This patch extracts page buffer pooling and the simple
least-recently-used strategy from clog.c into slru.c. It doesn't change any visible behaviour and passes all regression tests plus a TruncateCLOG test done manually. Apart from refactoring I made a little change to SlruRecentlyUsed, formerly ClogRecentlyUsed: It now skips incrementing lru_counts, if slotno is already the LRU slot, thus saving a few CPU cycles. To make this work, lru_counts are initialised to 1 in SimpleLruInit. SimpleLru will be used by pg_subtrans (part of the nested transactions project), so the main purpose of this patch is to avoid future code duplication. Manfred Koizar
This commit is contained in:
parent
240dc5cddc
commit
0abe7431c6
@ -4,7 +4,7 @@
|
||||
# Makefile for access/transam
|
||||
#
|
||||
# IDENTIFICATION
|
||||
# $Header: /cvsroot/pgsql/src/backend/access/transam/Makefile,v 1.16 2003/05/12 23:08:50 tgl Exp $
|
||||
# $Header: /cvsroot/pgsql/src/backend/access/transam/Makefile,v 1.17 2003/06/11 22:37:45 momjian Exp $
|
||||
#
|
||||
#-------------------------------------------------------------------------
|
||||
|
||||
@ -12,7 +12,7 @@ subdir = src/backend/access/transam
|
||||
top_builddir = ../../../..
|
||||
include $(top_builddir)/src/Makefile.global
|
||||
|
||||
OBJS = clog.o transam.o varsup.o xact.o xlog.o xlogutils.o rmgr.o
|
||||
OBJS = clog.o transam.o varsup.o xact.o xlog.o xlogutils.o rmgr.o slru.o
|
||||
|
||||
all: SUBSYS.o
|
||||
|
||||
|
@ -13,7 +13,7 @@
|
||||
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $Header: /cvsroot/pgsql/src/backend/access/transam/clog.c,v 1.15 2003/05/03 03:52:07 momjian Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/access/transam/clog.c,v 1.16 2003/06/11 22:37:45 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -26,15 +26,14 @@
|
||||
#include <unistd.h>
|
||||
|
||||
#include "access/clog.h"
|
||||
#include "access/slru.h"
|
||||
#include "storage/lwlock.h"
|
||||
#include "miscadmin.h"
|
||||
|
||||
|
||||
/*
|
||||
* Defines for CLOG page and segment sizes. A page is the same BLCKSZ
|
||||
* as is used everywhere else in Postgres. The CLOG segment size can be
|
||||
* chosen somewhat arbitrarily; we make it 1 million transactions by default,
|
||||
* or 256Kb.
|
||||
* as is used everywhere else in Postgres.
|
||||
*
|
||||
* Note: because TransactionIds are 32 bits and wrap around at 0xFFFFFFFF,
|
||||
* CLOG page numbering also wraps around at 0xFFFFFFFF/CLOG_XACTS_PER_PAGE,
|
||||
@ -43,17 +42,12 @@
|
||||
* segment and page numbers in TruncateCLOG (see CLOGPagePrecedes).
|
||||
*/
|
||||
|
||||
#define CLOG_BLCKSZ BLCKSZ
|
||||
|
||||
/* We need two bits per xact, so four xacts fit in a byte */
|
||||
#define CLOG_BITS_PER_XACT 2
|
||||
#define CLOG_XACTS_PER_BYTE 4
|
||||
#define CLOG_XACTS_PER_PAGE (CLOG_BLCKSZ * CLOG_XACTS_PER_BYTE)
|
||||
#define CLOG_XACTS_PER_PAGE (BLCKSZ * CLOG_XACTS_PER_BYTE)
|
||||
#define CLOG_XACT_BITMASK ((1 << CLOG_BITS_PER_XACT) - 1)
|
||||
|
||||
#define CLOG_XACTS_PER_SEGMENT 0x100000
|
||||
#define CLOG_PAGES_PER_SEGMENT (CLOG_XACTS_PER_SEGMENT / CLOG_XACTS_PER_PAGE)
|
||||
|
||||
#define TransactionIdToPage(xid) ((xid) / (TransactionId) CLOG_XACTS_PER_PAGE)
|
||||
#define TransactionIdToPgIndex(xid) ((xid) % (TransactionId) CLOG_XACTS_PER_PAGE)
|
||||
#define TransactionIdToByte(xid) (TransactionIdToPgIndex(xid) / CLOG_XACTS_PER_BYTE)
|
||||
@ -63,47 +57,6 @@
|
||||
/*----------
|
||||
* Shared-memory data structures for CLOG control
|
||||
*
|
||||
* We use a simple least-recently-used scheme to manage a pool of page
|
||||
* buffers for the CLOG. Under ordinary circumstances we expect that write
|
||||
* traffic will occur mostly to the latest CLOG page (and to the just-prior
|
||||
* page, soon after a page transition). Read traffic will probably touch
|
||||
* a larger span of pages, but in any case a fairly small number of page
|
||||
* buffers should be sufficient. So, we just search the buffers using plain
|
||||
* linear search; there's no need for a hashtable or anything fancy.
|
||||
* The management algorithm is straight LRU except that we will never swap
|
||||
* out the latest page (since we know it's going to be hit again eventually).
|
||||
*
|
||||
* We use an overall LWLock to protect the shared data structures, plus
|
||||
* per-buffer LWLocks that synchronize I/O for each buffer. A process
|
||||
* that is reading in or writing out a page buffer does not hold the control
|
||||
* lock, only the per-buffer lock for the buffer it is working on.
|
||||
*
|
||||
* To change the page number or state of a buffer, one must normally hold
|
||||
* the control lock. (The sole exception to this rule is that a writer
|
||||
* process changes the state from DIRTY to WRITE_IN_PROGRESS while holding
|
||||
* only the per-buffer lock.) If the buffer's state is neither EMPTY nor
|
||||
* CLEAN, then there may be processes doing (or waiting to do) I/O on the
|
||||
* buffer, so the page number may not be changed, and the only allowed state
|
||||
* transition is to change WRITE_IN_PROGRESS to DIRTY after dirtying the page.
|
||||
* To do any other state transition involving a buffer with potential I/O
|
||||
* processes, one must hold both the per-buffer lock and the control lock.
|
||||
* (Note the control lock must be acquired second; do not wait on a buffer
|
||||
* lock while holding the control lock.) A process wishing to read a page
|
||||
* marks the buffer state as READ_IN_PROGRESS, then drops the control lock,
|
||||
* acquires the per-buffer lock, and rechecks the state before proceeding.
|
||||
* This recheck takes care of the possibility that someone else already did
|
||||
* the read, while the early marking prevents someone else from trying to
|
||||
* read the same page into a different buffer.
|
||||
*
|
||||
* Note we are assuming that read and write of the state value is atomic,
|
||||
* since I/O processes may examine and change the state while not holding
|
||||
* the control lock.
|
||||
*
|
||||
* As with the regular buffer manager, it is possible for another process
|
||||
* to re-dirty a page that is currently being written out. This is handled
|
||||
* by setting the page's state from WRITE_IN_PROGRESS to DIRTY. The writing
|
||||
* process must notice this and not mark the page CLEAN when it's done.
|
||||
*
|
||||
* XLOG interactions: this module generates an XLOG record whenever a new
|
||||
* CLOG page is initialized to zeroes. Other writes of CLOG come from
|
||||
* recording of transaction commit or abort in xact.c, which generates its
|
||||
@ -117,90 +70,12 @@
|
||||
*----------
|
||||
*/
|
||||
|
||||
typedef enum
|
||||
{
|
||||
CLOG_PAGE_EMPTY, /* CLOG buffer is not in use */
|
||||
CLOG_PAGE_READ_IN_PROGRESS, /* CLOG page is being read in */
|
||||
CLOG_PAGE_CLEAN, /* CLOG page is valid and not dirty */
|
||||
CLOG_PAGE_DIRTY, /* CLOG page is valid but needs write */
|
||||
CLOG_PAGE_WRITE_IN_PROGRESS /* CLOG page is being written out */
|
||||
} ClogPageStatus;
|
||||
|
||||
/*
|
||||
* Shared-memory state for CLOG.
|
||||
*/
|
||||
typedef struct ClogCtlData
|
||||
{
|
||||
/*
|
||||
* Info for each buffer slot. Page number is undefined when status is
|
||||
* EMPTY. lru_count is essentially the number of operations since
|
||||
* last use of this page; the page with highest lru_count is the best
|
||||
* candidate to replace.
|
||||
*/
|
||||
char *page_buffer[NUM_CLOG_BUFFERS];
|
||||
ClogPageStatus page_status[NUM_CLOG_BUFFERS];
|
||||
int page_number[NUM_CLOG_BUFFERS];
|
||||
unsigned int page_lru_count[NUM_CLOG_BUFFERS];
|
||||
|
||||
/*
|
||||
* latest_page_number is the page number of the current end of the
|
||||
* CLOG; this is not critical data, since we use it only to avoid
|
||||
* swapping out the latest page.
|
||||
*/
|
||||
int latest_page_number;
|
||||
} ClogCtlData;
|
||||
|
||||
static ClogCtlData *ClogCtl = NULL;
|
||||
|
||||
/*
|
||||
* ClogBufferLocks is set during CLOGShmemInit and does not change thereafter.
|
||||
* The value is automatically inherited by backends via fork, and
|
||||
* doesn't need to be in shared memory.
|
||||
*/
|
||||
static LWLockId *ClogBufferLocks; /* Per-buffer I/O locks */
|
||||
|
||||
/*
|
||||
* ClogDir is set during CLOGShmemInit and does not change thereafter.
|
||||
* The value is automatically inherited by backends via fork, and
|
||||
* doesn't need to be in shared memory.
|
||||
*/
|
||||
static char ClogDir[MAXPGPATH];
|
||||
|
||||
#define ClogFileName(path, seg) \
|
||||
snprintf(path, MAXPGPATH, "%s/%04X", ClogDir, seg)
|
||||
|
||||
/*
|
||||
* Macro to mark a buffer slot "most recently used".
|
||||
*/
|
||||
#define ClogRecentlyUsed(slotno) \
|
||||
do { \
|
||||
int iilru; \
|
||||
for (iilru = 0; iilru < NUM_CLOG_BUFFERS; iilru++) \
|
||||
ClogCtl->page_lru_count[iilru]++; \
|
||||
ClogCtl->page_lru_count[slotno] = 0; \
|
||||
} while (0)
|
||||
|
||||
/* Saved info for CLOGReportIOError */
|
||||
typedef enum
|
||||
{
|
||||
CLOG_OPEN_FAILED,
|
||||
CLOG_CREATE_FAILED,
|
||||
CLOG_SEEK_FAILED,
|
||||
CLOG_READ_FAILED,
|
||||
CLOG_WRITE_FAILED
|
||||
} ClogErrorCause;
|
||||
static ClogErrorCause clog_errcause;
|
||||
static int clog_errno;
|
||||
|
||||
static SlruCtlData ClogCtlData;
|
||||
static SlruCtl ClogCtl = &ClogCtlData;
|
||||
|
||||
|
||||
static int ZeroCLOGPage(int pageno, bool writeXlog);
|
||||
static int ReadCLOGPage(int pageno, TransactionId xid);
|
||||
static void WriteCLOGPage(int slotno);
|
||||
static bool CLOGPhysicalReadPage(int pageno, int slotno);
|
||||
static bool CLOGPhysicalWritePage(int pageno, int slotno);
|
||||
static void CLOGReportIOError(int pageno, TransactionId xid);
|
||||
static int SelectLRUCLOGPage(int pageno);
|
||||
static bool ScanCLOGDirectory(int cutoffPage, bool doDeletions);
|
||||
static bool CLOGPagePrecedes(int page1, int page2);
|
||||
static void WriteZeroPageXlogRec(int pageno);
|
||||
|
||||
@ -217,16 +92,15 @@ TransactionIdSetStatus(TransactionId xid, XidStatus status)
|
||||
int pageno = TransactionIdToPage(xid);
|
||||
int byteno = TransactionIdToByte(xid);
|
||||
int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
|
||||
int slotno;
|
||||
char *byteptr;
|
||||
|
||||
Assert(status == TRANSACTION_STATUS_COMMITTED ||
|
||||
status == TRANSACTION_STATUS_ABORTED);
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
LWLockAcquire(ClogCtl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
slotno = ReadCLOGPage(pageno, xid);
|
||||
byteptr = ClogCtl->page_buffer[slotno] + byteno;
|
||||
byteptr = SimpleLruReadPage(ClogCtl, pageno, xid, true);
|
||||
byteptr += byteno;
|
||||
|
||||
/* Current state should be 0 or target state */
|
||||
Assert(((*byteptr >> bshift) & CLOG_XACT_BITMASK) == 0 ||
|
||||
@ -234,9 +108,9 @@ TransactionIdSetStatus(TransactionId xid, XidStatus status)
|
||||
|
||||
*byteptr |= (status << bshift);
|
||||
|
||||
ClogCtl->page_status[slotno] = CLOG_PAGE_DIRTY;
|
||||
/* ...->page_status[slotno] = CLOG_PAGE_DIRTY; already done */
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockRelease(ClogCtl->locks->ControlLock);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -251,18 +125,17 @@ TransactionIdGetStatus(TransactionId xid)
|
||||
int pageno = TransactionIdToPage(xid);
|
||||
int byteno = TransactionIdToByte(xid);
|
||||
int bshift = TransactionIdToBIndex(xid) * CLOG_BITS_PER_XACT;
|
||||
int slotno;
|
||||
char *byteptr;
|
||||
XidStatus status;
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
LWLockAcquire(ClogCtl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
slotno = ReadCLOGPage(pageno, xid);
|
||||
byteptr = ClogCtl->page_buffer[slotno] + byteno;
|
||||
byteptr = SimpleLruReadPage(ClogCtl, pageno, xid, false);
|
||||
byteptr += byteno;
|
||||
|
||||
status = (*byteptr >> bshift) & CLOG_XACT_BITMASK;
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockRelease(ClogCtl->locks->ControlLock);
|
||||
|
||||
return status;
|
||||
}
|
||||
@ -271,70 +144,18 @@ TransactionIdGetStatus(TransactionId xid)
|
||||
/*
|
||||
* Initialization of shared memory for CLOG
|
||||
*/
|
||||
|
||||
int
|
||||
CLOGShmemSize(void)
|
||||
{
|
||||
return MAXALIGN(sizeof(ClogCtlData) + CLOG_BLCKSZ * NUM_CLOG_BUFFERS)
|
||||
#ifdef EXEC_BACKEND
|
||||
+ MAXALIGN(NUM_CLOG_BUFFERS * sizeof(LWLockId))
|
||||
#endif
|
||||
;
|
||||
return SimpleLruShmemSize();
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
CLOGShmemInit(void)
|
||||
{
|
||||
bool found;
|
||||
int slotno;
|
||||
|
||||
/* Handle ClogCtl */
|
||||
|
||||
/* this must agree with space requested by CLOGShmemSize() */
|
||||
ClogCtl = (ClogCtlData *) ShmemInitStruct("CLOG Ctl",
|
||||
MAXALIGN(sizeof(ClogCtlData) +
|
||||
CLOG_BLCKSZ * NUM_CLOG_BUFFERS), &found);
|
||||
|
||||
if (!IsUnderPostmaster)
|
||||
/* Initialize ClogCtl shared memory area */
|
||||
{
|
||||
char *bufptr;
|
||||
|
||||
Assert(!found);
|
||||
|
||||
memset(ClogCtl, 0, sizeof(ClogCtlData));
|
||||
|
||||
bufptr = (char *)ClogCtl + sizeof(ClogCtlData);
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
ClogCtl->page_buffer[slotno] = bufptr;
|
||||
ClogCtl->page_status[slotno] = CLOG_PAGE_EMPTY;
|
||||
bufptr += CLOG_BLCKSZ;
|
||||
}
|
||||
|
||||
/* ClogCtl->latest_page_number will be set later */
|
||||
}
|
||||
else
|
||||
Assert(found);
|
||||
|
||||
/* Handle ClogBufferLocks */
|
||||
|
||||
#ifdef EXEC_BACKEND
|
||||
ClogBufferLocks = (LWLockId *) ShmemInitStruct("CLOG Buffer Locks",
|
||||
NUM_CLOG_BUFFERS * sizeof(LWLockId), &found);
|
||||
Assert((!found && !IsUnderPostmaster) || (found && IsUnderPostmaster));
|
||||
#else
|
||||
ClogBufferLocks = malloc(NUM_CLOG_BUFFERS * sizeof(LWLockId));
|
||||
Assert(ClogBufferLocks);
|
||||
#endif
|
||||
|
||||
if (!IsUnderPostmaster)
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
ClogBufferLocks[slotno] = LWLockAssign();
|
||||
|
||||
/* Init CLOG directory path */
|
||||
snprintf(ClogDir, MAXPGPATH, "%s/pg_clog", DataDir);
|
||||
SimpleLruInit(ClogCtl, "CLOG Ctl", "pg_clog");
|
||||
ClogCtl->PagePrecedes = CLOGPagePrecedes;
|
||||
}
|
||||
|
||||
/*
|
||||
@ -348,16 +169,16 @@ BootStrapCLOG(void)
|
||||
{
|
||||
int slotno;
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
LWLockAcquire(ClogCtl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
/* Create and zero the first page of the commit log */
|
||||
slotno = ZeroCLOGPage(0, false);
|
||||
|
||||
/* Make sure it's written out */
|
||||
WriteCLOGPage(slotno);
|
||||
Assert(ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN);
|
||||
SimpleLruWritePage(ClogCtl, slotno);
|
||||
/* Assert(ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN); */
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockRelease(ClogCtl->locks->ControlLock);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -372,24 +193,7 @@ BootStrapCLOG(void)
|
||||
static int
|
||||
ZeroCLOGPage(int pageno, bool writeXlog)
|
||||
{
|
||||
int slotno;
|
||||
|
||||
/* Find a suitable buffer slot for the page */
|
||||
slotno = SelectLRUCLOGPage(pageno);
|
||||
Assert(ClogCtl->page_status[slotno] == CLOG_PAGE_EMPTY ||
|
||||
ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN ||
|
||||
ClogCtl->page_number[slotno] == pageno);
|
||||
|
||||
/* Mark the slot as containing this page */
|
||||
ClogCtl->page_number[slotno] = pageno;
|
||||
ClogCtl->page_status[slotno] = CLOG_PAGE_DIRTY;
|
||||
ClogRecentlyUsed(slotno);
|
||||
|
||||
/* Set the buffer to zeroes */
|
||||
MemSet(ClogCtl->page_buffer[slotno], 0, CLOG_BLCKSZ);
|
||||
|
||||
/* Assume this page is now the latest active page */
|
||||
ClogCtl->latest_page_number = pageno;
|
||||
int slotno = SimpleLruZeroPage(ClogCtl, pageno);
|
||||
|
||||
if (writeXlog)
|
||||
WriteZeroPageXlogRec(pageno);
|
||||
@ -397,430 +201,6 @@ ZeroCLOGPage(int pageno, bool writeXlog)
|
||||
return slotno;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find a CLOG page in a shared buffer, reading it in if necessary.
|
||||
* The page number must correspond to an already-initialized page.
|
||||
*
|
||||
* The passed-in xid is used only for error reporting, and may be
|
||||
* InvalidTransactionId if no specific xid is associated with the action.
|
||||
*
|
||||
* Return value is the shared-buffer slot number now holding the page.
|
||||
* The buffer's LRU access info is updated.
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
static int
|
||||
ReadCLOGPage(int pageno, TransactionId xid)
|
||||
{
|
||||
/* Outer loop handles restart if we lose the buffer to someone else */
|
||||
for (;;)
|
||||
{
|
||||
int slotno;
|
||||
bool ok;
|
||||
|
||||
/* See if page already is in memory; if not, pick victim slot */
|
||||
slotno = SelectLRUCLOGPage(pageno);
|
||||
|
||||
/* Did we find the page in memory? */
|
||||
if (ClogCtl->page_number[slotno] == pageno &&
|
||||
ClogCtl->page_status[slotno] != CLOG_PAGE_EMPTY)
|
||||
{
|
||||
/* If page is still being read in, we cannot use it yet */
|
||||
if (ClogCtl->page_status[slotno] != CLOG_PAGE_READ_IN_PROGRESS)
|
||||
{
|
||||
/* otherwise, it's ready to use */
|
||||
ClogRecentlyUsed(slotno);
|
||||
return slotno;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We found no match; assert we selected a freeable slot */
|
||||
Assert(ClogCtl->page_status[slotno] == CLOG_PAGE_EMPTY ||
|
||||
ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN);
|
||||
}
|
||||
|
||||
/* Mark the slot read-busy (no-op if it already was) */
|
||||
ClogCtl->page_number[slotno] = pageno;
|
||||
ClogCtl->page_status[slotno] = CLOG_PAGE_READ_IN_PROGRESS;
|
||||
|
||||
/*
|
||||
* Temporarily mark page as recently-used to discourage
|
||||
* SelectLRUCLOGPage from selecting it again for someone else.
|
||||
*/
|
||||
ClogCtl->page_lru_count[slotno] = 0;
|
||||
|
||||
/* Release shared lock, grab per-buffer lock instead */
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockAcquire(ClogBufferLocks[slotno], LW_EXCLUSIVE);
|
||||
|
||||
/*
|
||||
* Check to see if someone else already did the read, or took the
|
||||
* buffer away from us. If so, restart from the top.
|
||||
*/
|
||||
if (ClogCtl->page_number[slotno] != pageno ||
|
||||
ClogCtl->page_status[slotno] != CLOG_PAGE_READ_IN_PROGRESS)
|
||||
{
|
||||
LWLockRelease(ClogBufferLocks[slotno]);
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Okay, do the read */
|
||||
ok = CLOGPhysicalReadPage(pageno, slotno);
|
||||
|
||||
/* Re-acquire shared control lock and update page state */
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
|
||||
Assert(ClogCtl->page_number[slotno] == pageno &&
|
||||
ClogCtl->page_status[slotno] == CLOG_PAGE_READ_IN_PROGRESS);
|
||||
|
||||
ClogCtl->page_status[slotno] = ok ? CLOG_PAGE_CLEAN : CLOG_PAGE_EMPTY;
|
||||
|
||||
LWLockRelease(ClogBufferLocks[slotno]);
|
||||
|
||||
/* Now it's okay to elog if we failed */
|
||||
if (!ok)
|
||||
CLOGReportIOError(pageno, xid);
|
||||
|
||||
ClogRecentlyUsed(slotno);
|
||||
return slotno;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Write a CLOG page from a shared buffer, if necessary.
|
||||
* Does nothing if the specified slot is not dirty.
|
||||
*
|
||||
* NOTE: only one write attempt is made here. Hence, it is possible that
|
||||
* the page is still dirty at exit (if someone else re-dirtied it during
|
||||
* the write). However, we *do* attempt a fresh write even if the page
|
||||
* is already being written; this is for checkpoints.
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
static void
|
||||
WriteCLOGPage(int slotno)
|
||||
{
|
||||
int pageno;
|
||||
bool ok;
|
||||
|
||||
/* Do nothing if page does not need writing */
|
||||
if (ClogCtl->page_status[slotno] != CLOG_PAGE_DIRTY &&
|
||||
ClogCtl->page_status[slotno] != CLOG_PAGE_WRITE_IN_PROGRESS)
|
||||
return;
|
||||
|
||||
pageno = ClogCtl->page_number[slotno];
|
||||
|
||||
/* Release shared lock, grab per-buffer lock instead */
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockAcquire(ClogBufferLocks[slotno], LW_EXCLUSIVE);
|
||||
|
||||
/*
|
||||
* Check to see if someone else already did the write, or took the
|
||||
* buffer away from us. If so, do nothing. NOTE: we really should
|
||||
* never see WRITE_IN_PROGRESS here, since that state should only
|
||||
* occur while the writer is holding the buffer lock. But accept it
|
||||
* so that we have a recovery path if a writer aborts.
|
||||
*/
|
||||
if (ClogCtl->page_number[slotno] != pageno ||
|
||||
(ClogCtl->page_status[slotno] != CLOG_PAGE_DIRTY &&
|
||||
ClogCtl->page_status[slotno] != CLOG_PAGE_WRITE_IN_PROGRESS))
|
||||
{
|
||||
LWLockRelease(ClogBufferLocks[slotno]);
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Mark the slot write-busy. After this point, a transaction status
|
||||
* update on this page will mark it dirty again. NB: we are assuming
|
||||
* that read/write of the page status field is atomic, since we change
|
||||
* the state while not holding control lock. However, we cannot set
|
||||
* this state any sooner, or we'd possibly fool a previous writer into
|
||||
* thinking he's successfully dumped the page when he hasn't.
|
||||
* (Scenario: other writer starts, page is redirtied, we come along
|
||||
* and set WRITE_IN_PROGRESS again, other writer completes and sets
|
||||
* CLEAN because redirty info has been lost, then we think it's clean
|
||||
* too.)
|
||||
*/
|
||||
ClogCtl->page_status[slotno] = CLOG_PAGE_WRITE_IN_PROGRESS;
|
||||
|
||||
/* Okay, do the write */
|
||||
ok = CLOGPhysicalWritePage(pageno, slotno);
|
||||
|
||||
/* Re-acquire shared control lock and update page state */
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
|
||||
Assert(ClogCtl->page_number[slotno] == pageno &&
|
||||
(ClogCtl->page_status[slotno] == CLOG_PAGE_WRITE_IN_PROGRESS ||
|
||||
ClogCtl->page_status[slotno] == CLOG_PAGE_DIRTY));
|
||||
|
||||
/* Cannot set CLEAN if someone re-dirtied page since write started */
|
||||
if (ClogCtl->page_status[slotno] == CLOG_PAGE_WRITE_IN_PROGRESS)
|
||||
ClogCtl->page_status[slotno] = ok ? CLOG_PAGE_CLEAN : CLOG_PAGE_DIRTY;
|
||||
|
||||
LWLockRelease(ClogBufferLocks[slotno]);
|
||||
|
||||
/* Now it's okay to elog if we failed */
|
||||
if (!ok)
|
||||
CLOGReportIOError(pageno, InvalidTransactionId);
|
||||
}
|
||||
|
||||
/*
|
||||
* Physical read of a (previously existing) page into a buffer slot
|
||||
*
|
||||
* On failure, we cannot just elog(ERROR) since caller has put state in
|
||||
* shared memory that must be undone. So, we return FALSE and save enough
|
||||
* info in static variables to let CLOGReportIOError make the report.
|
||||
*
|
||||
* For now, assume it's not worth keeping a file pointer open across
|
||||
* read/write operations. We could cache one virtual file pointer ...
|
||||
*/
|
||||
static bool
|
||||
CLOGPhysicalReadPage(int pageno, int slotno)
|
||||
{
|
||||
int segno = pageno / CLOG_PAGES_PER_SEGMENT;
|
||||
int rpageno = pageno % CLOG_PAGES_PER_SEGMENT;
|
||||
int offset = rpageno * CLOG_BLCKSZ;
|
||||
char path[MAXPGPATH];
|
||||
int fd;
|
||||
|
||||
ClogFileName(path, segno);
|
||||
|
||||
/*
|
||||
* In a crash-and-restart situation, it's possible for us to receive
|
||||
* commands to set the commit status of transactions whose bits are in
|
||||
* already-truncated segments of the commit log (see notes in
|
||||
* CLOGPhysicalWritePage). Hence, if we are InRecovery, allow the
|
||||
* case where the file doesn't exist, and return zeroes instead.
|
||||
*/
|
||||
fd = BasicOpenFile(path, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
|
||||
if (fd < 0)
|
||||
{
|
||||
if (errno != ENOENT || !InRecovery)
|
||||
{
|
||||
clog_errcause = CLOG_OPEN_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
elog(LOG, "clog file %s doesn't exist, reading as zeroes", path);
|
||||
MemSet(ClogCtl->page_buffer[slotno], 0, CLOG_BLCKSZ);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (lseek(fd, (off_t) offset, SEEK_SET) < 0)
|
||||
{
|
||||
clog_errcause = CLOG_SEEK_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
errno = 0;
|
||||
if (read(fd, ClogCtl->page_buffer[slotno], CLOG_BLCKSZ) != CLOG_BLCKSZ)
|
||||
{
|
||||
clog_errcause = CLOG_READ_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
close(fd);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Physical write of a page from a buffer slot
|
||||
*
|
||||
* On failure, we cannot just elog(ERROR) since caller has put state in
|
||||
* shared memory that must be undone. So, we return FALSE and save enough
|
||||
* info in static variables to let CLOGReportIOError make the report.
|
||||
*
|
||||
* For now, assume it's not worth keeping a file pointer open across
|
||||
* read/write operations. We could cache one virtual file pointer ...
|
||||
*/
|
||||
static bool
|
||||
CLOGPhysicalWritePage(int pageno, int slotno)
|
||||
{
|
||||
int segno = pageno / CLOG_PAGES_PER_SEGMENT;
|
||||
int rpageno = pageno % CLOG_PAGES_PER_SEGMENT;
|
||||
int offset = rpageno * CLOG_BLCKSZ;
|
||||
char path[MAXPGPATH];
|
||||
int fd;
|
||||
|
||||
ClogFileName(path, segno);
|
||||
|
||||
/*
|
||||
* If the file doesn't already exist, we should create it. It is
|
||||
* possible for this to need to happen when writing a page that's not
|
||||
* first in its segment; we assume the OS can cope with that. (Note:
|
||||
* it might seem that it'd be okay to create files only when
|
||||
* ZeroCLOGPage is called for the first page of a segment. However,
|
||||
* if after a crash and restart the REDO logic elects to replay the
|
||||
* log from a checkpoint before the latest one, then it's possible
|
||||
* that we will get commands to set transaction status of transactions
|
||||
* that have already been truncated from the commit log. Easiest way
|
||||
* to deal with that is to accept references to nonexistent files here
|
||||
* and in CLOGPhysicalReadPage.)
|
||||
*/
|
||||
fd = BasicOpenFile(path, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
|
||||
if (fd < 0)
|
||||
{
|
||||
if (errno != ENOENT)
|
||||
{
|
||||
clog_errcause = CLOG_OPEN_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
fd = BasicOpenFile(path, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
|
||||
S_IRUSR | S_IWUSR);
|
||||
if (fd < 0)
|
||||
{
|
||||
clog_errcause = CLOG_CREATE_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (lseek(fd, (off_t) offset, SEEK_SET) < 0)
|
||||
{
|
||||
clog_errcause = CLOG_SEEK_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
errno = 0;
|
||||
if (write(fd, ClogCtl->page_buffer[slotno], CLOG_BLCKSZ) != CLOG_BLCKSZ)
|
||||
{
|
||||
/* if write didn't set errno, assume problem is no disk space */
|
||||
if (errno == 0)
|
||||
errno = ENOSPC;
|
||||
clog_errcause = CLOG_WRITE_FAILED;
|
||||
clog_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
close(fd);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Issue the error message after failure of CLOGPhysicalReadPage or
|
||||
* CLOGPhysicalWritePage. Call this after cleaning up shared-memory state.
|
||||
*/
|
||||
static void
|
||||
CLOGReportIOError(int pageno, TransactionId xid)
|
||||
{
|
||||
int segno = pageno / CLOG_PAGES_PER_SEGMENT;
|
||||
int rpageno = pageno % CLOG_PAGES_PER_SEGMENT;
|
||||
int offset = rpageno * CLOG_BLCKSZ;
|
||||
char path[MAXPGPATH];
|
||||
|
||||
/* XXX TODO: provide xid as context in error messages */
|
||||
|
||||
ClogFileName(path, segno);
|
||||
errno = clog_errno;
|
||||
switch (clog_errcause)
|
||||
{
|
||||
case CLOG_OPEN_FAILED:
|
||||
elog(ERROR, "open of %s failed: %m", path);
|
||||
break;
|
||||
case CLOG_CREATE_FAILED:
|
||||
elog(ERROR, "creation of file %s failed: %m", path);
|
||||
break;
|
||||
case CLOG_SEEK_FAILED:
|
||||
elog(ERROR, "lseek of clog file %u, offset %u failed: %m",
|
||||
segno, offset);
|
||||
break;
|
||||
case CLOG_READ_FAILED:
|
||||
elog(ERROR, "read of clog file %u, offset %u failed: %m",
|
||||
segno, offset);
|
||||
break;
|
||||
case CLOG_WRITE_FAILED:
|
||||
elog(ERROR, "write of clog file %u, offset %u failed: %m",
|
||||
segno, offset);
|
||||
break;
|
||||
default:
|
||||
/* can't get here, we trust */
|
||||
elog(ERROR, "unknown CLOG I/O error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Select the slot to re-use when we need a free slot.
|
||||
*
|
||||
* The target page number is passed because we need to consider the
|
||||
* possibility that some other process reads in the target page while
|
||||
* we are doing I/O to free a slot. Hence, check or recheck to see if
|
||||
* any slot already holds the target page, and return that slot if so.
|
||||
* Thus, the returned slot is *either* a slot already holding the pageno
|
||||
* (could be any state except EMPTY), *or* a freeable slot (state EMPTY
|
||||
* or CLEAN).
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
static int
|
||||
SelectLRUCLOGPage(int pageno)
|
||||
{
|
||||
/* Outer loop handles restart after I/O */
|
||||
for (;;)
|
||||
{
|
||||
int slotno;
|
||||
int bestslot = 0;
|
||||
unsigned int bestcount = 0;
|
||||
|
||||
/* See if page already has a buffer assigned */
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
if (ClogCtl->page_number[slotno] == pageno &&
|
||||
ClogCtl->page_status[slotno] != CLOG_PAGE_EMPTY)
|
||||
return slotno;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we find any EMPTY slot, just select that one. Else locate
|
||||
* the least-recently-used slot that isn't the latest CLOG page.
|
||||
*/
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
if (ClogCtl->page_status[slotno] == CLOG_PAGE_EMPTY)
|
||||
return slotno;
|
||||
if (ClogCtl->page_lru_count[slotno] > bestcount &&
|
||||
ClogCtl->page_number[slotno] != ClogCtl->latest_page_number)
|
||||
{
|
||||
bestslot = slotno;
|
||||
bestcount = ClogCtl->page_lru_count[slotno];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If the selected page is clean, we're set.
|
||||
*/
|
||||
if (ClogCtl->page_status[bestslot] == CLOG_PAGE_CLEAN)
|
||||
return bestslot;
|
||||
|
||||
/*
|
||||
* We need to do I/O. Normal case is that we have to write it
|
||||
* out, but it's possible in the worst case to have selected a
|
||||
* read-busy page. In that case we use ReadCLOGPage to wait for
|
||||
* the read to complete.
|
||||
*/
|
||||
if (ClogCtl->page_status[bestslot] == CLOG_PAGE_READ_IN_PROGRESS)
|
||||
(void) ReadCLOGPage(ClogCtl->page_number[bestslot],
|
||||
InvalidTransactionId);
|
||||
else
|
||||
WriteCLOGPage(bestslot);
|
||||
|
||||
/*
|
||||
* Now loop back and try again. This is the easiest way of
|
||||
* dealing with corner cases such as the victim page being
|
||||
* re-dirtied while we wrote it.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This must be called ONCE during postmaster or standalone-backend startup,
|
||||
* after StartupXLOG has initialized ShmemVariableCache->nextXid.
|
||||
@ -831,7 +211,7 @@ StartupCLOG(void)
|
||||
/*
|
||||
* Initialize our idea of the latest page number.
|
||||
*/
|
||||
ClogCtl->latest_page_number = TransactionIdToPage(ShmemVariableCache->nextXid);
|
||||
SimpleLruSetLatestPage(ClogCtl, TransactionIdToPage(ShmemVariableCache->nextXid));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -840,18 +220,7 @@ StartupCLOG(void)
|
||||
void
|
||||
ShutdownCLOG(void)
|
||||
{
|
||||
int slotno;
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
WriteCLOGPage(slotno);
|
||||
Assert(ClogCtl->page_status[slotno] == CLOG_PAGE_EMPTY ||
|
||||
ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN);
|
||||
}
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
SimpleLruFlush(ClogCtl, false);
|
||||
}
|
||||
|
||||
/*
|
||||
@ -860,21 +229,7 @@ ShutdownCLOG(void)
|
||||
void
|
||||
CheckPointCLOG(void)
|
||||
{
|
||||
int slotno;
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
WriteCLOGPage(slotno);
|
||||
|
||||
/*
|
||||
* We cannot assert that the slot is clean now, since another
|
||||
* process might have re-dirtied it already. That's okay.
|
||||
*/
|
||||
}
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
SimpleLruFlush(ClogCtl, true);
|
||||
}
|
||||
|
||||
|
||||
@ -901,12 +256,12 @@ ExtendCLOG(TransactionId newestXact)
|
||||
|
||||
pageno = TransactionIdToPage(newestXact);
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
LWLockAcquire(ClogCtl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
/* Zero the page and make an XLOG entry about it */
|
||||
ZeroCLOGPage(pageno, true);
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockRelease(ClogCtl->locks->ControlLock);
|
||||
}
|
||||
|
||||
|
||||
@ -928,126 +283,15 @@ void
|
||||
TruncateCLOG(TransactionId oldestXact)
|
||||
{
|
||||
int cutoffPage;
|
||||
int slotno;
|
||||
|
||||
/*
|
||||
* The cutoff point is the start of the segment containing oldestXact.
|
||||
* We pass the *page* containing oldestXact to SimpleLruTruncate.
|
||||
*/
|
||||
oldestXact -= oldestXact % CLOG_XACTS_PER_SEGMENT;
|
||||
cutoffPage = TransactionIdToPage(oldestXact);
|
||||
|
||||
if (!ScanCLOGDirectory(cutoffPage, false))
|
||||
return; /* nothing to remove */
|
||||
|
||||
/* Perform a forced CHECKPOINT */
|
||||
CreateCheckPoint(false, true);
|
||||
|
||||
/*
|
||||
* Scan CLOG shared memory and remove any pages preceding the cutoff
|
||||
* page, to ensure we won't rewrite them later. (Any dirty pages
|
||||
* should have been flushed already during the checkpoint, we're just
|
||||
* being extra careful here.)
|
||||
*/
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
|
||||
restart:;
|
||||
|
||||
/*
|
||||
* While we are holding the lock, make an important safety check: the
|
||||
* planned cutoff point must be <= the current CLOG endpoint page.
|
||||
* Otherwise we have already wrapped around, and proceeding with the
|
||||
* truncation would risk removing the current CLOG segment.
|
||||
*/
|
||||
if (CLOGPagePrecedes(ClogCtl->latest_page_number, cutoffPage))
|
||||
{
|
||||
LWLockRelease(CLogControlLock);
|
||||
elog(LOG, "unable to truncate commit log: apparent wraparound");
|
||||
return;
|
||||
}
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
if (ClogCtl->page_status[slotno] == CLOG_PAGE_EMPTY)
|
||||
continue;
|
||||
if (!CLOGPagePrecedes(ClogCtl->page_number[slotno], cutoffPage))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* If page is CLEAN, just change state to EMPTY (expected case).
|
||||
*/
|
||||
if (ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN)
|
||||
{
|
||||
ClogCtl->page_status[slotno] = CLOG_PAGE_EMPTY;
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Hmm, we have (or may have) I/O operations acting on the page,
|
||||
* so we've got to wait for them to finish and then start again.
|
||||
* This is the same logic as in SelectLRUCLOGPage.
|
||||
*/
|
||||
if (ClogCtl->page_status[slotno] == CLOG_PAGE_READ_IN_PROGRESS)
|
||||
(void) ReadCLOGPage(ClogCtl->page_number[slotno],
|
||||
InvalidTransactionId);
|
||||
else
|
||||
WriteCLOGPage(slotno);
|
||||
goto restart;
|
||||
}
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
|
||||
/* Now we can remove the old CLOG segment(s) */
|
||||
(void) ScanCLOGDirectory(cutoffPage, true);
|
||||
SimpleLruTruncate(ClogCtl, cutoffPage);
|
||||
}
|
||||
|
||||
/*
|
||||
* TruncateCLOG subroutine: scan CLOG directory for removable segments.
|
||||
* Actually remove them iff doDeletions is true. Return TRUE iff any
|
||||
* removable segments were found. Note: no locking is needed.
|
||||
*/
|
||||
static bool
|
||||
ScanCLOGDirectory(int cutoffPage, bool doDeletions)
|
||||
{
|
||||
bool found = false;
|
||||
DIR *cldir;
|
||||
struct dirent *clde;
|
||||
int segno;
|
||||
int segpage;
|
||||
char path[MAXPGPATH];
|
||||
|
||||
cldir = opendir(ClogDir);
|
||||
if (cldir == NULL)
|
||||
elog(ERROR, "could not open transaction-commit log directory (%s): %m",
|
||||
ClogDir);
|
||||
|
||||
errno = 0;
|
||||
while ((clde = readdir(cldir)) != NULL)
|
||||
{
|
||||
if (strlen(clde->d_name) == 4 &&
|
||||
strspn(clde->d_name, "0123456789ABCDEF") == 4)
|
||||
{
|
||||
segno = (int) strtol(clde->d_name, NULL, 16);
|
||||
segpage = segno * CLOG_PAGES_PER_SEGMENT;
|
||||
if (CLOGPagePrecedes(segpage, cutoffPage))
|
||||
{
|
||||
found = true;
|
||||
if (doDeletions)
|
||||
{
|
||||
elog(LOG, "removing commit log file %s", clde->d_name);
|
||||
snprintf(path, MAXPGPATH, "%s/%s", ClogDir, clde->d_name);
|
||||
unlink(path);
|
||||
}
|
||||
}
|
||||
}
|
||||
errno = 0;
|
||||
}
|
||||
if (errno)
|
||||
elog(ERROR, "could not read transaction-commit log directory (%s): %m",
|
||||
ClogDir);
|
||||
closedir(cldir);
|
||||
|
||||
return found;
|
||||
}
|
||||
|
||||
/*
|
||||
* Decide which of two CLOG page numbers is "older" for truncation purposes.
|
||||
@ -1107,13 +351,13 @@ clog_redo(XLogRecPtr lsn, XLogRecord *record)
|
||||
|
||||
memcpy(&pageno, XLogRecGetData(record), sizeof(int));
|
||||
|
||||
LWLockAcquire(CLogControlLock, LW_EXCLUSIVE);
|
||||
LWLockAcquire(ClogCtl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
slotno = ZeroCLOGPage(pageno, false);
|
||||
WriteCLOGPage(slotno);
|
||||
Assert(ClogCtl->page_status[slotno] == CLOG_PAGE_CLEAN);
|
||||
SimpleLruWritePage(ClogCtl, slotno);
|
||||
/* Assert(ClogCtl->page_status[slotno] == SLRU_PAGE_CLEAN); */
|
||||
|
||||
LWLockRelease(CLogControlLock);
|
||||
LWLockRelease(ClogCtl->locks->ControlLock);
|
||||
}
|
||||
}
|
||||
|
||||
|
886
src/backend/access/transam/slru.c
Normal file
886
src/backend/access/transam/slru.c
Normal file
@ -0,0 +1,886 @@
|
||||
/*-------------------------------------------------------------------------
|
||||
*
|
||||
* slru.c
|
||||
* Simple LRU
|
||||
*
|
||||
* This module replaces the old "pg_log" access code, which treated pg_log
|
||||
* essentially like a relation, in that it went through the regular buffer
|
||||
* manager. The problem with that was that there wasn't any good way to
|
||||
* recycle storage space for transactions so old that they'll never be
|
||||
* looked up again. Now we use specialized access code so that the commit
|
||||
* log can be broken into relatively small, independent segments.
|
||||
*
|
||||
* Portions Copyright (c) 2003, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $Header: /cvsroot/pgsql/src/backend/access/transam/slru.c,v 1.1 2003/06/11 22:37:45 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
#include "postgres.h"
|
||||
|
||||
#include <fcntl.h>
|
||||
#include <dirent.h>
|
||||
#include <errno.h>
|
||||
#include <sys/stat.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "access/slru.h"
|
||||
#include "storage/lwlock.h"
|
||||
#include "miscadmin.h"
|
||||
|
||||
|
||||
/*
|
||||
* Define segment size. A page is the same BLCKSZ as is used everywhere
|
||||
* else in Postgres. The segment size can be chosen somewhat arbitrarily;
|
||||
* we make it 32 pages by default, or 256Kb, i.e. 1M transactions for CLOG
|
||||
* or 64K transactions for SUBTRANS.
|
||||
*
|
||||
* Note: because TransactionIds are 32 bits and wrap around at 0xFFFFFFFF,
|
||||
* page numbering also wraps around at 0xFFFFFFFF/xxxx_XACTS_PER_PAGE (where
|
||||
* xxxx is CLOG or SUBTRANS, respectively), and segment numbering at
|
||||
* 0xFFFFFFFF/xxxx_XACTS_PER_PAGE/SLRU_PAGES_PER_SEGMENT. We need
|
||||
* take no explicit notice of that fact in this module, except when comparing
|
||||
* segment and page numbers in SimpleLruTruncate (see PagePrecedes()).
|
||||
*/
|
||||
|
||||
#define SLRU_PAGES_PER_SEGMENT 32
|
||||
|
||||
|
||||
/*----------
|
||||
* Shared-memory data structures for SLRU control
|
||||
*
|
||||
* We use a simple least-recently-used scheme to manage a pool of page
|
||||
* buffers. Under ordinary circumstances we expect that write
|
||||
* traffic will occur mostly to the latest page (and to the just-prior
|
||||
* page, soon after a page transition). Read traffic will probably touch
|
||||
* a larger span of pages, but in any case a fairly small number of page
|
||||
* buffers should be sufficient. So, we just search the buffers using plain
|
||||
* linear search; there's no need for a hashtable or anything fancy.
|
||||
* The management algorithm is straight LRU except that we will never swap
|
||||
* out the latest page (since we know it's going to be hit again eventually).
|
||||
*
|
||||
* We use a control LWLock to protect the shared data structures, plus
|
||||
* per-buffer LWLocks that synchronize I/O for each buffer. A process
|
||||
* that is reading in or writing out a page buffer does not hold the control
|
||||
* lock, only the per-buffer lock for the buffer it is working on.
|
||||
*
|
||||
* To change the page number or state of a buffer, one must normally hold
|
||||
* the control lock. (The sole exception to this rule is that a writer
|
||||
* process changes the state from DIRTY to WRITE_IN_PROGRESS while holding
|
||||
* only the per-buffer lock.) If the buffer's state is neither EMPTY nor
|
||||
* CLEAN, then there may be processes doing (or waiting to do) I/O on the
|
||||
* buffer, so the page number may not be changed, and the only allowed state
|
||||
* transition is to change WRITE_IN_PROGRESS to DIRTY after dirtying the page.
|
||||
* To do any other state transition involving a buffer with potential I/O
|
||||
* processes, one must hold both the per-buffer lock and the control lock.
|
||||
* (Note the control lock must be acquired second; do not wait on a buffer
|
||||
* lock while holding the control lock.) A process wishing to read a page
|
||||
* marks the buffer state as READ_IN_PROGRESS, then drops the control lock,
|
||||
* acquires the per-buffer lock, and rechecks the state before proceeding.
|
||||
* This recheck takes care of the possibility that someone else already did
|
||||
* the read, while the early marking prevents someone else from trying to
|
||||
* read the same page into a different buffer.
|
||||
*
|
||||
* Note we are assuming that read and write of the state value is atomic,
|
||||
* since I/O processes may examine and change the state while not holding
|
||||
* the control lock.
|
||||
*
|
||||
* As with the regular buffer manager, it is possible for another process
|
||||
* to re-dirty a page that is currently being written out. This is handled
|
||||
* by setting the page's state from WRITE_IN_PROGRESS to DIRTY. The writing
|
||||
* process must notice this and not mark the page CLEAN when it's done.
|
||||
*----------
|
||||
*/
|
||||
|
||||
typedef enum
|
||||
{
|
||||
SLRU_PAGE_EMPTY, /* buffer is not in use */
|
||||
SLRU_PAGE_READ_IN_PROGRESS, /* page is being read in */
|
||||
SLRU_PAGE_CLEAN, /* page is valid and not dirty */
|
||||
SLRU_PAGE_DIRTY, /* page is valid but needs write */
|
||||
SLRU_PAGE_WRITE_IN_PROGRESS /* page is being written out */
|
||||
} SlruPageStatus;
|
||||
|
||||
/*
|
||||
* Shared-memory state
|
||||
*/
|
||||
typedef struct SlruSharedData
|
||||
{
|
||||
/*
|
||||
* Info for each buffer slot. Page number is undefined when status is
|
||||
* EMPTY. lru_count is essentially the number of page switches since
|
||||
* last use of this page; the page with highest lru_count is the best
|
||||
* candidate to replace.
|
||||
*/
|
||||
char *page_buffer[NUM_CLOG_BUFFERS];
|
||||
SlruPageStatus page_status[NUM_CLOG_BUFFERS];
|
||||
int page_number[NUM_CLOG_BUFFERS];
|
||||
unsigned int page_lru_count[NUM_CLOG_BUFFERS];
|
||||
|
||||
/*
|
||||
* latest_page_number is the page number of the current end of the
|
||||
* CLOG; this is not critical data, since we use it only to avoid
|
||||
* swapping out the latest page.
|
||||
*/
|
||||
int latest_page_number;
|
||||
} SlruSharedData;
|
||||
typedef SlruSharedData *SlruShared;
|
||||
|
||||
|
||||
#define SlruFileName(ctl, path, seg) \
|
||||
snprintf(path, MAXPGPATH, "%s/%04X", (ctl)->Dir, seg)
|
||||
|
||||
/*
|
||||
* Macro to mark a buffer slot "most recently used".
|
||||
*/
|
||||
#define SlruRecentlyUsed(shared, slotno) \
|
||||
do { \
|
||||
if ((shared)->page_lru_count[slotno] != 0) { \
|
||||
int iilru; \
|
||||
for (iilru = 0; iilru < NUM_CLOG_BUFFERS; iilru++) \
|
||||
(shared)->page_lru_count[iilru]++; \
|
||||
(shared)->page_lru_count[slotno] = 0; \
|
||||
} \
|
||||
} while (0)
|
||||
|
||||
/* Saved info for SlruReportIOError */
|
||||
typedef enum
|
||||
{
|
||||
SLRU_OPEN_FAILED,
|
||||
SLRU_CREATE_FAILED,
|
||||
SLRU_SEEK_FAILED,
|
||||
SLRU_READ_FAILED,
|
||||
SLRU_WRITE_FAILED
|
||||
} SlruErrorCause;
|
||||
static SlruErrorCause slru_errcause;
|
||||
static int slru_errno;
|
||||
|
||||
|
||||
static bool SlruPhysicalReadPage(SlruCtl ctl, int pageno, int slotno);
|
||||
static bool SlruPhysicalWritePage(SlruCtl ctl, int pageno, int slotno);
|
||||
static void SlruReportIOError(SlruCtl ctl, int pageno, TransactionId xid);
|
||||
static int SlruSelectLRUPage(SlruCtl ctl, int pageno);
|
||||
static bool SlruScanDirectory(SlruCtl ctl, int cutoffPage, bool doDeletions);
|
||||
|
||||
|
||||
/*
|
||||
* Initialization of shared memory
|
||||
*/
|
||||
|
||||
int
|
||||
SimpleLruShmemSize(void)
|
||||
{
|
||||
return MAXALIGN(sizeof(SlruSharedData)) + BLCKSZ * NUM_CLOG_BUFFERS
|
||||
#ifdef EXEC_BACKEND
|
||||
+ MAXALIGN(sizeof(SlruLockData))
|
||||
#endif
|
||||
;
|
||||
}
|
||||
|
||||
void
|
||||
SimpleLruInit(SlruCtl ctl, const char *name, const char *subdir)
|
||||
{
|
||||
bool found;
|
||||
char *ptr;
|
||||
SlruShared shared;
|
||||
SlruLock locks;
|
||||
|
||||
ptr = ShmemInitStruct(name, SimpleLruShmemSize(), &found);
|
||||
shared = (SlruShared) ptr;
|
||||
|
||||
#ifdef EXEC_BACKEND
|
||||
/*
|
||||
* Locks are in shared memory
|
||||
*/
|
||||
locks = (SlruLock)(ptr + MAXALIGN(sizeof(SlruSharedData)) +
|
||||
BLCKSZ * NUM_CLOG_BUFFERS);
|
||||
#else
|
||||
/*
|
||||
* Locks are in private memory
|
||||
*/
|
||||
Assert(!IsUnderPostmaster);
|
||||
locks = malloc(sizeof(SlruLockData));
|
||||
Assert(locks);
|
||||
#endif
|
||||
|
||||
|
||||
if (!IsUnderPostmaster)
|
||||
/* Initialize locks and shared memory area */
|
||||
{
|
||||
char *bufptr;
|
||||
int slotno;
|
||||
|
||||
Assert(!found);
|
||||
|
||||
locks->ControlLock = LWLockAssign();
|
||||
|
||||
memset(shared, 0, sizeof(SlruSharedData));
|
||||
|
||||
bufptr = (char *)shared + MAXALIGN(sizeof(SlruSharedData));
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
locks->BufferLocks[slotno] = LWLockAssign();
|
||||
shared->page_buffer[slotno] = bufptr;
|
||||
shared->page_status[slotno] = SLRU_PAGE_EMPTY;
|
||||
shared->page_lru_count[slotno] = 1;
|
||||
bufptr += BLCKSZ;
|
||||
}
|
||||
|
||||
/* shared->latest_page_number will be set later */
|
||||
}
|
||||
else
|
||||
Assert(found);
|
||||
|
||||
|
||||
ctl->locks = locks;
|
||||
ctl->shared = shared;
|
||||
|
||||
|
||||
/* Init directory path */
|
||||
snprintf(ctl->Dir, MAXPGPATH, "%s/%s", DataDir, subdir);
|
||||
}
|
||||
|
||||
/*
|
||||
* Initialize (or reinitialize) a page to zeroes.
|
||||
*
|
||||
* The page is not actually written, just set up in shared memory.
|
||||
* The slot number of the new page is returned.
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
int
|
||||
SimpleLruZeroPage(SlruCtl ctl, int pageno)
|
||||
{
|
||||
int slotno;
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
|
||||
/* Find a suitable buffer slot for the page */
|
||||
slotno = SlruSelectLRUPage(ctl, pageno);
|
||||
Assert(shared->page_status[slotno] == SLRU_PAGE_EMPTY ||
|
||||
shared->page_status[slotno] == SLRU_PAGE_CLEAN ||
|
||||
shared->page_number[slotno] == pageno);
|
||||
|
||||
/* Mark the slot as containing this page */
|
||||
shared->page_number[slotno] = pageno;
|
||||
shared->page_status[slotno] = SLRU_PAGE_DIRTY;
|
||||
SlruRecentlyUsed(shared, slotno);
|
||||
|
||||
/* Set the buffer to zeroes */
|
||||
MemSet(shared->page_buffer[slotno], 0, BLCKSZ);
|
||||
|
||||
/* Assume this page is now the latest active page */
|
||||
shared->latest_page_number = pageno;
|
||||
|
||||
return slotno;
|
||||
}
|
||||
|
||||
/*
|
||||
* Find a page in a shared buffer, reading it in if necessary.
|
||||
* The page number must correspond to an already-initialized page.
|
||||
*
|
||||
* The passed-in xid is used only for error reporting, and may be
|
||||
* InvalidTransactionId if no specific xid is associated with the action.
|
||||
*
|
||||
* Return value is the shared-buffer address of the page.
|
||||
* The buffer's LRU access info is updated.
|
||||
* If forwrite is true, the buffer is marked as dirty.
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
char *
|
||||
SimpleLruReadPage(SlruCtl ctl, int pageno, TransactionId xid, bool forwrite)
|
||||
{
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
|
||||
/* Outer loop handles restart if we lose the buffer to someone else */
|
||||
for (;;)
|
||||
{
|
||||
int slotno;
|
||||
bool ok;
|
||||
|
||||
/* See if page already is in memory; if not, pick victim slot */
|
||||
slotno = SlruSelectLRUPage(ctl, pageno);
|
||||
|
||||
/* Did we find the page in memory? */
|
||||
if (shared->page_number[slotno] == pageno &&
|
||||
shared->page_status[slotno] != SLRU_PAGE_EMPTY)
|
||||
{
|
||||
/* If page is still being read in, we cannot use it yet */
|
||||
if (shared->page_status[slotno] != SLRU_PAGE_READ_IN_PROGRESS)
|
||||
{
|
||||
/* otherwise, it's ready to use */
|
||||
SlruRecentlyUsed(shared, slotno);
|
||||
if (forwrite)
|
||||
shared->page_status[slotno] = SLRU_PAGE_DIRTY;
|
||||
return shared->page_buffer[slotno];
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
/* We found no match; assert we selected a freeable slot */
|
||||
Assert(shared->page_status[slotno] == SLRU_PAGE_EMPTY ||
|
||||
shared->page_status[slotno] == SLRU_PAGE_CLEAN);
|
||||
}
|
||||
|
||||
/* Mark the slot read-busy (no-op if it already was) */
|
||||
shared->page_number[slotno] = pageno;
|
||||
shared->page_status[slotno] = SLRU_PAGE_READ_IN_PROGRESS;
|
||||
|
||||
/*
|
||||
* Temporarily mark page as recently-used to discourage
|
||||
* SlruSelectLRUPage from selecting it again for someone else.
|
||||
*/
|
||||
SlruRecentlyUsed(shared, slotno);
|
||||
|
||||
/* Release shared lock, grab per-buffer lock instead */
|
||||
LWLockRelease(ctl->locks->ControlLock);
|
||||
LWLockAcquire(ctl->locks->BufferLocks[slotno], LW_EXCLUSIVE);
|
||||
|
||||
/*
|
||||
* Check to see if someone else already did the read, or took the
|
||||
* buffer away from us. If so, restart from the top.
|
||||
*/
|
||||
if (shared->page_number[slotno] != pageno ||
|
||||
shared->page_status[slotno] != SLRU_PAGE_READ_IN_PROGRESS)
|
||||
{
|
||||
LWLockRelease(ctl->locks->BufferLocks[slotno]);
|
||||
LWLockAcquire(ctl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
continue;
|
||||
}
|
||||
|
||||
/* Okay, do the read */
|
||||
ok = SlruPhysicalReadPage(ctl, pageno, slotno);
|
||||
|
||||
/* Re-acquire shared control lock and update page state */
|
||||
LWLockAcquire(ctl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
Assert(shared->page_number[slotno] == pageno &&
|
||||
shared->page_status[slotno] == SLRU_PAGE_READ_IN_PROGRESS);
|
||||
|
||||
shared->page_status[slotno] = ok ? SLRU_PAGE_CLEAN : SLRU_PAGE_EMPTY;
|
||||
|
||||
LWLockRelease(ctl->locks->BufferLocks[slotno]);
|
||||
|
||||
/* Now it's okay to elog if we failed */
|
||||
if (!ok)
|
||||
SlruReportIOError(ctl, pageno, xid);
|
||||
|
||||
SlruRecentlyUsed(shared, slotno);
|
||||
if (forwrite)
|
||||
shared->page_status[slotno] = SLRU_PAGE_DIRTY;
|
||||
return shared->page_buffer[slotno];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Write a page from a shared buffer, if necessary.
|
||||
* Does nothing if the specified slot is not dirty.
|
||||
*
|
||||
* NOTE: only one write attempt is made here. Hence, it is possible that
|
||||
* the page is still dirty at exit (if someone else re-dirtied it during
|
||||
* the write). However, we *do* attempt a fresh write even if the page
|
||||
* is already being written; this is for checkpoints.
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
void
|
||||
SimpleLruWritePage(SlruCtl ctl, int slotno)
|
||||
{
|
||||
int pageno;
|
||||
bool ok;
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
|
||||
/* Do nothing if page does not need writing */
|
||||
if (shared->page_status[slotno] != SLRU_PAGE_DIRTY &&
|
||||
shared->page_status[slotno] != SLRU_PAGE_WRITE_IN_PROGRESS)
|
||||
return;
|
||||
|
||||
pageno = shared->page_number[slotno];
|
||||
|
||||
/* Release shared lock, grab per-buffer lock instead */
|
||||
LWLockRelease(ctl->locks->ControlLock);
|
||||
LWLockAcquire(ctl->locks->BufferLocks[slotno], LW_EXCLUSIVE);
|
||||
|
||||
/*
|
||||
* Check to see if someone else already did the write, or took the
|
||||
* buffer away from us. If so, do nothing. NOTE: we really should
|
||||
* never see WRITE_IN_PROGRESS here, since that state should only
|
||||
* occur while the writer is holding the buffer lock. But accept it
|
||||
* so that we have a recovery path if a writer aborts.
|
||||
*/
|
||||
if (shared->page_number[slotno] != pageno ||
|
||||
(shared->page_status[slotno] != SLRU_PAGE_DIRTY &&
|
||||
shared->page_status[slotno] != SLRU_PAGE_WRITE_IN_PROGRESS))
|
||||
{
|
||||
LWLockRelease(ctl->locks->BufferLocks[slotno]);
|
||||
LWLockAcquire(ctl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Mark the slot write-busy. After this point, a transaction status
|
||||
* update on this page will mark it dirty again. NB: we are assuming
|
||||
* that read/write of the page status field is atomic, since we change
|
||||
* the state while not holding control lock. However, we cannot set
|
||||
* this state any sooner, or we'd possibly fool a previous writer into
|
||||
* thinking he's successfully dumped the page when he hasn't.
|
||||
* (Scenario: other writer starts, page is redirtied, we come along
|
||||
* and set WRITE_IN_PROGRESS again, other writer completes and sets
|
||||
* CLEAN because redirty info has been lost, then we think it's clean
|
||||
* too.)
|
||||
*/
|
||||
shared->page_status[slotno] = SLRU_PAGE_WRITE_IN_PROGRESS;
|
||||
|
||||
/* Okay, do the write */
|
||||
ok = SlruPhysicalWritePage(ctl, pageno, slotno);
|
||||
|
||||
/* Re-acquire shared control lock and update page state */
|
||||
LWLockAcquire(ctl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
Assert(shared->page_number[slotno] == pageno &&
|
||||
(shared->page_status[slotno] == SLRU_PAGE_WRITE_IN_PROGRESS ||
|
||||
shared->page_status[slotno] == SLRU_PAGE_DIRTY));
|
||||
|
||||
/* Cannot set CLEAN if someone re-dirtied page since write started */
|
||||
if (shared->page_status[slotno] == SLRU_PAGE_WRITE_IN_PROGRESS)
|
||||
shared->page_status[slotno] = ok ? SLRU_PAGE_CLEAN : SLRU_PAGE_DIRTY;
|
||||
|
||||
LWLockRelease(ctl->locks->BufferLocks[slotno]);
|
||||
|
||||
/* Now it's okay to elog if we failed */
|
||||
if (!ok)
|
||||
SlruReportIOError(ctl, pageno, InvalidTransactionId);
|
||||
}
|
||||
|
||||
/*
|
||||
* Physical read of a (previously existing) page into a buffer slot
|
||||
*
|
||||
* On failure, we cannot just elog(ERROR) since caller has put state in
|
||||
* shared memory that must be undone. So, we return FALSE and save enough
|
||||
* info in static variables to let SlruReportIOError make the report.
|
||||
*
|
||||
* For now, assume it's not worth keeping a file pointer open across
|
||||
* read/write operations. We could cache one virtual file pointer ...
|
||||
*/
|
||||
static bool
|
||||
SlruPhysicalReadPage(SlruCtl ctl, int pageno, int slotno)
|
||||
{
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
int segno = pageno / SLRU_PAGES_PER_SEGMENT;
|
||||
int rpageno = pageno % SLRU_PAGES_PER_SEGMENT;
|
||||
int offset = rpageno * BLCKSZ;
|
||||
char path[MAXPGPATH];
|
||||
int fd;
|
||||
|
||||
SlruFileName(ctl, path, segno);
|
||||
|
||||
/*
|
||||
* In a crash-and-restart situation, it's possible for us to receive
|
||||
* commands to set the commit status of transactions whose bits are in
|
||||
* already-truncated segments of the commit log (see notes in
|
||||
* SlruPhysicalWritePage). Hence, if we are InRecovery, allow the
|
||||
* case where the file doesn't exist, and return zeroes instead.
|
||||
*/
|
||||
fd = BasicOpenFile(path, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
|
||||
if (fd < 0)
|
||||
{
|
||||
if (errno != ENOENT || !InRecovery)
|
||||
{
|
||||
slru_errcause = SLRU_OPEN_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
elog(LOG, "file %s doesn't exist, reading as zeroes", path);
|
||||
MemSet(shared->page_buffer[slotno], 0, BLCKSZ);
|
||||
return true;
|
||||
}
|
||||
|
||||
if (lseek(fd, (off_t) offset, SEEK_SET) < 0)
|
||||
{
|
||||
slru_errcause = SLRU_SEEK_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
errno = 0;
|
||||
if (read(fd, shared->page_buffer[slotno], BLCKSZ) != BLCKSZ)
|
||||
{
|
||||
slru_errcause = SLRU_READ_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
close(fd);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Physical write of a page from a buffer slot
|
||||
*
|
||||
* On failure, we cannot just elog(ERROR) since caller has put state in
|
||||
* shared memory that must be undone. So, we return FALSE and save enough
|
||||
* info in static variables to let SlruReportIOError make the report.
|
||||
*
|
||||
* For now, assume it's not worth keeping a file pointer open across
|
||||
* read/write operations. We could cache one virtual file pointer ...
|
||||
*/
|
||||
static bool
|
||||
SlruPhysicalWritePage(SlruCtl ctl, int pageno, int slotno)
|
||||
{
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
int segno = pageno / SLRU_PAGES_PER_SEGMENT;
|
||||
int rpageno = pageno % SLRU_PAGES_PER_SEGMENT;
|
||||
int offset = rpageno * BLCKSZ;
|
||||
char path[MAXPGPATH];
|
||||
int fd;
|
||||
|
||||
SlruFileName(ctl, path, segno);
|
||||
|
||||
/*
|
||||
* If the file doesn't already exist, we should create it. It is
|
||||
* possible for this to need to happen when writing a page that's not
|
||||
* first in its segment; we assume the OS can cope with that. (Note:
|
||||
* it might seem that it'd be okay to create files only when
|
||||
* SimpleLruZeroPage is called for the first page of a segment. However,
|
||||
* if after a crash and restart the REDO logic elects to replay the
|
||||
* log from a checkpoint before the latest one, then it's possible
|
||||
* that we will get commands to set transaction status of transactions
|
||||
* that have already been truncated from the commit log. Easiest way
|
||||
* to deal with that is to accept references to nonexistent files here
|
||||
* and in SlruPhysicalReadPage.)
|
||||
*/
|
||||
fd = BasicOpenFile(path, O_RDWR | PG_BINARY, S_IRUSR | S_IWUSR);
|
||||
if (fd < 0)
|
||||
{
|
||||
if (errno != ENOENT)
|
||||
{
|
||||
slru_errcause = SLRU_OPEN_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
fd = BasicOpenFile(path, O_RDWR | O_CREAT | O_EXCL | PG_BINARY,
|
||||
S_IRUSR | S_IWUSR);
|
||||
if (fd < 0)
|
||||
{
|
||||
slru_errcause = SLRU_CREATE_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
if (lseek(fd, (off_t) offset, SEEK_SET) < 0)
|
||||
{
|
||||
slru_errcause = SLRU_SEEK_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
errno = 0;
|
||||
if (write(fd, shared->page_buffer[slotno], BLCKSZ) != BLCKSZ)
|
||||
{
|
||||
/* if write didn't set errno, assume problem is no disk space */
|
||||
if (errno == 0)
|
||||
errno = ENOSPC;
|
||||
slru_errcause = SLRU_WRITE_FAILED;
|
||||
slru_errno = errno;
|
||||
return false;
|
||||
}
|
||||
|
||||
close(fd);
|
||||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* Issue the error message after failure of SlruPhysicalReadPage or
|
||||
* SlruPhysicalWritePage. Call this after cleaning up shared-memory state.
|
||||
*/
|
||||
static void
|
||||
SlruReportIOError(SlruCtl ctl, int pageno, TransactionId xid)
|
||||
{
|
||||
int segno = pageno / SLRU_PAGES_PER_SEGMENT;
|
||||
int rpageno = pageno % SLRU_PAGES_PER_SEGMENT;
|
||||
int offset = rpageno * BLCKSZ;
|
||||
char path[MAXPGPATH];
|
||||
|
||||
/* XXX TODO: provide xid as context in error messages */
|
||||
|
||||
SlruFileName(ctl, path, segno);
|
||||
errno = slru_errno;
|
||||
switch (slru_errcause)
|
||||
{
|
||||
case SLRU_OPEN_FAILED:
|
||||
elog(ERROR, "open of %s failed: %m", path);
|
||||
break;
|
||||
case SLRU_CREATE_FAILED:
|
||||
elog(ERROR, "creation of file %s failed: %m", path);
|
||||
break;
|
||||
case SLRU_SEEK_FAILED:
|
||||
elog(ERROR, "lseek of file %s, offset %u failed: %m",
|
||||
path, offset);
|
||||
break;
|
||||
case SLRU_READ_FAILED:
|
||||
elog(ERROR, "read of file %s, offset %u failed: %m",
|
||||
path, offset);
|
||||
break;
|
||||
case SLRU_WRITE_FAILED:
|
||||
elog(ERROR, "write of file %s, offset %u failed: %m",
|
||||
path, offset);
|
||||
break;
|
||||
default:
|
||||
/* can't get here, we trust */
|
||||
elog(ERROR, "unknown SimpleLru I/O error");
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Select the slot to re-use when we need a free slot.
|
||||
*
|
||||
* The target page number is passed because we need to consider the
|
||||
* possibility that some other process reads in the target page while
|
||||
* we are doing I/O to free a slot. Hence, check or recheck to see if
|
||||
* any slot already holds the target page, and return that slot if so.
|
||||
* Thus, the returned slot is *either* a slot already holding the pageno
|
||||
* (could be any state except EMPTY), *or* a freeable slot (state EMPTY
|
||||
* or CLEAN).
|
||||
*
|
||||
* Control lock must be held at entry, and will be held at exit.
|
||||
*/
|
||||
static int
|
||||
SlruSelectLRUPage(SlruCtl ctl, int pageno)
|
||||
{
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
/* Outer loop handles restart after I/O */
|
||||
for (;;)
|
||||
{
|
||||
int slotno;
|
||||
int bestslot = 0;
|
||||
unsigned int bestcount = 0;
|
||||
|
||||
/* See if page already has a buffer assigned */
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
if (shared->page_number[slotno] == pageno &&
|
||||
shared->page_status[slotno] != SLRU_PAGE_EMPTY)
|
||||
return slotno;
|
||||
}
|
||||
|
||||
/*
|
||||
* If we find any EMPTY slot, just select that one. Else locate
|
||||
* the least-recently-used slot that isn't the latest page.
|
||||
*/
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
if (shared->page_status[slotno] == SLRU_PAGE_EMPTY)
|
||||
return slotno;
|
||||
if (shared->page_lru_count[slotno] > bestcount &&
|
||||
shared->page_number[slotno] != shared->latest_page_number)
|
||||
{
|
||||
bestslot = slotno;
|
||||
bestcount = shared->page_lru_count[slotno];
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* If the selected page is clean, we're set.
|
||||
*/
|
||||
if (shared->page_status[bestslot] == SLRU_PAGE_CLEAN)
|
||||
return bestslot;
|
||||
|
||||
/*
|
||||
* We need to do I/O. Normal case is that we have to write it
|
||||
* out, but it's possible in the worst case to have selected a
|
||||
* read-busy page. In that case we use SimpleLruReadPage to wait for
|
||||
* the read to complete.
|
||||
*/
|
||||
if (shared->page_status[bestslot] == SLRU_PAGE_READ_IN_PROGRESS)
|
||||
(void) SimpleLruReadPage(ctl, shared->page_number[bestslot],
|
||||
InvalidTransactionId, false);
|
||||
else
|
||||
SimpleLruWritePage(ctl, bestslot);
|
||||
|
||||
/*
|
||||
* Now loop back and try again. This is the easiest way of
|
||||
* dealing with corner cases such as the victim page being
|
||||
* re-dirtied while we wrote it.
|
||||
*/
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This must be called ONCE during postmaster or standalone-backend startup
|
||||
*/
|
||||
void
|
||||
SimpleLruSetLatestPage(SlruCtl ctl, int pageno)
|
||||
{
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
|
||||
shared->latest_page_number = pageno;
|
||||
}
|
||||
|
||||
/*
|
||||
* This is called during checkpoint and postmaster/standalone-backend shutdown
|
||||
*/
|
||||
void
|
||||
SimpleLruFlush(SlruCtl ctl, bool checkpoint)
|
||||
{
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
int slotno;
|
||||
|
||||
LWLockAcquire(ctl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
SimpleLruWritePage(ctl, slotno);
|
||||
/*
|
||||
* When called during a checkpoint,
|
||||
* we cannot assert that the slot is clean now, since another
|
||||
* process might have re-dirtied it already. That's okay.
|
||||
*/
|
||||
Assert(checkpoint ||
|
||||
shared->page_status[slotno] == SLRU_PAGE_EMPTY ||
|
||||
shared->page_status[slotno] == SLRU_PAGE_CLEAN);
|
||||
}
|
||||
|
||||
LWLockRelease(ctl->locks->ControlLock);
|
||||
}
|
||||
|
||||
/*
|
||||
* Remove all segments before the one holding the passed page number
|
||||
*
|
||||
* When this is called, we know that the database logically contains no
|
||||
* reference to transaction IDs older than oldestXact. However, we must
|
||||
* not remove any segment until we have performed a checkpoint, to ensure
|
||||
* that no such references remain on disk either; else a crash just after
|
||||
* the truncation might leave us with a problem. Since CLOG segments hold
|
||||
* a large number of transactions, the opportunity to actually remove a
|
||||
* segment is fairly rare, and so it seems best not to do the checkpoint
|
||||
* unless we have confirmed that there is a removable segment. Therefore
|
||||
* we issue the checkpoint command here, not in higher-level code as might
|
||||
* seem cleaner.
|
||||
*/
|
||||
void
|
||||
SimpleLruTruncate(SlruCtl ctl, int cutoffPage)
|
||||
{
|
||||
int slotno;
|
||||
SlruShared shared = (SlruShared) ctl->shared;
|
||||
|
||||
/*
|
||||
* The cutoff point is the start of the segment containing cutoffPage.
|
||||
*/
|
||||
cutoffPage -= cutoffPage % SLRU_PAGES_PER_SEGMENT;
|
||||
|
||||
if (!SlruScanDirectory(ctl, cutoffPage, false))
|
||||
return; /* nothing to remove */
|
||||
|
||||
/* Perform a forced CHECKPOINT */
|
||||
CreateCheckPoint(false, true);
|
||||
|
||||
/*
|
||||
* Scan shared memory and remove any pages preceding the cutoff
|
||||
* page, to ensure we won't rewrite them later. (Any dirty pages
|
||||
* should have been flushed already during the checkpoint, we're just
|
||||
* being extra careful here.)
|
||||
*/
|
||||
LWLockAcquire(ctl->locks->ControlLock, LW_EXCLUSIVE);
|
||||
|
||||
restart:;
|
||||
|
||||
/*
|
||||
* While we are holding the lock, make an important safety check: the
|
||||
* planned cutoff point must be <= the current endpoint page.
|
||||
* Otherwise we have already wrapped around, and proceeding with the
|
||||
* truncation would risk removing the current segment.
|
||||
*/
|
||||
if (ctl->PagePrecedes(shared->latest_page_number, cutoffPage))
|
||||
{
|
||||
LWLockRelease(ctl->locks->ControlLock);
|
||||
elog(LOG, "unable to truncate %s: apparent wraparound", ctl->Dir);
|
||||
return;
|
||||
}
|
||||
|
||||
for (slotno = 0; slotno < NUM_CLOG_BUFFERS; slotno++)
|
||||
{
|
||||
if (shared->page_status[slotno] == SLRU_PAGE_EMPTY)
|
||||
continue;
|
||||
if (!ctl->PagePrecedes(shared->page_number[slotno], cutoffPage))
|
||||
continue;
|
||||
|
||||
/*
|
||||
* If page is CLEAN, just change state to EMPTY (expected case).
|
||||
*/
|
||||
if (shared->page_status[slotno] == SLRU_PAGE_CLEAN)
|
||||
{
|
||||
shared->page_status[slotno] = SLRU_PAGE_EMPTY;
|
||||
continue;
|
||||
}
|
||||
|
||||
/*
|
||||
* Hmm, we have (or may have) I/O operations acting on the page,
|
||||
* so we've got to wait for them to finish and then start again.
|
||||
* This is the same logic as in SlruSelectLRUPage.
|
||||
*/
|
||||
if (shared->page_status[slotno] == SLRU_PAGE_READ_IN_PROGRESS)
|
||||
(void) SimpleLruReadPage(ctl, shared->page_number[slotno],
|
||||
InvalidTransactionId, false);
|
||||
else
|
||||
SimpleLruWritePage(ctl, slotno);
|
||||
goto restart;
|
||||
}
|
||||
|
||||
LWLockRelease(ctl->locks->ControlLock);
|
||||
|
||||
/* Now we can remove the old segment(s) */
|
||||
(void) SlruScanDirectory(ctl, cutoffPage, true);
|
||||
}
|
||||
|
||||
/*
|
||||
* SlruTruncate subroutine: scan directory for removable segments.
|
||||
* Actually remove them iff doDeletions is true. Return TRUE iff any
|
||||
* removable segments were found. Note: no locking is needed.
|
||||
*/
|
||||
static bool
|
||||
SlruScanDirectory(SlruCtl ctl, int cutoffPage, bool doDeletions)
|
||||
{
|
||||
bool found = false;
|
||||
DIR *cldir;
|
||||
struct dirent *clde;
|
||||
int segno;
|
||||
int segpage;
|
||||
char path[MAXPGPATH];
|
||||
|
||||
cldir = opendir(ctl->Dir);
|
||||
if (cldir == NULL)
|
||||
elog(ERROR, "could not open directory (%s): %m", ctl->Dir);
|
||||
|
||||
errno = 0;
|
||||
while ((clde = readdir(cldir)) != NULL)
|
||||
{
|
||||
if (strlen(clde->d_name) == 4 &&
|
||||
strspn(clde->d_name, "0123456789ABCDEF") == 4)
|
||||
{
|
||||
segno = (int) strtol(clde->d_name, NULL, 16);
|
||||
segpage = segno * SLRU_PAGES_PER_SEGMENT;
|
||||
if (ctl->PagePrecedes(segpage, cutoffPage))
|
||||
{
|
||||
found = true;
|
||||
if (doDeletions)
|
||||
{
|
||||
elog(LOG, "removing file %s/%s", ctl->Dir, clde->d_name);
|
||||
snprintf(path, MAXPGPATH, "%s/%s", ctl->Dir, clde->d_name);
|
||||
unlink(path);
|
||||
}
|
||||
}
|
||||
}
|
||||
errno = 0;
|
||||
}
|
||||
if (errno)
|
||||
elog(ERROR, "could not read directory (%s): %m", ctl->Dir);
|
||||
closedir(cldir);
|
||||
|
||||
return found;
|
||||
}
|
@ -15,7 +15,7 @@
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* IDENTIFICATION
|
||||
* $Header: /cvsroot/pgsql/src/backend/storage/lmgr/lwlock.c,v 1.14 2002/09/25 20:31:40 tgl Exp $
|
||||
* $Header: /cvsroot/pgsql/src/backend/storage/lmgr/lwlock.c,v 1.15 2003/06/11 22:37:45 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -108,8 +108,8 @@ NumLWLocks(void)
|
||||
/* bufmgr.c needs two for each shared buffer */
|
||||
numLocks += 2 * NBuffers;
|
||||
|
||||
/* clog.c needs one per CLOG buffer */
|
||||
numLocks += NUM_CLOG_BUFFERS;
|
||||
/* clog.c needs one per CLOG buffer + one control lock */
|
||||
numLocks += NUM_CLOG_BUFFERS + 1;
|
||||
|
||||
/* Perhaps create a few more for use by user-defined modules? */
|
||||
|
||||
|
62
src/include/access/slru.h
Normal file
62
src/include/access/slru.h
Normal file
@ -0,0 +1,62 @@
|
||||
/*
|
||||
* slru.h
|
||||
*
|
||||
* Simple LRU
|
||||
*
|
||||
* Portions Copyright (c) 2003, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $Id: slru.h,v 1.1 2003/06/11 22:37:46 momjian Exp $
|
||||
*/
|
||||
#ifndef SLRU_H
|
||||
#define SLRU_H
|
||||
|
||||
#include "access/xlog.h"
|
||||
|
||||
/* exported because lwlock.c needs it */
|
||||
#define NUM_CLOG_BUFFERS 8
|
||||
|
||||
typedef struct SlruLockData
|
||||
{
|
||||
LWLockId ControlLock;
|
||||
/*
|
||||
* BufferLocks is set during CLOGShmemInit and does not change thereafter.
|
||||
* The value is automatically inherited by backends via fork, and
|
||||
* doesn't need to be in shared memory.
|
||||
*/
|
||||
LWLockId BufferLocks[NUM_CLOG_BUFFERS]; /* Per-buffer I/O locks */
|
||||
} SlruLockData;
|
||||
typedef SlruLockData *SlruLock;
|
||||
|
||||
typedef struct SlruCtlData
|
||||
{
|
||||
void *shared; /* pointer to SlruSharedData */
|
||||
SlruLock locks;
|
||||
|
||||
/*
|
||||
* Dir is set during SimpleLruShmemInit and does not change thereafter.
|
||||
* The value is automatically inherited by backends via fork, and
|
||||
* doesn't need to be in shared memory.
|
||||
*/
|
||||
char Dir[MAXPGPATH];
|
||||
|
||||
/*
|
||||
* Decide which of two page numbers is "older" for truncation purposes.
|
||||
* We need to use comparison of TransactionIds here in order to do the right
|
||||
* thing with wraparound XID arithmetic.
|
||||
*/
|
||||
bool (*PagePrecedes)(int, int);
|
||||
|
||||
} SlruCtlData;
|
||||
typedef SlruCtlData *SlruCtl;
|
||||
|
||||
extern int SimpleLruShmemSize(void);
|
||||
extern void SimpleLruInit(SlruCtl ctl, const char *name, const char *subdir);
|
||||
extern int SimpleLruZeroPage(SlruCtl ctl, int pageno);
|
||||
extern char *SimpleLruReadPage(SlruCtl ctl, int pageno, TransactionId xid, bool forwrite);
|
||||
extern void SimpleLruWritePage(SlruCtl ctl, int slotno);
|
||||
extern void SimpleLruSetLatestPage(SlruCtl ctl, int pageno);
|
||||
extern void SimpleLruFlush(SlruCtl ctl, bool checkpoint);
|
||||
extern void SimpleLruTruncate(SlruCtl ctl, int cutoffPage);
|
||||
|
||||
#endif /* SLRU_H */
|
@ -7,7 +7,7 @@
|
||||
* Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group
|
||||
* Portions Copyright (c) 1994, Regents of the University of California
|
||||
*
|
||||
* $Id: lwlock.h,v 1.6 2002/06/20 20:29:52 momjian Exp $
|
||||
* $Id: lwlock.h,v 1.7 2003/06/11 22:37:46 momjian Exp $
|
||||
*
|
||||
*-------------------------------------------------------------------------
|
||||
*/
|
||||
@ -37,7 +37,6 @@ typedef enum LWLockId
|
||||
WALWriteLock,
|
||||
ControlFileLock,
|
||||
CheckpointLock,
|
||||
CLogControlLock,
|
||||
RelCacheInitLock,
|
||||
|
||||
NumFixedLWLocks, /* must be last except for
|
||||
|
Loading…
Reference in New Issue
Block a user