesc->rd_rel->relispartition)
|
|
ExecPartitionCheck(rootResultRelInfo, slot, estate, true);
|
|
|
|
/* start with the root partitioned table */
|
|
dispatch = pd[0];
|
|
while (dispatch != NULL)
|
|
{
|
|
int partidx = -1;
|
|
bool is_leaf;
|
|
|
|
CHECK_FOR_INTERRUPTS();
|
|
|
|
rel = dispatch->reldesc;
|
|
partdesc = dispatch->partdesc;
|
|
|
|
/*
|
|
* Extract partition key from tuple. Expression evaluation machinery
|
|
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
|
|
* point to the correct tuple slot. The slot might have changed from
|
|
* what was used for the parent table if the table of the current
|
|
* partitioning level has different tuple descriptor from the parent.
|
|
* So update ecxt_scantuple accordingly.
|
|
*/
|
|
ecxt->ecxt_scantuple = slot;
|
|
FormPartitionKeyDatum(dispatch, slot, estate, values, isnull);
|
|
|
|
/*
|
|
* If this partitioned table has no partitions or no partition for
|
|
* these values, error out.
|
|
*/
|
|
if (partdesc->nparts == 0 ||
|
|
(partidx = get_partition_for_tuple(dispatch, values, isnull)) < 0)
|
|
{
|
|
char *val_desc;
|
|
|
|
val_desc = ExecBuildSlotPartitionKeyDescription(rel,
|
|
values, isnull, 64);
|
|
Assert(OidIsValid(RelationGetRelid(rel)));
|
|
ereport(ERROR,
|
|
(errcode(ERRCODE_CHECK_VIOLATION),
|
|
errmsg("no partition of relation \"%s\" found for row",
|
|
RelationGetRelationName(rel)),
|
|
val_desc ?
|
|
errdetail("Partition key of the failing row contains %s.",
|
|
val_desc) : 0,
|
|
errtable(rel)));
|
|
}
|
|
|
|
is_leaf = partdesc->is_leaf[partidx];
|
|
if (is_leaf)
|
|
{
|
|
/*
|
|
* We've reached the leaf -- hurray, we're done. Look to see if
|
|
* we've already got a ResultRelInfo for this partition.
|
|
*/
|
|
if (likely(dispatch->indexes[partidx] >= 0))
|
|
{
|
|
/* ResultRelInfo already built */
|
|
Assert(dispatch->indexes[partidx] < proute->num_partitions);
|
|
rri = proute->partitions[dispatch->indexes[partidx]];
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* If the partition is known in the owning ModifyTableState
|
|
* node, we can re-use that ResultRelInfo instead of creating
|
|
* a new one with ExecInitPartitionInfo().
|
|
*/
|
|
rri = ExecLookupResultRelByOid(mtstate,
|
|
partdesc->oids[partidx],
|
|
true, false);
|
|
if (rri)
|
|
{
|
|
/* Verify this ResultRelInfo allows INSERTs */
|
|
CheckValidResultRel(rri, CMD_INSERT, NIL);
|
|
|
|
/*
|
|
* Initialize information needed to insert this and
|
|
* subsequent tuples routed to this partition.
|
|
*/
|
|
ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
|
|
rri, partidx, true);
|
|
}
|
|
else
|
|
{
|
|
/* We need to create a new one. */
|
|
rri = ExecInitPartitionInfo(mtstate, estate, proute,
|
|
dispatch,
|
|
rootResultRelInfo, partidx);
|
|
}
|
|
}
|
|
Assert(rri != NULL);
|
|
|
|
/* Signal to terminate the loop */
|
|
dispatch = NULL;
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* Partition is a sub-partitioned table; get the PartitionDispatch
|
|
*/
|
|
if (likely(dispatch->indexes[partidx] >= 0))
|
|
{
|
|
/* Already built. */
|
|
Assert(dispatch->indexes[partidx] < proute->num_dispatch);
|
|
|
|
rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
|
|
|
|
/*
|
|
* Move down to the next partition level and search again
|
|
* until we find a leaf partition that matches this tuple
|
|
*/
|
|
dispatch = pd[dispatch->indexes[partidx]];
|
|
}
|
|
else
|
|
{
|
|
/* Not yet built. Do that now. */
|
|
PartitionDispatch subdispatch;
|
|
|
|
/*
|
|
* Create the new PartitionDispatch. We pass the current one
|
|
* in as the parent PartitionDispatch
|
|
*/
|
|
subdispatch = ExecInitPartitionDispatchInfo(estate,
|
|
proute,
|
|
partdesc->oids[partidx],
|
|
dispatch, partidx,
|
|
mtstate->rootResultRelInfo);
|
|
Assert(dispatch->indexes[partidx] >= 0 &&
|
|
dispatch->indexes[partidx] < proute->num_dispatch);
|
|
|
|
rri = proute->nonleaf_partitions[dispatch->indexes[partidx]];
|
|
dispatch = subdispatch;
|
|
}
|
|
|
|
/*
|
|
* Convert the tuple to the new parent's layout, if different from
|
|
* the previous parent.
|
|
*/
|
|
if (dispatch->tupslot)
|
|
{
|
|
AttrMap *map = dispatch->tupmap;
|
|
TupleTableSlot *tempslot = myslot;
|
|
|
|
myslot = dispatch->tupslot;
|
|
slot = execute_attr_map_slot(map, slot, myslot);
|
|
|
|
if (tempslot != NULL)
|
|
ExecClearTuple(tempslot);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If this partition is the default one, we must check its partition
|
|
* constraint now, which may have changed concurrently due to
|
|
* partitions being added to the parent.
|
|
*
|
|
* (We do this here, and do not rely on ExecInsert doing it, because
|
|
* we don't want to miss doing it for non-leaf partitions.)
|
|
*/
|
|
if (partidx == partdesc->boundinfo->default_index)
|
|
{
|
|
/*
|
|
* The tuple must match the partition's layout for the constraint
|
|
* expression to be evaluated successfully. If the partition is
|
|
* sub-partitioned, that would already be the case due to the code
|
|
* above, but for a leaf partition the tuple still matches the
|
|
* parent's layout.
|
|
*
|
|
* Note that we have a map to convert from root to current
|
|
* partition, but not from immediate parent to current partition.
|
|
* So if we have to convert, do it from the root slot; if not, use
|
|
* the root slot as-is.
|
|
*/
|
|
if (is_leaf)
|
|
{
|
|
TupleConversionMap *map = ExecGetRootToChildMap(rri, estate);
|
|
|
|
if (map)
|
|
slot = execute_attr_map_slot(map->attrMap, rootslot,
|
|
rri->ri_PartitionTupleSlot);
|
|
else
|
|
slot = rootslot;
|
|
}
|
|
|
|
ExecPartitionCheck(rri, slot, estate, true);
|
|
}
|
|
}
|
|
|
|
/* Release the tuple in the lowest parent's dedicated slot. */
|
|
if (myslot != NULL)
|
|
ExecClearTuple(myslot);
|
|
/* and restore ecxt's scantuple */
|
|
ecxt->ecxt_scantuple = ecxt_scantuple_saved;
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return rri;
|
|
}
|
|
|
|
/*
|
|
* ExecInitPartitionInfo
|
|
* Lock the partition and initialize ResultRelInfo. Also setup other
|
|
* information for the partition and store it in the next empty slot in
|
|
* the proute->partitions array.
|
|
*
|
|
* Returns the ResultRelInfo
|
|
*/
|
|
static ResultRelInfo *
|
|
ExecInitPartitionInfo(ModifyTableState *mtstate, EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *rootResultRelInfo,
|
|
int partidx)
|
|
{
|
|
ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
|
|
Oid partOid = dispatch->partdesc->oids[partidx];
|
|
Relation partrel;
|
|
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
|
|
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
|
|
ResultRelInfo *leaf_part_rri;
|
|
MemoryContext oldcxt;
|
|
AttrMap *part_attmap = NULL;
|
|
bool found_whole_row;
|
|
|
|
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
|
|
|
partrel = table_open(partOid, RowExclusiveLock);
|
|
|
|
leaf_part_rri = makeNode(ResultRelInfo);
|
|
InitResultRelInfo(leaf_part_rri,
|
|
partrel,
|
|
0,
|
|
rootResultRelInfo,
|
|
estate->es_instrument);
|
|
|
|
/*
|
|
* Verify result relation is a valid target for an INSERT. An UPDATE of a
|
|
* partition-key becomes a DELETE+INSERT operation, so this check is still
|
|
* required when the operation is CMD_UPDATE.
|
|
*/
|
|
CheckValidResultRel(leaf_part_rri, CMD_INSERT, NIL);
|
|
|
|
/*
|
|
* Open partition indices. The user may have asked to check for conflicts
|
|
* within this leaf partition and do "nothing" instead of throwing an
|
|
* error. Be prepared in that case by initializing the index information
|
|
* needed by ExecInsert() to perform speculative insertions.
|
|
*/
|
|
if (partrel->rd_rel->relhasindex &&
|
|
leaf_part_rri->ri_IndexRelationDescs == NULL)
|
|
ExecOpenIndices(leaf_part_rri,
|
|
(node != NULL &&
|
|
node->onConflictAction != ONCONFLICT_NONE));
|
|
|
|
/*
|
|
* Build WITH CHECK OPTION constraints for the partition. Note that we
|
|
* didn't build the withCheckOptionList for partitions within the planner,
|
|
* but simple translation of varattnos will suffice. This only occurs for
|
|
* the INSERT case or in the case of UPDATE/MERGE tuple routing where we
|
|
* didn't find a result rel to reuse.
|
|
*/
|
|
if (node && node->withCheckOptionLists != NIL)
|
|
{
|
|
List *wcoList;
|
|
List *wcoExprs = NIL;
|
|
ListCell *ll;
|
|
|
|
/*
|
|
* In the case of INSERT on a partitioned table, there is only one
|
|
* plan. Likewise, there is only one WCO list, not one per partition.
|
|
* For UPDATE/MERGE, there are as many WCO lists as there are plans.
|
|
*/
|
|
Assert((node->operation == CMD_INSERT &&
|
|
list_length(node->withCheckOptionLists) == 1 &&
|
|
list_length(node->resultRelations) == 1) ||
|
|
(node->operation == CMD_UPDATE &&
|
|
list_length(node->withCheckOptionLists) ==
|
|
list_length(node->resultRelations)) ||
|
|
(node->operation == CMD_MERGE &&
|
|
list_length(node->withCheckOptionLists) ==
|
|
list_length(node->resultRelations)));
|
|
|
|
/*
|
|
* Use the WCO list of the first plan as a reference to calculate
|
|
* attno's for the WCO list of this partition. In the INSERT case,
|
|
* that refers to the root partitioned table, whereas in the UPDATE
|
|
* tuple routing case, that refers to the first partition in the
|
|
* mtstate->resultRelInfo array. In any case, both that relation and
|
|
* this partition should have the same columns, so we should be able
|
|
* to map attributes successfully.
|
|
*/
|
|
wcoList = linitial(node->withCheckOptionLists);
|
|
|
|
/*
|
|
* Convert Vars in it to contain this partition's attribute numbers.
|
|
*/
|
|
part_attmap =
|
|
build_attrmap_by_name(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
false);
|
|
wcoList = (List *)
|
|
map_variable_attnos((Node *) wcoList,
|
|
firstVarno, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
|
|
foreach(ll, wcoList)
|
|
{
|
|
WithCheckOption *wco = lfirst_node(WithCheckOption, ll);
|
|
ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
|
|
&mtstate->ps);
|
|
|
|
wcoExprs = lappend(wcoExprs, wcoExpr);
|
|
}
|
|
|
|
leaf_part_rri->ri_WithCheckOptions = wcoList;
|
|
leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
|
|
}
|
|
|
|
/*
|
|
* Build the RETURNING projection for the partition. Note that we didn't
|
|
* build the returningList for partitions within the planner, but simple
|
|
* translation of varattnos will suffice. This only occurs for the INSERT
|
|
* case or in the case of UPDATE/MERGE tuple routing where we didn't find
|
|
* a result rel to reuse.
|
|
*/
|
|
if (node && node->returningLists != NIL)
|
|
{
|
|
TupleTableSlot *slot;
|
|
ExprContext *econtext;
|
|
List *returningList;
|
|
|
|
/* See the comment above for WCO lists. */
|
|
Assert((node->operation == CMD_INSERT &&
|
|
list_length(node->returningLists) == 1 &&
|
|
list_length(node->resultRelations) == 1) ||
|
|
(node->operation == CMD_UPDATE &&
|
|
list_length(node->returningLists) ==
|
|
list_length(node->resultRelations)) ||
|
|
(node->operation == CMD_MERGE &&
|
|
list_length(node->returningLists) ==
|
|
list_length(node->resultRelations)));
|
|
|
|
/*
|
|
* Use the RETURNING list of the first plan as a reference to
|
|
* calculate attno's for the RETURNING list of this partition. See
|
|
* the comment above for WCO lists for more details on why this is
|
|
* okay.
|
|
*/
|
|
returningList = linitial(node->returningLists);
|
|
|
|
/*
|
|
* Convert Vars in it to contain this partition's attribute numbers.
|
|
*/
|
|
if (part_attmap == NULL)
|
|
part_attmap =
|
|
build_attrmap_by_name(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
false);
|
|
returningList = (List *)
|
|
map_variable_attnos((Node *) returningList,
|
|
firstVarno, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
|
|
leaf_part_rri->ri_returningList = returningList;
|
|
|
|
/*
|
|
* Initialize the projection itself.
|
|
*
|
|
* Use the slot and the expression context that would have been set up
|
|
* in ExecInitModifyTable() for projection's output.
|
|
*/
|
|
Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
|
|
slot = mtstate->ps.ps_ResultTupleSlot;
|
|
Assert(mtstate->ps.ps_ExprContext != NULL);
|
|
econtext = mtstate->ps.ps_ExprContext;
|
|
leaf_part_rri->ri_projectReturning =
|
|
ExecBuildProjectionInfo(returningList, econtext, slot,
|
|
&mtstate->ps, RelationGetDescr(partrel));
|
|
}
|
|
|
|
/* Set up information needed for routing tuples to the partition. */
|
|
ExecInitRoutingInfo(mtstate, estate, proute, dispatch,
|
|
leaf_part_rri, partidx, false);
|
|
|
|
/*
|
|
* If there is an ON CONFLICT clause, initialize state for it.
|
|
*/
|
|
if (node && node->onConflictAction != ONCONFLICT_NONE)
|
|
{
|
|
TupleDesc partrelDesc = RelationGetDescr(partrel);
|
|
ExprContext *econtext = mtstate->ps.ps_ExprContext;
|
|
ListCell *lc;
|
|
List *arbiterIndexes = NIL;
|
|
|
|
/*
|
|
* If there is a list of arbiter indexes, map it to a list of indexes
|
|
* in the partition. We do that by scanning the partition's index
|
|
* list and searching for ancestry relationships to each index in the
|
|
* ancestor table.
|
|
*/
|
|
if (rootResultRelInfo->ri_onConflictArbiterIndexes != NIL)
|
|
{
|
|
List *childIdxs;
|
|
|
|
childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc);
|
|
|
|
foreach(lc, childIdxs)
|
|
{
|
|
Oid childIdx = lfirst_oid(lc);
|
|
List *ancestors;
|
|
ListCell *lc2;
|
|
|
|
ancestors = get_partition_ancestors(childIdx);
|
|
foreach(lc2, rootResultRelInfo->ri_onConflictArbiterIndexes)
|
|
{
|
|
if (list_member_oid(ancestors, lfirst_oid(lc2)))
|
|
arbiterIndexes = lappend_oid(arbiterIndexes, childIdx);
|
|
}
|
|
list_free(ancestors);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the resulting lists are of inequal length, something is wrong.
|
|
* (This shouldn't happen, since arbiter index selection should not
|
|
* pick up an invalid index.)
|
|
*/
|
|
if (list_length(rootResultRelInfo->ri_onConflictArbiterIndexes) !=
|
|
list_length(arbiterIndexes))
|
|
elog(ERROR, "invalid arbiter index list");
|
|
leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
|
|
|
|
/*
|
|
* In the DO UPDATE case, we have some more state to initialize.
|
|
*/
|
|
if (node->onConflictAction == ONCONFLICT_UPDATE)
|
|
{
|
|
OnConflictSetState *onconfl = makeNode(OnConflictSetState);
|
|
TupleConversionMap *map;
|
|
|
|
map = ExecGetRootToChildMap(leaf_part_rri, estate);
|
|
|
|
Assert(node->onConflictSet != NIL);
|
|
Assert(rootResultRelInfo->ri_onConflict != NULL);
|
|
|
|
leaf_part_rri->ri_onConflict = onconfl;
|
|
|
|
/*
|
|
* Need a separate existing slot for each partition, as the
|
|
* partition could be of a different AM, even if the tuple
|
|
* descriptors match.
|
|
*/
|
|
onconfl->oc_Existing =
|
|
table_slot_create(leaf_part_rri->ri_RelationDesc,
|
|
&mtstate->ps.state->es_tupleTable);
|
|
|
|
/*
|
|
* If the partition's tuple descriptor matches exactly the root
|
|
* parent (the common case), we can re-use most of the parent's ON
|
|
* CONFLICT SET state, skipping a bunch of work. Otherwise, we
|
|
* need to create state specific to this partition.
|
|
*/
|
|
if (map == NULL)
|
|
{
|
|
/*
|
|
* It's safe to reuse these from the partition root, as we
|
|
* only process one tuple at a time (therefore we won't
|
|
* overwrite needed data in slots), and the results of
|
|
* projections are independent of the underlying storage.
|
|
* Projections and where clauses themselves don't store state
|
|
* / are independent of the underlying storage.
|
|
*/
|
|
onconfl->oc_ProjSlot =
|
|
rootResultRelInfo->ri_onConflict->oc_ProjSlot;
|
|
onconfl->oc_ProjInfo =
|
|
rootResultRelInfo->ri_onConflict->oc_ProjInfo;
|
|
onconfl->oc_WhereClause =
|
|
rootResultRelInfo->ri_onConflict->oc_WhereClause;
|
|
}
|
|
else
|
|
{
|
|
List *onconflset;
|
|
List *onconflcols;
|
|
|
|
/*
|
|
* Translate expressions in onConflictSet to account for
|
|
* different attribute numbers. For that, map partition
|
|
* varattnos twice: first to catch the EXCLUDED
|
|
* pseudo-relation (INNER_VAR), and second to handle the main
|
|
* target relation (firstVarno).
|
|
*/
|
|
onconflset = copyObject(node->onConflictSet);
|
|
if (part_attmap == NULL)
|
|
part_attmap =
|
|
build_attrmap_by_name(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
false);
|
|
onconflset = (List *)
|
|
map_variable_attnos((Node *) onconflset,
|
|
INNER_VAR, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
onconflset = (List *)
|
|
map_variable_attnos((Node *) onconflset,
|
|
firstVarno, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
|
|
/* Finally, adjust the target colnos to match the partition. */
|
|
onconflcols = adjust_partition_colnos(node->onConflictCols,
|
|
leaf_part_rri);
|
|
|
|
/* create the tuple slot for the UPDATE SET projection */
|
|
onconfl->oc_ProjSlot =
|
|
table_slot_create(partrel,
|
|
&mtstate->ps.state->es_tupleTable);
|
|
|
|
/* build UPDATE SET projection state */
|
|
onconfl->oc_ProjInfo =
|
|
ExecBuildUpdateProjection(onconflset,
|
|
true,
|
|
onconflcols,
|
|
partrelDesc,
|
|
econtext,
|
|
onconfl->oc_ProjSlot,
|
|
&mtstate->ps);
|
|
|
|
/*
|
|
* If there is a WHERE clause, initialize state where it will
|
|
* be evaluated, mapping the attribute numbers appropriately.
|
|
* As with onConflictSet, we need to map partition varattnos
|
|
* to the partition's tupdesc.
|
|
*/
|
|
if (node->onConflictWhere)
|
|
{
|
|
List *clause;
|
|
|
|
clause = copyObject((List *) node->onConflictWhere);
|
|
clause = (List *)
|
|
map_variable_attnos((Node *) clause,
|
|
INNER_VAR, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
clause = (List *)
|
|
map_variable_attnos((Node *) clause,
|
|
firstVarno, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
onconfl->oc_WhereClause =
|
|
ExecInitQual((List *) clause, &mtstate->ps);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since we've just initialized this ResultRelInfo, it's not in any list
|
|
* attached to the estate as yet. Add it, so that it can be found later.
|
|
*
|
|
* Note that the entries in this list appear in no predetermined order,
|
|
* because partition result rels are initialized as and when they're
|
|
* needed.
|
|
*/
|
|
MemoryContextSwitchTo(estate->es_query_cxt);
|
|
estate->es_tuple_routing_result_relations =
|
|
lappend(estate->es_tuple_routing_result_relations,
|
|
leaf_part_rri);
|
|
|
|
/*
|
|
* Initialize information about this partition that's needed to handle
|
|
* MERGE. We take the "first" result relation's mergeActionList as
|
|
* reference and make copy for this relation, converting stuff that
|
|
* references attribute numbers to match this relation's.
|
|
*
|
|
* This duplicates much of the logic in ExecInitMerge(), so something
|
|
* changes there, look here too.
|
|
*/
|
|
if (node && node->operation == CMD_MERGE)
|
|
{
|
|
List *firstMergeActionList = linitial(node->mergeActionLists);
|
|
ListCell *lc;
|
|
ExprContext *econtext = mtstate->ps.ps_ExprContext;
|
|
Node *joinCondition;
|
|
|
|
if (part_attmap == NULL)
|
|
part_attmap =
|
|
build_attrmap_by_name(RelationGetDescr(partrel),
|
|
RelationGetDescr(firstResultRel),
|
|
false);
|
|
|
|
if (unlikely(!leaf_part_rri->ri_projectNewInfoValid))
|
|
ExecInitMergeTupleSlots(mtstate, leaf_part_rri);
|
|
|
|
/* Initialize state for join condition checking. */
|
|
joinCondition =
|
|
map_variable_attnos(linitial(node->mergeJoinConditions),
|
|
firstVarno, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
/* We ignore the value of found_whole_row. */
|
|
leaf_part_rri->ri_MergeJoinCondition =
|
|
ExecInitQual((List *) joinCondition, &mtstate->ps);
|
|
|
|
foreach(lc, firstMergeActionList)
|
|
{
|
|
/* Make a copy for this relation to be safe. */
|
|
MergeAction *action = copyObject(lfirst(lc));
|
|
MergeActionState *action_state;
|
|
|
|
/* Generate the action's state for this relation */
|
|
action_state = makeNode(MergeActionState);
|
|
action_state->mas_action = action;
|
|
|
|
/* And put the action in the appropriate list */
|
|
leaf_part_rri->ri_MergeActions[action->matchKind] =
|
|
lappend(leaf_part_rri->ri_MergeActions[action->matchKind],
|
|
action_state);
|
|
|
|
switch (action->commandType)
|
|
{
|
|
case CMD_INSERT:
|
|
|
|
/*
|
|
* ExecCheckPlanOutput() already done on the targetlist
|
|
* when "first" result relation initialized and it is same
|
|
* for all result relations.
|
|
*/
|
|
action_state->mas_proj =
|
|
ExecBuildProjectionInfo(action->targetList, econtext,
|
|
leaf_part_rri->ri_newTupleSlot,
|
|
&mtstate->ps,
|
|
RelationGetDescr(partrel));
|
|
break;
|
|
case CMD_UPDATE:
|
|
|
|
/*
|
|
* Convert updateColnos from "first" result relation
|
|
* attribute numbers to this result rel's.
|
|
*/
|
|
if (part_attmap)
|
|
action->updateColnos =
|
|
adjust_partition_colnos_using_map(action->updateColnos,
|
|
part_attmap);
|
|
action_state->mas_proj =
|
|
ExecBuildUpdateProjection(action->targetList,
|
|
true,
|
|
action->updateColnos,
|
|
RelationGetDescr(leaf_part_rri->ri_RelationDesc),
|
|
econtext,
|
|
leaf_part_rri->ri_newTupleSlot,
|
|
NULL);
|
|
break;
|
|
case CMD_DELETE:
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unknown action in MERGE WHEN clause");
|
|
}
|
|
|
|
/* found_whole_row intentionally ignored. */
|
|
action->qual =
|
|
map_variable_attnos(action->qual,
|
|
firstVarno, 0,
|
|
part_attmap,
|
|
RelationGetForm(partrel)->reltype,
|
|
&found_whole_row);
|
|
action_state->mas_whenqual =
|
|
ExecInitQual((List *) action->qual, &mtstate->ps);
|
|
}
|
|
}
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return leaf_part_rri;
|
|
}
|
|
|
|
/*
|
|
* ExecInitRoutingInfo
|
|
* Set up information needed for translating tuples between root
|
|
* partitioned table format and partition format, and keep track of it
|
|
* in PartitionTupleRouting.
|
|
*/
|
|
static void
|
|
ExecInitRoutingInfo(ModifyTableState *mtstate,
|
|
EState *estate,
|
|
PartitionTupleRouting *proute,
|
|
PartitionDispatch dispatch,
|
|
ResultRelInfo *partRelInfo,
|
|
int partidx,
|
|
bool is_borrowed_rel)
|
|
{
|
|
MemoryContext oldcxt;
|
|
int rri_index;
|
|
|
|
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
|
|
|
/*
|
|
* Set up tuple conversion between root parent and the partition if the
|
|
* two have different rowtypes. If conversion is indeed required, also
|
|
* initialize a slot dedicated to storing this partition's converted
|
|
* tuples. Various operations that are applied to tuples after routing,
|
|
* such as checking constraints, will refer to this slot.
|
|
*/
|
|
if (ExecGetRootToChildMap(partRelInfo, estate) != NULL)
|
|
{
|
|
Relation partrel = partRelInfo->ri_RelationDesc;
|
|
|
|
/*
|
|
* This pins the partition's TupleDesc, which will be released at the
|
|
* end of the command.
|
|
*/
|
|
partRelInfo->ri_PartitionTupleSlot =
|
|
table_slot_create(partrel, &estate->es_tupleTable);
|
|
}
|
|
else
|
|
partRelInfo->ri_PartitionTupleSlot = NULL;
|
|
|
|
/*
|
|
* If the partition is a foreign table, let the FDW init itself for
|
|
* routing tuples to the partition.
|
|
*/
|
|
if (partRelInfo->ri_FdwRoutine != NULL &&
|
|
partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
|
|
partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
|
|
|
|
/*
|
|
* Determine if the FDW supports batch insert and determine the batch size
|
|
* (a FDW may support batching, but it may be disabled for the
|
|
* server/table or for this particular query).
|
|
*
|
|
* If the FDW does not support batching, we set the batch size to 1.
|
|
*/
|
|
if (partRelInfo->ri_FdwRoutine != NULL &&
|
|
partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize &&
|
|
partRelInfo->ri_FdwRoutine->ExecForeignBatchInsert)
|
|
partRelInfo->ri_BatchSize =
|
|
partRelInfo->ri_FdwRoutine->GetForeignModifyBatchSize(partRelInfo);
|
|
else
|
|
partRelInfo->ri_BatchSize = 1;
|
|
|
|
Assert(partRelInfo->ri_BatchSize >= 1);
|
|
|
|
partRelInfo->ri_CopyMultiInsertBuffer = NULL;
|
|
|
|
/*
|
|
* Keep track of it in the PartitionTupleRouting->partitions array.
|
|
*/
|
|
Assert(dispatch->indexes[partidx] == -1);
|
|
|
|
rri_index = proute->num_partitions++;
|
|
|
|
/* Allocate or enlarge the array, as needed */
|
|
if (proute->num_partitions >= proute->max_partitions)
|
|
{
|
|
if (proute->max_partitions == 0)
|
|
{
|
|
proute->max_partitions = 8;
|
|
proute->partitions = (ResultRelInfo **)
|
|
palloc(sizeof(ResultRelInfo *) * proute->max_partitions);
|
|
proute->is_borrowed_rel = (bool *)
|
|
palloc(sizeof(bool) * proute->max_partitions);
|
|
}
|
|
else
|
|
{
|
|
proute->max_partitions *= 2;
|
|
proute->partitions = (ResultRelInfo **)
|
|
repalloc(proute->partitions, sizeof(ResultRelInfo *) *
|
|
proute->max_partitions);
|
|
proute->is_borrowed_rel = (bool *)
|
|
repalloc(proute->is_borrowed_rel, sizeof(bool) *
|
|
proute->max_partitions);
|
|
}
|
|
}
|
|
|
|
proute->partitions[rri_index] = partRelInfo;
|
|
proute->is_borrowed_rel[rri_index] = is_borrowed_rel;
|
|
dispatch->indexes[partidx] = rri_index;
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
}
|
|
|
|
/*
|
|
* ExecInitPartitionDispatchInfo
|
|
* Lock the partitioned table (if not locked already) and initialize
|
|
* PartitionDispatch for a partitioned table and store it in the next
|
|
* available slot in the proute->partition_dispatch_info array. Also,
|
|
* record the index into this array in the parent_pd->indexes[] array in
|
|
* the partidx element so that we can properly retrieve the newly created
|
|
* PartitionDispatch later.
|
|
*/
|
|
static PartitionDispatch
|
|
ExecInitPartitionDispatchInfo(EState *estate,
|
|
PartitionTupleRouting *proute, Oid partoid,
|
|
PartitionDispatch parent_pd, int partidx,
|
|
ResultRelInfo *rootResultRelInfo)
|
|
{
|
|
Relation rel;
|
|
PartitionDesc partdesc;
|
|
PartitionDispatch pd;
|
|
int dispatchidx;
|
|
MemoryContext oldcxt;
|
|
|
|
/*
|
|
* For data modification, it is better that executor does not include
|
|
* partitions being detached, except when running in snapshot-isolation
|
|
* mode. This means that a read-committed transaction immediately gets a
|
|
* "no partition for tuple" error when a tuple is inserted into a
|
|
* partition that's being detached concurrently, but a transaction in
|
|
* repeatable-read mode can still use such a partition.
|
|
*/
|
|
if (estate->es_partition_directory == NULL)
|
|
estate->es_partition_directory =
|
|
CreatePartitionDirectory(estate->es_query_cxt,
|
|
!IsolationUsesXactSnapshot());
|
|
|
|
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
|
|
|
/*
|
|
* Only sub-partitioned tables need to be locked here. The root
|
|
* partitioned table will already have been locked as it's referenced in
|
|
* the query's rtable.
|
|
*/
|
|
if (partoid != RelationGetRelid(proute->partition_root))
|
|
rel = table_open(partoid, RowExclusiveLock);
|
|
else
|
|
rel = proute->partition_root;
|
|
partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
|
|
|
|
pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
|
|
partdesc->nparts * sizeof(int));
|
|
pd->reldesc = rel;
|
|
pd->key = RelationGetPartitionKey(rel);
|
|
pd->keystate = NIL;
|
|
pd->partdesc = partdesc;
|
|
if (parent_pd != NULL)
|
|
{
|
|
TupleDesc tupdesc = RelationGetDescr(rel);
|
|
|
|
/*
|
|
* For sub-partitioned tables where the column order differs from its
|
|
* direct parent partitioned table, we must store a tuple table slot
|
|
* initialized with its tuple descriptor and a tuple conversion map to
|
|
* convert a tuple from its parent's rowtype to its own. This is to
|
|
* make sure that we are looking at the correct row using the correct
|
|
* tuple descriptor when computing its partition key for tuple
|
|
* routing.
|
|
*/
|
|
pd->tupmap = build_attrmap_by_name_if_req(RelationGetDescr(parent_pd->reldesc),
|
|
tupdesc,
|
|
false);
|
|
pd->tupslot = pd->tupmap ?
|
|
MakeSingleTupleTableSlot(tupdesc, &TTSOpsVirtual) : NULL;
|
|
}
|
|
else
|
|
{
|
|
/* Not required for the root partitioned table */
|
|
pd->tupmap = NULL;
|
|
pd->tupslot = NULL;
|
|
}
|
|
|
|
/*
|
|
* Initialize with -1 to signify that the corresponding partition's
|
|
* ResultRelInfo or PartitionDispatch has not been created yet.
|
|
*/
|
|
memset(pd->indexes, -1, sizeof(int) * partdesc->nparts);
|
|
|
|
/* Track in PartitionTupleRouting for later use */
|
|
dispatchidx = proute->num_dispatch++;
|
|
|
|
/* Allocate or enlarge the array, as needed */
|
|
if (proute->num_dispatch >= proute->max_dispatch)
|
|
{
|
|
if (proute->max_dispatch == 0)
|
|
{
|
|
proute->max_dispatch = 4;
|
|
proute->partition_dispatch_info = (PartitionDispatch *)
|
|
palloc(sizeof(PartitionDispatch) * proute->max_dispatch);
|
|
proute->nonleaf_partitions = (ResultRelInfo **)
|
|
palloc(sizeof(ResultRelInfo *) * proute->max_dispatch);
|
|
}
|
|
else
|
|
{
|
|
proute->max_dispatch *= 2;
|
|
proute->partition_dispatch_info = (PartitionDispatch *)
|
|
repalloc(proute->partition_dispatch_info,
|
|
sizeof(PartitionDispatch) * proute->max_dispatch);
|
|
proute->nonleaf_partitions = (ResultRelInfo **)
|
|
repalloc(proute->nonleaf_partitions,
|
|
sizeof(ResultRelInfo *) * proute->max_dispatch);
|
|
}
|
|
}
|
|
proute->partition_dispatch_info[dispatchidx] = pd;
|
|
|
|
/*
|
|
* If setting up a PartitionDispatch for a sub-partitioned table, we may
|
|
* also need a minimally valid ResultRelInfo for checking the partition
|
|
* constraint later; set that up now.
|
|
*/
|
|
if (parent_pd)
|
|
{
|
|
ResultRelInfo *rri = makeNode(ResultRelInfo);
|
|
|
|
InitResultRelInfo(rri, rel, 0, rootResultRelInfo, 0);
|
|
proute->nonleaf_partitions[dispatchidx] = rri;
|
|
}
|
|
else
|
|
proute->nonleaf_partitions[dispatchidx] = NULL;
|
|
|
|
/*
|
|
* Finally, if setting up a PartitionDispatch for a sub-partitioned table,
|
|
* install a downlink in the parent to allow quick descent.
|
|
*/
|
|
if (parent_pd)
|
|
{
|
|
Assert(parent_pd->indexes[partidx] == -1);
|
|
parent_pd->indexes[partidx] = dispatchidx;
|
|
}
|
|
|
|
MemoryContextSwitchTo(oldcxt);
|
|
|
|
return pd;
|
|
}
|
|
|
|
/*
|
|
* ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
|
|
* routing.
|
|
*
|
|
* Close all the partitioned tables, leaf partitions, and their indices.
|
|
*/
|
|
void
|
|
ExecCleanupTupleRouting(ModifyTableState *mtstate,
|
|
PartitionTupleRouting *proute)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Remember, proute->partition_dispatch_info[0] corresponds to the root
|
|
* partitioned table, which we must not try to close, because it is the
|
|
* main target table of the query that will be closed by callers such as
|
|
* ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
|
|
* partitioned table.
|
|
*/
|
|
for (i = 1; i < proute->num_dispatch; i++)
|
|
{
|
|
PartitionDispatch pd = proute->partition_dispatch_info[i];
|
|
|
|
table_close(pd->reldesc, NoLock);
|
|
|
|
if (pd->tupslot)
|
|
ExecDropSingleTupleTableSlot(pd->tupslot);
|
|
}
|
|
|
|
for (i = 0; i < proute->num_partitions; i++)
|
|
{
|
|
ResultRelInfo *resultRelInfo = proute->partitions[i];
|
|
|
|
/* Allow any FDWs to shut down */
|
|
if (resultRelInfo->ri_FdwRoutine != NULL &&
|
|
resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
|
|
resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
|
|
resultRelInfo);
|
|
|
|
/*
|
|
* Close it if it's not one of the result relations borrowed from the
|
|
* owning ModifyTableState; those will be closed by ExecEndPlan().
|
|
*/
|
|
if (proute->is_borrowed_rel[i])
|
|
continue;
|
|
|
|
ExecCloseIndices(resultRelInfo);
|
|
table_close(resultRelInfo->ri_RelationDesc, NoLock);
|
|
}
|
|
}
|
|
|
|
/* ----------------
|
|
* FormPartitionKeyDatum
|
|
* Construct values[] and isnull[] arrays for the partition key
|
|
* of a tuple.
|
|
*
|
|
* pd Partition dispatch object of the partitioned table
|
|
* slot Heap tuple from which to extract partition key
|
|
* estate executor state for evaluating any partition key
|
|
* expressions (must be non-NULL)
|
|
* values Array of partition key Datums (output area)
|
|
* isnull Array of is-null indicators (output area)
|
|
*
|
|
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
|
|
* the heap tuple passed in.
|
|
* ----------------
|
|
*/
|
|
static void
|
|
FormPartitionKeyDatum(PartitionDispatch pd,
|
|
TupleTableSlot *slot,
|
|
EState *estate,
|
|
Datum *values,
|
|
bool *isnull)
|
|
{
|
|
ListCell *partexpr_item;
|
|
int i;
|
|
|
|
if (pd->key->partexprs != NIL && pd->keystate == NIL)
|
|
{
|
|
/* Check caller has set up context correctly */
|
|
Assert(estate != NULL &&
|
|
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
|
|
|
|
/* First time through, set up expression evaluation state */
|
|
pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
|
|
}
|
|
|
|
partexpr_item = list_head(pd->keystate);
|
|
for (i = 0; i < pd->key->partnatts; i++)
|
|
{
|
|
AttrNumber keycol = pd->key->partattrs[i];
|
|
Datum datum;
|
|
bool isNull;
|
|
|
|
if (keycol != 0)
|
|
{
|
|
/* Plain column; get the value directly from the heap tuple */
|
|
datum = slot_getattr(slot, keycol, &isNull);
|
|
}
|
|
else
|
|
{
|
|
/* Expression; need to evaluate it */
|
|
if (partexpr_item == NULL)
|
|
elog(ERROR, "wrong number of partition key expressions");
|
|
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
|
|
GetPerTupleExprContext(estate),
|
|
&isNull);
|
|
partexpr_item = lnext(pd->keystate, partexpr_item);
|
|
}
|
|
values[i] = datum;
|
|
isnull[i] = isNull;
|
|
}
|
|
|
|
if (partexpr_item != NULL)
|
|
elog(ERROR, "wrong number of partition key expressions");
|
|
}
|
|
|
|
/*
|
|
* The number of times the same partition must be found in a row before we
|
|
* switch from a binary search for the given values to just checking if the
|
|
* values belong to the last found partition. This must be above 0.
|
|
*/
|
|
#define PARTITION_CACHED_FIND_THRESHOLD 16
|
|
|
|
/*
|
|
* get_partition_for_tuple
|
|
* Finds partition of relation which accepts the partition key specified
|
|
* in values and isnull.
|
|
*
|
|
* Calling this function can be quite expensive when LIST and RANGE
|
|
* partitioned tables have many partitions. This is due to the binary search
|
|
* that's done to find the correct partition. Many of the use cases for LIST
|
|
* and RANGE partitioned tables make it likely that the same partition is
|
|
* found in subsequent ExecFindPartition() calls. This is especially true for
|
|
* cases such as RANGE partitioned tables on a TIMESTAMP column where the
|
|
* partition key is the current time. When asked to find a partition for a
|
|
* RANGE or LIST partitioned table, we record the partition index and datum
|
|
* offset we've found for the given 'values' in the PartitionDesc (which is
|
|
* stored in relcache), and if we keep finding the same partition
|
|
* PARTITION_CACHED_FIND_THRESHOLD times in a row, then we'll enable caching
|
|
* logic and instead of performing a binary search to find the correct
|
|
* partition, we'll just double-check that 'values' still belong to the last
|
|
* found partition, and if so, we'll return that partition index, thus
|
|
* skipping the need for the binary search. If we fail to match the last
|
|
* partition when double checking, then we fall back on doing a binary search.
|
|
* In this case, unless we find 'values' belong to the DEFAULT partition,
|
|
* we'll reset the number of times we've hit the same partition so that we
|
|
* don't attempt to use the cache again until we've found that partition at
|
|
* least PARTITION_CACHED_FIND_THRESHOLD times in a row.
|
|
*
|
|
* For cases where the partition changes on each lookup, the amount of
|
|
* additional work required just amounts to recording the last found partition
|
|
* and bound offset then resetting the found counter. This is cheap and does
|
|
* not appear to cause any meaningful slowdowns for such cases.
|
|
*
|
|
* No caching of partitions is done when the last found partition is the
|
|
* DEFAULT or NULL partition. For the case of the DEFAULT partition, there
|
|
* is no bound offset storing the matching datum, so we cannot confirm the
|
|
* indexes match. For the NULL partition, this is just so cheap, there's no
|
|
* sense in caching.
|
|
*
|
|
* Return value is index of the partition (>= 0 and < partdesc->nparts) if one
|
|
* found or -1 if none found.
|
|
*/
|
|
static int
|
|
get_partition_for_tuple(PartitionDispatch pd, Datum *values, bool *isnull)
|
|
{
|
|
int bound_offset = -1;
|
|
int part_index = -1;
|
|
PartitionKey key = pd->key;
|
|
PartitionDesc partdesc = pd->partdesc;
|
|
PartitionBoundInfo boundinfo = partdesc->boundinfo;
|
|
|
|
/*
|
|
* In the switch statement below, when we perform a cached lookup for
|
|
* RANGE and LIST partitioned tables, if we find that the last found
|
|
* partition matches the 'values', we return the partition index right
|
|
* away. We do this instead of breaking out of the switch as we don't
|
|
* want to execute the code about the DEFAULT partition or do any updates
|
|
* for any of the cache-related fields. That would be a waste of effort
|
|
* as we already know it's not the DEFAULT partition and have no need to
|
|
* increment the number of times we found the same partition any higher
|
|
* than PARTITION_CACHED_FIND_THRESHOLD.
|
|
*/
|
|
|
|
/* Route as appropriate based on partitioning strategy. */
|
|
switch (key->strategy)
|
|
{
|
|
case PARTITION_STRATEGY_HASH:
|
|
{
|
|
uint64 rowHash;
|
|
|
|
/* hash partitioning is too cheap to bother caching */
|
|
rowHash = compute_partition_hash_value(key->partnatts,
|
|
key->partsupfunc,
|
|
key->partcollation,
|
|
values, isnull);
|
|
|
|
/*
|
|
* HASH partitions can't have a DEFAULT partition and we don't
|
|
* do any caching work for them, so just return the part index
|
|
*/
|
|
return boundinfo->indexes[rowHash % boundinfo->nindexes];
|
|
}
|
|
|
|
case PARTITION_STRATEGY_LIST:
|
|
if (isnull[0])
|
|
{
|
|
/* this is far too cheap to bother doing any caching */
|
|
if (partition_bound_accepts_nulls(boundinfo))
|
|
{
|
|
/*
|
|
* When there is a NULL partition we just return that
|
|
* directly. We don't have a bound_offset so it's not
|
|
* valid to drop into the code after the switch which
|
|
* checks and updates the cache fields. We perhaps should
|
|
* be invalidating the details of the last cached
|
|
* partition but there's no real need to. Keeping those
|
|
* fields set gives a chance at matching to the cached
|
|
* partition on the next lookup.
|
|
*/
|
|
return boundinfo->null_index;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
bool equal;
|
|
|
|
if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
|
|
{
|
|
int last_datum_offset = partdesc->last_found_datum_index;
|
|
Datum lastDatum = boundinfo->datums[last_datum_offset][0];
|
|
int32 cmpval;
|
|
|
|
/* does the last found datum index match this datum? */
|
|
cmpval = DatumGetInt32(FunctionCall2Coll(&key->partsupfunc[0],
|
|
key->partcollation[0],
|
|
lastDatum,
|
|
values[0]));
|
|
|
|
if (cmpval == 0)
|
|
return boundinfo->indexes[last_datum_offset];
|
|
|
|
/* fall-through and do a manual lookup */
|
|
}
|
|
|
|
bound_offset = partition_list_bsearch(key->partsupfunc,
|
|
key->partcollation,
|
|
boundinfo,
|
|
values[0], &equal);
|
|
if (bound_offset >= 0 && equal)
|
|
part_index = boundinfo->indexes[bound_offset];
|
|
}
|
|
break;
|
|
|
|
case PARTITION_STRATEGY_RANGE:
|
|
{
|
|
bool equal = false,
|
|
range_partkey_has_null = false;
|
|
int i;
|
|
|
|
/*
|
|
* No range includes NULL, so this will be accepted by the
|
|
* default partition if there is one, and otherwise rejected.
|
|
*/
|
|
for (i = 0; i < key->partnatts; i++)
|
|
{
|
|
if (isnull[i])
|
|
{
|
|
range_partkey_has_null = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* NULLs belong in the DEFAULT partition */
|
|
if (range_partkey_has_null)
|
|
break;
|
|
|
|
if (partdesc->last_found_count >= PARTITION_CACHED_FIND_THRESHOLD)
|
|
{
|
|
int last_datum_offset = partdesc->last_found_datum_index;
|
|
Datum *lastDatums = boundinfo->datums[last_datum_offset];
|
|
PartitionRangeDatumKind *kind = boundinfo->kind[last_datum_offset];
|
|
int32 cmpval;
|
|
|
|
/* check if the value is >= to the lower bound */
|
|
cmpval = partition_rbound_datum_cmp(key->partsupfunc,
|
|
key->partcollation,
|
|
lastDatums,
|
|
kind,
|
|
values,
|
|
key->partnatts);
|
|
|
|
/*
|
|
* If it's equal to the lower bound then no need to check
|
|
* the upper bound.
|
|
*/
|
|
if (cmpval == 0)
|
|
return boundinfo->indexes[last_datum_offset + 1];
|
|
|
|
if (cmpval < 0 && last_datum_offset + 1 < boundinfo->ndatums)
|
|
{
|
|
/* check if the value is below the upper bound */
|
|
lastDatums = boundinfo->datums[last_datum_offset + 1];
|
|
kind = boundinfo->kind[last_datum_offset + 1];
|
|
cmpval = partition_rbound_datum_cmp(key->partsupfunc,
|
|
key->partcollation,
|
|
lastDatums,
|
|
kind,
|
|
values,
|
|
key->partnatts);
|
|
|
|
if (cmpval > 0)
|
|
return boundinfo->indexes[last_datum_offset + 1];
|
|
}
|
|
/* fall-through and do a manual lookup */
|
|
}
|
|
|
|
bound_offset = partition_range_datum_bsearch(key->partsupfunc,
|
|
key->partcollation,
|
|
boundinfo,
|
|
key->partnatts,
|
|
values,
|
|
&equal);
|
|
|
|
/*
|
|
* The bound at bound_offset is less than or equal to the
|
|
* tuple value, so the bound at offset+1 is the upper bound of
|
|
* the partition we're looking for, if there actually exists
|
|
* one.
|
|
*/
|
|
part_index = boundinfo->indexes[bound_offset + 1];
|
|
}
|
|
break;
|
|
|
|
default:
|
|
elog(ERROR, "unexpected partition strategy: %d",
|
|
(int) key->strategy);
|
|
}
|
|
|
|
/*
|
|
* part_index < 0 means we failed to find a partition of this parent. Use
|
|
* the default partition, if there is one.
|
|
*/
|
|
if (part_index < 0)
|
|
{
|
|
/*
|
|
* No need to reset the cache fields here. The next set of values
|
|
* might end up belonging to the cached partition, so leaving the
|
|
* cache alone improves the chances of a cache hit on the next lookup.
|
|
*/
|
|
return boundinfo->default_index;
|
|
}
|
|
|
|
/* we should only make it here when the code above set bound_offset */
|
|
Assert(bound_offset >= 0);
|
|
|
|
/*
|
|
* Attend to the cache fields. If the bound_offset matches the last
|
|
* cached bound offset then we've found the same partition as last time,
|
|
* so bump the count by one. If all goes well, we'll eventually reach
|
|
* PARTITION_CACHED_FIND_THRESHOLD and try the cache path next time
|
|
* around. Otherwise, we'll reset the cache count back to 1 to mark that
|
|
* we've found this partition for the first time.
|
|
*/
|
|
if (bound_offset == partdesc->last_found_datum_index)
|
|
partdesc->last_found_count++;
|
|
else
|
|
{
|
|
partdesc->last_found_count = 1;
|
|
partdesc->last_found_part_index = part_index;
|
|
partdesc->last_found_datum_index = bound_offset;
|
|
}
|
|
|
|
return part_index;
|
|
}
|
|
|
|
/*
|
|
* ExecBuildSlotPartitionKeyDescription
|
|
*
|
|
* This works very much like BuildIndexValueDescription() and is currently
|
|
* used for building error messages when ExecFindPartition() fails to find
|
|
* partition for a row.
|
|
*/
|
|
static char *
|
|
ExecBuildSlotPartitionKeyDescription(Relation rel,
|
|
Datum *values,
|
|
bool *isnull,
|
|
int maxfieldlen)
|
|
{
|
|
StringInfoData buf;
|
|
PartitionKey key = RelationGetPartitionKey(rel);
|
|
int partnatts = get_partition_natts(key);
|
|
int i;
|
|
Oid relid = RelationGetRelid(rel);
|
|
AclResult aclresult;
|
|
|
|
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
|
|
return NULL;
|
|
|
|
/* If the user has table-level access, just go build the description. */
|
|
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
|
|
if (aclresult != ACLCHECK_OK)
|
|
{
|
|
/*
|
|
* Step through the columns of the partition key and make sure the
|
|
* user has SELECT rights on all of them.
|
|
*/
|
|
for (i = 0; i < partnatts; i++)
|
|
{
|
|
AttrNumber attnum = get_partition_col_attnum(key, i);
|
|
|
|
/*
|
|
* If this partition key column is an expression, we return no
|
|
* detail rather than try to figure out what column(s) the
|
|
* expression includes and if the user has SELECT rights on them.
|
|
*/
|
|
if (attnum == InvalidAttrNumber ||
|
|
pg_attribute_aclcheck(relid, attnum, GetUserId(),
|
|
ACL_SELECT) != ACLCHECK_OK)
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
initStringInfo(&buf);
|
|
appendStringInfo(&buf, "(%s) = (",
|
|
pg_get_partkeydef_columns(relid, true));
|
|
|
|
for (i = 0; i < partnatts; i++)
|
|
{
|
|
char *val;
|
|
int vallen;
|
|
|
|
if (isnull[i])
|
|
val = "null";
|
|
else
|
|
{
|
|
Oid foutoid;
|
|
bool typisvarlena;
|
|
|
|
getTypeOutputInfo(get_partition_col_typid(key, i),
|
|
&foutoid, &typisvarlena);
|
|
val = OidOutputFunctionCall(foutoid, values[i]);
|
|
}
|
|
|
|
if (i > 0)
|
|
appendStringInfoString(&buf, ", ");
|
|
|
|
/* truncate if needed */
|
|
vallen = strlen(val);
|
|
if (vallen <= maxfieldlen)
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
else
|
|
{
|
|
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
|
|
appendBinaryStringInfo(&buf, val, vallen);
|
|
appendStringInfoString(&buf, "...");
|
|
}
|
|
}
|
|
|
|
appendStringInfoChar(&buf, ')');
|
|
|
|
return buf.data;
|
|
}
|
|
|
|
/*
|
|
* adjust_partition_colnos
|
|
* Adjust the list of UPDATE target column numbers to account for
|
|
* attribute differences between the parent and the partition.
|
|
*
|
|
* Note: mustn't be called if no adjustment is required.
|
|
*/
|
|
static List *
|
|
adjust_partition_colnos(List *colnos, ResultRelInfo *leaf_part_rri)
|
|
{
|
|
TupleConversionMap *map = ExecGetChildToRootMap(leaf_part_rri);
|
|
|
|
Assert(map != NULL);
|
|
|
|
return adjust_partition_colnos_using_map(colnos, map->attrMap);
|
|
}
|
|
|
|
/*
|
|
* adjust_partition_colnos_using_map
|
|
* Like adjust_partition_colnos, but uses a caller-supplied map instead
|
|
* of assuming to map from the "root" result relation.
|
|
*
|
|
* Note: mustn't be called if no adjustment is required.
|
|
*/
|
|
static List *
|
|
adjust_partition_colnos_using_map(List *colnos, AttrMap *attrMap)
|
|
{
|
|
List *new_colnos = NIL;
|
|
ListCell *lc;
|
|
|
|
Assert(attrMap != NULL); /* else we shouldn't be here */
|
|
|
|
foreach(lc, colnos)
|
|
{
|
|
AttrNumber parentattrno = lfirst_int(lc);
|
|
|
|
if (parentattrno <= 0 ||
|
|
parentattrno > attrMap->maplen ||
|
|
attrMap->attnums[parentattrno - 1] == 0)
|
|
elog(ERROR, "unexpected attno %d in target column list",
|
|
parentattrno);
|
|
new_colnos = lappend_int(new_colnos,
|
|
attrMap->attnums[parentattrno - 1]);
|
|
}
|
|
|
|
return new_colnos;
|
|
}
|
|
|
|
/*-------------------------------------------------------------------------
|
|
* Run-Time Partition Pruning Support.
|
|
*
|
|
* The following series of functions exist to support the removal of unneeded
|
|
* subplans for queries against partitioned tables. The supporting functions
|
|
* here are designed to work with any plan type which supports an arbitrary
|
|
* number of subplans, e.g. Append, MergeAppend.
|
|
*
|
|
* When pruning involves comparison of a partition key to a constant, it's
|
|
* done by the planner. However, if we have a comparison to a non-constant
|
|
* but not volatile expression, that presents an opportunity for run-time
|
|
* pruning by the executor, allowing irrelevant partitions to be skipped
|
|
* dynamically.
|
|
*
|
|
* We must distinguish expressions containing PARAM_EXEC Params from
|
|
* expressions that don't contain those. Even though a PARAM_EXEC Param is
|
|
* considered to be a stable expression, it can change value from one plan
|
|
* node scan to the next during query execution. Stable comparison
|
|
* expressions that don't involve such Params allow partition pruning to be
|
|
* done once during executor startup. Expressions that do involve such Params
|
|
* require us to prune separately for each scan of the parent plan node.
|
|
*
|
|
* Note that pruning away unneeded subplans during executor startup has the
|
|
* added benefit of not having to initialize the unneeded subplans at all.
|
|
*
|
|
*
|
|
* Functions:
|
|
*
|
|
* ExecInitPartitionPruning:
|
|
* Creates the PartitionPruneState required by ExecFindMatchingSubPlans.
|
|
* Details stored include how to map the partition index returned by the
|
|
* partition pruning code into subplan indexes. Also determines the set
|
|
* of subplans to initialize considering the result of performing initial
|
|
* pruning steps if any. Maps in PartitionPruneState are updated to
|
|
* account for initial pruning possibly having eliminated some of the
|
|
* subplans.
|
|
*
|
|
* ExecFindMatchingSubPlans:
|
|
* Returns indexes of matching subplans after evaluating the expressions
|
|
* that are safe to evaluate at a given point. This function is first
|
|
* called during ExecInitPartitionPruning() to find the initially
|
|
* matching subplans based on performing the initial pruning steps and
|
|
* then must be called again each time the value of a Param listed in
|
|
* PartitionPruneState's 'execparamids' changes.
|
|
*-------------------------------------------------------------------------
|
|
*/
|
|
|
|
/*
|
|
* ExecInitPartitionPruning
|
|
* Initialize data structure needed for run-time partition pruning and
|
|
* do initial pruning if needed
|
|
*
|
|
* On return, *initially_valid_subplans is assigned the set of indexes of
|
|
* child subplans that must be initialized along with the parent plan node.
|
|
* Initial pruning is performed here if needed and in that case only the
|
|
* surviving subplans' indexes are added.
|
|
*
|
|
* If subplans are indeed pruned, subplan_map arrays contained in the returned
|
|
* PartitionPruneState are re-sequenced to not count those, though only if the
|
|
* maps will be needed for subsequent execution pruning passes.
|
|
*/
|
|
PartitionPruneState *
|
|
ExecInitPartitionPruning(PlanState *planstate,
|
|
int n_total_subplans,
|
|
PartitionPruneInfo *pruneinfo,
|
|
Bitmapset **initially_valid_subplans)
|
|
{
|
|
PartitionPruneState *prunestate;
|
|
EState *estate = planstate->state;
|
|
|
|
/* We may need an expression context to evaluate partition exprs */
|
|
ExecAssignExprContext(estate, planstate);
|
|
|
|
/* Create the working data structure for pruning */
|
|
prunestate = CreatePartitionPruneState(planstate, pruneinfo);
|
|
|
|
/*
|
|
* Perform an initial partition prune pass, if required.
|
|
*/
|
|
if (prunestate->do_initial_prune)
|
|
*initially_valid_subplans = ExecFindMatchingSubPlans(prunestate, true);
|
|
else
|
|
{
|
|
/* No pruning, so we'll need to initialize all subplans */
|
|
Assert(n_total_subplans > 0);
|
|
*initially_valid_subplans = bms_add_range(NULL, 0,
|
|
n_total_subplans - 1);
|
|
}
|
|
|
|
/*
|
|
* Re-sequence subplan indexes contained in prunestate to account for any
|
|
* that were removed above due to initial pruning. No need to do this if
|
|
* no steps were removed.
|
|
*/
|
|
if (bms_num_members(*initially_valid_subplans) < n_total_subplans)
|
|
{
|
|
/*
|
|
* We can safely skip this when !do_exec_prune, even though that
|
|
* leaves invalid data in prunestate, because that data won't be
|
|
* consulted again (cf initial Assert in ExecFindMatchingSubPlans).
|
|
*/
|
|
if (prunestate->do_exec_prune)
|
|
PartitionPruneFixSubPlanMap(prunestate,
|
|
*initially_valid_subplans,
|
|
n_total_subplans);
|
|
}
|
|
|
|
return prunestate;
|
|
}
|
|
|
|
/*
|
|
* CreatePartitionPruneState
|
|
* Build the data structure required for calling ExecFindMatchingSubPlans
|
|
*
|
|
* 'planstate' is the parent plan node's execution state.
|
|
*
|
|
* 'pruneinfo' is a PartitionPruneInfo as generated by
|
|
* make_partition_pruneinfo. Here we build a PartitionPruneState containing a
|
|
* PartitionPruningData for each partitioning hierarchy (i.e., each sublist of
|
|
* pruneinfo->prune_infos), each of which contains a PartitionedRelPruningData
|
|
* for each PartitionedRelPruneInfo appearing in that sublist. This two-level
|
|
* system is needed to keep from confusing the different hierarchies when a
|
|
* UNION ALL contains multiple partitioned tables as children. The data
|
|
* stored in each PartitionedRelPruningData can be re-used each time we
|
|
* re-evaluate which partitions match the pruning steps provided in each
|
|
* PartitionedRelPruneInfo.
|
|
*/
|
|
static PartitionPruneState *
|
|
CreatePartitionPruneState(PlanState *planstate, PartitionPruneInfo *pruneinfo)
|
|
{
|
|
EState *estate = planstate->state;
|
|
PartitionPruneState *prunestate;
|
|
int n_part_hierarchies;
|
|
ListCell *lc;
|
|
int i;
|
|
ExprContext *econtext = planstate->ps_ExprContext;
|
|
|
|
/* For data reading, executor always omits detached partitions */
|
|
if (estate->es_partition_directory == NULL)
|
|
estate->es_partition_directory =
|
|
CreatePartitionDirectory(estate->es_query_cxt, false);
|
|
|
|
n_part_hierarchies = list_length(pruneinfo->prune_infos);
|
|
Assert(n_part_hierarchies > 0);
|
|
|
|
/*
|
|
* Allocate the data structure
|
|
*/
|
|
prunestate = (PartitionPruneState *)
|
|
palloc(offsetof(PartitionPruneState, partprunedata) +
|
|
sizeof(PartitionPruningData *) * n_part_hierarchies);
|
|
|
|
prunestate->execparamids = NULL;
|
|
/* other_subplans can change at runtime, so we need our own copy */
|
|
prunestate->other_subplans = bms_copy(pruneinfo->other_subplans);
|
|
prunestate->do_initial_prune = false; /* may be set below */
|
|
prunestate->do_exec_prune = false; /* may be set below */
|
|
prunestate->num_partprunedata = n_part_hierarchies;
|
|
|
|
/*
|
|
* Create a short-term memory context which we'll use when making calls to
|
|
* the partition pruning functions. This avoids possible memory leaks,
|
|
* since the pruning functions call comparison functions that aren't under
|
|
* our control.
|
|
*/
|
|
prunestate->prune_context =
|
|
AllocSetContextCreate(CurrentMemoryContext,
|
|
"Partition Prune",
|
|
ALLOCSET_DEFAULT_SIZES);
|
|
|
|
i = 0;
|
|
foreach(lc, pruneinfo->prune_infos)
|
|
{
|
|
List *partrelpruneinfos = lfirst_node(List, lc);
|
|
int npartrelpruneinfos = list_length(partrelpruneinfos);
|
|
PartitionPruningData *prunedata;
|
|
ListCell *lc2;
|
|
int j;
|
|
|
|
prunedata = (PartitionPruningData *)
|
|
palloc(offsetof(PartitionPruningData, partrelprunedata) +
|
|
npartrelpruneinfos * sizeof(PartitionedRelPruningData));
|
|
prunestate->partprunedata[i] = prunedata;
|
|
prunedata->num_partrelprunedata = npartrelpruneinfos;
|
|
|
|
j = 0;
|
|
foreach(lc2, partrelpruneinfos)
|
|
{
|
|
PartitionedRelPruneInfo *pinfo = lfirst_node(PartitionedRelPruneInfo, lc2);
|
|
PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
|
|
Relation partrel;
|
|
PartitionDesc partdesc;
|
|
PartitionKey partkey;
|
|
|
|
/*
|
|
* We can rely on the copies of the partitioned table's partition
|
|
* key and partition descriptor appearing in its relcache entry,
|
|
* because that entry will be held open and locked for the
|
|
* duration of this executor run.
|
|
*/
|
|
partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex);
|
|
partkey = RelationGetPartitionKey(partrel);
|
|
partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
|
|
partrel);
|
|
|
|
/*
|
|
* Initialize the subplan_map and subpart_map.
|
|
*
|
|
* Because we request detached partitions to be included, and
|
|
* detaching waits for old transactions, it is safe to assume that
|
|
* no partitions have disappeared since this query was planned.
|
|
*
|
|
* However, new partitions may have been added.
|
|
*/
|
|
Assert(partdesc->nparts >= pinfo->nparts);
|
|
pprune->nparts = partdesc->nparts;
|
|
pprune->subplan_map = palloc(sizeof(int) * partdesc->nparts);
|
|
if (partdesc->nparts == pinfo->nparts)
|
|
{
|
|
/*
|
|
* There are no new partitions, so this is simple. We can
|
|
* simply point to the subpart_map from the plan, but we must
|
|
* copy the subplan_map since we may change it later.
|
|
*/
|
|
pprune->subpart_map = pinfo->subpart_map;
|
|
memcpy(pprune->subplan_map, pinfo->subplan_map,
|
|
sizeof(int) * pinfo->nparts);
|
|
|
|
/*
|
|
* Double-check that the list of unpruned relations has not
|
|
* changed. (Pruned partitions are not in relid_map[].)
|
|
*/
|
|
#ifdef USE_ASSERT_CHECKING
|
|
for (int k = 0; k < pinfo->nparts; k++)
|
|
{
|
|
Assert(partdesc->oids[k] == pinfo->relid_map[k] ||
|
|
pinfo->subplan_map[k] == -1);
|
|
}
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
int pd_idx = 0;
|
|
int pp_idx;
|
|
|
|
/*
|
|
* Some new partitions have appeared since plan time, and
|
|
* those are reflected in our PartitionDesc but were not
|
|
* present in the one used to construct subplan_map and
|
|
* subpart_map. So we must construct new and longer arrays
|
|
* where the partitions that were originally present map to
|
|
* the same sub-structures, and any added partitions map to
|
|
* -1, as if the new partitions had been pruned.
|
|
*
|
|
* Note: pinfo->relid_map[] may contain InvalidOid entries for
|
|
* partitions pruned by the planner. We cannot tell exactly
|
|
* which of the partdesc entries these correspond to, but we
|
|
* don't have to; just skip over them. The non-pruned
|
|
* relid_map entries, however, had better be a subset of the
|
|
* partdesc entries and in the same order.
|
|
*/
|
|
pprune->subpart_map = palloc(sizeof(int) * partdesc->nparts);
|
|
for (pp_idx = 0; pp_idx < partdesc->nparts; pp_idx++)
|
|
{
|
|
/* Skip any InvalidOid relid_map entries */
|
|
while (pd_idx < pinfo->nparts &&
|
|
!OidIsValid(pinfo->relid_map[pd_idx]))
|
|
pd_idx++;
|
|
|
|
if (pd_idx < pinfo->nparts &&
|
|
pinfo->relid_map[pd_idx] == partdesc->oids[pp_idx])
|
|
{
|
|
/* match... */
|
|
pprune->subplan_map[pp_idx] =
|
|
pinfo->subplan_map[pd_idx];
|
|
pprune->subpart_map[pp_idx] =
|
|
pinfo->subpart_map[pd_idx];
|
|
pd_idx++;
|
|
}
|
|
else
|
|
{
|
|
/* this partdesc entry is not in the plan */
|
|
pprune->subplan_map[pp_idx] = -1;
|
|
pprune->subpart_map[pp_idx] = -1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It might seem that we need to skip any trailing InvalidOid
|
|
* entries in pinfo->relid_map before checking that we scanned
|
|
* all of the relid_map. But we will have skipped them above,
|
|
* because they must correspond to some partdesc->oids
|
|
* entries; we just couldn't tell which.
|
|
*/
|
|
if (pd_idx != pinfo->nparts)
|
|
elog(ERROR, "could not match partition child tables to plan elements");
|
|
}
|
|
|
|
/* present_parts is also subject to later modification */
|
|
pprune->present_parts = bms_copy(pinfo->present_parts);
|
|
|
|
/*
|
|
* Initialize pruning contexts as needed. Note that we must skip
|
|
* execution-time partition pruning in EXPLAIN (GENERIC_PLAN),
|
|
* since parameter values may be missing.
|
|
*/
|
|
pprune->initial_pruning_steps = pinfo->initial_pruning_steps;
|
|
if (pinfo->initial_pruning_steps &&
|
|
!(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
|
|
{
|
|
InitPartitionPruneContext(&pprune->initial_context,
|
|
pinfo->initial_pruning_steps,
|
|
partdesc, partkey, planstate,
|
|
econtext);
|
|
/* Record whether initial pruning is needed at any level */
|
|
prunestate->do_initial_prune = true;
|
|
}
|
|
pprune->exec_pruning_steps = pinfo->exec_pruning_steps;
|
|
if (pinfo->exec_pruning_steps &&
|
|
!(econtext->ecxt_estate->es_top_eflags & EXEC_FLAG_EXPLAIN_GENERIC))
|
|
{
|
|
InitPartitionPruneContext(&pprune->exec_context,
|
|
pinfo->exec_pruning_steps,
|
|
partdesc, partkey, planstate,
|
|
econtext);
|
|
/* Record whether exec pruning is needed at any level */
|
|
prunestate->do_exec_prune = true;
|
|
}
|
|
|
|
/*
|
|
* Accumulate the IDs of all PARAM_EXEC Params affecting the
|
|
* partitioning decisions at this plan node.
|
|
*/
|
|
prunestate->execparamids = bms_add_members(prunestate->execparamids,
|
|
pinfo->execparamids);
|
|
|
|
j++;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
return prunestate;
|
|
}
|
|
|
|
/*
|
|
* Initialize a PartitionPruneContext for the given list of pruning steps.
|
|
*/
|
|
static void
|
|
InitPartitionPruneContext(PartitionPruneContext *context,
|
|
List *pruning_steps,
|
|
PartitionDesc partdesc,
|
|
PartitionKey partkey,
|
|
PlanState *planstate,
|
|
ExprContext *econtext)
|
|
{
|
|
int n_steps;
|
|
int partnatts;
|
|
ListCell *lc;
|
|
|
|
n_steps = list_length(pruning_steps);
|
|
|
|
context->strategy = partkey->strategy;
|
|
context->partnatts = partnatts = partkey->partnatts;
|
|
context->nparts = partdesc->nparts;
|
|
context->boundinfo = partdesc->boundinfo;
|
|
context->partcollation = partkey->partcollation;
|
|
context->partsupfunc = partkey->partsupfunc;
|
|
|
|
/* We'll look up type-specific support functions as needed */
|
|
context->stepcmpfuncs = (FmgrInfo *)
|
|
palloc0(sizeof(FmgrInfo) * n_steps * partnatts);
|
|
|
|
context->ppccontext = CurrentMemoryContext;
|
|
context->planstate = planstate;
|
|
context->exprcontext = econtext;
|
|
|
|
/* Initialize expression state for each expression we need */
|
|
context->exprstates = (ExprState **)
|
|
palloc0(sizeof(ExprState *) * n_steps * partnatts);
|
|
foreach(lc, pruning_steps)
|
|
{
|
|
PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
|
|
ListCell *lc2 = list_head(step->exprs);
|
|
int keyno;
|
|
|
|
/* not needed for other step kinds */
|
|
if (!IsA(step, PartitionPruneStepOp))
|
|
continue;
|
|
|
|
Assert(list_length(step->exprs) <= partnatts);
|
|
|
|
for (keyno = 0; keyno < partnatts; keyno++)
|
|
{
|
|
if (bms_is_member(keyno, step->nullkeys))
|
|
continue;
|
|
|
|
if (lc2 != NULL)
|
|
{
|
|
Expr *expr = lfirst(lc2);
|
|
|
|
/* not needed for Consts */
|
|
if (!IsA(expr, Const))
|
|
{
|
|
int stateidx = PruneCxtStateIdx(partnatts,
|
|
step->step.step_id,
|
|
keyno);
|
|
|
|
/*
|
|
* When planstate is NULL, pruning_steps is known not to
|
|
* contain any expressions that depend on the parent plan.
|
|
* Information of any available EXTERN parameters must be
|
|
* passed explicitly in that case, which the caller must
|
|
* have made available via econtext.
|
|
*/
|
|
if (planstate == NULL)
|
|
context->exprstates[stateidx] =
|
|
ExecInitExprWithParams(expr,
|
|
econtext->ecxt_param_list_info);
|
|
else
|
|
context->exprstates[stateidx] =
|
|
ExecInitExpr(expr, context->planstate);
|
|
}
|
|
lc2 = lnext(step->exprs, lc2);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* PartitionPruneFixSubPlanMap
|
|
* Fix mapping of partition indexes to subplan indexes contained in
|
|
* prunestate by considering the new list of subplans that survived
|
|
* initial pruning
|
|
*
|
|
* Current values of the indexes present in PartitionPruneState count all the
|
|
* subplans that would be present before initial pruning was done. If initial
|
|
* pruning got rid of some of the subplans, any subsequent pruning passes will
|
|
* be looking at a different set of target subplans to choose from than those
|
|
* in the pre-initial-pruning set, so the maps in PartitionPruneState
|
|
* containing those indexes must be updated to reflect the new indexes of
|
|
* subplans in the post-initial-pruning set.
|
|
*/
|
|
static void
|
|
PartitionPruneFixSubPlanMap(PartitionPruneState *prunestate,
|
|
Bitmapset *initially_valid_subplans,
|
|
int n_total_subplans)
|
|
{
|
|
int *new_subplan_indexes;
|
|
Bitmapset *new_other_subplans;
|
|
int i;
|
|
int newidx;
|
|
|
|
/*
|
|
* First we must build a temporary array which maps old subplan indexes to
|
|
* new ones. For convenience of initialization, we use 1-based indexes in
|
|
* this array and leave pruned items as 0.
|
|
*/
|
|
new_subplan_indexes = (int *) palloc0(sizeof(int) * n_total_subplans);
|
|
newidx = 1;
|
|
i = -1;
|
|
while ((i = bms_next_member(initially_valid_subplans, i)) >= 0)
|
|
{
|
|
Assert(i < n_total_subplans);
|
|
new_subplan_indexes[i] = newidx++;
|
|
}
|
|
|
|
/*
|
|
* Now we can update each PartitionedRelPruneInfo's subplan_map with new
|
|
* subplan indexes. We must also recompute its present_parts bitmap.
|
|
*/
|
|
for (i = 0; i < prunestate->num_partprunedata; i++)
|
|
{
|
|
PartitionPruningData *prunedata = prunestate->partprunedata[i];
|
|
int j;
|
|
|
|
/*
|
|
* Within each hierarchy, we perform this loop in back-to-front order
|
|
* so that we determine present_parts for the lowest-level partitioned
|
|
* tables first. This way we can tell whether a sub-partitioned
|
|
* table's partitions were entirely pruned so we can exclude it from
|
|
* the current level's present_parts.
|
|
*/
|
|
for (j = prunedata->num_partrelprunedata - 1; j >= 0; j--)
|
|
{
|
|
PartitionedRelPruningData *pprune = &prunedata->partrelprunedata[j];
|
|
int nparts = pprune->nparts;
|
|
int k;
|
|
|
|
/* We just rebuild present_parts from scratch */
|
|
bms_free(pprune->present_parts);
|
|
pprune->present_parts = NULL;
|
|
|
|
for (k = 0; k < nparts; k++)
|
|
{
|
|
int oldidx = pprune->subplan_map[k];
|
|
int subidx;
|
|
|
|
/*
|
|
* If this partition existed as a subplan then change the old
|
|
* subplan index to the new subplan index. The new index may
|
|
* become -1 if the partition was pruned above, or it may just
|
|
* come earlier in the subplan list due to some subplans being
|
|
* removed earlier in the list. If it's a subpartition, add
|
|
* it to present_parts unless it's entirely pruned.
|
|
*/
|
|
if (oldidx >= 0)
|
|
{
|
|
Assert(oldidx < n_total_subplans);
|
|
pprune->subplan_map[k] = new_subplan_indexes[oldidx] - 1;
|
|
|
|
if (new_subplan_indexes[oldidx] > 0)
|
|
pprune->present_parts =
|
|
bms_add_member(pprune->present_parts, k);
|
|
}
|
|
else if ((subidx = pprune->subpart_map[k]) >= 0)
|
|
{
|
|
PartitionedRelPruningData *subprune;
|
|
|
|
subprune = &prunedata->partrelprunedata[subidx];
|
|
|
|
if (!bms_is_empty(subprune->present_parts))
|
|
pprune->present_parts =
|
|
bms_add_member(pprune->present_parts, k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We must also recompute the other_subplans set, since indexes in it may
|
|
* change.
|
|
*/
|
|
new_other_subplans = NULL;
|
|
i = -1;
|
|
while ((i = bms_next_member(prunestate->other_subplans, i)) >= 0)
|
|
new_other_subplans = bms_add_member(new_other_subplans,
|
|
new_subplan_indexes[i] - 1);
|
|
|
|
bms_free(prunestate->other_subplans);
|
|
prunestate->other_subplans = new_other_subplans;
|
|
|
|
pfree(new_subplan_indexes);
|
|
}
|
|
|
|
/*
|
|
* ExecFindMatchingSubPlans
|
|
* Determine which subplans match the pruning steps detailed in
|
|
* 'prunestate' for the current comparison expression values.
|
|
*
|
|
* Pass initial_prune if PARAM_EXEC Params cannot yet be evaluated. This
|
|
* differentiates the initial executor-time pruning step from later
|
|
* runtime pruning.
|
|
*/
|
|
Bitmapset *
|
|
ExecFindMatchingSubPlans(PartitionPruneState *prunestate,
|
|
bool initial_prune)
|
|
{
|
|
Bitmapset *result = NULL;
|
|
MemoryContext oldcontext;
|
|
int i;
|
|
|
|
/*
|
|
* Either we're here on the initial prune done during pruning
|
|
* initialization, or we're at a point where PARAM_EXEC Params can be
|
|
* evaluated *and* there are steps in which to do so.
|
|
*/
|
|
Assert(initial_prune || prunestate->do_exec_prune);
|
|
|
|
/*
|
|
* Switch to a temp context to avoid leaking memory in the executor's
|
|
* query-lifespan memory context.
|
|
*/
|
|
oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
|
|
|
|
/*
|
|
* For each hierarchy, do the pruning tests, and add nondeletable
|
|
* subplans' indexes to "result".
|
|
*/
|
|
for (i = 0; i < prunestate->num_partprunedata; i++)
|
|
{
|
|
PartitionPruningData *prunedata = prunestate->partprunedata[i];
|
|
PartitionedRelPruningData *pprune;
|
|
|
|
/*
|
|
* We pass the zeroth item, belonging to the root table of the
|
|
* hierarchy, and find_matching_subplans_recurse() takes care of
|
|
* recursing to other (lower-level) parents as needed.
|
|
*/
|
|
pprune = &prunedata->partrelprunedata[0];
|
|
find_matching_subplans_recurse(prunedata, pprune, initial_prune,
|
|
&result);
|
|
|
|
/* Expression eval may have used space in ExprContext too */
|
|
if (pprune->exec_pruning_steps)
|
|
ResetExprContext(pprune->exec_context.exprcontext);
|
|
}
|
|
|
|
/* Add in any subplans that partition pruning didn't account for */
|
|
result = bms_add_members(result, prunestate->other_subplans);
|
|
|
|
MemoryContextSwitchTo(oldcontext);
|
|
|
|
/* Copy result out of the temp context before we reset it */
|
|
result = bms_copy(result);
|
|
|
|
MemoryContextReset(prunestate->prune_context);
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* find_matching_subplans_recurse
|
|
* Recursive worker function for ExecFindMatchingSubPlans
|
|
*
|
|
* Adds valid (non-prunable) subplan IDs to *validsubplans
|
|
*/
|
|
static void
|
|
find_matching_subplans_recurse(PartitionPruningData *prunedata,
|
|
PartitionedRelPruningData *pprune,
|
|
bool initial_prune,
|
|
Bitmapset **validsubplans)
|
|
{
|
|
Bitmapset *partset;
|
|
int i;
|
|
|
|
/* Guard against stack overflow due to overly deep partition hierarchy. */
|
|
check_stack_depth();
|
|
|
|
/*
|
|
* Prune as appropriate, if we have pruning steps matching the current
|
|
* execution context. Otherwise just include all partitions at this
|
|
* level.
|
|
*/
|
|
if (initial_prune && pprune->initial_pruning_steps)
|
|
partset = get_matching_partitions(&pprune->initial_context,
|
|
pprune->initial_pruning_steps);
|
|
else if (!initial_prune && pprune->exec_pruning_steps)
|
|
partset = get_matching_partitions(&pprune->exec_context,
|
|
pprune->exec_pruning_steps);
|
|
else
|
|
partset = pprune->present_parts;
|
|
|
|
/* Translate partset into subplan indexes */
|
|
i = -1;
|
|
while ((i = bms_next_member(partset, i)) >= 0)
|
|
{
|
|
if (pprune->subplan_map[i] >= 0)
|
|
*validsubplans = bms_add_member(*validsubplans,
|
|
pprune->subplan_map[i]);
|
|
else
|
|
{
|
|
int partidx = pprune->subpart_map[i];
|
|
|
|
if (partidx >= 0)
|
|
find_matching_subplans_recurse(prunedata,
|
|
&prunedata->partrelprunedata[partidx],
|
|
initial_prune, validsubplans);
|
|
else
|
|
{
|
|
/*
|
|
* We get here if the planner already pruned all the sub-
|
|
* partitions for this partition. Silently ignore this
|
|
* partition in this case. The end result is the same: we
|
|
* would have pruned all partitions just the same, but we
|
|
* don't have any pruning steps to execute to verify this.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
}
|