Information completely translated to the SGML/DocBook source files
pgtcl.sgml, spi.sgml, trigger.sgml. Online docs in html and postscript are the current versions.
This commit is contained in:
parent
e98562a511
commit
7a9385e9d3
200
doc/libpgtcl.doc
200
doc/libpgtcl.doc
@ -1,200 +0,0 @@
|
|||||||
|
|
||||||
pgtcl is a tcl package for front-end programs to interface with PostgreSQL
|
|
||||||
backends. PgTcl does not use the libpq library but communicates to
|
|
||||||
the backend directly via the frontend-backend protocol. Thus, it is
|
|
||||||
more efficient than previous postgres->tcl bindings which are layered
|
|
||||||
on top of libpq. In addition, pgtcl can handle multiple backend
|
|
||||||
connections from a single frontend application.
|
|
||||||
|
|
||||||
If you have any questions or bug reports, please send them to
|
|
||||||
Jolly Chen at jolly@cs.berkeley.edu.
|
|
||||||
|
|
||||||
-------------------------------------------------------------------
|
|
||||||
|
|
||||||
|
|
||||||
The pgtcl package provides the following commands.
|
|
||||||
|
|
||||||
pg_connect - opens a connection to the backend server
|
|
||||||
pg_disconnect - closes a connection
|
|
||||||
pg_exec - send a query to the backend
|
|
||||||
pg_select - loop over the result of a select statement
|
|
||||||
pg_result - manipulate the results of a query
|
|
||||||
|
|
||||||
pg_lo_creat - create a large object
|
|
||||||
pg_lo_open - open a large object
|
|
||||||
pg_lo_close - close a large object
|
|
||||||
pg_lo_read - read a large object
|
|
||||||
pg_lo_write - write a large object
|
|
||||||
pg_lo_lseek - seek to a position on a large object
|
|
||||||
pg_lo_tell - return the current seek position of a large object
|
|
||||||
pg_lo_unlink - delete a large object
|
|
||||||
pg_lo_import - import a Unix file into a large object
|
|
||||||
pg_lo_export - export a large object into a Unix file
|
|
||||||
|
|
||||||
1) pg_connect: opens a connection to the backend
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_connect dbName [-host hostName] [-port portNumber] [-tty pqtty] [-options optionalBackendArgs]]
|
|
||||||
|
|
||||||
the return result is either an error message or a handle for a database
|
|
||||||
connection. Handles start with the prefix "pgp"
|
|
||||||
|
|
||||||
|
|
||||||
2) pg_disconnect: closes a connection
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_disconnect connection
|
|
||||||
|
|
||||||
The argument passed in must be a connection pointer.
|
|
||||||
|
|
||||||
3) pg_exec: send a query string to the backend
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_exec connection query
|
|
||||||
|
|
||||||
the return result is either an error message or a handle for a query
|
|
||||||
result. Handles start with the prefix "pgp"
|
|
||||||
|
|
||||||
4) pg_select: loop over the result of a select statement
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_select connection query var proc
|
|
||||||
|
|
||||||
The query must be a select statement. Anything else returns an error.
|
|
||||||
The var variable is an array name used in the loop. It is filled
|
|
||||||
out with the result of the query for each tuple using the field
|
|
||||||
names as the associative indeces. Proc is the procedure that is
|
|
||||||
run for each tuple found.
|
|
||||||
|
|
||||||
example: (DB is set to database name)
|
|
||||||
set conn [pg_connect $DB]
|
|
||||||
pg_select $conn "SELECT * from table" array {
|
|
||||||
puts [format "%5d %s" array(control) array(name)]
|
|
||||||
}
|
|
||||||
pg_disconnect $conn
|
|
||||||
|
|
||||||
5) pg_result: get information about a query result
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_result result ?option?
|
|
||||||
|
|
||||||
the options are:
|
|
||||||
-status
|
|
||||||
the status of the result
|
|
||||||
-oid
|
|
||||||
if the last query was an insert, returns the oid of the
|
|
||||||
inserted tuple
|
|
||||||
-conn
|
|
||||||
the connection that produced the result
|
|
||||||
-assign arrayName
|
|
||||||
assign the results to an array
|
|
||||||
-numTuples
|
|
||||||
the number of tuples in the query
|
|
||||||
-attributes
|
|
||||||
returns a list of the name/type pairs of the tuple attributes
|
|
||||||
-getTuple tupleNumber
|
|
||||||
returns the values of the tuple in a list
|
|
||||||
-clear
|
|
||||||
clear the result buffer. Do not reuse after this
|
|
||||||
|
|
||||||
----------------------------------------------------------------------------
|
|
||||||
The pg_lo* routines are interfaces to the Inversion large objects in postgres.
|
|
||||||
The functions are designed to mimic the analogous file system functions in
|
|
||||||
the standard Unix file system interface.
|
|
||||||
|
|
||||||
The pg_lo* routines should typically be used within a BEGIN/END transaction
|
|
||||||
block becaus the file descriptor returned by pg_lo_open is only valid for
|
|
||||||
the current transaction. pg_lo_import and pg_lo_export MUST be used
|
|
||||||
in a BEGIN/END transaction block.
|
|
||||||
|
|
||||||
* pg_lo_creat: create a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
g_lo_creat conn mode
|
|
||||||
|
|
||||||
mode can be any OR'ing together of INV_READ, INV_WRITE, and INV_ARCHIVE.
|
|
||||||
The OR delimiter character is "|".
|
|
||||||
e.g. [pg_lo_creat $conn "INV_READ|INV_WRITE"]
|
|
||||||
|
|
||||||
returns the oid of the large object created.
|
|
||||||
|
|
||||||
* pg_lo_open: open a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_open conn objOid mode
|
|
||||||
|
|
||||||
where mode can be either "r", "w", or "rw"
|
|
||||||
|
|
||||||
returns a file descriptor for use in later pg_lo* routines
|
|
||||||
|
|
||||||
* pg_lo_close: close a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_close conn fd
|
|
||||||
|
|
||||||
* pg_lo_read: read a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_read conn fd bufVar len
|
|
||||||
|
|
||||||
reads at most len bytes from a large object into a variable named bufVar.
|
|
||||||
Note that the third argument should be a variable name.
|
|
||||||
|
|
||||||
* pg_lo_write: write a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_write conn fd buf len
|
|
||||||
|
|
||||||
write at most len bytes to a large object.
|
|
||||||
The third argument should be the actual string to write, not a variable name.
|
|
||||||
|
|
||||||
* pg_lo_lseek: seek to a position on a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_lseek conn fd offset whence
|
|
||||||
|
|
||||||
whence can be "SEEK_CUR", "SEEK_END", or "SEEK_SET"
|
|
||||||
|
|
||||||
* pg_lo_tell: return the current seek position of a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_tell conn fd
|
|
||||||
|
|
||||||
* pg_lo_unlink: delete a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_unlink conn lobjId
|
|
||||||
|
|
||||||
* pg_lo_import: import a Unix file into a large object
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_import conn filename
|
|
||||||
|
|
||||||
pg_lo_import must be called within a BEGIN/END transaction block
|
|
||||||
|
|
||||||
* pg_lo_export: export a large object into a Unix file
|
|
||||||
|
|
||||||
syntax:
|
|
||||||
pg_lo_export conn lobjId filename
|
|
||||||
|
|
||||||
pg_lo_export must be called within a BEGIN/END transaction block
|
|
||||||
|
|
||||||
------------------------------------------------------------------
|
|
||||||
Here's a small example of how to use the routines:
|
|
||||||
|
|
||||||
# getDBs :
|
|
||||||
# get the names of all the databases at a given host and port number
|
|
||||||
# with the defaults being the localhost and port 5432
|
|
||||||
# return them in alphabetical order
|
|
||||||
proc getDBs { {host "localhost"} {port "5432"} } {
|
|
||||||
# datnames is the list to be result
|
|
||||||
set conn [pg_connect template1 -host $host -port $port]
|
|
||||||
set res [pg_exec $conn "SELECT datname FROM pg_database ORDER BY datname"]
|
|
||||||
set ntups [pg_result $res -numTuples]
|
|
||||||
for {set i 0} {$i < $ntups} {incr i} {
|
|
||||||
lappend datnames [pg_result $res -getTuple $i]
|
|
||||||
}
|
|
||||||
pg_disconnect $conn
|
|
||||||
return $datnames
|
|
||||||
}
|
|
||||||
|
|
518
doc/spi.txt
518
doc/spi.txt
@ -1,518 +0,0 @@
|
|||||||
|
|
||||||
PostgreSQL Server Programming Interface
|
|
||||||
|
|
||||||
The Server Programming Interface (SPI) is an attempt to give users the
|
|
||||||
ability to run SQL-queries inside user-defined C-functions. Given the lack
|
|
||||||
of a proper Procedural Language (PL) in the current version of PostgreSQL,
|
|
||||||
SPI is only way to write server stored procedures and triggers. In the future
|
|
||||||
SPI will be used as the "workhorse" for PL.
|
|
||||||
|
|
||||||
In fact, SPI is just set of builtin interface functions to simplify
|
|
||||||
access to the Parser, Planner, Optimizer and Executor. SPI also does some
|
|
||||||
memory management.
|
|
||||||
|
|
||||||
To avoid misunderstanding we'll use the word "function" for SPI interface
|
|
||||||
functions and the word "procedure" for user-defined C-functions using SPI.
|
|
||||||
|
|
||||||
SPI procedures are always called by some (upper) Executor and the SPI
|
|
||||||
manager uses the Executor to run your queries. Other procedures may be
|
|
||||||
called by the Executor running queries from your procedure.
|
|
||||||
|
|
||||||
Note, that if during execution of a query from a procedure the transaction
|
|
||||||
is be aborted then control will not be returned to your procedure - all work
|
|
||||||
will be rolled back and the server will wait for the next command from the
|
|
||||||
client. This will be changed in the future versions.
|
|
||||||
|
|
||||||
Other restrictions are the inability to execute BEGIN, END and ABORT
|
|
||||||
(transaction control statements) and cursor operations. This will also be
|
|
||||||
changed in future.
|
|
||||||
|
|
||||||
|
|
||||||
Interface functions
|
|
||||||
|
|
||||||
If successful, SPI functions return a non-negative result (either via
|
|
||||||
returned (int) value or in SPI_result global variable, as described below).
|
|
||||||
On error, a negative result will be returned.
|
|
||||||
|
|
||||||
|
|
||||||
int SPI_connect (void)
|
|
||||||
|
|
||||||
Connects your procedure to the SPI manager. Initializes the SPI internal
|
|
||||||
structures for query execution and memory management.
|
|
||||||
|
|
||||||
You should call this function if you will need to execute queries. Some
|
|
||||||
utility SPI functions may be called from un-connected procedures.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
|
|
||||||
SPI_OK_CONNECT if connected.
|
|
||||||
|
|
||||||
SPI_ERROR_CONNECT if not. You may get this error if SPI_connect() is
|
|
||||||
called from an already connected procedure - e.g. if you directly call one
|
|
||||||
procedure from another connected one. Actually, while the child procedure
|
|
||||||
will be able to use SPI, your parent procedure will not be able to continue
|
|
||||||
to use SPI after the child returns (if SPI_finish() is called by the child).
|
|
||||||
It's bad practice.
|
|
||||||
|
|
||||||
|
|
||||||
int SPI_finish(void)
|
|
||||||
|
|
||||||
Disconnects your procedure from the SPI manager and frees all memory
|
|
||||||
allocations made by your procedure via palloc() since the SPI_connect().
|
|
||||||
These allocations can't be used any more! See Memory management.
|
|
||||||
|
|
||||||
After SPI_finish() is called your procedure loses the ability to run
|
|
||||||
queries. The server is in the same state as just before the call to
|
|
||||||
SPI_connect().
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
|
|
||||||
SPI_OK_FINISH if properly disconnected.
|
|
||||||
SPI_ERROR_UNCONNECTED if called from an un-connected procedure. No problem
|
|
||||||
with this - it means that nothing was made by the SPI manager.
|
|
||||||
|
|
||||||
NOTE! SPI_finish() MUST be called by connected procedure or you may get
|
|
||||||
unpredictable results! But you are able to skip the call to SPI_finish()
|
|
||||||
if you abort the transaction (via elog(WARN)).
|
|
||||||
|
|
||||||
|
|
||||||
int SPI_exec(char *query, int tcount)
|
|
||||||
|
|
||||||
Creates an execution plan (parser+planner+optimizer) and executes query
|
|
||||||
for tcount tuples. This should only be called from a connected procedure.
|
|
||||||
If tcount eq 0 then it executes the query for all tuples returned by the
|
|
||||||
query scan. Using tcount > 0 you may restrict the number of tuples for
|
|
||||||
which the query will be executed:
|
|
||||||
|
|
||||||
SPI_exec ("insert into _table_ select * from _table_", 5);
|
|
||||||
|
|
||||||
- at max 5 tuples will be inserted into _table_.
|
|
||||||
|
|
||||||
If execution of your query was successful then one of the following
|
|
||||||
(non-negative) values will be returned:
|
|
||||||
|
|
||||||
SPI_OK_UTILITY if some utility (e.g. CREATE TABLE ...) was executed.
|
|
||||||
SPI_OK_SELECT if SELECT (but not SELECT ... INTO!) was executed.
|
|
||||||
SPI_OK_SELINTO if SELECT ... INTO was executed.
|
|
||||||
SPI_OK_INSERT if INSERT (or INSERT ... SELECT) was executed.
|
|
||||||
SPI_OK_DELETE if DELETE was executed.
|
|
||||||
SPI_OK_UPDATE if UPDATE was executed.
|
|
||||||
|
|
||||||
NOTE! You may pass many queries in one string or query string may be
|
|
||||||
re-written by RULEs. SPI_exec() returns the result for the last query
|
|
||||||
executed.
|
|
||||||
|
|
||||||
The actual number of tuples for which the (last) query was executed is
|
|
||||||
returned in the global variable SPI_processed (if not SPI_OK_UTILITY).
|
|
||||||
|
|
||||||
If SPI_OK_SELECT returned and SPI_processed > 0 then you may use global
|
|
||||||
pointer SPITupleTable *SPI_tuptable to access the selected tuples:
|
|
||||||
|
|
||||||
Structure SPITupleTable is defined in spi.h:
|
|
||||||
|
|
||||||
typedef struct
|
|
||||||
{
|
|
||||||
uint32 alloced; /* # of alloced vals */
|
|
||||||
uint32 free; /* # of free vals */
|
|
||||||
TupleDesc tupdesc; /* tuple descriptor */
|
|
||||||
HeapTuple *vals; /* tuples */
|
|
||||||
} SPITupleTable;
|
|
||||||
|
|
||||||
HeapTuple *vals is an array of pointers to tuples. TupleDesc tupdesc is
|
|
||||||
a tuple descriptor which you may pass to SPI functions dealing with
|
|
||||||
tuples.
|
|
||||||
|
|
||||||
NOTE! Functions SPI_exec(), SPI_execp() and SPI_prepare() change both
|
|
||||||
SPI_processed and SPI_tuptable (just the pointer, not the contents of the
|
|
||||||
structure)! So, save them in local procedure variables if you need them.
|
|
||||||
|
|
||||||
Also NOTE, that SPI_finish() frees and makes all SPITupleTables
|
|
||||||
unusable! (See Memory management).
|
|
||||||
|
|
||||||
SPI_exec() may return one of the following (negative) values:
|
|
||||||
|
|
||||||
SPI_ERROR_ARGUMENT if query is NULL or tcount < 0.
|
|
||||||
SPI_ERROR_UNCONNECTED if procedure is unconnected.
|
|
||||||
SPI_ERROR_COPY if COPY TO/FROM stdin.
|
|
||||||
SPI_ERROR_CURSOR if DECLARE/CLOSE CURSOR, FETCH.
|
|
||||||
SPI_ERROR_TRANSACTION if BEGIN/ABORT/END.
|
|
||||||
SPI_ERROR_OPUNKNOWN if type of query is unknown (this shouldn't occur).
|
|
||||||
|
|
||||||
|
|
||||||
void *SPI_prepare(char *query, int nargs, Oid * argtypes)
|
|
||||||
|
|
||||||
Creates and returns an execution plan (parser+planner+optimizer) but doesn't
|
|
||||||
execute the query. Should only be called from a connected procedure.
|
|
||||||
|
|
||||||
nargs is number of parameters ($1 ... $<nargs> - as in SQL-functions),
|
|
||||||
*argtypes is an array of parameter type OIDs.
|
|
||||||
|
|
||||||
nargs may be 0 only if there is not any $1 in query.
|
|
||||||
|
|
||||||
Execution of prepared execution plans is sometimes much faster so this
|
|
||||||
feature may be useful if the same query will be executed many times.
|
|
||||||
|
|
||||||
NOTE! The plan returned by SPI_prepare() may be used only in current
|
|
||||||
invocation of procedure: SPI_finish() frees memory allocated for a plan.
|
|
||||||
See SPI_saveplan().
|
|
||||||
|
|
||||||
If successful, NOT NULL pointer will be returned. Otherwise, you'll get
|
|
||||||
a NULL plan. In both cases SPI_result will be set like the value returned
|
|
||||||
by SPI_exec, except
|
|
||||||
|
|
||||||
SPI_ERROR_ARGUMENT if query is NULL or nargs < 0 or nargs > 0 && argtypes
|
|
||||||
is NULL.
|
|
||||||
|
|
||||||
|
|
||||||
void *SPI_saveplan(void *plan)
|
|
||||||
|
|
||||||
Currently, there is no ability to store prepared plans in the system
|
|
||||||
catalog and fetch them from there for execution. This will be implemented
|
|
||||||
in future versions.
|
|
||||||
|
|
||||||
As a work arround, there is the ability to reuse prepared plans in the
|
|
||||||
consequent invocations of your procedure in the current session.
|
|
||||||
|
|
||||||
SPI_saveplan() saves a passed plan (prepared by SPI_prepare()) in memory
|
|
||||||
protected from freeing by SPI_finish() and by the transaction manager and
|
|
||||||
returns a pointer to the saved plan. You may save the pointer returned in
|
|
||||||
a local variable. Always check if this pointer is NULL or not either when
|
|
||||||
preparing a plan or using an already prepared plan in SPI_execp (see below).
|
|
||||||
|
|
||||||
NOTE! If one of objects (relation, function, ...) referenced by prepared
|
|
||||||
plan is dropped during your session (by your backend or another) then the
|
|
||||||
results of SPI_execp (for this plan) will be unpredictable.
|
|
||||||
|
|
||||||
If successful, NOT NULL is returned otherwise, SPI_result is set to
|
|
||||||
|
|
||||||
SPI_ERROR_ARGUMENT if plan is NULL.
|
|
||||||
SPI_ERROR_UNCONNECTED if procedure is un-connected.
|
|
||||||
|
|
||||||
|
|
||||||
int SPI_execp(void *plan, Datum * values, char *Nulls, int tcount)
|
|
||||||
|
|
||||||
Executes a plan prepared by SPI_prepare() (or returned by SPI_saveplan()).
|
|
||||||
Should only be called from a connected procedure.
|
|
||||||
|
|
||||||
plan is pointer to an execution plan, values points to actual parameter
|
|
||||||
values, Nulls - to array describing what parameters get NULLs ('n' -
|
|
||||||
NULL, ' ' - NOT NULL), tcount - number of tuples for which plan is to be
|
|
||||||
executed.
|
|
||||||
|
|
||||||
If Nulls is NULL then SPI assumes that all values (if any) are NOT NULL.
|
|
||||||
|
|
||||||
Returns the same value as SPI_exec, except
|
|
||||||
|
|
||||||
SPI_ERROR_ARGUMENT if plan is NULL or tcount < 0.
|
|
||||||
SPI_ERROR_PARAM if Values is NULL and plan prepared with some parameters.
|
|
||||||
|
|
||||||
If successful, SPI_tuptable and SPI_processed are initialized as in
|
|
||||||
SPI_exec().
|
|
||||||
|
|
||||||
|
|
||||||
All functions described below may be used by connected and unconnected
|
|
||||||
procedures.
|
|
||||||
|
|
||||||
|
|
||||||
HeapTuple SPI_copytuple(HeapTuple tuple)
|
|
||||||
|
|
||||||
Makes copy of tuple in upper Executor context (see Memory management).
|
|
||||||
|
|
||||||
If successful, NOT NULL returned. NULL (i.e. - error) will be returned
|
|
||||||
only if NULL is passed in.
|
|
||||||
|
|
||||||
|
|
||||||
HeapTuple SPI_modifytuple(Relation rel, HeapTuple tuple, int natts,
|
|
||||||
int *attnum, Datum * Values, char *Nulls)
|
|
||||||
|
|
||||||
Modifies tuple of relation rel as described by the rest of the arguments.
|
|
||||||
|
|
||||||
natts is the number of attribute numbers in attnum.
|
|
||||||
attnum is an array of numbers of the attributes which are to be changed.
|
|
||||||
Values are new values for the attributes specified.
|
|
||||||
Nulls describes which of the attributes specified are NULL (if Nulls is
|
|
||||||
NULL then no NULLs).
|
|
||||||
|
|
||||||
If successful, NOT NULL pointer to new tuple returned. New tuple is
|
|
||||||
allocated in upper Executor context (see Memory management). Passed tuple
|
|
||||||
is not changed.
|
|
||||||
|
|
||||||
Returns NULL if failed with cause in SPI_result:
|
|
||||||
|
|
||||||
SPI_ERROR_ARGUMENT if rel is NULL or tuple is NULL or natts le 0 or
|
|
||||||
attnum is NULL or Values is NULL.
|
|
||||||
SPI_ERROR_NOATTRIBUTE if there is invalid (le 0 or gt number of
|
|
||||||
attributes in tuple) attribute number in attnum.
|
|
||||||
|
|
||||||
|
|
||||||
int SPI_fnumber(TupleDesc tupdesc, char *fname)
|
|
||||||
|
|
||||||
Returns the attribute number for the attribute with name in fname.
|
|
||||||
tupdesc is tuple description.
|
|
||||||
|
|
||||||
Attribute numbers are 1 based.
|
|
||||||
|
|
||||||
Returns SPI_ERROR_NOATTRIBUTE if the named attribute is not found.
|
|
||||||
|
|
||||||
|
|
||||||
char *SPI_fname(TupleDesc tupdesc, int fnumber)
|
|
||||||
|
|
||||||
Returns (a copy of) the name of the attribute with number fnumber.
|
|
||||||
|
|
||||||
Returns NULL and (SPI_ERROR_NOATTRIBUTE in SPI_result) if fnumber is
|
|
||||||
greater than the number of attributes in tupdesc or fnumber le 0.
|
|
||||||
|
|
||||||
|
|
||||||
char *SPI_getvalue(HeapTuple tuple, TupleDesc tupdesc, int fnumber)
|
|
||||||
|
|
||||||
Returns an external (string) representation of the value of attribute
|
|
||||||
fnumber in tuple with descriptor tupdesc. Allocates memory as required
|
|
||||||
by the value.
|
|
||||||
|
|
||||||
Returns NULL if
|
|
||||||
|
|
||||||
attribute is NULL (SPI_result is 0 - no error);
|
|
||||||
fnumber is invalid (SPI_result is SPI_ERROR_NOATTRIBUTE);
|
|
||||||
there is no output function (SPI_result is SPI_ERROR_NOOUTFUNC).
|
|
||||||
|
|
||||||
|
|
||||||
Datum SPI_getbinval(HeapTuple tuple, TupleDesc tupdesc, int fnumber,
|
|
||||||
bool *isnull)
|
|
||||||
|
|
||||||
Returns the value of attribute fnumber in the tuple with descriptor
|
|
||||||
tupdesc. This is a binary value in internal form. This is not a copy!
|
|
||||||
|
|
||||||
Returns NULL indicator in *isnull.
|
|
||||||
|
|
||||||
SPI_result is SPI_ERROR_NOATTRIBUTE if fnumber is invalid.
|
|
||||||
|
|
||||||
|
|
||||||
char *SPI_gettype(TupleDesc tupdesc, int fnumber)
|
|
||||||
|
|
||||||
Returns (a copy of) the type name for attribute fnumber.
|
|
||||||
|
|
||||||
Returns NULL (and SPI_ERROR_NOATTRIBUTE in SPI_result) if fnumber
|
|
||||||
is invalid.
|
|
||||||
|
|
||||||
|
|
||||||
Oid SPI_gettypeid(TupleDesc tupdesc, int fnumber)
|
|
||||||
|
|
||||||
Returns type OID for attribute fnumber.
|
|
||||||
|
|
||||||
SPI_result is SPI_ERROR_NOATTRIBUTE if fnumber is invalid.
|
|
||||||
|
|
||||||
|
|
||||||
char *SPI_getrelname(Relation rel)
|
|
||||||
|
|
||||||
Returns (a copy of) the name of relation rel.
|
|
||||||
|
|
||||||
|
|
||||||
void *SPI_palloc (Size size)
|
|
||||||
|
|
||||||
Allocates memory in upper Executor context (see Memory management).
|
|
||||||
|
|
||||||
|
|
||||||
void *SPI_repalloc(void *pointer, Size size)
|
|
||||||
|
|
||||||
Re-allocates memory allocated in upper Executor context (see Memory
|
|
||||||
management).
|
|
||||||
|
|
||||||
|
|
||||||
void SPI_pfree(void *pointer)
|
|
||||||
|
|
||||||
Frees memory allocated in upper Executor context (see Memory management).
|
|
||||||
|
|
||||||
|
|
||||||
Memory management
|
|
||||||
|
|
||||||
Server allocates memory in memory contexts in such way that allocations
|
|
||||||
made in one context may be freed by context destruction without affecting
|
|
||||||
allocations made in other contexts. All allocations (via palloc(), etc) are
|
|
||||||
made in the context which are chosen as current one. You'll get
|
|
||||||
unpredictable results if you'll try to free (or reallocate) memory allocated
|
|
||||||
not in current context.
|
|
||||||
|
|
||||||
Creation and switching between memory contexts are subject of SPI manager
|
|
||||||
memory management.
|
|
||||||
|
|
||||||
SPI procedures deal with two memory contexts: upper Executor memory
|
|
||||||
context and procedure memory context (if connected).
|
|
||||||
|
|
||||||
Before a procedure is connected to the SPI manager, current memory context
|
|
||||||
is upper Executor context so all allocation made by the procedure itself via
|
|
||||||
palloc()/repalloc() or by SPI utility functions before connecting to SPI are
|
|
||||||
made in this context.
|
|
||||||
|
|
||||||
After SPI_connect() is called current context is the procedure's one. All
|
|
||||||
allocations made via palloc()/repalloc() or by SPI utility functions (except
|
|
||||||
for SPI_copytuple(), SPI_modifytuple, SPI_palloc() and SPI_repalloc()) are
|
|
||||||
made in this context.
|
|
||||||
|
|
||||||
When a procedure disconnects from the SPI manager (via SPI_finish()) the
|
|
||||||
current context is restored to the upper Executor context and all allocations
|
|
||||||
made in the procedure memory context are freed and can't be used any more!
|
|
||||||
|
|
||||||
If you want to return something to the upper Executor then you have to
|
|
||||||
allocate memory for this in the upper context!
|
|
||||||
|
|
||||||
SPI has no ability to automatically free allocations in the upper Executor
|
|
||||||
context!
|
|
||||||
|
|
||||||
SPI automatically frees memory allocated during execution of a query when
|
|
||||||
this query is done!
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Data changes visibility
|
|
||||||
|
|
||||||
PostgreSQL data changes visibility rule: during a query execution, data
|
|
||||||
changes made by the query itself (via SQL-function, SPI-function, triggers)
|
|
||||||
are invisible to the query scan. For example, in query
|
|
||||||
|
|
||||||
INSERT INTO a SELECT * FROM a
|
|
||||||
|
|
||||||
tuples inserted are invisible for SELECT' scan. In effect, this
|
|
||||||
duplicates the database table within itself (subject to unique index
|
|
||||||
rules, of course) without recursing.
|
|
||||||
|
|
||||||
Changes made by query Q are visible by queries which are started after
|
|
||||||
query Q, no matter whether they are started inside Q (during the execution
|
|
||||||
of Q) or after Q is done.
|
|
||||||
|
|
||||||
The last example of the usage of SPI procedure below demonstrates the
|
|
||||||
visibility rule.
|
|
||||||
|
|
||||||
|
|
||||||
Examples
|
|
||||||
|
|
||||||
There are more complex examples in in src/test/regress/regress.c and
|
|
||||||
in contrib/spi.
|
|
||||||
|
|
||||||
This is a very simple example of SPI usage. The procedure execq accepts
|
|
||||||
an SQL-query in its first argument and tcount in its second, executes the
|
|
||||||
query using SPI_exec and returns the number of tuples for which the query
|
|
||||||
executed:
|
|
||||||
|
|
||||||
----------------------------------------------------------------------------
|
|
||||||
#include "executor/spi.h" /* this is what you need to work with SPI */
|
|
||||||
|
|
||||||
int execq(text *sql, int cnt);
|
|
||||||
|
|
||||||
int
|
|
||||||
execq(text *sql, int cnt)
|
|
||||||
{
|
|
||||||
int ret;
|
|
||||||
int proc = 0;
|
|
||||||
|
|
||||||
SPI_connect();
|
|
||||||
|
|
||||||
ret = SPI_exec(textout(sql), cnt);
|
|
||||||
|
|
||||||
proc = SPI_processed;
|
|
||||||
/*
|
|
||||||
* If this is SELECT and some tuple(s) fetched -
|
|
||||||
* returns tuples to the caller via elog (NOTICE).
|
|
||||||
*/
|
|
||||||
if ( ret == SPI_OK_SELECT && SPI_processed > 0 )
|
|
||||||
{
|
|
||||||
TupleDesc tupdesc = SPI_tuptable->tupdesc;
|
|
||||||
SPITupleTable *tuptable = SPI_tuptable;
|
|
||||||
char buf[8192];
|
|
||||||
int i;
|
|
||||||
|
|
||||||
for (ret = 0; ret < proc; ret++)
|
|
||||||
{
|
|
||||||
HeapTuple tuple = tuptable->vals[ret];
|
|
||||||
|
|
||||||
for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
|
|
||||||
sprintf(buf + strlen (buf), " %s%s",
|
|
||||||
SPI_getvalue(tuple, tupdesc, i),
|
|
||||||
(i == tupdesc->natts) ? " " : " |");
|
|
||||||
elog (NOTICE, "EXECQ: %s", buf);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
SPI_finish();
|
|
||||||
|
|
||||||
return (proc);
|
|
||||||
}
|
|
||||||
----------------------------------------------------------------------------
|
|
||||||
|
|
||||||
Now, compile and create the function:
|
|
||||||
create function execq (text, int4) returns int4 as '...path_to_so' language 'c';
|
|
||||||
|
|
||||||
vac=> select execq('create table a (x int4)', 0);
|
|
||||||
execq
|
|
||||||
-----
|
|
||||||
0
|
|
||||||
(1 row)
|
|
||||||
|
|
||||||
vac=> insert into a values (execq('insert into a values (0)',0));
|
|
||||||
INSERT 167631 1
|
|
||||||
vac=> select execq('select * from a',0);
|
|
||||||
NOTICE:EXECQ: 0 <<< inserted by execq
|
|
||||||
|
|
||||||
NOTICE:EXECQ: 1 <<< value returned by execq and inserted by upper INSERT
|
|
||||||
|
|
||||||
execq
|
|
||||||
-----
|
|
||||||
2
|
|
||||||
(1 row)
|
|
||||||
|
|
||||||
vac=> select execq('insert into a select x + 2 from a',1);
|
|
||||||
execq
|
|
||||||
-----
|
|
||||||
1
|
|
||||||
(1 row)
|
|
||||||
|
|
||||||
vac=> select execq('select * from a', 10);
|
|
||||||
NOTICE:EXECQ: 0
|
|
||||||
|
|
||||||
NOTICE:EXECQ: 1
|
|
||||||
|
|
||||||
NOTICE:EXECQ: 2 <<< 0 + 2, only one tuple inserted - as specified
|
|
||||||
|
|
||||||
execq
|
|
||||||
-----
|
|
||||||
3 <<< 10 is max value only, 3 is real # of tuples
|
|
||||||
(1 row)
|
|
||||||
|
|
||||||
vac=> delete from a;
|
|
||||||
DELETE 3
|
|
||||||
vac=> insert into a values (execq('select * from a', 0) + 1);
|
|
||||||
INSERT 167712 1
|
|
||||||
vac=> select * from a;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
1 <<< no tuples in a (0) + 1
|
|
||||||
(1 row)
|
|
||||||
|
|
||||||
vac=> insert into a values (execq('select * from a', 0) + 1);
|
|
||||||
NOTICE:EXECQ: 0
|
|
||||||
INSERT 167713 1
|
|
||||||
vac=> select * from a;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
1
|
|
||||||
2 <<< there was single tuple in a + 1
|
|
||||||
(2 rows)
|
|
||||||
|
|
||||||
-- This demonstrates data changes visibility rule:
|
|
||||||
|
|
||||||
vac=> insert into a select execq('select * from a', 0) * x from a;
|
|
||||||
NOTICE:EXECQ: 1
|
|
||||||
NOTICE:EXECQ: 2
|
|
||||||
NOTICE:EXECQ: 1
|
|
||||||
NOTICE:EXECQ: 2
|
|
||||||
NOTICE:EXECQ: 2
|
|
||||||
INSERT 0 2
|
|
||||||
vac=> select * from a;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
1
|
|
||||||
2
|
|
||||||
2 <<< 2 tuples * 1 (x in first tuple)
|
|
||||||
6 <<< 3 tuples (2 + 1 just inserted) * 2 (x in second tuple)
|
|
||||||
(4 rows) ^^^^^^^^
|
|
||||||
tuples visible to execq() in different invocations
|
|
||||||
|
|
325
doc/trigger.txt
325
doc/trigger.txt
@ -1,325 +0,0 @@
|
|||||||
|
|
||||||
PostgreSQL Trigger Programming Guide
|
|
||||||
|
|
||||||
While the current version of PostgreSQL has various client interfaces
|
|
||||||
such as Perl, Tcl, Python and C, it lacks an actual Procedural Language
|
|
||||||
(PL). We hope to have a proper PL one day. In the meantime it is possible
|
|
||||||
to call C functions as trigger actions. Note that STATEMENT-level trigger
|
|
||||||
events are not supported in the current version. You can currently specify
|
|
||||||
BEFORE or AFTER on INSERT, DELETE or UPDATE of a tuple as a trigger event.
|
|
||||||
|
|
||||||
If a trigger event occurs, the trigger manager (called by the Executor)
|
|
||||||
initializes the global structure TriggerData *CurrentTriggerData (described
|
|
||||||
below) and calls the trigger function to handle the event.
|
|
||||||
|
|
||||||
The trigger function must be created before the trigger is created as a
|
|
||||||
function taking no arguments and returns opaque.
|
|
||||||
|
|
||||||
The syntax for creating triggers is as follows.
|
|
||||||
|
|
||||||
CREATE TRIGGER <trigger name> <BEFORE|AFTER> <INSERT|DELETE|UPDATE>
|
|
||||||
ON <relation name> FOR EACH <ROW|STATEMENT>
|
|
||||||
EXECUTE PROCEDURE <procedure name> (<function args>);
|
|
||||||
|
|
||||||
The name of the trigger is used if you ever have to delete the trigger.
|
|
||||||
It is used as an argument to the DROP TRIGGER command.
|
|
||||||
|
|
||||||
The next word determines whether the function is called before or after
|
|
||||||
the event.
|
|
||||||
|
|
||||||
The next element of the command determines on what event(s) will trigger
|
|
||||||
the function. Multiple events can be specified separated by OR.
|
|
||||||
|
|
||||||
The relation name determines which table the event applies to.
|
|
||||||
|
|
||||||
The FOR EACH statement determines whether the trigger is fired for each
|
|
||||||
affected row or before (or after) the entire statement has completed.
|
|
||||||
|
|
||||||
The procedure name is the C function called.
|
|
||||||
|
|
||||||
The args are passed to the function in the CurrentTriggerData structure.
|
|
||||||
The purpose of passing arguments to the function is to allow different
|
|
||||||
triggers with similar requirements to call the same function.
|
|
||||||
|
|
||||||
Also, function may be used for triggering different relations (these
|
|
||||||
functions are named as "general trigger functions").
|
|
||||||
|
|
||||||
As example of using both features above, there could be a general
|
|
||||||
function that takes as its arguments two field names and puts the current
|
|
||||||
user in one and the current timestamp in the other. This allows triggers to
|
|
||||||
be written on INSERT events to automatically track creation of records in a
|
|
||||||
transaction table for example. It could also be used as a "last updated"
|
|
||||||
function if used in an UPDATE event.
|
|
||||||
|
|
||||||
Trigger functions return HeapTuple to the calling Executor. This
|
|
||||||
is ignored for triggers fired after an INSERT, DELETE or UPDATE operation
|
|
||||||
but it allows BEFORE triggers to:
|
|
||||||
|
|
||||||
- return NULL to skip the operation for the current tuple (and so the
|
|
||||||
tuple will not be inserted/updated/deleted);
|
|
||||||
- return a pointer to another tuple (INSERT and UPDATE only) which will
|
|
||||||
be inserted (as the new version of the updated tuple if UPDATE) instead
|
|
||||||
of original tuple.
|
|
||||||
|
|
||||||
Note, that there is no initialization performed by the CREATE TRIGGER
|
|
||||||
handler. This will be changed in the future. Also, if more than one trigger
|
|
||||||
is defined for the same event on the same relation, the order of trigger
|
|
||||||
firing is unpredictable. This may be changed in the future.
|
|
||||||
|
|
||||||
If a trigger function executes SQL-queries (using SPI) then these queries
|
|
||||||
may fire triggers again. This is known as cascading triggers. There is no
|
|
||||||
explicit limitation on the number of cascade levels.
|
|
||||||
|
|
||||||
If a trigger is fired by INSERT and inserts a new tuple in the same
|
|
||||||
relation then this trigger will be fired again. Currently, there is nothing
|
|
||||||
provided for synchronization (etc) of these cases but this may change. At
|
|
||||||
the moment, there is function funny_dup17() in the regress tests which uses
|
|
||||||
some techniques to stop recursion (cascading) on itself...
|
|
||||||
|
|
||||||
|
|
||||||
Interaction with the trigger manager
|
|
||||||
|
|
||||||
As mentioned above, when function is called by the trigger manager,
|
|
||||||
structure TriggerData *CurrentTriggerData is NOT NULL and initialized. So
|
|
||||||
it is better to check CurrentTriggerData against being NULL at the start
|
|
||||||
and set it to NULL just after fetching the information to prevent calls to
|
|
||||||
a trigger function not from the trigger manager.
|
|
||||||
|
|
||||||
struct TriggerData is defined in src/include/commands/trigger.h:
|
|
||||||
|
|
||||||
typedef struct TriggerData
|
|
||||||
{
|
|
||||||
TriggerEvent tg_event;
|
|
||||||
Relation tg_relation;
|
|
||||||
HeapTuple tg_trigtuple;
|
|
||||||
HeapTuple tg_newtuple;
|
|
||||||
Trigger *tg_trigger;
|
|
||||||
} TriggerData;
|
|
||||||
|
|
||||||
tg_event
|
|
||||||
describes event for which the function is called. You may use the
|
|
||||||
following macros to examine tg_event:
|
|
||||||
|
|
||||||
TRIGGER_FIRED_BEFORE(event) returns TRUE if trigger fired BEFORE;
|
|
||||||
TRIGGER_FIRED_AFTER(event) returns TRUE if trigger fired AFTER;
|
|
||||||
TRIGGER_FIRED_FOR_ROW(event) returns TRUE if trigger fired for
|
|
||||||
ROW-level event;
|
|
||||||
TRIGGER_FIRED_FOR_STATEMENT(event) returns TRUE if trigger fired for
|
|
||||||
STATEMENT-level event;
|
|
||||||
TRIGGER_FIRED_BY_INSERT(event) returns TRUE if trigger fired by INSERT;
|
|
||||||
TRIGGER_FIRED_BY_DELETE(event) returns TRUE if trigger fired by DELETE;
|
|
||||||
TRIGGER_FIRED_BY_UPDATE(event) returns TRUE if trigger fired by UPDATE.
|
|
||||||
|
|
||||||
tg_relation
|
|
||||||
is pointer to structure describing the triggered relation. Look at
|
|
||||||
src/include/utils/rel.h for details about this structure. The most
|
|
||||||
interest things are tg_relation->rd_att (descriptor of the relation
|
|
||||||
tuples) and tg_relation->rd_rel->relname (relation's name. This is not
|
|
||||||
char*, but NameData. Use SPI_getrelname(tg_relation) to get char* if
|
|
||||||
you need a copy of name).
|
|
||||||
|
|
||||||
tg_trigtuple
|
|
||||||
is a pointer to the tuple for which the trigger is fired. This is the tuple
|
|
||||||
being inserted (if INSERT), deleted (if DELETE) or updated (if UPDATE).
|
|
||||||
If INSERT/DELETE then this is what you are to return to Executor if
|
|
||||||
you don't want to replace tuple with another one (INSERT) or skip the
|
|
||||||
operation.
|
|
||||||
|
|
||||||
tg_newtuple
|
|
||||||
is a pointer to the new version of tuple if UPDATE and NULL if this is
|
|
||||||
for an INSERT or a DELETE. This is what you are to return to Executor if
|
|
||||||
UPDATE and you don't want to replace this tuple with another one or skip
|
|
||||||
the operation.
|
|
||||||
|
|
||||||
tg_trigger
|
|
||||||
is pointer to structure Trigger defined in src/include/utils/rel.h:
|
|
||||||
|
|
||||||
typedef struct Trigger
|
|
||||||
{
|
|
||||||
char *tgname;
|
|
||||||
Oid tgfoid;
|
|
||||||
func_ptr tgfunc;
|
|
||||||
int16 tgtype;
|
|
||||||
int16 tgnargs;
|
|
||||||
int16 tgattr[8];
|
|
||||||
char **tgargs;
|
|
||||||
} Trigger;
|
|
||||||
|
|
||||||
tgname is the trigger's name, tgnargs is number of arguments in tgargs,
|
|
||||||
tgargs is an array of pointers to the arguments specified in the CREATE
|
|
||||||
TRIGGER statement. Other members are for internal use only.
|
|
||||||
|
|
||||||
|
|
||||||
Visibility of Data Changes
|
|
||||||
|
|
||||||
PostgreSQL data changes visibility rule: during a query execution, data
|
|
||||||
changes made by the query itself (via SQL-function, SPI-function, triggers)
|
|
||||||
are invisible to the query scan. For example, in query
|
|
||||||
|
|
||||||
INSERT INTO a SELECT * FROM a
|
|
||||||
|
|
||||||
tuples inserted are invisible for SELECT' scan. In effect, this
|
|
||||||
duplicates the database table within itself (subject to unique index
|
|
||||||
rules, of course) without recursing.
|
|
||||||
|
|
||||||
But keep in mind this notice about visibility in the SPI documentation:
|
|
||||||
|
|
||||||
Changes made by query Q are visible by queries which are started after
|
|
||||||
query Q, no matter whether they are started inside Q (during the
|
|
||||||
execution of Q) or after Q is done.
|
|
||||||
|
|
||||||
This is true for triggers as well so, though a tuple being inserted
|
|
||||||
(tg_trigtuple) is not visible to queries in a BEFORE trigger, this tuple
|
|
||||||
(just inserted) is visible to queries in an AFTER trigger, and to queries
|
|
||||||
in BEFORE/AFTER triggers fired after this!
|
|
||||||
|
|
||||||
|
|
||||||
Examples
|
|
||||||
|
|
||||||
There are more complex examples in in src/test/regress/regress.c and
|
|
||||||
in contrib/spi.
|
|
||||||
|
|
||||||
Here is a very simple example of trigger usage. Function trigf reports
|
|
||||||
the number of tuples in the triggered relation ttest and skips the
|
|
||||||
operation if the query attempts to insert NULL into x (i.e - it acts as a
|
|
||||||
NOT NULL constraint but doesn't abort the transaction).
|
|
||||||
|
|
||||||
----------------------------------------------------------------------------
|
|
||||||
#include "executor/spi.h" /* this is what you need to work with SPI */
|
|
||||||
#include "commands/trigger.h" /* -"- and triggers */
|
|
||||||
|
|
||||||
HeapTuple trigf(void);
|
|
||||||
|
|
||||||
HeapTuple
|
|
||||||
trigf()
|
|
||||||
{
|
|
||||||
TupleDesc tupdesc;
|
|
||||||
HeapTuple rettuple;
|
|
||||||
char *when;
|
|
||||||
bool checknull = false;
|
|
||||||
bool isnull;
|
|
||||||
int ret, i;
|
|
||||||
|
|
||||||
if (!CurrentTriggerData)
|
|
||||||
elog(WARN, "trigf: triggers are not initialized");
|
|
||||||
|
|
||||||
/* tuple to return to Executor */
|
|
||||||
if (TRIGGER_FIRED_BY_UPDATE(CurrentTriggerData->tg_event))
|
|
||||||
rettuple = CurrentTriggerData->tg_newtuple;
|
|
||||||
else
|
|
||||||
rettuple = CurrentTriggerData->tg_trigtuple;
|
|
||||||
|
|
||||||
/* check for NULLs ? */
|
|
||||||
if (!TRIGGER_FIRED_BY_DELETE(CurrentTriggerData->tg_event) &&
|
|
||||||
TRIGGER_FIRED_BEFORE(CurrentTriggerData->tg_event))
|
|
||||||
checknull = true;
|
|
||||||
|
|
||||||
if (TRIGGER_FIRED_BEFORE(CurrentTriggerData->tg_event))
|
|
||||||
when = "before";
|
|
||||||
else
|
|
||||||
when = "after ";
|
|
||||||
|
|
||||||
tupdesc = CurrentTriggerData->tg_relation->rd_att;
|
|
||||||
CurrentTriggerData = NULL;
|
|
||||||
|
|
||||||
/* Connect to SPI manager */
|
|
||||||
if ((ret = SPI_connect()) < 0)
|
|
||||||
elog(WARN, "trigf (fired %s): SPI_connect returned %d", when, ret);
|
|
||||||
|
|
||||||
/* Get number of tuples in relation */
|
|
||||||
ret = SPI_exec("select count(*) from ttest", 0);
|
|
||||||
|
|
||||||
if (ret < 0)
|
|
||||||
elog(WARN, "trigf (fired %s): SPI_exec returned %d", when, ret);
|
|
||||||
|
|
||||||
i = SPI_getbinval(SPI_tuptable->vals[0], SPI_tuptable->tupdesc, 1, &isnull);
|
|
||||||
|
|
||||||
elog (NOTICE, "trigf (fired %s): there are %d tuples in ttest", when, i);
|
|
||||||
|
|
||||||
SPI_finish();
|
|
||||||
|
|
||||||
if (checknull)
|
|
||||||
{
|
|
||||||
i = SPI_getbinval(rettuple, tupdesc, 1, &isnull);
|
|
||||||
if (isnull)
|
|
||||||
rettuple = NULL;
|
|
||||||
}
|
|
||||||
|
|
||||||
return (rettuple);
|
|
||||||
}
|
|
||||||
----------------------------------------------------------------------------
|
|
||||||
|
|
||||||
Now, compile and
|
|
||||||
create table ttest (x int4);
|
|
||||||
create function trigf () returns opaque as
|
|
||||||
'...path_to_so' language 'c';
|
|
||||||
|
|
||||||
vac=> create trigger tbefore before insert or update or delete on ttest
|
|
||||||
for each row execute procedure trigf();
|
|
||||||
CREATE
|
|
||||||
vac=> create trigger tafter after insert or update or delete on ttest
|
|
||||||
for each row execute procedure trigf();
|
|
||||||
CREATE
|
|
||||||
vac=> insert into ttest values (null);
|
|
||||||
NOTICE:trigf (fired before): there are 0 tuples in ttest
|
|
||||||
INSERT 0 0
|
|
||||||
|
|
||||||
-- Insertion skipped and AFTER trigger is not fired
|
|
||||||
|
|
||||||
vac=> select * from ttest;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
(0 rows)
|
|
||||||
|
|
||||||
vac=> insert into ttest values (1);
|
|
||||||
NOTICE:trigf (fired before): there are 0 tuples in ttest
|
|
||||||
NOTICE:trigf (fired after ): there are 1 tuples in ttest
|
|
||||||
^^^^^^^^
|
|
||||||
remember what we said about visibility.
|
|
||||||
INSERT 167793 1
|
|
||||||
vac=> select * from ttest;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
1
|
|
||||||
(1 row)
|
|
||||||
|
|
||||||
vac=> insert into ttest select x * 2 from ttest;
|
|
||||||
NOTICE:trigf (fired before): there are 1 tuples in ttest
|
|
||||||
NOTICE:trigf (fired after ): there are 2 tuples in ttest
|
|
||||||
^^^^^^^^
|
|
||||||
remember what we said about visibility.
|
|
||||||
INSERT 167794 1
|
|
||||||
vac=> select * from ttest;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
1
|
|
||||||
2
|
|
||||||
(2 rows)
|
|
||||||
|
|
||||||
vac=> update ttest set x = null where x = 2;
|
|
||||||
NOTICE:trigf (fired before): there are 2 tuples in ttest
|
|
||||||
UPDATE 0
|
|
||||||
vac=> update ttest set x = 4 where x = 2;
|
|
||||||
NOTICE:trigf (fired before): there are 2 tuples in ttest
|
|
||||||
NOTICE:trigf (fired after ): there are 2 tuples in ttest
|
|
||||||
UPDATE 1
|
|
||||||
vac=> select * from ttest;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
1
|
|
||||||
4
|
|
||||||
(2 rows)
|
|
||||||
|
|
||||||
vac=> delete from ttest;
|
|
||||||
NOTICE:trigf (fired before): there are 2 tuples in ttest
|
|
||||||
NOTICE:trigf (fired after ): there are 1 tuples in ttest
|
|
||||||
NOTICE:trigf (fired before): there are 1 tuples in ttest
|
|
||||||
NOTICE:trigf (fired after ): there are 0 tuples in ttest
|
|
||||||
^^^^^^^^
|
|
||||||
remember what we said about visibility.
|
|
||||||
DELETE 2
|
|
||||||
vac=> select * from ttest;
|
|
||||||
x
|
|
||||||
-
|
|
||||||
(0 rows)
|
|
||||||
|
|
Loading…
x
Reference in New Issue
Block a user