netsurf/image/bmpread.c
Richard Wilson 464964cfb6 [project @ 2006-02-28 01:02:37 by rjw]
Render alpha-channel BMPs correctly.

svn path=/import/netsurf/; revision=2100
2006-02-28 01:02:37 +00:00

793 lines
21 KiB
C
Raw Blame History

/*
* This file is part of NetSurf, http://netsurf.sourceforge.net/
* Licensed under the GNU General Public License,
* http://www.opensource.org/licenses/gpl-license
* Copyright 2006 Richard Wilson <info@tinct.net>
*/
#include <assert.h>
#include <stdbool.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "netsurf/image/bmpread.h"
#include "netsurf/image/bitmap.h"
#include "netsurf/utils/log.h"
#define READ_SHORT(a, o) (a[o]|(a[o+1]<<8))
#define READ_INT(a, o) (a[o]|(a[o+1]<<8)|(a[o+2]<<16)|(a[o+3]<<24))
bmp_result bmp_analyse_header(struct bmp_image *bmp, char *data);
bmp_result bmp_decode_rgb24(struct bmp_image *bmp, char **start, int bytes);
bmp_result bmp_decode_rgb16(struct bmp_image *bmp, char **start, int bytes);
bmp_result bmp_decode_rgb(struct bmp_image *bmp, char **start, int bytes);
bmp_result bmp_decode_mask(struct bmp_image *bmp, char *data, int bytes);
bmp_result bmp_decode_rle(struct bmp_image *bmp, char *data, int bytes, int size);
void bmp_invalidate(struct bitmap *bitmap, void *private_word);
/**
* Analyse a BMP prior to decoding.
*
* This function will scan the data provided and perform simple checks to
* ensure the data is a valid BMP.
*
* This function must be called before bmp_decode() and sets up all the
* relevant values in the bmp structure.
*
* \param bmp the BMP image to analyse
* \return BMP_OK on success
*/
bmp_result bmp_analyse(struct bmp_image *bmp) {
char *data = bmp->bmp_data;
/* ensure we aren't already initialised */
if (bmp->bitmap)
return BMP_OK;
/* standard 14-byte BMP file header is:
*
* +0 SHORT 'BM'
* +2 INT size of file (in bytes)
* +6 SHORT reserved field (1)
* +8 SHORT reserved field (2)
* +10 INT starting position of image data (in bytes)
*/
if (bmp->buffer_size < 14)
return BMP_INSUFFICIENT_DATA;
if ((data[0] != 'B') || (data[1] != 'M'))
return BMP_DATA_ERROR;
bmp->bitmap_offset = READ_INT(data, 10);
/* decode the BMP header */
return bmp_analyse_header(bmp, data + 14);
}
/**
* Analyse an ICO prior to decoding.
*
* This function will scan the data provided and perform simple checks to
* ensure the data is a valid ICO.
*
* This function must be called before ico_find().
*
* \param ico the ICO image to analyse
* \return BMP_OK on success
*/
bmp_result ico_analyse(struct ico_collection *ico) {
char *data = ico->ico_data;
unsigned int count, i;
bmp_result result;
struct ico_image *image;
int area, max_area = 0;
/* ensure we aren't already initialised */
if (ico->first)
return BMP_OK;
/* standard 6-byte ICO file header is:
*
* +0 INT 0x00010000
* +4 SHORT number of BMPs to follow
*/
if (ico->buffer_size < 6)
return BMP_INSUFFICIENT_DATA;
if (READ_INT(data, 0) != 0x00010000)
return BMP_DATA_ERROR;
count = READ_SHORT(data, 4);
if (count == 0)
return BMP_DATA_ERROR;
data += 6;
/* decode the BMP files */
if (ico->buffer_size < 6 + (16 * count))
return BMP_INSUFFICIENT_DATA;
for (i = 0; i < count; i++) {
image = calloc(1, sizeof(struct ico_image));
if (!image)
return BMP_INSUFFICIENT_MEMORY;
image->next = ico->first;
ico->first = image;
image->bmp.width = data[0];
image->bmp.height = data[1];
image->bmp.buffer_size = READ_INT(data, 8) + 40;
image->bmp.bmp_data = ico->ico_data + READ_INT(data, 12);
image->bmp.ico = true;
data += 16;
result = bmp_analyse_header(&image->bmp, image->bmp.bmp_data);
if (result != BMP_OK)
return result;
area = image->bmp.width * image->bmp.height;
if (area > max_area) {
ico->width = image->bmp.width;
ico->height = image->bmp.height;
max_area = area;
}
}
return BMP_OK;
}
bmp_result bmp_analyse_header(struct bmp_image *bmp, char *data) {
unsigned int header_size;
unsigned int i;
int width, height, j;
int palette_size;
unsigned int flags;
/* a variety of different bitmap headers can follow, depending
* on the BMP variant. A full description of the various headers
* can be found at http://www.fileformat.info/format/bmp/
*/
header_size = READ_INT(data, 0);
if (bmp->buffer_size < (14 + header_size))
return BMP_INSUFFICIENT_DATA;
if (header_size == 12) {
/* the following header is for os/2 and windows 2.x and consists of:
*
* +0 INT size of this header (in bytes)
* +4 SHORT image<67>width<74>(in<69>pixels)
* +6 SHORT image<67>height<68>(in<69>pixels)
* +8 SHORT number<65>of<6F>color<6F>planes<65>(always 1)
* +10 SHORT number<65>of<6F>bits<74>per<65>pixel
*/
width = READ_SHORT(data, 4);
height = READ_SHORT(data, 6);
if (width < 0)
return BMP_DATA_ERROR;
if (height < 0) {
bmp->reversed = true;
height = -height;
}
bmp->width = width;
bmp->height = height;
if (READ_SHORT(data, 8) != 1)
return BMP_DATA_ERROR;
bmp->bpp = READ_SHORT(data, 10);
bmp->colours = (1 << bmp->bpp);
palette_size = 3;
} else if (header_size < 40) {
return BMP_DATA_ERROR;
} else {
/* the following header is for windows 3.x and onwards. it is a
* minimum of 40 bytes and (as of Windows 95) a maximum of 108 bytes.
*
* +0 INT size<7A>of<6F>this<69>header<65>(in<69>bytes)
* +4 INT image<67>width<74>(in<69>pixels)
* +8 INT image height<68>(in<69>pixels)
<EFBFBD> * +12 SHORT number<65>of<6F>color<6F>planes<65>(always 1)
* +14 SHORT number<65>of<6F>bits<74>per<65>pixel
* +16 INT compression<6F>methods<64>used
* +20 INT size<7A>of<6F>bitmap<61>(in<69>bytes)
* +24 INT horizontal<61>resolution<6F>(in<69>pixels<6C>per<65>meter)
* +28 INT vertical<61>resolution<6F>(in<69>pixels<6C>per<65>meter)
* +32 INT number<65>of<6F>colors<72>in<69>the<68>image
* +36 INT number<65>of<6F>important<6E>colors
* +40 INT mask<73>identifying<6E>bits<74>of<6F>red<65>component
* +44 INT mask<73>identifying<6E>bits<74>of<6F>green<65>component
* +48 INT mask<73>identifying<6E>bits<74>of<6F>blue<75>component
* +52 INT mask<73>identifying<6E>bits<74>of<6F>alpha<68>component
* +56 INT color<6F>space<63>type
* +60 INT x<>coordinate<74>of<6F>red<65>endpoint
* +64 INT y<>coordinate<74>of<6F>red<65>endpoint
* +68 INT z<>coordinate<74>of<6F>red<65>endpoint
* +72 INT x<>coordinate<74>of<6F>green<65>endpoint
* +76 INT y<>coordinate<74>of<6F>green<65>endpoint
* +80 INT z<>coordinate<74>of<6F>green<65>endpoint
* +84 INT x<>coordinate<74>of<6F>blue<75>endpoint
* +88 INT y<>coordinate<74>of<6F>blue<75>endpoint
* +92 INT z<>coordinate<74>of<6F>blue<75>endpoint
* +96 INT gamma<6D>red<65>coordinate<74>scale<6C>value
* +100 INT gamma<6D>green<65>coordinate<74>scale<6C>value
* +104 INT gamma<6D>blue<75>coordinate<74>scale<6C>value
*/
if (!bmp->ico) {
width = READ_INT(data, 4);
height = READ_INT(data, 8);
if (width < 0)
return BMP_DATA_ERROR;
if (height < 0) {
bmp->reversed = true;
height = -height;
}
bmp->width = width;
bmp->height = height;
}
if (READ_SHORT(data, 12) != 1)
return BMP_DATA_ERROR;
bmp->bpp = READ_SHORT(data, 14);
if (bmp->bpp == 0)
bmp->bpp = 8;
bmp->encoding = READ_INT(data, 16);
if (bmp->encoding > BMP_ENCODING_BITFIELDS)
return BMP_DATA_ERROR;
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
if ((bmp->bpp != 16) && (bmp->bpp != 32))
return BMP_DATA_ERROR;
if (header_size == 40) {
header_size += 12;
if (bmp->buffer_size < (14 + header_size))
return BMP_INSUFFICIENT_DATA;
for (i = 0; i < 3; i++)
bmp->mask[i] = READ_INT(data, 40 + (i << 2));
} else {
for (i = 0; i < 4; i++)
bmp->mask[i] = READ_INT(data, 40 + (i << 2));
}
for (i = 0; i < 4; i++) {
if (bmp->mask[i] == 0)
break;
for (j = 31; j > 0; j--)
if (bmp->mask[i] & (1 << j)) {
if ((j - 7) > 0)
bmp->mask[i] &= 0xff << (j - 7);
else
bmp->mask[i] &= 0xff >> (-(j - 7));
bmp->shift[i] = (i << 3) - (j - 7);
break;
}
}
}
bmp->colours = READ_INT(data, 32);
if (bmp->colours == 0)
bmp->colours = (1 << bmp->bpp);
palette_size = 4;
}
data += header_size;
/* we only have a palette for <16bpp */
if (bmp->bpp < 16) {
/* we now have a series of palette entries of the format:
*
* +0 BYTE blue
* +1 BYTE green
* +2 BYTE red
*
* if the palette is from an OS/2 or Win2.x file then the entries
* are padded with an extra byte.
*/
if (bmp->buffer_size < (14 + header_size + (4 * bmp->colours)))
return BMP_INSUFFICIENT_DATA;
bmp->colour_table = (unsigned int *)
malloc(bmp->colours * sizeof(int));
if (!bmp->colour_table)
return BMP_INSUFFICIENT_MEMORY;
for (i = 0; i < bmp->colours; i++) {
bmp->colour_table[i] = data[2] | (data[1] << 8) |
(data[0] << 16);
data += palette_size;
}
}
/* create our bitmap */
flags = BITMAP_NEW | BITMAP_CLEAR_MEMORY;
if ((!bmp->ico) && (bmp->mask[3] == 0))
flags |= BITMAP_OPAQUE;
bmp->bitmap = bitmap_create(bmp->width, bmp->height, flags);
if (!bmp->bitmap) {
if (bmp->colour_table)
free(bmp->colour_table);
bmp->colour_table = NULL;
return BMP_INSUFFICIENT_MEMORY;
}
bmp->bitmap_offset = (int)data - (int)bmp->bmp_data;
bitmap_set_suspendable(bmp->bitmap, bmp, bmp_invalidate);
return BMP_OK;
}
/*
* Finds the closest BMP within an ICO collection
*
* This function finds the BMP with dimensions as close to a specified set
* as possible from the images in the collection.
*
* \param ico the ICO collection to examine
* \param width the preferred width
* \param height the preferred height
*/
struct bmp_image *ico_find(struct ico_collection *ico, int width, int height) {
struct bmp_image *bmp = NULL;
struct ico_image *image;
int x, y, cur, distance = (1 << 24);
for (image = ico->first; image; image = image->next) {
if (((int)image->bmp.width == width) && ((int)image->bmp.height == height))
return &image->bmp;
x = image->bmp.width - width;
y = image->bmp.height - height;
cur = (x * x) + (y * y);
if (cur < distance) {
distance = cur;
bmp = &image->bmp;
}
}
return bmp;
}
/**
* Invalidates a BMP
*
* This function sets the BMP into a state such that the bitmap image data
* can be released from memory.
*
* \param bmp the BMP image to invalidate
*/
void bmp_invalidate(struct bitmap *bitmap, void *private_word) {
struct bmp_image *bmp = (struct bmp_image *)private_word;
bmp->decoded = false;
}
/**
* Decode a BMP
*
* This function decodes the BMP data such that bmp->bitmap is a valid
* image. The state of bmp->decoded is set to TRUE on exit such that it
* can easily be identified which BMPs are in a fully decoded state.
*
* \param bmp the BMP image to decode
* \return BMP_OK on success
*/
bmp_result bmp_decode(struct bmp_image *bmp) {
char *data;
int bytes;
bmp_result result = BMP_OK;
assert(bmp->bitmap);
data = bmp->bmp_data + bmp->bitmap_offset;
bytes = bmp->buffer_size - bmp->bitmap_offset;
switch (bmp->encoding) {
case BMP_ENCODING_RGB:
if (bmp->bpp >= 24)
result = bmp_decode_rgb24(bmp, &data, bytes);
else if (bmp->bpp > 8)
result = bmp_decode_rgb16(bmp, &data, bytes);
else
result = bmp_decode_rgb(bmp, &data, bytes);
break;
case BMP_ENCODING_RLE8:
result = bmp_decode_rle(bmp, data, bytes, 8);
break;
case BMP_ENCODING_RLE4:
result = bmp_decode_rle(bmp, data, bytes, 4);
break;
case BMP_ENCODING_BITFIELDS:
if (bmp->bpp == 32)
result = bmp_decode_rgb24(bmp, &data, bytes);
else if (bmp->bpp == 16)
result = bmp_decode_rgb16(bmp, &data, bytes);
else
return BMP_DATA_ERROR;
}
if ((!bmp->ico) || (result != BMP_OK))
return result;
bytes = (int)bmp->bmp_data + bmp->buffer_size - (int)data;
return bmp_decode_mask(bmp, data, bytes);
}
/**
* Decode BMP data stored in 24bpp colour.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
*/
bmp_result bmp_decode_rgb24(struct bmp_image *bmp, char **start, int bytes) {
char *top, *bottom, *end, *data;
unsigned int *scanline;
unsigned int x, y, swidth, skip;
unsigned int addr;
unsigned int i, word;
data = *start;
swidth = bitmap_get_rowstride(bmp->bitmap);
top = bitmap_get_buffer(bmp->bitmap);
bottom = top + swidth * (bmp->height - 1);
end = data + bytes;
addr = ((unsigned int)data) & 3;
skip = bmp->bpp >> 3;
bmp->decoded = true;
for (y = 0; y < bmp->height; y++) {
while (addr != (((unsigned int)data) & 3))
data++;
if ((data + (skip * bmp->width)) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->reversed)
scanline = (unsigned int *)(top + (y * swidth));
else
scanline = (unsigned int *)(bottom - (y * swidth));
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
for (x = 0; x < bmp->width; x++) {
word = data[0] | (data[1] << 8) | (data[2] << 16) |
(data[3] << 24);
scanline[x] = (0xff << 24);
for (i = 0; i < 4; i++)
if (bmp->shift[i] > 0)
scanline[x] ^= ((word & bmp->mask[i]) <<
bmp->shift[i]);
else
scanline[x] ^= ((word & bmp->mask[i]) >>
(-bmp->shift[i]));
data += 4;
}
} else {
for (x = 0; x < bmp->width; x++) {
scanline[x] = data[2] | (data[1] << 8) | (data[0] << 16) |
(data[3] << 24);
data += skip;
}
}
}
*start = data;
return BMP_OK;
}
/**
* Decode BMP data stored in 16bpp colour.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
*/
bmp_result bmp_decode_rgb16(struct bmp_image *bmp, char **start, int bytes) {
char *top, *bottom, *end, *data;
unsigned int *scanline;
unsigned int x, y, swidth;
unsigned int addr;
unsigned int word, i;
data = *start;
swidth = bitmap_get_rowstride(bmp->bitmap);
top = bitmap_get_buffer(bmp->bitmap);
bottom = top + swidth * (bmp->height - 1);
end = data + bytes;
addr = ((unsigned int)data) & 3;
bmp->decoded = true;
for (y = 0; y < bmp->height; y++) {
if (addr != (((unsigned int)data) & 3))
data += 2;
if ((data + (2 * bmp->width)) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->reversed)
scanline = (unsigned int *)(top + (y * swidth));
else
scanline = (unsigned int *)(bottom - (y * swidth));
if (bmp->encoding == BMP_ENCODING_BITFIELDS) {
for (x = 0; x < bmp->width; x++) {
word = data[0] | (data[1] << 8);
scanline[x] = (0xff << 24);
for (i = 0; i < 4; i++)
if (bmp->shift[i] > 0)
scanline[x] ^= ((word & bmp->mask[i]) <<
bmp->shift[i]);
else
scanline[x] ^= ((word & bmp->mask[i]) >>
(-bmp->shift[i]));
data += 2;
}
} else {
for (x = 0; x < bmp->width; x++) {
word = data[0] | (data[1] << 8);
scanline[x] = ((word & (31 << 0)) << 19) |
((word & (31 << 5)) << 6) |
((word & (31 << 10)) >> 7);
data += 2;
}
}
}
*start = data;
return BMP_OK;
}
/**
* Decode BMP data stored with a palette and in 8bpp colour or less.
*
* \param bmp the BMP image to decode
* \param start the data to decode, updated to last byte read on success
* \param bytes the number of bytes of data available
* \return BMP_OK on success
*/
bmp_result bmp_decode_rgb(struct bmp_image *bmp, char **start, int bytes) {
char *top, *bottom, *end, *data;
unsigned int *scanline;
unsigned int addr;
unsigned int x, y, swidth;
int i;
int bit_shifts[8];
int ppb = 8 / bmp->bpp;
int bit_mask = (1 << bmp->bpp) - 1;
int cur_byte = 0, bit;
for (i = 0; i < ppb; i++)
bit_shifts[i] = 8 - ((i + 1) * bmp->bpp);
data = *start;
swidth = bitmap_get_rowstride(bmp->bitmap);
top = bitmap_get_buffer(bmp->bitmap);
bottom = top + swidth * (bmp->height - 1);
end = data + bytes;
addr = ((unsigned int)data) & 3;
bmp->decoded = true;
for (y = 0; y < bmp->height; y++) {
while (addr != (((unsigned int)data) & 3))
data++;
bit = 32;
if ((data + (bmp->width / ppb)) > end)
return BMP_INSUFFICIENT_DATA;
if (bmp->reversed)
scanline = (unsigned int *)(top + (y * swidth));
else
scanline = (unsigned int *)(bottom - (y * swidth));
for (x = 0; x < bmp->width; x++) {
if (bit >= ppb) {
bit = 0;
cur_byte = *data++;
}
scanline[x] = bmp->colour_table[(cur_byte >>
bit_shifts[bit++]) & bit_mask];
}
}
*start = data;
return BMP_OK;
}
/**
* Decode a 1bpp mask for an ICO
*
* \param bmp the BMP image to decode
* \param data the data to decode
* \param bytes the number of bytes of data available
* \return BMP_OK on success
*/
bmp_result bmp_decode_mask(struct bmp_image *bmp, char *data, int bytes) {
char *top, *bottom, *end;
unsigned int *scanline;
unsigned int addr;
unsigned int x, y, swidth;
int cur_byte = 0;
swidth = bitmap_get_rowstride(bmp->bitmap);
top = bitmap_get_buffer(bmp->bitmap);
bottom = top + swidth * (bmp->height - 1);
end = data + bytes;
addr = ((unsigned int)data) & 3;
for (y = 0; y < bmp->height; y++) {
while (addr != (((unsigned int)data) & 3))
data++;
if ((data + (bmp->width >> 3)) > end)
return BMP_INSUFFICIENT_DATA;
scanline = (unsigned int *)(bottom - (y * swidth));
for (x = 0; x < bmp->width; x++) {
if ((x & 7) == 0)
cur_byte = *data++;
if ((cur_byte & 128) == 0)
scanline[x] |= (0xff << 24);
cur_byte = cur_byte << 1;
}
}
return BMP_OK;
}
/**
* Decode BMP data stored encoded in either RLE4 or RLE8.
*
* \param bmp the BMP image to decode
* \param data the data to decode
* \param bytes the number of bytes of data available
* \param size the size of the RLE tokens (4 or 8)
* \return BMP_OK on success
*/
bmp_result bmp_decode_rle(struct bmp_image *bmp, char *data, int bytes, int size) {
char *top, *bottom, *end;
unsigned int *scanline;
unsigned int swidth;
int i, length, pixels_left;
unsigned int x = 0, y = 0, last_y = 0;
unsigned int pixel = 0, pixel2;
if (bmp->ico)
return BMP_DATA_ERROR;
swidth = bitmap_get_rowstride(bmp->bitmap);
top = bitmap_get_buffer(bmp->bitmap);
bottom = top + swidth * (bmp->height - 1);
end = data + bytes;
bmp->decoded = true;
do {
if (data + 2 > end)
return BMP_INSUFFICIENT_DATA;
length = *data++;
if (length == 0) {
length = *data++;
if (length == 0) {
/* 00 - 00 means end of scanline */
x = 0;
if (last_y == y) {
if (++y > bmp->height)
return BMP_DATA_ERROR;
}
last_y = y;
} else if (length == 1) {
/* 00 - 01 means end of RLE data */
return BMP_OK;
} else if (length == 2) {
/* 00 - 02 - XX - YY means move cursor */
if (data + 2 > end)
return BMP_INSUFFICIENT_DATA;
x += *data++;
if (x >= bmp->width)
return BMP_DATA_ERROR;
y += *data++;
if (y >= bmp->height)
return BMP_DATA_ERROR;
} else {
/* 00 - NN means escape NN pixels */
if (bmp->reversed) {
pixels_left = (y + 1) * bmp->width - x;
scanline = (unsigned int *)(top + (y * swidth));
} else {
pixels_left = (bmp->height - y + 1) * bmp->width - x;
scanline = (unsigned int *)(bottom - (y * swidth));
}
if (length > pixels_left)
length = pixels_left;
if (data + length > end)
return BMP_INSUFFICIENT_DATA;
/* the following code could be easily optimised by simply
* checking the bounds on entry and using some simply copying
* routines if so */
if (size == 8) {
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
if (++y > bmp->height)
return BMP_DATA_ERROR;
scanline -= bmp->width;
}
scanline[x++] = bmp->colour_table[(int)*data++];
}
} else {
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
if (++y > bmp->height)
return BMP_DATA_ERROR;
scanline -= bmp->width;
}
if ((i & 1) == 0) {
pixel = *data++;
scanline[x++] = bmp->colour_table
[pixel >> 4];
} else {
scanline[x++] = bmp->colour_table
[pixel & 0xf];
}
}
length = (length + 1) >> 1;
}
if ((length & 1) && (*data++ != 0x00))
return BMP_DATA_ERROR;
}
} else {
/* NN means perform RLE for NN pixels */
if (bmp->reversed) {
pixels_left = (y + 1) * bmp->width - x;
scanline = (unsigned int *)(top + (y * swidth));
} else {
pixels_left = (bmp->height - y + 1) * bmp->width - x;
scanline = (unsigned int *)(bottom - (y * swidth));
}
if (length > pixels_left)
length = pixels_left;
/* the following code could be easily optimised by simply
* checking the bounds on entry and using some simply copying
* routines if so */
if (size == 8) {
pixel = bmp->colour_table[(int)*data++];
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
if (++y > bmp->height)
return BMP_DATA_ERROR;
scanline -= bmp->width;
}
scanline[x++] = pixel;
}
} else {
pixel2 = *data++;
pixel = bmp->colour_table[pixel2 >> 4];
pixel2 = bmp->colour_table[pixel2 & 0xf];
for (i = 0; i < length; i++) {
if (x >= bmp->width) {
x = 0;
if (++y > bmp->height)
return BMP_DATA_ERROR;
scanline -= bmp->width;
}
if ((i & 1) == 0)
scanline[x++] = pixel;
else
scanline[x++] = pixel2;
}
}
}
} while (data < end);
return BMP_OK;
}
/**
* Finalise a BMP prior to destruction.
*
* \param bmp the BMP image to finalise
*/
void bmp_finalise(struct bmp_image *bmp) {
if (bmp->bitmap)
bitmap_destroy(bmp->bitmap);
bmp->bitmap = NULL;
if (bmp->colour_table)
free(bmp->colour_table);
bmp->colour_table = NULL;
}
/**
* Finalise an ICO prior to destruction.
*
* \param ico the ICO image to finalise
*/
void ico_finalise(struct ico_collection *ico) {
struct ico_image *image;
for (image = ico->first; image; image = image->next)
bmp_finalise(&image->bmp);
while (ico->first) {
image = ico->first;
ico->first = image->next;
free(image);
}
}