nvidia-open-gpu-kernel-modules/kernel-open/nvidia/nv-ibmnpu.c

442 lines
13 KiB
C

/*
* SPDX-FileCopyrightText: Copyright (c) 2017-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: MIT
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
* nv-ibmnpu.c - interface with the ibmnpu (IBM NVLink Processing Unit) "module"
*/
#include "nv-linux.h"
#if defined(NVCPU_PPC64LE)
#include "nv-ibmnpu.h"
#include "nv-rsync.h"
/*
* Temporary query to get the L1D cache block size directly from the device
* tree for the offline cache flush workaround, since the ppc64_caches symbol
* is unavailable to us.
*/
const NvU32 P9_L1D_CACHE_DEFAULT_BLOCK_SIZE = 0x80;
static NvU32 nv_ibm_get_cpu_l1d_cache_block_size(void)
{
const __be32 *block_size_prop;
/*
* Attempt to look up the block size from device tree. If unavailable, just
* return the default that we see on these systems.
*/
struct device_node *cpu = of_find_node_by_type(NULL, "cpu");
if (!cpu)
{
return P9_L1D_CACHE_DEFAULT_BLOCK_SIZE;
}
block_size_prop = of_get_property(cpu, "d-cache-block-size", NULL);
if (!block_size_prop)
{
return P9_L1D_CACHE_DEFAULT_BLOCK_SIZE;
}
return be32_to_cpu(*block_size_prop);
}
/*
* GPU device memory can be exposed to the kernel as NUMA node memory via the
* IBMNPU devices associated with the GPU. The platform firmware will specify
* the parameters of where the memory lives in the system address space via
* firmware properties on the IBMNPU devices. These properties specify what
* memory can be accessed through the IBMNPU device, and the driver can online
* a GPU device's memory into the range accessible by its associated IBMNPU
* devices.
*
* This function calls over to the IBMNPU driver to query the parameters from
* firmware, and validates that the resulting parameters are acceptable.
*/
static void nv_init_ibmnpu_numa_info(nv_state_t *nv)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
nv_npu_numa_info_t *npu_numa_info = &nvl->npu->numa_info;
struct pci_dev *npu_dev = nvl->npu->devs[0];
NvU64 spa, gpa, aper_size;
/*
* Terminology:
* - system physical address (spa): 47-bit NVIDIA physical address, which
* is the CPU real address with the NVLink address compression scheme
* already applied in firmware.
* - guest physical address (gpa): 56-bit physical address as seen by the
* operating system. This is the base address that we should use for
* onlining device memory.
*/
nvl->numa_info.node_id = ibmnpu_device_get_memory_config(npu_dev, &spa, &gpa,
&aper_size);
if (nvl->numa_info.node_id == NUMA_NO_NODE)
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv, "No NUMA memory aperture found\n");
return;
}
/* Validate that the compressed system physical address is not too wide */
if (spa & (~(BIT_ULL(nv_volta_dma_addr_size) - 1)))
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv,
"Invalid NUMA memory system pa 0x%llx"
" on IBM-NPU device %04x:%02x:%02x.%u\n",
spa, NV_PCI_DOMAIN_NUMBER(npu_dev), NV_PCI_BUS_NUMBER(npu_dev),
NV_PCI_SLOT_NUMBER(npu_dev), PCI_FUNC(npu_dev->devfn));
goto invalid_numa_config;
}
/*
* Validate that the guest physical address is aligned to 128GB.
* This alignment requirement comes from the Volta address space
* size on POWER9.
*/
if (!IS_ALIGNED(gpa, BIT_ULL(nv_volta_addr_space_width)))
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv,
"Invalid alignment in NUMA memory guest pa 0x%llx"
" on IBM-NPU device %04x:%02x:%02x.%u\n",
gpa, NV_PCI_DOMAIN_NUMBER(npu_dev), NV_PCI_BUS_NUMBER(npu_dev),
NV_PCI_SLOT_NUMBER(npu_dev), PCI_FUNC(npu_dev->devfn));
goto invalid_numa_config;
}
/* Validate that the aperture can map all of the device's framebuffer */
if (aper_size < nv->fb->size)
{
NV_DEV_PRINTF(NV_DBG_ERRORS, nv,
"Insufficient NUMA memory aperture size 0x%llx"
" on IBM-NPU device %04x:%02x:%02x.%u (0x%llx required)\n",
aper_size, NV_PCI_DOMAIN_NUMBER(npu_dev),
NV_PCI_BUS_NUMBER(npu_dev), NV_PCI_SLOT_NUMBER(npu_dev),
PCI_FUNC(npu_dev->devfn), nv->fb->size);
goto invalid_numa_config;
}
npu_numa_info->compr_sys_phys_addr = spa;
npu_numa_info->guest_phys_addr = gpa;
if (NVreg_EnableUserNUMAManagement)
{
NV_ATOMIC_SET(nvl->numa_info.status, NV_IOCTL_NUMA_STATUS_OFFLINE);
}
else
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv, "User-mode NUMA onlining disabled.\n");
nvl->numa_info.node_id = NUMA_NO_NODE;
}
NV_DEV_PRINTF(NV_DBG_SETUP, nv, "NUMA memory aperture: "
"[spa = 0x%llx, gpa = 0x%llx, aper_size = 0x%llx]\n",
spa, gpa, aper_size);
/* Get the CPU's L1D cache block size for offlining cache flush */
npu_numa_info->l1d_cache_block_size = nv_ibm_get_cpu_l1d_cache_block_size();
return;
invalid_numa_config:
NV_DEV_PRINTF(NV_DBG_ERRORS, nv,
"NUMA memory aperture disabled due to invalid firmware configuration\n");
nvl->numa_info.node_id = NUMA_NO_NODE;
}
void nv_init_ibmnpu_info(nv_state_t *nv)
{
#if defined(NV_PNV_PCI_GET_NPU_DEV_PRESENT)
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
struct pci_dev *npu_dev = pnv_pci_get_npu_dev(nvl->pci_dev, 0);
NvU8 dev_count;
if (!npu_dev)
{
return;
}
if (os_alloc_mem((void **)&nvl->npu, sizeof(nv_ibmnpu_info_t)) != NV_OK)
{
return;
}
os_mem_set(nvl->npu, 0, sizeof(nv_ibmnpu_info_t));
/* Find any other IBMNPU devices attached to this GPU */
for (nvl->npu->devs[0] = npu_dev, dev_count = 1;
dev_count < NV_MAX_ATTACHED_IBMNPUS; dev_count++)
{
nvl->npu->devs[dev_count] = pnv_pci_get_npu_dev(nvl->pci_dev, dev_count);
if (!nvl->npu->devs[dev_count])
{
break;
}
}
nvl->npu->dev_count = dev_count;
/*
* If we run out of space for IBMNPU devices, NV_MAX_ATTACHED_IBMNPUS will
* need to be bumped.
*/
WARN_ON((dev_count == NV_MAX_ATTACHED_IBMNPUS) &&
pnv_pci_get_npu_dev(nvl->pci_dev, dev_count));
ibmnpu_device_get_genregs_info(npu_dev, &nvl->npu->genregs);
if (nvl->npu->genregs.size > 0)
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv,
"IBM-NPU device %04x:%02x:%02x.%u associated with GPU "
" has a generation register space 0x%llx-0x%llx\n",
NV_PCI_DOMAIN_NUMBER(npu_dev), NV_PCI_BUS_NUMBER(npu_dev),
NV_PCI_SLOT_NUMBER(npu_dev), PCI_FUNC(npu_dev->devfn),
nvl->npu->genregs.start_addr,
nvl->npu->genregs.start_addr + nvl->npu->genregs.size - 1);
}
else
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv,
"IBM-NPU device %04x:%02x:%02x.%u associated with GPU "
"does not support generation registers\n",
NV_PCI_DOMAIN_NUMBER(npu_dev), NV_PCI_BUS_NUMBER(npu_dev),
NV_PCI_SLOT_NUMBER(npu_dev), PCI_FUNC(npu_dev->devfn));
}
nv_init_ibmnpu_numa_info(nv);
#endif
}
void nv_destroy_ibmnpu_info(nv_state_t *nv)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (nvl->npu != NULL)
{
os_free_mem(nvl->npu);
nvl->npu = NULL;
}
}
int nv_init_ibmnpu_devices(nv_state_t *nv)
{
NvU8 i;
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (!nvl->npu)
{
return 0;
}
for (i = 0; i < nvl->npu->dev_count; i++)
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv,
"Initializing IBM-NPU device %04x:%02x:%02x.%u\n",
NV_PCI_DOMAIN_NUMBER(nvl->npu->devs[i]),
NV_PCI_BUS_NUMBER(nvl->npu->devs[i]),
NV_PCI_SLOT_NUMBER(nvl->npu->devs[i]),
PCI_FUNC(nvl->npu->devs[i]->devfn));
if (ibmnpu_init_device(nvl->npu->devs[i]) != NVL_SUCCESS)
{
nv_unregister_ibmnpu_devices(nv);
return -EIO;
}
nvl->npu->initialized_dev_count++;
}
return 0;
}
void nv_unregister_ibmnpu_devices(nv_state_t *nv)
{
NvU8 i;
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (!nvl->npu)
{
return;
}
for (i = 0; i < nvl->npu->initialized_dev_count; i++)
{
NV_DEV_PRINTF(NV_DBG_SETUP, nv,
"Unregistering IBM-NPU device %04x:%02x:%02x.%u\n",
NV_PCI_DOMAIN_NUMBER(nvl->npu->devs[i]),
NV_PCI_BUS_NUMBER(nvl->npu->devs[i]),
NV_PCI_SLOT_NUMBER(nvl->npu->devs[i]),
PCI_FUNC(nvl->npu->devs[i]->devfn));
ibmnpu_unregister_device(nvl->npu->devs[i]);
}
nvl->npu->initialized_dev_count = 0;
}
NV_STATUS NV_API_CALL nv_get_ibmnpu_genreg_info(nv_state_t *nv, NvU64 *addr,
NvU64 *size, void **device)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (nvl->npu == NULL || nvl->npu->genregs.size == 0)
{
return NV_ERR_NOT_SUPPORTED;
}
if (addr)
{
*addr = nvl->npu->genregs.start_addr;
}
if (size)
{
*size = nvl->npu->genregs.size;
}
if (device)
{
*device = (void*)nvl->npu->devs[0];
}
return NV_OK;
}
NV_STATUS NV_API_CALL nv_get_ibmnpu_relaxed_ordering_mode(nv_state_t *nv,
NvBool *mode)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (nvl->npu == NULL || nvl->npu->genregs.size == 0)
{
return NV_ERR_NOT_SUPPORTED;
}
*mode = nv_get_rsync_relaxed_ordering_mode(nv);
return NV_OK;
}
void NV_API_CALL nv_wait_for_ibmnpu_rsync(nv_state_t *nv)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (nvl->npu == NULL || nvl->npu->genregs.size == 0)
{
return;
}
nv_wait_for_rsync(nv);
}
int nv_get_ibmnpu_chip_id(nv_state_t *nv)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
if (nvl->npu == NULL)
{
return -1;
}
return ibmnpu_device_get_chip_id(nvl->npu->devs[0]);
}
void NV_API_CALL nv_ibmnpu_cache_flush_range(nv_state_t *nv, NvU64 cpu_virtual, NvU64 size)
{
nv_linux_state_t *nvl = NV_GET_NVL_FROM_NV_STATE(nv);
NvU64 offset, cbsize;
/*
* The range is commonly an ioremap()ed mapping of the GPU's ATS range and
* needs to be compared against the created mappings. Alternatively, kernel
* page tables can be dumped through sysfs if CONFIG_PPC_PTDUMP is enabled.
*/
NV_DEV_PRINTF(NV_DBG_INFO, nv,
"Flushing CPU virtual range [0x%llx, 0x%llx)\n",
cpu_virtual, cpu_virtual + size);
cbsize = nvl->npu->numa_info.l1d_cache_block_size;
asm volatile("sync; isync" ::: "memory");
/* Force eviction of any cache lines from the NUMA-onlined region. */
for (offset = 0; offset < size; offset += cbsize)
{
asm volatile("dcbf %0,%1" :: "r" (cpu_virtual), "r" (offset) : "memory");
/* Reschedule if necessary to avoid lockup warnings */
cond_resched();
}
asm volatile("sync; isync" ::: "memory");
}
#else
void nv_init_ibmnpu_info(nv_state_t *nv)
{
}
void nv_destroy_ibmnpu_info(nv_state_t *nv)
{
}
int nv_init_ibmnpu_devices(nv_state_t *nv)
{
return 0;
}
void nv_unregister_ibmnpu_devices(nv_state_t *nv)
{
}
NV_STATUS NV_API_CALL nv_get_ibmnpu_genreg_info(nv_state_t *nv, NvU64 *addr,
NvU64 *size, void **device)
{
return NV_ERR_NOT_SUPPORTED;
}
NV_STATUS NV_API_CALL nv_get_ibmnpu_relaxed_ordering_mode(nv_state_t *nv,
NvBool *mode)
{
return NV_ERR_NOT_SUPPORTED;
}
void NV_API_CALL nv_wait_for_ibmnpu_rsync(nv_state_t *nv)
{
}
int nv_get_ibmnpu_chip_id(nv_state_t *nv)
{
return -1;
}
void NV_API_CALL nv_ibmnpu_cache_flush_range(nv_state_t *nv, NvU64 virtual, NvU64 size)
{
}
void nv_ibmnpu_cache_flush_numa_region(nv_state_t *nv)
{
}
#endif