diff --git a/contrib/pgcrypto/Makefile b/contrib/pgcrypto/Makefile
index 573bc6df79..1313b66408 100644
--- a/contrib/pgcrypto/Makefile
+++ b/contrib/pgcrypto/Makefile
@@ -59,6 +59,9 @@ SHLIB_LINK += $(filter -leay32, $(LIBS))
SHLIB_LINK += -lws2_32
endif
+# Upstream uses a larger subset of C99.
+imath.o: CFLAGS+=$(PERMIT_DECLARATION_AFTER_STATEMENT)
+
rijndael.o: rijndael.tbl
rijndael.tbl:
diff --git a/contrib/pgcrypto/imath.c b/contrib/pgcrypto/imath.c
index c267ea6ab3..fa1d0bc049 100644
--- a/contrib/pgcrypto/imath.c
+++ b/contrib/pgcrypto/imath.c
@@ -1,90 +1,107 @@
-/* imath version 1.3 */
+/*-------------------------------------------------------------------------
+ *
+ * imath.c
+ *
+ * Last synchronized from https://github.com/creachadair/imath/tree/v1.29,
+ * using the following procedure:
+ *
+ * 1. Download imath.c and imath.h of the last synchronized version. Remove
+ * "#ifdef __cplusplus" blocks, which upset pgindent. Run pgindent on the
+ * two files. Filter the two files through "unexpand -t4 --first-only".
+ * Diff the result against the PostgreSQL versions. As of the last
+ * synchronization, changes were as follows:
+ *
+ * - replace malloc(), realloc() and free() with px_ versions
+ * - redirect assert() to Assert()
+ * - #undef MIN, #undef MAX before defining them
+ * - remove includes covered by c.h
+ * - rename DEBUG to IMATH_DEBUG
+ *
+ * 2. Download a newer imath.c and imath.h. Transform them like in step 1.
+ * Apply to these files the diff you saved in step 1. Look for new lines
+ * requiring the same kind of change, such as new malloc() calls.
+ *
+ * 3. Configure PostgreSQL using --without-openssl. Run "make -C
+ * contrib/pgcrypto check".
+ *
+ * 4. Update this header comment.
+ *
+ * Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
+ *
+ * IDENTIFICATION
+ * contrib/pgcrypto/imath.c
+ *
+ * Upstream copyright terms follow.
+ *-------------------------------------------------------------------------
+ */
+
/*
Name: imath.c
Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger
- Info: Id: imath.c 21 2006-04-02 18:58:36Z sting
+ Author: M. J. Fromberger
- Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
+ Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
+ Permission is hereby granted, free of charge, to any person obtaining a copy
+ of this software and associated documentation files (the "Software"), to deal
+ in the Software without restriction, including without limitation the rights
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ copies of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
+ The above copyright notice and this permission notice shall be included in
+ all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
-/* contrib/pgcrypto/imath.c */
#include "postgres.h"
-#include "px.h"
+
#include "imath.h"
+#include "px.h"
#undef assert
#define assert(TEST) Assert(TEST)
-#define TRACEABLE_CLAMP 0
-#define TRACEABLE_FREE 0
-
-/* {{{ Constants */
const mp_result MP_OK = 0; /* no error, all is well */
-const mp_result MP_FALSE = 0; /* boolean false */
-const mp_result MP_TRUE = -1; /* boolean true */
-const mp_result MP_MEMORY = -2; /* out of memory */
+const mp_result MP_FALSE = 0; /* boolean false */
+const mp_result MP_TRUE = -1; /* boolean true */
+const mp_result MP_MEMORY = -2; /* out of memory */
const mp_result MP_RANGE = -3; /* argument out of range */
-const mp_result MP_UNDEF = -4; /* result undefined */
-const mp_result MP_TRUNC = -5; /* output truncated */
+const mp_result MP_UNDEF = -4; /* result undefined */
+const mp_result MP_TRUNC = -5; /* output truncated */
const mp_result MP_BADARG = -6; /* invalid null argument */
+const mp_result MP_MINERR = -6;
const mp_sign MP_NEG = 1; /* value is strictly negative */
-const mp_sign MP_ZPOS = 0; /* value is non-negative */
+const mp_sign MP_ZPOS = 0; /* value is non-negative */
static const char *s_unknown_err = "unknown result code";
-static const char *s_error_msg[] = {
- "error code 0",
- "boolean true",
- "out of memory",
- "argument out of range",
- "result undefined",
- "output truncated",
- "invalid null argument",
- NULL
-};
-
-/* }}} */
-
-/* Optional library flags */
-#define MP_CAP_DIGITS 1 /* flag bit to capitalize letter digits */
-
-/* Argument checking macros
- Use CHECK() where a return value is required; NRCHECK() elsewhere */
-#define CHECK(TEST) assert(TEST)
-#define NRCHECK(TEST) assert(TEST)
-
-/* {{{ Logarithm table for computing output sizes */
+static const char *s_error_msg[] = {"error code 0", "boolean true",
+ "out of memory", "argument out of range",
+ "result undefined", "output truncated",
+"invalid argument", NULL};
/* The ith entry of this table gives the value of log_i(2).
An integer value n requires ceil(log_i(n)) digits to be represented
in base i. Since it is easy to compute lg(n), by counting bits, we
can compute log_i(n) = lg(n) * log_i(2).
+
+ The use of this table eliminates a dependency upon linkage against
+ the standard math libraries.
+
+ If MP_MAX_RADIX is increased, this table should be expanded too.
*/
static const double s_log2[] = {
- 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* 0 1 2 3 */
- 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
+ 0.000000000, 0.000000000, 1.000000000, 0.630929754, /* (D)(D) 2 3 */
+ 0.500000000, 0.430676558, 0.386852807, 0.356207187, /* 4 5 6 7 */
0.333333333, 0.315464877, 0.301029996, 0.289064826, /* 8 9 10 11 */
0.278942946, 0.270238154, 0.262649535, 0.255958025, /* 12 13 14 15 */
0.250000000, 0.244650542, 0.239812467, 0.235408913, /* 16 17 18 19 */
@@ -92,136 +109,242 @@ static const double s_log2[] = {
0.218104292, 0.215338279, 0.212746054, 0.210309918, /* 24 25 26 27 */
0.208014598, 0.205846832, 0.203795047, 0.201849087, /* 28 29 30 31 */
0.200000000, 0.198239863, 0.196561632, 0.194959022, /* 32 33 34 35 */
- 0.193426404, 0.191958720, 0.190551412, 0.189200360, /* 36 37 38 39 */
- 0.187901825, 0.186652411, 0.185449023, 0.184288833, /* 40 41 42 43 */
- 0.183169251, 0.182087900, 0.181042597, 0.180031327, /* 44 45 46 47 */
- 0.179052232, 0.178103594, 0.177183820, 0.176291434, /* 48 49 50 51 */
- 0.175425064, 0.174583430, 0.173765343, 0.172969690, /* 52 53 54 55 */
- 0.172195434, 0.171441601, 0.170707280, 0.169991616, /* 56 57 58 59 */
- 0.169293808, 0.168613099, 0.167948779, 0.167300179, /* 60 61 62 63 */
- 0.166666667
+ 0.193426404, /* 36 */
};
-/* }}} */
-/* {{{ Various macros */
-
/* Return the number of digits needed to represent a static value */
#define MP_VALUE_DIGITS(V) \
-((sizeof(V)+(sizeof(mp_digit)-1))/sizeof(mp_digit))
+ ((sizeof(V) + (sizeof(mp_digit) - 1)) / sizeof(mp_digit))
/* Round precision P to nearest word boundary */
-#define ROUND_PREC(P) ((mp_size)(2*(((P)+1)/2)))
+static inline mp_size
+s_round_prec(mp_size P)
+{
+ return 2 * ((P + 1) / 2);
+}
/* Set array P of S digits to zero */
-#define ZERO(P, S) \
-do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P);memset(p__,0,i__);}while(0)
+static inline void
+ZERO(mp_digit *P, mp_size S)
+{
+ mp_size i__ = S * sizeof(mp_digit);
+ mp_digit *p__ = P;
+
+ memset(p__, 0, i__);
+}
/* Copy S digits from array P to array Q */
-#define COPY(P, Q, S) \
-do{mp_size i__=(S)*sizeof(mp_digit);mp_digit *p__=(P),*q__=(Q);\
-memcpy(q__,p__,i__);}while(0)
+static inline void
+COPY(mp_digit *P, mp_digit *Q, mp_size S)
+{
+ mp_size i__ = S * sizeof(mp_digit);
+ mp_digit *p__ = P;
+ mp_digit *q__ = Q;
-/* Reverse N elements of type T in array A */
-#define REV(T, A, N) \
-do{T *u_=(A),*v_=u_+(N)-1;while(u_ 1 && (*dz_-- == 0)) --uz_;MP_USED(z_)=uz_;}while(0)
-#endif
+/* Reverse N elements of unsigned char in A. */
+static inline void
+REV(unsigned char *A, int N)
+{
+ unsigned char *u_ = A;
+ unsigned char *v_ = u_ + N - 1;
+ while (u_ < v_)
+ {
+ unsigned char xch = *u_;
+
+ *u_++ = *v_;
+ *v_-- = xch;
+ }
+}
+
+/* Strip leading zeroes from z_ in-place. */
+static inline void
+CLAMP(mp_int z_)
+{
+ mp_size uz_ = MP_USED(z_);
+ mp_digit *dz_ = MP_DIGITS(z_) + uz_ - 1;
+
+ while (uz_ > 1 && (*dz_-- == 0))
+ --uz_;
+ z_->used = uz_;
+}
+
+/* Select min/max. */
#undef MIN
#undef MAX
-#define MIN(A, B) ((B)<(A)?(B):(A))
-#define MAX(A, B) ((B)>(A)?(B):(A))
-#define SWAP(T, A, B) do{T t_=(A);A=(B);B=t_;}while(0)
+static inline int
+MIN(int A, int B)
+{
+ return (B < A ? B : A);
+}
+static inline mp_size
+MAX(mp_size A, mp_size B)
+{
+ return (B > A ? B : A);
+}
-#define TEMP(K) (temp + (K))
-#define SETUP(E, C) \
-do{if((res = (E)) != MP_OK) goto CLEANUP; ++(C);}while(0)
+/* Exchange lvalues A and B of type T, e.g.
+ SWAP(int, x, y) where x and y are variables of type int. */
+#define SWAP(T, A, B) \
+ do { \
+ T t_ = (A); \
+ A = (B); \
+ B = t_; \
+ } while (0)
-#define CMPZ(Z) \
-(((Z)->used==1&&(Z)->digits[0]==0)?0:((Z)->sign==MP_NEG)?-1:1)
+/* Declare a block of N temporary mpz_t values.
+ These values are initialized to zero.
+ You must add CLEANUP_TEMP() at the end of the function.
+ Use TEMP(i) to access a pointer to the ith value.
+ */
+#define DECLARE_TEMP(N) \
+ struct { \
+ mpz_t value[(N)]; \
+ int len; \
+ mp_result err; \
+ } temp_ = { \
+ .len = (N), \
+ .err = MP_OK, \
+ }; \
+ do { \
+ for (int i = 0; i < temp_.len; i++) { \
+ mp_int_init(TEMP(i)); \
+ } \
+ } while (0)
-#define UMUL(X, Y, Z) \
-do{mp_size ua_=MP_USED(X),ub_=MP_USED(Y);mp_size o_=ua_+ub_;\
-ZERO(MP_DIGITS(Z),o_);\
-(void) s_kmul(MP_DIGITS(X),MP_DIGITS(Y),MP_DIGITS(Z),ua_,ub_);\
-MP_USED(Z)=o_;CLAMP(Z);}while(0)
+/* Clear all allocated temp values. */
+#define CLEANUP_TEMP() \
+ CLEANUP: \
+ do { \
+ for (int i = 0; i < temp_.len; i++) { \
+ mp_int_clear(TEMP(i)); \
+ } \
+ if (temp_.err != MP_OK) { \
+ return temp_.err; \
+ } \
+ } while (0)
-#define USQR(X, Z) \
-do{mp_size ua_=MP_USED(X),o_=ua_+ua_;ZERO(MP_DIGITS(Z),o_);\
-(void) s_ksqr(MP_DIGITS(X),MP_DIGITS(Z),ua_);MP_USED(Z)=o_;CLAMP(Z);}while(0)
+/* A pointer to the kth temp value. */
+#define TEMP(K) (temp_.value + (K))
-#define UPPER_HALF(W) ((mp_word)((W) >> MP_DIGIT_BIT))
-#define LOWER_HALF(W) ((mp_digit)(W))
-#define HIGH_BIT_SET(W) ((W) >> (MP_WORD_BIT - 1))
-#define ADD_WILL_OVERFLOW(W, V) ((MP_WORD_MAX - (V)) < (W))
+/* Evaluate E, an expression of type mp_result expected to return MP_OK. If
+ the value is not MP_OK, the error is cached and control resumes at the
+ cleanup handler, which returns it.
+*/
+#define REQUIRE(E) \
+ do { \
+ temp_.err = (E); \
+ if (temp_.err != MP_OK) goto CLEANUP; \
+ } while (0)
-/* }}} */
+/* Compare value to zero. */
+static inline int
+CMPZ(mp_int Z)
+{
+ if (Z->used == 1 && Z->digits[0] == 0)
+ return 0;
+ return (Z->sign == MP_NEG) ? -1 : 1;
+}
+
+static inline mp_word
+UPPER_HALF(mp_word W)
+{
+ return (W >> MP_DIGIT_BIT);
+}
+static inline mp_digit
+LOWER_HALF(mp_word W)
+{
+ return (mp_digit) (W);
+}
+
+/* Report whether the highest-order bit of W is 1. */
+static inline bool
+HIGH_BIT_SET(mp_word W)
+{
+ return (W >> (MP_WORD_BIT - 1)) != 0;
+}
+
+/* Report whether adding W + V will carry out. */
+static inline bool
+ADD_WILL_OVERFLOW(mp_word W, mp_word V)
+{
+ return ((MP_WORD_MAX - V) < W);
+}
/* Default number of digits allocated to a new mp_int */
-static mp_size default_precision = 64;
+static mp_size default_precision = 8;
+
+void
+mp_int_default_precision(mp_size size)
+{
+ assert(size > 0);
+ default_precision = size;
+}
/* Minimum number of digits to invoke recursive multiply */
static mp_size multiply_threshold = 32;
-/* Default library configuration flags */
-static mp_word mp_flags = MP_CAP_DIGITS;
+void
+mp_int_multiply_threshold(mp_size thresh)
+{
+ assert(thresh >= sizeof(mp_word));
+ multiply_threshold = thresh;
+}
/* Allocate a buffer of (at least) num digits, or return
NULL if that couldn't be done. */
static mp_digit *s_alloc(mp_size num);
-#if TRACEABLE_FREE
+/* Release a buffer of digits allocated by s_alloc(). */
static void s_free(void *ptr);
-#else
-#define s_free(P) px_free(P)
-#endif
/* Insure that z has at least min digits allocated, resizing if
necessary. Returns true if successful, false if out of memory. */
-static int s_pad(mp_int z, mp_size min);
+static bool s_pad(mp_int z, mp_size min);
-/* Normalize by removing leading zeroes (except when z = 0) */
-#if TRACEABLE_CLAMP
-static void s_clamp(mp_int z);
-#endif
+/* Ensure Z has at least N digits allocated. */
+static inline mp_result
+GROW(mp_int Z, mp_size N)
+{
+ return s_pad(Z, N) ? MP_OK : MP_MEMORY;
+}
/* Fill in a "fake" mp_int on the stack with a given value */
-static void s_fake(mp_int z, int value, mp_digit vbuf[]);
+static void s_fake(mp_int z, mp_small value, mp_digit vbuf[]);
+static void s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[]);
/* Compare two runs of digits of given length, returns <0, 0, >0 */
static int s_cdig(mp_digit *da, mp_digit *db, mp_size len);
/* Pack the unsigned digits of v into array t */
-static int s_vpack(int v, mp_digit t[]);
+static int s_uvpack(mp_usmall v, mp_digit t[]);
/* Compare magnitudes of a and b, returns <0, 0, >0 */
static int s_ucmp(mp_int a, mp_int b);
/* Compare magnitudes of a and v, returns <0, 0, >0 */
-static int s_vcmp(mp_int a, int v);
+static int s_vcmp(mp_int a, mp_small v);
+static int s_uvcmp(mp_int a, mp_usmall uv);
/* Unsigned magnitude addition; assumes dc is big enough.
Carry out is returned (no memory allocated). */
-static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
+static mp_digit s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b);
/* Unsigned magnitude subtraction. Assumes dc is big enough. */
-static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
+static void s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b);
/* Unsigned recursive multiplication. Assumes dc is big enough. */
-static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
+static int s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b);
/* Unsigned magnitude multiplication. Assumes dc is big enough. */
-static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b);
+static void s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b);
/* Unsigned recursive squaring. Assumes dc is big enough. */
static int s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a);
@@ -236,8 +359,7 @@ static void s_dadd(mp_int a, mp_digit b);
static void s_dmul(mp_int a, mp_digit b);
/* Single digit multiplication on buffers; assumes dc is big enough. */
-static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc,
- mp_size size_a);
+static void s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a);
/* Single digit division. Replaces a with the quotient,
returns the remainder. */
@@ -264,7 +386,7 @@ static int s_dp2k(mp_int z);
static int s_isp2(mp_int z);
/* Set z to 2^k. May allocate; returns false in case this fails. */
-static int s_2expt(mp_int z, int k);
+static int s_2expt(mp_int z, mp_small k);
/* Normalize a and b for division, returns normalization constant */
static int s_norm(mp_int a, mp_int b);
@@ -279,17 +401,17 @@ static int s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2);
/* Modular exponentiation, using Barrett reduction */
static mp_result s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
-/* Unsigned magnitude division. Assumes |a| > |b|. Allocates
- temporaries; overwrites a with quotient, b with remainder. */
-static mp_result s_udiv(mp_int a, mp_int b);
+/* Unsigned magnitude division. Assumes |a| > |b|. Allocates temporaries;
+ overwrites a with quotient, b with remainder. */
+static mp_result s_udiv_knuth(mp_int a, mp_int b);
-/* Compute the number of digits in radix r required to represent the
- given value. Does not account for sign flags, terminators, etc. */
+/* Compute the number of digits in radix r required to represent the given
+ value. Does not account for sign flags, terminators, etc. */
static int s_outlen(mp_int z, mp_size r);
-/* Guess how many digits of precision will be needed to represent a
- radix r value of the specified number of digits. Returns a value
- guaranteed to be no smaller than the actual number required. */
+/* Guess how many digits of precision will be needed to represent a radix r
+ value of the specified number of digits. Returns a value guaranteed to be
+ no smaller than the actual number required. */
static mp_size s_inlen(int len, mp_size r);
/* Convert a character to a digit value in radix r, or
@@ -302,177 +424,161 @@ static char s_val2ch(int v, int caps);
/* Take 2's complement of a buffer in place */
static void s_2comp(unsigned char *buf, int len);
-/* Convert a value to binary, ignoring sign. On input, *limpos is the
- bound on how many bytes should be written to buf; on output, *limpos
- is set to the number of bytes actually written. */
+/* Convert a value to binary, ignoring sign. On input, *limpos is the bound on
+ how many bytes should be written to buf; on output, *limpos is set to the
+ number of bytes actually written. */
static mp_result s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad);
-#if 0
-/* Dump a representation of the mp_int to standard output */
-void s_print(char *tag, mp_int z);
-void s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
-/* {{{ get_default_precision() */
-
-mp_size
-mp_get_default_precision(void)
+/* Multiply X by Y into Z, ignoring signs. Requires that Z have enough storage
+ preallocated to hold the result. */
+static inline void
+UMUL(mp_int X, mp_int Y, mp_int Z)
{
- return default_precision;
+ mp_size ua_ = MP_USED(X);
+ mp_size ub_ = MP_USED(Y);
+ mp_size o_ = ua_ + ub_;
+
+ ZERO(MP_DIGITS(Z), o_);
+ (void) s_kmul(MP_DIGITS(X), MP_DIGITS(Y), MP_DIGITS(Z), ua_, ub_);
+ Z->used = o_;
+ CLAMP(Z);
}
-/* }}} */
-
-/* {{{ mp_set_default_precision(s) */
-
-void
-mp_set_default_precision(mp_size s)
+/* Square X into Z. Requires that Z have enough storage to hold the result. */
+static inline void
+USQR(mp_int X, mp_int Z)
{
- NRCHECK(s > 0);
+ mp_size ua_ = MP_USED(X);
+ mp_size o_ = ua_ + ua_;
- default_precision = (mp_size) ROUND_PREC(s);
+ ZERO(MP_DIGITS(Z), o_);
+ (void) s_ksqr(MP_DIGITS(X), MP_DIGITS(Z), ua_);
+ Z->used = o_;
+ CLAMP(Z);
}
-/* }}} */
-
-/* {{{ mp_get_multiply_threshold() */
-
-mp_size
-mp_get_multiply_threshold(void)
-{
- return multiply_threshold;
-}
-
-/* }}} */
-
-/* {{{ mp_set_multiply_threshold(s) */
-
-void
-mp_set_multiply_threshold(mp_size s)
-{
- multiply_threshold = s;
-}
-
-/* }}} */
-
-/* {{{ mp_int_init(z) */
-
mp_result
mp_int_init(mp_int z)
{
- return mp_int_init_size(z, default_precision);
+ if (z == NULL)
+ return MP_BADARG;
+
+ z->single = 0;
+ z->digits = &(z->single);
+ z->alloc = 1;
+ z->used = 1;
+ z->sign = MP_ZPOS;
+
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_alloc() */
-
mp_int
mp_int_alloc(void)
{
mp_int out = px_alloc(sizeof(mpz_t));
- assert(out != NULL);
- out->digits = NULL;
- out->used = 0;
- out->alloc = 0;
- out->sign = 0;
+ if (out != NULL)
+ mp_int_init(out);
return out;
}
-/* }}} */
-
-/* {{{ mp_int_init_size(z, prec) */
-
mp_result
mp_int_init_size(mp_int z, mp_size prec)
{
- CHECK(z != NULL);
+ assert(z != NULL);
- prec = (mp_size) ROUND_PREC(prec);
- prec = MAX(prec, default_precision);
+ if (prec == 0)
+ {
+ prec = default_precision;
+ }
+ else if (prec == 1)
+ {
+ return mp_int_init(z);
+ }
+ else
+ {
+ prec = s_round_prec(prec);
+ }
- if ((MP_DIGITS(z) = s_alloc(prec)) == NULL)
+ z->digits = s_alloc(prec);
+ if (MP_DIGITS(z) == NULL)
return MP_MEMORY;
z->digits[0] = 0;
- MP_USED(z) = 1;
- MP_ALLOC(z) = prec;
- MP_SIGN(z) = MP_ZPOS;
+ z->used = 1;
+ z->alloc = prec;
+ z->sign = MP_ZPOS;
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_init_copy(z, old) */
-
mp_result
mp_int_init_copy(mp_int z, mp_int old)
{
- mp_result res;
- mp_size uold,
- target;
+ assert(z != NULL && old != NULL);
- CHECK(z != NULL && old != NULL);
+ mp_size uold = MP_USED(old);
- uold = MP_USED(old);
- target = MAX(uold, default_precision);
+ if (uold == 1)
+ {
+ mp_int_init(z);
+ }
+ else
+ {
+ mp_size target = MAX(uold, default_precision);
+ mp_result res = mp_int_init_size(z, target);
- if ((res = mp_int_init_size(z, target)) != MP_OK)
- return res;
+ if (res != MP_OK)
+ return res;
+ }
- MP_USED(z) = uold;
- MP_SIGN(z) = MP_SIGN(old);
+ z->used = uold;
+ z->sign = old->sign;
COPY(MP_DIGITS(old), MP_DIGITS(z), uold);
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_init_value(z, value) */
-
mp_result
-mp_int_init_value(mp_int z, int value)
+mp_int_init_value(mp_int z, mp_small value)
{
- mp_result res;
+ mpz_t vtmp;
+ mp_digit vbuf[MP_VALUE_DIGITS(value)];
- CHECK(z != NULL);
-
- if ((res = mp_int_init(z)) != MP_OK)
- return res;
-
- return mp_int_set_value(z, value);
+ s_fake(&vtmp, value, vbuf);
+ return mp_int_init_copy(z, &vtmp);
}
-/* }}} */
-
-/* {{{ mp_int_set_value(z, value) */
-
mp_result
-mp_int_set_value(mp_int z, int value)
+mp_int_init_uvalue(mp_int z, mp_usmall uvalue)
{
- mp_size ndig;
+ mpz_t vtmp;
+ mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
- CHECK(z != NULL);
-
- /* How many digits to copy */
- ndig = (mp_size) MP_VALUE_DIGITS(value);
-
- if (!s_pad(z, ndig))
- return MP_MEMORY;
-
- MP_USED(z) = (mp_size) s_vpack(value, MP_DIGITS(z));
- MP_SIGN(z) = (value < 0) ? MP_NEG : MP_ZPOS;
-
- return MP_OK;
+ s_ufake(&vtmp, uvalue, vbuf);
+ return mp_int_init_copy(z, &vtmp);
}
-/* }}} */
+mp_result
+mp_int_set_value(mp_int z, mp_small value)
+{
+ mpz_t vtmp;
+ mp_digit vbuf[MP_VALUE_DIGITS(value)];
-/* {{{ mp_int_clear(z) */
+ s_fake(&vtmp, value, vbuf);
+ return mp_int_copy(&vtmp, z);
+}
+
+mp_result
+mp_int_set_uvalue(mp_int z, mp_usmall uvalue)
+{
+ mpz_t vtmp;
+ mp_digit vbuf[MP_VALUE_DIGITS(uvalue)];
+
+ s_ufake(&vtmp, uvalue, vbuf);
+ return mp_int_copy(&vtmp, z);
+}
void
mp_int_clear(mp_int z)
@@ -482,34 +588,26 @@ mp_int_clear(mp_int z)
if (MP_DIGITS(z) != NULL)
{
- s_free(MP_DIGITS(z));
- MP_DIGITS(z) = NULL;
+ if (MP_DIGITS(z) != &(z->single))
+ s_free(MP_DIGITS(z));
+
+ z->digits = NULL;
}
}
-/* }}} */
-
-/* {{{ mp_int_free(z) */
-
void
mp_int_free(mp_int z)
{
- NRCHECK(z != NULL);
+ assert(z != NULL);
- if (z->digits != NULL)
- mp_int_clear(z);
-
- px_free(z);
+ mp_int_clear(z);
+ px_free(z); /* note: NOT s_free() */
}
-/* }}} */
-
-/* {{{ mp_int_copy(a, c) */
-
mp_result
mp_int_copy(mp_int a, mp_int c)
{
- CHECK(a != NULL && c != NULL);
+ assert(a != NULL && c != NULL);
if (a != c)
{
@@ -524,17 +622,13 @@ mp_int_copy(mp_int a, mp_int c)
dc = MP_DIGITS(c);
COPY(da, dc, ua);
- MP_USED(c) = ua;
- MP_SIGN(c) = MP_SIGN(a);
+ c->used = ua;
+ c->sign = a->sign;
}
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_swap(a, c) */
-
void
mp_int_swap(mp_int a, mp_int c)
{
@@ -544,90 +638,71 @@ mp_int_swap(mp_int a, mp_int c)
*a = *c;
*c = tmp;
+
+ if (MP_DIGITS(a) == &(c->single))
+ a->digits = &(a->single);
+ if (MP_DIGITS(c) == &(a->single))
+ c->digits = &(c->single);
}
}
-/* }}} */
-
-/* {{{ mp_int_zero(z) */
-
void
mp_int_zero(mp_int z)
{
- NRCHECK(z != NULL);
+ assert(z != NULL);
z->digits[0] = 0;
- MP_USED(z) = 1;
- MP_SIGN(z) = MP_ZPOS;
+ z->used = 1;
+ z->sign = MP_ZPOS;
}
-/* }}} */
-
-/* {{{ mp_int_abs(a, c) */
-
mp_result
mp_int_abs(mp_int a, mp_int c)
{
- mp_result res;
+ assert(a != NULL && c != NULL);
- CHECK(a != NULL && c != NULL);
+ mp_result res;
if ((res = mp_int_copy(a, c)) != MP_OK)
return res;
- MP_SIGN(c) = MP_ZPOS;
+ c->sign = MP_ZPOS;
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_neg(a, c) */
-
mp_result
mp_int_neg(mp_int a, mp_int c)
{
- mp_result res;
+ assert(a != NULL && c != NULL);
- CHECK(a != NULL && c != NULL);
+ mp_result res;
if ((res = mp_int_copy(a, c)) != MP_OK)
return res;
if (CMPZ(c) != 0)
- MP_SIGN(c) = 1 - MP_SIGN(a);
+ c->sign = 1 - MP_SIGN(a);
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_add(a, b, c) */
-
mp_result
mp_int_add(mp_int a, mp_int b, mp_int c)
{
- mp_size ua,
- ub,
- uc,
- max;
+ assert(a != NULL && b != NULL && c != NULL);
- CHECK(a != NULL && b != NULL && c != NULL);
-
- ua = MP_USED(a);
- ub = MP_USED(b);
- uc = MP_USED(c);
- max = MAX(ua, ub);
+ mp_size ua = MP_USED(a);
+ mp_size ub = MP_USED(b);
+ mp_size max = MAX(ua, ub);
if (MP_SIGN(a) == MP_SIGN(b))
{
/* Same sign -- add magnitudes, preserve sign of addends */
- mp_digit carry;
-
if (!s_pad(c, max))
return MP_MEMORY;
- carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
- uc = max;
+ mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
+ mp_size uc = max;
if (carry)
{
@@ -638,50 +713,55 @@ mp_int_add(mp_int a, mp_int b, mp_int c)
++uc;
}
- MP_USED(c) = uc;
- MP_SIGN(c) = MP_SIGN(a);
+ c->used = uc;
+ c->sign = a->sign;
}
else
{
/* Different signs -- subtract magnitudes, preserve sign of greater */
+ int cmp = s_ucmp(a, b); /* magnitude comparision, sign ignored */
+
+ /*
+ * Set x to max(a, b), y to min(a, b) to simplify later code. A
+ * special case yields zero for equal magnitudes.
+ */
mp_int x,
y;
- int cmp = s_ucmp(a, b); /* magnitude comparison, sign ignored */
- /* Set x to max(a, b), y to min(a, b) to simplify later code */
- if (cmp >= 0)
+ if (cmp == 0)
{
- x = a;
- y = b;
+ mp_int_zero(c);
+ return MP_OK;
}
- else
+ else if (cmp < 0)
{
x = b;
y = a;
}
+ else
+ {
+ x = a;
+ y = b;
+ }
if (!s_pad(c, MP_USED(x)))
return MP_MEMORY;
/* Subtract smaller from larger */
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
- MP_USED(c) = MP_USED(x);
+ c->used = x->used;
CLAMP(c);
/* Give result the sign of the larger */
- MP_SIGN(c) = MP_SIGN(x);
+ c->sign = x->sign;
}
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_add_value(a, value, c) */
-
mp_result
-mp_int_add_value(mp_int a, int value, mp_int c)
+mp_int_add_value(mp_int a, mp_small value, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
@@ -691,35 +771,23 @@ mp_int_add_value(mp_int a, int value, mp_int c)
return mp_int_add(a, &vtmp, c);
}
-/* }}} */
-
-/* {{{ mp_int_sub(a, b, c) */
-
mp_result
mp_int_sub(mp_int a, mp_int b, mp_int c)
{
- mp_size ua,
- ub,
- uc,
- max;
+ assert(a != NULL && b != NULL && c != NULL);
- CHECK(a != NULL && b != NULL && c != NULL);
-
- ua = MP_USED(a);
- ub = MP_USED(b);
- uc = MP_USED(c);
- max = MAX(ua, ub);
+ mp_size ua = MP_USED(a);
+ mp_size ub = MP_USED(b);
+ mp_size max = MAX(ua, ub);
if (MP_SIGN(a) != MP_SIGN(b))
{
/* Different signs -- add magnitudes and keep sign of a */
- mp_digit carry;
-
if (!s_pad(c, max))
return MP_MEMORY;
- carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
- uc = max;
+ mp_digit carry = s_uadd(MP_DIGITS(a), MP_DIGITS(b), MP_DIGITS(c), ua, ub);
+ mp_size uc = max;
if (carry)
{
@@ -730,20 +798,20 @@ mp_int_sub(mp_int a, mp_int b, mp_int c)
++uc;
}
- MP_USED(c) = uc;
- MP_SIGN(c) = MP_SIGN(a);
+ c->used = uc;
+ c->sign = a->sign;
}
else
{
/* Same signs -- subtract magnitudes */
+ if (!s_pad(c, max))
+ return MP_MEMORY;
mp_int x,
y;
mp_sign osign;
- int cmp = s_ucmp(a, b);
- if (!s_pad(c, max))
- return MP_MEMORY;
+ int cmp = s_ucmp(a, b);
if (cmp >= 0)
{
@@ -762,21 +830,17 @@ mp_int_sub(mp_int a, mp_int b, mp_int c)
osign = 1 - osign;
s_usub(MP_DIGITS(x), MP_DIGITS(y), MP_DIGITS(c), MP_USED(x), MP_USED(y));
- MP_USED(c) = MP_USED(x);
+ c->used = x->used;
CLAMP(c);
- MP_SIGN(c) = osign;
+ c->sign = osign;
}
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_sub_value(a, value, c) */
-
mp_result
-mp_int_sub_value(mp_int a, int value, mp_int c)
+mp_int_sub_value(mp_int a, mp_small value, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
@@ -786,21 +850,10 @@ mp_int_sub_value(mp_int a, int value, mp_int c)
return mp_int_sub(a, &vtmp, c);
}
-/* }}} */
-
-/* {{{ mp_int_mul(a, b, c) */
-
mp_result
mp_int_mul(mp_int a, mp_int b, mp_int c)
{
- mp_digit *out;
- mp_size osize,
- ua,
- ub,
- p = 0;
- mp_sign osign;
-
- CHECK(a != NULL && b != NULL && c != NULL);
+ assert(a != NULL && b != NULL && c != NULL);
/* If either input is zero, we can shortcut multiplication */
if (mp_int_compare_zero(a) == 0 || mp_int_compare_zero(b) == 0)
@@ -810,21 +863,24 @@ mp_int_mul(mp_int a, mp_int b, mp_int c)
}
/* Output is positive if inputs have same sign, otherwise negative */
- osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
+ mp_sign osign = (MP_SIGN(a) == MP_SIGN(b)) ? MP_ZPOS : MP_NEG;
/*
- * If the output is not equal to any of the inputs, we'll write the
- * results there directly; otherwise, allocate a temporary space.
+ * If the output is not identical to any of the inputs, we'll write the
+ * results directly; otherwise, allocate a temporary space.
*/
- ua = MP_USED(a);
- ub = MP_USED(b);
- osize = MAX(ua, ub);
+ mp_size ua = MP_USED(a);
+ mp_size ub = MP_USED(b);
+ mp_size osize = MAX(ua, ub);
+
osize = 4 * ((osize + 1) / 2);
+ mp_digit *out;
+ mp_size p = 0;
+
if (c == a || c == b)
{
- p = ROUND_PREC(osize);
- p = MAX(p, default_precision);
+ p = MAX(s_round_prec(osize), default_precision);
if ((out = s_alloc(p)) == NULL)
return MP_MEMORY;
@@ -847,24 +903,21 @@ mp_int_mul(mp_int a, mp_int b, mp_int c)
*/
if (out != MP_DIGITS(c))
{
- s_free(MP_DIGITS(c));
- MP_DIGITS(c) = out;
- MP_ALLOC(c) = p;
+ if ((void *) MP_DIGITS(c) != (void *) c)
+ s_free(MP_DIGITS(c));
+ c->digits = out;
+ c->alloc = p;
}
- MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
+ c->used = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
- MP_SIGN(c) = osign;
+ c->sign = osign;
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_mul_value(a, value, c) */
-
mp_result
-mp_int_mul_value(mp_int a, int value, mp_int c)
+mp_int_mul_value(mp_int a, mp_small value, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
@@ -874,45 +927,39 @@ mp_int_mul_value(mp_int a, int value, mp_int c)
return mp_int_mul(a, &vtmp, c);
}
-/* }}} */
-
-/* {{{ mp_int_mul_pow2(a, p2, c) */
-
mp_result
-mp_int_mul_pow2(mp_int a, int p2, mp_int c)
+mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c)
{
- mp_result res;
+ assert(a != NULL && c != NULL && p2 >= 0);
- CHECK(a != NULL && c != NULL && p2 >= 0);
+ mp_result res = mp_int_copy(a, c);
- if ((res = mp_int_copy(a, c)) != MP_OK)
+ if (res != MP_OK)
return res;
if (s_qmul(c, (mp_size) p2))
+ {
return MP_OK;
+ }
else
+ {
return MP_MEMORY;
+ }
}
-/* }}} */
-
-/* {{{ mp_int_sqr(a, c) */
-
mp_result
mp_int_sqr(mp_int a, mp_int c)
{
- mp_digit *out;
- mp_size osize,
- p = 0;
-
- CHECK(a != NULL && c != NULL);
+ assert(a != NULL && c != NULL);
/* Get a temporary buffer big enough to hold the result */
- osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
+ mp_size osize = (mp_size) 4 * ((MP_USED(a) + 1) / 2);
+ mp_size p = 0;
+ mp_digit *out;
if (a == c)
{
- p = ROUND_PREC(osize);
+ p = s_round_prec(osize);
p = MAX(p, default_precision);
if ((out = s_alloc(p)) == NULL)
@@ -935,39 +982,35 @@ mp_int_sqr(mp_int a, mp_int c)
*/
if (out != MP_DIGITS(c))
{
- s_free(MP_DIGITS(c));
- MP_DIGITS(c) = out;
- MP_ALLOC(c) = p;
+ if ((void *) MP_DIGITS(c) != (void *) c)
+ s_free(MP_DIGITS(c));
+ c->digits = out;
+ c->alloc = p;
}
- MP_USED(c) = osize; /* might not be true, but we'll fix it ... */
+ c->used = osize; /* might not be true, but we'll fix it ... */
CLAMP(c); /* ... right here */
- MP_SIGN(c) = MP_ZPOS;
+ c->sign = MP_ZPOS;
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_div(a, b, q, r) */
-
mp_result
mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
{
- int cmp,
- last = 0,
- lg;
+ assert(a != NULL && b != NULL && q != r);
+
+ int cmp;
mp_result res = MP_OK;
- mpz_t temp[2];
mp_int qout,
rout;
- mp_sign sa = MP_SIGN(a),
- sb = MP_SIGN(b);
-
- CHECK(a != NULL && b != NULL && q != r);
+ mp_sign sa = MP_SIGN(a);
+ mp_sign sb = MP_SIGN(b);
if (CMPZ(b) == 0)
+ {
return MP_UNDEF;
+ }
else if ((cmp = s_ucmp(a, b)) < 0)
{
/*
@@ -995,7 +1038,7 @@ mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
q->digits[0] = 1;
if (sa != sb)
- MP_SIGN(q) = MP_NEG;
+ q->sign = MP_NEG;
}
return MP_OK;
@@ -1006,37 +1049,41 @@ mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
* quotient and remainder, but q and r are allowed to be NULL or to
* overlap with the inputs.
*/
+ DECLARE_TEMP(2);
+ int lg;
+
if ((lg = s_isp2(b)) < 0)
{
- if (q && b != q && (res = mp_int_copy(a, q)) == MP_OK)
+ if (q && b != q)
{
+ REQUIRE(mp_int_copy(a, q));
qout = q;
}
else
{
- qout = TEMP(last);
- SETUP(mp_int_init_copy(TEMP(last), a), last);
+ REQUIRE(mp_int_copy(a, TEMP(0)));
+ qout = TEMP(0);
}
- if (r && a != r && (res = mp_int_copy(b, r)) == MP_OK)
+ if (r && a != r)
{
+ REQUIRE(mp_int_copy(b, r));
rout = r;
}
else
{
- rout = TEMP(last);
- SETUP(mp_int_init_copy(TEMP(last), b), last);
+ REQUIRE(mp_int_copy(b, TEMP(1)));
+ rout = TEMP(1);
}
- if ((res = s_udiv(qout, rout)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(s_udiv_knuth(qout, rout));
}
else
{
- if (q && (res = mp_int_copy(a, q)) != MP_OK)
- goto CLEANUP;
- if (r && (res = mp_int_copy(a, r)) != MP_OK)
- goto CLEANUP;
+ if (q)
+ REQUIRE(mp_int_copy(a, q));
+ if (r)
+ REQUIRE(mp_int_copy(a, r));
if (q)
s_qdiv(q, (mp_size) lg);
@@ -1049,203 +1096,184 @@ mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r)
/* Recompute signs for output */
if (rout)
{
- MP_SIGN(rout) = sa;
+ rout->sign = sa;
if (CMPZ(rout) == 0)
- MP_SIGN(rout) = MP_ZPOS;
+ rout->sign = MP_ZPOS;
}
if (qout)
{
- MP_SIGN(qout) = (sa == sb) ? MP_ZPOS : MP_NEG;
+ qout->sign = (sa == sb) ? MP_ZPOS : MP_NEG;
if (CMPZ(qout) == 0)
- MP_SIGN(qout) = MP_ZPOS;
+ qout->sign = MP_ZPOS;
}
- if (q && (res = mp_int_copy(qout, q)) != MP_OK)
- goto CLEANUP;
- if (r && (res = mp_int_copy(rout, r)) != MP_OK)
- goto CLEANUP;
-
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
-
+ if (q)
+ REQUIRE(mp_int_copy(qout, q));
+ if (r)
+ REQUIRE(mp_int_copy(rout, r));
+ CLEANUP_TEMP();
return res;
}
-/* }}} */
-
-/* {{{ mp_int_mod(a, m, c) */
-
mp_result
mp_int_mod(mp_int a, mp_int m, mp_int c)
{
- mp_result res;
- mpz_t tmp;
- mp_int out;
-
- if (m == c)
- {
- if ((res = mp_int_init(&tmp)) != MP_OK)
- return res;
-
- out = &tmp;
- }
- else
- {
- out = c;
- }
-
- if ((res = mp_int_div(a, m, NULL, out)) != MP_OK)
- goto CLEANUP;
+ DECLARE_TEMP(1);
+ mp_int out = (m == c) ? TEMP(0) : c;
+ REQUIRE(mp_int_div(a, m, NULL, out));
if (CMPZ(out) < 0)
- res = mp_int_add(out, m, c);
+ {
+ REQUIRE(mp_int_add(out, m, c));
+ }
else
- res = mp_int_copy(out, c);
-
-CLEANUP:
- if (out != c)
- mp_int_clear(&tmp);
-
- return res;
+ {
+ REQUIRE(mp_int_copy(out, c));
+ }
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-
-/* {{{ mp_int_div_value(a, value, q, r) */
-
mp_result
-mp_int_div_value(mp_int a, int value, mp_int q, int *r)
+mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small * r)
{
- mpz_t vtmp,
- rtmp;
+ mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
- mp_result res;
- if ((res = mp_int_init(&rtmp)) != MP_OK)
- return res;
s_fake(&vtmp, value, vbuf);
- if ((res = mp_int_div(a, &vtmp, q, &rtmp)) != MP_OK)
- goto CLEANUP;
+ DECLARE_TEMP(1);
+ REQUIRE(mp_int_div(a, &vtmp, q, TEMP(0)));
if (r)
- (void) mp_int_to_int(&rtmp, r); /* can't fail */
+ (void) mp_int_to_int(TEMP(0), r); /* can't fail */
-CLEANUP:
- mp_int_clear(&rtmp);
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_div_pow2(a, p2, q, r) */
-
mp_result
-mp_int_div_pow2(mp_int a, int p2, mp_int q, mp_int r)
+mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r)
{
+ assert(a != NULL && p2 >= 0 && q != r);
+
mp_result res = MP_OK;
- CHECK(a != NULL && p2 >= 0 && q != r);
-
if (q != NULL && (res = mp_int_copy(a, q)) == MP_OK)
+ {
s_qdiv(q, (mp_size) p2);
+ }
if (res == MP_OK && r != NULL && (res = mp_int_copy(a, r)) == MP_OK)
+ {
s_qmod(r, (mp_size) p2);
+ }
return res;
}
-/* }}} */
-
-/* {{{ mp_int_expt(a, b, c) */
-
mp_result
-mp_int_expt(mp_int a, int b, mp_int c)
+mp_int_expt(mp_int a, mp_small b, mp_int c)
{
- mpz_t t;
- mp_result res;
- unsigned int v = abs(b);
+ assert(c != NULL);
+ if (b < 0)
+ return MP_RANGE;
- CHECK(b >= 0 && c != NULL);
-
- if ((res = mp_int_init_copy(&t, a)) != MP_OK)
- return res;
+ DECLARE_TEMP(1);
+ REQUIRE(mp_int_copy(a, TEMP(0)));
(void) mp_int_set_value(c, 1);
+ unsigned int v = labs(b);
+
while (v != 0)
{
if (v & 1)
{
- if ((res = mp_int_mul(c, &t, c)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_mul(c, TEMP(0), c));
}
v >>= 1;
if (v == 0)
break;
- if ((res = mp_int_sqr(&t, &t)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
}
-CLEANUP:
- mp_int_clear(&t);
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_expt_value(a, b, c) */
-
mp_result
-mp_int_expt_value(int a, int b, mp_int c)
+mp_int_expt_value(mp_small a, mp_small b, mp_int c)
{
- mpz_t t;
- mp_result res;
- unsigned int v = abs(b);
+ assert(c != NULL);
+ if (b < 0)
+ return MP_RANGE;
- CHECK(b >= 0 && c != NULL);
-
- if ((res = mp_int_init_value(&t, a)) != MP_OK)
- return res;
+ DECLARE_TEMP(1);
+ REQUIRE(mp_int_set_value(TEMP(0), a));
(void) mp_int_set_value(c, 1);
+ unsigned int v = labs(b);
+
while (v != 0)
{
if (v & 1)
{
- if ((res = mp_int_mul(c, &t, c)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_mul(c, TEMP(0), c));
}
v >>= 1;
if (v == 0)
break;
- if ((res = mp_int_sqr(&t, &t)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
}
-CLEANUP:
- mp_int_clear(&t);
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
+mp_result
+mp_int_expt_full(mp_int a, mp_int b, mp_int c)
+{
+ assert(a != NULL && b != NULL && c != NULL);
+ if (MP_SIGN(b) == MP_NEG)
+ return MP_RANGE;
-/* {{{ mp_int_compare(a, b) */
+ DECLARE_TEMP(1);
+ REQUIRE(mp_int_copy(a, TEMP(0)));
+
+ (void) mp_int_set_value(c, 1);
+ for (unsigned ix = 0; ix < MP_USED(b); ++ix)
+ {
+ mp_digit d = b->digits[ix];
+
+ for (unsigned jx = 0; jx < MP_DIGIT_BIT; ++jx)
+ {
+ if (d & 1)
+ {
+ REQUIRE(mp_int_mul(c, TEMP(0), c));
+ }
+
+ d >>= 1;
+ if (d == 0 && ix + 1 == MP_USED(b))
+ break;
+ REQUIRE(mp_int_sqr(TEMP(0), TEMP(0)));
+ }
+ }
+
+ CLEANUP_TEMP();
+ return MP_OK;
+}
int
mp_int_compare(mp_int a, mp_int b)
{
- mp_sign sa;
+ assert(a != NULL && b != NULL);
- CHECK(a != NULL && b != NULL);
+ mp_sign sa = MP_SIGN(a);
- sa = MP_SIGN(a);
if (sa == MP_SIGN(b))
{
int cmp = s_ucmp(a, b);
@@ -1254,91 +1282,90 @@ mp_int_compare(mp_int a, mp_int b)
* If they're both zero or positive, the normal comparison applies; if
* both negative, the sense is reversed.
*/
- if (sa != MP_ZPOS)
- INVERT_COMPARE_RESULT(cmp);
- return cmp;
+ if (sa == MP_ZPOS)
+ {
+ return cmp;
+ }
+ else
+ {
+ return -cmp;
+ }
+ }
+ else if (sa == MP_ZPOS)
+ {
+ return 1;
}
else
{
- if (sa == MP_ZPOS)
- return 1;
- else
- return -1;
+ return -1;
}
}
-/* }}} */
-
-/* {{{ mp_int_compare_unsigned(a, b) */
-
int
mp_int_compare_unsigned(mp_int a, mp_int b)
{
- NRCHECK(a != NULL && b != NULL);
+ assert(a != NULL && b != NULL);
return s_ucmp(a, b);
}
-/* }}} */
-
-/* {{{ mp_int_compare_zero(z) */
-
int
mp_int_compare_zero(mp_int z)
{
- NRCHECK(z != NULL);
+ assert(z != NULL);
if (MP_USED(z) == 1 && z->digits[0] == 0)
+ {
return 0;
+ }
else if (MP_SIGN(z) == MP_ZPOS)
+ {
return 1;
+ }
else
+ {
return -1;
+ }
}
-/* }}} */
-
-/* {{{ mp_int_compare_value(z, value) */
-
int
-mp_int_compare_value(mp_int z, int value)
+mp_int_compare_value(mp_int z, mp_small value)
{
- mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
- int cmp;
+ assert(z != NULL);
- CHECK(z != NULL);
+ mp_sign vsign = (value < 0) ? MP_NEG : MP_ZPOS;
if (vsign == MP_SIGN(z))
{
- cmp = s_vcmp(z, value);
+ int cmp = s_vcmp(z, value);
- if (vsign != MP_ZPOS)
- INVERT_COMPARE_RESULT(cmp);
- return cmp;
+ return (vsign == MP_ZPOS) ? cmp : -cmp;
}
else
{
- if (value < 0)
- return 1;
- else
- return -1;
+ return (value < 0) ? 1 : -1;
}
}
-/* }}} */
+int
+mp_int_compare_uvalue(mp_int z, mp_usmall uv)
+{
+ assert(z != NULL);
-/* {{{ mp_int_exptmod(a, b, m, c) */
+ if (MP_SIGN(z) == MP_NEG)
+ {
+ return -1;
+ }
+ else
+ {
+ return s_uvcmp(z, uv);
+ }
+}
mp_result
mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
{
- mp_result res;
- mp_size um;
- mpz_t temp[3];
- mp_int s;
- int last = 0;
-
- CHECK(a != NULL && b != NULL && c != NULL && m != NULL);
+ assert(a != NULL && b != NULL && c != NULL && m != NULL);
/* Zero moduli and negative exponents are not considered. */
if (CMPZ(m) == 0)
@@ -1346,13 +1373,17 @@ mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
if (CMPZ(b) < 0)
return MP_RANGE;
- um = MP_USED(m);
- SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
- SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
+ mp_size um = MP_USED(m);
+
+ DECLARE_TEMP(3);
+ REQUIRE(GROW(TEMP(0), 2 * um));
+ REQUIRE(GROW(TEMP(1), 2 * um));
+
+ mp_int s;
if (c == b || c == m)
{
- SETUP(mp_int_init_size(TEMP(2), 2 * um), last);
+ REQUIRE(GROW(TEMP(2), 2 * um));
s = TEMP(2);
}
else
@@ -1360,30 +1391,17 @@ mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c)
s = c;
}
- if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_mod(a, m, TEMP(0)));
+ REQUIRE(s_brmu(TEMP(1), m));
+ REQUIRE(s_embar(TEMP(0), b, m, TEMP(1), s));
+ REQUIRE(mp_int_copy(s, c));
- if ((res = s_brmu(TEMP(1), m)) != MP_OK)
- goto CLEANUP;
-
- if ((res = s_embar(TEMP(0), b, m, TEMP(1), s)) != MP_OK)
- goto CLEANUP;
-
- res = mp_int_copy(s, c);
-
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_exptmod_evalue(a, value, m, c) */
-
mp_result
-mp_int_exptmod_evalue(mp_int a, int value, mp_int m, mp_int c)
+mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
@@ -1393,13 +1411,8 @@ mp_int_exptmod_evalue(mp_int a, int value, mp_int m, mp_int c)
return mp_int_exptmod(a, &vtmp, m, c);
}
-/* }}} */
-
-/* {{{ mp_int_exptmod_bvalue(v, b, m, c) */
-
mp_result
-mp_int_exptmod_bvalue(int value, mp_int b,
- mp_int m, mp_int c)
+mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c)
{
mpz_t vtmp;
mp_digit vbuf[MP_VALUE_DIGITS(value)];
@@ -1409,20 +1422,11 @@ mp_int_exptmod_bvalue(int value, mp_int b,
return mp_int_exptmod(&vtmp, b, m, c);
}
-/* }}} */
-
-/* {{{ mp_int_exptmod_known(a, b, m, mu, c) */
-
mp_result
-mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
+mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu,
+ mp_int c)
{
- mp_result res;
- mp_size um;
- mpz_t temp[2];
- mp_int s;
- int last = 0;
-
- CHECK(a && b && m && c);
+ assert(a && b && m && c);
/* Zero moduli and negative exponents are not considered. */
if (CMPZ(m) == 0)
@@ -1430,12 +1434,16 @@ mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
if (CMPZ(b) < 0)
return MP_RANGE;
- um = MP_USED(m);
- SETUP(mp_int_init_size(TEMP(0), 2 * um), last);
+ DECLARE_TEMP(2);
+ mp_size um = MP_USED(m);
+
+ REQUIRE(GROW(TEMP(0), 2 * um));
+
+ mp_int s;
if (c == b || c == m)
{
- SETUP(mp_int_init_size(TEMP(1), 2 * um), last);
+ REQUIRE(GROW(TEMP(1), 2 * um));
s = TEMP(1);
}
else
@@ -1443,68 +1451,41 @@ mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
s = c;
}
- if ((res = mp_int_mod(a, m, TEMP(0))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_mod(a, m, TEMP(0)));
+ REQUIRE(s_embar(TEMP(0), b, m, mu, s));
+ REQUIRE(mp_int_copy(s, c));
- if ((res = s_embar(TEMP(0), b, m, mu, s)) != MP_OK)
- goto CLEANUP;
-
- res = mp_int_copy(s, c);
-
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_redux_const(m, c) */
-
mp_result
mp_int_redux_const(mp_int m, mp_int c)
{
- CHECK(m != NULL && c != NULL && m != c);
+ assert(m != NULL && c != NULL && m != c);
return s_brmu(c, m);
}
-/* }}} */
-
-/* {{{ mp_int_invmod(a, m, c) */
-
mp_result
mp_int_invmod(mp_int a, mp_int m, mp_int c)
{
- mp_result res;
- mp_sign sa;
- int last = 0;
- mpz_t temp[2];
-
- CHECK(a != NULL && m != NULL && c != NULL);
+ assert(a != NULL && m != NULL && c != NULL);
if (CMPZ(a) == 0 || CMPZ(m) <= 0)
return MP_RANGE;
- sa = MP_SIGN(a); /* need this for the result later */
+ DECLARE_TEMP(2);
- for (last = 0; last < 2; ++last)
- if ((res = mp_int_init(TEMP(last))) != MP_OK)
- goto CLEANUP;
-
- if ((res = mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_egcd(a, m, TEMP(0), TEMP(1), NULL));
if (mp_int_compare_value(TEMP(0), 1) != 0)
{
- res = MP_UNDEF;
- goto CLEANUP;
+ REQUIRE(MP_UNDEF);
}
/* It is first necessary to constrain the value to the proper range */
- if ((res = mp_int_mod(TEMP(1), m, TEMP(1))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_mod(TEMP(1), m, TEMP(1)));
/*
* Now, if 'a' was originally negative, the value we have is actually the
@@ -1512,136 +1493,112 @@ mp_int_invmod(mp_int a, mp_int m, mp_int c)
* have to subtract from the modulus. Otherwise, the value is okay as it
* stands.
*/
- if (sa == MP_NEG)
- res = mp_int_sub(m, TEMP(1), c);
+ if (MP_SIGN(a) == MP_NEG)
+ {
+ REQUIRE(mp_int_sub(m, TEMP(1), c));
+ }
else
- res = mp_int_copy(TEMP(1), c);
+ {
+ REQUIRE(mp_int_copy(TEMP(1), c));
+ }
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_gcd(a, b, c) */
-
/* Binary GCD algorithm due to Josef Stein, 1961 */
mp_result
mp_int_gcd(mp_int a, mp_int b, mp_int c)
{
- int ca,
- cb,
- k = 0;
- mpz_t u,
- v,
- t;
- mp_result res;
+ assert(a != NULL && b != NULL && c != NULL);
- CHECK(a != NULL && b != NULL && c != NULL);
+ int ca = CMPZ(a);
+ int cb = CMPZ(b);
- ca = CMPZ(a);
- cb = CMPZ(b);
if (ca == 0 && cb == 0)
+ {
return MP_UNDEF;
+ }
else if (ca == 0)
+ {
return mp_int_abs(b, c);
+ }
else if (cb == 0)
+ {
return mp_int_abs(a, c);
-
- if ((res = mp_int_init(&t)) != MP_OK)
- return res;
- if ((res = mp_int_init_copy(&u, a)) != MP_OK)
- goto U;
- if ((res = mp_int_init_copy(&v, b)) != MP_OK)
- goto V;
-
- MP_SIGN(&u) = MP_ZPOS;
- MP_SIGN(&v) = MP_ZPOS;
-
- { /* Divide out common factors of 2 from u and v */
- int div2_u = s_dp2k(&u),
- div2_v = s_dp2k(&v);
-
- k = MIN(div2_u, div2_v);
- s_qdiv(&u, (mp_size) k);
- s_qdiv(&v, (mp_size) k);
}
- if (mp_int_is_odd(&u))
+ DECLARE_TEMP(3);
+ REQUIRE(mp_int_copy(a, TEMP(0)));
+ REQUIRE(mp_int_copy(b, TEMP(1)));
+
+ TEMP(0)->sign = MP_ZPOS;
+ TEMP(1)->sign = MP_ZPOS;
+
+ int k = 0;
+
+ { /* Divide out common factors of 2 from u and v */
+ int div2_u = s_dp2k(TEMP(0));
+ int div2_v = s_dp2k(TEMP(1));
+
+ k = MIN(div2_u, div2_v);
+ s_qdiv(TEMP(0), (mp_size) k);
+ s_qdiv(TEMP(1), (mp_size) k);
+ }
+
+ if (mp_int_is_odd(TEMP(0)))
{
- if ((res = mp_int_neg(&v, &t)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_neg(TEMP(1), TEMP(2)));
}
else
{
- if ((res = mp_int_copy(&u, &t)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_copy(TEMP(0), TEMP(2)));
}
for (;;)
{
- s_qdiv(&t, s_dp2k(&t));
+ s_qdiv(TEMP(2), s_dp2k(TEMP(2)));
- if (CMPZ(&t) > 0)
+ if (CMPZ(TEMP(2)) > 0)
{
- if ((res = mp_int_copy(&t, &u)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_copy(TEMP(2), TEMP(0)));
}
else
{
- if ((res = mp_int_neg(&t, &v)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_neg(TEMP(2), TEMP(1)));
}
- if ((res = mp_int_sub(&u, &v, &t)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_sub(TEMP(0), TEMP(1), TEMP(2)));
- if (CMPZ(&t) == 0)
+ if (CMPZ(TEMP(2)) == 0)
break;
}
- if ((res = mp_int_abs(&u, c)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_abs(TEMP(0), c));
if (!s_qmul(c, (mp_size) k))
- res = MP_MEMORY;
+ REQUIRE(MP_MEMORY);
-CLEANUP:
- mp_int_clear(&v);
-V: mp_int_clear(&u);
-U: mp_int_clear(&t);
-
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_egcd(a, b, c, x, y) */
-
-/* This is the binary GCD algorithm again, but this time we keep track
- of the elementary matrix operations as we go, so we can get values
- x and y satisfying c = ax + by.
+/* This is the binary GCD algorithm again, but this time we keep track of the
+ elementary matrix operations as we go, so we can get values x and y
+ satisfying c = ax + by.
*/
mp_result
-mp_int_egcd(mp_int a, mp_int b, mp_int c,
- mp_int x, mp_int y)
+mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y)
{
- int k,
- last = 0,
- ca,
- cb;
- mpz_t temp[8];
- mp_result res;
+ assert(a != NULL && b != NULL && c != NULL && (x != NULL || y != NULL));
- CHECK(a != NULL && b != NULL && c != NULL &&
- (x != NULL || y != NULL));
+ mp_result res = MP_OK;
+ int ca = CMPZ(a);
+ int cb = CMPZ(b);
- ca = CMPZ(a);
- cb = CMPZ(b);
if (ca == 0 && cb == 0)
+ {
return MP_UNDEF;
+ }
else if (ca == 0)
{
if ((res = mp_int_abs(b, c)) != MP_OK)
@@ -1662,20 +1619,17 @@ mp_int_egcd(mp_int a, mp_int b, mp_int c,
/*
* Initialize temporaries: A:0, B:1, C:2, D:3, u:4, v:5, ou:6, ov:7
*/
- for (last = 0; last < 4; ++last)
- {
- if ((res = mp_int_init(TEMP(last))) != MP_OK)
- goto CLEANUP;
- }
- TEMP(0)->digits[0] = 1;
- TEMP(3)->digits[0] = 1;
-
- SETUP(mp_int_init_copy(TEMP(4), a), last);
- SETUP(mp_int_init_copy(TEMP(5), b), last);
+ DECLARE_TEMP(8);
+ REQUIRE(mp_int_set_value(TEMP(0), 1));
+ REQUIRE(mp_int_set_value(TEMP(3), 1));
+ REQUIRE(mp_int_copy(a, TEMP(4)));
+ REQUIRE(mp_int_copy(b, TEMP(5)));
/* We will work with absolute values here */
- MP_SIGN(TEMP(4)) = MP_ZPOS;
- MP_SIGN(TEMP(5)) = MP_ZPOS;
+ TEMP(4)->sign = MP_ZPOS;
+ TEMP(5)->sign = MP_ZPOS;
+
+ int k = 0;
{ /* Divide out common factors of 2 from u and v */
int div2_u = s_dp2k(TEMP(4)),
@@ -1686,8 +1640,8 @@ mp_int_egcd(mp_int a, mp_int b, mp_int c,
s_qdiv(TEMP(5), k);
}
- SETUP(mp_int_init_copy(TEMP(6), TEMP(4)), last);
- SETUP(mp_int_init_copy(TEMP(7), TEMP(5)), last);
+ REQUIRE(mp_int_copy(TEMP(4), TEMP(6)));
+ REQUIRE(mp_int_copy(TEMP(5), TEMP(7)));
for (;;)
{
@@ -1697,10 +1651,8 @@ mp_int_egcd(mp_int a, mp_int b, mp_int c,
if (mp_int_is_odd(TEMP(0)) || mp_int_is_odd(TEMP(1)))
{
- if ((res = mp_int_add(TEMP(0), TEMP(7), TEMP(0))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_sub(TEMP(1), TEMP(6), TEMP(1))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_add(TEMP(0), TEMP(7), TEMP(0)));
+ REQUIRE(mp_int_sub(TEMP(1), TEMP(6), TEMP(1)));
}
s_qdiv(TEMP(0), 1);
@@ -1713,10 +1665,8 @@ mp_int_egcd(mp_int a, mp_int b, mp_int c,
if (mp_int_is_odd(TEMP(2)) || mp_int_is_odd(TEMP(3)))
{
- if ((res = mp_int_add(TEMP(2), TEMP(7), TEMP(2))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_sub(TEMP(3), TEMP(6), TEMP(3))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_add(TEMP(2), TEMP(7), TEMP(2)));
+ REQUIRE(mp_int_sub(TEMP(3), TEMP(6), TEMP(3)));
}
s_qdiv(TEMP(2), 1);
@@ -1725,157 +1675,163 @@ mp_int_egcd(mp_int a, mp_int b, mp_int c,
if (mp_int_compare(TEMP(4), TEMP(5)) >= 0)
{
- if ((res = mp_int_sub(TEMP(4), TEMP(5), TEMP(4))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_sub(TEMP(0), TEMP(2), TEMP(0))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_sub(TEMP(1), TEMP(3), TEMP(1))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_sub(TEMP(4), TEMP(5), TEMP(4)));
+ REQUIRE(mp_int_sub(TEMP(0), TEMP(2), TEMP(0)));
+ REQUIRE(mp_int_sub(TEMP(1), TEMP(3), TEMP(1)));
}
else
{
- if ((res = mp_int_sub(TEMP(5), TEMP(4), TEMP(5))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_sub(TEMP(2), TEMP(0), TEMP(2))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_sub(TEMP(3), TEMP(1), TEMP(3))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_sub(TEMP(5), TEMP(4), TEMP(5)));
+ REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
+ REQUIRE(mp_int_sub(TEMP(3), TEMP(1), TEMP(3)));
}
if (CMPZ(TEMP(4)) == 0)
{
- if (x && (res = mp_int_copy(TEMP(2), x)) != MP_OK)
- goto CLEANUP;
- if (y && (res = mp_int_copy(TEMP(3), y)) != MP_OK)
- goto CLEANUP;
+ if (x)
+ REQUIRE(mp_int_copy(TEMP(2), x));
+ if (y)
+ REQUIRE(mp_int_copy(TEMP(3), y));
if (c)
{
if (!s_qmul(TEMP(5), k))
{
- res = MP_MEMORY;
- goto CLEANUP;
+ REQUIRE(MP_MEMORY);
}
-
- res = mp_int_copy(TEMP(5), c);
+ REQUIRE(mp_int_copy(TEMP(5), c));
}
break;
}
}
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_divisible_value(a, v) */
-
-int
-mp_int_divisible_value(mp_int a, int v)
+mp_result
+mp_int_lcm(mp_int a, mp_int b, mp_int c)
{
- int rem = 0;
+ assert(a != NULL && b != NULL && c != NULL);
+
+ /*
+ * Since a * b = gcd(a, b) * lcm(a, b), we can compute lcm(a, b) = (a /
+ * gcd(a, b)) * b.
+ *
+ * This formulation insures everything works even if the input variables
+ * share space.
+ */
+ DECLARE_TEMP(1);
+ REQUIRE(mp_int_gcd(a, b, TEMP(0)));
+ REQUIRE(mp_int_div(a, TEMP(0), TEMP(0), NULL));
+ REQUIRE(mp_int_mul(TEMP(0), b, TEMP(0)));
+ REQUIRE(mp_int_copy(TEMP(0), c));
+
+ CLEANUP_TEMP();
+ return MP_OK;
+}
+
+bool
+mp_int_divisible_value(mp_int a, mp_small v)
+{
+ mp_small rem = 0;
if (mp_int_div_value(a, v, NULL, &rem) != MP_OK)
- return 0;
-
+ {
+ return false;
+ }
return rem == 0;
}
-/* }}} */
-
-/* {{{ mp_int_is_pow2(z) */
-
int
mp_int_is_pow2(mp_int z)
{
- CHECK(z != NULL);
+ assert(z != NULL);
return s_isp2(z);
}
-/* }}} */
-
-/* {{{ mp_int_sqrt(a, c) */
-
+/* Implementation of Newton's root finding method, based loosely on a patch
+ contributed by Hal Finkel
+ modified by M. J. Fromberger.
+ */
mp_result
-mp_int_sqrt(mp_int a, mp_int c)
+mp_int_root(mp_int a, mp_small b, mp_int c)
{
- mp_result res = MP_OK;
- mpz_t temp[2];
- int last = 0;
+ assert(a != NULL && c != NULL && b > 0);
- CHECK(a != NULL && c != NULL);
+ if (b == 1)
+ {
+ return mp_int_copy(a, c);
+ }
+ bool flips = false;
- /* The square root of a negative value does not exist in the integers. */
if (MP_SIGN(a) == MP_NEG)
- return MP_UNDEF;
+ {
+ if (b % 2 == 0)
+ {
+ return MP_UNDEF; /* root does not exist for negative a with
+ * even b */
+ }
+ else
+ {
+ flips = true;
+ }
+ }
- SETUP(mp_int_init_copy(TEMP(last), a), last);
- SETUP(mp_int_init(TEMP(last)), last);
+ DECLARE_TEMP(5);
+ REQUIRE(mp_int_copy(a, TEMP(0)));
+ REQUIRE(mp_int_copy(a, TEMP(1)));
+ TEMP(0)->sign = MP_ZPOS;
+ TEMP(1)->sign = MP_ZPOS;
for (;;)
{
- if ((res = mp_int_sqr(TEMP(0), TEMP(1))) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_expt(TEMP(1), b, TEMP(2)));
- if (mp_int_compare_unsigned(a, TEMP(1)) == 0)
+ if (mp_int_compare_unsigned(TEMP(2), TEMP(0)) <= 0)
break;
- if ((res = mp_int_copy(a, TEMP(1))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_div(TEMP(1), TEMP(0), TEMP(1), NULL)) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_add(TEMP(0), TEMP(1), TEMP(1))) != MP_OK)
- goto CLEANUP;
- if ((res = mp_int_div_pow2(TEMP(1), 1, TEMP(1), NULL)) != MP_OK)
- goto CLEANUP;
+ REQUIRE(mp_int_sub(TEMP(2), TEMP(0), TEMP(2)));
+ REQUIRE(mp_int_expt(TEMP(1), b - 1, TEMP(3)));
+ REQUIRE(mp_int_mul_value(TEMP(3), b, TEMP(3)));
+ REQUIRE(mp_int_div(TEMP(2), TEMP(3), TEMP(4), NULL));
+ REQUIRE(mp_int_sub(TEMP(1), TEMP(4), TEMP(4)));
- if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
- break;
- if ((res = mp_int_sub_value(TEMP(0), 1, TEMP(0))) != MP_OK)
- goto CLEANUP;
- if (mp_int_compare_unsigned(TEMP(0), TEMP(1)) == 0)
- break;
-
- if ((res = mp_int_copy(TEMP(1), TEMP(0))) != MP_OK)
- goto CLEANUP;
+ if (mp_int_compare_unsigned(TEMP(1), TEMP(4)) == 0)
+ {
+ REQUIRE(mp_int_sub_value(TEMP(4), 1, TEMP(4)));
+ }
+ REQUIRE(mp_int_copy(TEMP(4), TEMP(1)));
}
- res = mp_int_copy(TEMP(0), c);
+ REQUIRE(mp_int_copy(TEMP(1), c));
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
+ /* If the original value of a was negative, flip the output sign. */
+ if (flips)
+ (void) mp_int_neg(c, c); /* cannot fail */
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_to_int(z, out) */
-
mp_result
-mp_int_to_int(mp_int z, int *out)
+mp_int_to_int(mp_int z, mp_small * out)
{
- unsigned int uv = 0;
- mp_size uz;
- mp_digit *dz;
- mp_sign sz;
+ assert(z != NULL);
- CHECK(z != NULL);
+ /* Make sure the value is representable as a small integer */
+ mp_sign sz = MP_SIGN(z);
- /* Make sure the value is representable as an int */
- sz = MP_SIGN(z);
- if ((sz == MP_ZPOS && mp_int_compare_value(z, INT_MAX) > 0) ||
- mp_int_compare_value(z, INT_MIN) < 0)
+ if ((sz == MP_ZPOS && mp_int_compare_value(z, MP_SMALL_MAX) > 0) ||
+ mp_int_compare_value(z, MP_SMALL_MIN) < 0)
+ {
return MP_RANGE;
+ }
- uz = MP_USED(z);
- dz = MP_DIGITS(z) + uz - 1;
+ mp_usmall uz = MP_USED(z);
+ mp_digit *dz = MP_DIGITS(z) + uz - 1;
+ mp_small uv = 0;
while (uz > 0)
{
@@ -1885,33 +1841,56 @@ mp_int_to_int(mp_int z, int *out)
}
if (out)
- *out = (sz == MP_NEG) ? -(int) uv : (int) uv;
+ *out = (mp_small) ((sz == MP_NEG) ? -uv : uv);
return MP_OK;
}
-/* }}} */
+mp_result
+mp_int_to_uint(mp_int z, mp_usmall * out)
+{
+ assert(z != NULL);
-/* {{{ mp_int_to_string(z, radix, str, limit) */
+ /* Make sure the value is representable as an unsigned small integer */
+ mp_size sz = MP_SIGN(z);
+
+ if (sz == MP_NEG || mp_int_compare_uvalue(z, MP_USMALL_MAX) > 0)
+ {
+ return MP_RANGE;
+ }
+
+ mp_size uz = MP_USED(z);
+ mp_digit *dz = MP_DIGITS(z) + uz - 1;
+ mp_usmall uv = 0;
+
+ while (uz > 0)
+ {
+ uv <<= MP_DIGIT_BIT / 2;
+ uv = (uv << (MP_DIGIT_BIT / 2)) | *dz--;
+ --uz;
+ }
+
+ if (out)
+ *out = uv;
+
+ return MP_OK;
+}
mp_result
-mp_int_to_string(mp_int z, mp_size radix,
- char *str, int limit)
+mp_int_to_string(mp_int z, mp_size radix, char *str, int limit)
{
- mp_result res;
+ assert(z != NULL && str != NULL && limit >= 2);
+ assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
+
int cmp = 0;
- CHECK(z != NULL && str != NULL && limit >= 2);
-
- if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
- return MP_RANGE;
-
if (CMPZ(z) == 0)
{
- *str++ = s_val2ch(0, mp_flags & MP_CAP_DIGITS);
+ *str++ = s_val2ch(0, 1);
}
else
{
+ mp_result res;
mpz_t tmp;
char *h,
*t;
@@ -1935,7 +1914,7 @@ mp_int_to_string(mp_int z, mp_size radix,
break;
d = s_ddiv(&tmp, (mp_digit) radix);
- *str++ = s_val2ch(d, mp_flags & MP_CAP_DIGITS);
+ *str++ = s_val2ch(d, 1);
}
t = str - 1;
@@ -1953,26 +1932,22 @@ mp_int_to_string(mp_int z, mp_size radix,
*str = '\0';
if (cmp == 0)
+ {
return MP_OK;
+ }
else
+ {
return MP_TRUNC;
+ }
}
-/* }}} */
-
-/* {{{ mp_int_string_len(z, radix) */
-
mp_result
mp_int_string_len(mp_int z, mp_size radix)
{
- int len;
+ assert(z != NULL);
+ assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
- CHECK(z != NULL);
-
- if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
- return MP_RANGE;
-
- len = s_outlen(z, radix) + 1; /* for terminator */
+ int len = s_outlen(z, radix) + 1; /* for terminator */
/* Allow for sign marker on negatives */
if (MP_SIGN(z) == MP_NEG)
@@ -1981,31 +1956,19 @@ mp_int_string_len(mp_int z, mp_size radix)
return len;
}
-/* }}} */
-
-/* {{{ mp_int_read_string(z, radix, *str) */
-
/* Read zero-terminated string into z */
mp_result
mp_int_read_string(mp_int z, mp_size radix, const char *str)
{
return mp_int_read_cstring(z, radix, str, NULL);
-
}
-/* }}} */
-
-/* {{{ mp_int_read_cstring(z, radix, *str, **end) */
-
mp_result
-mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
+mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
+ char **end)
{
- int ch;
-
- CHECK(z != NULL && str != NULL);
-
- if (radix < MP_MIN_RADIX || radix > MP_MAX_RADIX)
- return MP_RANGE;
+ assert(z != NULL && str != NULL);
+ assert(radix >= MP_MIN_RADIX && radix <= MP_MAX_RADIX);
/* Skip leading whitespace */
while (isspace((unsigned char) *str))
@@ -2015,17 +1978,19 @@ mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
switch (*str)
{
case '-':
- MP_SIGN(z) = MP_NEG;
+ z->sign = MP_NEG;
++str;
break;
case '+':
++str; /* fallthrough */
default:
- MP_SIGN(z) = MP_ZPOS;
+ z->sign = MP_ZPOS;
break;
}
/* Skip leading zeroes */
+ int ch;
+
while ((ch = s_ch2val(*str, radix)) == 0)
++str;
@@ -2033,7 +1998,7 @@ mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
if (!s_pad(z, s_inlen(strlen(str), radix)))
return MP_MEMORY;
- MP_USED(z) = 1;
+ z->used = 1;
z->digits[0] = 0;
while (*str != '\0' && ((ch = s_ch2val(*str, radix)) >= 0))
@@ -2047,7 +2012,7 @@ mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
/* Override sign for zero, even if negative specified. */
if (CMPZ(z) == 0)
- MP_SIGN(z) = MP_ZPOS;
+ z->sign = MP_ZPOS;
if (end != NULL)
*end = unconstify(char *, str);
@@ -2057,31 +2022,28 @@ mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end)
* remaining, so the caller can tell if the whole string was done
*/
if (*str != '\0')
+ {
return MP_TRUNC;
+ }
else
+ {
return MP_OK;
+ }
}
-/* }}} */
-
-/* {{{ mp_int_count_bits(z) */
-
mp_result
mp_int_count_bits(mp_int z)
{
- mp_size nbits = 0,
- uz;
- mp_digit d;
+ assert(z != NULL);
- CHECK(z != NULL);
+ mp_size uz = MP_USED(z);
- uz = MP_USED(z);
if (uz == 1 && z->digits[0] == 0)
return 1;
--uz;
- nbits = uz * MP_DIGIT_BIT;
- d = z->digits[uz];
+ mp_size nbits = uz * MP_DIGIT_BIT;
+ mp_digit d = z->digits[uz];
while (d != 0)
{
@@ -2092,21 +2054,15 @@ mp_int_count_bits(mp_int z)
return nbits;
}
-/* }}} */
-
-/* {{{ mp_int_to_binary(z, buf, limit) */
-
mp_result
mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
{
static const int PAD_FOR_2C = 1;
- mp_result res;
+ assert(z != NULL && buf != NULL);
+
int limpos = limit;
-
- CHECK(z != NULL && buf != NULL);
-
- res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
+ mp_result res = s_tobin(z, buf, &limpos, PAD_FOR_2C);
if (MP_SIGN(z) == MP_NEG)
s_2comp(buf, limpos);
@@ -2114,22 +2070,14 @@ mp_int_to_binary(mp_int z, unsigned char *buf, int limit)
return res;
}
-/* }}} */
-
-/* {{{ mp_int_read_binary(z, buf, len) */
-
mp_result
mp_int_read_binary(mp_int z, unsigned char *buf, int len)
{
- mp_size need,
- i;
- unsigned char *tmp;
- mp_digit *dz;
-
- CHECK(z != NULL && buf != NULL && len > 0);
+ assert(z != NULL && buf != NULL && len > 0);
/* Figure out how many digits are needed to represent this value */
- need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
+ mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
+
if (!s_pad(z, need))
return MP_MEMORY;
@@ -2141,12 +2089,14 @@ mp_int_read_binary(mp_int z, unsigned char *buf, int len)
*/
if (buf[0] >> (CHAR_BIT - 1))
{
- MP_SIGN(z) = MP_NEG;
+ z->sign = MP_NEG;
s_2comp(buf, len);
}
- dz = MP_DIGITS(z);
- for (tmp = buf, i = len; i > 0; --i, ++tmp)
+ mp_digit *dz = MP_DIGITS(z);
+ unsigned char *tmp = buf;
+
+ for (int i = len; i > 0; --i, ++tmp)
{
s_qmul(z, (mp_size) CHAR_BIT);
*dz |= *tmp;
@@ -2159,20 +2109,15 @@ mp_int_read_binary(mp_int z, unsigned char *buf, int len)
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_binary_len(z) */
-
mp_result
mp_int_binary_len(mp_int z)
{
mp_result res = mp_int_count_bits(z);
- int bytes = mp_int_unsigned_len(z);
if (res <= 0)
return res;
- bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
+ int bytes = mp_int_unsigned_len(z);
/*
* If the highest-order bit falls exactly on a byte boundary, we need to
@@ -2185,193 +2130,170 @@ mp_int_binary_len(mp_int z)
return bytes;
}
-/* }}} */
-
-/* {{{ mp_int_to_unsigned(z, buf, limit) */
-
mp_result
mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit)
{
static const int NO_PADDING = 0;
- CHECK(z != NULL && buf != NULL);
+ assert(z != NULL && buf != NULL);
return s_tobin(z, buf, &limit, NO_PADDING);
}
-/* }}} */
-
-/* {{{ mp_int_read_unsigned(z, buf, len) */
-
mp_result
mp_int_read_unsigned(mp_int z, unsigned char *buf, int len)
{
- mp_size need,
- i;
- unsigned char *tmp;
- mp_digit *dz;
-
- CHECK(z != NULL && buf != NULL && len > 0);
+ assert(z != NULL && buf != NULL && len > 0);
/* Figure out how many digits are needed to represent this value */
- need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
+ mp_size need = ((len * CHAR_BIT) + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT;
+
if (!s_pad(z, need))
return MP_MEMORY;
mp_int_zero(z);
- dz = MP_DIGITS(z);
- for (tmp = buf, i = len; i > 0; --i, ++tmp)
+ unsigned char *tmp = buf;
+
+ for (int i = len; i > 0; --i, ++tmp)
{
(void) s_qmul(z, CHAR_BIT);
- *dz |= *tmp;
+ *MP_DIGITS(z) |= *tmp;
}
return MP_OK;
}
-/* }}} */
-
-/* {{{ mp_int_unsigned_len(z) */
-
mp_result
mp_int_unsigned_len(mp_int z)
{
mp_result res = mp_int_count_bits(z);
- int bytes;
if (res <= 0)
return res;
- bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
+ int bytes = (res + (CHAR_BIT - 1)) / CHAR_BIT;
return bytes;
}
-/* }}} */
-
-/* {{{ mp_error_string(res) */
-
const char *
mp_error_string(mp_result res)
{
- int ix;
-
if (res > 0)
return s_unknown_err;
res = -res;
+ int ix;
+
for (ix = 0; ix < res && s_error_msg[ix] != NULL; ++ix)
;
if (s_error_msg[ix] != NULL)
+ {
return s_error_msg[ix];
+ }
else
+ {
return s_unknown_err;
+ }
}
-/* }}} */
-
/*------------------------------------------------------------------------*/
/* Private functions for internal use. These make assumptions. */
-/* {{{ s_alloc(num) */
+#if IMATH_DEBUG
+static const mp_digit fill = (mp_digit) 0xdeadbeefabad1dea;
+#endif
static mp_digit *
s_alloc(mp_size num)
{
mp_digit *out = px_alloc(num * sizeof(mp_digit));
- assert(out != NULL); /* for debugging */
+ assert(out != NULL);
+#if IMATH_DEBUG
+ for (mp_size ix = 0; ix < num; ++ix)
+ out[ix] = fill;
+#endif
return out;
}
-/* }}} */
-
-/* {{{ s_realloc(old, num) */
-
static mp_digit *
-s_realloc(mp_digit *old, mp_size num)
+s_realloc(mp_digit *old, mp_size osize, mp_size nsize)
{
- mp_digit *new = px_realloc(old, num * sizeof(mp_digit));
+#if IMATH_DEBUG
+ mp_digit *new = s_alloc(nsize);
- assert(new != NULL); /* for debugging */
+ assert(new != NULL);
+
+ for (mp_size ix = 0; ix < nsize; ++ix)
+ new[ix] = fill;
+ memcpy(new, old, osize * sizeof(mp_digit));
+#else
+ mp_digit *new = px_realloc(old, nsize * sizeof(mp_digit));
+
+ assert(new != NULL);
+#endif
return new;
}
-/* }}} */
-
-/* {{{ s_free(ptr) */
-
-#if TRACEABLE_FREE
static void
s_free(void *ptr)
{
px_free(ptr);
}
-#endif
-/* }}} */
-
-/* {{{ s_pad(z, min) */
-
-static int
+static bool
s_pad(mp_int z, mp_size min)
{
if (MP_ALLOC(z) < min)
{
- mp_size nsize = ROUND_PREC(min);
- mp_digit *tmp = s_realloc(MP_DIGITS(z), nsize);
+ mp_size nsize = s_round_prec(min);
+ mp_digit *tmp;
- if (tmp == NULL)
- return 0;
+ if (z->digits == &(z->single))
+ {
+ if ((tmp = s_alloc(nsize)) == NULL)
+ return false;
+ tmp[0] = z->single;
+ }
+ else if ((tmp = s_realloc(MP_DIGITS(z), MP_ALLOC(z), nsize)) == NULL)
+ {
+ return false;
+ }
- MP_DIGITS(z) = tmp;
- MP_ALLOC(z) = nsize;
+ z->digits = tmp;
+ z->alloc = nsize;
}
- return 1;
+ return true;
}
-/* }}} */
-
-/* {{{ s_clamp(z) */
-
-#if TRACEABLE_CLAMP
+/* Note: This will not work correctly when value == MP_SMALL_MIN */
static void
-s_clamp(mp_int z)
+s_fake(mp_int z, mp_small value, mp_digit vbuf[])
{
- mp_size uz = MP_USED(z);
- mp_digit *zd = MP_DIGITS(z) + uz - 1;
+ mp_usmall uv = (mp_usmall) (value < 0) ? -value : value;
- while (uz > 1 && (*zd-- == 0))
- --uz;
-
- MP_USED(z) = uz;
+ s_ufake(z, uv, vbuf);
+ if (value < 0)
+ z->sign = MP_NEG;
}
-#endif
-
-/* }}} */
-
-/* {{{ s_fake(z, value, vbuf) */
static void
-s_fake(mp_int z, int value, mp_digit vbuf[])
+s_ufake(mp_int z, mp_usmall value, mp_digit vbuf[])
{
- mp_size uv = (mp_size) s_vpack(value, vbuf);
+ mp_size ndig = (mp_size) s_uvpack(value, vbuf);
- z->used = uv;
+ z->used = ndig;
z->alloc = MP_VALUE_DIGITS(value);
- z->sign = (value < 0) ? MP_NEG : MP_ZPOS;
+ z->sign = MP_ZPOS;
z->digits = vbuf;
}
-/* }}} */
-
-/* {{{ s_cdig(da, db, len) */
-
static int
s_cdig(mp_digit *da, mp_digit *db, mp_size len)
{
@@ -2381,22 +2303,21 @@ s_cdig(mp_digit *da, mp_digit *db, mp_size len)
for ( /* */ ; len != 0; --len, --dat, --dbt)
{
if (*dat > *dbt)
+ {
return 1;
+ }
else if (*dat < *dbt)
+ {
return -1;
+ }
}
return 0;
}
-/* }}} */
-
-/* {{{ s_vpack(v, t[]) */
-
static int
-s_vpack(int v, mp_digit t[])
+s_uvpack(mp_usmall uv, mp_digit t[])
{
- unsigned int uv = (unsigned int) ((v < 0) ? -v : v);
int ndig = 0;
if (uv == 0)
@@ -2414,10 +2335,6 @@ s_vpack(int v, mp_digit t[])
return ndig;
}
-/* }}} */
-
-/* {{{ s_ucmp(a, b) */
-
static int
s_ucmp(mp_int a, mp_int b)
{
@@ -2425,41 +2342,40 @@ s_ucmp(mp_int a, mp_int b)
ub = MP_USED(b);
if (ua > ub)
+ {
return 1;
+ }
else if (ub > ua)
+ {
return -1;
+ }
else
+ {
return s_cdig(MP_DIGITS(a), MP_DIGITS(b), ua);
+ }
}
-/* }}} */
-
-/* {{{ s_vcmp(a, v) */
-
static int
-s_vcmp(mp_int a, int v)
+s_vcmp(mp_int a, mp_small v)
{
- mp_digit vdig[MP_VALUE_DIGITS(v)];
- int ndig = 0;
- mp_size ua = MP_USED(a);
+ mp_usmall uv = (v < 0) ? -(mp_usmall) v : (mp_usmall) v;
- ndig = s_vpack(v, vdig);
-
- if (ua > ndig)
- return 1;
- else if (ua < ndig)
- return -1;
- else
- return s_cdig(MP_DIGITS(a), vdig, ndig);
+ return s_uvcmp(a, uv);
}
-/* }}} */
+static int
+s_uvcmp(mp_int a, mp_usmall uv)
+{
+ mpz_t vtmp;
+ mp_digit vdig[MP_VALUE_DIGITS(uv)];
-/* {{{ s_uadd(da, db, dc, size_a, size_b) */
+ s_ufake(&vtmp, uv, vdig);
+ return s_ucmp(a, &vtmp);
+}
static mp_digit
-s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
+s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b)
{
mp_size pos;
mp_word w = 0;
@@ -2492,13 +2408,9 @@ s_uadd(mp_digit *da, mp_digit *db, mp_digit *dc,
return (mp_digit) w;
}
-/* }}} */
-
-/* {{{ s_usub(da, db, dc, size_a, size_b) */
-
static void
-s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
+s_usub(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b)
{
mp_size pos;
mp_word w = 0;
@@ -2510,7 +2422,8 @@ s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
for (pos = 0; pos < size_b; ++pos, ++da, ++db, ++dc)
{
w = ((mp_word) MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word) *da) - w - (mp_word) *db;
+ (mp_word) *da) -
+ w - (mp_word) *db;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
@@ -2520,7 +2433,8 @@ s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
for ( /* */ ; pos < size_a; ++pos, ++da, ++dc)
{
w = ((mp_word) MP_DIGIT_MAX + 1 + /* MP_RADIX */
- (mp_word) *da) - w;
+ (mp_word) *da) -
+ w;
*dc = LOWER_HALF(w);
w = (UPPER_HALF(w) == 0);
@@ -2530,13 +2444,9 @@ s_usub(mp_digit *da, mp_digit *db, mp_digit *dc,
assert(w == 0);
}
-/* }}} */
-
-/* {{{ s_kmul(da, db, dc, size_a, size_b) */
-
static int
-s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
+s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b)
{
mp_size bot_size;
@@ -2558,11 +2468,8 @@ s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
* Karatsuba algorithm to compute the product; otherwise use the normal
* multiplication algorithm
*/
- if (multiply_threshold &&
- size_a >= multiply_threshold &&
- size_b > bot_size)
+ if (multiply_threshold && size_a >= multiply_threshold && size_b > bot_size)
{
-
mp_digit *t1,
*t2,
*t3,
@@ -2614,12 +2521,11 @@ s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
/* Assemble the output value */
COPY(t1, dc, buf_size);
- carry = s_uadd(t3, dc + bot_size, dc + bot_size,
- buf_size + 1, buf_size);
+ carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
assert(carry == 0);
- carry = s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
- buf_size, buf_size);
+ carry =
+ s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
assert(carry == 0);
s_free(t1); /* note t2 and t3 are just internal pointers
@@ -2633,13 +2539,9 @@ s_kmul(mp_digit *da, mp_digit *db, mp_digit *dc,
return 1;
}
-/* }}} */
-
-/* {{{ s_umul(da, db, dc, size_a, size_b) */
-
static void
-s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
- mp_size size_a, mp_size size_b)
+s_umul(mp_digit *da, mp_digit *db, mp_digit *dc, mp_size size_a,
+ mp_size size_b)
{
mp_size a,
b;
@@ -2666,10 +2568,6 @@ s_umul(mp_digit *da, mp_digit *db, mp_digit *dc,
}
}
-/* }}} */
-
-/* {{{ s_ksqr(da, dc, size_a) */
-
static int
s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
{
@@ -2679,7 +2577,8 @@ s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
mp_digit *a_top = da + bot_size;
mp_digit *t1,
*t2,
- *t3;
+ *t3,
+ carry;
mp_size at_size = size_a - bot_size;
mp_size buf_size = 2 * bot_size;
@@ -2713,13 +2612,14 @@ s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
/* Assemble the output value */
COPY(t1, dc, 2 * bot_size);
- (void) s_uadd(t3, dc + bot_size, dc + bot_size,
- buf_size + 1, buf_size + 1);
+ carry = s_uadd(t3, dc + bot_size, dc + bot_size, buf_size + 1, buf_size);
+ assert(carry == 0);
- (void) s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size,
- buf_size, buf_size);
+ carry =
+ s_uadd(t2, dc + 2 * bot_size, dc + 2 * bot_size, buf_size, buf_size);
+ assert(carry == 0);
- px_free(t1); /* note that t2 and t2 are internal pointers
+ s_free(t1); /* note that t2 and t2 are internal pointers
* only */
}
@@ -2731,10 +2631,6 @@ s_ksqr(mp_digit *da, mp_digit *dc, mp_size size_a)
return 1;
}
-/* }}} */
-
-/* {{{ s_usqr(da, dc, size_a) */
-
static void
s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
{
@@ -2797,10 +2693,6 @@ s_usqr(mp_digit *da, mp_digit *dc, mp_size size_a)
}
}
-/* }}} */
-
-/* {{{ s_dadd(a, b) */
-
static void
s_dadd(mp_int a, mp_digit b)
{
@@ -2823,14 +2715,10 @@ s_dadd(mp_int a, mp_digit b)
if (w)
{
*da = (mp_digit) w;
- MP_USED(a) += 1;
+ a->used += 1;
}
}
-/* }}} */
-
-/* {{{ s_dmul(a, b) */
-
static void
s_dmul(mp_int a, mp_digit b)
{
@@ -2849,14 +2737,10 @@ s_dmul(mp_int a, mp_digit b)
if (w)
{
*da = (mp_digit) w;
- MP_USED(a) += 1;
+ a->used += 1;
}
}
-/* }}} */
-
-/* {{{ s_dbmul(da, b, dc, size_a) */
-
static void
s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
{
@@ -2875,10 +2759,6 @@ s_dbmul(mp_digit *da, mp_digit b, mp_digit *dc, mp_size size_a)
*dc = LOWER_HALF(w);
}
-/* }}} */
-
-/* {{{ s_ddiv(da, d, dc, size_a) */
-
static mp_digit
s_ddiv(mp_int a, mp_digit b)
{
@@ -2908,10 +2788,6 @@ s_ddiv(mp_int a, mp_digit b)
return (mp_digit) w;
}
-/* }}} */
-
-/* {{{ s_qdiv(z, p2) */
-
static void
s_qdiv(mp_int z, mp_size p2)
{
@@ -2935,9 +2811,11 @@ s_qdiv(mp_int z, mp_size p2)
from = to + ndig;
for (mark = ndig; mark < uz; ++mark)
+ {
*to++ = *from++;
+ }
- MP_USED(z) = uz - ndig;
+ z->used = uz - ndig;
}
if (nbits)
@@ -2962,33 +2840,25 @@ s_qdiv(mp_int z, mp_size p2)
}
if (MP_USED(z) == 1 && z->digits[0] == 0)
- MP_SIGN(z) = MP_ZPOS;
+ z->sign = MP_ZPOS;
}
-/* }}} */
-
-/* {{{ s_qmod(z, p2) */
-
static void
s_qmod(mp_int z, mp_size p2)
{
mp_size start = p2 / MP_DIGIT_BIT + 1,
rest = p2 % MP_DIGIT_BIT;
mp_size uz = MP_USED(z);
- mp_digit mask = (1 << rest) - 1;
+ mp_digit mask = (1u << rest) - 1;
if (start <= uz)
{
- MP_USED(z) = start;
+ z->used = start;
z->digits[start - 1] &= mask;
CLAMP(z);
}
}
-/* }}} */
-
-/* {{{ s_qmul(z, p2) */
-
static int
s_qmul(mp_int z, mp_size p2)
{
@@ -3060,21 +2930,19 @@ s_qmul(mp_int z, mp_size p2)
}
}
- MP_USED(z) = uz;
+ z->used = uz;
CLAMP(z);
return 1;
}
-/* }}} */
-
-/* {{{ s_qsub(z, p2) */
-
-/* Subtract |z| from 2^p2, assuming 2^p2 > |z|, and set z to be positive */
+/* Compute z = 2^p2 - |z|; requires that 2^p2 >= |z|
+ The sign of the result is always zero/positive.
+ */
static int
s_qsub(mp_int z, mp_size p2)
{
- mp_digit hi = (1 << (p2 % MP_DIGIT_BIT)),
+ mp_digit hi = (1u << (p2 % MP_DIGIT_BIT)),
*zp;
mp_size tdig = (p2 / MP_DIGIT_BIT),
pos;
@@ -3096,16 +2964,12 @@ s_qsub(mp_int z, mp_size p2)
assert(UPPER_HALF(w) != 0); /* no borrow out should be possible */
- MP_SIGN(z) = MP_ZPOS;
+ z->sign = MP_ZPOS;
CLAMP(z);
return 1;
}
-/* }}} */
-
-/* {{{ s_dp2k(z) */
-
static int
s_dp2k(mp_int z)
{
@@ -3132,10 +2996,6 @@ s_dp2k(mp_int z)
return k;
}
-/* }}} */
-
-/* {{{ s_isp2(z) */
-
static int
s_isp2(mp_int z)
{
@@ -3164,12 +3024,8 @@ s_isp2(mp_int z)
return (int) k;
}
-/* }}} */
-
-/* {{{ s_2expt(z, k) */
-
static int
-s_2expt(mp_int z, int k)
+s_2expt(mp_int z, mp_small k)
{
mp_size ndig,
rest;
@@ -3183,23 +3039,19 @@ s_2expt(mp_int z, int k)
dz = MP_DIGITS(z);
ZERO(dz, ndig);
- *(dz + ndig - 1) = (1 << rest);
- MP_USED(z) = ndig;
+ *(dz + ndig - 1) = (1u << rest);
+ z->used = ndig;
return 1;
}
-/* }}} */
-
-/* {{{ s_norm(a, b) */
-
static int
s_norm(mp_int a, mp_int b)
{
mp_digit d = b->digits[MP_USED(b) - 1];
int k = 0;
- while (d < (mp_digit) ((mp_digit) 1 << (MP_DIGIT_BIT - 1)))
+ while (d < (1u << (mp_digit) (MP_DIGIT_BIT - 1)))
{ /* d < (MP_RADIX / 2) */
d <<= 1;
++k;
@@ -3215,10 +3067,6 @@ s_norm(mp_int a, mp_int b)
return k;
}
-/* }}} */
-
-/* {{{ s_brmu(z, m) */
-
static mp_result
s_brmu(mp_int z, mp_int m)
{
@@ -3231,10 +3079,6 @@ s_brmu(mp_int z, mp_int m)
return mp_int_div(z, m, z, NULL);
}
-/* }}} */
-
-/* {{{ s_reduce(x, m, mu, q1, q2) */
-
static int
s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
{
@@ -3273,53 +3117,47 @@ s_reduce(mp_int x, mp_int m, mp_int mu, mp_int q1, mp_int q2)
return 0;
/*
- * If x > m, we need to back it off until it is in range. This will be
+ * If x > m, we need to back it off until it is in range. This will be
* required at most twice.
*/
if (mp_int_compare(x, m) >= 0)
+ {
(void) mp_int_sub(x, m, x);
- if (mp_int_compare(x, m) >= 0)
- (void) mp_int_sub(x, m, x);
+ if (mp_int_compare(x, m) >= 0)
+ {
+ (void) mp_int_sub(x, m, x);
+ }
+ }
/* At this point, x has been properly reduced. */
return 1;
}
-/* }}} */
-
-/* {{{ s_embar(a, b, m, mu, c) */
-
-/* Perform modular exponentiation using Barrett's method, where mu is
- the reduction constant for m. Assumes a < m, b > 0. */
+/* Perform modular exponentiation using Barrett's method, where mu is the
+ reduction constant for m. Assumes a < m, b > 0. */
static mp_result
s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
{
- mp_digit *db,
- *dbt,
- umu,
- d;
- mpz_t temp[3];
- mp_result res;
- int last = 0;
+ mp_digit umu = MP_USED(mu);
+ mp_digit *db = MP_DIGITS(b);
+ mp_digit *dbt = db + MP_USED(b) - 1;
- umu = MP_USED(mu);
- db = MP_DIGITS(b);
- dbt = db + MP_USED(b) - 1;
-
- while (last < 3)
- {
- SETUP(mp_int_init_size(TEMP(last), 4 * umu), last);
- ZERO(MP_DIGITS(TEMP(last - 1)), MP_ALLOC(TEMP(last - 1)));
- }
+ DECLARE_TEMP(3);
+ REQUIRE(GROW(TEMP(0), 4 * umu));
+ REQUIRE(GROW(TEMP(1), 4 * umu));
+ REQUIRE(GROW(TEMP(2), 4 * umu));
+ ZERO(TEMP(0)->digits, TEMP(0)->alloc);
+ ZERO(TEMP(1)->digits, TEMP(1)->alloc);
+ ZERO(TEMP(2)->digits, TEMP(2)->alloc);
(void) mp_int_set_value(c, 1);
/* Take care of low-order digits */
while (db < dbt)
{
- int i;
+ mp_digit d = *db;
- for (d = *db, i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
+ for (int i = MP_DIGIT_BIT; i > 0; --i, d >>= 1)
{
if (d & 1)
{
@@ -3327,31 +3165,27 @@ s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
UMUL(c, a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
{
- res = MP_MEMORY;
- goto CLEANUP;
+ REQUIRE(MP_MEMORY);
}
mp_int_copy(TEMP(0), c);
}
-
USQR(a, TEMP(0));
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
{
- res = MP_MEMORY;
- goto CLEANUP;
+ REQUIRE(MP_MEMORY);
}
assert(MP_SIGN(TEMP(0)) == MP_ZPOS);
mp_int_copy(TEMP(0), a);
-
-
}
++db;
}
/* Take care of highest-order digit */
- d = *dbt;
+ mp_digit d = *dbt;
+
for (;;)
{
if (d & 1)
@@ -3359,8 +3193,7 @@ s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
UMUL(c, a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
{
- res = MP_MEMORY;
- goto CLEANUP;
+ REQUIRE(MP_MEMORY);
}
mp_int_copy(TEMP(0), c);
}
@@ -3372,170 +3205,272 @@ s_embar(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c)
USQR(a, TEMP(0));
if (!s_reduce(TEMP(0), m, mu, TEMP(1), TEMP(2)))
{
- res = MP_MEMORY;
- goto CLEANUP;
+ REQUIRE(MP_MEMORY);
}
(void) mp_int_copy(TEMP(0), a);
}
-CLEANUP:
- while (--last >= 0)
- mp_int_clear(TEMP(last));
-
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
+/* Division of nonnegative integers
-/* {{{ s_udiv(a, b) */
+ This function implements division algorithm for unsigned multi-precision
+ integers. The algorithm is based on Algorithm D from Knuth's "The Art of
+ Computer Programming", 3rd ed. 1998, pg 272-273.
-/* Precondition: a >= b and b > 0
- Postcondition: a' = a / b, b' = a % b
+ We diverge from Knuth's algorithm in that we do not perform the subtraction
+ from the remainder until we have determined that we have the correct
+ quotient digit. This makes our algorithm less efficient that Knuth because
+ we might have to perform multiple multiplication and comparison steps before
+ the subtraction. The advantage is that it is easy to implement and ensure
+ correctness without worrying about underflow from the subtraction.
+
+ inputs: u a n+m digit integer in base b (b is 2^MP_DIGIT_BIT)
+ v a n digit integer in base b (b is 2^MP_DIGIT_BIT)
+ n >= 1
+ m >= 0
+ outputs: u / v stored in u
+ u % v stored in v
*/
static mp_result
-s_udiv(mp_int a, mp_int b)
+s_udiv_knuth(mp_int u, mp_int v)
{
- mpz_t q,
- r,
- t;
- mp_size ua,
- ub,
- qpos = 0;
- mp_digit *da,
- btop;
- mp_result res = MP_OK;
- int k,
- skip = 0;
-
/* Force signs to positive */
- MP_SIGN(a) = MP_ZPOS;
- MP_SIGN(b) = MP_ZPOS;
+ u->sign = MP_ZPOS;
+ v->sign = MP_ZPOS;
- /* Normalize, per Knuth */
- k = s_norm(a, b);
-
- ua = MP_USED(a);
- ub = MP_USED(b);
- btop = b->digits[ub - 1];
- if ((res = mp_int_init_size(&q, ua)) != MP_OK)
- return res;
- if ((res = mp_int_init_size(&t, ua + 1)) != MP_OK)
- goto CLEANUP;
-
- da = MP_DIGITS(a);
- r.digits = da + ua - 1; /* The contents of r are shared with a */
- r.used = 1;
- r.sign = MP_ZPOS;
- r.alloc = MP_ALLOC(a);
- ZERO(t.digits, t.alloc);
-
- /* Solve for quotient digits, store in q.digits in reverse order */
- while (r.digits >= da)
+ /* Use simple division algorithm when v is only one digit long */
+ if (MP_USED(v) == 1)
{
- assert(qpos <= q.alloc);
+ mp_digit d,
+ rem;
- if (s_ucmp(b, &r) > 0)
- {
- r.digits -= 1;
- r.used += 1;
-
- if (++skip > 1)
- q.digits[qpos++] = 0;
-
- CLAMP(&r);
- }
- else
- {
- mp_word pfx = r.digits[r.used - 1];
- mp_word qdigit;
-
- if (r.used > 1 && (pfx < btop || r.digits[r.used - 2] == 0))
- {
- pfx <<= MP_DIGIT_BIT / 2;
- pfx <<= MP_DIGIT_BIT / 2;
- pfx |= r.digits[r.used - 2];
- }
-
- qdigit = pfx / btop;
- if (qdigit > MP_DIGIT_MAX)
- qdigit = 1;
-
- s_dbmul(MP_DIGITS(b), (mp_digit) qdigit, t.digits, ub);
- t.used = ub + 1;
- CLAMP(&t);
- while (s_ucmp(&t, &r) > 0)
- {
- --qdigit;
- (void) mp_int_sub(&t, b, &t); /* cannot fail */
- }
-
- s_usub(r.digits, t.digits, r.digits, r.used, t.used);
- CLAMP(&r);
-
- q.digits[qpos++] = (mp_digit) qdigit;
- ZERO(t.digits, t.used);
- skip = 0;
- }
+ d = v->digits[0];
+ rem = s_ddiv(u, d);
+ mp_int_set_value(v, rem);
+ return MP_OK;
}
- /* Put quotient digits in the correct order, and discard extra zeroes */
- q.used = qpos;
- REV(mp_digit, q.digits, qpos);
- CLAMP(&q);
+ /*
+ * Algorithm D
+ *
+ * The n and m variables are defined as used by Knuth. u is an n digit
+ * number with digits u_{n-1}..u_0. v is an n+m digit number with digits
+ * from v_{m+n-1}..v_0. We require that n > 1 and m >= 0
+ */
+ mp_size n = MP_USED(v);
+ mp_size m = MP_USED(u) - n;
+
+ assert(n > 1);
+ /* assert(m >= 0) follows because m is unsigned. */
+
+ /*
+ * D1: Normalize. The normalization step provides the necessary condition
+ * for Theorem B, which states that the quotient estimate for q_j, call it
+ * qhat
+ *
+ * qhat = u_{j+n}u_{j+n-1} / v_{n-1}
+ *
+ * is bounded by
+ *
+ * qhat - 2 <= q_j <= qhat.
+ *
+ * That is, qhat is always greater than the actual quotient digit q, and
+ * it is never more than two larger than the actual quotient digit.
+ */
+ int k = s_norm(u, v);
+
+ /*
+ * Extend size of u by one if needed.
+ *
+ * The algorithm begins with a value of u that has one more digit of
+ * input. The normalization step sets u_{m+n}..u_0 = 2^k * u_{m+n-1}..u_0.
+ * If the multiplication did not increase the number of digits of u, we
+ * need to add a leading zero here.
+ */
+ if (k == 0 || MP_USED(u) != m + n + 1)
+ {
+ if (!s_pad(u, m + n + 1))
+ return MP_MEMORY;
+ u->digits[m + n] = 0;
+ u->used = m + n + 1;
+ }
+
+ /*
+ * Add a leading 0 to v.
+ *
+ * The multiplication in step D4 multiplies qhat * 0v_{n-1}..v_0. We need
+ * to add the leading zero to v here to ensure that the multiplication
+ * will produce the full n+1 digit result.
+ */
+ if (!s_pad(v, n + 1))
+ return MP_MEMORY;
+ v->digits[n] = 0;
+
+ /*
+ * Initialize temporary variables q and t. q allocates space for m+1
+ * digits to store the quotient digits t allocates space for n+1 digits to
+ * hold the result of q_j*v
+ */
+ DECLARE_TEMP(2);
+ REQUIRE(GROW(TEMP(0), m + 1));
+ REQUIRE(GROW(TEMP(1), n + 1));
+
+ /* D2: Initialize j */
+ int j = m;
+ mpz_t r;
+
+ r.digits = MP_DIGITS(u) + j; /* The contents of r are shared with u */
+ r.used = n + 1;
+ r.sign = MP_ZPOS;
+ r.alloc = MP_ALLOC(u);
+ ZERO(TEMP(1)->digits, TEMP(1)->alloc);
+
+ /* Calculate the m+1 digits of the quotient result */
+ for (; j >= 0; j--)
+ {
+ /* D3: Calculate q' */
+ /* r->digits is aligned to position j of the number u */
+ mp_word pfx,
+ qhat;
+
+ pfx = r.digits[n];
+ pfx <<= MP_DIGIT_BIT / 2;
+ pfx <<= MP_DIGIT_BIT / 2;
+ pfx |= r.digits[n - 1]; /* pfx = u_{j+n}{j+n-1} */
+
+ qhat = pfx / v->digits[n - 1];
+
+ /*
+ * Check to see if qhat > b, and decrease qhat if so. Theorem B
+ * guarantess that qhat is at most 2 larger than the actual value, so
+ * it is possible that qhat is greater than the maximum value that
+ * will fit in a digit
+ */
+ if (qhat > MP_DIGIT_MAX)
+ qhat = MP_DIGIT_MAX;
+
+ /*
+ * D4,D5,D6: Multiply qhat * v and test for a correct value of q
+ *
+ * We proceed a bit different than the way described by Knuth. This
+ * way is simpler but less efficent. Instead of doing the multiply and
+ * subtract then checking for underflow, we first do the multiply of
+ * qhat * v and see if it is larger than the current remainder r. If
+ * it is larger, we decrease qhat by one and try again. We may need to
+ * decrease qhat one more time before we get a value that is smaller
+ * than r.
+ *
+ * This way is less efficent than Knuth becuase we do more multiplies,
+ * but we do not need to worry about underflow this way.
+ */
+ /* t = qhat * v */
+ s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
+ TEMP(1)->used = n + 1;
+ CLAMP(TEMP(1));
+
+ /* Clamp r for the comparison. Comparisons do not like leading zeros. */
+ CLAMP(&r);
+ if (s_ucmp(TEMP(1), &r) > 0)
+ { /* would the remainder be negative? */
+ qhat -= 1; /* try a smaller q */
+ s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
+ TEMP(1)->used = n + 1;
+ CLAMP(TEMP(1));
+ if (s_ucmp(TEMP(1), &r) > 0)
+ { /* would the remainder be negative? */
+ assert(qhat > 0);
+ qhat -= 1; /* try a smaller q */
+ s_dbmul(MP_DIGITS(v), (mp_digit) qhat, TEMP(1)->digits, n + 1);
+ TEMP(1)->used = n + 1;
+ CLAMP(TEMP(1));
+ }
+ assert(s_ucmp(TEMP(1), &r) <= 0 && "The mathematics failed us.");
+ }
+
+ /*
+ * Unclamp r. The D algorithm expects r = u_{j+n}..u_j to always be
+ * n+1 digits long.
+ */
+ r.used = n + 1;
+
+ /*
+ * D4: Multiply and subtract
+ *
+ * Note: The multiply was completed above so we only need to subtract
+ * here.
+ */
+ s_usub(r.digits, TEMP(1)->digits, r.digits, r.used, TEMP(1)->used);
+
+ /*
+ * D5: Test remainder
+ *
+ * Note: Not needed because we always check that qhat is the correct
+ * value before performing the subtract. Value cast to mp_digit to
+ * prevent warning, qhat has been clamped to MP_DIGIT_MAX
+ */
+ TEMP(0)->digits[j] = (mp_digit) qhat;
+
+ /*
+ * D6: Add back Note: Not needed because we always check that qhat is
+ * the correct value before performing the subtract.
+ */
+
+ /* D7: Loop on j */
+ r.digits--;
+ ZERO(TEMP(1)->digits, TEMP(1)->alloc);
+ }
+
+ /* Get rid of leading zeros in q */
+ TEMP(0)->used = m + 1;
+ CLAMP(TEMP(0));
/* Denormalize the remainder */
- CLAMP(a);
+ CLAMP(u); /* use u here because the r.digits pointer is
+ * off-by-one */
if (k != 0)
- s_qdiv(a, k);
+ s_qdiv(u, k);
- mp_int_copy(a, b); /* ok: 0 <= r < b */
- mp_int_copy(&q, a); /* ok: q <= a */
+ mp_int_copy(u, v); /* ok: 0 <= r < v */
+ mp_int_copy(TEMP(0), u); /* ok: q <= u */
- mp_int_clear(&t);
-CLEANUP:
- mp_int_clear(&q);
- return res;
+ CLEANUP_TEMP();
+ return MP_OK;
}
-/* }}} */
-
-/* {{{ s_outlen(z, r) */
-
-/* Precondition: 2 <= r < 64 */
static int
s_outlen(mp_int z, mp_size r)
{
- mp_result bits;
- double raw;
+ assert(r >= MP_MIN_RADIX && r <= MP_MAX_RADIX);
- bits = mp_int_count_bits(z);
- raw = (double) bits * s_log2[r];
+ mp_result bits = mp_int_count_bits(z);
+ double raw = (double) bits * s_log2[r];
return (int) (raw + 0.999999);
}
-/* }}} */
-
-/* {{{ s_inlen(len, r) */
-
static mp_size
s_inlen(int len, mp_size r)
{
double raw = (double) len / s_log2[r];
mp_size bits = (mp_size) (raw + 0.5);
- return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT);
+ return (mp_size) ((bits + (MP_DIGIT_BIT - 1)) / MP_DIGIT_BIT) + 1;
}
-/* }}} */
-
-/* {{{ s_ch2val(c, r) */
-
static int
s_ch2val(char c, int r)
{
int out;
+ /*
+ * In some locales, isalpha() accepts characters outside the range A-Z,
+ * producing out<0 or out>=36. The "out >= r" check will always catch
+ * out>=36. Though nothing explicitly catches out<0, our caller reacts
+ * the same way to every negative return value.
+ */
if (isdigit((unsigned char) c))
out = c - '0';
else if (r > 10 && isalpha((unsigned char) c))
@@ -3546,39 +3481,36 @@ s_ch2val(char c, int r)
return (out >= r) ? -1 : out;
}
-/* }}} */
-
-/* {{{ s_val2ch(v, caps) */
-
static char
s_val2ch(int v, int caps)
{
assert(v >= 0);
if (v < 10)
+ {
return v + '0';
+ }
else
{
char out = (v - 10) + 'a';
if (caps)
+ {
return toupper((unsigned char) out);
+ }
else
+ {
return out;
+ }
}
}
-/* }}} */
-
-/* {{{ s_2comp(buf, len) */
-
static void
s_2comp(unsigned char *buf, int len)
{
- int i;
unsigned short s = 1;
- for (i = len - 1; i >= 0; --i)
+ for (int i = len - 1; i >= 0; --i)
{
unsigned char c = ~buf[i];
@@ -3592,20 +3524,14 @@ s_2comp(unsigned char *buf, int len)
/* last carry out is ignored */
}
-/* }}} */
-
-/* {{{ s_tobin(z, buf, *limpos) */
-
static mp_result
s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
{
- mp_size uz;
- mp_digit *dz;
int pos = 0,
limit = *limpos;
+ mp_size uz = MP_USED(z);
+ mp_digit *dz = MP_DIGITS(z);
- uz = MP_USED(z);
- dz = MP_DIGITS(z);
while (uz > 0 && pos < limit)
{
mp_digit d = *dz++;
@@ -3631,13 +3557,17 @@ s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
if (pad != 0 && (buf[pos - 1] >> (CHAR_BIT - 1)))
{
if (pos < limit)
+ {
buf[pos++] = 0;
+ }
else
+ {
uz = 1;
+ }
}
/* Digits are in reverse order, fix that */
- REV(unsigned char, buf, pos);
+ REV(buf, pos);
/* Return the number of bytes actually written */
*limpos = pos;
@@ -3645,40 +3575,4 @@ s_tobin(mp_int z, unsigned char *buf, int *limpos, int pad)
return (uz == 0) ? MP_OK : MP_TRUNC;
}
-/* }}} */
-
-/* {{{ s_print(tag, z) */
-
-#if 0
-void
-s_print(char *tag, mp_int z)
-{
- int i;
-
- fprintf(stderr, "%s: %c ", tag,
- (MP_SIGN(z) == MP_NEG) ? '-' : '+');
-
- for (i = MP_USED(z) - 1; i >= 0; --i)
- fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), z->digits[i]);
-
- fputc('\n', stderr);
-
-}
-
-void
-s_print_buf(char *tag, mp_digit *buf, mp_size num)
-{
- int i;
-
- fprintf(stderr, "%s: ", tag);
-
- for (i = num - 1; i >= 0; --i)
- fprintf(stderr, "%0*X", (int) (MP_DIGIT_BIT / 4), buf[i]);
-
- fputc('\n', stderr);
-}
-#endif
-
-/* }}} */
-
-/* HERE THERE BE DRAGONS */
+/* Here there be dragons */
diff --git a/contrib/pgcrypto/imath.h b/contrib/pgcrypto/imath.h
index 2d7a5268e5..65be7483c9 100644
--- a/contrib/pgcrypto/imath.h
+++ b/contrib/pgcrypto/imath.h
@@ -1,61 +1,57 @@
/*
- Name: imath.h
- Purpose: Arbitrary precision integer arithmetic routines.
- Author: M. J. Fromberger
- Info: Id: imath.h 21 2006-04-02 18:58:36Z sting
+ Name: imath.h
+ Purpose: Arbitrary precision integer arithmetic routines.
+ Author: M. J. Fromberger
- Copyright (C) 2002 Michael J. Fromberger, All Rights Reserved.
+ Copyright (C) 2002-2007 Michael J. Fromberger, All Rights Reserved.
- Permission is hereby granted, free of charge, to any person
- obtaining a copy of this software and associated documentation files
- (the "Software"), to deal in the Software without restriction,
- including without limitation the rights to use, copy, modify, merge,
- publish, distribute, sublicense, and/or sell copies of the Software,
- and to permit persons to whom the Software is furnished to do so,
- subject to the following conditions:
+ Permission is hereby granted, free of charge, to any person obtaining a copy
+ of this software and associated documentation files (the "Software"), to deal
+ in the Software without restriction, including without limitation the rights
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ copies of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
- The above copyright notice and this permission notice shall be
- included in all copies or substantial portions of the Software.
+ The above copyright notice and this permission notice shall be included in
+ all copies or substantial portions of the Software.
- THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
- EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
- MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
- NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
- BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
- ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
-/* contrib/pgcrypto/imath.h */
#ifndef IMATH_H_
#define IMATH_H_
-/* use always 32bit digits - should some arch use 16bit digits? */
-#define USE_LONG_LONG
-
#include
typedef unsigned char mp_sign;
typedef unsigned int mp_size;
typedef int mp_result;
+typedef long mp_small; /* must be a signed type */
+typedef unsigned long mp_usmall; /* must be an unsigned type */
-#ifdef USE_LONG_LONG
-typedef uint32 mp_digit;
-typedef uint64 mp_word;
-#define MP_DIGIT_MAX 0xFFFFFFFFULL
-#define MP_WORD_MAX 0xFFFFFFFFFFFFFFFFULL
+/* Build with words as uint64_t by default. */
+#ifdef USE_32BIT_WORDS
+typedef uint16_t mp_digit;
+typedef uint32_t mp_word;
+#define MP_DIGIT_MAX (UINT16_MAX * 1UL)
+#define MP_WORD_MAX (UINT32_MAX * 1UL)
#else
-typedef uint16 mp_digit;
-typedef uint32 mp_word;
-
-#define MP_DIGIT_MAX 0xFFFFUL
-#define MP_WORD_MAX 0xFFFFFFFFUL
+typedef uint32_t mp_digit;
+typedef uint64_t mp_word;
+#define MP_DIGIT_MAX (UINT32_MAX * UINT64_C(1))
+#define MP_WORD_MAX (UINT64_MAX)
#endif
-typedef struct mpz
+typedef struct
{
+ mp_digit single;
mp_digit *digits;
mp_size alloc;
mp_size used;
@@ -64,10 +60,26 @@ typedef struct mpz
*mp_int;
-#define MP_DIGITS(Z) ((Z)->digits)
-#define MP_ALLOC(Z) ((Z)->alloc)
-#define MP_USED(Z) ((Z)->used)
-#define MP_SIGN(Z) ((Z)->sign)
+static inline mp_digit *
+MP_DIGITS(mp_int Z)
+{
+ return Z->digits;
+}
+static inline mp_size
+MP_ALLOC(mp_int Z)
+{
+ return Z->alloc;
+}
+static inline mp_size
+MP_USED(mp_int Z)
+{
+ return Z->used;
+}
+static inline mp_sign
+MP_SIGN(mp_int Z)
+{
+ return Z->sign;
+}
extern const mp_result MP_OK;
extern const mp_result MP_FALSE;
@@ -77,134 +89,357 @@ extern const mp_result MP_RANGE;
extern const mp_result MP_UNDEF;
extern const mp_result MP_TRUNC;
extern const mp_result MP_BADARG;
+extern const mp_result MP_MINERR;
-#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
-#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
+#define MP_DIGIT_BIT (sizeof(mp_digit) * CHAR_BIT)
+#define MP_WORD_BIT (sizeof(mp_word) * CHAR_BIT)
+#define MP_SMALL_MIN LONG_MIN
+#define MP_SMALL_MAX LONG_MAX
+#define MP_USMALL_MAX ULONG_MAX
-#define MP_MIN_RADIX 2
-#define MP_MAX_RADIX 36
+#define MP_MIN_RADIX 2
+#define MP_MAX_RADIX 36
+/** Sets the default number of digits allocated to an `mp_int` constructed by
+ `mp_int_init_size()` with `prec == 0`. Allocations are rounded up to
+ multiples of this value. `MP_DEFAULT_PREC` is the default value. Requires
+ `ndigits > 0`. */
+void mp_int_default_precision(mp_size ndigits);
+
+/** Sets the number of digits below which multiplication will use the standard
+ quadratic "schoolbook" multiplcation algorithm rather than Karatsuba-Ofman.
+ Requires `ndigits >= sizeof(mp_word)`. */
+void mp_int_multiply_threshold(mp_size ndigits);
+
+/** A sign indicating a (strictly) negative value. */
extern const mp_sign MP_NEG;
+
+/** A sign indicating a zero or positive value. */
extern const mp_sign MP_ZPOS;
-#define mp_int_is_odd(Z) ((Z)->digits[0] & 1)
-#define mp_int_is_even(Z) !((Z)->digits[0] & 1)
+/** Reports whether `z` is odd, having remainder 1 when divided by 2. */
+static inline bool
+mp_int_is_odd(mp_int z)
+{
+ return (z->digits[0] & 1) != 0;
+}
-mp_size mp_get_default_precision(void);
-void mp_set_default_precision(mp_size s);
-mp_size mp_get_multiply_threshold(void);
-void mp_set_multiply_threshold(mp_size s);
+/** Reports whether `z` is even, having remainder 0 when divided by 2. */
+static inline bool
+mp_int_is_even(mp_int z)
+{
+ return (z->digits[0] & 1) == 0;
+}
+/** Initializes `z` with 1-digit precision and sets it to zero. This function
+ cannot fail unless `z == NULL`. */
mp_result mp_int_init(mp_int z);
+
+/** Allocates a fresh zero-valued `mpz_t` on the heap, returning NULL in case
+ of error. The only possible error is out-of-memory. */
mp_int mp_int_alloc(void);
+
+/** Initializes `z` with at least `prec` digits of storage, and sets it to
+ zero. If `prec` is zero, the default precision is used. In either case the
+ size is rounded up to the nearest multiple of the word size. */
mp_result mp_int_init_size(mp_int z, mp_size prec);
+
+/** Initializes `z` to be a copy of an already-initialized value in `old`. The
+ new copy does not share storage with the original. */
mp_result mp_int_init_copy(mp_int z, mp_int old);
-mp_result mp_int_init_value(mp_int z, int value);
-mp_result mp_int_set_value(mp_int z, int value);
+
+/** Initializes `z` to the specified signed `value` at default precision. */
+mp_result mp_int_init_value(mp_int z, mp_small value);
+
+/** Initializes `z` to the specified unsigned `value` at default precision. */
+mp_result mp_int_init_uvalue(mp_int z, mp_usmall uvalue);
+
+/** Sets `z` to the value of the specified signed `value`. */
+mp_result mp_int_set_value(mp_int z, mp_small value);
+
+/** Sets `z` to the value of the specified unsigned `value`. */
+mp_result mp_int_set_uvalue(mp_int z, mp_usmall uvalue);
+
+/** Releases the storage used by `z`. */
void mp_int_clear(mp_int z);
+
+/** Releases the storage used by `z` and also `z` itself.
+ This should only be used for `z` allocated by `mp_int_alloc()`. */
void mp_int_free(mp_int z);
-mp_result mp_int_copy(mp_int a, mp_int c); /* c = a */
-void mp_int_swap(mp_int a, mp_int c); /* swap a, c */
-void mp_int_zero(mp_int z); /* z = 0 */
-mp_result mp_int_abs(mp_int a, mp_int c); /* c = |a| */
-mp_result mp_int_neg(mp_int a, mp_int c); /* c = -a */
-mp_result mp_int_add(mp_int a, mp_int b, mp_int c); /* c = a + b */
-mp_result mp_int_add_value(mp_int a, int value, mp_int c);
-mp_result mp_int_sub(mp_int a, mp_int b, mp_int c); /* c = a - b */
-mp_result mp_int_sub_value(mp_int a, int value, mp_int c);
-mp_result mp_int_mul(mp_int a, mp_int b, mp_int c); /* c = a * b */
-mp_result mp_int_mul_value(mp_int a, int value, mp_int c);
-mp_result mp_int_mul_pow2(mp_int a, int p2, mp_int c);
-mp_result mp_int_sqr(mp_int a, mp_int c); /* c = a * a */
+/** Replaces the value of `c` with a copy of the value of `a`. No new memory is
+ allocated unless `a` has more significant digits than `c` has allocated. */
+mp_result mp_int_copy(mp_int a, mp_int c);
-mp_result mp_int_div(mp_int a, mp_int b, /* q = a / b */
- mp_int q, mp_int r); /* r = a % b */
-mp_result mp_int_div_value(mp_int a, int value, /* q = a / value */
- mp_int q, int *r); /* r = a % value */
-mp_result mp_int_div_pow2(mp_int a, int p2, /* q = a / 2^p2 */
- mp_int q, mp_int r); /* r = q % 2^p2 */
-mp_result mp_int_mod(mp_int a, mp_int m, mp_int c); /* c = a % m */
+/** Swaps the values and storage between `a` and `c`. */
+void mp_int_swap(mp_int a, mp_int c);
-#define mp_int_mod_value(A, V, R) mp_int_div_value((A), (V), 0, (R))
-mp_result mp_int_expt(mp_int a, int b, mp_int c); /* c = a^b */
-mp_result mp_int_expt_value(int a, int b, mp_int c); /* c = a^b */
+/** Sets `z` to zero. The allocated storage of `z` is not changed. */
+void mp_int_zero(mp_int z);
-int mp_int_compare(mp_int a, mp_int b); /* a <=> b */
-int mp_int_compare_unsigned(mp_int a, mp_int b); /* |a| <=> |b| */
-int mp_int_compare_zero(mp_int z); /* a <=> 0 */
-int mp_int_compare_value(mp_int z, int value); /* a <=> v */
+/** Sets `c` to the absolute value of `a`. */
+mp_result mp_int_abs(mp_int a, mp_int c);
-/* Returns true if v|a, false otherwise (including errors) */
-int mp_int_divisible_value(mp_int a, int v);
+/** Sets `c` to the additive inverse (negation) of `a`. */
+mp_result mp_int_neg(mp_int a, mp_int c);
-/* Returns k >= 0 such that z = 2^k, if one exists; otherwise < 0 */
+/** Sets `c` to the sum of `a` and `b`. */
+mp_result mp_int_add(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the sum of `a` and `value`. */
+mp_result mp_int_add_value(mp_int a, mp_small value, mp_int c);
+
+/** Sets `c` to the difference of `a` less `b`. */
+mp_result mp_int_sub(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the difference of `a` less `value`. */
+mp_result mp_int_sub_value(mp_int a, mp_small value, mp_int c);
+
+/** Sets `c` to the product of `a` and `b`. */
+mp_result mp_int_mul(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the product of `a` and `value`. */
+mp_result mp_int_mul_value(mp_int a, mp_small value, mp_int c);
+
+/** Sets `c` to the product of `a` and `2^p2`. Requires `p2 >= 0`. */
+mp_result mp_int_mul_pow2(mp_int a, mp_small p2, mp_int c);
+
+/** Sets `c` to the square of `a`. */
+mp_result mp_int_sqr(mp_int a, mp_int c);
+
+/** Sets `q` and `r` to the quotent and remainder of `a / b`. Division by
+ powers of 2 is detected and handled efficiently. The remainder is pinned
+ to `0 <= r < b`.
+
+ Either of `q` or `r` may be NULL, but not both, and `q` and `r` may not
+ point to the same value. */
+mp_result mp_int_div(mp_int a, mp_int b, mp_int q, mp_int r);
+
+/** Sets `q` and `*r` to the quotent and remainder of `a / value`. Division by
+ powers of 2 is detected and handled efficiently. The remainder is pinned to
+ `0 <= *r < b`. Either of `q` or `r` may be NULL. */
+mp_result mp_int_div_value(mp_int a, mp_small value, mp_int q, mp_small * r);
+
+/** Sets `q` and `r` to the quotient and remainder of `a / 2^p2`. This is a
+ special case for division by powers of two that is more efficient than
+ using ordinary division. Note that `mp_int_div()` will automatically handle
+ this case, this function is for cases where you have only the exponent. */
+mp_result mp_int_div_pow2(mp_int a, mp_small p2, mp_int q, mp_int r);
+
+/** Sets `c` to the remainder of `a / m`.
+ The remainder is pinned to `0 <= c < m`. */
+mp_result mp_int_mod(mp_int a, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power.
+ It returns `MP_RANGE` if `b < 0`. */
+mp_result mp_int_expt(mp_int a, mp_small b, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power.
+ It returns `MP_RANGE` if `b < 0`. */
+mp_result mp_int_expt_value(mp_small a, mp_small b, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power.
+ It returns `MP_RANGE`) if `b < 0`. */
+mp_result mp_int_expt_full(mp_int a, mp_int b, mp_int c);
+
+/** Sets `*r` to the remainder of `a / value`.
+ The remainder is pinned to `0 <= r < value`. */
+static inline
+mp_result
+mp_int_mod_value(mp_int a, mp_small value, mp_small * r)
+{
+ return mp_int_div_value(a, value, 0, r);
+}
+
+/** Returns the comparator of `a` and `b`. */
+int mp_int_compare(mp_int a, mp_int b);
+
+/** Returns the comparator of the magnitudes of `a` and `b`, disregarding their
+ signs. Neither `a` nor `b` is modified by the comparison. */
+int mp_int_compare_unsigned(mp_int a, mp_int b);
+
+/** Returns the comparator of `z` and zero. */
+int mp_int_compare_zero(mp_int z);
+
+/** Returns the comparator of `z` and the signed value `v`. */
+int mp_int_compare_value(mp_int z, mp_small v);
+
+/** Returns the comparator of `z` and the unsigned value `uv`. */
+int mp_int_compare_uvalue(mp_int z, mp_usmall uv);
+
+/** Reports whether `a` is divisible by `v`. */
+bool mp_int_divisible_value(mp_int a, mp_small v);
+
+/** Returns `k >= 0` such that `z` is `2^k`, if such a `k` exists. If no such
+ `k` exists, the function returns -1. */
int mp_int_is_pow2(mp_int z);
-mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m,
- mp_int c); /* c = a^b (mod m) */
-mp_result mp_int_exptmod_evalue(mp_int a, int value,
- mp_int m, mp_int c); /* c = a^v (mod m) */
-mp_result mp_int_exptmod_bvalue(int value, mp_int b,
- mp_int m, mp_int c); /* c = v^b (mod m) */
-mp_result mp_int_exptmod_known(mp_int a, mp_int b,
- mp_int m, mp_int mu,
- mp_int c); /* c = a^b (mod m) */
+/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`.
+ It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod(mp_int a, mp_int b, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `value` power, modulo `m`.
+ It returns `MP_RANGE` if `value < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod_evalue(mp_int a, mp_small value, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `value` raised to the `b` power, modulo `m`.
+ It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod_bvalue(mp_small value, mp_int b, mp_int m, mp_int c);
+
+/** Sets `c` to the value of `a` raised to the `b` power, reduced modulo `m`,
+ given a precomputed reduction constant `mu` defined for Barrett's modular
+ reduction algorithm.
+
+ It returns `MP_RANGE` if `b < 0` or `MP_UNDEF` if `m == 0`. */
+mp_result mp_int_exptmod_known(mp_int a, mp_int b, mp_int m, mp_int mu, mp_int c);
+
+/** Sets `c` to the reduction constant for Barrett reduction by modulus `m`.
+ Requires that `c` and `m` point to distinct locations. */
mp_result mp_int_redux_const(mp_int m, mp_int c);
-mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c); /* c = 1/a (mod m) */
+/** Sets `c` to the multiplicative inverse of `a` modulo `m`, if it exists.
+ The least non-negative representative of the congruence class is computed.
-mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c); /* c = gcd(a, b) */
+ It returns `MP_UNDEF` if the inverse does not exist, or `MP_RANGE` if `a ==
+ 0` or `m <= 0`. */
+mp_result mp_int_invmod(mp_int a, mp_int m, mp_int c);
-mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, /* c = gcd(a, b) */
- mp_int x, mp_int y); /* c = ax + by */
+/** Sets `c` to the greatest common divisor of `a` and `b`.
-mp_result mp_int_sqrt(mp_int a, mp_int c); /* c = floor(sqrt(q)) */
+ It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
+ and `b` are both zero. */
+mp_result mp_int_gcd(mp_int a, mp_int b, mp_int c);
-/* Convert to an int, if representable (returns MP_RANGE if not). */
-mp_result mp_int_to_int(mp_int z, int *out);
+/** Sets `c` to the greatest common divisor of `a` and `b`, and sets `x` and
+ `y` to values satisfying Bezout's identity `gcd(a, b) = ax + by`.
-/* Convert to nul-terminated string with the specified radix, writing at
- most limit characters including the nul terminator */
-mp_result mp_int_to_string(mp_int z, mp_size radix,
- char *str, int limit);
+ It returns `MP_UNDEF` if the GCD is undefined, such as for example if `a`
+ and `b` are both zero. */
+mp_result mp_int_egcd(mp_int a, mp_int b, mp_int c, mp_int x, mp_int y);
-/* Return the number of characters required to represent
- z in the given radix. May over-estimate. */
+/** Sets `c` to the least common multiple of `a` and `b`.
+
+ It returns `MP_UNDEF` if the LCM is undefined, such as for example if `a`
+ and `b` are both zero. */
+mp_result mp_int_lcm(mp_int a, mp_int b, mp_int c);
+
+/** Sets `c` to the greatest integer not less than the `b`th root of `a`,
+ using Newton's root-finding algorithm.
+ It returns `MP_UNDEF` if `a < 0` and `b` is even. */
+mp_result mp_int_root(mp_int a, mp_small b, mp_int c);
+
+/** Sets `c` to the greatest integer not less than the square root of `a`.
+ This is a special case of `mp_int_root()`. */
+static inline
+mp_result
+mp_int_sqrt(mp_int a, mp_int c)
+{
+ return mp_int_root(a, 2, c);
+}
+
+/** Returns `MP_OK` if `z` is representable as `mp_small`, else `MP_RANGE`.
+ If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
+mp_result mp_int_to_int(mp_int z, mp_small * out);
+
+/** Returns `MP_OK` if `z` is representable as `mp_usmall`, or `MP_RANGE`.
+ If `out` is not NULL, `*out` is set to the value of `z` when `MP_OK`. */
+mp_result mp_int_to_uint(mp_int z, mp_usmall * out);
+
+/** Converts `z` to a zero-terminated string of characters in the specified
+ `radix`, writing at most `limit` characters to `str` including the
+ terminating NUL value. A leading `-` is used to indicate a negative value.
+
+ Returns `MP_TRUNC` if `limit` was to small to write all of `z`.
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
+mp_result mp_int_to_string(mp_int z, mp_size radix, char *str, int limit);
+
+/** Reports the minimum number of characters required to represent `z` as a
+ zero-terminated string in the given `radix`.
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
mp_result mp_int_string_len(mp_int z, mp_size radix);
-/* Read zero-terminated string into z */
-mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
-mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str,
- char **end);
+/** Reads a string of ASCII digits in the specified `radix` from the zero
+ terminated `str` provided into `z`. For values of `radix > 10`, the letters
+ `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
+ to case.
-/* Return the number of significant bits in z */
+ Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
+ sign flag. Processing stops when a NUL or any other character out of range
+ for a digit in the given radix is encountered.
+
+ If the whole string was consumed, `MP_OK` is returned; otherwise
+ `MP_TRUNC`. is returned.
+
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
+mp_result mp_int_read_string(mp_int z, mp_size radix, const char *str);
+
+/** Reads a string of ASCII digits in the specified `radix` from the zero
+ terminated `str` provided into `z`. For values of `radix > 10`, the letters
+ `A`..`Z` or `a`..`z` are accepted. Letters are interpreted without respect
+ to case.
+
+ Leading whitespace is ignored, and a leading `+` or `-` is interpreted as a
+ sign flag. Processing stops when a NUL or any other character out of range
+ for a digit in the given radix is encountered.
+
+ If the whole string was consumed, `MP_OK` is returned; otherwise
+ `MP_TRUNC`. is returned. If `end` is not NULL, `*end` is set to point to
+ the first unconsumed byte of the input string (the NUL byte if the whole
+ string was consumed). This emulates the behavior of the standard C
+ `strtol()` function.
+
+ Requires `MP_MIN_RADIX <= radix <= MP_MAX_RADIX`. */
+mp_result mp_int_read_cstring(mp_int z, mp_size radix, const char *str, char **end);
+
+/** Returns the number of significant bits in `z`. */
mp_result mp_int_count_bits(mp_int z);
-/* Convert z to two's complement binary, writing at most limit bytes */
+/** Converts `z` to 2's complement binary, writing at most `limit` bytes into
+ the given `buf`. Returns `MP_TRUNC` if the buffer limit was too small to
+ contain the whole value. If this occurs, the contents of buf will be
+ effectively garbage, as the function uses the buffer as scratch space.
+
+ The binary representation of `z` is in base-256 with digits ordered from
+ most significant to least significant (network byte ordering). The
+ high-order bit of the first byte is set for negative values, clear for
+ non-negative values.
+
+ As a result, non-negative values will be padded with a leading zero byte if
+ the high-order byte of the base-256 magnitude is set. This extra byte is
+ accounted for by the `mp_int_binary_len()` function. */
mp_result mp_int_to_binary(mp_int z, unsigned char *buf, int limit);
-/* Read a two's complement binary value into z from the given buffer */
+/** Reads a 2's complement binary value from `buf` into `z`, where `len` is the
+ length of the buffer. The contents of `buf` may be overwritten during
+ processing, although they will be restored when the function returns. */
mp_result mp_int_read_binary(mp_int z, unsigned char *buf, int len);
-/* Return the number of bytes required to represent z in binary. */
+/** Returns the number of bytes to represent `z` in 2's complement binary. */
mp_result mp_int_binary_len(mp_int z);
-/* Convert z to unsigned binary, writing at most limit bytes */
+/** Converts the magnitude of `z` to unsigned binary, writing at most `limit`
+ bytes into the given `buf`. The sign of `z` is ignored, but `z` is not
+ modified. Returns `MP_TRUNC` if the buffer limit was too small to contain
+ the whole value. If this occurs, the contents of `buf` will be effectively
+ garbage, as the function uses the buffer as scratch space during
+ conversion.
+
+ The binary representation of `z` is in base-256 with digits ordered from
+ most significant to least significant (network byte ordering). */
mp_result mp_int_to_unsigned(mp_int z, unsigned char *buf, int limit);
-/* Read an unsigned binary value into z from the given buffer */
+/** Reads an unsigned binary value from `buf` into `z`, where `len` is the
+ length of the buffer. The contents of `buf` are not modified during
+ processing. */
mp_result mp_int_read_unsigned(mp_int z, unsigned char *buf, int len);
-/* Return the number of bytes required to represent z as unsigned output */
+/** Returns the number of bytes required to represent `z` as an unsigned binary
+ value in base 256. */
mp_result mp_int_unsigned_len(mp_int z);
-/* Return a statically allocated string describing error code res */
+/** Returns a pointer to a brief, human-readable, zero-terminated string
+ describing `res`. The returned string is statically allocated and must not
+ be freed by the caller. */
const char *mp_error_string(mp_result res);
-#if 0
-void s_print(char *tag, mp_int z);
-void s_print_buf(char *tag, mp_digit *buf, mp_size num);
-#endif
-
#endif /* end IMATH_H_ */