Since collation is effectively an argument, not a property of the function,
FmgrInfo is really the wrong place for it; and this becomes critical in
cases where a cached FmgrInfo is used for varying purposes that might need
different collation settings. Fix by passing it in FunctionCallInfoData
instead. In particular this allows a clean fix for bug #5970 (record_cmp
not working). This requires touching a bit more code than the original
method, but nobody ever thought that collations would not be an invasive
patch...
cleanup stage to finish incomplete inserts or splits anymore. There was two
reasons for the cleanup step:
1. When a new tuple was inserted to a leaf page, the downlink in the parent
needed to be updated to contain (ie. to be consistent with) the new key.
Updating the parent in turn might require recursively updating the parent of
the parent. We now handle that by updating the parent while traversing down
the tree, so that when we insert the leaf tuple, all the parents are already
consistent with the new key, and the tree is consistent at every step.
2. When a page is split, we need to insert the downlink for the new right
page(s), and update the downlink for the original page to not include keys
that moved to the right page(s). We now handle that by setting a new flag,
F_FOLLOW_RIGHT, on the non-rightmost pages in the split. When that flag is
set, scans always follow the rightlink, regardless of the NSN mechanism used
to detect concurrent page splits. That way the tree is consistent right after
split, even though the downlink is still missing. This is very similar to the
way B-tree splits are handled. When the downlink is inserted in the parent,
the flag is cleared. To keep the insertion algorithm simple, when an
insertion sees an incomplete split, indicated by the F_FOLLOW_RIGHT flag, it
finishes the split before doing anything else.
These changes allow removing the whole "invalid tuple" mechanism, but I
retained the scan code to still follow invalid tuples correctly. While we
don't create any such tuples anymore, we want to handle them gracefully in
case you pg_upgrade a GiST index that has them. If we encounter any on an
insert, though, we just throw an error saying that you need to REINDEX.
The issue that got me into doing this is that if you did a checkpoint while
an insert or split was in progress, and the checkpoint finishes quickly so
that there is no WAL record related to the insert between RedoRecPtr and the
checkpoint record, recovery from that checkpoint would not know to finish
the incomplete insert. IOW, we have the same issue we solved with the
rm_safe_restartpoint mechanism during normal operation too. It's highly
unlikely to happen in practice, and this fix is far too large to backpatch,
so we're just going to live with in previous versions, but this refactoring
fixes it going forward.
With this patch, you don't get the annoying
'index "FOO" needs VACUUM or REINDEX to finish crash recovery' notices
anymore if you crash at an unfortunate moment.
1. Complain, rather than silently doing nothing, if an "invalid" tuple
is found on a leaf page. Per off-list discussion with Heikki.
2. Fix oversight in code that removes a GISTSearchItem from the search
queue: we have to reset lastHeap if this was the last heap item in the
parent GISTSearchTreeItem. Otherwise subsequent additions will do the
wrong thing. This was probably masked in early testing because in typical
cases the parent item would now be completely empty and would be deleted on
next call. You'd need a queued non-leaf page at exactly the same distance
as a heap tuple to expose the bug.
This commit represents a rather heavily editorialized version of
Teodor's builtin_knngist_itself-0.8.2 and builtin_knngist_proc-0.8.1
patches. I redid the opclass API to add a separate Distance method
instead of turning the Consistent method into an illogical mess,
fixed some bit-rot in the rbtree interfaces, and generally worked over
the code style and comments.
There's still no non-code documentation to speak of, but I'll work on
that separately. Some contrib-module changes are also yet to come
(right now, point <-> point is the only KNN-ified operator).
Teodor Sigaev and Tom Lane
to be just a minor extension of the previous patch that made "x IS NULL"
indexable, because we can treat the IS NOT NULL condition as if it were
"x < NULL" or "x > NULL" (depending on the index's NULLS FIRST/LAST option),
just like IS NULL is treated like "x = NULL". Aside from any possible
usefulness in its own right, this is an important improvement for
index-optimized MAX/MIN aggregates: it is now reliably possible to get
a column's min or max value cheaply, even when there are a lot of nulls
cluttering the interesting end of the index.
friends). This code has all been ifdef'd out for many years, and doesn't
seem to have any prospect of becoming any more useful in the future.
EXPLAIN ANALYZE is what people use in practice, and I think if we did want
process-wide counters we'd be more likely to put in dtrace events for that
than try to resurrect this code. Get rid of it so as to have one less detail
to worry about while refactoring execMain.c.
correctly set. As result, killtuple() marks as dead
wrong tuple on page. Bug was introduced by me while fixing
possible duplicates during GiST index scan.
is NULL but SK_SEARCHNULL is not set. Add checking IS NULL of keys
to set during key initialization. If key is NULL and SK_SEARCHNULL is not
set then nothnig can be satisfied.
With assert-enabled compilation that causes coredump.
Bug was introduced in 8.3 by support of IS NULL index scan.
at once and ItemPointers are collected in memory.
Remove tuple's killing by killtuple() if tuple was moved to another
page - it could produce unaceptable overhead.
Backpatch up to 8.1 because the bug was introduced by GiST's concurrency support.
corresponding struct definitions. This allows other headers to avoid including
certain highly-loaded headers such as rel.h and relscan.h, instead using just
relcache.h, heapam.h or genam.h, which are more lightweight and thus cause less
unnecessary dependencies.
unnecessary #include lines in it. Also, move some tuple routine prototypes and
macros to htup.h, which allows removal of heapam.h inclusion from some .c
files.
For this to work, a new header file access/sysattr.h needed to be created,
initially containing attribute numbers of system columns, for pg_dump usage.
While at it, make contrib ltree, intarray and hstore header files more
consistent with our header style.
"consistent" functions, and remove pg_amop.opreqcheck, as per recent
discussion. The main immediate benefit of this is that we no longer need
8.3's ugly hack of requiring @@@ rather than @@ to test weight-using tsquery
searches on GIN indexes. In future it should be possible to optimize some
other queries better than is done now, by detecting at runtime whether the
index match is exact or not.
Tom Lane, after an idea of Heikki's, and with some help from Teodor.
instead of plan time. Extend the amgettuple API so that the index AM returns
a boolean indicating whether the indexquals need to be rechecked, and make
that rechecking happen in nodeIndexscan.c (currently the only place where
it's expected to be needed; other callers of index_getnext are just erroring
out for now). For the moment, GIN and GIST have stub logic that just always
sets the recheck flag to TRUE --- I'm hoping to get Teodor to handle pushing
that control down to the opclass consistent() functions. The planner no
longer pays any attention to amopreqcheck, and that catalog column will go
away in due course.
indexscan always occurs in one call, and the results are returned in a
TIDBitmap instead of a limited-size array of TIDs. This should improve
speed a little by reducing AM entry/exit overhead, and it is necessary
infrastructure if we are ever to support bitmap indexes.
In an only slightly related change, add support for TIDBitmaps to preserve
(somewhat lossily) the knowledge that particular TIDs reported by an index
need to have their quals rechecked when the heap is visited. This facility
is not really used yet; we'll need to extend the forced-recheck feature to
plain indexscans before it's useful, and that hasn't been coded yet.
The intent is to use it to clean up 8.3's horrid @@@ kluge for text search
with weighted queries. There might be other uses in future, but that one
alone is sufficient reason.
Heikki Linnakangas, with some adjustments by me.
than two independent bits (one of which was never used in heap pages anyway,
or at least hadn't been in a very long time). This gives us flexibility to
add the HOT notions of redirected and dead item pointers without requiring
anything so klugy as magic values of lp_off and lp_len. The state values
are chosen so that for the states currently in use (pre-HOT) there is no
change in the physical representation.
and aborted transactions have different effects; also teach it not to assume
that prepared transactions are always committed.
Along the way, simplify the pgstats API by tying counting directly to
Relations; I cannot detect any redeeming social value in having stats
pointers in HeapScanDesc and IndexScanDesc structures. And fix a few
corner cases in which counts might be missed because the relation's
pgstat_info pointer hadn't been set.
currentMarkData from IndexScanDesc to the opaque structs for the
AMs that need this information (currently gist and hash).
Patch from Heikki Linnakangas, fixes by Neil Conway.
* new split algorithm (as proposed in http://archives.postgresql.org/pgsql-hackers/2006-06/msg00254.php)
* possible call pickSplit() for second and below columns
* add spl_(l|r)datum_exists to GIST_SPLITVEC -
pickSplit should check its values to use already defined
spl_(l|r)datum for splitting. pickSplit should set
spl_(l|r)datum_exists to 'false' (if they was 'true') to
signal to caller about using spl_(l|r)datum.
* support for old pickSplit(): not very optimal
but correct split
* remove 'bytes' field from GISTENTRY: in any case size of
value is defined by it's type.
* split GIST_SPLITVEC to two structures: one for using in picksplit
and second - for internal use.
* some code refactoring
* support of subsplit to rtree opclasses
TODO: add support of subsplit to contrib modules
* some refactoring and simplify code int gistutil.c and gist.c
* now in some cases it can be called used-defined
picksplit method for non-first column in index, but here
is a place to do more.
* small fix of docs related to support NULL.
isn't being used anywhere anymore, and there seems no point in a generic
index_keytest() routine when two out of three remaining access methods
aren't using it. Also, add a comment documenting a convention for
letting access methods define private flag bits in ScanKey sk_flags.
There are no such flags at the moment but I'm thinking about changing
btree's handling of "required keys" to use flag bits in the keys
rather than a count of required key positions. Also, if some AM did
still want SK_NEGATE then it would be reasonable to treat it as a private
flag bit.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
generated by bitmap index scans. Along the way, simplify and speed up
the code for counting sequential and index scans; it was both confusing
and inefficient to be taking care of that in the per-tuple loops, IMHO.
initdb forced because of internal changes in pg_stat view definitions.
- full concurrency for insert/update/select/vacuum:
- select and vacuum never locks more than one page simultaneously
- select (gettuple) hasn't any lock across it's calls
- insert never locks more than two page simultaneously:
- during search of leaf to insert it locks only one page
simultaneously
- while walk upward to the root it locked only parent (may be
non-direct parent) and child. One of them X-lock, another may
be S- or X-lock
- 'vacuum full' locks index
- improve gistgetmulti
- simplify XLOG records
Fix bug in index_beginscan_internal: LockRelation may clean
rd_aminfo structure, so move GET_REL_PROCEDURE after LockRelation
2. improve vacuum for gist
- use FSM
- full vacuum:
- reforms parent tuple if it's needed
( tuples was deleted on child page or parent tuple remains invalid
after crash recovery )
- truncate index file if possible
3. fixes bugs and mistakes
external projects, we should be careful about what parts of the GiST
API are considered implementation details, and which are part of the
public API. Therefore, I've moved internal-only declarations into
gist_private.h -- future backward-incompatible changes to gist.h should
be made with care, to avoid needlessly breaking external GiST extensions.
Also did some related header cleanup: remove some unnecessary #includes
from gist.h, and remove some unused definitions: isAttByVal(), _gistdump(),
and GISTNStrategies.
- make sure we always invoke user-supplied GiST methods in a short-lived
memory context. This means the backend isn't exposed to any memory leaks
that be in those methods (in fact, it is probably a net loss for most
GiST methods to bother manually freeing memory now). This also means
we can do away with a lot of ugly manual memory management in the
GiST code itself.
- keep the current page of a GiST index scan pinned, rather than doing a
ReadBuffer() for each tuple produced by the scan. Since ReadBuffer() is
expensive, this is a perf. win
- implement dead tuple killing for GiST indexes (which is easy to do, now
that we keep a pin on the current scan page). Now all the builtin indexes
implement dead tuple killing.
- cleanup a lot of ugly code in GiST