Recent gcc can warn about switch-case fall throughs that are not
explicitly labeled as intentional. This seems like a good thing,
so clean up the warnings exposed thereby by labeling all such
cases with comments that gcc will recognize.
In files that already had one or more suitable comments, I generally
matched the existing style of those. Otherwise I went with
/* FALLTHROUGH */, which is one of the spellings approved at the
more-restrictive-than-default level -Wimplicit-fallthrough=4.
(At the default level you can also spell it /* FALL ?THRU */,
and it's not picky about case. What you can't do is include
additional text in the same comment, so some existing comments
containing versions of this aren't good enough.)
Testing with gcc 8.0.1 (Fedora 28's current version), I found that
I also had to put explicit "break"s after elog(ERROR) or ereport(ERROR);
apparently, for this purpose gcc doesn't recognize that those don't
return. That seems like possibly a gcc bug, but it's fine because
in most places we did that anyway; so this amounts to a visit from the
style police.
Discussion: https://postgr.es/m/15083.1525207729@sss.pgh.pa.us
Without these fixes, changes to the inserted tuple made by remote
triggers are ignored when building local RETURNING tuples.
In the core code, call ExecInitRoutingInfo at a later point from
within ExecInitPartitionInfo so that the FDW callback gets invoked
after the returning list has been built. But move CheckValidResultRel
out of ExecInitRoutingInfo so that it can happen at an earlier stage.
In postgres_fdw, refactor assorted deparsing functions to work with
the RTE rather than the PlannerInfo, which saves us having to
construct a fake PlannerInfo in cases where we don't have a real one.
Then, we can pass down a constructed RTE that yields the correct
deparse result when no real one exists. Unfortunately, this
necessitates a hack that understands how the core code manages RT
indexes for update tuple routing, which is ugly, but we don't have a
better idea right now.
Original report, analysis, and patch by Etsuro Fujita. Heavily
refactored by me. Then worked over some more by Amit Langote.
Discussion: http://postgr.es/m/5AD4882B.10002@lab.ntt.co.jp
Remove the words "if not already done." This obsolete wording
corresponds to an early development version of what became edd44738bc8.
Author: Etsuro Fujita
Reviewed-by: Amit Langote
Discussion: https://postgr.es/m/5ADF117B.5030606@lab.ntt.co.jp
Instead of doing ExecInitExpr every time a Param needs to be evaluated
in run-time partition pruning, do it once during run-time pruning
set-up and cache the exprstate in PartitionPruneContext, saving a lot of
work.
Author: David Rowley
Reviewed-by: Amit Langote, Álvaro Herrera
Discussion: https://postgr.es/m/CAKJS1f8-x+q-90QAPDu_okhQBV4DPEtPz8CJ=m0940GyT4DA4w@mail.gmail.com
I added this "optimization" on top of Amit Langote's 158b7bc6d779, but
the quick path is never taken because the partition uses a different
pg_type oid than its parent table (causing equalTupleDescs to return
false). Changing that requires more analysis and is too considered
dangerous at this point in the cycle, so revert it.
We might make it work someday, but not for pg11.
Discussion: https://postgr.es/m/825031be-942c-8c24-6163-13c27f217a3d@lab.ntt.co.jp
It turns out that after runtime partition pruning, Append's
first_partial_plan does not accurately represent partial plans to run,
if any of those got pruned. This could limit participation of workers
in some partial subplans, if other subplans got pruned. Fix it by
keeping an index of the first valid partial subplan in the state node,
determined at execnode Init time.
Author: David Rowley, with cosmetic changes by me.
Discussion: https://postgr.es/m/CAKJS1f8o2Yd=rOP=Et3A0FWgF+gSAOkFSU6eNhnGzTPV7nN8sQ@mail.gmail.com
We had an Assert() preventing whole-row expressions from being used in
the SET clause of INSERT ON CONFLICT, but it seems unnecessary, given
some tests, so remove it. Add a new test to exercise the case.
Still at ExecInitPartitionInfo, we used map_partition_varattnos (which
constructs an attribute map, then calls map_variable_attnos) using
the same two relations many times in different expressions and with
different parameters. Constructing the map over and over is a waste.
To avoid this repeated work, construct the map once, and use
map_variable_attnos() directly instead.
Author: Amit Langote, per comments by me (Álvaro)
Discussion: https://postgr.es/m/20180326142016.m4st5e34chrzrknk@alvherre.pgsql
This reverts commits d204ef63776b8a00ca220adec23979091564e465,
83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter
(complete list at the end) related to MERGE feature.
While the feature was fully functional, with sufficient test coverage and
necessary documentation, it was felt that some parts of the executor and
parse-analyzer can use a different design and it wasn't possible to do that in
the available time. So it was decided to revert the patch for PG11 and retry
again in the future.
Thanks again to all reviewers and bug reporters.
List of commits reverted, in reverse chronological order:
f1464c5380 Improve parse representation for MERGE
ddb4158579 MERGE syntax diagram correction
530e69e59b Allow cpluspluscheck to pass by renaming variable
01b88b4df5 MERGE minor errata
3af7b2b0d4 MERGE fix variable warning in non-assert builds
a5d86181ec MERGE INSERT allows only one VALUES clause
4b2d44031f MERGE post-commit review
4923550c20 Tab completion for MERGE
aa3faa3c7a WITH support in MERGE
83454e3c2b New files for MERGE
d204ef6377 MERGE SQL Command following SQL:2016
Author: Pavan Deolasee
Reviewed-by: Michael Paquier
The HeapFetches counter was using a simple value in IndexOnlyScanState,
which fails to propagate values from parallel workers; so the counts are
wrong when IndexOnlyScan runs in parallel. Move it to Instrumentation,
like all the other counters.
While at it, change INSERT ON CONFLICT conflicting tuple counter to use
the new ntuples2 instead of nfiltered2, which is a blatant misuse.
Discussion: https://postgr.es/m/20180409215851.idwc75ct2bzi6tea@alvherre.pgsql
In 499be013de support for pruning unneeded Append subnodes was added.
The logic in that commit was not correctly checking if the next subplan
was in fact a valid subplan. This could cause parallel workers processes
to be given a subplan to work on which didn't require any work.
Per code review following an otherwise unexplained regression failure in
buildfarm member Pademelon. (We haven't been able to reproduce the
failure, so this is a bit of a blind fix in terms of whether it'll
actually fix it; but it is a clear bug nonetheless).
In passing, also add a comment to explain what first_partial_plan means.
Author: David Rowley
Discussion: https://postgr.es/m/CAKJS1f_E5r05hHUVG3UmCQJ49DGKKHtN=SHybD44LdzBn+CJng@mail.gmail.com
Traditionally, include/catalog/pg_foo.h contains extern declarations
for functions in backend/catalog/pg_foo.c, in addition to its function
as the authoritative definition of the pg_foo catalog's rowtype.
In some cases, we'd been forced to split out those extern declarations
into separate pg_foo_fn.h headers so that the catalog definitions
could be #include'd by frontend code. That problem is gone as of
commit 9c0a0de4c, so let's undo the splits to make things less
confusing.
Discussion: https://postgr.es/m/23690.1523031777@sss.pgh.pa.us
Existing partition pruning is only able to work at plan time, for query
quals that appear in the parsed query. This is good but limiting, as
there can be parameters that appear later that can be usefully used to
further prune partitions.
This commit adds support for pruning subnodes of Append which cannot
possibly contain any matching tuples, during execution, by evaluating
Params to determine the minimum set of subnodes that can possibly match.
We support more than just simple Params in WHERE clauses. Support
additionally includes:
1. Parameterized Nested Loop Joins: The parameter from the outer side of the
join can be used to determine the minimum set of inner side partitions to
scan.
2. Initplans: Once an initplan has been executed we can then determine which
partitions match the value from the initplan.
Partition pruning is performed in two ways. When Params external to the plan
are found to match the partition key we attempt to prune away unneeded Append
subplans during the initialization of the executor. This allows us to bypass
the initialization of non-matching subplans meaning they won't appear in the
EXPLAIN or EXPLAIN ANALYZE output.
For parameters whose value is only known during the actual execution
then the pruning of these subplans must wait. Subplans which are
eliminated during this stage of pruning are still visible in the EXPLAIN
output. In order to determine if pruning has actually taken place, the
EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never
executed due to the elimination of the partition then the execution
timing area will state "(never executed)". Whereas, if, for example in
the case of parameterized nested loops, the number of loops stated in
the EXPLAIN ANALYZE output for certain subplans may appear lower than
others due to the subplan having been scanned fewer times. This is due
to the list of matching subnodes having to be evaluated whenever a
parameter which was found to match the partition key changes.
This commit required some additional infrastructure that permits the
building of a data structure which is able to perform the translation of
the matching partition IDs, as returned by get_matching_partitions, into
the list index of a subpaths list, as exist in node types such as
Append, MergeAppend and ModifyTable. This allows us to translate a list
of clauses into a Bitmapset of all the subpath indexes which must be
included to satisfy the clause list.
Author: David Rowley, based on an earlier effort by Beena Emerson
Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi,
Jesper Pedersen
Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
When an update moves a row between partitions (supported since
2f178441044b), our normal logic for following update chains in READ
COMMITTED mode doesn't work anymore. Cross partition updates are
modeled as an delete from the old and insert into the new
partition. No ctid chain exists across partitions, and there's no
convenient space to introduce that link.
Not throwing an error in a partitioned context when one would have
been thrown without partitioning is obviously problematic. This commit
introduces infrastructure to detect when a tuple has been moved, not
just plainly deleted. That allows to throw an error when encountering
a deletion that's actually a move, while attempting to following a
ctid chain.
The row deleted as part of a cross partition update is marked by
pointing it's t_ctid to an invalid block, instead of self as a normal
update would. That was deemed to be the least invasive and most
future proof way to represent the knowledge, given how few infomask
bits are there to be recycled (there's also some locking issues with
using infomask bits).
External code following ctid chains should be updated to check for
moved tuples. The most likely consequence of not doing so is a missed
error.
Author: Amul Sul, editorialized by me
Reviewed-By: Amit Kapila, Pavan Deolasee, Andres Freund, Robert Haas
Discussion: http://postgr.es/m/CAAJ_b95PkwojoYfz0bzXU8OokcTVGzN6vYGCNVUukeUDrnF3dw@mail.gmail.com
This patch introduces INCLUDE clause to index definition. This clause
specifies a list of columns which will be included as a non-key part in
the index. The INCLUDE columns exist solely to allow more queries to
benefit from index-only scans. Also, such columns don't need to have
appropriate operator classes. Expressions are not supported as INCLUDE
columns since they cannot be used in index-only scans.
Index access methods supporting INCLUDE are indicated by amcaninclude flag
in IndexAmRoutine. For now, only B-tree indexes support INCLUDE clause.
In B-tree indexes INCLUDE columns are truncated from pivot index tuples
(tuples located in non-leaf pages and high keys). Therefore, B-tree indexes
now might have variable number of attributes. This patch also provides
generic facility to support that: pivot tuples contain number of their
attributes in t_tid.ip_posid. Free 13th bit of t_info is used for indicating
that. This facility will simplify further support of index suffix truncation.
The changes of above are backward-compatible, pg_upgrade doesn't need special
handling of B-tree indexes for that.
Bump catalog version
Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me
Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes,
David Rowley, Alexander Korotkov
Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
Also enable this for postgres_fdw.
Etsuro Fujita, based on an earlier patch by Amit Langote. The larger
patch series of which this is a part has been reviewed by Amit
Langote, David Fetter, Maksim Milyutin, Álvaro Herrera, Stephen Frost,
and me. Minor documentation changes to the final version by me.
Discussion: http://postgr.es/m/29906a26-da12-8c86-4fb9-d8f88442f2b9@lab.ntt.co.jp
Review comments from Andres Freund
* Consolidate code into AfterTriggerGetTransitionTable()
* Rename nodeMerge.c to execMerge.c
* Rename nodeMerge.h to execMerge.h
* Move MERGE handling in ExecInitModifyTable()
into a execMerge.c ExecInitMerge()
* Move mt_merge_subcommands flags into execMerge.h
* Rename opt_and_condition to opt_merge_when_and_condition
* Wordsmith various comments
Author: Pavan Deolasee
Reviewer: Simon Riggs
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
MERGE performs actions that modify rows in the target table
using a source table or query. MERGE provides a single SQL
statement that can conditionally INSERT/UPDATE/DELETE rows
a task that would other require multiple PL statements.
e.g.
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular and partitioned tables, including
column and row security enforcement, as well as support for
row, statement and transition triggers.
MERGE is optimized for OLTP and is parameterizable, though
also useful for large scale ETL/ELT. MERGE is not intended
to be used in preference to existing single SQL commands
for INSERT, UPDATE or DELETE since there is some overhead.
MERGE can be used statically from PL/pgSQL.
MERGE does not yet support inheritance, write rules,
RETURNING clauses, updatable views or foreign tables.
MERGE follows SQL Standard per the most recent SQL:2016.
Includes full tests and documentation, including full
isolation tests to demonstrate the concurrent behavior.
This version written from scratch in 2017 by Simon Riggs,
using docs and tests originally written in 2009. Later work
from Pavan Deolasee has been both complex and deep, leaving
the lead author credit now in his hands.
Extensive discussion of concurrency from Peter Geoghegan,
with thanks for the time and effort contributed.
Various issues reported via sqlsmith by Andreas Seltenreich
Authors: Pavan Deolasee, Simon Riggs
Reviewers: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs
Discussion:
https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.comhttps://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
So far, a nested CALL or DO in PL/pgSQL would not establish a context
where transaction control statements were allowed. This fixes that by
handling CALL and DO specially in PL/pgSQL, passing the atomic/nonatomic
execution context through and doing the required management around
transaction boundaries.
Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
Currently adding a column to a table with a non-NULL default results in
a rewrite of the table. For large tables this can be both expensive and
disruptive. This patch removes the need for the rewrite as long as the
default value is not volatile. The default expression is evaluated at
the time of the ALTER TABLE and the result stored in a new column
(attmissingval) in pg_attribute, and a new column (atthasmissing) is set
to true. Any existing row when fetched will be supplied with the
attmissingval. New rows will have the supplied value or the default and
so will never need the attmissingval.
Any time the table is rewritten all the atthasmissing and attmissingval
settings for the attributes are cleared, as they are no longer needed.
The most visible code change from this is in heap_attisnull, which
acquires a third TupleDesc argument, allowing it to detect a missing
value if there is one. In many cases where it is known that there will
not be any (e.g. catalog relations) NULL can be passed for this
argument.
Andrew Dunstan, heavily modified from an original patch from Serge
Rielau.
Reviewed by Tom Lane, Andres Freund, Tomas Vondra and David Rowley.
Discussion: https://postgr.es/m/31e2e921-7002-4c27-59f5-51f08404c858@2ndQuadrant.com
Originally, we treated memory context names as potentially variable in
all cases, and therefore always copied them into the context header.
Commit 9fa6f00b1 rethought this a little bit and invented a distinction
between fixed and variable names, skipping the copy step for the former.
But we can make things both simpler and more useful by instead allowing
there to be two parts to a context's identification, a fixed "name" and
an optional, variable "ident". The name supplied in the context create
call is now required to be a compile-time-constant string in all cases,
as it is never copied but just pointed to. The "ident" string, if
wanted, is supplied later. This is needed because typically we want
the ident to be stored inside the context so that it's cleaned up
automatically on context deletion; that means it has to be copied into
the context before we can set the pointer.
The cost of this approach is basically just an additional pointer field
in struct MemoryContextData, which isn't much overhead, and is bought
back entirely in the AllocSet case by not needing a headerSize field
anymore, since we no longer have to cope with variable header length.
In addition, we can simplify the internal interfaces for memory context
creation still further, saving a few cycles there. And it's no longer
true that a custom identifier disqualifies a context from participating
in aset.c's freelist scheme, so possibly there's some win on that end.
All the places that were using non-compile-time-constant context names
are adjusted to put the variable info into the "ident" instead. This
allows more effective identification of those contexts in many cases;
for example, subsidary contexts of relcache entries are now identified
by both type (e.g. "index info") and relname, where before you got only
one or the other. Contexts associated with PL function cache entries
are now identified more fully and uniformly, too.
I also arranged for plancache contexts to use the query source string
as their identifier. This is basically free for CachedPlanSources, as
they contained a copy of that string already. We pay an extra pstrdup
to do it for CachedPlans. That could perhaps be avoided, but it would
make things more fragile (since the CachedPlanSource is sometimes
destroyed first). I suspect future improvements in error reporting will
require CachedPlans to have a copy of that string anyway, so it's not
clear that it's worth moving mountains to avoid it now.
This also changes the APIs for context statistics routines so that the
context-specific routines no longer assume that output goes straight
to stderr, nor do they know all details of the output format. This
is useful immediately to reduce code duplication, and it also allows
for external code to do something with stats output that's different
from printing to stderr.
The reason for pushing this now rather than waiting for v12 is that
it rethinks some of the API changes made by commit 9fa6f00b1. Seems
better for extension authors to endure just one round of API changes
not two.
Discussion: https://postgr.es/m/CAB=Je-FdtmFZ9y9REHD7VsSrnCkiBhsA4mdsLKSPauwXtQBeNA@mail.gmail.com
Performing JIT compilation for deforming gains performance benefits
over unJITed deforming from compile-time knowledge of the tuple
descriptor. Fixed column widths, NOT NULLness, etc can be taken
advantage of.
Right now the JITed deforming is only used when deforming tuples as
part of expression evaluation (and obviously only if the descriptor is
known). It's likely to be beneficial in other cases, too.
By default tuple deforming is JITed whenever an expression is JIT
compiled. There's a separate boolean GUC controlling it, but that's
expected to be primarily useful for development and benchmarking.
Docs will follow in a later commit containing docs for the whole JIT
feature.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
Commit eb7ed3f30634 enabled unique constraints on partitioned tables,
but one thing that was not working properly is INSERT/ON CONFLICT.
This commit introduces a new node keeps state related to the ON CONFLICT
clause per partition, and fills it when that partition is about to be
used for tuple routing.
Author: Amit Langote, Álvaro Herrera
Reviewed-by: Etsuro Fujita, Pavan Deolasee
Discussion: https://postgr.es/m/20180228004602.cwdyralmg5ejdqkq@alvherre.pgsql
Coverity complained that this check is pointless, and it's right.
There is no case where we'd call ExecutorStart with a null plannedstmt,
and if we did, it'd have crashed before here. Thinko in commit cc415a56d.
In addition to the interpretation of expressions (which back
evaluation of WHERE clauses, target list projection, aggregates
transition values etc) support compiling expressions to native code,
using the infrastructure added in earlier commits.
To avoid duplicating a lot of code, only support emitting code for
cases that are likely to be performance critical. For expression steps
that aren't deemed that, use the existing interpreter.
The generated code isn't great - some architectural changes are
required to address that. But this already yields a significant
speedup for some analytics queries, particularly with WHERE clauses
filtering a lot, or computing multiple aggregates.
Author: Andres Freund
Tested-By: Thomas Munro
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
Disable JITing for VALUES() nodes.
VALUES() nodes are only ever executed once. This is primarily helpful
for debugging, when forcing JITing even for cheap queries.
Author: Andres Freund
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
This adds simple cost based plan time decision about whether JIT
should be performed. jit_above_cost, jit_optimize_above_cost are
compared with the total cost of a plan, and if the cost is above them
JIT is performed / optimization is performed respectively.
For that PlannedStmt and EState have a jitFlags (es_jit_flags) field
that stores information about what JIT operations should be performed.
EState now also has a new es_jit field, which can store a
JitContext. When there are no errors the context is released in
standard_ExecutorEnd().
It is likely that the default values for jit_[optimize_]above_cost
will need to be adapted further, but in my test these values seem to
work reasonably.
Author: Andres Freund, with feedback by Peter Eisentraut
Discussion: https://postgr.es/m/20170901064131.tazjxwus3k2w3ybh@alap3.anarazel.de
These values can be obtained from the ModifyTable node which is already
a part of both the ModifyTableState and ExecInsert.
Author: Álvaro Herrera, Amit Langote
Reviewed-by: Peter Geoghegan
Discussion: https://postgr.es/m/20180316151303.rml2p5wffn3o6qy6@alvherre.pgsql
We make some changes to ModifyTableState and the EState it uses whenever
we route tuples to partitions; but we weren't restoring properly in all
cases, possibly causing crashes when partitions with different tuple
descriptors are targeted by tuples inserted in the same command.
Refactor some code, creating ExecPrepareTupleRouting, to encapsulate the
needed state changing logic, and have it invoked one level above its
current place (ie. put it in ExecModifyTable instead of ExecInsert);
this makes it all more readable.
Add a test case to exercise this.
We don't support having views as partitions; and since only views can
have INSTEAD OF triggers, there is no point in testing for INSTEAD OF
when processing insertions into a partitioned table. Remove code that
appears to support this (but which is actually never relevant.)
In passing, fix location of some very confusing comments in
ModifyTableState.
Reported-by: Amit Langote
Author: Etsuro Fujita, Amit Langote
Discussion: https://postgr/es/m/0473bf5c-57b1-f1f7-3d58-455c2230bc5f@lab.ntt.co.jp
"UPDATE/DELETE WHERE CURRENT OF cursor_name" failed, with an error message
like "cannot extract system attribute from virtual tuple", if the cursor
was using a index-only scan for the target table. Fix it by digging the
current TID out of the indexscan state.
It seems likely that the same failure could occur for CustomScan plans
and perhaps some FDW plan types, so that leaving this to be treated as an
internal error with an obscure message isn't as good an idea as it first
seemed. Hence, add a bit of heaptuple.c infrastructure to let us deliver
a more on-topic message. I chose to make the message match what you get
for the case where execCurrentOf can't identify the target scan node at
all, "cursor "foo" is not a simply updatable scan of table "bar"".
Perhaps it should be different, but we can always adjust that later.
In the future, it might be nice to provide hooks that would let custom
scan providers and/or FDWs deal with this in other ways; but that's
not a suitable topic for a back-patchable bug fix.
It's been like this all along, so back-patch to all supported branches.
Yugo Nagata and Tom Lane
Discussion: https://postgr.es/m/20180201013349.937dfc5f.nagata@sraoss.co.jp
ExecHashTableCreate allocated some memory that wasn't freed by
ExecHashTableDestroy, specifically the per-hash-key function information.
That's not a huge amount of data, but if one runs a query that repeats
a hash join enough times, it builds up. Fix by arranging for the data
in question to be kept in the hashtable's hashCxt instead of leaving it
"loose" in the query-lifespan executor context. (This ensures that we'll
also clean up anything that the hash functions allocate in fn_mcxt.)
Per report from Amit Khandekar. It's been like this forever, so back-patch
to all supported branches.
Discussion: https://postgr.es/m/CAJ3gD9cFofAWGvcxLOxDHC=B0hjtW8yGmUsF2hdGh97CM38=7g@mail.gmail.com
In a top-level CALL, the values of INOUT arguments will be returned as a
result row. In PL/pgSQL, the values are assigned back to the input
arguments. In other languages, the same convention as for return a
record from a function is used. That does not require any code changes
in the PL implementations.
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Since edd44738bc8814 WCO expressions of partitioned tables are
initialized with the first subplan as parent. That's not correct, as
the correct context is the ModifyTableState node. That's also what is
used for RETURNING processing, initialized nearby.
This appears not to cause any visible problems for in core code, but
is problematic for in development patch.
Discussion: https://postgr.es/m/20180303043818.tnvlo243bgy7una3@alap3.anarazel.de
The new column distinguishes normal functions, procedures, aggregates,
and window functions. This replaces the existing columns proisagg and
proiswindow, and replaces the convention that procedures are indicated
by prorettype == 0. Also change prorettype to be VOIDOID for procedures.
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Michael Paquier <michael@paquier.xyz>