of poorer planning in 8.3 than 8.2:
1. After pushing a constant across an outer join --- ie, given
"a LEFT JOIN b ON (a.x = b.y) WHERE a.x = 42", we can deduce that b.y is
sort of equal to 42, in the sense that we needn't fetch any b rows where
it isn't 42 --- loop to see if any additional deductions can be made.
Previous releases did that by recursing, but I had mistakenly thought that
this was no longer necessary given the EquivalenceClass machinery.
2. Allow pushing constants across outer join conditions even if the
condition is outerjoin_delayed due to a lower outer join. This is safe
as long as the condition is strict and we re-test it at the upper join.
3. Keep the outer-join clause even if we successfully push a constant
across it. This is *necessary* in the outerjoin_delayed case, but
even in the simple case, it seems better to do this to ensure that the
join search order heuristics will consider the join as reasonable to
make. Mark such a clause as having selectivity 1.0, though, since it's
not going to eliminate very many rows after application of the constant
condition.
4. Tweak have_relevant_eclass_joinclause to report that two relations
are joinable when they have vars that are equated to the same constant.
We won't actually generate any joinclause from such an EquivalenceClass,
but again it seems that in such a case it's a good idea to consider
the join as worth costing out.
5. Fix a bug in select_mergejoin_clauses that was exposed by these
changes: we have to reject candidate mergejoin clauses if either side was
equated to a constant, because we can't construct a canonical pathkey list
for such a clause. This is an implementation restriction that might be
worth fixing someday, but it doesn't seem critical to get it done for 8.3.
that the Mackert-Lohmann formula applies across all the repetitions of the
nestloop, not just each scan independently. We use the M-L formula to
estimate the number of pages fetched from the index as well as from the table;
that isn't what it was designed for, but it seems reasonably applicable
anyway. This makes large numbers of repetitions look much cheaper than
before, which accords with many reports we've received of overestimation
of the cost of a nestloop. Also, change the index access cost model to
charge random_page_cost per index leaf page touched, while explicitly
not counting anything for access to metapage or upper tree pages. This
may all need tweaking after we get some field experience, but in simple
tests it seems to be giving saner results than before. The main thing
is to get the infrastructure in place to let cost_index() and amcostestimate
functions take repeated scans into account at all. Per my recent proposal.
Note: this patch changes pg_proc.h, but I did not force initdb because
the changes are basically cosmetic --- the system does not look into
pg_proc to decide how to call an index amcostestimate function, and
there's no way to call such a function from SQL at all.
comment line where output as too long, and update typedefs for /lib
directory. Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).
Backpatch to 8.1.X.
sense and rename to "outerjoin_delayed" to more clearly reflect what it
means). I had decided that it was redundant in 8.1, but the folly of this
is exposed by a bug report from Sebastian Böck. The place where it's
needed is to prevent orindxpath.c from cherry-picking arms of an outer-join
OR clause to form a relation restriction that isn't actually legal to push
down to the relation scan level. There may be some legal cases that this
forbids optimizing, but we'd need much closer analysis to determine it.
planning logic for bitmap indexscans. Partial indexes create corner
cases in which a scan might be done with no explicit index qual conditions,
and the code wasn't handling those cases nicely. Also be a little
tenser about eliminating redundant clauses in the generated plan.
Per report from Dmitry Karasik.
propagated inside an outer join. In particular, given
LEFT JOIN ON (A = B) WHERE A = constant, we cannot conclude that
B = constant at the top level (B might be null instead), but we
can nonetheless put a restriction B = constant into the quals for
B's relation, since no inner-side rows not meeting that condition
can contribute to the final result. Similarly, given
FULL JOIN USING (J) WHERE J = constant, we can't directly conclude
that either input J variable = constant, but it's OK to push such
quals into each input rel. Per recent gripe from Kim Bisgaard.
Along the way, remove 'valid_everywhere' flag from RestrictInfo,
as on closer analysis it was not being used for anything, and was
defined backwards anyway.
of a relation in a flat 'joininfo' list. The former arrangement grouped
the join clauses according to the set of unjoined relids used in each;
however, profiling on test cases involving lots of joins proves that
that data structure is a net loss. It takes more time to group the
join clauses together than is saved by avoiding duplicate tests later.
It doesn't help any that there are usually not more than one or two
clauses per group ...
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
node, as this behavior is now better done as a bitmap OR indexscan.
This allows considerable simplification in nodeIndexscan.c itself as
well as several planner modules concerned with indexscan plan generation.
Also we can improve the sharing of code between regular and bitmap
indexscans, since they are now working with nigh-identical Plan nodes.
structs. There are many places in the planner where we were passing
both a rel and an index to subroutines, and now need only pass the
index struct. Notationally simpler, and perhaps a tad faster.
for boolean indexes. Previously we would only use such an index with
WHERE clauses like 'indexkey = true' or 'indexkey = false'. The new
code transforms the cases 'indexkey', 'NOT indexkey', 'indexkey IS TRUE',
and 'indexkey IS FALSE' into one of these. While this is only marginally
useful in itself, I intend soon to change constant-expression simplification
so that 'foo = true' and 'foo = false' are reduced to just 'foo' and
'NOT foo' ... which would lose the ability to use boolean indexes for
such queries at all, if the indexscan machinery couldn't make the
reverse transformation.
indexscans involving partial indexes. These would always be dominated
by a simple indexscan on such an index, so there's no point in considering
them. Fixes overoptimism in a patch I applied last October.
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
for scanning one term of an OR clause if the index's predicate is implied
by that same OR clause term (possibly in conjunction with top-level WHERE
clauses). Per recent example from Dawid Kuroczko,
http://archives.postgresql.org/pgsql-performance/2004-10/msg00095.php
Also, fix a very long-standing bug in index predicate testing, namely the
bizarre ordering of decomposition of predicate and restriction clauses.
AFAICS the correct way is to break down the predicate all the way, and
then for each component term see if you can prove it from the entire
restriction set. The original coding had a purely-implementation-artifact
distinction between ANDing at the top level and ANDing below that, and
proceeded to get the decomposition order wrong everywhere below the top
level, with the result that even slightly complicated AND/OR predicates
could not be proven. For instance, given
create index foop on foo(f2) where f1=42 or f1=1
or (f1 = 11 and f2 = 55);
the old code would fail to match this index to the query
select * from foo where f1 = 11 and f2 = 55;
when it obviously ought to match.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.
The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
with index qual clauses in the Path representation. This saves a little
work during createplan and (probably more importantly) allows reuse of
cached selectivity estimates during indexscan planning. Also fix latent
bug: wrong plan would have been generated for a 'special operator' used
in a nestloop-inner-indexscan join qual, because the special operator
would not have gotten into the list of quals to recheck. This bug is
only latent because at present the special-operator code could never
trigger on a join qual, but sooner or later someone will want to do it.
join conditions in which each OR subclause includes a constraint on
the same relation. This implements the other useful side-effect of
conversion to CNF format, without its unpleasant side-effects. As
per pghackers discussion of a few weeks ago.
first time generate an OR indexscan for a two-column index when the WHERE
condition is like 'col1 = foo AND (col2 = bar OR col2 = baz)' --- before,
the OR had to be on the first column of the index or we'd not notice the
possibility of using it. Some progress towards extracting OR indexscans
from subclauses of an OR that references multiple relations, too, although
this code is #ifdef'd out because it needs more work.
some cases of redundant clauses that were formerly not caught. We have
to special-case this because the clauses involved never get attached to
the same join restrictlist and so the existing logic does not notice
that they are redundant.
introducing new 'FastList' list-construction subroutines to use in
hot spots. This avoids the O(N^2) behavior of repeated lappend's
by keeping a tail pointer, while not changing behavior by reversing
list order as the lcons() method would do.
so that all executable expression nodes inherit from a common supertype
Expr. This is somewhat of an exercise in code purity rather than any
real functional advance, but getting rid of the extra Oper or Func node
formerly used in each operator or function call should provide at least
a little space and speed improvement.
initdb forced by changes in stored-rules representation.
joinclauses is determined accurately for each join. Formerly, the code only
considered joinclauses that used all of the rels from the outer side of the
join; thus for example
FROM (a CROSS JOIN b) JOIN c ON (c.f1 = a.x AND c.f2 = b.y)
could not exploit a two-column index on c(f1,f2), since neither of the
qual clauses would be in the joininfo list it looked in. The new code does
this correctly, and also is able to eliminate redundant clauses, thus fixing
the problem noted 24-Oct-02 by Hans-Jürgen Schönig.
WHERE (a = 1 or a = 2) and b = 42
and an index on (a,b), include the clause b = 42 in the indexquals
generated for each arm of the OR clause. Essentially this is an index-
driven conversion from CNF to DNF. Implementation is a bit klugy, but
better than not exploiting the extra quals at all ...
create_index_paths are not immediately discarded, but are available for
subsequent planner work. This allows avoiding redundant syscache lookups
in several places. Change interface to operator selectivity estimation
procedures to allow faster and more flexible estimation.
Initdb forced due to change of pg_proc entries for selectivity functions!
costs using the inner path's parent->rows count as the number of tuples
processed per inner scan iteration. This is wrong when we are using an
inner indexscan with indexquals based on join clauses, because the rows
count in a Relation node reflects the selectivity of the restriction
clauses for that rel only. Upshot was that if join clause was very
selective, we'd drastically overestimate the true cost of the join.
Fix is to calculate correct output-rows estimate for an inner indexscan
when the IndexPath node is created and save it in the path node.
Change of path node doesn't require initdb, since path nodes don't
appear in saved rules.
accesses versus sequential accesses, a (very crude) estimate of the
effects of caching on random page accesses, and cost to evaluate WHERE-
clause expressions. Export critical parameters for this model as SET
variables. Also, create SET variables for the planner's enable flags
(enable_seqscan, enable_indexscan, etc) so that these can be controlled
more conveniently than via PGOPTIONS.
Planner now estimates both startup cost (cost before retrieving
first tuple) and total cost of each path, so it can optimize queries
with LIMIT on a reasonable basis by interpolating between these costs.
Same facility is a win for EXISTS(...) subqueries and some other cases.
Redesign pathkey representation to achieve a major speedup in planning
(I saw as much as 5X on a 10-way join); also minor changes in planner
to reduce memory consumption by recycling discarded Path nodes and
not constructing unnecessary lists.
Minor cleanups to display more-plausible costs in some cases in
EXPLAIN output.
Initdb forced by change in interface to index cost estimation
functions.
extracting from an AND subclause just those opclauses that are relevant
for a particular index. For example, we can now consider using an index
on x to process WHERE (x = 1 AND y = 2) OR (x = 2 AND y = 4) OR ...