In this mode, the master waits for the transaction to be applied on
the remote side, not just written to disk. That means that you can
count on a transaction started on the standby to see all commits
previously acknowledged by the master.
To make this work, the standby sends a reply after replaying each
commit record generated with synchronous_commit >= 'remote_apply'.
This introduces a small inefficiency: the extra replies will be sent
even by standbys that aren't the current synchronous standby. But
previously-existing synchronous_commit levels make no attempt at all
to optimize which replies are sent based on what the primary cares
about, so this is no worse, and at least avoids any extra replies for
people not using the feature at all.
Thomas Munro, reviewed by Michael Paquier and by me. Some additional
tweaks by me.
The distinction between "archive" and "hot_standby" existed only because
at the time "hot_standby" was added, there was some uncertainty about
stability. This is now a long time ago. We would like to move forward
with simplifying the replication configuration, but this distinction is
in the way, because a primary server cannot tell (without asking a
standby or predicting the future) which one of these would be the
appropriate level.
Pick a new name for the combined setting to make it clearer that it
covers all (non-logical) backup and replication uses. The old values
are still accepted but are converted internally.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
Reviewed-by: David Steele <david@pgmasters.net>
2PC state info is written only to WAL at PREPARE, then read back from WAL at
COMMIT PREPARED/ABORT PREPARED. Prepared transactions that live past one bufmgr
checkpoint cycle will be written to disk in the same form as previously. Crash
recovery path is not altered. Measured performance gains of 50-100% for short
2PC transactions by completely avoiding writing files and fsyncing. Other
optimizations still available, further patches in related areas expected.
Stas Kelvich and heavily edited by Simon Riggs
Based upon earlier ideas and patches by Michael Paquier and Heikki Linnakangas,
a concrete example of how Postgres-XC has fed back ideas into PostgreSQL.
Reviewed by Michael Paquier, Jeff Janes and Andres Freund
Performance testing by Jesper Pedersen
This commit makes postmaster forcibly remove the files signaling
a standby promotion request. Otherwise, the existence of those files
can trigger a promotion too early, whether a user wants that or not.
This removal of files is usually unnecessary because they can exist
only during a few moments during a standby promotion. However
there is a race condition: if pg_ctl promote is executed and creates
the files during a promotion, the files can stay around even after
the server is brought up to new master. Then, if new standby starts
by using the backup taken from that master, the files can exist
at the server startup and should be removed in order to avoid
an unexpected promotion.
Back-patch to 9.1 where promote signal file was introduced.
Problem reported by Feike Steenbergen.
Original patch by Michael Paquier, modified by me.
Discussion: 20150528100705.4686.91426@wrigleys.postgresql.org
After the archiver dies, postmaster tries to start a new one immediately.
But previously this could happen only while server was running normally
even though archiving was enabled always (i.e., archive_mode was set to
always). So the archiver running during recovery could not restart soon
after it died. This is an oversight in commit ffd3774.
This commit changes reaper(), postmaster's signal handler to cleanup
after a child process dies, so that it tries to a new archiver even during
recovery if necessary.
Patch by me. Review by Alvaro Herrera.
Windows can't reliably restore symbolic links from a tar format, so
instead during backup start we create a tablespace_map file, which is
used by the restoring postgres to create the correct links in pg_tblspc.
The backup protocol also now has an option to request this file to be
included in the backup stream, and this is used by pg_basebackup when
operating in tar mode.
This is done on all platforms, not just Windows.
This means that pg_basebackup will not not work in tar mode against 9.4
and older servers, as this protocol option isn't implemented there.
Amit Kapila, reviewed by Dilip Kumar, with a little editing from me.
When implementing a replication solution ontop of logical decoding, two
related problems exist:
* How to safely keep track of replication progress
* How to change replication behavior, based on the origin of a row;
e.g. to avoid loops in bi-directional replication setups
The solution to these problems, as implemented here, consist out of
three parts:
1) 'replication origins', which identify nodes in a replication setup.
2) 'replication progress tracking', which remembers, for each
replication origin, how far replay has progressed in a efficient and
crash safe manner.
3) The ability to filter out changes performed on the behest of a
replication origin during logical decoding; this allows complex
replication topologies. E.g. by filtering all replayed changes out.
Most of this could also be implemented in "userspace", e.g. by inserting
additional rows contain origin information, but that ends up being much
less efficient and more complicated. We don't want to require various
replication solutions to reimplement logic for this independently. The
infrastructure is intended to be generic enough to be reusable.
This infrastructure also replaces the 'nodeid' infrastructure of commit
timestamps. It is intended to provide all the former capabilities,
except that there's only 2^16 different origins; but now they integrate
with logical decoding. Additionally more functionality is accessible via
SQL. Since the commit timestamp infrastructure has also been introduced
in 9.5 (commit 73c986add) changing the API is not a problem.
For now the number of origins for which the replication progress can be
tracked simultaneously is determined by the max_replication_slots
GUC. That GUC is not a perfect match to configure this, but there
doesn't seem to be sufficient reason to introduce a separate new one.
Bumps both catversion and wal page magic.
Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer
Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer
Discussion: 20150216002155.GI15326@awork2.anarazel.de,
20140923182422.GA15776@alap3.anarazel.de,
20131114172632.GE7522@alap2.anarazel.de
When newly-added GUC parameter, wal_compression, is on, the PostgreSQL server
compresses a full page image written to WAL when full_page_writes is on or
during a base backup. A compressed page image will be decompressed during WAL
replay. Turning this parameter on can reduce the WAL volume without increasing
the risk of unrecoverable data corruption, but at the cost of some extra CPU
spent on the compression during WAL logging and on the decompression during
WAL replay.
This commit changes the WAL format (so bumping WAL version number) so that
the one-byte flag indicating whether a full page image is compressed or not is
included in its header information. This means that the commit increases the
WAL volume one-byte per a full page image even if WAL compression is not used
at all. We can save that one-byte by borrowing one-bit from the existing field
like hole_offset in the header and using it as the flag, for example. But which
would reduce the code readability and the extensibility of the feature.
Per discussion, it's not worth paying those prices to save only one-byte, so we
decided to add the one-byte flag to the header.
This commit doesn't introduce any new compression algorithm like lz4.
Currently a full page image is compressed using the existing PGLZ algorithm.
Per discussion, we decided to use it at least in the first version of the
feature because there were no performance reports showing that its compression
ratio is unacceptably lower than that of other algorithm. Of course,
in the future, it's worth considering the support of other compression
algorithm for the better compression.
Rahila Syed and Michael Paquier, reviewed in various versions by myself,
Andres Freund, Robert Haas, Abhijit Menon-Sen and many others.
Instead of having a single knob (checkpoint_segments) that both triggers
checkpoints, and determines how many checkpoints to recycle, they are now
separate concerns. There is still an internal variable called
CheckpointSegments, which triggers checkpoints. But it no longer determines
how many segments to recycle at a checkpoint. That is now auto-tuned by
keeping a moving average of the distance between checkpoints (in bytes),
and trying to keep that many segments in reserve. The advantage of this is
that you can set max_wal_size very high, but the system won't actually
consume that much space if there isn't any need for it. The min_wal_size
sets a floor for that; you can effectively disable the auto-tuning behavior
by setting min_wal_size equal to max_wal_size.
The max_wal_size setting is now the actual target size of WAL at which a
new checkpoint is triggered, instead of the distance between checkpoints.
Previously, you could calculate the actual WAL usage with the formula
"(2 + checkpoint_completion_target) * checkpoint_segments + 1". With this
patch, you set the desired WAL usage with max_wal_size, and the system
calculates the appropriate CheckpointSegments with the reverse of that
formula. That's a lot more intuitive for administrators to set.
Reviewed by Amit Kapila and Venkata Balaji N.
Previously when the standby server failed to retrieve WAL files from any sources
(i.e., streaming replication, local pg_xlog directory or WAL archive), it always
waited for five seconds (hard-coded) before the next attempt. For example,
this is problematic in warm-standby because restore_command can fail
every five seconds even while new WAL file is expected to be unavailable for
a long time and flood the log files with its error messages.
This commit adds new parameter, wal_retrieve_retry_interval, to control that
wait time.
Alexey Vasiliev and Michael Paquier, reviewed by Andres Freund and me.
Each WAL record now carries information about the modified relation and
block(s) in a standardized format. That makes it easier to write tools that
need that information, like pg_rewind, prefetching the blocks to speed up
recovery, etc.
There's a whole new API for building WAL records, replacing the XLogRecData
chains used previously. The new API consists of XLogRegister* functions,
which are called for each buffer and chunk of data that is added to the
record. The new API also gives more control over when a full-page image is
written, by passing flags to the XLogRegisterBuffer function.
This also simplifies the XLogReadBufferForRedo() calls. The function can dig
the relation and block number from the WAL record, so they no longer need to
be passed as arguments.
For the convenience of redo routines, XLogReader now disects each WAL record
after reading it, copying the main data part and the per-block data into
MAXALIGNed buffers. The data chunks are not aligned within the WAL record,
but the redo routines can assume that the pointers returned by XLogRecGet*
functions are. Redo routines are now passed the XLogReaderState, which
contains the record in the already-disected format, instead of the plain
XLogRecord.
The new record format also makes the fixed size XLogRecord header smaller,
by removing the xl_len field. The length of the "main data" portion is now
stored at the end of the WAL record, and there's a separate header after
XLogRecord for it. The alignment padding at the end of XLogRecord is also
removed. This compansates for the fact that the new format would otherwise
be more bulky than the old format.
Reviewed by Andres Freund, Amit Kapila, Michael Paquier, Alvaro Herrera,
Fujii Masao.
xlog.c is huge, this makes it a little bit smaller, which is nice. Functions
related to putting together the WAL record are in xloginsert.c, and the
lower level stuff for managing WAL buffers and such are in xlog.c.
Also move the definition of XLogRecord to a separate header file. This
causes churn in the #includes of all the files that write WAL records, and
redo routines, but it avoids pulling in xlog.h into most places.
Reviewed by Michael Paquier, Alvaro Herrera, Andres Freund and Amit Kapila.
Commit 7dbb6069382 added a new CHECKPOINT_FLUSH_ALL flag. As that
commit needed to be backpatched I didn't change the numeric values of
the existing flags as that could lead to nastly problems if any
external code issued checkpoints. That's not a concern on master, so
renumber them there.
Also add a comment about CHECKPOINT_FLUSH_ALL above
CreateCheckPoint().
CREATE DATABASE and ALTER DATABASE .. SET TABLESPACE copy the source
database directory on the filesystem level. To ensure the on disk
state is consistent they block out users of the affected database and
force a checkpoint to flush out all data to disk. Unfortunately, up to
now, that checkpoint didn't flush out dirty buffers from unlogged
relations.
That bug means there could be leftover dirty buffers in either the
template database, or the database in its old location. Leading to
problems when accessing relations in an inconsistent state; and to
possible problems during shutdown in the SET TABLESPACE case because
buffers belonging files that don't exist anymore are flushed.
This was reported in bug #10675 by Maxim Boguk.
Fix by Pavan Deolasee, modified somewhat by me. Reviewed by MauMau and
Fujii Masao.
Backpatch to 9.1 where unlogged tables were introduced.
I left the GUC in place for the beta period, so that people could experiment
with different values. No-one's come up with any data that a different value
would be better under some circumstances, so rather than try to document to
users what the GUC, let's just hard-code the current value, 8.
This is primarily useful for the upcoming pg_xlogdump --stats feature,
but also allows to remove some duplicated code in the rmgr_desc
routines.
Due to the separation and harmonization, the output of dipsplayed
records changes somewhat. But since this isn't enduser oriented
content that's ok.
It's potentially desirable to further change pg_xlogdump's display of
records. It previously wasn't possible to show the record type
separately from the description forcing it to be in the last
column. But that's better done in a separate commit.
Author: Abhijit Menon-Sen, slightly editorialized by me
Reviewed-By: Álvaro Herrera, Andres Freund, and Heikki Linnakangas
Discussion: 20140604104716.GA3989@toroid.org
log_newpage is used by many indexams, in addition to heap, but for
historical reasons it's always been part of the heapam rmgr. Starting with
9.3, we have another WAL record type for logging an image of a page,
XLOG_FPI. Simplify things by moving log_newpage and log_newpage_buffer to
xlog.c, and switch to using the XLOG_FPI record type.
Bump the WAL version number because the code to replay the old HEAP_NEWPAGE
records is removed.
The special feature the XLogInsert slots had over regular LWLocks is the
insertingAt value that was updated atomically with releasing backends
waiting on it. Add new functions to the LWLock API to do that, and replace
the slots with LWLocks. This reduces the amount of duplicated code.
(There's still some duplication, but at least it's all in lwlock.c now.)
Reviewed by Andres Freund.
When a row is updated, and the new tuple version is put on the same page as
the old one, only WAL-log the part of the new tuple that's not identical to
the old. This saves significantly on the amount of WAL that needs to be
written, in the common case that most fields are not modified.
Amit Kapila, with a lot of back and forth with me, Robert Haas, and others.
This feature, building on previous commits, allows the write-ahead log
stream to be decoded into a series of logical changes; that is,
inserts, updates, and deletes and the transactions which contain them.
It is capable of handling decoding even across changes to the schema
of the effected tables. The output format is controlled by a
so-called "output plugin"; an example is included. To make use of
this in a real replication system, the output plugin will need to be
modified to produce output in the format appropriate to that system,
and to perform filtering.
Currently, information can be extracted from the logical decoding
system only via SQL; future commits will add the ability to stream
changes via walsender.
Andres Freund, with review and other contributions from many other
people, including Álvaro Herrera, Abhijit Menon-Sen, Peter Gheogegan,
Kevin Grittner, Robert Haas, Heikki Linnakangas, Fujii Masao, Abhijit
Menon-Sen, Michael Paquier, Simon Riggs, Craig Ringer, and Steve
Singer.
Replication slots are a crash-safe data structure which can be created
on either a master or a standby to prevent premature removal of
write-ahead log segments needed by a standby, as well as (with
hot_standby_feedback=on) pruning of tuples whose removal would cause
replication conflicts. Slots have some advantages over existing
techniques, as explained in the documentation.
In a few places, we refer to the type of replication slots introduced
by this patch as "physical" slots, because forthcoming patches for
logical decoding will also have slots, but with somewhat different
properties.
Andres Freund and Robert Haas
This allows ending recovery as a consistent state has been reached. Without
this, there was no easy way to e.g restore an online backup, without
replaying any extra WAL after the backup ended.
MauMau and me.
In ordinary operation, VACUUM must be careful to take a cleanup lock on
each leaf page of a btree index; this ensures that no indexscans could
still be "in flight" to heap tuples due to be deleted. (Because of
possible index-tuple motion due to concurrent page splits, it's not enough
to lock only the pages we're deleting index tuples from.) In Hot Standby,
the WAL replay process must likewise lock every leaf page. There were
several bugs in the code for that:
* The replay scan might come across unused, all-zero pages in the index.
While btree_xlog_vacuum itself did the right thing (ie, nothing) with
such pages, xlogutils.c supposed that such pages must be corrupt and
would throw an error. This accounts for various reports of replication
failures with "PANIC: WAL contains references to invalid pages". To
fix, add a ReadBufferMode value that instructs XLogReadBufferExtended
not to complain when we're doing this.
* btree_xlog_vacuum performed the extra locking if standbyState ==
STANDBY_SNAPSHOT_READY, but that's not the correct test: we won't open up
for hot standby queries until the database has reached consistency, and
we don't want to do the extra locking till then either, for fear of reading
corrupted pages (which bufmgr.c would complain about). Fix by exporting a
new function from xlog.c that will report whether we're actually in hot
standby replay mode.
* To ensure full coverage of the index in the replay scan, btvacuumscan
would emit a dummy WAL record for the last page of the index, if no
vacuuming work had been done on that page. However, if the last page
of the index is all-zero, that would result in corruption of said page,
since the functions called on it weren't prepared to handle that case.
There's no need to lock any such pages, so change the logic to target
the last normal leaf page instead.
The first two of these bugs were diagnosed by Andres Freund, the other one
by me. Fixes based on ideas from Heikki Linnakangas and myself.
This has been wrong since Hot Standby was introduced, so back-patch to 9.0.
WAL records of hint bit updates is useful to tools that want to examine
which pages have been modified. In particular, this is required to make
the pg_rewind tool safe (without checksums).
This can also be used to test how much extra WAL-logging would occur if
you enabled checksums, without actually enabling them (which you can't
currently do without re-initdb'ing).
Sawada Masahiko, docs by Samrat Revagade. Reviewed by Dilip Kumar, with
further changes by me.
When wal_level=logical, we'll log columns from the old tuple as
configured by the REPLICA IDENTITY facility added in commit
07cacba983ef79be4a84fcd0e0ca3b5fcb85dd65. This makes it possible
a properly-configured logical replication solution to correctly
follow table updates even if they change the chosen key columns,
or, with REPLICA IDENTITY FULL, even if the table has no key at
all. Note that updates which do not modify the replica identity
column won't log anything extra, making the choice of a good key
(i.e. one that will rarely be changed) important to performance
when wal_level=logical is configured.
Each insert, update, or delete to a catalog table will also log
the CMIN and/or CMAX values of stamped by the current transaction.
This is necessary because logical decoding will require access to
historical snapshots of the catalog in order to decode some data
types, and the CMIN/CMAX values that we may need in order to judge
row visibility may have been overwritten by the time we need them.
Andres Freund, reviewed in various versions by myself, Heikki
Linnakangas, KONDO Mitsumasa, and many others.
This patch replaces WALInsertLock with a number of WAL insertion slots,
allowing multiple backends to insert WAL records to the WAL buffers
concurrently. This is particularly useful for parallel loading large amounts
of data on a system with many CPUs.
This has one user-visible change: switching to a new WAL segment with
pg_switch_xlog() now fills the remaining unused portion of the segment with
zeros. This potentially adds some overhead, but it has been a very common
practice by DBA's to clear the "tail" of the segment with an external
pg_clearxlogtail utility anyway, to make the WAL files compress better.
With this patch, it's no longer necessary to do that.
This patch adds a new GUC, xloginsert_slots, to tune the number of WAL
insertion slots. Performance testing suggests that the default, 8, works
pretty well for all kinds of worklods, but I left the GUC in place to allow
others with different hardware to test that easily. We might want to remove
that before release.
Reviewed by Andres Freund.
MarkBufferDirtyHint() writes WAL, and should know if it's got a
standard buffer or not. Currently, the only callers where buffer_std
is false are related to the FSM.
In passing, rename XLOG_HINT to XLOG_FPI, which is more descriptive.
Back-patch to 9.3.
Checksums are set immediately prior to flush out of shared buffers
and checked when pages are read in again. Hint bit setting will
require full page write when block is dirtied, which causes various
infrastructure changes. Extensive comments, docs and README.
WARNING message thrown if checksum fails on non-all zeroes page;
ERROR thrown but can be disabled with ignore_checksum_failure = on.
Feature enabled by an initdb option, since transition from option off
to option on is long and complex and has not yet been implemented.
Default is not to use checksums.
Checksum used is WAL CRC-32 truncated to 16-bits.
Simon Riggs, Jeff Davis, Greg Smith
Wide input and assistance from many community members. Thank you.
The reason this wasn't supported before was that GiST indexes need an
increasing sequence to detect concurrent page-splits. In a regular WAL-
logged GiST index, the LSN of the page-split record is used for that
purpose, and in a temporary index, we can get away with a backend-local
counter. Neither of those methods works for an unlogged relation.
To provide such an increasing sequence of numbers, create a "fake LSN"
counter that is saved and restored across shutdowns. On recovery, unlogged
relations are blown away, so the counter doesn't need to survive that
either.
Jeevan Chalke, based on discussions with Robert Haas, Tom Lane and me.
This mirrors the changes done earlier to the server in standby mode. When
receivelog reaches the end of a timeline, as reported by the server, it
fetches the timeline history file of the next timeline, and restarts
streaming from the new timeline by issuing a new START_STREAMING command.
When pg_receivexlog crosses a timeline, it leaves the .partial suffix on the
last segment on the old timeline. This helps you to tell apart a partial
segment left in the directory because of a timeline switch, and a completed
segment. If you just follow a single server, it won't make a difference, but
it can be significant in more complicated scenarios where new WAL is still
generated on the old timeline.
This includes two small changes to the streaming replication protocol:
First, when you reach the end of timeline while streaming, the server now
sends the TLI of the next timeline in the server's history to the client.
pg_receivexlog uses that as the next timeline, so that it doesn't need to
parse the timeline history file like a standby server does. Second, when
BASE_BACKUP command sends the begin and end WAL positions, it now also sends
the timeline IDs corresponding the positions.
If you take a base backup from a standby server with "pg_basebackup -X
fetch", and the timeline switches while the backup is being taken, the
backup used to fail with an error "requested WAL segment %s has already
been removed". This is because the server-side code that sends over the
required WAL files would not construct the WAL filename with the correct
timeline after a switch.
Fix that by using readdir() to scan pg_xlog for all the WAL segments in the
range, regardless of timeline.
Also, include all timeline history files in the backup, if taken with
"-X fetch". That fixes another related bug: If a timeline switch happened
just before the backup was initiated in a standby, the WAL segment
containing the initial checkpoint record contains WAL from the older
timeline too. Recovery will not accept that without a timeline history file
that lists the older timeline.
Backpatch to 9.2. Versions prior to that were not affected as you could not
take a base backup from a standby before 9.2.
Most of the time, the last replayed record comes from the recovery target
timeline, but there is a corner case where it makes a difference. When
the startup process scans for a new timeline, and decides to change recovery
target timeline, there is a window where the recovery target TLI has already
been bumped, but there are no WAL segments from the new timeline in pg_xlog
yet. For example, if we have just replayed up to point 0/30002D8, on
timeline 1, there is a WAL file called 000000010000000000000003 in pg_xlog
that contains the WAL up to that point. When recovery switches recovery
target timeline to 2, a walsender can immediately try to read WAL from
0/30002D8, from timeline 2, so it will try to open WAL file
000000020000000000000003. However, that doesn't exist yet - the startup
process hasn't copied that file from the archive yet nor has the walreceiver
streamed it yet, so walsender fails with error "requested WAL segment
000000020000000000000003 has already been removed". That's harmless, in that
the standby will try to reconnect later and by that time the segment is
already created, but error messages that should be ignored are not good.
To fix that, have walsender track the TLI of the last replayed record,
instead of the recovery target timeline. That way walsender will not try to
read anything from timeline 2, until the WAL segment has been created and at
least one record has been replayed from it. The recovery target timeline is
now xlog.c's internal affair, it doesn't need to be exposed in shared memory
anymore.
This fixes the error reported by Thom Brown. depesz the same error message,
but I'm not sure if this fixes his scenario.
Before this patch, streaming replication would refuse to start replicating
if the timeline in the primary doesn't exactly match the standby. The
situation where it doesn't match is when you have a master, and two
standbys, and you promote one of the standbys to become new master.
Promoting bumps up the timeline ID, and after that bump, the other standby
would refuse to continue.
There's significantly more timeline related logic in streaming replication
now. First of all, when a standby connects to primary, it will ask the
primary for any timeline history files that are missing from the standby.
The missing files are sent using a new replication command TIMELINE_HISTORY,
and stored in standby's pg_xlog directory. Using the timeline history files,
the standby can follow the latest timeline present in the primary
(recovery_target_timeline='latest'), just as it can follow new timelines
appearing in an archive directory.
START_REPLICATION now takes a TIMELINE parameter, to specify exactly which
timeline to stream WAL from. This allows the standby to request the primary
to send over WAL that precedes the promotion. The replication protocol is
changed slightly (in a backwards-compatible way although there's little hope
of streaming replication working across major versions anyway), to allow
replication to stop when the end of timeline reached, putting the walsender
back into accepting a replication command.
Many thanks to Amit Kapila for testing and reviewing various versions of
this patch.
Most of the replay functions for WAL record types that modify more than
one page failed to ensure that those pages were locked correctly to ensure
that concurrent queries could not see inconsistent page states. This is
a hangover from coding decisions made long before Hot Standby was added,
when it was hardly necessary to acquire buffer locks during WAL replay
at all, let alone hold them for carefully-chosen periods.
The key problem was that RestoreBkpBlocks was written to hold lock on each
page restored from a full-page image for only as long as it took to update
that page. This was guaranteed to break any WAL replay function in which
there was any update-ordering constraint between pages, because even if the
nominal order of the pages is the right one, any mixture of full-page and
non-full-page updates in the same record would result in out-of-order
updates. Moreover, it wouldn't work for situations where there's a
requirement to maintain lock on one page while updating another. Failure
to honor an update ordering constraint in this way is thought to be the
cause of bug #7648 from Daniel Farina: what seems to have happened there
is that a btree page being split was rewritten from a full-page image
before the new right sibling page was written, and because lock on the
original page was not maintained it was possible for hot standby queries to
try to traverse the page's right-link to the not-yet-existing sibling page.
To fix, get rid of RestoreBkpBlocks as such, and instead create a new
function RestoreBackupBlock that restores just one full-page image at a
time. This function can be invoked by WAL replay functions at the points
where they would otherwise perform non-full-page updates; in this way, the
physical order of page updates remains the same no matter which pages are
replaced by full-page images. We can then further adjust the logic in
individual replay functions if it is necessary to hold buffer locks
for overlapping periods. A side benefit is that we can simplify the
handling of concurrency conflict resolution by moving that code into the
record-type-specfic functions; there's no more need to contort the code
layout to keep conflict resolution in front of the RestoreBkpBlocks call.
In connection with that, standardize on zero-based numbering rather than
one-based numbering for referencing the full-page images. In HEAD, I
removed the macros XLR_BKP_BLOCK_1 through XLR_BKP_BLOCK_4. They are
still there in the header files in previous branches, but are no longer
used by the code.
In addition, fix some other bugs identified in the course of making these
changes:
spgRedoAddNode could fail to update the parent downlink at all, if the
parent tuple is in the same page as either the old or new split tuple and
we're not doing a full-page image: it would get fooled by the LSN having
been advanced already. This would result in permanent index corruption,
not just transient failure of concurrent queries.
Also, ginHeapTupleFastInsert's "merge lists" case failed to mark the old
tail page as a candidate for a full-page image; in the worst case this
could result in torn-page corruption.
heap_xlog_freeze() was inconsistent about using a cleanup lock or plain
exclusive lock: it did the former in the normal path but the latter for a
full-page image. A plain exclusive lock seems sufficient, so change to
that.
Also, remove gistRedoPageDeleteRecord(), which has been dead code since
VACUUM FULL was rewritten.
Back-patch to 9.0, where hot standby was introduced. Note however that 9.0
had a significantly different WAL-logging scheme for GIST index updates,
and it doesn't appear possible to make that scheme safe for concurrent hot
standby queries, because it can leave inconsistent states in the index even
between WAL records. Given the lack of complaints from the field, we won't
work too hard on fixing that branch.
The cascading replication code assumed that the current RecoveryTargetTLI
never changes, but that's not true with recovery_target_timeline='latest'.
The obvious upshot of that is that RecoveryTargetTLI in shared memory needs
to be protected by a lock. A less obvious consequence is that when a
cascading standby is connected, and the standby switches to a new target
timeline after scanning the archive, it will continue to stream WAL to the
cascading standby, but from a wrong file, ie. the file of the previous
timeline. For example, if the standby is currently streaming from the middle
of file 000000010000000000000005, and the timeline changes, the standby
will continue to stream from that file. However, the WAL on the new
timeline is in file 000000020000000000000005, so the standby sends garbage
from 000000010000000000000005 to the cascading standby, instead of the
correct WAL from file 000000020000000000000005.
This also fixes a related bug where a partial WAL segment is restored from
the archive and streamed to a cascading standby. The code assumed that when
a WAL segment is copied from the archive, it can immediately be fully
streamed to a cascading standby. However, if the segment is only partially
filled, ie. has the right size, but only N first bytes contain valid WAL,
that's not safe. That can happen if a partial WAL segment is manually copied
to the archive, or if a partial WAL segment is archived because a server is
started up on a new timeline within that segment. The cascading standby will
get confused if the WAL it received is not valid, and will get stuck until
it's restarted. This patch fixes that problem by not allowing WAL restored
from the archive to be streamed to a cascading standby until it's been
replayed, and thus validated.
This saves a few bytes of WAL space, but the real motivation is to make it
predictable how much WAL space a record requires, as it no longer depends
on whether we need to waste the last few bytes at end of WAL page because
the header doesn't fit.
The total length field of WAL record, xl_tot_len, is moved to the beginning
of the WAL record header, so that it is still always found on the first page
where a WAL record begins.
Bump WAL version number again as this is an incompatible change.
The comments claimed that wasting the last segment made it easier to do
calculations with XLogRecPtrs, because you don't have problems representing
last-byte-position-plus-1 that way. In my experience, however, it only made
things more complicated, because the there was two ways to represent the
boundary at the beginning of a logical log file: logid = n+1 and xrecoff = 0,
or as xlogid = n and xrecoff = 4GB - XLOG_SEG_SIZE. Some functions were
picky about which representation was used.
Also, use a 64-bit segment number instead of the log/seg combination, to
point to a certain WAL segment. We assume that all platforms have a working
64-bit integer type nowadays.
This is an incompatible change in WAL format, so bumping WAL version number.
Users of asynchronous-commit mode expect there to be a guaranteed maximum
delay before an async commit's WAL records get flushed to disk. The
original version of the walwriter hibernation patch broke that. Add an
extra shared-memory flag to allow async commits to kick the walwriter out
of hibernation mode, without adding any noticeable overhead in cases where
no action is needed.