New two-stage sampling method for ANALYZE, as per discussions a few weeks
ago. This should give significantly better results when the density of live tuples is not uniform throughout a table. Manfred Koizar, with minor kibitzing from Tom Lane.
This commit is contained in:
parent
27edff700e
commit
9d6570b8a4
@ -8,7 +8,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $PostgreSQL: pgsql/src/backend/commands/analyze.c,v 1.71 2004/05/08 19:09:24 tgl Exp $
|
||||
* $PostgreSQL: pgsql/src/backend/commands/analyze.c,v 1.72 2004/05/23 21:24:02 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -39,6 +39,16 @@
|
||||
#include "utils/tuplesort.h"
|
||||
|
||||
|
||||
/* Data structure for Algorithm S from Knuth 3.4.2 */
|
||||
typedef struct
|
||||
{
|
||||
BlockNumber N; /* number of blocks, known in advance */
|
||||
int n; /* desired sample size */
|
||||
BlockNumber t; /* current block number */
|
||||
int m; /* blocks selected so far */
|
||||
} BlockSamplerData;
|
||||
typedef BlockSamplerData *BlockSampler;
|
||||
|
||||
/* Per-index data for ANALYZE */
|
||||
typedef struct AnlIndexData
|
||||
{
|
||||
@ -57,6 +67,10 @@ static int elevel = -1;
|
||||
static MemoryContext anl_context = NULL;
|
||||
|
||||
|
||||
static void BlockSampler_Init(BlockSampler bs, BlockNumber nblocks,
|
||||
int samplesize);
|
||||
static bool BlockSampler_HasMore(BlockSampler bs);
|
||||
static BlockNumber BlockSampler_Next(BlockSampler bs);
|
||||
static void compute_index_stats(Relation onerel, double totalrows,
|
||||
AnlIndexData *indexdata, int nindexes,
|
||||
HeapTuple *rows, int numrows,
|
||||
@ -66,7 +80,7 @@ static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
|
||||
int targrows, double *totalrows);
|
||||
static double random_fract(void);
|
||||
static double init_selection_state(int n);
|
||||
static double select_next_random_record(double t, int n, double *stateptr);
|
||||
static double get_next_S(double t, int n, double *stateptr);
|
||||
static int compare_rows(const void *a, const void *b);
|
||||
static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
|
||||
static Datum std_fetch_func(VacAttrStatsP stats, int rownum, bool *isNull);
|
||||
@ -637,16 +651,118 @@ examine_attribute(Relation onerel, int attnum)
|
||||
return stats;
|
||||
}
|
||||
|
||||
/*
|
||||
* BlockSampler_Init -- prepare for random sampling of blocknumbers
|
||||
*
|
||||
* BlockSampler is used for stage one of our new two-stage tuple
|
||||
* sampling mechanism as discussed on pgsql-hackers 2004-04-02 (subject
|
||||
* "Large DB"). It selects a random sample of samplesize blocks out of
|
||||
* the nblocks blocks in the table. If the table has less than
|
||||
* samplesize blocks, all blocks are selected.
|
||||
*
|
||||
* Since we know the total number of blocks in advance, we can use the
|
||||
* straightforward Algorithm S from Knuth 3.4.2, rather than Vitter's
|
||||
* algorithm.
|
||||
*/
|
||||
static void
|
||||
BlockSampler_Init(BlockSampler bs, BlockNumber nblocks, int samplesize)
|
||||
{
|
||||
bs->N = nblocks; /* measured table size */
|
||||
/*
|
||||
* If we decide to reduce samplesize for tables that have less or
|
||||
* not much more than samplesize blocks, here is the place to do
|
||||
* it.
|
||||
*/
|
||||
bs->n = samplesize;
|
||||
bs->t = 0; /* blocks scanned so far */
|
||||
bs->m = 0; /* blocks selected so far */
|
||||
}
|
||||
|
||||
static bool
|
||||
BlockSampler_HasMore(BlockSampler bs)
|
||||
{
|
||||
return (bs->t < bs->N) && (bs->m < bs->n);
|
||||
}
|
||||
|
||||
static BlockNumber
|
||||
BlockSampler_Next(BlockSampler bs)
|
||||
{
|
||||
BlockNumber K = bs->N - bs->t; /* remaining blocks */
|
||||
int k = bs->n - bs->m; /* blocks still to sample */
|
||||
double p; /* probability to skip block */
|
||||
double V; /* random */
|
||||
|
||||
Assert(BlockSampler_HasMore(bs)); /* hence K > 0 and k > 0 */
|
||||
|
||||
if ((BlockNumber) k >= K)
|
||||
{
|
||||
/* need all the rest */
|
||||
bs->m++;
|
||||
return bs->t++;
|
||||
}
|
||||
|
||||
/*----------
|
||||
* It is not obvious that this code matches Knuth's Algorithm S.
|
||||
* Knuth says to skip the current block with probability 1 - k/K.
|
||||
* If we are to skip, we should advance t (hence decrease K), and
|
||||
* repeat the same probabilistic test for the next block. The naive
|
||||
* implementation thus requires a random_fract() call for each block
|
||||
* number. But we can reduce this to one random_fract() call per
|
||||
* selected block, by noting that each time the while-test succeeds,
|
||||
* we can reinterpret V as a uniform random number in the range 0 to p.
|
||||
* Therefore, instead of choosing a new V, we just adjust p to be
|
||||
* the appropriate fraction of its former value, and our next loop
|
||||
* makes the appropriate probabilistic test.
|
||||
*
|
||||
* We have initially K > k > 0. If the loop reduces K to equal k,
|
||||
* the next while-test must fail since p will become exactly zero
|
||||
* (we assume there will not be roundoff error in the division).
|
||||
* (Note: Knuth suggests a "<=" loop condition, but we use "<" just
|
||||
* to be doubly sure about roundoff error.) Therefore K cannot become
|
||||
* less than k, which means that we cannot fail to select enough blocks.
|
||||
*----------
|
||||
*/
|
||||
V = random_fract();
|
||||
p = 1.0 - (double) k / (double) K;
|
||||
while (V < p)
|
||||
{
|
||||
/* skip */
|
||||
bs->t++;
|
||||
K--; /* keep K == N - t */
|
||||
|
||||
/* adjust p to be new cutoff point in reduced range */
|
||||
p *= 1.0 - (double) k / (double) K;
|
||||
}
|
||||
|
||||
/* select */
|
||||
bs->m++;
|
||||
return bs->t++;
|
||||
}
|
||||
|
||||
/*
|
||||
* acquire_sample_rows -- acquire a random sample of rows from the table
|
||||
*
|
||||
* Up to targrows rows are collected (if there are fewer than that many
|
||||
* rows in the table, all rows are collected). When the table is larger
|
||||
* than targrows, a truly random sample is collected: every row has an
|
||||
* equal chance of ending up in the final sample.
|
||||
* As of May 2004 we use a new two-stage method: Stage one selects up
|
||||
* to targrows random blocks (or all blocks, if there aren't so many).
|
||||
* Stage two scans these blocks and uses the Vitter algorithm to create
|
||||
* a random sample of targrows rows (or less, if there are less in the
|
||||
* sample of blocks). The two stages are executed simultaneously: each
|
||||
* block is processed as soon as stage one returns its number and while
|
||||
* the rows are read stage two controls which ones are to be inserted
|
||||
* into the sample.
|
||||
*
|
||||
* Although every row has an equal chance of ending up in the final
|
||||
* sample, this sampling method is not perfect: not every possible
|
||||
* sample has an equal chance of being selected. For large relations
|
||||
* the number of different blocks represented by the sample tends to be
|
||||
* too small. We can live with that for now. Improvements are welcome.
|
||||
*
|
||||
* We also estimate the total number of rows in the table, and return that
|
||||
* into *totalrows.
|
||||
* into *totalrows. An important property of this sampling method is that
|
||||
* because we do look at a statistically unbiased set of blocks, we should
|
||||
* get an unbiased estimate of the average number of live rows per block.
|
||||
* The previous sampling method put too much credence in the row density near
|
||||
* the start of the table.
|
||||
*
|
||||
* The returned list of tuples is in order by physical position in the table.
|
||||
* (We will rely on this later to derive correlation estimates.)
|
||||
@ -655,101 +771,27 @@ static int
|
||||
acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
|
||||
double *totalrows)
|
||||
{
|
||||
int numrows = 0;
|
||||
HeapScanDesc scan;
|
||||
int numrows = 0; /* # rows collected */
|
||||
double liverows = 0; /* # rows seen */
|
||||
double deadrows = 0;
|
||||
double rowstoskip = -1; /* -1 means not set yet */
|
||||
BlockNumber totalblocks;
|
||||
HeapTuple tuple;
|
||||
ItemPointer lasttuple;
|
||||
BlockNumber lastblock,
|
||||
estblock;
|
||||
OffsetNumber lastoffset;
|
||||
int numest;
|
||||
double tuplesperpage;
|
||||
double t;
|
||||
BlockSamplerData bs;
|
||||
double rstate;
|
||||
|
||||
Assert(targrows > 1);
|
||||
|
||||
/*
|
||||
* Do a simple linear scan until we reach the target number of rows.
|
||||
*/
|
||||
scan = heap_beginscan(onerel, SnapshotNow, 0, NULL);
|
||||
totalblocks = scan->rs_nblocks; /* grab current relation size */
|
||||
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
|
||||
{
|
||||
rows[numrows++] = heap_copytuple(tuple);
|
||||
if (numrows >= targrows)
|
||||
break;
|
||||
vacuum_delay_point();
|
||||
}
|
||||
heap_endscan(scan);
|
||||
totalblocks = RelationGetNumberOfBlocks(onerel);
|
||||
|
||||
/*
|
||||
* If we ran out of tuples then we're done, no matter how few we
|
||||
* collected. No sort is needed, since they're already in order.
|
||||
*/
|
||||
if (!HeapTupleIsValid(tuple))
|
||||
{
|
||||
*totalrows = (double) numrows;
|
||||
|
||||
ereport(elevel,
|
||||
(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
|
||||
RelationGetRelationName(onerel),
|
||||
totalblocks, numrows, *totalrows)));
|
||||
|
||||
return numrows;
|
||||
}
|
||||
|
||||
/*
|
||||
* Otherwise, start replacing tuples in the sample until we reach the
|
||||
* end of the relation. This algorithm is from Jeff Vitter's paper
|
||||
* (see full citation below). It works by repeatedly computing the
|
||||
* number of the next tuple we want to fetch, which will replace a
|
||||
* randomly chosen element of the reservoir (current set of tuples).
|
||||
* At all times the reservoir is a true random sample of the tuples
|
||||
* we've passed over so far, so when we fall off the end of the
|
||||
* relation we're done.
|
||||
*
|
||||
* A slight difficulty is that since we don't want to fetch tuples or
|
||||
* even pages that we skip over, it's not possible to fetch *exactly*
|
||||
* the N'th tuple at each step --- we don't know how many valid tuples
|
||||
* are on the skipped pages. We handle this by assuming that the
|
||||
* average number of valid tuples/page on the pages already scanned
|
||||
* over holds good for the rest of the relation as well; this lets us
|
||||
* estimate which page the next tuple should be on and its position in
|
||||
* the page. Then we fetch the first valid tuple at or after that
|
||||
* position, being careful not to use the same tuple twice. This
|
||||
* approach should still give a good random sample, although it's not
|
||||
* perfect.
|
||||
*/
|
||||
lasttuple = &(rows[numrows - 1]->t_self);
|
||||
lastblock = ItemPointerGetBlockNumber(lasttuple);
|
||||
lastoffset = ItemPointerGetOffsetNumber(lasttuple);
|
||||
|
||||
/*
|
||||
* If possible, estimate tuples/page using only completely-scanned
|
||||
* pages.
|
||||
*/
|
||||
for (numest = numrows; numest > 0; numest--)
|
||||
{
|
||||
if (ItemPointerGetBlockNumber(&(rows[numest - 1]->t_self)) != lastblock)
|
||||
break;
|
||||
}
|
||||
if (numest == 0)
|
||||
{
|
||||
numest = numrows; /* don't have a full page? */
|
||||
estblock = lastblock + 1;
|
||||
}
|
||||
else
|
||||
estblock = lastblock;
|
||||
tuplesperpage = (double) numest / (double) estblock;
|
||||
|
||||
t = (double) numrows; /* t is the # of records processed so far */
|
||||
/* Prepare for sampling block numbers */
|
||||
BlockSampler_Init(&bs, totalblocks, targrows);
|
||||
/* Prepare for sampling rows */
|
||||
rstate = init_selection_state(targrows);
|
||||
for (;;)
|
||||
|
||||
/* Outer loop over blocks to sample */
|
||||
while (BlockSampler_HasMore(&bs))
|
||||
{
|
||||
double targpos;
|
||||
BlockNumber targblock;
|
||||
BlockNumber targblock = BlockSampler_Next(&bs);
|
||||
Buffer targbuffer;
|
||||
Page targpage;
|
||||
OffsetNumber targoffset,
|
||||
@ -757,28 +799,6 @@ acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
|
||||
|
||||
vacuum_delay_point();
|
||||
|
||||
t = select_next_random_record(t, targrows, &rstate);
|
||||
/* Try to read the t'th record in the table */
|
||||
targpos = t / tuplesperpage;
|
||||
targblock = (BlockNumber) targpos;
|
||||
targoffset = ((int) ((targpos - targblock) * tuplesperpage)) +
|
||||
FirstOffsetNumber;
|
||||
/* Make sure we are past the last selected record */
|
||||
if (targblock <= lastblock)
|
||||
{
|
||||
targblock = lastblock;
|
||||
if (targoffset <= lastoffset)
|
||||
targoffset = lastoffset + 1;
|
||||
}
|
||||
/* Loop to find first valid record at or after given position */
|
||||
pageloop:;
|
||||
|
||||
/*
|
||||
* Have we fallen off the end of the relation?
|
||||
*/
|
||||
if (targblock >= totalblocks)
|
||||
break;
|
||||
|
||||
/*
|
||||
* We must maintain a pin on the target page's buffer to ensure
|
||||
* that the maxoffset value stays good (else concurrent VACUUM
|
||||
@ -795,62 +815,109 @@ pageloop:;
|
||||
maxoffset = PageGetMaxOffsetNumber(targpage);
|
||||
LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK);
|
||||
|
||||
for (;;)
|
||||
/* Inner loop over all tuples on the selected page */
|
||||
for (targoffset = FirstOffsetNumber; targoffset <= maxoffset; targoffset++)
|
||||
{
|
||||
HeapTupleData targtuple;
|
||||
Buffer tupbuffer;
|
||||
|
||||
if (targoffset > maxoffset)
|
||||
{
|
||||
/* Fell off end of this page, try next */
|
||||
ReleaseBuffer(targbuffer);
|
||||
targblock++;
|
||||
targoffset = FirstOffsetNumber;
|
||||
goto pageloop;
|
||||
}
|
||||
ItemPointerSet(&targtuple.t_self, targblock, targoffset);
|
||||
if (heap_fetch(onerel, SnapshotNow, &targtuple, &tupbuffer,
|
||||
false, NULL))
|
||||
{
|
||||
/*
|
||||
* Found a suitable tuple, so save it, replacing one old
|
||||
* tuple at random
|
||||
* The first targrows live rows are simply copied into the
|
||||
* reservoir.
|
||||
* Then we start replacing tuples in the sample until
|
||||
* we reach the end of the relation. This algorithm is
|
||||
* from Jeff Vitter's paper (see full citation below).
|
||||
* It works by repeatedly computing the number of tuples
|
||||
* to skip before selecting a tuple, which replaces a
|
||||
* randomly chosen element of the reservoir (current
|
||||
* set of tuples). At all times the reservoir is a true
|
||||
* random sample of the tuples we've passed over so far,
|
||||
* so when we fall off the end of the relation we're done.
|
||||
*/
|
||||
int k = (int) (targrows * random_fract());
|
||||
if (numrows < targrows)
|
||||
rows[numrows++] = heap_copytuple(&targtuple);
|
||||
else
|
||||
{
|
||||
/*
|
||||
* t in Vitter's paper is the number of records already
|
||||
* processed. If we need to compute a new S value, we
|
||||
* must use the not-yet-incremented value of liverows
|
||||
* as t.
|
||||
*/
|
||||
if (rowstoskip < 0)
|
||||
rowstoskip = get_next_S(liverows, targrows, &rstate);
|
||||
|
||||
Assert(k >= 0 && k < targrows);
|
||||
heap_freetuple(rows[k]);
|
||||
rows[k] = heap_copytuple(&targtuple);
|
||||
/* this releases the second pin acquired by heap_fetch: */
|
||||
if (rowstoskip <= 0)
|
||||
{
|
||||
/*
|
||||
* Found a suitable tuple, so save it,
|
||||
* replacing one old tuple at random
|
||||
*/
|
||||
int k = (int) (targrows * random_fract());
|
||||
|
||||
Assert(k >= 0 && k < targrows);
|
||||
heap_freetuple(rows[k]);
|
||||
rows[k] = heap_copytuple(&targtuple);
|
||||
}
|
||||
|
||||
rowstoskip -= 1;
|
||||
}
|
||||
|
||||
/* must release the extra pin acquired by heap_fetch */
|
||||
ReleaseBuffer(tupbuffer);
|
||||
/* this releases the initial pin: */
|
||||
ReleaseBuffer(targbuffer);
|
||||
lastblock = targblock;
|
||||
lastoffset = targoffset;
|
||||
break;
|
||||
|
||||
liverows += 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
/*
|
||||
* Count dead rows, but not empty slots. This information is
|
||||
* currently not used, but it seems likely we'll want it
|
||||
* someday.
|
||||
*/
|
||||
if (targtuple.t_data != NULL)
|
||||
deadrows += 1;
|
||||
}
|
||||
/* this tuple is dead, so advance to next one on same page */
|
||||
targoffset++;
|
||||
}
|
||||
|
||||
/* Now release the initial pin on the page */
|
||||
ReleaseBuffer(targbuffer);
|
||||
}
|
||||
|
||||
/*
|
||||
* Now we need to sort the collected tuples by position (itempointer).
|
||||
* If we didn't find as many tuples as we wanted then we're done.
|
||||
* No sort is needed, since they're already in order.
|
||||
*
|
||||
* Otherwise we need to sort the collected tuples by position
|
||||
* (itempointer). It's not worth worrying about corner cases
|
||||
* where the tuples are already sorted.
|
||||
*/
|
||||
qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
|
||||
if (numrows == targrows)
|
||||
qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
|
||||
|
||||
/*
|
||||
* Estimate total number of valid rows in relation.
|
||||
* Estimate total number of live rows in relation.
|
||||
*/
|
||||
*totalrows = floor((double) totalblocks * tuplesperpage + 0.5);
|
||||
if (bs.m > 0)
|
||||
*totalrows = floor((liverows * totalblocks) / bs.m + 0.5);
|
||||
else
|
||||
*totalrows = 0.0;
|
||||
|
||||
/*
|
||||
* Emit some interesting relation info
|
||||
*/
|
||||
ereport(elevel,
|
||||
(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
|
||||
(errmsg("\"%s\": scanned %d of %u pages, "
|
||||
"containing %.0f live rows and %.0f dead rows; "
|
||||
"%d rows in sample, %.0f estimated total rows",
|
||||
RelationGetRelationName(onerel),
|
||||
totalblocks, numrows, *totalrows)));
|
||||
bs.m, totalblocks,
|
||||
liverows, deadrows,
|
||||
numrows, *totalrows)));
|
||||
|
||||
return numrows;
|
||||
}
|
||||
@ -872,23 +939,16 @@ random_fract(void)
|
||||
/*
|
||||
* These two routines embody Algorithm Z from "Random sampling with a
|
||||
* reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
|
||||
* (Mar. 1985), Pages 37-57. While Vitter describes his algorithm in terms
|
||||
* of the count S of records to skip before processing another record,
|
||||
* it is convenient to work primarily with t, the index (counting from 1)
|
||||
* of the last record processed and next record to process. The only extra
|
||||
* state needed between calls is W, a random state variable.
|
||||
*
|
||||
* Note: the original algorithm defines t, S, numer, and denom as integers.
|
||||
* Here we express them as doubles to avoid overflow if the number of rows
|
||||
* in the table exceeds INT_MAX. The algorithm should work as long as the
|
||||
* row count does not become so large that it is not represented accurately
|
||||
* in a double (on IEEE-math machines this would be around 2^52 rows).
|
||||
* (Mar. 1985), Pages 37-57. Vitter describes his algorithm in terms
|
||||
* of the count S of records to skip before processing another record.
|
||||
* It is computed primarily based on t, the number of records already read.
|
||||
* The only extra state needed between calls is W, a random state variable.
|
||||
*
|
||||
* init_selection_state computes the initial W value.
|
||||
*
|
||||
* Given that we've already processed t records (t >= n),
|
||||
* select_next_random_record determines the number of the next record to
|
||||
* process.
|
||||
* Given that we've already read t records (t >= n), get_next_S
|
||||
* determines the number of records to skip before the next record is
|
||||
* processed.
|
||||
*/
|
||||
static double
|
||||
init_selection_state(int n)
|
||||
@ -898,8 +958,10 @@ init_selection_state(int n)
|
||||
}
|
||||
|
||||
static double
|
||||
select_next_random_record(double t, int n, double *stateptr)
|
||||
get_next_S(double t, int n, double *stateptr)
|
||||
{
|
||||
double S;
|
||||
|
||||
/* The magic constant here is T from Vitter's paper */
|
||||
if (t <= (22.0 * n))
|
||||
{
|
||||
@ -908,11 +970,14 @@ select_next_random_record(double t, int n, double *stateptr)
|
||||
quot;
|
||||
|
||||
V = random_fract(); /* Generate V */
|
||||
S = 0;
|
||||
t += 1;
|
||||
/* Note: "num" in Vitter's code is always equal to t - n */
|
||||
quot = (t - (double) n) / t;
|
||||
/* Find min S satisfying (4.1) */
|
||||
while (quot > V)
|
||||
{
|
||||
S += 1;
|
||||
t += 1;
|
||||
quot *= (t - (double) n) / t;
|
||||
}
|
||||
@ -922,7 +987,6 @@ select_next_random_record(double t, int n, double *stateptr)
|
||||
/* Now apply Algorithm Z */
|
||||
double W = *stateptr;
|
||||
double term = t - (double) n + 1;
|
||||
double S;
|
||||
|
||||
for (;;)
|
||||
{
|
||||
@ -970,10 +1034,9 @@ select_next_random_record(double t, int n, double *stateptr)
|
||||
if (exp(log(y) / n) <= (t + X) / t)
|
||||
break;
|
||||
}
|
||||
t += S + 1;
|
||||
*stateptr = W;
|
||||
}
|
||||
return t;
|
||||
return S;
|
||||
}
|
||||
|
||||
/*
|
||||
|
Loading…
x
Reference in New Issue
Block a user