Tweak processing of multiple-index-scan plans to reduce overhead when
handling many-way scans: instead of re-evaluating all prior indexscan quals to see if a tuple has been fetched more than once, use a hash table indexed by tuple CTID. But fall back to the old way if the hash table grows to exceed SortMem.
This commit is contained in:
parent
38e2bf6283
commit
92ee2528d8
@ -8,7 +8,7 @@
|
||||
*
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.82 2003/08/04 02:39:59 momjian Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/executor/nodeIndexscan.c,v 1.83 2003/08/22 20:26:43 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -28,19 +28,51 @@
|
||||
#include "access/heapam.h"
|
||||
#include "executor/execdebug.h"
|
||||
#include "executor/nodeIndexscan.h"
|
||||
#include "miscadmin.h"
|
||||
#include "nodes/nodeFuncs.h"
|
||||
#include "optimizer/clauses.h"
|
||||
#include "parser/parsetree.h"
|
||||
|
||||
/* ----------------
|
||||
* Misc stuff to move to executor.h soon -cim 6/5/90
|
||||
* ----------------
|
||||
*/
|
||||
|
||||
#define NO_OP 0
|
||||
#define LEFT_OP 1
|
||||
#define RIGHT_OP 2
|
||||
|
||||
/*
|
||||
* In a multiple-index plan, we must take care to return any given tuple
|
||||
* only once, even if it matches conditions of several index scans. Our
|
||||
* preferred way to do this is to record already-returned tuples in a hash
|
||||
* table (using the TID as unique identifier). However, in a very large
|
||||
* scan this could conceivably run out of memory. We limit the hash table
|
||||
* to no more than SortMem KB; if it grows past that, we fall back to the
|
||||
* pre-7.4 technique: evaluate the prior-scan index quals again for each
|
||||
* tuple (which is space-efficient, but slow).
|
||||
*
|
||||
* When scanning backwards, we use scannum to determine when to emit the
|
||||
* tuple --- we have to re-emit a tuple in the same scan as it was first
|
||||
* encountered.
|
||||
*
|
||||
* Note: this code would break if the planner were ever to create a multiple
|
||||
* index plan with overall backwards direction, because the hashtable code
|
||||
* will emit a tuple the first time it is encountered (which would be the
|
||||
* highest scan in which it matches the index), but the evaluate-the-quals
|
||||
* code will emit a tuple in the lowest-numbered scan in which it's valid.
|
||||
* This could be fixed at need by making the evaluate-the-quals case more
|
||||
* complex. Currently the planner will never create such a plan (since it
|
||||
* considers multi-index plans unordered anyway), so there's no need for
|
||||
* more complexity.
|
||||
*/
|
||||
typedef struct
|
||||
{
|
||||
/* tid is the hash key and so must be first! */
|
||||
ItemPointerData tid; /* TID of a tuple we've returned */
|
||||
int scannum; /* number of scan we returned it in */
|
||||
} DupHashTabEntry;
|
||||
|
||||
|
||||
static TupleTableSlot *IndexNext(IndexScanState *node);
|
||||
static void create_duphash(IndexScanState *node);
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------
|
||||
* IndexNext
|
||||
@ -163,7 +195,7 @@ IndexNext(IndexScanState *node)
|
||||
while ((tuple = index_getnext(scandesc, direction)) != NULL)
|
||||
{
|
||||
/*
|
||||
* store the scanned tuple in the scan tuple slot of the scan
|
||||
* Store the scanned tuple in the scan tuple slot of the scan
|
||||
* state. Note: we pass 'false' because tuples returned by
|
||||
* amgetnext are pointers onto disk pages and must not be
|
||||
* pfree()'d.
|
||||
@ -174,36 +206,80 @@ IndexNext(IndexScanState *node)
|
||||
false); /* don't pfree */
|
||||
|
||||
/*
|
||||
* We must check to see if the current tuple was already
|
||||
* matched by an earlier index, so we don't double-report it.
|
||||
* We do this by passing the tuple through ExecQual and
|
||||
* checking for failure with all previous qualifications.
|
||||
* If it's a multiple-index scan, make sure not to double-report
|
||||
* a tuple matched by more than one index. (See notes above.)
|
||||
*/
|
||||
if (node->iss_IndexPtr > 0)
|
||||
if (numIndices > 1)
|
||||
{
|
||||
bool prev_matches = false;
|
||||
int prev_index;
|
||||
List *qual;
|
||||
/* First try the hash table */
|
||||
if (node->iss_DupHash)
|
||||
{
|
||||
DupHashTabEntry *entry;
|
||||
bool found;
|
||||
|
||||
econtext->ecxt_scantuple = slot;
|
||||
ResetExprContext(econtext);
|
||||
qual = node->indxqualorig;
|
||||
for (prev_index = 0;
|
||||
prev_index < node->iss_IndexPtr;
|
||||
prev_index++)
|
||||
{
|
||||
if (ExecQual((List *) lfirst(qual), econtext, false))
|
||||
entry = (DupHashTabEntry *)
|
||||
hash_search(node->iss_DupHash,
|
||||
&tuple->t_data->t_ctid,
|
||||
HASH_ENTER,
|
||||
&found);
|
||||
if (entry == NULL ||
|
||||
node->iss_DupHash->hctl->nentries > node->iss_MaxHash)
|
||||
{
|
||||
prev_matches = true;
|
||||
break;
|
||||
/* out of memory (either hard or soft limit) */
|
||||
/* release hash table and fall thru to old code */
|
||||
hash_destroy(node->iss_DupHash);
|
||||
node->iss_DupHash = NULL;
|
||||
}
|
||||
else if (found)
|
||||
{
|
||||
/* pre-existing entry */
|
||||
|
||||
/*
|
||||
* It's duplicate if first emitted in a different
|
||||
* scan. If same scan, we must be backing up, so
|
||||
* okay to emit again.
|
||||
*/
|
||||
if (entry->scannum != node->iss_IndexPtr)
|
||||
{
|
||||
/* Dup, so drop it and loop back for another */
|
||||
ExecClearTuple(slot);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* new entry, finish filling it in */
|
||||
entry->scannum = node->iss_IndexPtr;
|
||||
}
|
||||
qual = lnext(qual);
|
||||
}
|
||||
if (prev_matches)
|
||||
/* If hash table has overflowed, do it the hard way */
|
||||
if (node->iss_DupHash == NULL &&
|
||||
node->iss_IndexPtr > 0)
|
||||
{
|
||||
/* Duplicate, so drop it and loop back for another */
|
||||
ExecClearTuple(slot);
|
||||
continue;
|
||||
bool prev_matches = false;
|
||||
int prev_index;
|
||||
List *qual;
|
||||
|
||||
econtext->ecxt_scantuple = slot;
|
||||
ResetExprContext(econtext);
|
||||
qual = node->indxqualorig;
|
||||
for (prev_index = 0;
|
||||
prev_index < node->iss_IndexPtr;
|
||||
prev_index++)
|
||||
{
|
||||
if (ExecQual((List *) lfirst(qual), econtext, false))
|
||||
{
|
||||
prev_matches = true;
|
||||
break;
|
||||
}
|
||||
qual = lnext(qual);
|
||||
}
|
||||
if (prev_matches)
|
||||
{
|
||||
/* Dup, so drop it and loop back for another */
|
||||
ExecClearTuple(slot);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -383,6 +459,14 @@ ExecIndexReScan(IndexScanState *node, ExprContext *exprCtxt)
|
||||
return;
|
||||
}
|
||||
|
||||
/* reset hash table */
|
||||
if (numIndices > 1)
|
||||
{
|
||||
if (node->iss_DupHash)
|
||||
hash_destroy(node->iss_DupHash);
|
||||
create_duphash(node);
|
||||
}
|
||||
|
||||
/* reset index scans */
|
||||
if (ScanDirectionIsBackward(((IndexScan *) node->ss.ps.plan)->indxorderdir))
|
||||
node->iss_IndexPtr = numIndices;
|
||||
@ -432,6 +516,10 @@ ExecEndIndexScan(IndexScanState *node)
|
||||
ExecClearTuple(node->ss.ps.ps_ResultTupleSlot);
|
||||
ExecClearTuple(node->ss.ss_ScanTupleSlot);
|
||||
|
||||
/* drop hash table */
|
||||
if (node->iss_DupHash)
|
||||
hash_destroy(node->iss_DupHash);
|
||||
|
||||
/*
|
||||
* close the index relations
|
||||
*/
|
||||
@ -507,7 +595,7 @@ ExecIndexRestrPos(IndexScanState *node)
|
||||
|
||||
/* ----------------------------------------------------------------
|
||||
* ExecInitIndexScan
|
||||
*
|
||||
*
|
||||
* Initializes the index scan's state information, creates
|
||||
* scan keys, and opens the base and index relations.
|
||||
*
|
||||
@ -919,12 +1007,42 @@ ExecInitIndexScan(IndexScan *node, EState *estate)
|
||||
ExecAssignResultTypeFromTL(&indexstate->ss.ps);
|
||||
ExecAssignScanProjectionInfo(&indexstate->ss);
|
||||
|
||||
/*
|
||||
* Initialize hash table if needed.
|
||||
*/
|
||||
if (numIndices > 1)
|
||||
create_duphash(indexstate);
|
||||
else
|
||||
indexstate->iss_DupHash = NULL;
|
||||
|
||||
/*
|
||||
* all done.
|
||||
*/
|
||||
return indexstate;
|
||||
}
|
||||
|
||||
static void
|
||||
create_duphash(IndexScanState *node)
|
||||
{
|
||||
HASHCTL hash_ctl;
|
||||
|
||||
MemSet(&hash_ctl, 0, sizeof(hash_ctl));
|
||||
hash_ctl.keysize = SizeOfIptrData;
|
||||
hash_ctl.entrysize = sizeof(DupHashTabEntry);
|
||||
hash_ctl.hash = tag_hash;
|
||||
hash_ctl.hcxt = CurrentMemoryContext;
|
||||
node->iss_DupHash = hash_create("DupHashTable",
|
||||
(long) ceil(node->ss.ps.plan->plan_rows),
|
||||
&hash_ctl,
|
||||
HASH_ELEM | HASH_FUNCTION | HASH_CONTEXT);
|
||||
if (node->iss_DupHash == NULL)
|
||||
ereport(ERROR,
|
||||
(errcode(ERRCODE_OUT_OF_MEMORY),
|
||||
errmsg("out of memory")));
|
||||
node->iss_MaxHash = (SortMem * 1024L) /
|
||||
(MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(sizeof(DupHashTabEntry)));
|
||||
}
|
||||
|
||||
int
|
||||
ExecCountSlotsIndexScan(IndexScan *node)
|
||||
{
|
||||
|
@ -7,7 +7,7 @@
|
||||
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $Id: execnodes.h,v 1.104 2003/08/19 01:13:41 tgl Exp $
|
||||
* $Id: execnodes.h,v 1.105 2003/08/22 20:26:43 tgl Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -768,6 +768,8 @@ typedef ScanState SeqScanState;
|
||||
* RuntimeKeysReady true if runtime Skeys have been computed
|
||||
* RelationDescs ptr to array of relation descriptors
|
||||
* ScanDescs ptr to array of scan descriptors
|
||||
* DupHash hashtable for recognizing dups in multiple scan
|
||||
* MaxHash max # entries we will allow in hashtable
|
||||
* ----------------
|
||||
*/
|
||||
typedef struct IndexScanState
|
||||
@ -785,6 +787,8 @@ typedef struct IndexScanState
|
||||
bool iss_RuntimeKeysReady;
|
||||
RelationPtr iss_RelationDescs;
|
||||
IndexScanDescPtr iss_ScanDescs;
|
||||
HTAB *iss_DupHash;
|
||||
long iss_MaxHash;
|
||||
} IndexScanState;
|
||||
|
||||
/* ----------------
|
||||
|
Loading…
Reference in New Issue
Block a user