nvidia-open-gpu-kernel-modules/kernel-open/nvidia/linux_nvswitch.c

2709 lines
60 KiB
C

/*
* SPDX-FileCopyrightText: Copyright (c) 2016-2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "linux_nvswitch.h"
#include <linux/version.h>
#include "conftest.h"
#include "nvlink_errors.h"
#include "nvlink_linux.h"
#include "nvCpuUuid.h"
#include "nv-time.h"
#include "nvlink_caps.h"
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/cdev.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/poll.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/string.h>
#include <linux/moduleparam.h>
#include <linux/ctype.h>
#include <linux/wait.h>
#include <linux/jiffies.h>
#include "ioctl_nvswitch.h"
static const struct
{
NvlStatus status;
int err;
} nvswitch_status_map[] = {
{ NVL_ERR_GENERIC, -EIO },
{ NVL_NO_MEM, -ENOMEM },
{ NVL_BAD_ARGS, -EINVAL },
{ NVL_ERR_INVALID_STATE, -EIO },
{ NVL_ERR_NOT_SUPPORTED, -EOPNOTSUPP },
{ NVL_NOT_FOUND, -EINVAL },
{ NVL_ERR_STATE_IN_USE, -EBUSY },
{ NVL_ERR_NOT_IMPLEMENTED, -ENOSYS },
{ NVL_ERR_INSUFFICIENT_PERMISSIONS, -EPERM },
{ NVL_ERR_OPERATING_SYSTEM, -EIO },
{ NVL_MORE_PROCESSING_REQUIRED, -EAGAIN },
{ NVL_SUCCESS, 0 },
};
int
nvswitch_map_status
(
NvlStatus status
)
{
int err = -EIO;
NvU32 i;
NvU32 limit = sizeof(nvswitch_status_map) / sizeof(nvswitch_status_map[0]);
for (i = 0; i < limit; i++)
{
if (nvswitch_status_map[i].status == status ||
nvswitch_status_map[i].status == -status)
{
err = nvswitch_status_map[i].err;
break;
}
}
return err;
}
#if !defined(IRQF_SHARED)
#define IRQF_SHARED SA_SHIRQ
#endif
#define NV_FILE_INODE(file) (file)->f_inode
static int nvswitch_probe(struct pci_dev *, const struct pci_device_id *);
static void nvswitch_remove(struct pci_dev *);
static struct pci_device_id nvswitch_pci_table[] =
{
{
.vendor = PCI_VENDOR_ID_NVIDIA,
.device = PCI_ANY_ID,
.subvendor = PCI_ANY_ID,
.subdevice = PCI_ANY_ID,
.class = (PCI_CLASS_BRIDGE_OTHER << 8),
.class_mask = ~0
},
{}
};
static struct pci_driver nvswitch_pci_driver =
{
.name = NVSWITCH_DRIVER_NAME,
.id_table = nvswitch_pci_table,
.probe = nvswitch_probe,
.remove = nvswitch_remove,
.shutdown = nvswitch_remove
};
//
// nvidia_nvswitch_mknod uses minor number 255 to create nvidia-nvswitchctl
// node. Hence, if NVSWITCH_CTL_MINOR is changed, then NV_NVSWITCH_CTL_MINOR
// should be updated. See nvdia-modprobe-utils.h
//
#define NVSWITCH_CTL_MINOR 255
#define NVSWITCH_MINOR_COUNT (NVSWITCH_CTL_MINOR + 1)
// 32 bit hex value - including 0x prefix. (10 chars)
#define NVSWITCH_REGKEY_VALUE_LEN 10
static char *NvSwitchRegDwords;
module_param(NvSwitchRegDwords, charp, 0);
MODULE_PARM_DESC(NvSwitchRegDwords, "NvSwitch regkey");
static char *NvSwitchBlacklist;
module_param(NvSwitchBlacklist, charp, 0);
MODULE_PARM_DESC(NvSwitchBlacklist, "NvSwitchBlacklist=uuid[,uuid...]");
//
// Locking:
// We handle nvswitch driver locking in the OS layer. The nvswitch lib
// layer does not have its own locking. It relies on the OS layer for
// atomicity.
//
// All locking is done with sleep locks. We use threaded MSI interrupts to
// facilitate this.
//
// When handling a request from a user context we use the interruptible
// version to enable a quick ^C return if there is lock contention.
//
// nvswitch.driver_mutex is used to protect driver's global state, "struct
// NVSWITCH". The driver_mutex is taken during .probe, .remove, .open,
// .close, and nvswitch-ctl .ioctl operations.
//
// nvswitch_dev.device_mutex is used to protect per-device state, "struct
// NVSWITCH_DEV", once a device is opened. The device_mutex is taken during
// .ioctl, .poll and other background tasks.
//
// The kernel guarantees that .close won't happen while .ioctl and .poll
// are going on and without successful .open one can't execute any file ops.
// This behavior guarantees correctness of the locking model.
//
// If .close is invoked and holding the lock which is also used by threaded
// tasks such as interrupt, driver will deadlock while trying to stop such
// tasks. For example, when threaded interrupts are enabled, free_irq() calls
// kthread_stop() to flush pending interrupt tasks. The locking model
// makes sure that such deadlock cases don't happen.
//
// Lock ordering:
// nvswitch.driver_mutex
// nvswitch_dev.device_mutex
//
// Note:
// Due to bug 2856314, nvswitch_dev.device_mutex is taken when calling
// nvswitch_post_init_device() in nvswitch_probe().
//
// Per-chip driver state is defined in linux_nvswitch.h
// Global driver state
typedef struct
{
NvBool initialized;
struct cdev cdev;
struct cdev cdev_ctl;
dev_t devno;
atomic_t count;
struct mutex driver_mutex;
struct list_head devices;
} NVSWITCH;
static NVSWITCH nvswitch = {0};
// NvSwitch event
typedef struct nvswitch_event_t
{
wait_queue_head_t wait_q_event;
NvBool event_pending;
} nvswitch_event_t;
typedef struct nvswitch_file_private
{
NVSWITCH_DEV *nvswitch_dev;
nvswitch_event_t file_event;
struct
{
/* A duped file descriptor for fabric_mgmt capability */
int fabric_mgmt;
} capability_fds;
} nvswitch_file_private_t;
#define NVSWITCH_SET_FILE_PRIVATE(filp, data) ((filp)->private_data = (data))
#define NVSWITCH_GET_FILE_PRIVATE(filp) ((nvswitch_file_private_t *)(filp)->private_data)
static int nvswitch_device_open(struct inode *inode, struct file *file);
static int nvswitch_device_release(struct inode *inode, struct file *file);
static unsigned int nvswitch_device_poll(struct file *file, poll_table *wait);
static int nvswitch_device_ioctl(struct inode *inode,
struct file *file,
unsigned int cmd,
unsigned long arg);
static long nvswitch_device_unlocked_ioctl(struct file *file,
unsigned int cmd,
unsigned long arg);
static int nvswitch_ctl_ioctl(struct inode *inode,
struct file *file,
unsigned int cmd,
unsigned long arg);
static long nvswitch_ctl_unlocked_ioctl(struct file *file,
unsigned int cmd,
unsigned long arg);
struct file_operations device_fops =
{
.owner = THIS_MODULE,
.unlocked_ioctl = nvswitch_device_unlocked_ioctl,
.open = nvswitch_device_open,
.release = nvswitch_device_release,
.poll = nvswitch_device_poll
};
struct file_operations ctl_fops =
{
.owner = THIS_MODULE,
.unlocked_ioctl = nvswitch_ctl_unlocked_ioctl,
};
static int nvswitch_initialize_device_interrupt(NVSWITCH_DEV *nvswitch_dev);
static void nvswitch_shutdown_device_interrupt(NVSWITCH_DEV *nvswitch_dev);
static void nvswitch_load_bar_info(NVSWITCH_DEV *nvswitch_dev);
static void nvswitch_task_dispatch(NVSWITCH_DEV *nvswitch_dev);
static NvBool
nvswitch_is_device_blacklisted
(
NVSWITCH_DEV *nvswitch_dev
)
{
NVSWITCH_DEVICE_FABRIC_STATE device_fabric_state = 0;
NvlStatus status;
status = nvswitch_lib_read_fabric_state(nvswitch_dev->lib_device,
&device_fabric_state, NULL, NULL);
if (status != NVL_SUCCESS)
{
printk(KERN_INFO "%s: Failed to read fabric state, %x\n", nvswitch_dev->name, status);
return NV_FALSE;
}
return device_fabric_state == NVSWITCH_DEVICE_FABRIC_STATE_BLACKLISTED;
}
static void
nvswitch_deinit_background_tasks
(
NVSWITCH_DEV *nvswitch_dev
)
{
NV_ATOMIC_SET(nvswitch_dev->task_q_ready, 0);
wake_up(&nvswitch_dev->wait_q_shutdown);
nv_kthread_q_stop(&nvswitch_dev->task_q);
}
static int
nvswitch_init_background_tasks
(
NVSWITCH_DEV *nvswitch_dev
)
{
int rc;
rc = nv_kthread_q_init(&nvswitch_dev->task_q, nvswitch_dev->sname);
if (rc)
{
printk(KERN_ERR "%s: Failed to create task queue\n", nvswitch_dev->name);
return rc;
}
NV_ATOMIC_SET(nvswitch_dev->task_q_ready, 1);
nv_kthread_q_item_init(&nvswitch_dev->task_item,
(nv_q_func_t) &nvswitch_task_dispatch,
nvswitch_dev);
if (!nv_kthread_q_schedule_q_item(&nvswitch_dev->task_q,
&nvswitch_dev->task_item))
{
printk(KERN_ERR "%s: Failed to schedule an item\n",nvswitch_dev->name);
rc = -ENODEV;
goto init_background_task_failed;
}
return 0;
init_background_task_failed:
nvswitch_deinit_background_tasks(nvswitch_dev);
return rc;
}
static NVSWITCH_DEV*
nvswitch_find_device(int minor)
{
struct list_head *cur;
NVSWITCH_DEV *nvswitch_dev = NULL;
list_for_each(cur, &nvswitch.devices)
{
nvswitch_dev = list_entry(cur, NVSWITCH_DEV, list_node);
if (nvswitch_dev->minor == minor)
{
return nvswitch_dev;
}
}
return NULL;
}
static int
nvswitch_find_minor(void)
{
struct list_head *cur;
NVSWITCH_DEV *nvswitch_dev;
int minor;
int minor_in_use;
for (minor = 0; minor < NVSWITCH_DEVICE_INSTANCE_MAX; minor++)
{
minor_in_use = 0;
list_for_each(cur, &nvswitch.devices)
{
nvswitch_dev = list_entry(cur, NVSWITCH_DEV, list_node);
if (nvswitch_dev->minor == minor)
{
minor_in_use = 1;
break;
}
}
if (!minor_in_use)
{
return minor;
}
}
return NVSWITCH_DEVICE_INSTANCE_MAX;
}
static int
nvswitch_init_i2c_adapters
(
NVSWITCH_DEV *nvswitch_dev
)
{
NvlStatus retval;
NvU32 i, valid_ports_mask;
struct i2c_adapter *adapter;
nvswitch_i2c_adapter_entry *adapter_entry;
if (!nvswitch_lib_is_i2c_supported(nvswitch_dev->lib_device))
{
return 0;
}
retval = nvswitch_lib_get_valid_ports_mask(nvswitch_dev->lib_device,
&valid_ports_mask);
if (retval != NVL_SUCCESS)
{
printk(KERN_ERR "Failed to get valid I2C ports mask.\n");
return -ENODEV;
}
FOR_EACH_INDEX_IN_MASK(32, i, valid_ports_mask)
{
adapter = nvswitch_i2c_add_adapter(nvswitch_dev, i);
if (adapter == NULL)
{
continue;
}
adapter_entry = nvswitch_os_malloc(sizeof(*adapter_entry));
if (adapter_entry == NULL)
{
printk(KERN_ERR "Failed to create I2C adapter entry.\n");
nvswitch_i2c_del_adapter(adapter);
continue;
}
adapter_entry->adapter = adapter;
list_add_tail(&adapter_entry->entry, &nvswitch_dev->i2c_adapter_list);
}
FOR_EACH_INDEX_IN_MASK_END;
return 0;
}
static void
nvswitch_deinit_i2c_adapters
(
NVSWITCH_DEV *nvswitch_dev
)
{
nvswitch_i2c_adapter_entry *curr;
nvswitch_i2c_adapter_entry *next;
list_for_each_entry_safe(curr,
next,
&nvswitch_dev->i2c_adapter_list,
entry)
{
nvswitch_i2c_del_adapter(curr->adapter);
list_del(&curr->entry);
nvswitch_os_free(curr);
}
}
static int
nvswitch_init_device
(
NVSWITCH_DEV *nvswitch_dev
)
{
struct pci_dev *pci_dev = nvswitch_dev->pci_dev;
NvlStatus retval;
int rc;
INIT_LIST_HEAD(&nvswitch_dev->i2c_adapter_list);
retval = nvswitch_lib_register_device(NV_PCI_DOMAIN_NUMBER(pci_dev),
NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev),
PCI_FUNC(pci_dev->devfn),
pci_dev->device,
pci_dev,
nvswitch_dev->minor,
&nvswitch_dev->lib_device);
if (NVL_SUCCESS != retval)
{
printk(KERN_ERR "%s: Failed to register device : %d\n",
nvswitch_dev->name,
retval);
return -ENODEV;
}
nvswitch_load_bar_info(nvswitch_dev);
retval = nvswitch_lib_initialize_device(nvswitch_dev->lib_device);
if (NVL_SUCCESS != retval)
{
printk(KERN_ERR "%s: Failed to initialize device : %d\n",
nvswitch_dev->name,
retval);
rc = -ENODEV;
goto init_device_failed;
}
nvswitch_lib_get_uuid(nvswitch_dev->lib_device, &nvswitch_dev->uuid);
if (nvswitch_lib_get_bios_version(nvswitch_dev->lib_device,
&nvswitch_dev->bios_ver) != NVL_SUCCESS)
{
nvswitch_dev->bios_ver = 0;
}
if (nvswitch_lib_get_physid(nvswitch_dev->lib_device,
&nvswitch_dev->phys_id) != NVL_SUCCESS)
{
nvswitch_dev->phys_id = NVSWITCH_INVALID_PHYS_ID;
}
rc = nvswitch_initialize_device_interrupt(nvswitch_dev);
if (rc)
{
printk(KERN_ERR "%s: Failed to initialize interrupt : %d\n",
nvswitch_dev->name,
rc);
goto init_intr_failed;
}
if (nvswitch_is_device_blacklisted(nvswitch_dev))
{
printk(KERN_ERR "%s: Blacklisted nvswitch device\n", nvswitch_dev->name);
// Keep device registered for HAL access and Fabric State updates
return 0;
}
nvswitch_lib_enable_interrupts(nvswitch_dev->lib_device);
return 0;
init_intr_failed:
nvswitch_lib_shutdown_device(nvswitch_dev->lib_device);
init_device_failed:
nvswitch_lib_unregister_device(nvswitch_dev->lib_device);
nvswitch_dev->lib_device = NULL;
return rc;
}
static int
nvswitch_post_init_device
(
NVSWITCH_DEV *nvswitch_dev
)
{
int rc;
NvlStatus retval;
rc = nvswitch_init_i2c_adapters(nvswitch_dev);
if (rc < 0)
{
return rc;
}
retval = nvswitch_lib_post_init_device(nvswitch_dev->lib_device);
if (retval != NVL_SUCCESS)
{
return -ENODEV;
}
return 0;
}
static void
nvswitch_post_init_blacklisted
(
NVSWITCH_DEV *nvswitch_dev
)
{
nvswitch_lib_post_init_blacklist_device(nvswitch_dev->lib_device);
}
static void
nvswitch_deinit_device
(
NVSWITCH_DEV *nvswitch_dev
)
{
nvswitch_deinit_i2c_adapters(nvswitch_dev);
nvswitch_lib_disable_interrupts(nvswitch_dev->lib_device);
nvswitch_shutdown_device_interrupt(nvswitch_dev);
nvswitch_lib_shutdown_device(nvswitch_dev->lib_device);
nvswitch_lib_unregister_device(nvswitch_dev->lib_device);
nvswitch_dev->lib_device = NULL;
}
static void
nvswitch_init_file_event
(
nvswitch_file_private_t *private
)
{
init_waitqueue_head(&private->file_event.wait_q_event);
private->file_event.event_pending = NV_FALSE;
}
//
// Basic device open to support IOCTL interface
//
static int
nvswitch_device_open
(
struct inode *inode,
struct file *file
)
{
NVSWITCH_DEV *nvswitch_dev;
int rc = 0;
nvswitch_file_private_t *private = NULL;
//
// Get the major/minor device
// We might want this for routing requests to multiple nvswitches
//
printk(KERN_INFO "nvidia-nvswitch%d: open (major=%d)\n",
MINOR(inode->i_rdev),
MAJOR(inode->i_rdev));
rc = mutex_lock_interruptible(&nvswitch.driver_mutex);
if (rc)
{
return rc;
}
nvswitch_dev = nvswitch_find_device(MINOR(inode->i_rdev));
if (!nvswitch_dev)
{
rc = -ENODEV;
goto done;
}
if (nvswitch_is_device_blacklisted(nvswitch_dev))
{
rc = -ENODEV;
goto done;
}
private = nvswitch_os_malloc(sizeof(*private));
if (private == NULL)
{
rc = -ENOMEM;
goto done;
}
private->nvswitch_dev = nvswitch_dev;
nvswitch_init_file_event(private);
private->capability_fds.fabric_mgmt = -1;
NVSWITCH_SET_FILE_PRIVATE(file, private);
NV_ATOMIC_INC(nvswitch_dev->ref_count);
done:
mutex_unlock(&nvswitch.driver_mutex);
return rc;
}
//
// Basic device release to support IOCTL interface
//
static int
nvswitch_device_release
(
struct inode *inode,
struct file *file
)
{
nvswitch_file_private_t *private = NVSWITCH_GET_FILE_PRIVATE(file);
NVSWITCH_DEV *nvswitch_dev = private->nvswitch_dev;
printk(KERN_INFO "nvidia-nvswitch%d: release (major=%d)\n",
MINOR(inode->i_rdev),
MAJOR(inode->i_rdev));
mutex_lock(&nvswitch.driver_mutex);
nvswitch_lib_remove_client_events(nvswitch_dev->lib_device, (void *)private);
//
// If there are no outstanding references and the device is marked
// unusable, free it.
//
if (NV_ATOMIC_DEC_AND_TEST(nvswitch_dev->ref_count) &&
nvswitch_dev->unusable)
{
kfree(nvswitch_dev);
}
if (private->capability_fds.fabric_mgmt > 0)
{
nvlink_cap_release(private->capability_fds.fabric_mgmt);
private->capability_fds.fabric_mgmt = -1;
}
nvswitch_os_free(file->private_data);
NVSWITCH_SET_FILE_PRIVATE(file, NULL);
mutex_unlock(&nvswitch.driver_mutex);
return 0;
}
static unsigned int
nvswitch_device_poll
(
struct file *file,
poll_table *wait
)
{
nvswitch_file_private_t *private = NVSWITCH_GET_FILE_PRIVATE(file);
NVSWITCH_DEV *nvswitch_dev = private->nvswitch_dev;
int rc = 0;
NvlStatus status;
struct NVSWITCH_CLIENT_EVENT *client_event;
rc = mutex_lock_interruptible(&nvswitch_dev->device_mutex);
if (rc)
{
return rc;
}
if (nvswitch_dev->unusable)
{
printk(KERN_INFO "%s: a stale fd detected\n", nvswitch_dev->name);
rc = POLLHUP;
goto done;
}
status = nvswitch_lib_get_client_event(nvswitch_dev->lib_device,
(void *) private, &client_event);
if (status != NVL_SUCCESS)
{
printk(KERN_INFO "%s: no events registered for fd\n", nvswitch_dev->name);
rc = POLLERR;
goto done;
}
poll_wait(file, &private->file_event.wait_q_event, wait);
if (private->file_event.event_pending)
{
rc = POLLPRI | POLLIN;
private->file_event.event_pending = NV_FALSE;
}
done:
mutex_unlock(&nvswitch_dev->device_mutex);
return rc;
}
typedef struct {
void *kernel_params; // Kernel copy of ioctl parameters
unsigned long kernel_params_size; // Size of ioctl params according to user
} IOCTL_STATE;
//
// Clean up any dynamically allocated memory for ioctl state
//
static void
nvswitch_ioctl_state_cleanup
(
IOCTL_STATE *state
)
{
kfree(state->kernel_params);
state->kernel_params = NULL;
}
//
// Initialize buffer state for ioctl.
//
// This handles allocating memory and copying user data into kernel space. The
// ioctl params structure only is supported. Nested data pointers are not handled.
//
// State is maintained in the IOCTL_STATE struct for use by the ioctl, _sync and
// _cleanup calls.
//
static int
nvswitch_ioctl_state_start(IOCTL_STATE *state, int cmd, unsigned long user_arg)
{
int rc;
state->kernel_params = NULL;
state->kernel_params_size = _IOC_SIZE(cmd);
if (0 == state->kernel_params_size)
{
return 0;
}
state->kernel_params = kzalloc(state->kernel_params_size, GFP_KERNEL);
if (NULL == state->kernel_params)
{
rc = -ENOMEM;
goto nvswitch_ioctl_state_start_fail;
}
// Copy params to kernel buffers. Simple _IOR() ioctls can skip this step.
if (_IOC_DIR(cmd) & _IOC_WRITE)
{
rc = copy_from_user(state->kernel_params,
(const void *)user_arg,
state->kernel_params_size);
if (rc)
{
rc = -EFAULT;
goto nvswitch_ioctl_state_start_fail;
}
}
return 0;
nvswitch_ioctl_state_start_fail:
nvswitch_ioctl_state_cleanup(state);
return rc;
}
//
// Synchronize any ioctl output in the kernel buffers to the user mode buffers.
//
static int
nvswitch_ioctl_state_sync
(
IOCTL_STATE *state,
int cmd,
unsigned long user_arg
)
{
int rc;
// Nothing to do if no buffer or write-only ioctl
if ((0 == state->kernel_params_size) || (0 == (_IOC_DIR(cmd) & _IOC_READ)))
{
return 0;
}
// Copy params structure back to user mode
rc = copy_to_user((void *)user_arg,
state->kernel_params,
state->kernel_params_size);
if (rc)
{
rc = -EFAULT;
}
return rc;
}
static int
nvswitch_device_ioctl
(
struct inode *inode,
struct file *file,
unsigned int cmd,
unsigned long arg
)
{
nvswitch_file_private_t *private = NVSWITCH_GET_FILE_PRIVATE(file);
NVSWITCH_DEV *nvswitch_dev = private->nvswitch_dev;
IOCTL_STATE state = {0};
NvlStatus retval;
int rc = 0;
if (_IOC_TYPE(cmd) != NVSWITCH_DEV_IO_TYPE)
{
return -EINVAL;
}
rc = mutex_lock_interruptible(&nvswitch_dev->device_mutex);
if (rc)
{
return rc;
}
if (nvswitch_dev->unusable)
{
printk(KERN_INFO "%s: a stale fd detected\n", nvswitch_dev->name);
rc = -ENODEV;
goto nvswitch_device_ioctl_exit;
}
if (nvswitch_is_device_blacklisted(nvswitch_dev))
{
printk(KERN_INFO "%s: ioctl attempted on blacklisted device\n", nvswitch_dev->name);
rc = -ENODEV;
goto nvswitch_device_ioctl_exit;
}
rc = nvswitch_ioctl_state_start(&state, cmd, arg);
if (rc)
{
goto nvswitch_device_ioctl_exit;
}
retval = nvswitch_lib_ctrl(nvswitch_dev->lib_device,
_IOC_NR(cmd),
state.kernel_params,
state.kernel_params_size,
file->private_data);
rc = nvswitch_map_status(retval);
if (!rc)
{
rc = nvswitch_ioctl_state_sync(&state, cmd, arg);
}
nvswitch_ioctl_state_cleanup(&state);
nvswitch_device_ioctl_exit:
mutex_unlock(&nvswitch_dev->device_mutex);
return rc;
}
static long
nvswitch_device_unlocked_ioctl
(
struct file *file,
unsigned int cmd,
unsigned long arg
)
{
return nvswitch_device_ioctl(NV_FILE_INODE(file), file, cmd, arg);
}
static int
nvswitch_ctl_check_version(NVSWITCH_CHECK_VERSION_PARAMS *p)
{
NvlStatus retval;
p->is_compatible = 0;
p->user.version[NVSWITCH_VERSION_STRING_LENGTH - 1] = '\0';
retval = nvswitch_lib_check_api_version(p->user.version, p->kernel.version,
NVSWITCH_VERSION_STRING_LENGTH);
if (retval == NVL_SUCCESS)
{
p->is_compatible = 1;
}
else if (retval == -NVL_ERR_NOT_SUPPORTED)
{
printk(KERN_ERR "nvidia-nvswitch: Version mismatch, "
"kernel version %s user version %s\n",
p->kernel.version, p->user.version);
}
else
{
// An unexpected failure
return nvswitch_map_status(retval);
}
return 0;
}
static void
nvswitch_ctl_get_devices(NVSWITCH_GET_DEVICES_PARAMS *p)
{
int index = 0;
NVSWITCH_DEV *nvswitch_dev;
struct list_head *cur;
BUILD_BUG_ON(NVSWITCH_DEVICE_INSTANCE_MAX != NVSWITCH_MAX_DEVICES);
list_for_each(cur, &nvswitch.devices)
{
nvswitch_dev = list_entry(cur, NVSWITCH_DEV, list_node);
p->info[index].deviceInstance = nvswitch_dev->minor;
p->info[index].pciDomain = NV_PCI_DOMAIN_NUMBER(nvswitch_dev->pci_dev);
p->info[index].pciBus = NV_PCI_BUS_NUMBER(nvswitch_dev->pci_dev);
p->info[index].pciDevice = NV_PCI_SLOT_NUMBER(nvswitch_dev->pci_dev);
p->info[index].pciFunction = PCI_FUNC(nvswitch_dev->pci_dev->devfn);
index++;
}
p->deviceCount = index;
}
static void
nvswitch_ctl_get_devices_v2(NVSWITCH_GET_DEVICES_V2_PARAMS *p)
{
int index = 0;
NVSWITCH_DEV *nvswitch_dev;
struct list_head *cur;
BUILD_BUG_ON(NVSWITCH_DEVICE_INSTANCE_MAX != NVSWITCH_MAX_DEVICES);
list_for_each(cur, &nvswitch.devices)
{
nvswitch_dev = list_entry(cur, NVSWITCH_DEV, list_node);
p->info[index].deviceInstance = nvswitch_dev->minor;
memcpy(&p->info[index].uuid, &nvswitch_dev->uuid, sizeof(nvswitch_dev->uuid));
p->info[index].pciDomain = NV_PCI_DOMAIN_NUMBER(nvswitch_dev->pci_dev);
p->info[index].pciBus = NV_PCI_BUS_NUMBER(nvswitch_dev->pci_dev);
p->info[index].pciDevice = NV_PCI_SLOT_NUMBER(nvswitch_dev->pci_dev);
p->info[index].pciFunction = PCI_FUNC(nvswitch_dev->pci_dev->devfn);
p->info[index].physId = nvswitch_dev->phys_id;
if (nvswitch_dev->lib_device != NULL)
{
mutex_lock(&nvswitch_dev->device_mutex);
(void)nvswitch_lib_read_fabric_state(nvswitch_dev->lib_device,
&p->info[index].deviceState,
&p->info[index].deviceReason,
&p->info[index].driverState);
p->info[index].bTnvlEnabled = nvswitch_lib_is_tnvl_enabled(nvswitch_dev->lib_device);
mutex_unlock(&nvswitch_dev->device_mutex);
}
index++;
}
p->deviceCount = index;
}
#define NVSWITCH_CTL_CHECK_PARAMS(type, size) (sizeof(type) == size ? 0 : -EINVAL)
static int
nvswitch_ctl_cmd_dispatch
(
unsigned int cmd,
void *params,
unsigned int param_size
)
{
int rc;
switch(cmd)
{
case CTRL_NVSWITCH_CHECK_VERSION:
rc = NVSWITCH_CTL_CHECK_PARAMS(NVSWITCH_CHECK_VERSION_PARAMS,
param_size);
if (!rc)
{
rc = nvswitch_ctl_check_version(params);
}
break;
case CTRL_NVSWITCH_GET_DEVICES:
rc = NVSWITCH_CTL_CHECK_PARAMS(NVSWITCH_GET_DEVICES_PARAMS,
param_size);
if (!rc)
{
nvswitch_ctl_get_devices(params);
}
break;
case CTRL_NVSWITCH_GET_DEVICES_V2:
rc = NVSWITCH_CTL_CHECK_PARAMS(NVSWITCH_GET_DEVICES_V2_PARAMS,
param_size);
if (!rc)
{
nvswitch_ctl_get_devices_v2(params);
}
break;
default:
rc = -EINVAL;
break;
}
return rc;
}
static int
nvswitch_ctl_ioctl
(
struct inode *inode,
struct file *file,
unsigned int cmd,
unsigned long arg
)
{
int rc = 0;
IOCTL_STATE state = {0};
if (_IOC_TYPE(cmd) != NVSWITCH_CTL_IO_TYPE)
{
return -EINVAL;
}
rc = mutex_lock_interruptible(&nvswitch.driver_mutex);
if (rc)
{
return rc;
}
rc = nvswitch_ioctl_state_start(&state, cmd, arg);
if (rc)
{
goto nvswitch_ctl_ioctl_exit;
}
rc = nvswitch_ctl_cmd_dispatch(_IOC_NR(cmd),
state.kernel_params,
state.kernel_params_size);
if (!rc)
{
rc = nvswitch_ioctl_state_sync(&state, cmd, arg);
}
nvswitch_ioctl_state_cleanup(&state);
nvswitch_ctl_ioctl_exit:
mutex_unlock(&nvswitch.driver_mutex);
return rc;
}
static long
nvswitch_ctl_unlocked_ioctl
(
struct file *file,
unsigned int cmd,
unsigned long arg
)
{
return nvswitch_ctl_ioctl(NV_FILE_INODE(file), file, cmd, arg);
}
static irqreturn_t
nvswitch_isr_pending
(
int irq,
void *arg
)
{
NVSWITCH_DEV *nvswitch_dev = (NVSWITCH_DEV *)arg;
NvlStatus retval;
//
// On silicon MSI must be enabled. Since interrupts will not be shared
// with MSI, we can simply signal the thread.
//
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_MSI)
{
return IRQ_WAKE_THREAD;
}
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_PIN)
{
//
// We do not take mutex in the interrupt context. The interrupt
// check is safe to driver state.
//
retval = nvswitch_lib_check_interrupts(nvswitch_dev->lib_device);
// Wake interrupt thread if there is an interrupt pending
if (-NVL_MORE_PROCESSING_REQUIRED == retval)
{
nvswitch_lib_disable_interrupts(nvswitch_dev->lib_device);
return IRQ_WAKE_THREAD;
}
// PCI errors are handled else where.
if (-NVL_PCI_ERROR == retval)
{
return IRQ_NONE;
}
if (NVL_SUCCESS != retval)
{
pr_err("nvidia-nvswitch: unrecoverable error in ISR\n");
NVSWITCH_OS_ASSERT(0);
}
return IRQ_NONE;
}
pr_err("nvidia-nvswitch: unsupported IRQ mechanism in ISR\n");
NVSWITCH_OS_ASSERT(0);
return IRQ_NONE;
}
static irqreturn_t
nvswitch_isr_thread
(
int irq,
void *arg
)
{
NVSWITCH_DEV *nvswitch_dev = (NVSWITCH_DEV *)arg;
NvlStatus retval;
mutex_lock(&nvswitch_dev->device_mutex);
retval = nvswitch_lib_service_interrupts(nvswitch_dev->lib_device);
wake_up(&nvswitch_dev->wait_q_errors);
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_PIN)
{
nvswitch_lib_enable_interrupts(nvswitch_dev->lib_device);
}
mutex_unlock(&nvswitch_dev->device_mutex);
if (WARN_ON(retval != NVL_SUCCESS))
{
printk(KERN_ERR "%s: Interrupts disabled to avoid a storm\n",
nvswitch_dev->name);
}
return IRQ_HANDLED;
}
static void
nvswitch_task_dispatch
(
NVSWITCH_DEV *nvswitch_dev
)
{
NvU64 nsec;
NvU64 timeout;
NvS64 rc;
if (NV_ATOMIC_READ(nvswitch_dev->task_q_ready) == 0)
{
return;
}
mutex_lock(&nvswitch_dev->device_mutex);
nsec = nvswitch_lib_deferred_task_dispatcher(nvswitch_dev->lib_device);
mutex_unlock(&nvswitch_dev->device_mutex);
timeout = usecs_to_jiffies(nsec / NSEC_PER_USEC);
rc = wait_event_interruptible_timeout(nvswitch_dev->wait_q_shutdown,
(NV_ATOMIC_READ(nvswitch_dev->task_q_ready) == 0),
timeout);
//
// These background tasks should rarely, if ever, get interrupted. We use
// the "interruptible" variant of wait_event in order to avoid contributing
// to the system load average (/proc/loadavg), and to avoid softlockup
// warnings that can occur if a kernel thread lingers too long in an
// uninterruptible state. If this does get interrupted, we'd like to debug
// and find out why, so WARN in that case.
//
WARN_ON(rc < 0);
//
// Schedule a work item only if the above actually timed out or got
// interrupted, without the condition becoming true.
//
if (rc <= 0)
{
if (!nv_kthread_q_schedule_q_item(&nvswitch_dev->task_q,
&nvswitch_dev->task_item))
{
printk(KERN_ERR "%s: Failed to re-schedule background task\n",
nvswitch_dev->name);
}
}
}
static int
nvswitch_probe
(
struct pci_dev *pci_dev,
const struct pci_device_id *id_table
)
{
NVSWITCH_DEV *nvswitch_dev = NULL;
int rc = 0;
int minor;
if (!nvswitch_lib_validate_device_id(pci_dev->device))
{
return -EINVAL;
}
printk(KERN_INFO "nvidia-nvswitch: Probing device %04x:%02x:%02x.%x, "
"Vendor Id = 0x%x, Device Id = 0x%x, Class = 0x%x \n",
NV_PCI_DOMAIN_NUMBER(pci_dev),
NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev),
PCI_FUNC(pci_dev->devfn),
pci_dev->vendor,
pci_dev->device,
pci_dev->class);
mutex_lock(&nvswitch.driver_mutex);
minor = nvswitch_find_minor();
if (minor >= NVSWITCH_DEVICE_INSTANCE_MAX)
{
rc = -ERANGE;
goto find_minor_failed;
}
nvswitch_dev = kzalloc(sizeof(*nvswitch_dev), GFP_KERNEL);
if (NULL == nvswitch_dev)
{
rc = -ENOMEM;
goto kzalloc_failed;
}
mutex_init(&nvswitch_dev->device_mutex);
init_waitqueue_head(&nvswitch_dev->wait_q_errors);
init_waitqueue_head(&nvswitch_dev->wait_q_shutdown);
snprintf(nvswitch_dev->name, sizeof(nvswitch_dev->name),
NVSWITCH_DRIVER_NAME "%d", minor);
snprintf(nvswitch_dev->sname, sizeof(nvswitch_dev->sname),
NVSWITCH_SHORT_NAME "%d", minor);
rc = pci_enable_device(pci_dev);
if (rc)
{
printk(KERN_ERR "%s: Failed to enable PCI device : %d\n",
nvswitch_dev->name,
rc);
goto pci_enable_device_failed;
}
pci_set_master(pci_dev);
rc = pci_request_regions(pci_dev, nvswitch_dev->name);
if (rc)
{
printk(KERN_ERR "%s: Failed to request memory regions : %d\n",
nvswitch_dev->name,
rc);
goto pci_request_regions_failed;
}
nvswitch_dev->bar0 = pci_iomap(pci_dev, 0, 0);
if (!nvswitch_dev->bar0)
{
rc = -ENOMEM;
printk(KERN_ERR "%s: Failed to map BAR0 region : %d\n",
nvswitch_dev->name,
rc);
goto pci_iomap_failed;
}
nvswitch_dev->pci_dev = pci_dev;
nvswitch_dev->minor = minor;
rc = nvswitch_init_device(nvswitch_dev);
if (rc)
{
printk(KERN_ERR "%s: Failed to initialize device : %d\n",
nvswitch_dev->name,
rc);
goto init_device_failed;
}
if (nvswitch_is_device_blacklisted(nvswitch_dev))
{
nvswitch_post_init_blacklisted(nvswitch_dev);
goto blacklisted;
}
//
// device_mutex held here because post_init entries may call soeService_HAL()
// with IRQs on. see bug 2856314 for more info
//
mutex_lock(&nvswitch_dev->device_mutex);
rc = nvswitch_post_init_device(nvswitch_dev);
mutex_unlock(&nvswitch_dev->device_mutex);
if (rc)
{
printk(KERN_ERR "%s:Failed during device post init : %d\n",
nvswitch_dev->name, rc);
goto post_init_device_failed;
}
blacklisted:
rc = nvswitch_init_background_tasks(nvswitch_dev);
if (rc)
{
printk(KERN_ERR "%s: Failed to initialize background tasks : %d\n",
nvswitch_dev->name,
rc);
goto init_background_task_failed;
}
pci_set_drvdata(pci_dev, nvswitch_dev);
nvswitch_procfs_device_add(nvswitch_dev);
list_add_tail(&nvswitch_dev->list_node, &nvswitch.devices);
NV_ATOMIC_INC(nvswitch.count);
mutex_unlock(&nvswitch.driver_mutex);
return 0;
init_background_task_failed:
post_init_device_failed:
nvswitch_deinit_device(nvswitch_dev);
init_device_failed:
pci_iounmap(pci_dev, nvswitch_dev->bar0);
pci_iomap_failed:
pci_release_regions(pci_dev);
pci_request_regions_failed:
#ifdef CONFIG_PCI
pci_clear_master(pci_dev);
#endif
pci_disable_device(pci_dev);
pci_enable_device_failed:
kfree(nvswitch_dev);
kzalloc_failed:
find_minor_failed:
mutex_unlock(&nvswitch.driver_mutex);
return rc;
}
void
nvswitch_remove
(
struct pci_dev *pci_dev
)
{
NVSWITCH_DEV *nvswitch_dev;
mutex_lock(&nvswitch.driver_mutex);
nvswitch_dev = pci_get_drvdata(pci_dev);
if (nvswitch_dev == NULL)
{
goto done;
}
printk(KERN_INFO "%s: removing device %04x:%02x:%02x.%x\n",
nvswitch_dev->name,
NV_PCI_DOMAIN_NUMBER(pci_dev),
NV_PCI_BUS_NUMBER(pci_dev),
NV_PCI_SLOT_NUMBER(pci_dev),
PCI_FUNC(pci_dev->devfn));
//
// Synchronize with device operations such as .ioctls/.poll, and then mark
// the device unusable.
//
mutex_lock(&nvswitch_dev->device_mutex);
nvswitch_dev->unusable = NV_TRUE;
mutex_unlock(&nvswitch_dev->device_mutex);
NV_ATOMIC_DEC(nvswitch.count);
list_del(&nvswitch_dev->list_node);
nvswitch_deinit_background_tasks(nvswitch_dev);
nvswitch_deinit_device(nvswitch_dev);
pci_set_drvdata(pci_dev, NULL);
pci_iounmap(pci_dev, nvswitch_dev->bar0);
pci_release_regions(pci_dev);
#ifdef CONFIG_PCI
pci_clear_master(pci_dev);
#endif
pci_disable_device(pci_dev);
nvswitch_procfs_device_remove(nvswitch_dev);
// Free nvswitch_dev only if it is not in use.
if (NV_ATOMIC_READ(nvswitch_dev->ref_count) == 0)
{
kfree(nvswitch_dev);
}
done:
mutex_unlock(&nvswitch.driver_mutex);
return;
}
static void
nvswitch_load_bar_info
(
NVSWITCH_DEV *nvswitch_dev
)
{
struct pci_dev *pci_dev = nvswitch_dev->pci_dev;
nvlink_pci_info *info;
NvU32 bar = 0;
nvswitch_lib_get_device_info(nvswitch_dev->lib_device, &info);
info->bars[0].offset = NVRM_PCICFG_BAR_OFFSET(0);
pci_read_config_dword(pci_dev, info->bars[0].offset, &bar);
info->bars[0].busAddress = (bar & PCI_BASE_ADDRESS_MEM_MASK);
if (NV_PCI_RESOURCE_FLAGS(pci_dev, 0) & PCI_BASE_ADDRESS_MEM_TYPE_64)
{
pci_read_config_dword(pci_dev, info->bars[0].offset + 4, &bar);
info->bars[0].busAddress |= (((NvU64)bar) << 32);
}
info->bars[0].baseAddr = NV_PCI_RESOURCE_START(pci_dev, 0);
info->bars[0].barSize = NV_PCI_RESOURCE_SIZE(pci_dev, 0);
info->bars[0].pBar = nvswitch_dev->bar0;
}
static int
_nvswitch_initialize_msix_interrupt
(
NVSWITCH_DEV *nvswitch_dev
)
{
// Not supported (bug 3018806)
return -EINVAL;
}
static int
_nvswitch_initialize_msi_interrupt
(
NVSWITCH_DEV *nvswitch_dev
)
{
#ifdef CONFIG_PCI_MSI
struct pci_dev *pci_dev = nvswitch_dev->pci_dev;
int rc;
rc = pci_enable_msi(pci_dev);
if (rc)
{
return rc;
}
return 0;
#else
return -EINVAL;
#endif
}
static int
_nvswitch_get_irq_caps(NVSWITCH_DEV *nvswitch_dev, unsigned long *irq_caps)
{
struct pci_dev *pci_dev;
if (!nvswitch_dev || !irq_caps)
return -EINVAL;
pci_dev = nvswitch_dev->pci_dev;
if (pci_find_capability(pci_dev, PCI_CAP_ID_MSIX))
set_bit(NVSWITCH_IRQ_MSIX, irq_caps);
if (pci_find_capability(pci_dev, PCI_CAP_ID_MSI))
set_bit(NVSWITCH_IRQ_MSI, irq_caps);
if (nvswitch_lib_use_pin_irq(nvswitch_dev->lib_device))
set_bit(NVSWITCH_IRQ_PIN, irq_caps);
return 0;
}
static int
nvswitch_initialize_device_interrupt
(
NVSWITCH_DEV *nvswitch_dev
)
{
struct pci_dev *pci_dev = nvswitch_dev->pci_dev;
int flags = 0;
unsigned long irq_caps = 0;
int rc;
if (_nvswitch_get_irq_caps(nvswitch_dev, &irq_caps))
{
pr_err("%s: failed to retrieve device interrupt capabilities\n",
nvswitch_dev->name);
return -EINVAL;
}
nvswitch_dev->irq_mechanism = NVSWITCH_IRQ_NONE;
if (test_bit(NVSWITCH_IRQ_MSIX, &irq_caps))
{
rc = _nvswitch_initialize_msix_interrupt(nvswitch_dev);
if (!rc)
{
nvswitch_dev->irq_mechanism = NVSWITCH_IRQ_MSIX;
pr_info("%s: using MSI-X\n", nvswitch_dev->name);
}
}
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_NONE
&& test_bit(NVSWITCH_IRQ_MSI, &irq_caps))
{
rc = _nvswitch_initialize_msi_interrupt(nvswitch_dev);
if (!rc)
{
nvswitch_dev->irq_mechanism = NVSWITCH_IRQ_MSI;
pr_info("%s: using MSI\n", nvswitch_dev->name);
}
}
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_NONE
&& test_bit(NVSWITCH_IRQ_PIN, &irq_caps))
{
flags |= IRQF_SHARED;
nvswitch_dev->irq_mechanism = NVSWITCH_IRQ_PIN;
pr_info("%s: using PCI pin\n", nvswitch_dev->name);
}
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_NONE)
{
pr_err("%s: No supported interrupt mechanism was found. This device supports:\n",
nvswitch_dev->name);
if (test_bit(NVSWITCH_IRQ_MSIX, &irq_caps))
pr_err("%s: MSI-X\n", nvswitch_dev->name);
if (test_bit(NVSWITCH_IRQ_MSI, &irq_caps))
pr_err("%s: MSI\n", nvswitch_dev->name);
if (test_bit(NVSWITCH_IRQ_PIN, &irq_caps))
pr_err("%s: PCI Pin\n", nvswitch_dev->name);
return -EINVAL;
}
rc = request_threaded_irq(pci_dev->irq,
nvswitch_isr_pending,
nvswitch_isr_thread,
flags, nvswitch_dev->sname,
nvswitch_dev);
if (rc)
{
#ifdef CONFIG_PCI_MSI
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_MSI)
{
pci_disable_msi(pci_dev);
}
#endif
printk(KERN_ERR "%s: failed to get IRQ\n",
nvswitch_dev->name);
return rc;
}
return 0;
}
void
nvswitch_shutdown_device_interrupt
(
NVSWITCH_DEV *nvswitch_dev
)
{
struct pci_dev *pci_dev = nvswitch_dev->pci_dev;
free_irq(pci_dev->irq, nvswitch_dev);
#ifdef CONFIG_PCI_MSI
if (nvswitch_dev->irq_mechanism == NVSWITCH_IRQ_MSI)
{
pci_disable_msi(pci_dev);
}
#endif
}
static void
nvswitch_ctl_exit
(
void
)
{
cdev_del(&nvswitch.cdev_ctl);
}
static int
nvswitch_ctl_init
(
int major
)
{
int rc = 0;
dev_t nvswitch_ctl = MKDEV(major, NVSWITCH_CTL_MINOR);
cdev_init(&nvswitch.cdev_ctl, &ctl_fops);
nvswitch.cdev_ctl.owner = THIS_MODULE;
rc = cdev_add(&nvswitch.cdev_ctl, nvswitch_ctl, 1);
if (rc < 0)
{
printk(KERN_ERR "nvidia-nvswitch: Unable to create cdev ctl\n");
return rc;
}
return 0;
}
//
// Initialize nvswitch driver SW state. This is currently called
// from the RM as a backdoor interface, and not by the Linux device
// manager
//
int
nvswitch_init
(
void
)
{
int rc;
if (nvswitch.initialized)
{
printk(KERN_ERR "nvidia-nvswitch: Interface already initialized\n");
return -EBUSY;
}
BUILD_BUG_ON(NVSWITCH_DEVICE_INSTANCE_MAX >= NVSWITCH_MINOR_COUNT);
mutex_init(&nvswitch.driver_mutex);
INIT_LIST_HEAD(&nvswitch.devices);
rc = alloc_chrdev_region(&nvswitch.devno,
0,
NVSWITCH_MINOR_COUNT,
NVSWITCH_DRIVER_NAME);
if (rc < 0)
{
printk(KERN_ERR "nvidia-nvswitch: Unable to create cdev region\n");
goto alloc_chrdev_region_fail;
}
printk(KERN_ERR, "nvidia-nvswitch: Major: %d Minor: %d\n",
MAJOR(nvswitch.devno),
MINOR(nvswitch.devno));
cdev_init(&nvswitch.cdev, &device_fops);
nvswitch.cdev.owner = THIS_MODULE;
rc = cdev_add(&nvswitch.cdev, nvswitch.devno, NVSWITCH_DEVICE_INSTANCE_MAX);
if (rc < 0)
{
printk(KERN_ERR "nvidia-nvswitch: Unable to create cdev\n");
goto cdev_add_fail;
}
rc = nvswitch_procfs_init();
if (rc < 0)
{
goto nvswitch_procfs_init_fail;
}
rc = pci_register_driver(&nvswitch_pci_driver);
if (rc < 0)
{
printk(KERN_ERR "nvidia-nvswitch: Failed to register driver : %d\n", rc);
goto pci_register_driver_fail;
}
rc = nvswitch_ctl_init(MAJOR(nvswitch.devno));
if (rc < 0)
{
goto nvswitch_ctl_init_fail;
}
nvswitch.initialized = NV_TRUE;
return 0;
nvswitch_ctl_init_fail:
pci_unregister_driver(&nvswitch_pci_driver);
pci_register_driver_fail:
nvswitch_procfs_init_fail:
cdev_del(&nvswitch.cdev);
cdev_add_fail:
unregister_chrdev_region(nvswitch.devno, NVSWITCH_MINOR_COUNT);
alloc_chrdev_region_fail:
return rc;
}
//
// Clean up driver state on exit. Currently called from RM backdoor call,
// and not by the Linux device manager.
//
void
nvswitch_exit
(
void
)
{
if (NV_FALSE == nvswitch.initialized)
{
return;
}
nvswitch_ctl_exit();
pci_unregister_driver(&nvswitch_pci_driver);
nvswitch_procfs_exit();
cdev_del(&nvswitch.cdev);
unregister_chrdev_region(nvswitch.devno, NVSWITCH_MINOR_COUNT);
WARN_ON(!list_empty(&nvswitch.devices));
nvswitch.initialized = NV_FALSE;
}
//
// Get current time in seconds.nanoseconds
// In this implementation, the time is monotonic time
//
NvU64
nvswitch_os_get_platform_time
(
void
)
{
struct timespec64 ts;
ktime_get_raw_ts64(&ts);
return (NvU64) timespec64_to_ns(&ts);
}
//
// Get current time in seconds.nanoseconds
// In this implementation, the time is from epoch time
// (midnight UTC of January 1, 1970).
// This implementation cannot be used for polling loops
// due to clock skew during system startup (bug 3302382,
// 3297170, 3273847, 3277478, 200693329).
// Instead, nvswitch_os_get_platform_time() is used
// for polling loops
//
NvU64
nvswitch_os_get_platform_time_epoch
(
void
)
{
struct timespec64 ts;
ktime_get_real_ts64(&ts);
return (NvU64) timespec64_to_ns(&ts);
}
void
nvswitch_os_print
(
const int log_level,
const char *fmt,
...
)
{
va_list arglist;
char *kern_level;
char fmt_printk[NVSWITCH_LOG_BUFFER_SIZE];
switch (log_level)
{
case NVSWITCH_DBG_LEVEL_MMIO:
case NVSWITCH_DBG_LEVEL_NOISY:
kern_level = KERN_DEBUG;
break;
case NVSWITCH_DBG_LEVEL_INFO:
case NVSWITCH_DBG_LEVEL_SETUP:
kern_level = KERN_INFO;
break;
case NVSWITCH_DBG_LEVEL_WARN:
kern_level = KERN_WARNING;
break;
case NVSWITCH_DBG_LEVEL_ERROR:
kern_level = KERN_ERR;
break;
default:
kern_level = KERN_DEFAULT;
break;
}
va_start(arglist, fmt);
snprintf(fmt_printk, sizeof(fmt_printk), "%s%s", kern_level, fmt);
vprintk(fmt_printk, arglist);
va_end(arglist);
}
void
nvswitch_os_override_platform
(
void *os_handle,
NvBool *rtlsim
)
{
// Never run on RTL
*rtlsim = NV_FALSE;
}
NvlStatus
nvswitch_os_read_registery_binary
(
void *os_handle,
const char *name,
NvU8 *data,
NvU32 length
)
{
return -NVL_ERR_NOT_SUPPORTED;
}
NvU32
nvswitch_os_get_device_count
(
void
)
{
return NV_ATOMIC_READ(nvswitch.count);
}
//
// A helper to convert a string to an unsigned int.
//
// The string should be NULL terminated.
// Only works with base16 values.
//
static int
nvswitch_os_strtouint
(
char *str,
unsigned int *data
)
{
char *p;
unsigned long long val;
if (!str || !data)
{
return -EINVAL;
}
*data = 0;
val = 0;
p = str;
while (*p != '\0')
{
if ((tolower(*p) == 'x') && (*str == '0') && (p == str + 1))
{
p++;
}
else if (*p >='0' && *p <= '9')
{
val = val * 16 + (*p - '0');
p++;
}
else if (tolower(*p) >= 'a' && tolower(*p) <= 'f')
{
val = val * 16 + (tolower(*p) - 'a' + 10);
p++;
}
else
{
return -EINVAL;
}
}
if (val > 0xFFFFFFFF)
{
return -EINVAL;
}
*data = (unsigned int)val;
return 0;
}
NvlStatus
nvswitch_os_read_registry_dword
(
void *os_handle,
const char *name,
NvU32 *data
)
{
char *regkey, *regkey_val_start, *regkey_val_end;
char regkey_val[NVSWITCH_REGKEY_VALUE_LEN + 1];
NvU32 regkey_val_len = 0;
*data = 0;
if (!NvSwitchRegDwords)
{
return -NVL_ERR_GENERIC;
}
regkey = strstr(NvSwitchRegDwords, name);
if (!regkey)
{
return -NVL_ERR_GENERIC;
}
regkey = strchr(regkey, '=');
if (!regkey)
{
return -NVL_ERR_GENERIC;
}
regkey_val_start = regkey + 1;
regkey_val_end = strchr(regkey, ';');
if (!regkey_val_end)
{
regkey_val_end = strchr(regkey, '\0');
}
regkey_val_len = regkey_val_end - regkey_val_start;
if (regkey_val_len > NVSWITCH_REGKEY_VALUE_LEN || regkey_val_len == 0)
{
return -NVL_ERR_GENERIC;
}
strncpy(regkey_val, regkey_val_start, regkey_val_len);
regkey_val[regkey_val_len] = '\0';
if (nvswitch_os_strtouint(regkey_val, data) != 0)
{
return -NVL_ERR_GENERIC;
}
return NVL_SUCCESS;
}
static NvBool
_nvswitch_is_space(const char ch)
{
return ((ch == ' ') || ((ch >= '\t') && (ch <= '\r')));
}
static char *
_nvswitch_remove_spaces(const char *in)
{
unsigned int len = nvswitch_os_strlen(in) + 1;
const char *in_ptr;
char *out, *out_ptr;
out = nvswitch_os_malloc(len);
if (out == NULL)
return NULL;
in_ptr = in;
out_ptr = out;
while (*in_ptr != '\0')
{
if (!_nvswitch_is_space(*in_ptr))
*out_ptr++ = *in_ptr;
in_ptr++;
}
*out_ptr = '\0';
return out;
}
/*
* Compare given string UUID with the NvSwitchBlacklist registry parameter string and
* return whether the UUID is in the NvSwitch blacklist
*/
NvBool
nvswitch_os_is_uuid_in_blacklist
(
NvUuid *uuid
)
{
char *list;
char *ptr;
char *token;
NvU8 uuid_string[NVSWITCH_UUID_STRING_LENGTH];
if (NvSwitchBlacklist == NULL)
return NV_FALSE;
if (nvswitch_uuid_to_string(uuid, uuid_string, NVSWITCH_UUID_STRING_LENGTH) == 0)
return NV_FALSE;
if ((list = _nvswitch_remove_spaces(NvSwitchBlacklist)) == NULL)
return NV_FALSE;
ptr = list;
while ((token = strsep(&ptr, ",")) != NULL)
{
if (strcmp(token, uuid_string) == 0)
{
nvswitch_os_free(list);
return NV_TRUE;
}
}
nvswitch_os_free(list);
return NV_FALSE;
}
NvlStatus
nvswitch_os_alloc_contig_memory
(
void *os_handle,
void **virt_addr,
NvU32 size,
NvBool force_dma32
)
{
NvU32 gfp_flags;
unsigned long nv_gfp_addr = 0;
if (!virt_addr)
return -NVL_BAD_ARGS;
gfp_flags = GFP_KERNEL | (force_dma32 ? GFP_DMA32 : 0);
NV_GET_FREE_PAGES(nv_gfp_addr, get_order(size), gfp_flags);
if(!nv_gfp_addr)
{
pr_err("nvidia-nvswitch: unable to allocate kernel memory\n");
return -NVL_NO_MEM;
}
*virt_addr = (void *)nv_gfp_addr;
return NVL_SUCCESS;
}
void
nvswitch_os_free_contig_memory
(
void *os_handle,
void *virt_addr,
NvU32 size
)
{
NV_FREE_PAGES((unsigned long)virt_addr, get_order(size));
}
static inline int
_nvswitch_to_pci_dma_direction
(
NvU32 direction
)
{
if (direction == NVSWITCH_DMA_DIR_TO_SYSMEM)
return DMA_FROM_DEVICE;
else if (direction == NVSWITCH_DMA_DIR_FROM_SYSMEM)
return DMA_TO_DEVICE;
else
return DMA_BIDIRECTIONAL;
}
NvlStatus
nvswitch_os_map_dma_region
(
void *os_handle,
void *cpu_addr,
NvU64 *dma_handle,
NvU32 size,
NvU32 direction
)
{
int dma_dir;
struct pci_dev *pdev = (struct pci_dev *)os_handle;
if (!pdev || !cpu_addr || !dma_handle)
return -NVL_BAD_ARGS;
dma_dir = _nvswitch_to_pci_dma_direction(direction);
*dma_handle = (NvU64)dma_map_single(&pdev->dev, cpu_addr, size, dma_dir);
if (dma_mapping_error(&pdev->dev, *dma_handle))
{
pr_err("nvidia-nvswitch: unable to create PCI DMA mapping\n");
return -NVL_ERR_GENERIC;
}
return NVL_SUCCESS;
}
NvlStatus
nvswitch_os_unmap_dma_region
(
void *os_handle,
void *cpu_addr,
NvU64 dma_handle,
NvU32 size,
NvU32 direction
)
{
int dma_dir;
struct pci_dev *pdev = (struct pci_dev *)os_handle;
if (!pdev || !cpu_addr)
return -NVL_BAD_ARGS;
dma_dir = _nvswitch_to_pci_dma_direction(direction);
dma_unmap_single(&pdev->dev, dma_handle, size, dma_dir);
return NVL_SUCCESS;
}
NvlStatus
nvswitch_os_set_dma_mask
(
void *os_handle,
NvU32 dma_addr_width
)
{
struct pci_dev *pdev = (struct pci_dev *)os_handle;
if (!pdev)
return -NVL_BAD_ARGS;
if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(dma_addr_width)))
return -NVL_ERR_GENERIC;
return NVL_SUCCESS;
}
NvlStatus
nvswitch_os_sync_dma_region_for_cpu
(
void *os_handle,
NvU64 dma_handle,
NvU32 size,
NvU32 direction
)
{
int dma_dir;
struct pci_dev *pdev = (struct pci_dev *)os_handle;
if (!pdev)
return -NVL_BAD_ARGS;
dma_dir = _nvswitch_to_pci_dma_direction(direction);
dma_sync_single_for_cpu(&pdev->dev, dma_handle, size, dma_dir);
return NVL_SUCCESS;
}
NvlStatus
nvswitch_os_sync_dma_region_for_device
(
void *os_handle,
NvU64 dma_handle,
NvU32 size,
NvU32 direction
)
{
int dma_dir;
struct pci_dev *pdev = (struct pci_dev *)os_handle;
if (!pdev)
return -NVL_BAD_ARGS;
dma_dir = _nvswitch_to_pci_dma_direction(direction);
dma_sync_single_for_device(&pdev->dev, dma_handle, size, dma_dir);
return NVL_SUCCESS;
}
static inline void *
_nvswitch_os_malloc
(
NvLength size
)
{
void *ptr = NULL;
if (!NV_MAY_SLEEP())
{
if (size <= NVSWITCH_KMALLOC_LIMIT)
{
ptr = kmalloc(size, NV_GFP_ATOMIC);
}
}
else
{
if (size <= NVSWITCH_KMALLOC_LIMIT)
{
ptr = kmalloc(size, NV_GFP_NO_OOM);
}
if (ptr == NULL)
{
ptr = vmalloc(size);
}
}
return ptr;
}
void *
nvswitch_os_malloc_trace
(
NvLength size,
const char *file,
NvU32 line
)
{
#if defined(NV_MEM_LOGGER)
void *ptr = _nvswitch_os_malloc(size);
if (ptr)
{
nv_memdbg_add(ptr, size, file, line);
}
return ptr;
#else
return _nvswitch_os_malloc(size);
#endif
}
static inline void
_nvswitch_os_free
(
void *ptr
)
{
if (!ptr)
return;
if (is_vmalloc_addr(ptr))
{
vfree(ptr);
}
else
{
kfree(ptr);
}
}
void
nvswitch_os_free
(
void *ptr
)
{
#if defined (NV_MEM_LOGGER)
if (ptr == NULL)
return;
nv_memdbg_remove(ptr, 0, NULL, 0);
return _nvswitch_os_free(ptr);
#else
return _nvswitch_os_free(ptr);
#endif
}
NvLength
nvswitch_os_strlen
(
const char *str
)
{
return strlen(str);
}
char*
nvswitch_os_strncpy
(
char *dest,
const char *src,
NvLength length
)
{
return strncpy(dest, src, length);
}
int
nvswitch_os_strncmp
(
const char *s1,
const char *s2,
NvLength length
)
{
return strncmp(s1, s2, length);
}
char*
nvswitch_os_strncat
(
char *s1,
const char *s2,
NvLength length
)
{
return strncat(s1, s2, length);
}
void *
nvswitch_os_memset
(
void *dest,
int value,
NvLength size
)
{
return memset(dest, value, size);
}
void *
nvswitch_os_memcpy
(
void *dest,
const void *src,
NvLength size
)
{
return memcpy(dest, src, size);
}
int
nvswitch_os_memcmp
(
const void *s1,
const void *s2,
NvLength size
)
{
return memcmp(s1, s2, size);
}
NvU32
nvswitch_os_mem_read32
(
const volatile void * address
)
{
return (*(const volatile NvU32*)(address));
}
void
nvswitch_os_mem_write32
(
volatile void *address,
NvU32 data
)
{
(*(volatile NvU32 *)(address)) = data;
}
NvU64
nvswitch_os_mem_read64
(
const volatile void * address
)
{
return (*(const volatile NvU64 *)(address));
}
void
nvswitch_os_mem_write64
(
volatile void *address,
NvU64 data
)
{
(*(volatile NvU64 *)(address)) = data;
}
int
nvswitch_os_snprintf
(
char *dest,
NvLength size,
const char *fmt,
...
)
{
va_list arglist;
int chars_written;
va_start(arglist, fmt);
chars_written = vsnprintf(dest, size, fmt, arglist);
va_end(arglist);
return chars_written;
}
int
nvswitch_os_vsnprintf
(
char *buf,
NvLength size,
const char *fmt,
va_list arglist
)
{
return vsnprintf(buf, size, fmt, arglist);
}
void
nvswitch_os_assert_log
(
const char *fmt,
...
)
{
if (printk_ratelimit())
{
va_list arglist;
char fmt_printk[NVSWITCH_LOG_BUFFER_SIZE];
va_start(arglist, fmt);
vsnprintf(fmt_printk, sizeof(fmt_printk), fmt, arglist);
va_end(arglist);
nvswitch_os_print(NVSWITCH_DBG_LEVEL_ERROR, fmt_printk);
WARN_ON(1);
}
dbg_breakpoint();
}
/*
* Sleep for specified milliseconds. Yields the CPU to scheduler.
*/
void
nvswitch_os_sleep
(
unsigned int ms
)
{
NV_STATUS status;
status = nv_sleep_ms(ms);
if (status != NV_OK)
{
if (printk_ratelimit())
{
nvswitch_os_print(NVSWITCH_DBG_LEVEL_ERROR, "NVSwitch: requested"
" sleep duration %d msec exceeded %d msec\n",
ms, NV_MAX_ISR_DELAY_MS);
WARN_ON(1);
}
}
}
NvlStatus
nvswitch_os_acquire_fabric_mgmt_cap
(
void *osPrivate,
NvU64 capDescriptor
)
{
int dup_fd = -1;
nvswitch_file_private_t *private_data = (nvswitch_file_private_t *)osPrivate;
if (private_data == NULL)
{
return -NVL_BAD_ARGS;
}
dup_fd = nvlink_cap_acquire((int)capDescriptor,
NVLINK_CAP_FABRIC_MANAGEMENT);
if (dup_fd < 0)
{
return -NVL_ERR_OPERATING_SYSTEM;
}
private_data->capability_fds.fabric_mgmt = dup_fd;
return NVL_SUCCESS;
}
int
nvswitch_os_is_fabric_manager
(
void *osPrivate
)
{
nvswitch_file_private_t *private_data = (nvswitch_file_private_t *)osPrivate;
/* Make sure that fabric mgmt capbaility fd is valid */
if ((private_data == NULL) ||
(private_data->capability_fds.fabric_mgmt < 0))
{
return 0;
}
return 1;
}
int
nvswitch_os_is_admin
(
void
)
{
return NV_IS_SUSER();
}
#define NV_KERNEL_RELEASE ((LINUX_VERSION_CODE >> 16) & 0x0ff)
#define NV_KERNEL_VERSION ((LINUX_VERSION_CODE >> 8) & 0x0ff)
#define NV_KERNEL_SUBVERSION ((LINUX_VERSION_CODE) & 0x0ff)
NvlStatus
nvswitch_os_get_os_version
(
NvU32 *pMajorVer,
NvU32 *pMinorVer,
NvU32 *pBuildNum
)
{
if (pMajorVer)
*pMajorVer = NV_KERNEL_RELEASE;
if (pMinorVer)
*pMinorVer = NV_KERNEL_VERSION;
if (pBuildNum)
*pBuildNum = NV_KERNEL_SUBVERSION;
return NVL_SUCCESS;
}
/*!
* @brief: OS specific handling to add an event.
*/
NvlStatus
nvswitch_os_add_client_event
(
void *osHandle,
void *osPrivate,
NvU32 eventId
)
{
return NVL_SUCCESS;
}
/*!
* @brief: OS specific handling to remove all events corresponding to osPrivate.
*/
NvlStatus
nvswitch_os_remove_client_event
(
void *osHandle,
void *osPrivate
)
{
return NVL_SUCCESS;
}
/*!
* @brief: OS specific handling to notify an event.
*/
NvlStatus
nvswitch_os_notify_client_event
(
void *osHandle,
void *osPrivate,
NvU32 eventId
)
{
nvswitch_file_private_t *private_data = (nvswitch_file_private_t *)osPrivate;
if (private_data == NULL)
{
return -NVL_BAD_ARGS;
}
private_data->file_event.event_pending = NV_TRUE;
wake_up_interruptible(&private_data->file_event.wait_q_event);
return NVL_SUCCESS;
}
/*!
* @brief: Gets OS specific support for the REGISTER_EVENTS ioctl
*/
NvlStatus
nvswitch_os_get_supported_register_events_params
(
NvBool *many_events,
NvBool *os_descriptor
)
{
*many_events = NV_FALSE;
*os_descriptor = NV_FALSE;
return NVL_SUCCESS;
}
NvlStatus
nvswitch_os_get_pid
(
NvU32 *pPid
)
{
if (pPid != NULL)
{
*pPid = task_pid_nr(current);
}
return NVL_SUCCESS;
}