mirror of https://github.com/postgres/postgres
Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.
We still require AccessExclusiveLock on the partition itself, because otherwise an insert that violates the newly-imposed partition constraint could be in progress at the same time that we're changing that constraint; only the lock level on the parent relation is weakened. To make this safe, we have to cope with (at least) three separate problems. First, relevant DDL might commit while we're in the process of building a PartitionDesc. If so, find_inheritance_children() might see a new partition while the RELOID system cache still has the old partition bound cached, and even before invalidation messages have been queued. To fix that, if we see that the pg_class tuple seems to be missing or to have a null relpartbound, refetch the value directly from the table. We can't get the wrong value, because DETACH PARTITION still requires AccessExclusiveLock throughout; if we ever want to change that, this will need more thought. In testing, I found it quite difficult to hit even the null-relpartbound case; the race condition is extremely tight, but the theoretical risk is there. Second, successive calls to RelationGetPartitionDesc might not return the same answer. The query planner will get confused if lookup up the PartitionDesc for a particular relation does not return a consistent answer for the entire duration of query planning. Likewise, query execution will get confused if the same relation seems to have a different PartitionDesc at different times. Invent a new PartitionDirectory concept and use it to ensure consistency. This ensures that a single invocation of either the planner or the executor sees the same view of the PartitionDesc from beginning to end, but it does not guarantee that the planner and the executor see the same view. Since this allows pointers to old PartitionDesc entries to survive even after a relcache rebuild, also postpone removing the old PartitionDesc entry until we're certain no one is using it. For the most part, it seems to be OK for the planner and executor to have different views of the PartitionDesc, because the executor will just ignore any concurrently added partitions which were unknown at plan time; those partitions won't be part of the inheritance expansion, but invalidation messages will trigger replanning at some point. Normally, this happens by the time the very next command is executed, but if the next command acquires no locks and executes a prepared query, it can manage not to notice until a new transaction is started. We might want to tighten that up, but it's material for a separate patch. There would still be a small window where a query that started just after an ATTACH PARTITION command committed might fail to notice its results -- but only if the command starts before the commit has been acknowledged to the user. All in all, the warts here around serializability seem small enough to be worth accepting for the considerable advantage of being able to add partitions without a full table lock. Although in general the consequences of new partitions showing up between planning and execution are limited to the query not noticing the new partitions, run-time partition pruning will get confused in that case, so that's the third problem that this patch fixes. Run-time partition pruning assumes that indexes into the PartitionDesc are stable between planning and execution. So, add code so that if new partitions are added between plan time and execution time, the indexes stored in the subplan_map[] and subpart_map[] arrays within the plan's PartitionedRelPruneInfo get adjusted accordingly. There does not seem to be a simple way to generalize this scheme to cope with partitions that are removed, mostly because they could then get added back again with different bounds, but it works OK for added partitions. This code does not try to ensure that every backend participating in a parallel query sees the same view of the PartitionDesc. That currently doesn't matter, because we never pass PartitionDesc indexes between backends. Each backend will ignore the concurrently added partitions which it notices, and it doesn't matter if different backends are ignoring different sets of concurrently added partitions. If in the future that matters, for example because we allow writes in parallel query and want all participants to do tuple routing to the same set of partitions, the PartitionDirectory concept could be improved to share PartitionDescs across backends. There is a draft patch to serialize and restore PartitionDescs on the thread where this patch was discussed, which may be a useful place to start. Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs, Amit Langote, and Michael Paquier for discussion, and to Alvaro Herrera for some review. Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
This commit is contained in:
parent
ec51727f6e
commit
898e5e3290
|
@ -3827,7 +3827,8 @@ ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
|
|||
the system will be able to skip the scan to validate the implicit
|
||||
partition constraint. Without such a constraint, the table will be
|
||||
scanned to validate the partition constraint while holding an
|
||||
<literal>ACCESS EXCLUSIVE</literal> lock on the parent table.
|
||||
<literal>ACCESS EXCLUSIVE</literal> lock on that partition
|
||||
and a <literal>SHARE UPDATE EXCLUSIVE</literal> lock on the parent table.
|
||||
One may then drop the constraint after <command>ATTACH PARTITION</command>
|
||||
is finished, because it is no longer necessary.
|
||||
</para>
|
||||
|
|
|
@ -2556,7 +2556,7 @@ CopyFrom(CopyState cstate)
|
|||
* CopyFrom tuple routing.
|
||||
*/
|
||||
if (cstate->rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
|
||||
proute = ExecSetupPartitionTupleRouting(NULL, cstate->rel);
|
||||
proute = ExecSetupPartitionTupleRouting(estate, NULL, cstate->rel);
|
||||
|
||||
if (cstate->whereClause)
|
||||
cstate->qualexpr = ExecInitQual(castNode(List, cstate->whereClause),
|
||||
|
|
|
@ -3692,6 +3692,9 @@ AlterTableGetLockLevel(List *cmds)
|
|||
break;
|
||||
|
||||
case AT_AttachPartition:
|
||||
cmd_lockmode = ShareUpdateExclusiveLock;
|
||||
break;
|
||||
|
||||
case AT_DetachPartition:
|
||||
cmd_lockmode = AccessExclusiveLock;
|
||||
break;
|
||||
|
|
|
@ -167,7 +167,8 @@ static void ExecInitRoutingInfo(ModifyTableState *mtstate,
|
|||
PartitionDispatch dispatch,
|
||||
ResultRelInfo *partRelInfo,
|
||||
int partidx);
|
||||
static PartitionDispatch ExecInitPartitionDispatchInfo(PartitionTupleRouting *proute,
|
||||
static PartitionDispatch ExecInitPartitionDispatchInfo(EState *estate,
|
||||
PartitionTupleRouting *proute,
|
||||
Oid partoid, PartitionDispatch parent_pd, int partidx);
|
||||
static void FormPartitionKeyDatum(PartitionDispatch pd,
|
||||
TupleTableSlot *slot,
|
||||
|
@ -201,7 +202,8 @@ static void find_matching_subplans_recurse(PartitionPruningData *prunedata,
|
|||
* it should be estate->es_query_cxt.
|
||||
*/
|
||||
PartitionTupleRouting *
|
||||
ExecSetupPartitionTupleRouting(ModifyTableState *mtstate, Relation rel)
|
||||
ExecSetupPartitionTupleRouting(EState *estate, ModifyTableState *mtstate,
|
||||
Relation rel)
|
||||
{
|
||||
PartitionTupleRouting *proute;
|
||||
ModifyTable *node = mtstate ? (ModifyTable *) mtstate->ps.plan : NULL;
|
||||
|
@ -223,7 +225,8 @@ ExecSetupPartitionTupleRouting(ModifyTableState *mtstate, Relation rel)
|
|||
* parent as NULL as we don't need to care about any parent of the target
|
||||
* partitioned table.
|
||||
*/
|
||||
ExecInitPartitionDispatchInfo(proute, RelationGetRelid(rel), NULL, 0);
|
||||
ExecInitPartitionDispatchInfo(estate, proute, RelationGetRelid(rel),
|
||||
NULL, 0);
|
||||
|
||||
/*
|
||||
* If performing an UPDATE with tuple routing, we can reuse partition
|
||||
|
@ -424,7 +427,8 @@ ExecFindPartition(ModifyTableState *mtstate,
|
|||
* Create the new PartitionDispatch. We pass the current one
|
||||
* in as the parent PartitionDispatch
|
||||
*/
|
||||
subdispatch = ExecInitPartitionDispatchInfo(proute,
|
||||
subdispatch = ExecInitPartitionDispatchInfo(mtstate->ps.state,
|
||||
proute,
|
||||
partdesc->oids[partidx],
|
||||
dispatch, partidx);
|
||||
Assert(dispatch->indexes[partidx] >= 0 &&
|
||||
|
@ -988,7 +992,8 @@ ExecInitRoutingInfo(ModifyTableState *mtstate,
|
|||
* PartitionDispatch later.
|
||||
*/
|
||||
static PartitionDispatch
|
||||
ExecInitPartitionDispatchInfo(PartitionTupleRouting *proute, Oid partoid,
|
||||
ExecInitPartitionDispatchInfo(EState *estate,
|
||||
PartitionTupleRouting *proute, Oid partoid,
|
||||
PartitionDispatch parent_pd, int partidx)
|
||||
{
|
||||
Relation rel;
|
||||
|
@ -997,6 +1002,10 @@ ExecInitPartitionDispatchInfo(PartitionTupleRouting *proute, Oid partoid,
|
|||
int dispatchidx;
|
||||
MemoryContext oldcxt;
|
||||
|
||||
if (estate->es_partition_directory == NULL)
|
||||
estate->es_partition_directory =
|
||||
CreatePartitionDirectory(estate->es_query_cxt);
|
||||
|
||||
oldcxt = MemoryContextSwitchTo(proute->memcxt);
|
||||
|
||||
/*
|
||||
|
@ -1008,7 +1017,7 @@ ExecInitPartitionDispatchInfo(PartitionTupleRouting *proute, Oid partoid,
|
|||
rel = table_open(partoid, RowExclusiveLock);
|
||||
else
|
||||
rel = proute->partition_root;
|
||||
partdesc = RelationGetPartitionDesc(rel);
|
||||
partdesc = PartitionDirectoryLookup(estate->es_partition_directory, rel);
|
||||
|
||||
pd = (PartitionDispatch) palloc(offsetof(PartitionDispatchData, indexes) +
|
||||
partdesc->nparts * sizeof(int));
|
||||
|
@ -1554,6 +1563,10 @@ ExecCreatePartitionPruneState(PlanState *planstate,
|
|||
ListCell *lc;
|
||||
int i;
|
||||
|
||||
if (estate->es_partition_directory == NULL)
|
||||
estate->es_partition_directory =
|
||||
CreatePartitionDirectory(estate->es_query_cxt);
|
||||
|
||||
n_part_hierarchies = list_length(partitionpruneinfo->prune_infos);
|
||||
Assert(n_part_hierarchies > 0);
|
||||
|
||||
|
@ -1610,18 +1623,6 @@ ExecCreatePartitionPruneState(PlanState *planstate,
|
|||
int n_steps;
|
||||
ListCell *lc3;
|
||||
|
||||
/*
|
||||
* We must copy the subplan_map rather than pointing directly to
|
||||
* the plan's version, as we may end up making modifications to it
|
||||
* later.
|
||||
*/
|
||||
pprune->subplan_map = palloc(sizeof(int) * pinfo->nparts);
|
||||
memcpy(pprune->subplan_map, pinfo->subplan_map,
|
||||
sizeof(int) * pinfo->nparts);
|
||||
|
||||
/* We can use the subpart_map verbatim, since we never modify it */
|
||||
pprune->subpart_map = pinfo->subpart_map;
|
||||
|
||||
/* present_parts is also subject to later modification */
|
||||
pprune->present_parts = bms_copy(pinfo->present_parts);
|
||||
|
||||
|
@ -1633,7 +1634,64 @@ ExecCreatePartitionPruneState(PlanState *planstate,
|
|||
*/
|
||||
partrel = ExecGetRangeTableRelation(estate, pinfo->rtindex);
|
||||
partkey = RelationGetPartitionKey(partrel);
|
||||
partdesc = RelationGetPartitionDesc(partrel);
|
||||
partdesc = PartitionDirectoryLookup(estate->es_partition_directory,
|
||||
partrel);
|
||||
|
||||
/*
|
||||
* Initialize the subplan_map and subpart_map. Since detaching a
|
||||
* partition requires AccessExclusiveLock, no partitions can have
|
||||
* disappeared, nor can the bounds for any partition have changed.
|
||||
* However, new partitions may have been added.
|
||||
*/
|
||||
Assert(partdesc->nparts >= pinfo->nparts);
|
||||
pprune->subplan_map = palloc(sizeof(int) * partdesc->nparts);
|
||||
if (partdesc->nparts == pinfo->nparts)
|
||||
{
|
||||
/*
|
||||
* There are no new partitions, so this is simple. We can
|
||||
* simply point to the subpart_map from the plan, but we must
|
||||
* copy the subplan_map since we may change it later.
|
||||
*/
|
||||
pprune->subpart_map = pinfo->subpart_map;
|
||||
memcpy(pprune->subplan_map, pinfo->subplan_map,
|
||||
sizeof(int) * pinfo->nparts);
|
||||
|
||||
/* Double-check that list of relations has not changed. */
|
||||
Assert(memcmp(partdesc->oids, pinfo->relid_map,
|
||||
pinfo->nparts * sizeof(Oid)) == 0);
|
||||
}
|
||||
else
|
||||
{
|
||||
int pd_idx = 0;
|
||||
int pp_idx;
|
||||
|
||||
/*
|
||||
* Some new partitions have appeared since plan time, and
|
||||
* those are reflected in our PartitionDesc but were not
|
||||
* present in the one used to construct subplan_map and
|
||||
* subpart_map. So we must construct new and longer arrays
|
||||
* where the partitions that were originally present map to the
|
||||
* same place, and any added indexes map to -1, as if the
|
||||
* new partitions had been pruned.
|
||||
*/
|
||||
pprune->subpart_map = palloc(sizeof(int) * partdesc->nparts);
|
||||
for (pp_idx = 0; pp_idx < partdesc->nparts; ++pp_idx)
|
||||
{
|
||||
if (pinfo->relid_map[pd_idx] != partdesc->oids[pp_idx])
|
||||
{
|
||||
pprune->subplan_map[pp_idx] = -1;
|
||||
pprune->subpart_map[pp_idx] = -1;
|
||||
}
|
||||
else
|
||||
{
|
||||
pprune->subplan_map[pp_idx] =
|
||||
pinfo->subplan_map[pd_idx];
|
||||
pprune->subpart_map[pp_idx] =
|
||||
pinfo->subpart_map[pd_idx++];
|
||||
}
|
||||
}
|
||||
Assert(pd_idx == pinfo->nparts);
|
||||
}
|
||||
|
||||
n_steps = list_length(pinfo->pruning_steps);
|
||||
|
||||
|
|
|
@ -54,6 +54,7 @@
|
|||
#include "mb/pg_wchar.h"
|
||||
#include "nodes/nodeFuncs.h"
|
||||
#include "parser/parsetree.h"
|
||||
#include "partitioning/partdesc.h"
|
||||
#include "storage/lmgr.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/memutils.h"
|
||||
|
@ -214,6 +215,13 @@ FreeExecutorState(EState *estate)
|
|||
estate->es_jit = NULL;
|
||||
}
|
||||
|
||||
/* release partition directory, if allocated */
|
||||
if (estate->es_partition_directory)
|
||||
{
|
||||
DestroyPartitionDirectory(estate->es_partition_directory);
|
||||
estate->es_partition_directory = NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
* Free the per-query memory context, thereby releasing all working
|
||||
* memory, including the EState node itself.
|
||||
|
|
|
@ -2186,7 +2186,7 @@ ExecInitModifyTable(ModifyTable *node, EState *estate, int eflags)
|
|||
if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE &&
|
||||
(operation == CMD_INSERT || update_tuple_routing_needed))
|
||||
mtstate->mt_partition_tuple_routing =
|
||||
ExecSetupPartitionTupleRouting(mtstate, rel);
|
||||
ExecSetupPartitionTupleRouting(estate, mtstate, rel);
|
||||
|
||||
/*
|
||||
* Build state for collecting transition tuples. This requires having a
|
||||
|
|
|
@ -1197,6 +1197,7 @@ _copyPartitionedRelPruneInfo(const PartitionedRelPruneInfo *from)
|
|||
COPY_SCALAR_FIELD(nexprs);
|
||||
COPY_POINTER_FIELD(subplan_map, from->nparts * sizeof(int));
|
||||
COPY_POINTER_FIELD(subpart_map, from->nparts * sizeof(int));
|
||||
COPY_POINTER_FIELD(relid_map, from->nparts * sizeof(int));
|
||||
COPY_POINTER_FIELD(hasexecparam, from->nexprs * sizeof(bool));
|
||||
COPY_SCALAR_FIELD(do_initial_prune);
|
||||
COPY_SCALAR_FIELD(do_exec_prune);
|
||||
|
|
|
@ -947,6 +947,7 @@ _outPartitionedRelPruneInfo(StringInfo str, const PartitionedRelPruneInfo *node)
|
|||
WRITE_INT_FIELD(nexprs);
|
||||
WRITE_INT_ARRAY(subplan_map, node->nparts);
|
||||
WRITE_INT_ARRAY(subpart_map, node->nparts);
|
||||
WRITE_OID_ARRAY(relid_map, node->nparts);
|
||||
WRITE_BOOL_ARRAY(hasexecparam, node->nexprs);
|
||||
WRITE_BOOL_FIELD(do_initial_prune);
|
||||
WRITE_BOOL_FIELD(do_exec_prune);
|
||||
|
|
|
@ -2386,6 +2386,7 @@ _readPartitionedRelPruneInfo(void)
|
|||
READ_INT_FIELD(nexprs);
|
||||
READ_INT_ARRAY(subplan_map, local_node->nparts);
|
||||
READ_INT_ARRAY(subpart_map, local_node->nparts);
|
||||
READ_OID_ARRAY(relid_map, local_node->nparts);
|
||||
READ_BOOL_ARRAY(hasexecparam, local_node->nexprs);
|
||||
READ_BOOL_FIELD(do_initial_prune);
|
||||
READ_BOOL_FIELD(do_exec_prune);
|
||||
|
|
|
@ -56,6 +56,7 @@
|
|||
#include "parser/analyze.h"
|
||||
#include "parser/parsetree.h"
|
||||
#include "parser/parse_agg.h"
|
||||
#include "partitioning/partdesc.h"
|
||||
#include "rewrite/rewriteManip.h"
|
||||
#include "storage/dsm_impl.h"
|
||||
#include "utils/rel.h"
|
||||
|
@ -567,6 +568,9 @@ standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
|
|||
result->jitFlags |= PGJIT_DEFORM;
|
||||
}
|
||||
|
||||
if (glob->partition_directory != NULL)
|
||||
DestroyPartitionDirectory(glob->partition_directory);
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
|
|
@ -147,6 +147,10 @@ expand_inherited_rtentry(PlannerInfo *root, RangeTblEntry *rte, Index rti)
|
|||
{
|
||||
Assert(rte->relkind == RELKIND_PARTITIONED_TABLE);
|
||||
|
||||
if (root->glob->partition_directory == NULL)
|
||||
root->glob->partition_directory =
|
||||
CreatePartitionDirectory(CurrentMemoryContext);
|
||||
|
||||
/*
|
||||
* If this table has partitions, recursively expand and lock them.
|
||||
* While at it, also extract the partition key columns of all the
|
||||
|
@ -246,7 +250,10 @@ expand_partitioned_rtentry(PlannerInfo *root, RangeTblEntry *parentrte,
|
|||
int i;
|
||||
RangeTblEntry *childrte;
|
||||
Index childRTindex;
|
||||
PartitionDesc partdesc = RelationGetPartitionDesc(parentrel);
|
||||
PartitionDesc partdesc;
|
||||
|
||||
partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
|
||||
parentrel);
|
||||
|
||||
check_stack_depth();
|
||||
|
||||
|
|
|
@ -2086,7 +2086,8 @@ set_relation_partition_info(PlannerInfo *root, RelOptInfo *rel,
|
|||
|
||||
Assert(relation->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
|
||||
|
||||
partdesc = RelationGetPartitionDesc(relation);
|
||||
partdesc = PartitionDirectoryLookup(root->glob->partition_directory,
|
||||
relation);
|
||||
partkey = RelationGetPartitionKey(relation);
|
||||
rel->part_scheme = find_partition_scheme(root, relation);
|
||||
Assert(partdesc != NULL && rel->part_scheme != NULL);
|
||||
|
|
|
@ -14,17 +14,39 @@
|
|||
|
||||
#include "postgres.h"
|
||||
|
||||
#include "access/genam.h"
|
||||
#include "access/htup_details.h"
|
||||
#include "access/table.h"
|
||||
#include "catalog/indexing.h"
|
||||
#include "catalog/partition.h"
|
||||
#include "catalog/pg_inherits.h"
|
||||
#include "partitioning/partbounds.h"
|
||||
#include "partitioning/partdesc.h"
|
||||
#include "storage/bufmgr.h"
|
||||
#include "storage/sinval.h"
|
||||
#include "utils/builtins.h"
|
||||
#include "utils/inval.h"
|
||||
#include "utils/fmgroids.h"
|
||||
#include "utils/hsearch.h"
|
||||
#include "utils/lsyscache.h"
|
||||
#include "utils/memutils.h"
|
||||
#include "utils/rel.h"
|
||||
#include "utils/partcache.h"
|
||||
#include "utils/syscache.h"
|
||||
|
||||
typedef struct PartitionDirectoryData
|
||||
{
|
||||
MemoryContext pdir_mcxt;
|
||||
HTAB *pdir_hash;
|
||||
} PartitionDirectoryData;
|
||||
|
||||
typedef struct PartitionDirectoryEntry
|
||||
{
|
||||
Oid reloid;
|
||||
Relation rel;
|
||||
PartitionDesc pd;
|
||||
} PartitionDirectoryEntry;
|
||||
|
||||
/*
|
||||
* RelationBuildPartitionDesc
|
||||
* Form rel's partition descriptor
|
||||
|
@ -47,43 +69,93 @@ RelationBuildPartitionDesc(Relation rel)
|
|||
MemoryContext oldcxt;
|
||||
int *mapping;
|
||||
|
||||
/* Get partition oids from pg_inherits */
|
||||
/*
|
||||
* Get partition oids from pg_inherits. This uses a single snapshot to
|
||||
* fetch the list of children, so while more children may be getting
|
||||
* added concurrently, whatever this function returns will be accurate
|
||||
* as of some well-defined point in time.
|
||||
*/
|
||||
inhoids = find_inheritance_children(RelationGetRelid(rel), NoLock);
|
||||
nparts = list_length(inhoids);
|
||||
|
||||
/* Allocate arrays for OIDs and boundspecs. */
|
||||
if (nparts > 0)
|
||||
{
|
||||
oids = palloc(nparts * sizeof(Oid));
|
||||
boundspecs = palloc(nparts * sizeof(PartitionBoundSpec *));
|
||||
}
|
||||
|
||||
/* Collect bound spec nodes for each partition */
|
||||
/* Collect bound spec nodes for each partition. */
|
||||
i = 0;
|
||||
foreach(cell, inhoids)
|
||||
{
|
||||
Oid inhrelid = lfirst_oid(cell);
|
||||
HeapTuple tuple;
|
||||
Datum datum;
|
||||
bool isnull;
|
||||
PartitionBoundSpec *boundspec;
|
||||
PartitionBoundSpec *boundspec = NULL;
|
||||
|
||||
/* Try fetching the tuple from the catcache, for speed. */
|
||||
tuple = SearchSysCache1(RELOID, inhrelid);
|
||||
if (!HeapTupleIsValid(tuple))
|
||||
elog(ERROR, "cache lookup failed for relation %u", inhrelid);
|
||||
if (HeapTupleIsValid(tuple))
|
||||
{
|
||||
Datum datum;
|
||||
bool isnull;
|
||||
|
||||
datum = SysCacheGetAttr(RELOID, tuple,
|
||||
Anum_pg_class_relpartbound,
|
||||
&isnull);
|
||||
if (isnull)
|
||||
elog(ERROR, "null relpartbound for relation %u", inhrelid);
|
||||
boundspec = stringToNode(TextDatumGetCString(datum));
|
||||
datum = SysCacheGetAttr(RELOID, tuple,
|
||||
Anum_pg_class_relpartbound,
|
||||
&isnull);
|
||||
if (!isnull)
|
||||
boundspec = stringToNode(TextDatumGetCString(datum));
|
||||
ReleaseSysCache(tuple);
|
||||
}
|
||||
|
||||
/*
|
||||
* The system cache may be out of date; if so, we may find no pg_class
|
||||
* tuple or an old one where relpartbound is NULL. In that case, try
|
||||
* the table directly. We can't just AcceptInvalidationMessages() and
|
||||
* retry the system cache lookup because it's possible that a
|
||||
* concurrent ATTACH PARTITION operation has removed itself to the
|
||||
* ProcArray but yet added invalidation messages to the shared queue;
|
||||
* InvalidateSystemCaches() would work, but seems excessive.
|
||||
*
|
||||
* Note that this algorithm assumes that PartitionBoundSpec we manage
|
||||
* to fetch is the right one -- so this is only good enough for
|
||||
* concurrent ATTACH PARTITION, not concurrent DETACH PARTITION
|
||||
* or some hypothetical operation that changes the partition bounds.
|
||||
*/
|
||||
if (boundspec == NULL)
|
||||
{
|
||||
Relation pg_class;
|
||||
SysScanDesc scan;
|
||||
ScanKeyData key[1];
|
||||
Datum datum;
|
||||
bool isnull;
|
||||
|
||||
pg_class = table_open(RelationRelationId, AccessShareLock);
|
||||
ScanKeyInit(&key[0],
|
||||
Anum_pg_class_oid,
|
||||
BTEqualStrategyNumber, F_OIDEQ,
|
||||
ObjectIdGetDatum(inhrelid));
|
||||
scan = systable_beginscan(pg_class, ClassOidIndexId, true,
|
||||
NULL, 1, key);
|
||||
tuple = systable_getnext(scan);
|
||||
datum = heap_getattr(tuple, Anum_pg_class_relpartbound,
|
||||
RelationGetDescr(pg_class), &isnull);
|
||||
if (!isnull)
|
||||
boundspec = stringToNode(TextDatumGetCString(datum));
|
||||
systable_endscan(scan);
|
||||
table_close(pg_class, AccessShareLock);
|
||||
}
|
||||
|
||||
/* Sanity checks. */
|
||||
if (!boundspec)
|
||||
elog(ERROR, "missing relpartbound for relation %u", inhrelid);
|
||||
if (!IsA(boundspec, PartitionBoundSpec))
|
||||
elog(ERROR, "invalid relpartbound for relation %u", inhrelid);
|
||||
|
||||
/*
|
||||
* Sanity check: If the PartitionBoundSpec says this is the default
|
||||
* partition, its OID should correspond to whatever's stored in
|
||||
* pg_partitioned_table.partdefid; if not, the catalog is corrupt.
|
||||
* If the PartitionBoundSpec says this is the default partition, its
|
||||
* OID should match pg_partitioned_table.partdefid; if not, the
|
||||
* catalog is corrupt.
|
||||
*/
|
||||
if (boundspec->is_default)
|
||||
{
|
||||
|
@ -95,10 +167,10 @@ RelationBuildPartitionDesc(Relation rel)
|
|||
inhrelid, partdefid);
|
||||
}
|
||||
|
||||
/* Save results. */
|
||||
oids[i] = inhrelid;
|
||||
boundspecs[i] = boundspec;
|
||||
++i;
|
||||
ReleaseSysCache(tuple);
|
||||
}
|
||||
|
||||
/* Now build the actual relcache partition descriptor */
|
||||
|
@ -143,13 +215,88 @@ RelationBuildPartitionDesc(Relation rel)
|
|||
partdesc->oids[index] = oids[i];
|
||||
/* Record if the partition is a leaf partition */
|
||||
partdesc->is_leaf[index] =
|
||||
(get_rel_relkind(oids[i]) != RELKIND_PARTITIONED_TABLE);
|
||||
(get_rel_relkind(oids[i]) != RELKIND_PARTITIONED_TABLE);
|
||||
}
|
||||
MemoryContextSwitchTo(oldcxt);
|
||||
|
||||
rel->rd_partdesc = partdesc;
|
||||
}
|
||||
|
||||
/*
|
||||
* CreatePartitionDirectory
|
||||
* Create a new partition directory object.
|
||||
*/
|
||||
PartitionDirectory
|
||||
CreatePartitionDirectory(MemoryContext mcxt)
|
||||
{
|
||||
MemoryContext oldcontext = MemoryContextSwitchTo(mcxt);
|
||||
PartitionDirectory pdir;
|
||||
HASHCTL ctl;
|
||||
|
||||
MemSet(&ctl, 0, sizeof(HASHCTL));
|
||||
ctl.keysize = sizeof(Oid);
|
||||
ctl.entrysize = sizeof(PartitionDirectoryEntry);
|
||||
ctl.hcxt = mcxt;
|
||||
|
||||
pdir = palloc(sizeof(PartitionDirectoryData));
|
||||
pdir->pdir_mcxt = mcxt;
|
||||
pdir->pdir_hash = hash_create("partition directory", 256, &ctl,
|
||||
HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
|
||||
|
||||
MemoryContextSwitchTo(oldcontext);
|
||||
return pdir;
|
||||
}
|
||||
|
||||
/*
|
||||
* PartitionDirectoryLookup
|
||||
* Look up the partition descriptor for a relation in the directory.
|
||||
*
|
||||
* The purpose of this function is to ensure that we get the same
|
||||
* PartitionDesc for each relation every time we look it up. In the
|
||||
* face of current DDL, different PartitionDescs may be constructed with
|
||||
* different views of the catalog state, but any single particular OID
|
||||
* will always get the same PartitionDesc for as long as the same
|
||||
* PartitionDirectory is used.
|
||||
*/
|
||||
PartitionDesc
|
||||
PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
|
||||
{
|
||||
PartitionDirectoryEntry *pde;
|
||||
Oid relid = RelationGetRelid(rel);
|
||||
bool found;
|
||||
|
||||
pde = hash_search(pdir->pdir_hash, &relid, HASH_ENTER, &found);
|
||||
if (!found)
|
||||
{
|
||||
/*
|
||||
* We must keep a reference count on the relation so that the
|
||||
* PartitionDesc to which we are pointing can't get destroyed.
|
||||
*/
|
||||
RelationIncrementReferenceCount(rel);
|
||||
pde->rel = rel;
|
||||
pde->pd = RelationGetPartitionDesc(rel);
|
||||
Assert(pde->pd != NULL);
|
||||
}
|
||||
return pde->pd;
|
||||
}
|
||||
|
||||
/*
|
||||
* DestroyPartitionDirectory
|
||||
* Destroy a partition directory.
|
||||
*
|
||||
* Release the reference counts we're holding.
|
||||
*/
|
||||
void
|
||||
DestroyPartitionDirectory(PartitionDirectory pdir)
|
||||
{
|
||||
HASH_SEQ_STATUS status;
|
||||
PartitionDirectoryEntry *pde;
|
||||
|
||||
hash_seq_init(&status, pdir->pdir_hash);
|
||||
while ((pde = hash_seq_search(&status)) != NULL)
|
||||
RelationDecrementReferenceCount(pde->rel);
|
||||
}
|
||||
|
||||
/*
|
||||
* equalPartitionDescs
|
||||
* Compare two partition descriptors for logical equality
|
||||
|
|
|
@ -47,8 +47,9 @@
|
|||
#include "optimizer/appendinfo.h"
|
||||
#include "optimizer/optimizer.h"
|
||||
#include "optimizer/pathnode.h"
|
||||
#include "partitioning/partprune.h"
|
||||
#include "parser/parsetree.h"
|
||||
#include "partitioning/partbounds.h"
|
||||
#include "partitioning/partprune.h"
|
||||
#include "rewrite/rewriteManip.h"
|
||||
#include "utils/lsyscache.h"
|
||||
|
||||
|
@ -359,6 +360,7 @@ make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
|
|||
int partnatts = subpart->part_scheme->partnatts;
|
||||
int *subplan_map;
|
||||
int *subpart_map;
|
||||
Oid *relid_map;
|
||||
List *partprunequal;
|
||||
List *pruning_steps;
|
||||
bool contradictory;
|
||||
|
@ -434,6 +436,7 @@ make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
|
|||
*/
|
||||
subplan_map = (int *) palloc(nparts * sizeof(int));
|
||||
subpart_map = (int *) palloc(nparts * sizeof(int));
|
||||
relid_map = (Oid *) palloc(nparts * sizeof(int));
|
||||
present_parts = NULL;
|
||||
|
||||
for (i = 0; i < nparts; i++)
|
||||
|
@ -444,6 +447,7 @@ make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
|
|||
|
||||
subplan_map[i] = subplanidx;
|
||||
subpart_map[i] = subpartidx;
|
||||
relid_map[i] = planner_rt_fetch(partrel->relid, root)->relid;
|
||||
if (subplanidx >= 0)
|
||||
{
|
||||
present_parts = bms_add_member(present_parts, i);
|
||||
|
@ -462,6 +466,7 @@ make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
|
|||
pinfo->nparts = nparts;
|
||||
pinfo->subplan_map = subplan_map;
|
||||
pinfo->subpart_map = subpart_map;
|
||||
pinfo->relid_map = relid_map;
|
||||
|
||||
/* Determine which pruning types should be enabled at this level */
|
||||
doruntimeprune |= analyze_partkey_exprs(pinfo, pruning_steps,
|
||||
|
|
|
@ -2569,6 +2569,26 @@ RelationClearRelation(Relation relation, bool rebuild)
|
|||
SWAPFIELD(PartitionDesc, rd_partdesc);
|
||||
SWAPFIELD(MemoryContext, rd_pdcxt);
|
||||
}
|
||||
else if (rebuild && newrel->rd_pdcxt != NULL)
|
||||
{
|
||||
/*
|
||||
* We are rebuilding a partitioned relation with a non-zero
|
||||
* reference count, so keep the old partition descriptor around,
|
||||
* in case there's a PartitionDirectory with a pointer to it.
|
||||
* Attach it to the new rd_pdcxt so that it gets cleaned up
|
||||
* eventually. In the case where the reference count is 0, this
|
||||
* code is not reached, which should be OK because in that case
|
||||
* there should be no PartitionDirectory with a pointer to the old
|
||||
* entry.
|
||||
*
|
||||
* Note that newrel and relation have already been swapped, so
|
||||
* the "old" partition descriptor is actually the one hanging off
|
||||
* of newrel.
|
||||
*/
|
||||
MemoryContextSetParent(newrel->rd_pdcxt, relation->rd_pdcxt);
|
||||
newrel->rd_partdesc = NULL;
|
||||
newrel->rd_pdcxt = NULL;
|
||||
}
|
||||
|
||||
#undef SWAPFIELD
|
||||
|
||||
|
|
|
@ -135,7 +135,8 @@ typedef struct PartitionPruneState
|
|||
PartitionPruningData *partprunedata[FLEXIBLE_ARRAY_MEMBER];
|
||||
} PartitionPruneState;
|
||||
|
||||
extern PartitionTupleRouting *ExecSetupPartitionTupleRouting(ModifyTableState *mtstate,
|
||||
extern PartitionTupleRouting *ExecSetupPartitionTupleRouting(EState *estate,
|
||||
ModifyTableState *mtstate,
|
||||
Relation rel);
|
||||
extern ResultRelInfo *ExecFindPartition(ModifyTableState *mtstate,
|
||||
ResultRelInfo *rootResultRelInfo,
|
||||
|
|
|
@ -19,6 +19,7 @@
|
|||
#include "lib/pairingheap.h"
|
||||
#include "nodes/params.h"
|
||||
#include "nodes/plannodes.h"
|
||||
#include "partitioning/partdefs.h"
|
||||
#include "utils/hsearch.h"
|
||||
#include "utils/queryenvironment.h"
|
||||
#include "utils/reltrigger.h"
|
||||
|
@ -521,6 +522,7 @@ typedef struct EState
|
|||
*/
|
||||
ResultRelInfo *es_root_result_relations; /* array of ResultRelInfos */
|
||||
int es_num_root_result_relations; /* length of the array */
|
||||
PartitionDirectory es_partition_directory; /* for PartitionDesc lookup */
|
||||
|
||||
/*
|
||||
* The following list contains ResultRelInfos created by the tuple routing
|
||||
|
|
|
@ -144,6 +144,8 @@ typedef struct PlannerGlobal
|
|||
bool parallelModeNeeded; /* parallel mode actually required? */
|
||||
|
||||
char maxParallelHazard; /* worst PROPARALLEL hazard level */
|
||||
|
||||
PartitionDirectory partition_directory; /* partition descriptors */
|
||||
} PlannerGlobal;
|
||||
|
||||
/* macro for fetching the Plan associated with a SubPlan node */
|
||||
|
|
|
@ -1108,6 +1108,7 @@ typedef struct PartitionedRelPruneInfo
|
|||
int nexprs; /* Length of hasexecparam[] */
|
||||
int *subplan_map; /* subplan index by partition index, or -1 */
|
||||
int *subpart_map; /* subpart index by partition index, or -1 */
|
||||
Oid *relid_map; /* relation OID by partition index, or -1 */
|
||||
bool *hasexecparam; /* true if corresponding pruning_step contains
|
||||
* any PARAM_EXEC Params. */
|
||||
bool do_initial_prune; /* true if pruning should be performed
|
||||
|
|
|
@ -21,4 +21,6 @@ typedef struct PartitionBoundSpec PartitionBoundSpec;
|
|||
|
||||
typedef struct PartitionDescData *PartitionDesc;
|
||||
|
||||
typedef struct PartitionDirectoryData *PartitionDirectory;
|
||||
|
||||
#endif /* PARTDEFS_H */
|
||||
|
|
|
@ -31,6 +31,10 @@ typedef struct PartitionDescData
|
|||
|
||||
extern void RelationBuildPartitionDesc(Relation rel);
|
||||
|
||||
extern PartitionDirectory CreatePartitionDirectory(MemoryContext mcxt);
|
||||
extern PartitionDesc PartitionDirectoryLookup(PartitionDirectory, Relation);
|
||||
extern void DestroyPartitionDirectory(PartitionDirectory pdir);
|
||||
|
||||
extern Oid get_default_oid_from_partdesc(PartitionDesc partdesc);
|
||||
|
||||
extern bool equalPartitionDescs(PartitionKey key, PartitionDesc partdesc1,
|
||||
|
|
Loading…
Reference in New Issue