mirror of https://github.com/postgres/postgres
Parallel executor support.
This code provides infrastructure for a parallel leader to start up parallel workers to execute subtrees of the plan tree being executed in the master. User-supplied parameters from ParamListInfo are passed down, but PARAM_EXEC parameters are not. Various other constructs, such as initplans, subplans, and CTEs, are also not currently shared. Nevertheless, there's enough here to support a basic implementation of parallel query, and we can lift some of the current restrictions as needed. Amit Kapila and Robert Haas
This commit is contained in:
parent
0557dc276f
commit
d1b7c1ffe7
|
@ -13,7 +13,8 @@ top_builddir = ../../..
|
|||
include $(top_builddir)/src/Makefile.global
|
||||
|
||||
OBJS = execAmi.o execCurrent.o execGrouping.o execIndexing.o execJunk.o \
|
||||
execMain.o execProcnode.o execQual.o execScan.o execTuples.o \
|
||||
execMain.o execParallel.o execProcnode.o execQual.o \
|
||||
execScan.o execTuples.o \
|
||||
execUtils.o functions.o instrument.o nodeAppend.o nodeAgg.o \
|
||||
nodeBitmapAnd.o nodeBitmapOr.o \
|
||||
nodeBitmapHeapscan.o nodeBitmapIndexscan.o nodeCustom.o nodeHash.o \
|
||||
|
|
|
@ -0,0 +1,585 @@
|
|||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* execParallel.c
|
||||
* Support routines for parallel execution.
|
||||
*
|
||||
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* src/backend/executor/execParallel.c
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#include "postgres.h"
|
||||
|
||||
#include "executor/execParallel.h"
|
||||
#include "executor/executor.h"
|
||||
#include "executor/tqueue.h"
|
||||
#include "nodes/nodeFuncs.h"
|
||||
#include "optimizer/planmain.h"
|
||||
#include "optimizer/planner.h"
|
||||
#include "storage/spin.h"
|
||||
#include "tcop/tcopprot.h"
|
||||
#include "utils/memutils.h"
|
||||
#include "utils/snapmgr.h"
|
||||
|
||||
/*
|
||||
* Magic numbers for parallel executor communication. We use constants
|
||||
* greater than any 32-bit integer here so that values < 2^32 can be used
|
||||
* by individual parallel nodes to store their own state.
|
||||
*/
|
||||
#define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000001)
|
||||
#define PARALLEL_KEY_PARAMS UINT64CONST(0xE000000000000002)
|
||||
#define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000003)
|
||||
#define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000004)
|
||||
#define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000005)
|
||||
|
||||
#define PARALLEL_TUPLE_QUEUE_SIZE 65536
|
||||
|
||||
/* DSM structure for accumulating per-PlanState instrumentation. */
|
||||
typedef struct SharedPlanStateInstrumentation
|
||||
{
|
||||
int plan_node_id;
|
||||
slock_t mutex;
|
||||
Instrumentation instr;
|
||||
} SharedPlanStateInstrumentation;
|
||||
|
||||
/* DSM structure for accumulating per-PlanState instrumentation. */
|
||||
struct SharedExecutorInstrumentation
|
||||
{
|
||||
int instrument_options;
|
||||
int ps_ninstrument; /* # of ps_instrument structures following */
|
||||
SharedPlanStateInstrumentation ps_instrument[FLEXIBLE_ARRAY_MEMBER];
|
||||
};
|
||||
|
||||
/* Context object for ExecParallelEstimate. */
|
||||
typedef struct ExecParallelEstimateContext
|
||||
{
|
||||
ParallelContext *pcxt;
|
||||
int nnodes;
|
||||
} ExecParallelEstimateContext;
|
||||
|
||||
/* Context object for ExecParallelEstimate. */
|
||||
typedef struct ExecParallelInitializeDSMContext
|
||||
{
|
||||
ParallelContext *pcxt;
|
||||
SharedExecutorInstrumentation *instrumentation;
|
||||
int nnodes;
|
||||
} ExecParallelInitializeDSMContext;
|
||||
|
||||
/* Helper functions that run in the parallel leader. */
|
||||
static char *ExecSerializePlan(Plan *plan, List *rangetable);
|
||||
static bool ExecParallelEstimate(PlanState *node,
|
||||
ExecParallelEstimateContext *e);
|
||||
static bool ExecParallelInitializeDSM(PlanState *node,
|
||||
ExecParallelInitializeDSMContext *d);
|
||||
static shm_mq_handle **ExecParallelSetupTupleQueues(ParallelContext *pcxt);
|
||||
static bool ExecParallelRetrieveInstrumentation(PlanState *planstate,
|
||||
SharedExecutorInstrumentation *instrumentation);
|
||||
|
||||
/* Helper functions that run in the parallel worker. */
|
||||
static void ParallelQueryMain(dsm_segment *seg, shm_toc *toc);
|
||||
static DestReceiver *ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc);
|
||||
|
||||
/*
|
||||
* Create a serialized representation of the plan to be sent to each worker.
|
||||
*/
|
||||
static char *
|
||||
ExecSerializePlan(Plan *plan, List *rangetable)
|
||||
{
|
||||
PlannedStmt *pstmt;
|
||||
ListCell *tlist;
|
||||
|
||||
/* We can't scribble on the original plan, so make a copy. */
|
||||
plan = copyObject(plan);
|
||||
|
||||
/*
|
||||
* The worker will start its own copy of the executor, and that copy will
|
||||
* insert a junk filter if the toplevel node has any resjunk entries. We
|
||||
* don't want that to happen, because while resjunk columns shouldn't be
|
||||
* sent back to the user, here the tuples are coming back to another
|
||||
* backend which may very well need them. So mutate the target list
|
||||
* accordingly. This is sort of a hack; there might be better ways to do
|
||||
* this...
|
||||
*/
|
||||
foreach(tlist, plan->targetlist)
|
||||
{
|
||||
TargetEntry *tle = (TargetEntry *) lfirst(tlist);
|
||||
|
||||
tle->resjunk = false;
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a dummy PlannedStmt. Most of the fields don't need to be valid
|
||||
* for our purposes, but the worker will need at least a minimal
|
||||
* PlannedStmt to start the executor.
|
||||
*/
|
||||
pstmt = makeNode(PlannedStmt);
|
||||
pstmt->commandType = CMD_SELECT;
|
||||
pstmt->queryId = 0;
|
||||
pstmt->hasReturning = 0;
|
||||
pstmt->hasModifyingCTE = 0;
|
||||
pstmt->canSetTag = 1;
|
||||
pstmt->transientPlan = 0;
|
||||
pstmt->planTree = plan;
|
||||
pstmt->rtable = rangetable;
|
||||
pstmt->resultRelations = NIL;
|
||||
pstmt->utilityStmt = NULL;
|
||||
pstmt->subplans = NIL;
|
||||
pstmt->rewindPlanIDs = NULL;
|
||||
pstmt->rowMarks = NIL;
|
||||
pstmt->nParamExec = 0;
|
||||
pstmt->relationOids = NIL;
|
||||
pstmt->invalItems = NIL; /* workers can't replan anyway... */
|
||||
pstmt->hasRowSecurity = false;
|
||||
|
||||
/* Return serialized copy of our dummy PlannedStmt. */
|
||||
return nodeToString(pstmt);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ordinary plan nodes won't do anything here, but parallel-aware plan nodes
|
||||
* may need some state which is shared across all parallel workers. Before
|
||||
* we size the DSM, give them a chance to call shm_toc_estimate_chunk or
|
||||
* shm_toc_estimate_keys on &pcxt->estimator.
|
||||
*
|
||||
* While we're at it, count the number of PlanState nodes in the tree, so
|
||||
* we know how many SharedPlanStateInstrumentation structures we need.
|
||||
*/
|
||||
static bool
|
||||
ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e)
|
||||
{
|
||||
if (planstate == NULL)
|
||||
return false;
|
||||
|
||||
/* Count this node. */
|
||||
e->nnodes++;
|
||||
|
||||
/*
|
||||
* XXX. Call estimators for parallel-aware nodes here, when we have
|
||||
* some.
|
||||
*/
|
||||
|
||||
return planstate_tree_walker(planstate, ExecParallelEstimate, e);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ordinary plan nodes won't do anything here, but parallel-aware plan nodes
|
||||
* may need to initialize shared state in the DSM before parallel workers
|
||||
* are available. They can allocate the space they previous estimated using
|
||||
* shm_toc_allocate, and add the keys they previously estimated using
|
||||
* shm_toc_insert, in each case targeting pcxt->toc.
|
||||
*/
|
||||
static bool
|
||||
ExecParallelInitializeDSM(PlanState *planstate,
|
||||
ExecParallelInitializeDSMContext *d)
|
||||
{
|
||||
if (planstate == NULL)
|
||||
return false;
|
||||
|
||||
/* If instrumentation is enabled, initialize array slot for this node. */
|
||||
if (d->instrumentation != NULL)
|
||||
{
|
||||
SharedPlanStateInstrumentation *instrumentation;
|
||||
|
||||
instrumentation = &d->instrumentation->ps_instrument[d->nnodes];
|
||||
Assert(d->nnodes < d->instrumentation->ps_ninstrument);
|
||||
instrumentation->plan_node_id = planstate->plan->plan_node_id;
|
||||
SpinLockInit(&instrumentation->mutex);
|
||||
InstrInit(&instrumentation->instr,
|
||||
d->instrumentation->instrument_options);
|
||||
}
|
||||
|
||||
/* Count this node. */
|
||||
d->nnodes++;
|
||||
|
||||
/*
|
||||
* XXX. Call initializers for parallel-aware plan nodes, when we have
|
||||
* some.
|
||||
*/
|
||||
|
||||
return planstate_tree_walker(planstate, ExecParallelInitializeDSM, d);
|
||||
}
|
||||
|
||||
/*
|
||||
* It sets up the response queues for backend workers to return tuples
|
||||
* to the main backend and start the workers.
|
||||
*/
|
||||
static shm_mq_handle **
|
||||
ExecParallelSetupTupleQueues(ParallelContext *pcxt)
|
||||
{
|
||||
shm_mq_handle **responseq;
|
||||
char *tqueuespace;
|
||||
int i;
|
||||
|
||||
/* Skip this if no workers. */
|
||||
if (pcxt->nworkers == 0)
|
||||
return NULL;
|
||||
|
||||
/* Allocate memory for shared memory queue handles. */
|
||||
responseq = (shm_mq_handle **)
|
||||
palloc(pcxt->nworkers * sizeof(shm_mq_handle *));
|
||||
|
||||
/* Allocate space from the DSM for the queues themselves. */
|
||||
tqueuespace = shm_toc_allocate(pcxt->toc,
|
||||
PARALLEL_TUPLE_QUEUE_SIZE * pcxt->nworkers);
|
||||
|
||||
/* Create the queues, and become the receiver for each. */
|
||||
for (i = 0; i < pcxt->nworkers; ++i)
|
||||
{
|
||||
shm_mq *mq;
|
||||
|
||||
mq = shm_mq_create(tqueuespace + i * PARALLEL_TUPLE_QUEUE_SIZE,
|
||||
(Size) PARALLEL_TUPLE_QUEUE_SIZE);
|
||||
|
||||
shm_mq_set_receiver(mq, MyProc);
|
||||
responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL);
|
||||
}
|
||||
|
||||
/* Add array of queues to shm_toc, so others can find it. */
|
||||
shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace);
|
||||
|
||||
/* Return array of handles. */
|
||||
return responseq;
|
||||
}
|
||||
|
||||
/*
|
||||
* Sets up the required infrastructure for backend workers to perform
|
||||
* execution and return results to the main backend.
|
||||
*/
|
||||
ParallelExecutorInfo *
|
||||
ExecInitParallelPlan(PlanState *planstate, EState *estate, int nworkers)
|
||||
{
|
||||
ParallelExecutorInfo *pei;
|
||||
ParallelContext *pcxt;
|
||||
ExecParallelEstimateContext e;
|
||||
ExecParallelInitializeDSMContext d;
|
||||
char *pstmt_data;
|
||||
char *pstmt_space;
|
||||
char *param_space;
|
||||
BufferUsage *bufusage_space;
|
||||
SharedExecutorInstrumentation *instrumentation = NULL;
|
||||
int pstmt_len;
|
||||
int param_len;
|
||||
int instrumentation_len = 0;
|
||||
|
||||
/* Allocate object for return value. */
|
||||
pei = palloc0(sizeof(ParallelExecutorInfo));
|
||||
pei->planstate = planstate;
|
||||
|
||||
/* Fix up and serialize plan to be sent to workers. */
|
||||
pstmt_data = ExecSerializePlan(planstate->plan, estate->es_range_table);
|
||||
|
||||
/* Create a parallel context. */
|
||||
pcxt = CreateParallelContext(ParallelQueryMain, nworkers);
|
||||
pei->pcxt = pcxt;
|
||||
|
||||
/*
|
||||
* Before telling the parallel context to create a dynamic shared memory
|
||||
* segment, we need to figure out how big it should be. Estimate space
|
||||
* for the various things we need to store.
|
||||
*/
|
||||
|
||||
/* Estimate space for serialized PlannedStmt. */
|
||||
pstmt_len = strlen(pstmt_data) + 1;
|
||||
shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len);
|
||||
shm_toc_estimate_keys(&pcxt->estimator, 1);
|
||||
|
||||
/* Estimate space for serialized ParamListInfo. */
|
||||
param_len = EstimateParamListSpace(estate->es_param_list_info);
|
||||
shm_toc_estimate_chunk(&pcxt->estimator, param_len);
|
||||
shm_toc_estimate_keys(&pcxt->estimator, 1);
|
||||
|
||||
/*
|
||||
* Estimate space for BufferUsage.
|
||||
*
|
||||
* If EXPLAIN is not in use and there are no extensions loaded that care,
|
||||
* we could skip this. But we have no way of knowing whether anyone's
|
||||
* looking at pgBufferUsage, so do it unconditionally.
|
||||
*/
|
||||
shm_toc_estimate_chunk(&pcxt->estimator,
|
||||
sizeof(BufferUsage) * pcxt->nworkers);
|
||||
shm_toc_estimate_keys(&pcxt->estimator, 1);
|
||||
|
||||
/* Estimate space for tuple queues. */
|
||||
shm_toc_estimate_chunk(&pcxt->estimator,
|
||||
PARALLEL_TUPLE_QUEUE_SIZE * pcxt->nworkers);
|
||||
shm_toc_estimate_keys(&pcxt->estimator, 1);
|
||||
|
||||
/*
|
||||
* Give parallel-aware nodes a chance to add to the estimates, and get
|
||||
* a count of how many PlanState nodes there are.
|
||||
*/
|
||||
e.pcxt = pcxt;
|
||||
e.nnodes = 0;
|
||||
ExecParallelEstimate(planstate, &e);
|
||||
|
||||
/* Estimate space for instrumentation, if required. */
|
||||
if (estate->es_instrument)
|
||||
{
|
||||
instrumentation_len =
|
||||
offsetof(SharedExecutorInstrumentation, ps_instrument)
|
||||
+ sizeof(SharedPlanStateInstrumentation) * e.nnodes;
|
||||
shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len);
|
||||
shm_toc_estimate_keys(&pcxt->estimator, 1);
|
||||
}
|
||||
|
||||
/* Everyone's had a chance to ask for space, so now create the DSM. */
|
||||
InitializeParallelDSM(pcxt);
|
||||
|
||||
/*
|
||||
* OK, now we have a dynamic shared memory segment, and it should be big
|
||||
* enough to store all of the data we estimated we would want to put into
|
||||
* it, plus whatever general stuff (not specifically executor-related) the
|
||||
* ParallelContext itself needs to store there. None of the space we
|
||||
* asked for has been allocated or initialized yet, though, so do that.
|
||||
*/
|
||||
|
||||
/* Store serialized PlannedStmt. */
|
||||
pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len);
|
||||
memcpy(pstmt_space, pstmt_data, pstmt_len);
|
||||
shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space);
|
||||
|
||||
/* Store serialized ParamListInfo. */
|
||||
param_space = shm_toc_allocate(pcxt->toc, param_len);
|
||||
shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMS, param_space);
|
||||
SerializeParamList(estate->es_param_list_info, ¶m_space);
|
||||
|
||||
/* Allocate space for each worker's BufferUsage; no need to initialize. */
|
||||
bufusage_space = shm_toc_allocate(pcxt->toc,
|
||||
sizeof(BufferUsage) * pcxt->nworkers);
|
||||
shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space);
|
||||
pei->buffer_usage = bufusage_space;
|
||||
|
||||
/* Set up tuple queues. */
|
||||
pei->tqueue = ExecParallelSetupTupleQueues(pcxt);
|
||||
|
||||
/*
|
||||
* If instrumentation options were supplied, allocate space for the
|
||||
* data. It only gets partially initialized here; the rest happens
|
||||
* during ExecParallelInitializeDSM.
|
||||
*/
|
||||
if (estate->es_instrument)
|
||||
{
|
||||
instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len);
|
||||
instrumentation->instrument_options = estate->es_instrument;
|
||||
instrumentation->ps_ninstrument = e.nnodes;
|
||||
shm_toc_insert(pcxt->toc, PARALLEL_KEY_INSTRUMENTATION,
|
||||
instrumentation);
|
||||
pei->instrumentation = instrumentation;
|
||||
}
|
||||
|
||||
/*
|
||||
* Give parallel-aware nodes a chance to initialize their shared data.
|
||||
* This also initializes the elements of instrumentation->ps_instrument,
|
||||
* if it exists.
|
||||
*/
|
||||
d.pcxt = pcxt;
|
||||
d.instrumentation = instrumentation;
|
||||
d.nnodes = 0;
|
||||
ExecParallelInitializeDSM(planstate, &d);
|
||||
|
||||
/*
|
||||
* Make sure that the world hasn't shifted under our feat. This could
|
||||
* probably just be an Assert(), but let's be conservative for now.
|
||||
*/
|
||||
if (e.nnodes != d.nnodes)
|
||||
elog(ERROR, "inconsistent count of PlanState nodes");
|
||||
|
||||
/* OK, we're ready to rock and roll. */
|
||||
return pei;
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy instrumentation information about this node and its descendents from
|
||||
* dynamic shared memory.
|
||||
*/
|
||||
static bool
|
||||
ExecParallelRetrieveInstrumentation(PlanState *planstate,
|
||||
SharedExecutorInstrumentation *instrumentation)
|
||||
{
|
||||
int i;
|
||||
int plan_node_id = planstate->plan->plan_node_id;
|
||||
SharedPlanStateInstrumentation *ps_instrument;
|
||||
|
||||
/* Find the instumentation for this node. */
|
||||
for (i = 0; i < instrumentation->ps_ninstrument; ++i)
|
||||
if (instrumentation->ps_instrument[i].plan_node_id == plan_node_id)
|
||||
break;
|
||||
if (i >= instrumentation->ps_ninstrument)
|
||||
elog(ERROR, "plan node %d not found", plan_node_id);
|
||||
|
||||
/* No need to acquire the spinlock here; workers have exited already. */
|
||||
ps_instrument = &instrumentation->ps_instrument[i];
|
||||
InstrAggNode(planstate->instrument, &ps_instrument->instr);
|
||||
|
||||
return planstate_tree_walker(planstate, ExecParallelRetrieveInstrumentation,
|
||||
instrumentation);
|
||||
}
|
||||
|
||||
/*
|
||||
* Finish parallel execution. We wait for parallel workers to finish, and
|
||||
* accumulate their buffer usage and instrumentation.
|
||||
*/
|
||||
void
|
||||
ExecParallelFinish(ParallelExecutorInfo *pei)
|
||||
{
|
||||
int i;
|
||||
|
||||
/* First, wait for the workers to finish. */
|
||||
WaitForParallelWorkersToFinish(pei->pcxt);
|
||||
|
||||
/* Next, accumulate buffer usage. */
|
||||
for (i = 0; i < pei->pcxt->nworkers; ++i)
|
||||
InstrAccumParallelQuery(&pei->buffer_usage[i]);
|
||||
|
||||
/* Finally, accumulate instrumentation, if any. */
|
||||
if (pei->instrumentation)
|
||||
ExecParallelRetrieveInstrumentation(pei->planstate,
|
||||
pei->instrumentation);
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a DestReceiver to write tuples we produce to the shm_mq designated
|
||||
* for that purpose.
|
||||
*/
|
||||
static DestReceiver *
|
||||
ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc)
|
||||
{
|
||||
char *mqspace;
|
||||
shm_mq *mq;
|
||||
|
||||
mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE);
|
||||
mqspace += ParallelWorkerNumber * PARALLEL_TUPLE_QUEUE_SIZE;
|
||||
mq = (shm_mq *) mqspace;
|
||||
shm_mq_set_sender(mq, MyProc);
|
||||
return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL));
|
||||
}
|
||||
|
||||
/*
|
||||
* Create a QueryDesc for the PlannedStmt we are to execute, and return it.
|
||||
*/
|
||||
static QueryDesc *
|
||||
ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver,
|
||||
int instrument_options)
|
||||
{
|
||||
char *pstmtspace;
|
||||
char *paramspace;
|
||||
PlannedStmt *pstmt;
|
||||
ParamListInfo paramLI;
|
||||
|
||||
/* Reconstruct leader-supplied PlannedStmt. */
|
||||
pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT);
|
||||
pstmt = (PlannedStmt *) stringToNode(pstmtspace);
|
||||
|
||||
/* Reconstruct ParamListInfo. */
|
||||
paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMS);
|
||||
paramLI = RestoreParamList(¶mspace);
|
||||
|
||||
/*
|
||||
* Create a QueryDesc for the query.
|
||||
*
|
||||
* It's not obvious how to obtain the query string from here; and even if
|
||||
* we could copying it would take more cycles than not copying it. But
|
||||
* it's a bit unsatisfying to just use a dummy string here, so consider
|
||||
* revising this someday.
|
||||
*/
|
||||
return CreateQueryDesc(pstmt,
|
||||
"<parallel query>",
|
||||
GetActiveSnapshot(), InvalidSnapshot,
|
||||
receiver, paramLI, instrument_options);
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy instrumentation information from this node and its descendents into
|
||||
* dynamic shared memory, so that the parallel leader can retrieve it.
|
||||
*/
|
||||
static bool
|
||||
ExecParallelReportInstrumentation(PlanState *planstate,
|
||||
SharedExecutorInstrumentation *instrumentation)
|
||||
{
|
||||
int i;
|
||||
int plan_node_id = planstate->plan->plan_node_id;
|
||||
SharedPlanStateInstrumentation *ps_instrument;
|
||||
|
||||
/*
|
||||
* If we shuffled the plan_node_id values in ps_instrument into sorted
|
||||
* order, we could use binary search here. This might matter someday
|
||||
* if we're pushing down sufficiently large plan trees. For now, do it
|
||||
* the slow, dumb way.
|
||||
*/
|
||||
for (i = 0; i < instrumentation->ps_ninstrument; ++i)
|
||||
if (instrumentation->ps_instrument[i].plan_node_id == plan_node_id)
|
||||
break;
|
||||
if (i >= instrumentation->ps_ninstrument)
|
||||
elog(ERROR, "plan node %d not found", plan_node_id);
|
||||
|
||||
/*
|
||||
* There's one SharedPlanStateInstrumentation per plan_node_id, so we
|
||||
* must use a spinlock in case multiple workers report at the same time.
|
||||
*/
|
||||
ps_instrument = &instrumentation->ps_instrument[i];
|
||||
SpinLockAcquire(&ps_instrument->mutex);
|
||||
InstrAggNode(&ps_instrument->instr, planstate->instrument);
|
||||
SpinLockRelease(&ps_instrument->mutex);
|
||||
|
||||
return planstate_tree_walker(planstate, ExecParallelReportInstrumentation,
|
||||
instrumentation);
|
||||
}
|
||||
|
||||
/*
|
||||
* Main entrypoint for parallel query worker processes.
|
||||
*
|
||||
* We reach this function from ParallelMain, so the setup necessary to create
|
||||
* a sensible parallel environment has already been done; ParallelMain worries
|
||||
* about stuff like the transaction state, combo CID mappings, and GUC values,
|
||||
* so we don't need to deal with any of that here.
|
||||
*
|
||||
* Our job is to deal with concerns specific to the executor. The parallel
|
||||
* group leader will have stored a serialized PlannedStmt, and it's our job
|
||||
* to execute that plan and write the resulting tuples to the appropriate
|
||||
* tuple queue. Various bits of supporting information that we need in order
|
||||
* to do this are also stored in the dsm_segment and can be accessed through
|
||||
* the shm_toc.
|
||||
*/
|
||||
static void
|
||||
ParallelQueryMain(dsm_segment *seg, shm_toc *toc)
|
||||
{
|
||||
BufferUsage *buffer_usage;
|
||||
DestReceiver *receiver;
|
||||
QueryDesc *queryDesc;
|
||||
SharedExecutorInstrumentation *instrumentation;
|
||||
int instrument_options = 0;
|
||||
|
||||
/* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */
|
||||
receiver = ExecParallelGetReceiver(seg, toc);
|
||||
instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION);
|
||||
if (instrumentation != NULL)
|
||||
instrument_options = instrumentation->instrument_options;
|
||||
queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options);
|
||||
|
||||
/* Prepare to track buffer usage during query execution. */
|
||||
InstrStartParallelQuery();
|
||||
|
||||
/* Start up the executor, have it run the plan, and then shut it down. */
|
||||
ExecutorStart(queryDesc, 0);
|
||||
ExecutorRun(queryDesc, ForwardScanDirection, 0L);
|
||||
ExecutorFinish(queryDesc);
|
||||
ExecutorEnd(queryDesc);
|
||||
|
||||
/* Report buffer usage during parallel execution. */
|
||||
buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE);
|
||||
InstrEndParallelQuery(&buffer_usage[ParallelWorkerNumber]);
|
||||
|
||||
/* Report instrumentation data if any instrumentation options are set. */
|
||||
if (instrumentation != NULL)
|
||||
ExecParallelReportInstrumentation(queryDesc->planstate,
|
||||
instrumentation);
|
||||
|
||||
/* Cleanup. */
|
||||
FreeQueryDesc(queryDesc);
|
||||
(*receiver->rDestroy) (receiver);
|
||||
}
|
|
@ -18,7 +18,9 @@
|
|||
#include "executor/instrument.h"
|
||||
|
||||
BufferUsage pgBufferUsage;
|
||||
static BufferUsage save_pgBufferUsage;
|
||||
|
||||
static void BufferUsageAdd(BufferUsage *dst, const BufferUsage *add);
|
||||
static void BufferUsageAccumDiff(BufferUsage *dst,
|
||||
const BufferUsage *add, const BufferUsage *sub);
|
||||
|
||||
|
@ -47,6 +49,15 @@ InstrAlloc(int n, int instrument_options)
|
|||
return instr;
|
||||
}
|
||||
|
||||
/* Initialize an pre-allocated instrumentation structure. */
|
||||
void
|
||||
InstrInit(Instrumentation *instr, int instrument_options)
|
||||
{
|
||||
memset(instr, 0, sizeof(Instrumentation));
|
||||
instr->need_bufusage = (instrument_options & INSTRUMENT_BUFFERS) != 0;
|
||||
instr->need_timer = (instrument_options & INSTRUMENT_TIMER) != 0;
|
||||
}
|
||||
|
||||
/* Entry to a plan node */
|
||||
void
|
||||
InstrStartNode(Instrumentation *instr)
|
||||
|
@ -127,6 +138,73 @@ InstrEndLoop(Instrumentation *instr)
|
|||
instr->tuplecount = 0;
|
||||
}
|
||||
|
||||
/* aggregate instrumentation information */
|
||||
void
|
||||
InstrAggNode(Instrumentation *dst, Instrumentation *add)
|
||||
{
|
||||
if (!dst->running && add->running)
|
||||
{
|
||||
dst->running = true;
|
||||
dst->firsttuple = add->firsttuple;
|
||||
}
|
||||
else if (dst->running && add->running && dst->firsttuple > add->firsttuple)
|
||||
dst->firsttuple = add->firsttuple;
|
||||
|
||||
INSTR_TIME_ADD(dst->counter, add->counter);
|
||||
|
||||
dst->tuplecount += add->tuplecount;
|
||||
dst->startup += add->startup;
|
||||
dst->total += add->total;
|
||||
dst->ntuples += add->ntuples;
|
||||
dst->nloops += add->nloops;
|
||||
dst->nfiltered1 += add->nfiltered1;
|
||||
dst->nfiltered2 += add->nfiltered2;
|
||||
|
||||
/* Add delta of buffer usage since entry to node's totals */
|
||||
if (dst->need_bufusage)
|
||||
BufferUsageAdd(&dst->bufusage, &add->bufusage);
|
||||
}
|
||||
|
||||
/* note current values during parallel executor startup */
|
||||
void
|
||||
InstrStartParallelQuery(void)
|
||||
{
|
||||
save_pgBufferUsage = pgBufferUsage;
|
||||
}
|
||||
|
||||
/* report usage after parallel executor shutdown */
|
||||
void
|
||||
InstrEndParallelQuery(BufferUsage *result)
|
||||
{
|
||||
memset(result, 0, sizeof(BufferUsage));
|
||||
BufferUsageAccumDiff(result, &pgBufferUsage, &save_pgBufferUsage);
|
||||
}
|
||||
|
||||
/* accumulate work done by workers in leader's stats */
|
||||
void
|
||||
InstrAccumParallelQuery(BufferUsage *result)
|
||||
{
|
||||
BufferUsageAdd(&pgBufferUsage, result);
|
||||
}
|
||||
|
||||
/* dst += add */
|
||||
static void
|
||||
BufferUsageAdd(BufferUsage *dst, const BufferUsage *add)
|
||||
{
|
||||
dst->shared_blks_hit += add->shared_blks_hit;
|
||||
dst->shared_blks_read += add->shared_blks_read;
|
||||
dst->shared_blks_dirtied += add->shared_blks_dirtied;
|
||||
dst->shared_blks_written += add->shared_blks_written;
|
||||
dst->local_blks_hit += add->local_blks_hit;
|
||||
dst->local_blks_read += add->local_blks_read;
|
||||
dst->local_blks_dirtied += add->local_blks_dirtied;
|
||||
dst->local_blks_written += add->local_blks_written;
|
||||
dst->temp_blks_read += add->temp_blks_read;
|
||||
dst->temp_blks_written += add->temp_blks_written;
|
||||
INSTR_TIME_ADD(dst->blk_read_time, add->blk_read_time);
|
||||
INSTR_TIME_ADD(dst->blk_write_time, add->blk_write_time);
|
||||
}
|
||||
|
||||
/* dst += add - sub */
|
||||
static void
|
||||
BufferUsageAccumDiff(BufferUsage *dst,
|
||||
|
|
|
@ -66,7 +66,9 @@ tqueueStartupReceiver(DestReceiver *self, int operation, TupleDesc typeinfo)
|
|||
static void
|
||||
tqueueShutdownReceiver(DestReceiver *self)
|
||||
{
|
||||
/* do nothing */
|
||||
TQueueDestReceiver *tqueue = (TQueueDestReceiver *) self;
|
||||
|
||||
shm_mq_detach(shm_mq_get_queue(tqueue->handle));
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -112,6 +112,7 @@ CopyPlanFields(const Plan *from, Plan *newnode)
|
|||
COPY_SCALAR_FIELD(total_cost);
|
||||
COPY_SCALAR_FIELD(plan_rows);
|
||||
COPY_SCALAR_FIELD(plan_width);
|
||||
COPY_SCALAR_FIELD(plan_node_id);
|
||||
COPY_NODE_FIELD(targetlist);
|
||||
COPY_NODE_FIELD(qual);
|
||||
COPY_NODE_FIELD(lefttree);
|
||||
|
|
|
@ -271,6 +271,7 @@ _outPlanInfo(StringInfo str, const Plan *node)
|
|||
WRITE_FLOAT_FIELD(total_cost, "%.2f");
|
||||
WRITE_FLOAT_FIELD(plan_rows, "%.0f");
|
||||
WRITE_INT_FIELD(plan_width);
|
||||
WRITE_INT_FIELD(plan_node_id);
|
||||
WRITE_NODE_FIELD(targetlist);
|
||||
WRITE_NODE_FIELD(qual);
|
||||
WRITE_NODE_FIELD(lefttree);
|
||||
|
|
|
@ -16,6 +16,7 @@
|
|||
#include "postgres.h"
|
||||
|
||||
#include "nodes/params.h"
|
||||
#include "storage/shmem.h"
|
||||
#include "utils/datum.h"
|
||||
#include "utils/lsyscache.h"
|
||||
|
||||
|
@ -73,3 +74,157 @@ copyParamList(ParamListInfo from)
|
|||
|
||||
return retval;
|
||||
}
|
||||
|
||||
/*
|
||||
* Estimate the amount of space required to serialize a ParamListInfo.
|
||||
*/
|
||||
Size
|
||||
EstimateParamListSpace(ParamListInfo paramLI)
|
||||
{
|
||||
int i;
|
||||
Size sz = sizeof(int);
|
||||
|
||||
if (paramLI == NULL || paramLI->numParams <= 0)
|
||||
return sz;
|
||||
|
||||
for (i = 0; i < paramLI->numParams; i++)
|
||||
{
|
||||
ParamExternData *prm = ¶mLI->params[i];
|
||||
int16 typLen;
|
||||
bool typByVal;
|
||||
|
||||
/* give hook a chance in case parameter is dynamic */
|
||||
if (!OidIsValid(prm->ptype) && paramLI->paramFetch != NULL)
|
||||
(*paramLI->paramFetch) (paramLI, i + 1);
|
||||
|
||||
sz = add_size(sz, sizeof(Oid)); /* space for type OID */
|
||||
sz = add_size(sz, sizeof(uint16)); /* space for pflags */
|
||||
|
||||
/* space for datum/isnull */
|
||||
if (OidIsValid(prm->ptype))
|
||||
get_typlenbyval(prm->ptype, &typLen, &typByVal);
|
||||
else
|
||||
{
|
||||
/* If no type OID, assume by-value, like copyParamList does. */
|
||||
typLen = sizeof(Datum);
|
||||
typByVal = true;
|
||||
}
|
||||
sz = add_size(sz,
|
||||
datumEstimateSpace(prm->value, prm->isnull, typByVal, typLen));
|
||||
}
|
||||
|
||||
return sz;
|
||||
}
|
||||
|
||||
/*
|
||||
* Serialize a paramListInfo structure into caller-provided storage.
|
||||
*
|
||||
* We write the number of parameters first, as a 4-byte integer, and then
|
||||
* write details for each parameter in turn. The details for each parameter
|
||||
* consist of a 4-byte type OID, 2 bytes of flags, and then the datum as
|
||||
* serialized by datumSerialize(). The caller is responsible for ensuring
|
||||
* that there is enough storage to store the number of bytes that will be
|
||||
* written; use EstimateParamListSpace to find out how many will be needed.
|
||||
* *start_address is updated to point to the byte immediately following those
|
||||
* written.
|
||||
*
|
||||
* RestoreParamList can be used to recreate a ParamListInfo based on the
|
||||
* serialized representation; this will be a static, self-contained copy
|
||||
* just as copyParamList would create.
|
||||
*/
|
||||
void
|
||||
SerializeParamList(ParamListInfo paramLI, char **start_address)
|
||||
{
|
||||
int nparams;
|
||||
int i;
|
||||
|
||||
/* Write number of parameters. */
|
||||
if (paramLI == NULL || paramLI->numParams <= 0)
|
||||
nparams = 0;
|
||||
else
|
||||
nparams = paramLI->numParams;
|
||||
memcpy(*start_address, &nparams, sizeof(int));
|
||||
*start_address += sizeof(int);
|
||||
|
||||
/* Write each parameter in turn. */
|
||||
for (i = 0; i < nparams; i++)
|
||||
{
|
||||
ParamExternData *prm = ¶mLI->params[i];
|
||||
int16 typLen;
|
||||
bool typByVal;
|
||||
|
||||
/* give hook a chance in case parameter is dynamic */
|
||||
if (!OidIsValid(prm->ptype) && paramLI->paramFetch != NULL)
|
||||
(*paramLI->paramFetch) (paramLI, i + 1);
|
||||
|
||||
/* Write type OID. */
|
||||
memcpy(*start_address, &prm->ptype, sizeof(Oid));
|
||||
*start_address += sizeof(Oid);
|
||||
|
||||
/* Write flags. */
|
||||
memcpy(*start_address, &prm->pflags, sizeof(uint16));
|
||||
*start_address += sizeof(uint16);
|
||||
|
||||
/* Write datum/isnull. */
|
||||
if (OidIsValid(prm->ptype))
|
||||
get_typlenbyval(prm->ptype, &typLen, &typByVal);
|
||||
else
|
||||
{
|
||||
/* If no type OID, assume by-value, like copyParamList does. */
|
||||
typLen = sizeof(Datum);
|
||||
typByVal = true;
|
||||
}
|
||||
datumSerialize(prm->value, prm->isnull, typByVal, typLen,
|
||||
start_address);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Copy a ParamListInfo structure.
|
||||
*
|
||||
* The result is allocated in CurrentMemoryContext.
|
||||
*
|
||||
* Note: the intent of this function is to make a static, self-contained
|
||||
* set of parameter values. If dynamic parameter hooks are present, we
|
||||
* intentionally do not copy them into the result. Rather, we forcibly
|
||||
* instantiate all available parameter values and copy the datum values.
|
||||
*/
|
||||
ParamListInfo
|
||||
RestoreParamList(char **start_address)
|
||||
{
|
||||
ParamListInfo paramLI;
|
||||
Size size;
|
||||
int i;
|
||||
int nparams;
|
||||
|
||||
memcpy(&nparams, *start_address, sizeof(int));
|
||||
*start_address += sizeof(int);
|
||||
|
||||
size = offsetof(ParamListInfoData, params) +
|
||||
nparams * sizeof(ParamExternData);
|
||||
|
||||
paramLI = (ParamListInfo) palloc(size);
|
||||
paramLI->paramFetch = NULL;
|
||||
paramLI->paramFetchArg = NULL;
|
||||
paramLI->parserSetup = NULL;
|
||||
paramLI->parserSetupArg = NULL;
|
||||
paramLI->numParams = nparams;
|
||||
|
||||
for (i = 0; i < nparams; i++)
|
||||
{
|
||||
ParamExternData *prm = ¶mLI->params[i];
|
||||
|
||||
/* Read type OID. */
|
||||
memcpy(&prm->ptype, *start_address, sizeof(Oid));
|
||||
*start_address += sizeof(Oid);
|
||||
|
||||
/* Read flags. */
|
||||
memcpy(&prm->pflags, *start_address, sizeof(uint16));
|
||||
*start_address += sizeof(uint16);
|
||||
|
||||
/* Read datum/isnull. */
|
||||
prm->value = datumRestore(start_address, &prm->isnull);
|
||||
}
|
||||
|
||||
return paramLI;
|
||||
}
|
||||
|
|
|
@ -1413,6 +1413,7 @@ ReadCommonPlan(Plan *local_node)
|
|||
READ_FLOAT_FIELD(total_cost);
|
||||
READ_FLOAT_FIELD(plan_rows);
|
||||
READ_INT_FIELD(plan_width);
|
||||
READ_INT_FIELD(plan_node_id);
|
||||
READ_NODE_FIELD(targetlist);
|
||||
READ_NODE_FIELD(qual);
|
||||
READ_NODE_FIELD(lefttree);
|
||||
|
|
|
@ -196,6 +196,7 @@ standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
|
|||
glob->nParamExec = 0;
|
||||
glob->lastPHId = 0;
|
||||
glob->lastRowMarkId = 0;
|
||||
glob->lastPlanNodeId = 0;
|
||||
glob->transientPlan = false;
|
||||
glob->hasRowSecurity = false;
|
||||
|
||||
|
|
|
@ -174,6 +174,8 @@ static bool extract_query_dependencies_walker(Node *node,
|
|||
* Currently, relations and user-defined functions are the only types of
|
||||
* objects that are explicitly tracked this way.
|
||||
*
|
||||
* 7. We assign every plan node in the tree a unique ID.
|
||||
*
|
||||
* We also perform one final optimization step, which is to delete
|
||||
* SubqueryScan plan nodes that aren't doing anything useful (ie, have
|
||||
* no qual and a no-op targetlist). The reason for doing this last is that
|
||||
|
@ -436,6 +438,9 @@ set_plan_refs(PlannerInfo *root, Plan *plan, int rtoffset)
|
|||
if (plan == NULL)
|
||||
return NULL;
|
||||
|
||||
/* Assign this node a unique ID. */
|
||||
plan->plan_node_id = root->glob->lastPlanNodeId++;
|
||||
|
||||
/*
|
||||
* Plan-type-specific fixes
|
||||
*/
|
||||
|
|
|
@ -246,3 +246,121 @@ datumIsEqual(Datum value1, Datum value2, bool typByVal, int typLen)
|
|||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------------------------------
|
||||
* datumEstimateSpace
|
||||
*
|
||||
* Compute the amount of space that datumSerialize will require for a
|
||||
* particular Datum.
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
Size
|
||||
datumEstimateSpace(Datum value, bool isnull, bool typByVal, int typLen)
|
||||
{
|
||||
Size sz = sizeof(int);
|
||||
|
||||
if (!isnull)
|
||||
{
|
||||
/* no need to use add_size, can't overflow */
|
||||
if (typByVal)
|
||||
sz += sizeof(Datum);
|
||||
else
|
||||
sz += datumGetSize(value, typByVal, typLen);
|
||||
}
|
||||
|
||||
return sz;
|
||||
}
|
||||
|
||||
/*-------------------------------------------------------------------------
|
||||
* datumSerialize
|
||||
*
|
||||
* Serialize a possibly-NULL datum into caller-provided storage.
|
||||
*
|
||||
* The format is as follows: first, we write a 4-byte header word, which
|
||||
* is either the length of a pass-by-reference datum, -1 for a
|
||||
* pass-by-value datum, or -2 for a NULL. If the value is NULL, nothing
|
||||
* further is written. If it is pass-by-value, sizeof(Datum) bytes
|
||||
* follow. Otherwise, the number of bytes indicated by the header word
|
||||
* follow. The caller is responsible for ensuring that there is enough
|
||||
* storage to store the number of bytes that will be written; use
|
||||
* datumEstimateSpace() to find out how many will be needed.
|
||||
* *start_address is updated to point to the byte immediately following
|
||||
* those written.
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
void
|
||||
datumSerialize(Datum value, bool isnull, bool typByVal, int typLen,
|
||||
char **start_address)
|
||||
{
|
||||
int header;
|
||||
|
||||
/* Write header word. */
|
||||
if (isnull)
|
||||
header = -2;
|
||||
else if (typByVal)
|
||||
header = -1;
|
||||
else
|
||||
header = datumGetSize(value, typByVal, typLen);
|
||||
memcpy(*start_address, &header, sizeof(int));
|
||||
*start_address += sizeof(int);
|
||||
|
||||
/* If not null, write payload bytes. */
|
||||
if (!isnull)
|
||||
{
|
||||
if (typByVal)
|
||||
{
|
||||
memcpy(*start_address, &value, sizeof(Datum));
|
||||
*start_address += sizeof(Datum);
|
||||
}
|
||||
else
|
||||
{
|
||||
memcpy(*start_address, DatumGetPointer(value), header);
|
||||
*start_address += header;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/*-------------------------------------------------------------------------
|
||||
* datumRestore
|
||||
*
|
||||
* Restore a possibly-NULL datum previously serialized by datumSerialize.
|
||||
* *start_address is updated according to the number of bytes consumed.
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
Datum
|
||||
datumRestore(char **start_address, bool *isnull)
|
||||
{
|
||||
int header;
|
||||
void *d;
|
||||
|
||||
/* Read header word. */
|
||||
memcpy(&header, *start_address, sizeof(int));
|
||||
*start_address += sizeof(int);
|
||||
|
||||
/* If this datum is NULL, we can stop here. */
|
||||
if (header == -2)
|
||||
{
|
||||
*isnull = true;
|
||||
return (Datum) 0;
|
||||
}
|
||||
|
||||
/* OK, datum is not null. */
|
||||
*isnull = false;
|
||||
|
||||
/* If this datum is pass-by-value, sizeof(Datum) bytes follow. */
|
||||
if (header == -1)
|
||||
{
|
||||
Datum val;
|
||||
|
||||
memcpy(&val, *start_address, sizeof(Datum));
|
||||
*start_address += sizeof(Datum);
|
||||
return val;
|
||||
}
|
||||
|
||||
/* Pass-by-reference case; copy indicated number of bytes. */
|
||||
Assert(header > 0);
|
||||
d = palloc(header);
|
||||
memcpy(d, *start_address, header);
|
||||
*start_address += header;
|
||||
return PointerGetDatum(d);
|
||||
}
|
||||
|
|
|
@ -0,0 +1,36 @@
|
|||
/*--------------------------------------------------------------------
|
||||
* execParallel.h
|
||||
* POSTGRES parallel execution interface
|
||||
*
|
||||
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* src/include/executor/execParallel.h
|
||||
*--------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#ifndef EXECPARALLEL_H
|
||||
#define EXECPARALLEL_H
|
||||
|
||||
#include "access/parallel.h"
|
||||
#include "nodes/execnodes.h"
|
||||
#include "nodes/parsenodes.h"
|
||||
#include "nodes/plannodes.h"
|
||||
|
||||
typedef struct SharedExecutorInstrumentation SharedExecutorInstrumentation;
|
||||
|
||||
typedef struct ParallelExecutorInfo
|
||||
{
|
||||
PlanState *planstate;
|
||||
ParallelContext *pcxt;
|
||||
BufferUsage *buffer_usage;
|
||||
SharedExecutorInstrumentation *instrumentation;
|
||||
shm_mq_handle **tqueue;
|
||||
} ParallelExecutorInfo;
|
||||
|
||||
extern ParallelExecutorInfo *ExecInitParallelPlan(PlanState *planstate,
|
||||
EState *estate, int nworkers);
|
||||
extern void ExecParallelFinish(ParallelExecutorInfo *pei);
|
||||
|
||||
#endif /* EXECPARALLEL_H */
|
|
@ -66,8 +66,13 @@ typedef struct Instrumentation
|
|||
extern PGDLLIMPORT BufferUsage pgBufferUsage;
|
||||
|
||||
extern Instrumentation *InstrAlloc(int n, int instrument_options);
|
||||
extern void InstrInit(Instrumentation *instr, int instrument_options);
|
||||
extern void InstrStartNode(Instrumentation *instr);
|
||||
extern void InstrStopNode(Instrumentation *instr, double nTuples);
|
||||
extern void InstrEndLoop(Instrumentation *instr);
|
||||
extern void InstrAggNode(Instrumentation *dst, Instrumentation *add);
|
||||
extern void InstrStartParallelQuery(void);
|
||||
extern void InstrEndParallelQuery(BufferUsage *result);
|
||||
extern void InstrAccumParallelQuery(BufferUsage *result);
|
||||
|
||||
#endif /* INSTRUMENT_H */
|
||||
|
|
|
@ -102,5 +102,8 @@ typedef struct ParamExecData
|
|||
|
||||
/* Functions found in src/backend/nodes/params.c */
|
||||
extern ParamListInfo copyParamList(ParamListInfo from);
|
||||
extern Size EstimateParamListSpace(ParamListInfo paramLI);
|
||||
extern void SerializeParamList(ParamListInfo paramLI, char **start_address);
|
||||
extern ParamListInfo RestoreParamList(char **start_address);
|
||||
|
||||
#endif /* PARAMS_H */
|
||||
|
|
|
@ -111,6 +111,7 @@ typedef struct Plan
|
|||
/*
|
||||
* Common structural data for all Plan types.
|
||||
*/
|
||||
int plan_node_id; /* unique across entire final plan tree */
|
||||
List *targetlist; /* target list to be computed at this node */
|
||||
List *qual; /* implicitly-ANDed qual conditions */
|
||||
struct Plan *lefttree; /* input plan tree(s) */
|
||||
|
|
|
@ -99,6 +99,8 @@ typedef struct PlannerGlobal
|
|||
|
||||
Index lastRowMarkId; /* highest PlanRowMark ID assigned */
|
||||
|
||||
int lastPlanNodeId; /* highest plan node ID assigned */
|
||||
|
||||
bool transientPlan; /* redo plan when TransactionXmin changes? */
|
||||
|
||||
bool hasRowSecurity; /* row security applied? */
|
||||
|
|
|
@ -46,4 +46,14 @@ extern Datum datumTransfer(Datum value, bool typByVal, int typLen);
|
|||
extern bool datumIsEqual(Datum value1, Datum value2,
|
||||
bool typByVal, int typLen);
|
||||
|
||||
/*
|
||||
* Serialize and restore datums so that we can transfer them to parallel
|
||||
* workers.
|
||||
*/
|
||||
extern Size datumEstimateSpace(Datum value, bool isnull, bool typByVal,
|
||||
int typLen);
|
||||
extern void datumSerialize(Datum value, bool isnull, bool typByVal,
|
||||
int typLen, char **start_address);
|
||||
extern Datum datumRestore(char **start_address, bool *isnull);
|
||||
|
||||
#endif /* DATUM_H */
|
||||
|
|
Loading…
Reference in New Issue