Remove _deadcode.

This commit is contained in:
Peter Eisentraut 2002-07-24 19:16:43 +00:00
parent 739adf32ee
commit 43515ba3f8
6 changed files with 0 additions and 4535 deletions

File diff suppressed because it is too large Load Diff

View File

@ -1,346 +0,0 @@
/*-------------------------------------------------------------------------
*
* version.c
* This file contains all the rules that govern all version semantics.
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* The version stuff has not been tested under postgres95 and probably
* doesn't work! - jolly 8/19/95
*
*
* $Id: version.c,v 1.30 2002/06/20 20:29:27 momjian Exp $
*
* NOTES
* At the point the version is defined, 2 physical relations are created
* <vname>_added and <vname>_deleted.
*
* In addition, 4 rules are defined which govern the semantics of
* versions w.r.t retrieves, appends, replaces and deletes.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#define MAX_QUERY_LEN 1024
char rule_buf[MAX_QUERY_LEN];
/*
* problem: the version system assumes that the rules it declares will
* be fired in the order of declaration, it also assumes
* goh's silly instead semantics. Unfortunately, it is a pain
* to make the version system work with the new semantics.
* However the whole problem can be solved, and some nice
* functionality can be achieved if we get multiple action rules
* to work. So thats what I did -- glass
*
* Well, at least they've been working for about 20 minutes.
*
* So any comments in this code about 1 rule per transction are false...:)
*
*/
/*
* This is needed because the rule system only allows
* *1* rule to be defined per transaction.
*
* NOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
* OOOOOOOOOOOOOOOOOOO!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*
* DONT DO THAT!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
*
* If you commit the current Xact all the palloced memory GOES AWAY
* and could be re-palloced in the new Xact and the whole hell breaks
* loose and poor people like me spend 2 hours of their live chassing
* a strange memory bug instead of watching the "Get Smart" marathon
* in NICK !
* DO NOT COMMIT THE XACT, just increase the Cid counter!
* _sp.
*/
#ifdef NOT_USED
static void
eval_as_new_xact(char *query)
{
/*------
* WARNING! do not uncomment the following lines WARNING!
*
* CommitTransactionCommand();
* StartTransactionCommand();
*------
*/
CommandCounterIncrement();
pg_exec_query(query);
}
#endif
/*
* Define a version.
*/
#ifdef NOT_USED
void
DefineVersion(char *name, char *fromRelname, char *date)
{
char *bname;
static char saved_basename[512];
static char saved_snapshot[512];
if (date == NULL)
{
/* no time ranges */
bname = fromRelname;
strcpy(saved_basename, (char *) bname);
*saved_snapshot = (char) NULL;
}
else
{
/* version is a snapshot */
bname = fromRelname;
strcpy(saved_basename, (char *) bname);
sprintf(saved_snapshot, "['%s']", date);
}
/*
* Calls the routine ``GetAttrList'' get the list of attributes from
* the base relation. Code is put here so that we only need to look up
* the attribute once for both appends and replaces.
*/
setAttrList(bname);
VersionCreate(name, saved_basename);
VersionAppend(name, saved_basename);
VersionDelete(name, saved_basename, saved_snapshot);
VersionReplace(name, saved_basename, saved_snapshot);
VersionRetrieve(name, saved_basename, saved_snapshot);
}
#endif
/*
* Creates the deltas.
*/
#ifdef NOT_USED
void
VersionCreate(char *vname, char *bname)
{
static char query_buf[MAX_QUERY_LEN];
/*
* Creating the dummy version relation for triggering rules.
*/
sprintf(query_buf, "SELECT * INTO TABLE %s from %s where 1 =2",
vname, bname);
pg_exec_query(query_buf);
/*
* Creating the ``v_added'' relation
*/
sprintf(query_buf, "SELECT * INTO TABLE %s_added from %s where 1 = 2",
vname, bname);
eval_as_new_xact(query_buf);
/*
* Creating the ``v_deleted'' relation.
*/
sprintf(query_buf, "CREATE TABLE %s_del (DOID oid)", vname);
eval_as_new_xact(query_buf);
}
#endif
/*
* Given the relation name, does a catalog lookup for that relation and
* sets the global variable 'attr_list' with the list of attributes (names)
* for that relation.
*/
#ifdef NOT_USED
static void
setAttrList(char *bname)
{
Relation rel;
int i = 0;
int maxattrs = 0;
char *attrname;
char temp_buf[512];
int notfirst = 0;
rel = heap_openr(bname);
if (rel == NULL)
{
elog(ERROR, "Unable to expand all -- amopenr failed ");
return;
}
maxattrs = RelationGetNumberOfAttributes(rel);
attr_list[0] = '\0';
for (i = maxattrs - 1; i > -1; --i)
{
attrname = NameStr(rel->rd_att->attrs[i]->attname);
if (notfirst == 1)
sprintf(temp_buf, ", %s = new.%s", attrname, attrname);
else
{
sprintf(temp_buf, "%s = new.%s", attrname, attrname);
notfirst = 1;
}
strcat(attr_list, temp_buf);
}
heap_close(rel);
return;
}
#endif
/*
* This routine defines the rule governing the append semantics of
* versions. All tuples appended to a version gets appended to the
* <vname>_added relation.
*/
#ifdef NOT_USED
static void
VersionAppend(char *vname, char *bname)
{
sprintf(rule_buf,
"define rewrite rule %s_append is on INSERT to %s do instead append %s_added(%s)",
vname, vname, vname, attr_list);
eval_as_new_xact(rule_buf);
}
#endif
/*
* This routine defines the rule governing the retrieval semantics of
* versions. To retrieve tuples from a version , we need to:
*
* 1. Retrieve all tuples in the <vname>_added relation.
* 2. Retrieve all tuples in the base relation which are not in
* the <vname>_del relation.
*/
#ifdef NOT_USED
void
VersionRetrieve(char *vname, char *bname, char *snapshot)
{
sprintf(rule_buf,
"define rewrite rule %s_retrieve is on SELECT to %s do instead\n\
SELECT %s_1.oid, %s_1.* from _%s in %s%s, %s_1 in (%s_added | _%s) \
where _%s.oid !!= '%s_del.DOID'",
vname, vname, vname, vname, bname,
bname, snapshot,
vname, vname, bname, bname, vname);
eval_as_new_xact(rule_buf);
/* printf("%s\n",rule_buf); */
}
#endif
/*
* This routine defines the rules that govern the delete semantics of
* versions. Two things happens when we delete a tuple from a version:
*
* 1. If the tuple to be deleted was added to the version *after*
* the version was created, then we simply delete the tuple
* from the <vname>_added relation.
* 2. If the tuple to be deleted is actually in the base relation,
* then we have to mark that tuple as being deleted by adding
* it to the <vname>_del relation.
*/
#ifdef NOT_USED
void
VersionDelete(char *vname, char *bname, char *snapshot)
{
sprintf(rule_buf,
"define rewrite rule %s_delete1 is on delete to %s do instead\n \
[delete %s_added where current.oid = %s_added.oid\n \
append %s_del(DOID = current.oid) from _%s in %s%s \
where current.oid = _%s.oid] \n",
vname, vname, vname, vname, vname,
bname, bname, snapshot, bname);
eval_as_new_xact(rule_buf);
#ifdef OLD_REWRITE
sprintf(rule_buf,
"define rewrite rule %s_delete2 is on delete to %s do instead \n \
append %s_del(DOID = current.oid) from _%s in %s%s \
where current.oid = _%s.oid \n",
vname, vname, vname, bname, bname, snapshot, bname);
eval_as_new_xact(rule_buf);
#endif /* OLD_REWRITE */
}
#endif
/*
* This routine defines the rules that govern the update semantics
* of versions. To update a tuple in a version:
*
* 1. If the tuple is in <vname>_added, we simply ``replace''
* the tuple (as per postgres style).
* 2. if the tuple is in the base relation, then two things have to
* happen:
* 2.1 The tuple is marked ``deleted'' from the base relation by
* adding the tuple to the <vname>_del relation.
* 2.2 A copy of the tuple is appended to the <vname>_added relation
*/
#ifdef NOT_USED
void
VersionReplace(char *vname, char *bname, char *snapshot)
{
sprintf(rule_buf,
"define rewrite rule %s_replace1 is on replace to %s do instead \n\
[replace %s_added(%s) where current.oid = %s_added.oid \n\
append %s_del(DOID = current.oid) from _%s in %s%s \
where current.oid = _%s.oid\n\
append %s_added(%s) from _%s in %s%s \
where current.oid !!= '%s_added.oid' and current.oid = _%s.oid]\n",
vname, vname, vname, attr_list, vname,
vname, bname, bname, snapshot, bname,
vname, attr_list, bname, bname, snapshot, vname, bname);
eval_as_new_xact(rule_buf);
/* printf("%s\n",rule_buf); */
#ifdef OLD_REWRITE
sprintf(rule_buf,
"define rewrite rule %s_replace2 is on replace to %s do \n\
append %s_del(DOID = current.oid) from _%s in %s%s \
where current.oid = _%s.oid\n",
vname, vname, vname, bname, bname, snapshot, bname);
eval_as_new_xact(rule_buf);
sprintf(rule_buf,
"define rewrite rule %s_replace3 is on replace to %s do instead\n\
append %s_added(%s) from _%s in %s%s \
where current.oid !!= '%s_added.oid' and current.oid = \
_%s.oid\n",
vname, vname, vname, attr_list, bname, bname, snapshot, vname, bname);
eval_as_new_xact(rule_buf);
#endif /* OLD_REWRITE */
/* printf("%s\n",rule_buf); */
}
#endif

View File

@ -1,499 +0,0 @@
/*-------------------------------------------------------------------------
*
* nodeTee.c
*
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* DESCRIPTION
* This code provides support for a tee node, which allows
* multiple parent in a megaplan.
*
* INTERFACE ROUTINES
* ExecTee
* ExecInitTee
* ExecEndTee
*
* $Id: nodeTee.c,v 1.12 2002/06/20 20:29:28 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include <sys/types.h>
#include <sys/file.h>
#include "postgres.h"
#include "access/heapam.h"
#include "catalog/catalog.h"
#include "catalog/heap.h"
#include "executor/executor.h"
#include "executor/nodeTee.h"
#include "optimizer/internal.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "tcop/pquery.h"
#include "utils/relcache.h"
/* ------------------------------------------------------------------
* ExecInitTee
*
* Create tee state
*
* ------------------------------------------------------------------
*/
bool
ExecInitTee(Tee * node, EState *currentEstate, Plan *parent)
{
TeeState *teeState;
Plan *outerPlan;
int len;
Relation bufferRel;
TupleDesc tupType;
EState *estate;
/*
* it is possible that the Tee has already been initialized since it
* can be reached by multiple parents. If it is already initialized,
* simply return and do not initialize the children nodes again
*/
if (node->plan.state)
return TRUE;
/*
* assign the node's execution state
*/
/*
* make a new executor state, because we have a different
* es_range_table
*/
/* node->plan.state = estate;*/
estate = CreateExecutorState();
estate->es_direction = currentEstate->es_direction;
estate->es_BaseId = currentEstate->es_BaseId;
estate->es_BaseId = currentEstate->es_BaseId;
estate->es_tupleTable = currentEstate->es_tupleTable;
estate->es_refcount = currentEstate->es_refcount;
estate->es_junkFilter = currentEstate->es_junkFilter;
estate->es_snapshot = currentEstate->es_snapshot;
/*
* use the range table for Tee subplan since the range tables for the
* two parents may be different
*/
if (node->rtentries)
estate->es_range_table = node->rtentries;
else
estate->es_range_table = currentEstate->es_range_table;
node->plan.state = estate;
/*
* create teeState structure
*/
teeState = makeNode(TeeState);
teeState->tee_leftPlace = 0;
teeState->tee_rightPlace = 0;
teeState->tee_lastPlace = 0;
teeState->tee_bufferRel = NULL;
teeState->tee_leftScanDesc = NULL;
teeState->tee_rightScanDesc = NULL;
node->teestate = teeState;
/* ----------------
* Miscellanious initialization
*
* + assign node's base_id
* + assign debugging hooks and
* + create expression context for node
* ----------------
*/
ExecAssignNodeBaseInfo(estate, &(teeState->cstate), parent);
ExecAssignExprContext(estate, &(teeState->cstate));
#define TEE_NSLOTS 2
/*
* initialize tuple slots
*/
ExecInitResultTupleSlot(estate, &(teeState->cstate));
/* initialize child nodes */
outerPlan = outerPlan((Plan *) node);
ExecInitNode(outerPlan, estate, (Plan *) node);
/*
* the tuple type info is from the outer plan of this node the result
* type is also the same as the outerplan
*/
ExecAssignResultTypeFromOuterPlan((Plan *) node, &(teeState->cstate));
ExecAssignProjectionInfo((Plan *) node, &teeState->cstate);
/*
* initialize temporary relation to buffer tuples
*/
tupType = ExecGetResultType(&(teeState->cstate));
len = ExecTargetListLength(((Plan *) node)->targetlist);
/*
* create a catalogued relation even though this is a temporary
* relation
*/
/* cleanup of catalogued relations is easier to do */
if (node->teeTableName[0] != '\0')
{
Relation r;
teeState->tee_bufferRelname = pstrdup(node->teeTableName);
/*
* we are given an tee table name, if a relation by that name
* exists, then we open it, else we create it and then open it
*/
r = RelationNameGetRelation(teeState->tee_bufferRelname);
if (RelationIsValid(r))
bufferRel = heap_openr(teeState->tee_bufferRelname);
else
bufferRel = heap_open(
heap_create_with_catalog(teeState->tee_bufferRelname,
tupType, RELKIND_RELATION, false));
}
else
{
sprintf(teeState->tee_bufferRelname,
"ttemp_%d", /* 'ttemp' for 'tee' temporary */
newoid());
bufferRel = heap_open(
heap_create_with_catalog(teeState->tee_bufferRelname,
tupType, RELKIND_RELATION, false));
}
teeState->tee_bufferRel = bufferRel;
/*
* initialize a memory context for allocating thing like scan
* descriptors
*/
/*
* we do this so that on cleanup of the tee, we can free things. if we
* didn't have our own memory context, we would be in the memory
* context of the portal that we happen to be using at the moment
*/
teeState->tee_mcxt = (MemoryContext) CreateGlobalMemory(teeState->tee_bufferRelname);
/*
* don't initialize the scan descriptors here because it's not good to
* initialize scan descriptors on empty rels. Wait until the scan
* descriptors are needed before initializing them.
*/
teeState->tee_leftScanDesc = NULL;
teeState->tee_rightScanDesc = NULL;
return TRUE;
}
int
ExecCountSlotsTee(Tee * node)
{
/* Tee nodes can't have innerPlans */
return ExecCountSlotsNode(outerPlan(node)) + TEE_NSLOTS;
}
/* ----------------------------------------------------------------
initTeeScanDescs
initializes the left and right scandescs on the temporary
relation of a Tee node
must open two separate scan descriptors,
because the left and right scans may be at different points
* ----------------------------------------------------------------
*/
static void
initTeeScanDescs(Tee * node)
{
TeeState *teeState;
Relation bufferRel;
ScanDirection dir;
Snapshot snapshot;
MemoryContext orig;
teeState = node->teestate;
if (teeState->tee_leftScanDesc && teeState->tee_rightScanDesc)
return;
orig = CurrentMemoryContext;
MemoryContextSwitchTo(teeState->tee_mcxt);
bufferRel = teeState->tee_bufferRel;
dir = ((Plan *) node)->state->es_direction; /* backwards not handled
* yet XXX */
snapshot = ((Plan *) node)->state->es_snapshot;
if (teeState->tee_leftScanDesc == NULL)
{
teeState->tee_leftScanDesc = heap_beginscan(bufferRel,
ScanDirectionIsBackward(dir),
snapshot,
0, /* num scan keys */
NULL /* scan keys */
);
}
if (teeState->tee_rightScanDesc == NULL)
{
teeState->tee_rightScanDesc = heap_beginscan(bufferRel,
ScanDirectionIsBackward(dir),
snapshot,
0, /* num scan keys */
NULL /* scan keys */
);
}
MemoryContextSwitchTo(orig);
}
/* ----------------------------------------------------------------
* ExecTee(node)
*
*
* A Tee serves to connect a subplan to multiple parents.
* the subplan is always the outplan of the Tee node.
*
* The Tee gets requests from either leftParent or rightParent,
* fetches the result tuple from the child, and then
* stored the result into a temporary relation (serving as a queue).
* leftPlace and rightPlace keep track of where the left and rightParents
* are.
* If a parent requests a tuple and that parent is not at the end
* of the temporary relation, then the request is satisfied from
* the queue instead of by executing the child plan
*
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecTee(Tee * node, Plan *parent)
{
EState *estate;
TeeState *teeState;
int leftPlace,
rightPlace,
lastPlace;
int branch;
TupleTableSlot *result;
TupleTableSlot *slot;
Plan *childNode;
ScanDirection dir;
HeapTuple heapTuple;
Relation bufferRel;
HeapScanDesc scanDesc;
estate = ((Plan *) node)->state;
teeState = node->teestate;
leftPlace = teeState->tee_leftPlace;
rightPlace = teeState->tee_rightPlace;
lastPlace = teeState->tee_lastPlace;
bufferRel = teeState->tee_bufferRel;
childNode = outerPlan(node);
dir = estate->es_direction;
/* XXX doesn't handle backwards direction yet */
if (parent == node->leftParent)
branch = leftPlace;
else if ((parent == node->rightParent) || (parent == (Plan *) node))
/*
* the tee node could be the root node of the plan, in which case,
* we treat it like a right-parent pull
*/
branch = rightPlace;
else
{
elog(ERROR, "A Tee node can only be executed from its left or right parent\n");
return NULL;
}
if (branch == lastPlace)
{ /* we're at the end of the queue already,
* - get a new tuple from the child plan,
* - store it in the queue, - increment
* lastPlace, - increment leftPlace or
* rightPlace as appropriate, - and return
* result */
slot = ExecProcNode(childNode, (Plan *) node);
if (!TupIsNull(slot))
{
/*
* heap_insert changes something...
*/
if (slot->ttc_buffer != InvalidBuffer)
heapTuple = heap_copytuple(slot->val);
else
heapTuple = slot->val;
/* insert into temporary relation */
heap_insert(bufferRel, heapTuple);
if (slot->ttc_buffer != InvalidBuffer)
heap_freetuple(heapTuple);
/*
* once there is data in the temporary relation, ensure that
* the left and right scandescs are initialized
*/
initTeeScanDescs(node);
scanDesc = (parent == node->leftParent) ?
teeState->tee_leftScanDesc : teeState->tee_rightScanDesc;
{
/*
* move the scandesc forward so we don't re-read this
* tuple later
*/
HeapTuple throwAway;
/* Buffer buffer; */
throwAway = heap_getnext(scanDesc, ScanDirectionIsBackward(dir));
}
/*
* set the shouldFree field of the child's slot so that when
* the child's slot is free'd, this tuple isn't free'd also
*/
/*
* does this mean this tuple has to be garbage collected
* later??
*/
slot->ttc_shouldFree = false;
teeState->tee_lastPlace = lastPlace + 1;
}
result = slot;
}
else
{ /* the desired data already exists in the
* temporary relation */
scanDesc = (parent == node->leftParent) ?
teeState->tee_leftScanDesc : teeState->tee_rightScanDesc;
heapTuple = heap_getnext(scanDesc, ScanDirectionIsBackward(dir));
/*
* Increase the pin count on the buffer page, because the tuple
* stored in the slot also points to it (as well as the scan
* descriptor). If we don't, ExecStoreTuple will decrease the pin
* count on the next iteration.
*/
if (scanDesc->rs_cbuf != InvalidBuffer)
IncrBufferRefCount(scanDesc->rs_cbuf);
slot = teeState->cstate.cs_ResultTupleSlot;
slot->ttc_tupleDescriptor = RelationGetDescr(bufferRel);
result = ExecStoreTuple(heapTuple, /* tuple to store */
slot, /* slot to store in */
scanDesc->rs_cbuf, /* this tuple's buffer */
false); /* don't free stuff from
* heap_getnext */
}
if (parent == node->leftParent)
teeState->tee_leftPlace = leftPlace + 1;
else
teeState->tee_rightPlace = rightPlace + 1;
return result;
}
/* ---------------------------------------------------------------------
* ExecEndTee
*
* End the Tee node, and free up any storage
* since a Tee node can be downstream of multiple parent nodes,
* only free when both parents are done
* --------------------------------------------------------------------
*/
void
ExecEndTee(Tee * node, Plan *parent)
{
EState *estate;
TeeState *teeState;
int leftPlace,
rightPlace,
lastPlace;
Relation bufferRel;
MemoryContext orig;
estate = ((Plan *) node)->state;
teeState = node->teestate;
leftPlace = teeState->tee_leftPlace;
rightPlace = teeState->tee_rightPlace;
lastPlace = teeState->tee_lastPlace;
if (!node->leftParent || parent == node->leftParent)
leftPlace = -1;
if (!node->rightParent || parent == node->rightParent)
rightPlace = -1;
if (parent == (Plan *) node)
rightPlace = leftPlace = -1;
teeState->tee_leftPlace = leftPlace;
teeState->tee_rightPlace = rightPlace;
if ((leftPlace == -1) && (rightPlace == -1))
{
/* remove the temporary relations */
/* and close the scan descriptors */
bufferRel = teeState->tee_bufferRel;
if (bufferRel)
{
heap_drop(bufferRel);
teeState->tee_bufferRel = NULL;
if (teeState->tee_mcxt)
{
orig = CurrentMemoryContext;
MemoryContextSwitchTo(teeState->tee_mcxt);
}
else
orig = 0;
if (teeState->tee_leftScanDesc)
{
heap_endscan(teeState->tee_leftScanDesc);
teeState->tee_leftScanDesc = NULL;
}
if (teeState->tee_rightScanDesc)
{
heap_endscan(teeState->tee_rightScanDesc);
teeState->tee_rightScanDesc = NULL;
}
if (teeState->tee_mcxt)
{
MemoryContextSwitchTo(orig);
teeState->tee_mcxt = NULL;
}
}
}
}

View File

@ -1,810 +0,0 @@
/*-------------------------------------------------------------------------
*
* predmig.c
*
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/_deadcode/Attic/predmig.c,v 1.15 2002/06/20 20:29:30 momjian Exp $
*
*-------------------------------------------------------------------------
*/
/*
** DESCRIPTION
** Main Routines to handle Predicate Migration (i.e. correct optimization
** of queries with expensive functions.)
**
** The reasoning behind some of these algorithms is rather detailed.
** Have a look at Sequoia Tech Report 92/13 for more info. Also
** see Monma and Sidney's paper "Sequencing with Series-Parallel
** Precedence Constraints", in "Mathematics of Operations Research",
** volume 4 (1979), pp. 215-224.
**
** The main thing that this code does that wasn't handled in xfunc.c is
** it considers the possibility that two joins in a stream may not
** be ordered by ascending rank -- in such a scenario, it may be optimal
** to pullup more restrictions than we did via xfunc_try_pullup.
**
** This code in some sense generalizes xfunc_try_pullup; if you
** run postgres -x noprune, you'll turn off xfunc_try_pullup, and this
** code will do everything that xfunc_try_pullup would have, and maybe
** more. However, this results in no pruning, which may slow down the
** optimizer and/or cause the system to run out of memory.
** -- JMH, 11/13/92
*/
#include "nodes/pg_list.h"
#include "nodes/nodes.h"
#include "nodes/primnodes.h"
#include "nodes/relation.h"
#include "optimizer/pathnode.h"
#include "optimizer/internal.h"
#include "optimizer/cost.h"
#include "optimizer/keys.h"
#include "optimizer/tlist.h"
#define is_clause(node) (get_cinfo(node)) /* a stream node
* represents a clause
* (not a join) iff it has
* a non-NULL cinfo field */
static void xfunc_predmig(JoinPath pathnode, Stream streamroot,
Stream laststream, bool *progressp);
static bool xfunc_series_llel(Stream stream);
static bool xfunc_llel_chains(Stream root, Stream bottom);
static Stream xfunc_complete_stream(Stream stream);
static bool xfunc_prdmig_pullup(Stream origstream, Stream pullme,
JoinPath joinpath);
static void xfunc_form_groups(Stream root, Stream bottom);
static void xfunc_free_stream(Stream root);
static Stream xfunc_add_clauses(Stream current);
static void xfunc_setup_group(Stream node, Stream bottom);
static Stream xfunc_streaminsert(RestrictInfo restrictinfo, Stream current,
int clausetype);
static int xfunc_num_relids(Stream node);
static StreamPtr xfunc_get_downjoin(Stream node);
static StreamPtr xfunc_get_upjoin(Stream node);
static Stream xfunc_stream_qsort(Stream root, Stream bottom);
static int xfunc_stream_compare(void *arg1, void *arg2);
static bool xfunc_check_stream(Stream node);
static bool xfunc_in_stream(Stream node, Stream stream);
/* ----------------- MAIN FUNCTIONS ------------------------ */
/*
** xfunc_do_predmig
** wrapper for Predicate Migration. It calls xfunc_predmig until no
** more progress is made.
** return value says if any changes were ever made.
*/
bool
xfunc_do_predmig(Path root)
{
bool progress,
changed = false;
if (is_join(root))
do
{
progress = false;
Assert(IsA(root, JoinPath));
xfunc_predmig((JoinPath) root, (Stream) NULL, (Stream) NULL,
&progress);
if (changed && progress)
elog(DEBUG, "Needed to do a second round of predmig!\n");
if (progress)
changed = true;
} while (progress);
return changed;
}
/*
** xfunc_predmig
** The main routine for Predicate Migration. It traverses a join tree,
** and for each root-to-leaf path in the plan tree it constructs a
** "Stream", which it passes to xfunc_series_llel for optimization.
** Destructively modifies the join tree (via predicate pullup).
*/
static void
xfunc_predmig(JoinPath pathnode, /* root of the join tree */
Stream streamroot,
Stream laststream,/* for recursive calls -- these are the
* root of the stream under construction,
* and the lowest node created so far */
bool *progressp)
{
Stream newstream;
/*
* * traverse the join tree dfs-style, constructing a stream as you
* go. * When you hit a scan node, pass the stream off to
* xfunc_series_llel.
*/
/* sanity check */
if ((!streamroot && laststream) ||
(streamroot && !laststream))
elog(ERROR, "called xfunc_predmig with bad inputs");
if (streamroot)
Assert(xfunc_check_stream(streamroot));
/* add path node to stream */
newstream = RMakeStream();
if (!streamroot)
streamroot = newstream;
set_upstream(newstream, (StreamPtr) laststream);
if (laststream)
set_downstream(laststream, (StreamPtr) newstream);
set_downstream(newstream, (StreamPtr) NULL);
set_pathptr(newstream, (pathPtr) pathnode);
set_cinfo(newstream, (RestrictInfo) NULL);
set_clausetype(newstream, XFUNC_UNKNOWN);
/* base case: we're at a leaf, call xfunc_series_llel */
if (!is_join(pathnode))
{
/* form a fleshed-out copy of the stream */
Stream fullstream = xfunc_complete_stream(streamroot);
/* sort it via series-llel */
if (xfunc_series_llel(fullstream))
*progressp = true;
/* free up the copy */
xfunc_free_stream(fullstream);
}
else
{
/* visit left child */
xfunc_predmig((JoinPath) get_outerjoinpath(pathnode),
streamroot, newstream, progressp);
/* visit right child */
xfunc_predmig((JoinPath) get_innerjoinpath(pathnode),
streamroot, newstream, progressp);
}
/* remove this node */
if (get_upstream(newstream))
set_downstream((Stream) get_upstream(newstream), (StreamPtr) NULL);
pfree(newstream);
}
/*
** xfunc_series_llel
** A flavor of Monma and Sidney's Series-Parallel algorithm.
** Traverse stream downwards. When you find a node with restrictions on it,
** call xfunc_llel_chains on the substream from root to that node.
*/
static bool
xfunc_series_llel(Stream stream)
{
Stream temp,
next;
bool progress = false;
for (temp = stream; temp != (Stream) NULL; temp = next)
{
next = (Stream) xfunc_get_downjoin(temp);
/*
* * if there are restrictions/secondary join clauses above this *
* node, call xfunc_llel_chains
*/
if (get_upstream(temp) && is_clause((Stream) get_upstream(temp)))
if (xfunc_llel_chains(stream, temp))
progress = true;
}
return progress;
}
/*
** xfunc_llel_chains
** A flavor of Monma and Sidney's Parallel Chains algorithm.
** Given a stream which has been well-ordered except for its lowermost
** restrictions/2-ary joins, pull up the restrictions/2-arys as appropriate.
** What that means here is to form groups in the chain above the lowest
** join node above bottom inclusive, and then take all the restrictions
** following bottom, and try to pull them up as far as possible.
*/
static bool
xfunc_llel_chains(Stream root, Stream bottom)
{
bool progress = false;
Stream origstream;
Stream tmpstream,
pathstream;
Stream rootcopy = root;
Assert(xfunc_check_stream(root));
/* xfunc_prdmig_pullup will need an unmodified copy of the stream */
origstream = (Stream) copyObject((Node) root);
/* form groups among ill-ordered nodes */
xfunc_form_groups(root, bottom);
/* sort chain by rank */
Assert(xfunc_in_stream(bottom, root));
rootcopy = xfunc_stream_qsort(root, bottom);
/*
* * traverse sorted stream -- if any restriction has moved above a
* join, * we must pull it up in the plan. That is, make plan tree *
* reflect order of sorted stream.
*/
for (tmpstream = rootcopy,
pathstream = (Stream) xfunc_get_downjoin(rootcopy);
tmpstream != (Stream) NULL && pathstream != (Stream) NULL;
tmpstream = (Stream) get_downstream(tmpstream))
{
if (is_clause(tmpstream)
&& get_pathptr(pathstream) != get_pathptr(tmpstream))
{
/*
* * If restriction moved above a Join after sort, we pull it *
* up in the join plan. * If restriction moved down, we
* ignore it. * This is because Joey's Sequoia paper proves
* that * restrictions should never move down. If this * one
* were moved down, it would violate "semantic correctness", *
* i.e. it would be lower than the attributes it references.
*/
Assert(xfunc_num_relids(pathstream) > xfunc_num_relids(tmpstream));
progress = xfunc_prdmig_pullup(origstream, tmpstream,
(JoinPath) get_pathptr(pathstream));
}
if (get_downstream(tmpstream))
pathstream = (Stream) xfunc_get_downjoin((Stream) get_downstream(tmpstream));
}
/* free up origstream */
xfunc_free_stream(origstream);
return progress;
}
/*
** xfunc_complete_stream
** Given a stream composed of join nodes only, make a copy containing the
** join nodes along with the associated restriction nodes.
*/
static Stream
xfunc_complete_stream(Stream stream)
{
Stream tmpstream,
copystream,
curstream = (Stream) NULL;
copystream = (Stream) copyObject((Node) stream);
Assert(xfunc_check_stream(copystream));
curstream = copystream;
Assert(!is_clause(curstream));
/* curstream = (Stream)xfunc_get_downjoin(curstream); */
while (curstream != (Stream) NULL)
{
xfunc_add_clauses(curstream);
curstream = (Stream) xfunc_get_downjoin(curstream);
}
/* find top of stream and return it */
for (tmpstream = copystream; get_upstream(tmpstream) != (StreamPtr) NULL;
tmpstream = (Stream) get_upstream(tmpstream))
/* no body in for loop */ ;
return tmpstream;
}
/*
** xfunc_prdmig_pullup
** pullup a clause in a path above joinpath. Since the JoinPath tree
** doesn't have upward pointers, it's difficult to deal with. Thus we
** require the original stream, which maintains pointers to all the path
** nodes. We use the original stream to find out what joins are
** above the clause.
*/
static bool
xfunc_prdmig_pullup(Stream origstream, Stream pullme, JoinPath joinpath)
{
RestrictInfo restrictinfo = get_cinfo(pullme);
bool progress = false;
Stream upjoin,
orignode,
temp;
int whichchild;
/* find node in origstream that contains clause */
for (orignode = origstream;
orignode != (Stream) NULL
&& get_cinfo(orignode) != restrictinfo;
orignode = (Stream) get_downstream(orignode))
/* empty body in for loop */ ;
if (!orignode)
elog(ERROR, "Didn't find matching node in original stream");
/* pull up this node as far as it should go */
for (upjoin = (Stream) xfunc_get_upjoin(orignode);
upjoin != (Stream) NULL
&& (JoinPath) get_pathptr((Stream) xfunc_get_downjoin(upjoin))
!= joinpath;
upjoin = (Stream) xfunc_get_upjoin(upjoin))
{
#ifdef DEBUG
elog(DEBUG, "pulling up in xfunc_predmig_pullup!");
#endif
/* move clause up in path */
if (get_pathptr((Stream) get_downstream(upjoin))
== (pathPtr) get_outerjoinpath((JoinPath) get_pathptr(upjoin)))
whichchild = OUTER;
else
whichchild = INNER;
restrictinfo = xfunc_pullup((Path) get_pathptr((Stream) get_downstream(upjoin)),
(JoinPath) get_pathptr(upjoin),
restrictinfo,
whichchild,
get_clausetype(orignode));
set_pathptr(pullme, get_pathptr(upjoin));
/* pullme has been moved into locrestrictinfo */
set_clausetype(pullme, XFUNC_LOCPRD);
/*
* * xfunc_pullup makes new path nodes for children of *
* get_pathptr(current). We must modify the stream nodes to point *
* to these path nodes
*/
if (whichchild == OUTER)
{
for (temp = (Stream) get_downstream(upjoin); is_clause(temp);
temp = (Stream) get_downstream(temp))
set_pathptr
(temp, (pathPtr)
get_outerjoinpath((JoinPath) get_pathptr(upjoin)));
set_pathptr
(temp,
(pathPtr) get_outerjoinpath((JoinPath) get_pathptr(upjoin)));
}
else
{
for (temp = (Stream) get_downstream(upjoin); is_clause(temp);
temp = (Stream) get_downstream(temp))
set_pathptr
(temp, (pathPtr)
get_innerjoinpath((JoinPath) get_pathptr(upjoin)));
set_pathptr
(temp, (pathPtr)
get_innerjoinpath((JoinPath) get_pathptr(upjoin)));
}
progress = true;
}
if (!progress)
elog(DEBUG, "didn't succeed in pulling up in xfunc_prdmig_pullup");
return progress;
}
/*
** xfunc_form_groups
** A group is a pair of stream nodes a,b such that a is constrained to
** precede b (for instance if a and b are both joins), but rank(a) > rank(b).
** In such a situation, Monma and Sidney prove that no clauses should end
** up between a and b, and therefore we may treat them as a group, with
** selectivity equal to the product of their selectivities, and cost
** equal to the cost of the first plus the selectivity of the first times the
** cost of the second. We define each node to be in a group by itself,
** and then repeatedly find adjacent groups which are ordered by descending
** rank, and make larger groups. You know that two adjacent nodes are in a
** group together if the lower has groupup set to true. They will both have
** the same groupcost and groupsel (since they're in the same group!)
*/
static void
xfunc_form_groups(Query *queryInfo, Stream root, Stream bottom)
{
Stream temp,
parent;
int lowest = xfunc_num_relids((Stream) xfunc_get_upjoin(bottom));
bool progress;
LispValue primjoin;
int whichchild;
if (!lowest)
return; /* no joins in stream, so no groups */
/* initialize groups to be single nodes */
for (temp = root;
temp != (Stream) NULL && temp != bottom;
temp = (Stream) get_downstream(temp))
{
/* if a Join node */
if (!is_clause(temp))
{
if (get_pathptr((Stream) get_downstream(temp))
== (pathPtr) get_outerjoinpath((JoinPath) get_pathptr(temp)))
whichchild = OUTER;
else
whichchild = INNER;
set_groupcost(temp,
xfunc_join_expense((JoinPath) get_pathptr(temp),
whichchild));
if (primjoin = xfunc_primary_join((JoinPath) get_pathptr(temp)))
{
set_groupsel(temp,
compute_clause_selec(queryInfo,
primjoin, NIL));
}
else
set_groupsel(temp, 1.0);
}
else
/* a restriction, or 2-ary join pred */
{
set_groupcost(temp,
xfunc_expense(queryInfo,
get_clause(get_cinfo(temp))));
set_groupsel(temp,
compute_clause_selec(queryInfo,
get_clause(get_cinfo(temp)),
NIL));
}
set_groupup(temp, false);
}
/* make passes upwards, forming groups */
do
{
progress = false;
for (temp = (Stream) get_upstream(bottom);
temp != (Stream) NULL;
temp = (Stream) get_upstream(temp))
{
/* check for grouping with node upstream */
if (!get_groupup(temp) && /* not already grouped */
(parent = (Stream) get_upstream(temp)) != (Stream) NULL &&
/* temp is a join or temp is the top of a group */
(is_join((Path) get_pathptr(temp)) ||
get_downstream(temp) &&
get_groupup((Stream) get_downstream(temp))) &&
get_grouprank(parent) < get_grouprank(temp))
{
progress = true; /* we formed a new group */
set_groupup(temp, true);
set_groupcost(temp,
get_groupcost(temp) +
get_groupsel(temp) * get_groupcost(parent));
set_groupsel(temp, get_groupsel(temp) * get_groupsel(parent));
/* fix costs and sels of all members of group */
xfunc_setup_group(temp, bottom);
}
}
} while (progress);
}
/* ------------------- UTILITY FUNCTIONS ------------------------- */
/*
** xfunc_free_stream
** walk down a stream and pfree it
*/
static void
xfunc_free_stream(Stream root)
{
Stream cur,
next;
Assert(xfunc_check_stream(root));
if (root != (Stream) NULL)
for (cur = root; cur != (Stream) NULL; cur = next)
{
next = (Stream) get_downstream(cur);
pfree(cur);
}
}
/*
** xfunc_add<_clauses
** find any clauses above current, and insert them into stream as
** appropriate. Return uppermost clause inserted, or current if none.
*/
static Stream
xfunc_add_clauses(Stream current)
{
Stream topnode = current;
LispValue temp;
LispValue primjoin;
/* first add in the local clauses */
foreach(temp, get_loc_restrictinfo((Path) get_pathptr(current)))
{
topnode = xfunc_streaminsert((RestrictInfo) lfirst(temp), topnode,
XFUNC_LOCPRD);
}
/* and add in the join clauses */
if (IsA(get_pathptr(current), JoinPath))
{
primjoin = xfunc_primary_join((JoinPath) get_pathptr(current));
foreach(temp, get_pathrestrictinfo((JoinPath) get_pathptr(current)))
{
if (!equal(get_clause((RestrictInfo) lfirst(temp)), primjoin))
topnode = xfunc_streaminsert((RestrictInfo) lfirst(temp), topnode,
XFUNC_JOINPRD);
}
}
return topnode;
}
/*
** xfunc_setup_group
** find all elements of stream that are grouped with node and are above
** bottom, and set their groupcost and groupsel to be the same as node's.
*/
static void
xfunc_setup_group(Stream node, Stream bottom)
{
Stream temp;
if (node != bottom)
/* traverse downwards */
for (temp = (Stream) get_downstream(node);
temp != (Stream) NULL && temp != bottom;
temp = (Stream) get_downstream(temp))
{
if (!get_groupup(temp))
break;
else
{
set_groupcost(temp, get_groupcost(node));
set_groupsel(temp, get_groupsel(node));
}
}
/* traverse upwards */
for (temp = (Stream) get_upstream(node); temp != (Stream) NULL;
temp = (Stream) get_upstream(temp))
{
if (!get_groupup((Stream) get_downstream(temp)))
break;
else
{
set_groupcost(temp, get_groupcost(node));
set_groupsel(temp, get_groupsel(node));
}
}
}
/*
** xfunc_streaminsert
** Make a new Stream node to hold clause, and insert it above current.
** Return new node.
*/
static Stream
xfunc_streaminsert(RestrictInfo restrictinfo,
Stream current,
int clausetype) /* XFUNC_LOCPRD or XFUNC_JOINPRD */
{
Stream newstream = RMakeStream();
set_upstream(newstream, get_upstream(current));
if (get_upstream(current))
set_downstream((Stream) (get_upstream(current)), (StreamPtr) newstream);
set_upstream(current, (StreamPtr) newstream);
set_downstream(newstream, (StreamPtr) current);
set_pathptr(newstream, get_pathptr(current));
set_cinfo(newstream, restrictinfo);
set_clausetype(newstream, clausetype);
return newstream;
}
/*
** Given a Stream node, find the number of relids referenced in the pathnode
** associated with the stream node. The number of relids gives a unique
** ordering on the joins in a stream, which we use to compare the height of
** join nodes.
*/
static int
xfunc_num_relids(Stream node)
{
if (!node || !IsA(get_pathptr(node), JoinPath))
return 0;
else
return (length
(get_relids(get_parent((JoinPath) get_pathptr(node)))));
}
/*
** xfunc_get_downjoin
** Given a stream node, find the next lowest node which points to a
** join predicate or a scan node.
*/
static StreamPtr
xfunc_get_downjoin(Stream node)
{
Stream temp;
if (!is_clause(node)) /* if this is a join */
node = (Stream) get_downstream(node);
for (temp = node; temp && is_clause(temp);
temp = (Stream) get_downstream(temp))
/* empty body in for loop */ ;
return (StreamPtr) temp;
}
/*
** xfunc_get_upjoin
** same as above, but upwards.
*/
static StreamPtr
xfunc_get_upjoin(Stream node)
{
Stream temp;
if (!is_clause(node)) /* if this is a join */
node = (Stream) get_upstream(node);
for (temp = node; temp && is_clause(temp);
temp = (Stream) get_upstream(temp))
/* empty body in for loop */ ;
return (StreamPtr) temp;
}
/*
** xfunc_stream_qsort
** Given a stream, sort by group rank the elements in the stream from the
** node "bottom" up. DESTRUCTIVELY MODIFIES STREAM! Returns new root.
*/
static Stream
xfunc_stream_qsort(Stream root, Stream bottom)
{
int i;
size_t num;
Stream *nodearray,
output;
Stream tmp;
/* find size of list */
for (num = 0, tmp = root; tmp != bottom;
tmp = (Stream) get_downstream(tmp))
num++;
if (num <= 1)
return root;
/* copy elements of the list into an array */
nodearray = (Stream *) palloc(num * sizeof(Stream));
for (tmp = root, i = 0; tmp != bottom;
tmp = (Stream) get_downstream(tmp), i++)
nodearray[i] = tmp;
/* sort the array */
qsort(nodearray, num, sizeof(LispValue), xfunc_stream_compare);
/* paste together the array elements */
output = nodearray[num - 1];
set_upstream(output, (StreamPtr) NULL);
for (i = num - 2; i >= 0; i--)
{
set_downstream(nodearray[i + 1], (StreamPtr) nodearray[i]);
set_upstream(nodearray[i], (StreamPtr) nodearray[i + 1]);
}
set_downstream(nodearray[0], (StreamPtr) bottom);
if (bottom)
set_upstream(bottom, (StreamPtr) nodearray[0]);
Assert(xfunc_check_stream(output));
return output;
}
/*
** xfunc_stream_compare
** comparison function for xfunc_stream_qsort.
** Compare nodes by group rank. If group ranks are equal, ensure that
** join nodes appear in same order as in plan tree.
*/
static int
xfunc_stream_compare(void *arg1, void *arg2)
{
Stream stream1 = *(Stream *) arg1;
Stream stream2 = *(Stream *) arg2;
Cost rank1,
rank2;
rank1 = get_grouprank(stream1);
rank2 = get_grouprank(stream2);
if (rank1 > rank2)
return 1;
else if (rank1 < rank2)
return -1;
else
{
if (is_clause(stream1) && is_clause(stream2))
return 0; /* doesn't matter what order if both are
* restrictions */
else if (!is_clause(stream1) && !is_clause(stream2))
{
if (xfunc_num_relids(stream1) < xfunc_num_relids(stream2))
return -1;
else
return 1;
}
else if (is_clause(stream1) && !is_clause(stream2))
{
if (xfunc_num_relids(stream1) == xfunc_num_relids(stream2))
/* stream1 is a restriction over stream2 */
return 1;
else
return -1;
}
else if (!is_clause(stream1) && is_clause(stream2))
{
/* stream2 is a restriction over stream1: never push down */
return -1;
}
}
}
/* ------------------ DEBUGGING ROUTINES ---------------------------- */
/*
** Make sure all pointers in stream make sense. Make sure no joins are
** out of order.
*/
static bool
xfunc_check_stream(Stream node)
{
Stream temp;
int numrelids,
tmp;
/* set numrelids higher than max */
if (!is_clause(node))
numrelids = xfunc_num_relids(node) + 1;
else if (xfunc_get_downjoin(node))
numrelids = xfunc_num_relids((Stream) xfunc_get_downjoin(node)) + 1;
else
numrelids = 1;
for (temp = node; get_downstream(temp); temp = (Stream) get_downstream(temp))
{
if ((Stream) get_upstream((Stream) get_downstream(temp)) != temp)
{
elog(ERROR, "bad pointers in stream");
return false;
}
if (!is_clause(temp))
{
if ((tmp = xfunc_num_relids(temp)) >= numrelids)
{
elog(ERROR, "Joins got reordered!");
return false;
}
numrelids = tmp;
}
}
return true;
}
/*
** xfunc_in_stream
** check if node is in stream
*/
static bool
xfunc_in_stream(Stream node, Stream stream)
{
Stream temp;
for (temp = stream; temp; temp = (Stream) get_downstream(temp))
if (temp == node)
return 1;
return 0;
}

File diff suppressed because it is too large Load Diff

View File

@ -1,83 +0,0 @@
/*-------------------------------------------------------------------------
*
* xfunc.h
* prototypes for xfunc.c and predmig.c.
*
*
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $Id: xfunc.h,v 1.9 2002/06/20 20:29:51 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef XFUNC_H
#define XFUNC_H
#include "nodes/relation.h"
#include "utils/rel.h"
/* command line arg flags */
#define XFUNC_OFF -1 /* do no optimization of expensive preds */
#define XFUNC_NOR 2 /* do no optimization of OR clauses */
#define XFUNC_NOPULL 4 /* never pull restrictions above joins */
#define XFUNC_NOPM 8 /* don't do predicate migration */
#define XFUNC_WAIT 16 /* don't do pullup until predicate
* migration */
#define XFUNC_PULLALL 32 /* pull all expensive restrictions up,
* always */
/* constants for local and join predicates */
#define XFUNC_LOCPRD 1
#define XFUNC_JOINPRD 2
#define XFUNC_UNKNOWN 0
extern int XfuncMode; /* defined in tcop/postgres.c */
/* default width assumed for variable length attributes */
#define VARLEN_DEFAULT 128;
/* Macro to get group rank out of group cost and group sel */
#define get_grouprank(a) ((get_groupsel(a) - 1) / get_groupcost(a))
/* Macro to see if a path node is actually a Join */
#define is_join(pathnode) (length(get_relids(get_parent(pathnode))) > 1 ? 1 : 0)
/* function prototypes from planner/path/xfunc.c */
extern void xfunc_trypullup(RelOptInfo *rel);
extern int xfunc_shouldpull(Path *childpath, JoinPath *parentpath,
int whichchild, RestrictInfo *maxcinfopt);
extern RestrictInfo *xfunc_pullup(Path *childpath, JoinPath *parentpath, RestrictInfo *cinfo,
int whichchild, int clausetype);
extern Cost xfunc_rank(Expr *clause);
extern Cost xfunc_expense(Query *queryInfo, Expr *clause);
extern Cost xfunc_join_expense(JoinPath *path, int whichchild);
extern Cost xfunc_local_expense(Expr *clause);
extern Cost xfunc_func_expense(Expr *node, List *args);
extern int xfunc_width(Expr *clause);
/* static, moved to xfunc.c */
/* extern int xfunc_card_unreferenced(Expr *clause, Relids referenced); */
extern int xfunc_card_product(Relids relids);
extern List *xfunc_find_references(List *clause);
extern List *xfunc_primary_join(JoinPath *pathnode);
extern Cost xfunc_get_path_cost(Path *pathnode);
extern Cost xfunc_total_path_cost(JoinPath *pathnode);
extern Cost xfunc_expense_per_tuple(JoinPath *joinnode, int whichchild);
extern void xfunc_fixvars(Expr *clause, RelOptInfo *rel, int varno);
extern int xfunc_cinfo_compare(void *arg1, void *arg2);
extern int xfunc_clause_compare(void *arg1, void *arg2);
extern void xfunc_disjunct_sort(List *clause_list);
extern int xfunc_disjunct_compare(void *arg1, void *arg2);
extern int xfunc_func_width(RegProcedure funcid, List *args);
extern int xfunc_tuple_width(Relation rd);
extern int xfunc_num_join_clauses(JoinPath *path);
extern List *xfunc_LispRemove(List *foo, List *bar);
extern bool xfunc_copyrel(RelOptInfo *from, RelOptInfo **to);
/*
* function prototypes for path/predmig.c
*/
extern bool xfunc_do_predmig(Path root);
#endif /* XFUNC_H */