/*------------------------------------------------------------------------- * * parse_node.c * various routines that make nodes for query plans * * Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/parser/parse_node.c,v 1.29 1999/07/19 00:26:19 tgl Exp $ * *------------------------------------------------------------------------- */ #include #include "postgres.h" #include "access/heapam.h" #include "catalog/pg_operator.h" #include "catalog/pg_type.h" #include "fmgr.h" #include "nodes/makefuncs.h" #include "parser/parse_coerce.h" #include "parser/parse_expr.h" #include "parser/parse_node.h" #include "parser/parse_oper.h" #include "parser/parse_relation.h" #include "parser/parse_target.h" #include "parser/parse_type.h" #include "utils/builtins.h" #include "utils/lsyscache.h" #include "utils/syscache.h" static void disallow_setop(char *op, Type optype, Node *operand); static Node *make_operand(char *opname, Node *tree, Oid orig_typeId, Oid true_typeId); /* make_parsestate() * Allocate and initialize a new ParseState. * The CALLER is responsible for freeing the ParseState* returned. */ ParseState * make_parsestate(ParseState *parentParseState) { ParseState *pstate; pstate = palloc(sizeof(ParseState)); MemSet(pstate, 0, sizeof(ParseState)); pstate->p_last_resno = 1; pstate->parentParseState = parentParseState; return pstate; } /* make_operand() * Ensure argument type match by forcing conversion of constants. */ static Node * make_operand(char *opname, Node *tree, Oid orig_typeId, Oid true_typeId) { Node *result; Type true_type; if (tree != NULL) { result = tree; true_type = typeidType(true_typeId); disallow_setop(opname, true_type, result); /* must coerce? */ if (true_typeId != orig_typeId) result = coerce_type(NULL, tree, orig_typeId, true_typeId, -1); } /* otherwise, this is a NULL value */ else { Const *con = makeNode(Const); con->consttype = true_typeId; con->constlen = 0; con->constvalue = (Datum) (struct varlena *) NULL; con->constisnull = true; con->constbyval = true; con->constisset = false; result = (Node *) con; } return result; } /* make_operand() */ static void disallow_setop(char *op, Type optype, Node *operand) { if (operand == NULL) return; if (nodeTag(operand) == T_Iter) { elog(ERROR, "An operand to the '%s' operator returns a set of %s," "\n\tbut '%s' takes single values, not sets.", op, typeTypeName(optype), op); } } /* make_op() * Operator construction. * * Transform operator expression ensuring type compatibility. * This is where some type conversion happens. */ Expr * make_op(char *opname, Node *ltree, Node *rtree) { Oid ltypeId, rtypeId; Operator tup; Form_pg_operator opform; Oper *newop; Node *left, *right; Expr *result; /* right operator? */ if (rtree == NULL) { ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree); tup = right_oper(opname, ltypeId); opform = (Form_pg_operator) GETSTRUCT(tup); left = make_operand(opname, ltree, ltypeId, opform->oprleft); right = NULL; } /* left operator? */ else if (ltree == NULL) { rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree); tup = left_oper(opname, rtypeId); opform = (Form_pg_operator) GETSTRUCT(tup); right = make_operand(opname, rtree, rtypeId, opform->oprright); left = NULL; } /* otherwise, binary operator */ else { /* binary operator */ ltypeId = (ltree == NULL) ? UNKNOWNOID : exprType(ltree); rtypeId = (rtree == NULL) ? UNKNOWNOID : exprType(rtree); /* check for exact match on this operator... */ if (HeapTupleIsValid(tup = oper_exact(opname, ltypeId, rtypeId, <ree, &rtree, TRUE))) { ltypeId = exprType(ltree); rtypeId = exprType(rtree); } /* try to find a match on likely candidates... */ else if (!HeapTupleIsValid(tup = oper_inexact(opname, ltypeId, rtypeId, <ree, &rtree, FALSE))) { /* Won't return from oper_inexact() without a candidate... */ } opform = (Form_pg_operator) GETSTRUCT(tup); left = make_operand(opname, ltree, ltypeId, opform->oprleft); right = make_operand(opname, rtree, rtypeId, opform->oprright); } newop = makeOper(oprid(tup),/* opno */ InvalidOid,/* opid */ opform->oprresult, /* operator result type */ 0, NULL); result = makeNode(Expr); result->typeOid = opform->oprresult; result->opType = OP_EXPR; result->oper = (Node *) newop; if (!left) result->args = lcons(right, NIL); else if (!right) result->args = lcons(left, NIL); else result->args = lcons(left, lcons(right, NIL)); return result; } /* make_op() */ Var * make_var(ParseState *pstate, Oid relid, char *refname, char *attrname) { Var *varnode; int vnum, attid; Oid vartypeid; int32 type_mod; int sublevels_up; vnum = refnameRangeTablePosn(pstate, refname, &sublevels_up); attid = get_attnum(relid, attrname); if (attid == InvalidAttrNumber) elog(ERROR, "Relation %s does not have attribute %s", refname, attrname); vartypeid = get_atttype(relid, attid); type_mod = get_atttypmod(relid, attid); varnode = makeVar(vnum, attid, vartypeid, type_mod, sublevels_up, vnum, attid); return varnode; } /* * transformArraySubscripts() * Transform array subscripting. This is used for both * array fetch and array assignment. * * In an array fetch, we are given a source array value and we produce an * expression that represents the result of extracting a single array element * or an array slice. * * In an array assignment, we are given a destination array value plus a * source value that is to be assigned to a single element or a slice of * that array. We produce an expression that represents the new array value * with the source data inserted into the right part of the array. * * pstate Parse state * arrayBase Already-transformed expression for the array as a whole * indirection Untransformed list of subscripts (must not be NIL) * forceSlice If true, treat subscript as array slice in all cases * assignFrom NULL for array fetch, else transformed expression for source. */ ArrayRef * transformArraySubscripts(ParseState *pstate, Node *arrayBase, List *indirection, bool forceSlice, Node *assignFrom) { Oid typearray, typeelement, typeresult; HeapTuple type_tuple; Form_pg_type type_struct_array, type_struct_element; bool isSlice = forceSlice; List *upperIndexpr = NIL; List *lowerIndexpr = NIL; List *idx; ArrayRef *aref; /* Get the type tuple for the array */ typearray = exprType(arrayBase); type_tuple = SearchSysCacheTuple(TYPOID, ObjectIdGetDatum(typearray), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "transformArraySubscripts: Cache lookup failed for array type %u", typearray); type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple); typeelement = type_struct_array->typelem; if (typeelement == InvalidOid) elog(ERROR, "transformArraySubscripts: type %s is not an array", type_struct_array->typname); /* Get the type tuple for the array element type */ type_tuple = SearchSysCacheTuple(TYPOID, ObjectIdGetDatum(typeelement), 0, 0, 0); if (!HeapTupleIsValid(type_tuple)) elog(ERROR, "transformArraySubscripts: Cache lookup failed for array element type %u", typeelement); type_struct_element = (Form_pg_type) GETSTRUCT(type_tuple); /* * A list containing only single subscripts refers to a single array * element. If any of the items are double subscripts (lower:upper), * then the subscript expression means an array slice operation. * In this case, we supply a default lower bound of 1 for any items * that contain only a single subscript. * The forceSlice parameter forces us to treat the operation as a * slice, even if no lower bounds are mentioned. Otherwise, * we have to prescan the indirection list to see if there are any * double subscripts. */ if (! isSlice) { foreach (idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); if (ai->lidx != NULL) { isSlice = true; break; } } } /* The type represented by the subscript expression is the element type * if we are fetching a single element, but it is the same as the array * type if we are fetching a slice or storing. */ if (isSlice || assignFrom != NULL) typeresult = typearray; else typeresult = typeelement; /* * Transform the subscript expressions. */ foreach (idx, indirection) { A_Indices *ai = (A_Indices *) lfirst(idx); Node *subexpr; if (isSlice) { if (ai->lidx) { subexpr = transformExpr(pstate, ai->lidx, EXPR_COLUMN_FIRST); /* If it's not int4 already, try to coerce */ subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr), INT4OID); if (subexpr == NULL) elog(ERROR, "array index expressions must be integers"); } else { /* Make a constant 1 */ subexpr = (Node *) makeConst(INT4OID, sizeof(int32), Int32GetDatum(1), false, true, /* pass by value */ false, false); } lowerIndexpr = lappend(lowerIndexpr, subexpr); } subexpr = transformExpr(pstate, ai->uidx, EXPR_COLUMN_FIRST); /* If it's not int4 already, try to coerce */ subexpr = CoerceTargetExpr(pstate, subexpr, exprType(subexpr), INT4OID); if (subexpr == NULL) elog(ERROR, "array index expressions must be integers"); upperIndexpr = lappend(upperIndexpr, subexpr); } /* * If doing an array store, coerce the source value to the right type. */ if (assignFrom != NULL) { Oid typesource = exprType(assignFrom); Oid typeneeded = isSlice ? typearray : typeelement; if (typesource != InvalidOid) { if (typesource != typeneeded) { assignFrom = CoerceTargetExpr(pstate, assignFrom, typesource, typeneeded); if (assignFrom == NULL) elog(ERROR, "Array assignment requires type '%s'" " but expression is of type '%s'" "\n\tYou will need to rewrite or cast the expression", typeidTypeName(typeneeded), typeidTypeName(typesource)); } } } /* * Ready to build the ArrayRef node. */ aref = makeNode(ArrayRef); aref->refattrlength = type_struct_array->typlen; aref->refelemlength = type_struct_element->typlen; aref->refelemtype = typeresult; /* XXX should save element type too */ aref->refelembyval = type_struct_element->typbyval; aref->refupperindexpr = upperIndexpr; aref->reflowerindexpr = lowerIndexpr; aref->refexpr = arrayBase; aref->refassgnexpr = assignFrom; return aref; } /* * make_const - * * - takes a lispvalue, (as returned to the yacc routine by the lexer) * extracts the type, and makes the appropriate type constant * by invoking the (c-callable) lisp routine c-make-const * via the lisp_call() mechanism * * eventually, produces a "const" lisp-struct as per nodedefs.cl */ Const * make_const(Value *value) { Type tp; Datum val; Const *con; switch (nodeTag(value)) { case T_Integer: tp = typeidType(INT4OID); val = Int32GetDatum(intVal(value)); break; case T_Float: { float64 dummy; tp = typeidType(FLOAT8OID); dummy = (float64) palloc(sizeof(float64data)); *dummy = floatVal(value); val = Float64GetDatum(dummy); } break; case T_String: tp = typeidType(UNKNOWNOID); /* unknown for now, will * be type coerced */ val = PointerGetDatum(textin(strVal(value))); break; case T_Null: default: { if (nodeTag(value) != T_Null) elog(NOTICE, "make_const: unknown type %d\n", nodeTag(value)); /* null const */ con = makeConst(0, 0, (Datum) NULL, true, false, false, false); return con; } } con = makeConst(typeTypeId(tp), typeLen(tp), val, false, typeByVal(tp), false, /* not a set */ false); return con; }