postgres/contrib/cube/cube.c

1219 lines
26 KiB
C
Raw Normal View History

/******************************************************************************
This file contains routines that can be bound to a Postgres backend and
called by the backend in the process of processing queries. The calling
format for these routines is dictated by Postgres architecture.
******************************************************************************/
#include "postgres.h"
#include <math.h>
#include "access/gist.h"
#include "access/rtree.h"
#include "lib/stringinfo.h"
#include "utils/builtins.h"
#include "cubedata.h"
2001-03-22 07:01:46 +03:00
extern int cube_yyparse();
extern void cube_yyerror(const char *message);
extern void cube_scanner_init(const char *str);
extern void cube_scanner_finish(void);
/*
** Input/Output routines
*/
2001-03-22 07:01:46 +03:00
NDBOX *cube_in(char *str);
NDBOX *cube(text *str);
2001-03-22 07:01:46 +03:00
char *cube_out(NDBOX * cube);
2003-08-04 04:43:34 +04:00
NDBOX *cube_f8(double *);
NDBOX *cube_f8_f8(double *, double *);
NDBOX *cube_c_f8(NDBOX *, double *);
NDBOX *cube_c_f8_f8(NDBOX *, double *, double *);
int4 cube_dim(NDBOX * a);
double *cube_ll_coord(NDBOX * a, int4 n);
double *cube_ur_coord(NDBOX * a, int4 n);
2001-03-22 07:01:46 +03:00
/*
** GiST support methods
*/
2001-03-22 07:01:46 +03:00
bool g_cube_consistent(GISTENTRY *entry, NDBOX * query, StrategyNumber strategy);
GISTENTRY *g_cube_compress(GISTENTRY *entry);
GISTENTRY *g_cube_decompress(GISTENTRY *entry);
float *g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
GIST_SPLITVEC *g_cube_picksplit(GistEntryVector *entryvec, GIST_SPLITVEC *v);
2001-03-22 07:01:46 +03:00
bool g_cube_leaf_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
bool g_cube_internal_consistent(NDBOX * key, NDBOX * query, StrategyNumber strategy);
NDBOX *g_cube_union(GistEntryVector *entryvec, int *sizep);
2001-03-22 07:01:46 +03:00
NDBOX *g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep);
bool *g_cube_same(NDBOX * b1, NDBOX * b2, bool *result);
/*
** B-tree support functions
*/
bool cube_eq(NDBOX * a, NDBOX * b);
bool cube_ne(NDBOX * a, NDBOX * b);
bool cube_lt(NDBOX * a, NDBOX * b);
bool cube_gt(NDBOX * a, NDBOX * b);
bool cube_le(NDBOX * a, NDBOX * b);
bool cube_ge(NDBOX * a, NDBOX * b);
int32 cube_cmp(NDBOX * a, NDBOX * b);
/*
** R-tree support functions
*/
2001-03-22 07:01:46 +03:00
bool cube_contains(NDBOX * a, NDBOX * b);
bool cube_contained(NDBOX * a, NDBOX * b);
bool cube_overlap(NDBOX * a, NDBOX * b);
NDBOX *cube_union(NDBOX * a, NDBOX * b);
NDBOX *cube_inter(NDBOX * a, NDBOX * b);
double *cube_size(NDBOX * a);
void rt_cube_size(NDBOX * a, double *sz);
/*
** These make no sense for this type, but R-tree wants them
*/
2001-03-22 07:01:46 +03:00
bool cube_over_left(NDBOX * a, NDBOX * b);
bool cube_over_right(NDBOX * a, NDBOX * b);
bool cube_left(NDBOX * a, NDBOX * b);
bool cube_right(NDBOX * a, NDBOX * b);
/*
** miscellaneous
*/
2001-03-22 07:01:46 +03:00
bool cube_lt(NDBOX * a, NDBOX * b);
bool cube_gt(NDBOX * a, NDBOX * b);
double *cube_distance(NDBOX * a, NDBOX * b);
2002-09-05 00:31:48 +04:00
bool cube_is_point(NDBOX * a);
NDBOX *cube_enlarge(NDBOX * a, double *r, int4 n);
2001-03-22 07:01:46 +03:00
/*
** Auxiliary funxtions
*/
static double distance_1D(double a1, double a2, double b1, double b2);
/*****************************************************************************
* Input/Output functions
*****************************************************************************/
/* NdBox = [(lowerleft),(upperright)] */
/* [(xLL(1)...xLL(N)),(xUR(1)...xUR(n))] */
NDBOX *
cube_in(char *str)
{
2001-03-22 07:01:46 +03:00
void *result;
cube_scanner_init(str);
2001-03-22 07:01:46 +03:00
if (cube_yyparse(&result) != 0)
cube_yyerror("bogus input");
cube_scanner_finish();
2001-03-22 07:01:46 +03:00
return ((NDBOX *) result);
}
/* Allow conversion from text to cube to allow input of computed strings */
/* There may be issues with toasted data here. I don't know enough to be sure.*/
NDBOX *
cube(text *str)
{
return cube_in(DatumGetCString(DirectFunctionCall1(textout,
2002-09-05 00:31:48 +04:00
PointerGetDatum(str))));
}
char *
2002-09-05 00:31:48 +04:00
cube_out(NDBOX * cube)
{
StringInfoData buf;
bool equal = true;
2001-03-22 07:01:46 +03:00
int dim = cube->dim;
int i;
2003-08-04 04:43:34 +04:00
int ndig;
2001-03-22 07:01:46 +03:00
initStringInfo(&buf);
2001-03-22 07:01:46 +03:00
/*
* Get the number of digits to display.
*/
ndig = DBL_DIG + extra_float_digits;
2003-08-04 04:43:34 +04:00
if (ndig < 1)
ndig = 1;
2001-03-22 07:01:46 +03:00
/*
* while printing the first (LL) corner, check if it is equal to the
* second one
2001-03-22 07:01:46 +03:00
*/
appendStringInfoChar(&buf, '(');
2001-03-22 07:01:46 +03:00
for (i = 0; i < dim; i++)
{
if (i > 0)
appendStringInfo(&buf, ", ");
appendStringInfo(&buf, "%.*g", ndig, cube->x[i]);
2001-03-22 07:01:46 +03:00
if (cube->x[i] != cube->x[i + dim])
equal = false;
2001-03-22 07:01:46 +03:00
}
appendStringInfoChar(&buf, ')');
2001-03-22 07:01:46 +03:00
if (!equal)
{
appendStringInfo(&buf, ",(");
for (i = 0; i < dim; i++)
2001-03-22 07:01:46 +03:00
{
if (i > 0)
appendStringInfo(&buf, ", ");
appendStringInfo(&buf, "%.*g", ndig, cube->x[i + dim]);
2001-03-22 07:01:46 +03:00
}
appendStringInfoChar(&buf, ')');
2001-03-22 07:01:46 +03:00
}
return buf.data;
}
/*****************************************************************************
2001-03-22 07:01:46 +03:00
* GiST functions
*****************************************************************************/
/*
** The GiST Consistent method for boxes
** Should return false if for all data items x below entry,
** the predicate x op query == FALSE, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
2001-03-22 07:01:46 +03:00
bool
g_cube_consistent(GISTENTRY *entry,
2001-03-22 07:01:46 +03:00
NDBOX * query,
StrategyNumber strategy)
{
2001-03-22 07:01:46 +03:00
/*
* if entry is not leaf, use g_cube_internal_consistent, else use
2001-03-22 07:01:46 +03:00
* g_cube_leaf_consistent
*/
if (GIST_LEAF(entry))
return g_cube_leaf_consistent((NDBOX *) DatumGetPointer(entry->key),
query, strategy);
2001-03-22 07:01:46 +03:00
else
return g_cube_internal_consistent((NDBOX *) DatumGetPointer(entry->key),
query, strategy);
}
/*
** The GiST Union method for boxes
** returns the minimal bounding box that encloses all the entries in entryvec
*/
NDBOX *
g_cube_union(GistEntryVector *entryvec, int *sizep)
{
int i;
2001-03-22 07:01:46 +03:00
NDBOX *out = (NDBOX *) NULL;
NDBOX *tmp;
/*
* fprintf(stderr, "union\n");
*/
tmp = (NDBOX *) DatumGetPointer(entryvec->vector[0].key);
2001-03-22 07:01:46 +03:00
/*
* sizep = sizeof(NDBOX); -- NDBOX has variable size
*/
*sizep = tmp->size;
for (i = 1; i < entryvec->n; i++)
2001-03-22 07:01:46 +03:00
{
out = g_cube_binary_union(tmp, (NDBOX *)
2004-08-29 09:07:03 +04:00
DatumGetPointer(entryvec->vector[i].key),
2001-03-22 07:01:46 +03:00
sizep);
if (i > 1)
pfree(tmp);
tmp = out;
}
return (out);
}
/*
** GiST Compress and Decompress methods for boxes
** do not do anything.
*/
GISTENTRY *
g_cube_compress(GISTENTRY *entry)
{
2001-03-22 07:01:46 +03:00
return (entry);
}
GISTENTRY *
g_cube_decompress(GISTENTRY *entry)
{
2001-03-22 07:01:46 +03:00
return (entry);
}
/*
** The GiST Penalty method for boxes
** As in the R-tree paper, we use change in area as our penalty metric
*/
float *
g_cube_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
{
NDBOX *ud;
double tmp1,
2001-03-22 07:01:46 +03:00
tmp2;
ud = cube_union((NDBOX *) DatumGetPointer(origentry->key),
(NDBOX *) DatumGetPointer(newentry->key));
rt_cube_size(ud, &tmp1);
rt_cube_size((NDBOX *) DatumGetPointer(origentry->key), &tmp2);
*result = (float) (tmp1 - tmp2);
pfree(ud);
2001-03-22 07:01:46 +03:00
/*
* fprintf(stderr, "penalty\n"); fprintf(stderr, "\t%g\n", *result);
*/
return (result);
}
/*
** The GiST PickSplit method for boxes
2001-03-22 07:01:46 +03:00
** We use Guttman's poly time split algorithm
*/
GIST_SPLITVEC *
g_cube_picksplit(GistEntryVector *entryvec,
2001-03-22 07:01:46 +03:00
GIST_SPLITVEC *v)
{
2001-03-22 07:01:46 +03:00
OffsetNumber i,
j;
NDBOX *datum_alpha,
*datum_beta;
NDBOX *datum_l,
*datum_r;
NDBOX *union_d,
*union_dl,
*union_dr;
NDBOX *inter_d;
bool firsttime;
double size_alpha,
2001-03-22 07:01:46 +03:00
size_beta,
size_union,
size_inter;
double size_waste,
2001-03-22 07:01:46 +03:00
waste;
double size_l,
2001-03-22 07:01:46 +03:00
size_r;
int nbytes;
OffsetNumber seed_1 = 0,
seed_2 = 0;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
/*
2001-03-22 07:01:46 +03:00
* fprintf(stderr, "picksplit\n");
*/
maxoff = entryvec->n - 2;
2001-03-22 07:01:46 +03:00
nbytes = (maxoff + 2) * sizeof(OffsetNumber);
v->spl_left = (OffsetNumber *) palloc(nbytes);
v->spl_right = (OffsetNumber *) palloc(nbytes);
firsttime = true;
waste = 0.0;
for (i = FirstOffsetNumber; i < maxoff; i = OffsetNumberNext(i))
{
datum_alpha = (NDBOX *) DatumGetPointer(entryvec->vector[i].key);
2001-03-22 07:01:46 +03:00
for (j = OffsetNumberNext(i); j <= maxoff; j = OffsetNumberNext(j))
{
datum_beta = (NDBOX *) DatumGetPointer(entryvec->vector[j].key);
2001-03-22 07:01:46 +03:00
/* compute the wasted space by unioning these guys */
/* size_waste = size_union - size_inter; */
union_d = cube_union(datum_alpha, datum_beta);
2001-03-22 07:01:46 +03:00
rt_cube_size(union_d, &size_union);
inter_d = cube_inter(datum_alpha, datum_beta);
2001-03-22 07:01:46 +03:00
rt_cube_size(inter_d, &size_inter);
size_waste = size_union - size_inter;
pfree(union_d);
if (inter_d != (NDBOX *) NULL)
pfree(inter_d);
/*
* are these a more promising split than what we've already
* seen?
*/
if (size_waste > waste || firsttime)
{
waste = size_waste;
seed_1 = i;
seed_2 = j;
firsttime = false;
}
}
}
2001-03-22 07:01:46 +03:00
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
datum_alpha = (NDBOX *) DatumGetPointer(entryvec->vector[seed_1].key);
datum_l = cube_union(datum_alpha, datum_alpha);
rt_cube_size(datum_l, &size_l);
datum_beta = (NDBOX *) DatumGetPointer(entryvec->vector[seed_2].key);
datum_r = cube_union(datum_beta, datum_beta);
rt_cube_size(datum_r, &size_r);
2001-03-22 07:01:46 +03:00
/*
* Now split up the regions between the two seeds. An important
* property of this split algorithm is that the split vector v has the
* indices of items to be split in order in its left and right
* vectors. We exploit this property by doing a merge in the code
* that actually splits the page.
*
* For efficiency, we also place the new index tuple in this loop. This
* is handled at the very end, when we have placed all the existing
* tuples and i == maxoff + 1.
*/
maxoff = OffsetNumberNext(maxoff);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
/*
* If we've already decided where to place this item, just put it
* on the right list. Otherwise, we need to figure out which page
* needs the least enlargement in order to store the item.
*/
if (i == seed_1)
{
*left++ = i;
v->spl_nleft++;
continue;
}
else if (i == seed_2)
{
*right++ = i;
v->spl_nright++;
continue;
}
/* okay, which page needs least enlargement? */
datum_alpha = (NDBOX *) DatumGetPointer(entryvec->vector[i].key);
union_dl = cube_union(datum_l, datum_alpha);
union_dr = cube_union(datum_r, datum_alpha);
rt_cube_size(union_dl, &size_alpha);
rt_cube_size(union_dr, &size_beta);
2001-03-22 07:01:46 +03:00
/* pick which page to add it to */
if (size_alpha - size_l < size_beta - size_r)
{
pfree(datum_l);
pfree(union_dr);
datum_l = union_dl;
size_l = size_alpha;
*left++ = i;
v->spl_nleft++;
}
else
{
pfree(datum_r);
pfree(union_dl);
datum_r = union_dr;
size_r = size_alpha;
*right++ = i;
v->spl_nright++;
}
}
2001-03-22 07:01:46 +03:00
*left = *right = FirstOffsetNumber; /* sentinel value, see dosplit() */
v->spl_ldatum = PointerGetDatum(datum_l);
v->spl_rdatum = PointerGetDatum(datum_r);
2001-03-22 07:01:46 +03:00
return v;
}
/*
** Equality method
*/
bool *
2001-03-22 07:01:46 +03:00
g_cube_same(NDBOX * b1, NDBOX * b2, bool *result)
{
if (cube_eq(b1, b2))
2001-03-22 07:01:46 +03:00
*result = TRUE;
else
*result = FALSE;
/*
* fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE" ));
*/
return (result);
}
2001-03-22 07:01:46 +03:00
/*
** SUPPORT ROUTINES
*/
2001-03-22 07:01:46 +03:00
bool
g_cube_leaf_consistent(NDBOX * key,
NDBOX * query,
StrategyNumber strategy)
{
2001-03-22 07:01:46 +03:00
bool retval;
/*
* fprintf(stderr, "leaf_consistent, %d\n", strategy);
*/
switch (strategy)
{
case RTLeftStrategyNumber:
retval = (bool) cube_left(key, query);
break;
case RTOverLeftStrategyNumber:
retval = (bool) cube_over_left(key, query);
break;
case RTOverlapStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
case RTOverRightStrategyNumber:
retval = (bool) cube_over_right(key, query);
break;
case RTRightStrategyNumber:
retval = (bool) cube_right(key, query);
break;
case RTSameStrategyNumber:
retval = (bool) cube_eq(key, query);
2001-03-22 07:01:46 +03:00
break;
case RTContainsStrategyNumber:
retval = (bool) cube_contains(key, query);
break;
case RTContainedByStrategyNumber:
retval = (bool) cube_contained(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
2001-03-22 07:01:46 +03:00
bool
g_cube_internal_consistent(NDBOX * key,
NDBOX * query,
StrategyNumber strategy)
{
2001-03-22 07:01:46 +03:00
bool retval;
/*
* fprintf(stderr, "internal_consistent, %d\n", strategy);
*/
switch (strategy)
{
case RTLeftStrategyNumber:
case RTOverLeftStrategyNumber:
retval = (bool) cube_over_left(key, query);
break;
case RTOverlapStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
case RTOverRightStrategyNumber:
case RTRightStrategyNumber:
retval = (bool) cube_right(key, query);
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
retval = (bool) cube_contains(key, query);
break;
case RTContainedByStrategyNumber:
retval = (bool) cube_overlap(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
NDBOX *
2001-03-22 07:01:46 +03:00
g_cube_binary_union(NDBOX * r1, NDBOX * r2, int *sizep)
{
2001-03-22 07:01:46 +03:00
NDBOX *retval;
2001-03-22 07:01:46 +03:00
retval = cube_union(r1, r2);
*sizep = retval->size;
2001-03-22 07:01:46 +03:00
return (retval);
}
/* cube_union */
2001-03-22 07:01:46 +03:00
NDBOX *
cube_union(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
int i;
NDBOX *result;
if (a->dim >= b->dim)
{
result = palloc(a->size);
2002-09-05 00:31:48 +04:00
memset(result, 0, a->size);
2001-03-22 07:01:46 +03:00
result->size = a->size;
result->dim = a->dim;
}
else
{
result = palloc(b->size);
2002-09-05 00:31:48 +04:00
memset(result, 0, b->size);
2001-03-22 07:01:46 +03:00
result->size = b->size;
result->dim = b->dim;
}
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/*
* use the potentially smaller of the two boxes (b) to fill in the
* result, padding absent dimensions with zeroes
*/
for (i = 0; i < b->dim; i++)
{
result->x[i] = Min(b->x[i], b->x[i + b->dim]);
result->x[i + a->dim] = Max(b->x[i], b->x[i + b->dim]);
2001-03-22 07:01:46 +03:00
}
for (i = b->dim; i < a->dim; i++)
{
result->x[i] = 0;
result->x[i + a->dim] = 0;
}
/* compute the union */
for (i = 0; i < a->dim; i++)
2002-09-05 00:31:48 +04:00
{
result->x[i] =
Min(Min(a->x[i], a->x[i + a->dim]), result->x[i]);
result->x[i + a->dim] = Max(Max(a->x[i],
2002-09-05 00:31:48 +04:00
a->x[i + a->dim]), result->x[i + a->dim]);
}
2001-03-22 07:01:46 +03:00
return (result);
}
/* cube_inter */
2001-03-22 07:01:46 +03:00
NDBOX *
cube_inter(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
int i;
NDBOX *result;
if (a->dim >= b->dim)
{
result = palloc(a->size);
2002-09-05 00:31:48 +04:00
memset(result, 0, a->size);
2001-03-22 07:01:46 +03:00
result->size = a->size;
result->dim = a->dim;
}
else
{
result = palloc(b->size);
2002-09-05 00:31:48 +04:00
memset(result, 0, b->size);
2001-03-22 07:01:46 +03:00
result->size = b->size;
result->dim = b->dim;
}
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/*
* use the potentially smaller of the two boxes (b) to fill in the
* result, padding absent dimensions with zeroes
*/
for (i = 0; i < b->dim; i++)
{
result->x[i] = Min(b->x[i], b->x[i + b->dim]);
result->x[i + a->dim] = Max(b->x[i], b->x[i + b->dim]);
2001-03-22 07:01:46 +03:00
}
for (i = b->dim; i < a->dim; i++)
{
result->x[i] = 0;
result->x[i + a->dim] = 0;
}
/* compute the intersection */
for (i = 0; i < a->dim; i++)
2002-09-05 00:31:48 +04:00
{
result->x[i] =
Max(Min(a->x[i], a->x[i + a->dim]), result->x[i]);
result->x[i + a->dim] = Min(Max(a->x[i],
2002-09-05 00:31:48 +04:00
a->x[i + a->dim]), result->x[i + a->dim]);
}
2001-03-22 07:01:46 +03:00
/*
* Is it OK to return a non-null intersection for non-overlapping
* boxes?
*/
return (result);
}
/* cube_size */
double *
2001-03-22 07:01:46 +03:00
cube_size(NDBOX * a)
{
2001-03-22 07:01:46 +03:00
int i,
j;
double *result;
2001-03-22 07:01:46 +03:00
result = (double *) palloc(sizeof(double));
2001-03-22 07:01:46 +03:00
*result = 1.0;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
*result = (*result) * Abs((a->x[j] - a->x[i]));
2001-03-22 07:01:46 +03:00
return (result);
}
void
rt_cube_size(NDBOX * a, double *size)
{
2001-03-22 07:01:46 +03:00
int i,
j;
if (a == (NDBOX *) NULL)
*size = 0.0;
else
{
*size = 1.0;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
*size = (*size) * Abs((a->x[j] - a->x[i]));
2001-03-22 07:01:46 +03:00
}
return;
}
/* The following four methods compare the projections of the boxes
onto the 0-th coordinate axis. These methods are useless for dimensions
larger than 2, but it seems that R-tree requires all its strategies
map to real functions that return something */
2001-03-22 07:01:46 +03:00
/* is the right edge of (a) located to the left of
the right edge of (b)? */
bool
cube_over_left(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
2001-03-22 07:01:46 +03:00
return (FALSE);
return (Min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) <=
Min(b->x[b->dim - 1], b->x[2 * b->dim - 1]) &&
2002-09-05 00:31:48 +04:00
!cube_left(a, b) && !cube_right(a, b));
}
2001-03-22 07:01:46 +03:00
/* is the left edge of (a) located to the right of
the left edge of (b)? */
bool
cube_over_right(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
2001-03-22 07:01:46 +03:00
return (FALSE);
return (Min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) >=
Min(b->x[b->dim - 1], b->x[2 * b->dim - 1]) &&
2002-09-05 00:31:48 +04:00
!cube_left(a, b) && !cube_right(a, b));
}
/* return 'true' if the projection of 'a' is
entirely on the left of the projection of 'b' */
2001-03-22 07:01:46 +03:00
bool
cube_left(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
2001-03-22 07:01:46 +03:00
return (FALSE);
return (Min(a->x[a->dim - 1], a->x[2 * a->dim - 1]) <
Min(b->x[0], b->x[b->dim]));
}
/* return 'true' if the projection of 'a' is
entirely on the right of the projection of 'b' */
2001-03-22 07:01:46 +03:00
bool
cube_right(NDBOX * a, NDBOX * b)
{
if ((a == NULL) || (b == NULL))
2001-03-22 07:01:46 +03:00
return (FALSE);
return (Min(a->x[0], a->x[a->dim]) >
Min(b->x[b->dim - 1], b->x[2 * b->dim - 1]));
}
/* make up a metric in which one box will be 'lower' than the other
-- this can be useful for sorting and to determine uniqueness */
int32
cube_cmp(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
int i;
int dim;
dim = Min(a->dim, b->dim);
2001-03-22 07:01:46 +03:00
/* compare the common dimensions */
for (i = 0; i < dim; i++)
{
if (Min(a->x[i], a->x[a->dim + i]) >
Min(b->x[i], b->x[b->dim + i]))
return 1;
if (Min(a->x[i], a->x[a->dim + i]) <
Min(b->x[i], b->x[b->dim + i]))
return -1;
2001-03-22 07:01:46 +03:00
}
for (i = 0; i < dim; i++)
{
if (Max(a->x[i], a->x[a->dim + i]) >
Max(b->x[i], b->x[b->dim + i]))
return 1;
if (Max(a->x[i], a->x[a->dim + i]) <
Max(b->x[i], b->x[b->dim + i]))
return -1;
2001-03-22 07:01:46 +03:00
}
/* compare extra dimensions to zero */
if (a->dim > b->dim)
{
for (i = dim; i < a->dim; i++)
{
if (Min(a->x[i], a->x[a->dim + i]) > 0)
return 1;
if (Min(a->x[i], a->x[a->dim + i]) < 0)
return -1;
2001-03-22 07:01:46 +03:00
}
for (i = dim; i < a->dim; i++)
2001-03-22 07:01:46 +03:00
{
if (Max(a->x[i], a->x[a->dim + i]) > 0)
return 1;
if (Max(a->x[i], a->x[a->dim + i]) < 0)
return -1;
2001-03-22 07:01:46 +03:00
}
2002-09-05 00:31:48 +04:00
/*
* if all common dimensions are equal, the cube with more
* dimensions wins
*/
return 1;
2001-03-22 07:01:46 +03:00
}
if (a->dim < b->dim)
{
for (i = dim; i < b->dim; i++)
{
if (Min(b->x[i], b->x[b->dim + i]) > 0)
return -1;
if (Min(b->x[i], b->x[b->dim + i]) < 0)
return 1;
2001-03-22 07:01:46 +03:00
}
for (i = dim; i < b->dim; i++)
2001-03-22 07:01:46 +03:00
{
if (Max(b->x[i], b->x[b->dim + i]) > 0)
return -1;
if (Max(b->x[i], b->x[b->dim + i]) < 0)
return 1;
2001-03-22 07:01:46 +03:00
}
2002-09-05 00:31:48 +04:00
/*
* if all common dimensions are equal, the cube with more
* dimensions wins
*/
return -1;
2001-03-22 07:01:46 +03:00
}
/* They're really equal */
return 0;
}
2001-03-22 07:01:46 +03:00
bool
cube_eq(NDBOX * a, NDBOX * b)
{
return (cube_cmp(a, b) == 0);
}
2001-03-22 07:01:46 +03:00
bool
cube_ne(NDBOX * a, NDBOX * b)
{
return (cube_cmp(a, b) != 0);
}
2001-03-22 07:01:46 +03:00
bool
cube_lt(NDBOX * a, NDBOX * b)
{
return (cube_cmp(a, b) < 0);
}
2001-03-22 07:01:46 +03:00
bool
cube_gt(NDBOX * a, NDBOX * b)
{
return (cube_cmp(a, b) > 0);
}
2001-03-22 07:01:46 +03:00
bool
cube_le(NDBOX * a, NDBOX * b)
{
return (cube_cmp(a, b) <= 0);
}
2001-03-22 07:01:46 +03:00
bool
cube_ge(NDBOX * a, NDBOX * b)
{
return (cube_cmp(a, b) >= 0);
}
/* Contains */
/* Box(A) CONTAINS Box(B) IFF pt(A) < pt(B) */
2001-03-22 07:01:46 +03:00
bool
cube_contains(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
int i;
if ((a == NULL) || (b == NULL))
2001-03-22 07:01:46 +03:00
return (FALSE);
if (a->dim < b->dim)
{
/*
* the further comparisons will make sense if the excess
2002-09-05 00:31:48 +04:00
* dimensions of (b) were zeroes Since both UL and UR coordinates
* must be zero, we can check them all without worrying about
* which is which.
2001-03-22 07:01:46 +03:00
*/
for (i = a->dim; i < b->dim; i++)
{
if (b->x[i] != 0)
return (FALSE);
if (b->x[i + b->dim] != 0)
return (FALSE);
}
}
/* Can't care less about the excess dimensions of (a), if any */
for (i = 0; i < Min(a->dim, b->dim); i++)
2001-03-22 07:01:46 +03:00
{
if (Min(a->x[i], a->x[a->dim + i]) >
Min(b->x[i], b->x[b->dim + i]))
2001-03-22 07:01:46 +03:00
return (FALSE);
if (Max(a->x[i], a->x[a->dim + i]) <
Max(b->x[i], b->x[b->dim + i]))
2001-03-22 07:01:46 +03:00
return (FALSE);
}
return (TRUE);
}
/* Contained */
/* Box(A) Contained by Box(B) IFF Box(B) Contains Box(A) */
2001-03-22 07:01:46 +03:00
bool
cube_contained(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
if (cube_contains(b, a) == TRUE)
return (TRUE);
else
return (FALSE);
}
/* Overlap */
/* Box(A) Overlap Box(B) IFF (pt(a)LL < pt(B)UR) && (pt(b)LL < pt(a)UR) */
2001-03-22 07:01:46 +03:00
bool
cube_overlap(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
int i;
/*
* This *very bad* error was found in the source: if ( (a==NULL) ||
* (b=NULL) ) return(FALSE);
*/
if ((a == NULL) || (b == NULL))
2001-03-22 07:01:46 +03:00
return (FALSE);
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
/* compare within the dimensions of (b) */
for (i = 0; i < b->dim; i++)
{
if (Min(a->x[i], a->x[a->dim + i]) >
Max(b->x[i], b->x[b->dim + i]))
2001-03-22 07:01:46 +03:00
return (FALSE);
if (Max(a->x[i], a->x[a->dim + i]) <
Min(b->x[i], b->x[b->dim + i]))
2001-03-22 07:01:46 +03:00
return (FALSE);
}
/* compare to zero those dimensions in (a) absent in (b) */
for (i = b->dim; i < a->dim; i++)
{
if (Min(a->x[i], a->x[a->dim + i]) > 0)
2001-03-22 07:01:46 +03:00
return (FALSE);
if (Max(a->x[i], a->x[a->dim + i]) < 0)
2001-03-22 07:01:46 +03:00
return (FALSE);
}
return (TRUE);
}
/* Distance */
/* The distance is computed as a per axis sum of the squared distances
2001-03-22 07:01:46 +03:00
between 1D projections of the boxes onto Cartesian axes. Assuming zero
distance between overlapping projections, this metric coincides with the
"common sense" geometric distance */
double *
2001-03-22 07:01:46 +03:00
cube_distance(NDBOX * a, NDBOX * b)
{
2001-03-22 07:01:46 +03:00
int i;
double d,
distance;
double *result;
2001-03-22 07:01:46 +03:00
result = (double *) palloc(sizeof(double));
2001-03-22 07:01:46 +03:00
/* swap the box pointers if needed */
if (a->dim < b->dim)
{
NDBOX *tmp = b;
b = a;
a = tmp;
}
distance = 0.0;
/* compute within the dimensions of (b) */
for (i = 0; i < b->dim; i++)
{
d = distance_1D(a->x[i], a->x[i + a->dim], b->x[i], b->x[i + b->dim]);
distance += d * d;
}
/* compute distance to zero for those dimensions in (a) absent in (b) */
for (i = b->dim; i < a->dim; i++)
{
d = distance_1D(a->x[i], a->x[i + a->dim], 0.0, 0.0);
distance += d * d;
}
*result = (double) sqrt(distance);
2001-03-22 07:01:46 +03:00
return (result);
}
static double
distance_1D(double a1, double a2, double b1, double b2)
{
2001-03-22 07:01:46 +03:00
/* interval (a) is entirely on the left of (b) */
if ((a1 <= b1) && (a2 <= b1) && (a1 <= b2) && (a2 <= b2))
return (Min(b1, b2) - Max(a1, a2));
2001-03-22 07:01:46 +03:00
/* interval (a) is entirely on the right of (b) */
if ((a1 > b1) && (a2 > b1) && (a1 > b2) && (a2 > b2))
return (Min(a1, a2) - Max(b1, b2));
2001-03-22 07:01:46 +03:00
/* the rest are all sorts of intersections */
return (0.0);
}
/* Test if a box is also a point */
bool
cube_is_point(NDBOX * a)
{
2002-09-05 00:31:48 +04:00
int i,
j;
for (i = 0, j = a->dim; i < a->dim; i++, j++)
2002-09-05 00:31:48 +04:00
{
if (a->x[i] != a->x[j])
return FALSE;
}
2001-03-22 07:01:46 +03:00
2002-09-05 00:31:48 +04:00
return TRUE;
}
2001-03-22 07:01:46 +03:00
/* Return dimensions in use in the data structure */
int4
cube_dim(NDBOX * a)
{
2002-09-05 00:31:48 +04:00
/* Other things will break before unsigned int doesn't fit. */
return a->dim;
}
2001-03-22 07:01:46 +03:00
/* Return a specific normalized LL coordinate */
double *
cube_ll_coord(NDBOX * a, int4 n)
{
2002-09-05 00:31:48 +04:00
double *result;
result = (double *) palloc(sizeof(double));
2002-09-05 00:31:48 +04:00
*result = 0;
if (a->dim >= n && n > 0)
*result = Min(a->x[n - 1], a->x[a->dim + n - 1]);
2002-09-05 00:31:48 +04:00
return result;
}
/* Return a specific normalized UR coordinate */
double *
cube_ur_coord(NDBOX * a, int4 n)
{
2002-09-05 00:31:48 +04:00
double *result;
result = (double *) palloc(sizeof(double));
2002-09-05 00:31:48 +04:00
*result = 0;
if (a->dim >= n && n > 0)
*result = Max(a->x[n - 1], a->x[a->dim + n - 1]);
2002-09-05 00:31:48 +04:00
return result;
}
/* Increase or decrease box size by a radius in at least n dimensions. */
NDBOX *
cube_enlarge(NDBOX * a, double *r, int4 n)
{
2002-09-05 00:31:48 +04:00
NDBOX *result;
int dim = 0;
int size;
int i,
j,
k;
2002-09-05 00:31:48 +04:00
2003-08-04 04:43:34 +04:00
if (n > CUBE_MAX_DIM)
n = CUBE_MAX_DIM;
2002-09-05 00:31:48 +04:00
if (*r > 0 && n > 0)
dim = n;
if (a->dim > dim)
dim = a->dim;
size = offsetof(NDBOX, x[0]) + sizeof(double) * dim * 2;
result = (NDBOX *) palloc(size);
memset(result, 0, size);
result->size = size;
result->dim = dim;
for (i = 0, j = dim, k = a->dim; i < a->dim; i++, j++, k++)
2002-09-05 00:31:48 +04:00
{
if (a->x[i] >= a->x[k])
2002-09-05 00:31:48 +04:00
{
result->x[i] = a->x[k] - *r;
2002-09-05 00:31:48 +04:00
result->x[j] = a->x[i] + *r;
}
else
{
result->x[i] = a->x[i] - *r;
result->x[j] = a->x[k] + *r;
2002-09-05 00:31:48 +04:00
}
if (result->x[i] > result->x[j])
{
result->x[i] = (result->x[i] + result->x[j]) / 2;
result->x[j] = result->x[i];
}
}
/* dim > a->dim only if r > 0 */
for (; i < dim; i++, j++)
2002-09-05 00:31:48 +04:00
{
result->x[i] = -*r;
result->x[j] = *r;
}
return result;
}
/* Create a one dimensional box with identical upper and lower coordinates */
NDBOX *
cube_f8(double *x1)
{
NDBOX *result;
2003-08-04 04:43:34 +04:00
int size;
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2;
result = (NDBOX *) palloc(size);
memset(result, 0, size);
result->size = size;
result->dim = 1;
2003-08-04 04:43:34 +04:00
result->x[0] = *x1;
result->x[1] = *x1;
return result;
}
/* Create a one dimensional box */
NDBOX *
cube_f8_f8(double *x1, double *x2)
{
NDBOX *result;
2003-08-04 04:43:34 +04:00
int size;
size = offsetof(NDBOX, x[0]) + sizeof(double) * 2;
result = (NDBOX *) palloc(size);
memset(result, 0, size);
result->size = size;
result->dim = 1;
2003-08-04 04:43:34 +04:00
result->x[0] = *x1;
result->x[1] = *x2;
return result;
}
/* Add a dimension to an existing cube with the same values for the new
coordinate */
NDBOX *
2003-08-04 04:43:34 +04:00
cube_c_f8(NDBOX * c, double *x1)
{
NDBOX *result;
2003-08-04 04:43:34 +04:00
int size;
int i;
size = offsetof(NDBOX, x[0]) + sizeof(double) * (c->dim + 1) *2;
result = (NDBOX *) palloc(size);
memset(result, 0, size);
result->size = size;
result->dim = c->dim + 1;
2003-08-04 04:43:34 +04:00
for (i = 0; i < c->dim; i++)
{
result->x[i] = c->x[i];
result->x[result->dim + i] = c->x[c->dim + i];
}
result->x[result->dim - 1] = *x1;
result->x[2 * result->dim - 1] = *x1;
return result;
}
/* Add a dimension to an existing cube */
NDBOX *
2003-08-04 04:43:34 +04:00
cube_c_f8_f8(NDBOX * c, double *x1, double *x2)
{
NDBOX *result;
2003-08-04 04:43:34 +04:00
int size;
int i;
size = offsetof(NDBOX, x[0]) + sizeof(double) * (c->dim + 1) *2;
result = (NDBOX *) palloc(size);
memset(result, 0, size);
result->size = size;
result->dim = c->dim + 1;
2003-08-04 04:43:34 +04:00
for (i = 0; i < c->dim; i++)
{
result->x[i] = c->x[i];
result->x[result->dim + i] = c->x[c->dim + i];
}
result->x[result->dim - 1] = *x1;
result->x[2 * result->dim - 1] = *x2;
return result;
}