mirror of
https://github.com/netsurf-browser/netsurf
synced 2024-12-17 01:33:16 +03:00
72716 lines
2.6 MiB
72716 lines
2.6 MiB
/*
|
|
* Single file autogenerated distributable for Duktape 1.2.3.
|
|
* Git commit 0605a18660dbae486c62a42a33fabd034c8623ff (v1.2.3).
|
|
*
|
|
* See Duktape AUTHORS.rst and LICENSE.txt for copyright and
|
|
* licensing information.
|
|
*/
|
|
|
|
/* LICENSE.txt */
|
|
/*
|
|
* ===============
|
|
* Duktape license
|
|
* ===============
|
|
*
|
|
* (http://opensource.org/licenses/MIT)
|
|
*
|
|
* Copyright (c) 2013-2015 by Duktape authors (see AUTHORS.rst)
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*
|
|
*/
|
|
/* AUTHORS.rst */
|
|
/*
|
|
* ===============
|
|
* Duktape authors
|
|
* ===============
|
|
*
|
|
* Copyright
|
|
* =========
|
|
*
|
|
* Duktape copyrights are held by its authors. Each author has a copyright
|
|
* to their contribution, and agrees to irrevocably license the contribution
|
|
* under the Duktape ``LICENSE.txt``.
|
|
*
|
|
* Authors
|
|
* =======
|
|
*
|
|
* Please include an e-mail address, a link to your GitHub profile, or something
|
|
* similar to allow your contribution to be identified accurately.
|
|
*
|
|
* The following people have contributed code and agreed to irrevocably license
|
|
* their contributions under the Duktape ``LICENSE.txt`` (in order of appearance):
|
|
*
|
|
* * Sami Vaarala <sami.vaarala@iki.fi>
|
|
* * Niki Dobrev
|
|
* * Andreas \u00d6man <andreas@lonelycoder.com>
|
|
* * L\u00e1szl\u00f3 Lang\u00f3 <llango.u-szeged@partner.samsung.com>
|
|
* * Legimet <legimet.calc@gmail.com>
|
|
*
|
|
* Other contributions
|
|
* ===================
|
|
*
|
|
* The following people have contributed something other than code (e.g. reported
|
|
* bugs, provided ideas, etc; roughly in order of appearance):
|
|
*
|
|
* * Greg Burns
|
|
* * Anthony Rabine
|
|
* * Carlos Costa
|
|
* * Aur\u00e9lien Bouilland
|
|
* * Preet Desai (Pris Matic)
|
|
* * judofyr (http://www.reddit.com/user/judofyr)
|
|
* * Jason Woofenden
|
|
* * Micha\u0142 Przyby\u015b
|
|
* * Anthony Howe
|
|
* * Conrad Pankoff
|
|
* * Jim Schimpf
|
|
* * Rajaran Gaunker (https://github.com/zimbabao)
|
|
* * Andreas \u00d6man
|
|
* * Doug Sanden
|
|
* * Josh Engebretson (https://github.com/JoshEngebretson)
|
|
* * Remo Eichenberger (https://github.com/remoe)
|
|
* * Mamod Mehyar (https://github.com/mamod)
|
|
* * David Demelier (https://github.com/hftmarkand)
|
|
* * Tim Caswell (https://github.com/creationix)
|
|
* * Mitchell Blank Jr (https://github.com/mitchblank)
|
|
* * https://github.com/yushli
|
|
* * Seo Sanghyeon (https://github.com/sanxiyn)
|
|
* * Han ChoongWoo (https://github.com/tunz)
|
|
* * Joshua Peek (https://github.com/josh)
|
|
* * Bruce E. Pascoe (https://github.com/fatcerberus)
|
|
* * https://github.com/Kelledin
|
|
* * https://github.com/sstruchtrup
|
|
*
|
|
* If you are accidentally missing from this list, send me an e-mail
|
|
* (``sami.vaarala@iki.fi``) and I'll fix the omission.
|
|
*/
|
|
#line 1 "duk_internal.h"
|
|
/*
|
|
* Top-level include file to be used for all (internal) source files.
|
|
*
|
|
* Source files should not include individual header files, as they
|
|
* have not been designed to be individually included.
|
|
*/
|
|
|
|
#ifndef DUK_INTERNAL_H_INCLUDED
|
|
#define DUK_INTERNAL_H_INCLUDED
|
|
|
|
/*
|
|
* The 'duktape.h' header provides the public API, but also handles all
|
|
* compiler and platform specific feature detection, Duktape feature
|
|
* resolution, inclusion of system headers, etc. These have been merged
|
|
* because the public API is also dependent on e.g. detecting appropriate
|
|
* C types which is quite platform/compiler specific especially for a non-C99
|
|
* build. The public API is also dependent on the resolved feature set.
|
|
*
|
|
* Some actions taken by the merged header (such as including system headers)
|
|
* are not appropriate for building a user application. The define
|
|
* DUK_COMPILING_DUKTAPE allows the merged header to skip/include some
|
|
* sections depending on what is being built.
|
|
*/
|
|
|
|
#define DUK_COMPILING_DUKTAPE
|
|
#include "duktape.h"
|
|
|
|
/*
|
|
* User declarations, e.g. prototypes for user functions used by Duktape
|
|
* macros. Concretely, if DUK_OPT_PANIC_HANDLER is used and the macro
|
|
* value calls a user function, it needs to be declared for Duktape
|
|
* compilation to avoid warnings.
|
|
*/
|
|
|
|
DUK_USE_USER_DECLARE()
|
|
|
|
/*
|
|
* Duktape includes (other than duk_features.h)
|
|
*
|
|
* The header files expect to be included in an order which satisfies header
|
|
* dependencies correctly (the headers themselves don't include any other
|
|
* includes). Forward declarations are used to break circular struct/typedef
|
|
* dependencies.
|
|
*/
|
|
|
|
#line 1 "duk_replacements.h"
|
|
#ifndef DUK_REPLACEMENTS_H_INCLUDED
|
|
#define DUK_REPLACEMENTS_H_INCLUDED
|
|
|
|
#ifdef DUK_USE_REPL_FPCLASSIFY
|
|
DUK_INTERNAL_DECL int duk_repl_fpclassify(double x);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_SIGNBIT
|
|
DUK_INTERNAL_DECL int duk_repl_signbit(double x);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_ISFINITE
|
|
DUK_INTERNAL_DECL int duk_repl_isfinite(double x);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_ISNAN
|
|
DUK_INTERNAL_DECL int duk_repl_isnan(double x);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_ISINF
|
|
DUK_INTERNAL_DECL int duk_repl_isinf(double x);
|
|
#endif
|
|
|
|
#endif /* DUK_REPLACEMENTS_H_INCLUDED */
|
|
#line 1 "duk_jmpbuf.h"
|
|
/*
|
|
* Wrapper for jmp_buf.
|
|
*
|
|
* This is used because jmp_buf is an array type for backward compatibility.
|
|
* Wrapping jmp_buf in a struct makes pointer references, sizeof, etc,
|
|
* behave more intuitively.
|
|
*
|
|
* http://en.wikipedia.org/wiki/Setjmp.h#Member_types
|
|
*/
|
|
|
|
#ifndef DUK_JMPBUF_H_INCLUDED
|
|
#define DUK_JMPBUF_H_INCLUDED
|
|
|
|
struct duk_jmpbuf {
|
|
#if defined(DUK_USE_SETJMP) || defined(DUK_USE_UNDERSCORE_SETJMP)
|
|
jmp_buf jb;
|
|
#elif defined(DUK_USE_SIGSETJMP)
|
|
sigjmp_buf jb;
|
|
#else
|
|
#error internal error, no long control transfer provider
|
|
#endif
|
|
};
|
|
|
|
#endif /* DUK_JMPBUF_H_INCLUDED */
|
|
#line 1 "duk_forwdecl.h"
|
|
/*
|
|
* Forward declarations for all Duktape structures.
|
|
*/
|
|
|
|
#ifndef DUK_FORWDECL_H_INCLUDED
|
|
#define DUK_FORWDECL_H_INCLUDED
|
|
|
|
/*
|
|
* Forward declarations
|
|
*/
|
|
|
|
struct duk_jmpbuf;
|
|
|
|
/* duk_tval intentionally skipped */
|
|
struct duk_heaphdr;
|
|
struct duk_heaphdr_string;
|
|
struct duk_hstring;
|
|
struct duk_hstring_external;
|
|
struct duk_hobject;
|
|
struct duk_hcompiledfunction;
|
|
struct duk_hnativefunction;
|
|
struct duk_hthread;
|
|
struct duk_hbuffer;
|
|
struct duk_hbuffer_fixed;
|
|
struct duk_hbuffer_dynamic;
|
|
|
|
struct duk_propaccessor;
|
|
union duk_propvalue;
|
|
struct duk_propdesc;
|
|
|
|
struct duk_heap;
|
|
struct duk_breakpoint;
|
|
|
|
struct duk_activation;
|
|
struct duk_catcher;
|
|
struct duk_strcache;
|
|
struct duk_ljstate;
|
|
struct duk_strtab_entry;
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
struct duk_fixedbuffer;
|
|
#endif
|
|
|
|
struct duk_bitdecoder_ctx;
|
|
struct duk_bitencoder_ctx;
|
|
|
|
struct duk_token;
|
|
struct duk_re_token;
|
|
struct duk_lexer_point;
|
|
struct duk_lexer_ctx;
|
|
|
|
struct duk_compiler_instr;
|
|
struct duk_compiler_func;
|
|
struct duk_compiler_ctx;
|
|
|
|
struct duk_re_matcher_ctx;
|
|
struct duk_re_compiler_ctx;
|
|
|
|
typedef struct duk_jmpbuf duk_jmpbuf;
|
|
|
|
/* duk_tval intentionally skipped */
|
|
typedef struct duk_heaphdr duk_heaphdr;
|
|
typedef struct duk_heaphdr_string duk_heaphdr_string;
|
|
typedef struct duk_hstring duk_hstring;
|
|
typedef struct duk_hstring_external duk_hstring_external;
|
|
typedef struct duk_hobject duk_hobject;
|
|
typedef struct duk_hcompiledfunction duk_hcompiledfunction;
|
|
typedef struct duk_hnativefunction duk_hnativefunction;
|
|
typedef struct duk_hthread duk_hthread;
|
|
typedef struct duk_hbuffer duk_hbuffer;
|
|
typedef struct duk_hbuffer_fixed duk_hbuffer_fixed;
|
|
typedef struct duk_hbuffer_dynamic duk_hbuffer_dynamic;
|
|
|
|
typedef struct duk_propaccessor duk_propaccessor;
|
|
typedef union duk_propvalue duk_propvalue;
|
|
typedef struct duk_propdesc duk_propdesc;
|
|
|
|
typedef struct duk_heap duk_heap;
|
|
typedef struct duk_breakpoint duk_breakpoint;
|
|
|
|
typedef struct duk_activation duk_activation;
|
|
typedef struct duk_catcher duk_catcher;
|
|
typedef struct duk_strcache duk_strcache;
|
|
typedef struct duk_ljstate duk_ljstate;
|
|
typedef struct duk_strtab_entry duk_strtab_entry;
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
typedef struct duk_fixedbuffer duk_fixedbuffer;
|
|
#endif
|
|
|
|
typedef struct duk_bitdecoder_ctx duk_bitdecoder_ctx;
|
|
typedef struct duk_bitencoder_ctx duk_bitencoder_ctx;
|
|
|
|
typedef struct duk_token duk_token;
|
|
typedef struct duk_re_token duk_re_token;
|
|
typedef struct duk_lexer_point duk_lexer_point;
|
|
typedef struct duk_lexer_ctx duk_lexer_ctx;
|
|
|
|
typedef struct duk_compiler_instr duk_compiler_instr;
|
|
typedef struct duk_compiler_func duk_compiler_func;
|
|
typedef struct duk_compiler_ctx duk_compiler_ctx;
|
|
|
|
typedef struct duk_re_matcher_ctx duk_re_matcher_ctx;
|
|
typedef struct duk_re_compiler_ctx duk_re_compiler_ctx;
|
|
|
|
#endif /* DUK_FORWDECL_H_INCLUDED */
|
|
#line 1 "duk_builtins.h"
|
|
/*
|
|
* Automatically generated by genbuiltins.py, do not edit!
|
|
*/
|
|
|
|
#ifndef DUK_BUILTINS_H_INCLUDED
|
|
#define DUK_BUILTINS_H_INCLUDED
|
|
|
|
#if defined(DUK_USE_DOUBLE_LE)
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_strings_data[1943];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STRDATA_DATA_LENGTH 1943
|
|
#define DUK_STRDATA_MAX_STRLEN 24
|
|
|
|
#define DUK_STRIDX_UC_LOGGER 0 /* 'Logger' */
|
|
#define DUK_STRIDX_UC_THREAD 1 /* 'Thread' */
|
|
#define DUK_STRIDX_UC_POINTER 2 /* 'Pointer' */
|
|
#define DUK_STRIDX_UC_BUFFER 3 /* 'Buffer' */
|
|
#define DUK_STRIDX_DEC_ENV 4 /* 'DecEnv' */
|
|
#define DUK_STRIDX_OBJ_ENV 5 /* 'ObjEnv' */
|
|
#define DUK_STRIDX_EMPTY_STRING 6 /* '' */
|
|
#define DUK_STRIDX_GLOBAL 7 /* 'global' */
|
|
#define DUK_STRIDX_UC_ARGUMENTS 8 /* 'Arguments' */
|
|
#define DUK_STRIDX_JSON 9 /* 'JSON' */
|
|
#define DUK_STRIDX_MATH 10 /* 'Math' */
|
|
#define DUK_STRIDX_UC_ERROR 11 /* 'Error' */
|
|
#define DUK_STRIDX_REG_EXP 12 /* 'RegExp' */
|
|
#define DUK_STRIDX_DATE 13 /* 'Date' */
|
|
#define DUK_STRIDX_UC_NUMBER 14 /* 'Number' */
|
|
#define DUK_STRIDX_UC_BOOLEAN 15 /* 'Boolean' */
|
|
#define DUK_STRIDX_UC_STRING 16 /* 'String' */
|
|
#define DUK_STRIDX_ARRAY 17 /* 'Array' */
|
|
#define DUK_STRIDX_UC_FUNCTION 18 /* 'Function' */
|
|
#define DUK_STRIDX_UC_OBJECT 19 /* 'Object' */
|
|
#define DUK_STRIDX_UC_NULL 20 /* 'Null' */
|
|
#define DUK_STRIDX_UC_UNDEFINED 21 /* 'Undefined' */
|
|
#define DUK_STRIDX_JSON_EXT_FUNCTION2 22 /* '{_func:true}' */
|
|
#define DUK_STRIDX_JSON_EXT_FUNCTION1 23 /* '{"_func":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_NEGINF 24 /* '{"_ninf":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_POSINF 25 /* '{"_inf":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_NAN 26 /* '{"_nan":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_UNDEFINED 27 /* '{"_undef":true}' */
|
|
#define DUK_STRIDX_TO_LOG_STRING 28 /* 'toLogString' */
|
|
#define DUK_STRIDX_CLOG 29 /* 'clog' */
|
|
#define DUK_STRIDX_LC_L 30 /* 'l' */
|
|
#define DUK_STRIDX_LC_N 31 /* 'n' */
|
|
#define DUK_STRIDX_LC_FATAL 32 /* 'fatal' */
|
|
#define DUK_STRIDX_LC_ERROR 33 /* 'error' */
|
|
#define DUK_STRIDX_LC_WARN 34 /* 'warn' */
|
|
#define DUK_STRIDX_LC_DEBUG 35 /* 'debug' */
|
|
#define DUK_STRIDX_LC_TRACE 36 /* 'trace' */
|
|
#define DUK_STRIDX_RAW 37 /* 'raw' */
|
|
#define DUK_STRIDX_FMT 38 /* 'fmt' */
|
|
#define DUK_STRIDX_CURRENT 39 /* 'current' */
|
|
#define DUK_STRIDX_RESUME 40 /* 'resume' */
|
|
#define DUK_STRIDX_COMPACT 41 /* 'compact' */
|
|
#define DUK_STRIDX_JC 42 /* 'jc' */
|
|
#define DUK_STRIDX_JX 43 /* 'jx' */
|
|
#define DUK_STRIDX_BASE64 44 /* 'base64' */
|
|
#define DUK_STRIDX_HEX 45 /* 'hex' */
|
|
#define DUK_STRIDX_DEC 46 /* 'dec' */
|
|
#define DUK_STRIDX_ENC 47 /* 'enc' */
|
|
#define DUK_STRIDX_FIN 48 /* 'fin' */
|
|
#define DUK_STRIDX_GC 49 /* 'gc' */
|
|
#define DUK_STRIDX_ACT 50 /* 'act' */
|
|
#define DUK_STRIDX_LC_INFO 51 /* 'info' */
|
|
#define DUK_STRIDX_VERSION 52 /* 'version' */
|
|
#define DUK_STRIDX_ENV 53 /* 'env' */
|
|
#define DUK_STRIDX_MOD_LOADED 54 /* 'modLoaded' */
|
|
#define DUK_STRIDX_MOD_SEARCH 55 /* 'modSearch' */
|
|
#define DUK_STRIDX_ERR_THROW 56 /* 'errThrow' */
|
|
#define DUK_STRIDX_ERR_CREATE 57 /* 'errCreate' */
|
|
#define DUK_STRIDX_COMPILE 58 /* 'compile' */
|
|
#define DUK_STRIDX_INT_REGBASE 59 /* '\x00Regbase' */
|
|
#define DUK_STRIDX_INT_THREAD 60 /* '\x00Thread' */
|
|
#define DUK_STRIDX_INT_HANDLER 61 /* '\x00Handler' */
|
|
#define DUK_STRIDX_INT_FINALIZER 62 /* '\x00Finalizer' */
|
|
#define DUK_STRIDX_INT_CALLEE 63 /* '\x00Callee' */
|
|
#define DUK_STRIDX_INT_MAP 64 /* '\x00Map' */
|
|
#define DUK_STRIDX_INT_ARGS 65 /* '\x00Args' */
|
|
#define DUK_STRIDX_INT_THIS 66 /* '\x00This' */
|
|
#define DUK_STRIDX_INT_PC2LINE 67 /* '\x00Pc2line' */
|
|
#define DUK_STRIDX_INT_SOURCE 68 /* '\x00Source' */
|
|
#define DUK_STRIDX_INT_VARENV 69 /* '\x00Varenv' */
|
|
#define DUK_STRIDX_INT_LEXENV 70 /* '\x00Lexenv' */
|
|
#define DUK_STRIDX_INT_VARMAP 71 /* '\x00Varmap' */
|
|
#define DUK_STRIDX_INT_FORMALS 72 /* '\x00Formals' */
|
|
#define DUK_STRIDX_INT_BYTECODE 73 /* '\x00Bytecode' */
|
|
#define DUK_STRIDX_INT_NEXT 74 /* '\x00Next' */
|
|
#define DUK_STRIDX_INT_TARGET 75 /* '\x00Target' */
|
|
#define DUK_STRIDX_INT_VALUE 76 /* '\x00Value' */
|
|
#define DUK_STRIDX_LC_POINTER 77 /* 'pointer' */
|
|
#define DUK_STRIDX_LC_BUFFER 78 /* 'buffer' */
|
|
#define DUK_STRIDX_INT_TRACEDATA 79 /* '\x00Tracedata' */
|
|
#define DUK_STRIDX_LINE_NUMBER 80 /* 'lineNumber' */
|
|
#define DUK_STRIDX_FILE_NAME 81 /* 'fileName' */
|
|
#define DUK_STRIDX_PC 82 /* 'pc' */
|
|
#define DUK_STRIDX_STACK 83 /* 'stack' */
|
|
#define DUK_STRIDX_THROW_TYPE_ERROR 84 /* 'ThrowTypeError' */
|
|
#define DUK_STRIDX_DUKTAPE 85 /* 'Duktape' */
|
|
#define DUK_STRIDX_ID 86 /* 'id' */
|
|
#define DUK_STRIDX_REQUIRE 87 /* 'require' */
|
|
#define DUK_STRIDX___PROTO__ 88 /* '__proto__' */
|
|
#define DUK_STRIDX_SET_PROTOTYPE_OF 89 /* 'setPrototypeOf' */
|
|
#define DUK_STRIDX_OWN_KEYS 90 /* 'ownKeys' */
|
|
#define DUK_STRIDX_ENUMERATE 91 /* 'enumerate' */
|
|
#define DUK_STRIDX_DELETE_PROPERTY 92 /* 'deleteProperty' */
|
|
#define DUK_STRIDX_HAS 93 /* 'has' */
|
|
#define DUK_STRIDX_PROXY 94 /* 'Proxy' */
|
|
#define DUK_STRIDX_CALLEE 95 /* 'callee' */
|
|
#define DUK_STRIDX_INVALID_DATE 96 /* 'Invalid Date' */
|
|
#define DUK_STRIDX_BRACKETED_ELLIPSIS 97 /* '[...]' */
|
|
#define DUK_STRIDX_NEWLINE_TAB 98 /* '\n\t' */
|
|
#define DUK_STRIDX_SPACE 99 /* ' ' */
|
|
#define DUK_STRIDX_COMMA 100 /* ',' */
|
|
#define DUK_STRIDX_MINUS_ZERO 101 /* '-0' */
|
|
#define DUK_STRIDX_PLUS_ZERO 102 /* '+0' */
|
|
#define DUK_STRIDX_ZERO 103 /* '0' */
|
|
#define DUK_STRIDX_MINUS_INFINITY 104 /* '-Infinity' */
|
|
#define DUK_STRIDX_PLUS_INFINITY 105 /* '+Infinity' */
|
|
#define DUK_STRIDX_INFINITY 106 /* 'Infinity' */
|
|
#define DUK_STRIDX_LC_OBJECT 107 /* 'object' */
|
|
#define DUK_STRIDX_LC_STRING 108 /* 'string' */
|
|
#define DUK_STRIDX_LC_NUMBER 109 /* 'number' */
|
|
#define DUK_STRIDX_LC_BOOLEAN 110 /* 'boolean' */
|
|
#define DUK_STRIDX_LC_UNDEFINED 111 /* 'undefined' */
|
|
#define DUK_STRIDX_STRINGIFY 112 /* 'stringify' */
|
|
#define DUK_STRIDX_TAN 113 /* 'tan' */
|
|
#define DUK_STRIDX_SQRT 114 /* 'sqrt' */
|
|
#define DUK_STRIDX_SIN 115 /* 'sin' */
|
|
#define DUK_STRIDX_ROUND 116 /* 'round' */
|
|
#define DUK_STRIDX_RANDOM 117 /* 'random' */
|
|
#define DUK_STRIDX_POW 118 /* 'pow' */
|
|
#define DUK_STRIDX_MIN 119 /* 'min' */
|
|
#define DUK_STRIDX_MAX 120 /* 'max' */
|
|
#define DUK_STRIDX_LOG 121 /* 'log' */
|
|
#define DUK_STRIDX_FLOOR 122 /* 'floor' */
|
|
#define DUK_STRIDX_EXP 123 /* 'exp' */
|
|
#define DUK_STRIDX_COS 124 /* 'cos' */
|
|
#define DUK_STRIDX_CEIL 125 /* 'ceil' */
|
|
#define DUK_STRIDX_ATAN2 126 /* 'atan2' */
|
|
#define DUK_STRIDX_ATAN 127 /* 'atan' */
|
|
#define DUK_STRIDX_ASIN 128 /* 'asin' */
|
|
#define DUK_STRIDX_ACOS 129 /* 'acos' */
|
|
#define DUK_STRIDX_ABS 130 /* 'abs' */
|
|
#define DUK_STRIDX_SQRT2 131 /* 'SQRT2' */
|
|
#define DUK_STRIDX_SQRT1_2 132 /* 'SQRT1_2' */
|
|
#define DUK_STRIDX_PI 133 /* 'PI' */
|
|
#define DUK_STRIDX_LOG10E 134 /* 'LOG10E' */
|
|
#define DUK_STRIDX_LOG2E 135 /* 'LOG2E' */
|
|
#define DUK_STRIDX_LN2 136 /* 'LN2' */
|
|
#define DUK_STRIDX_LN10 137 /* 'LN10' */
|
|
#define DUK_STRIDX_E 138 /* 'E' */
|
|
#define DUK_STRIDX_MESSAGE 139 /* 'message' */
|
|
#define DUK_STRIDX_NAME 140 /* 'name' */
|
|
#define DUK_STRIDX_INPUT 141 /* 'input' */
|
|
#define DUK_STRIDX_INDEX 142 /* 'index' */
|
|
#define DUK_STRIDX_ESCAPED_EMPTY_REGEXP 143 /* '(?:)' */
|
|
#define DUK_STRIDX_LAST_INDEX 144 /* 'lastIndex' */
|
|
#define DUK_STRIDX_MULTILINE 145 /* 'multiline' */
|
|
#define DUK_STRIDX_IGNORE_CASE 146 /* 'ignoreCase' */
|
|
#define DUK_STRIDX_SOURCE 147 /* 'source' */
|
|
#define DUK_STRIDX_TEST 148 /* 'test' */
|
|
#define DUK_STRIDX_EXEC 149 /* 'exec' */
|
|
#define DUK_STRIDX_TO_GMT_STRING 150 /* 'toGMTString' */
|
|
#define DUK_STRIDX_SET_YEAR 151 /* 'setYear' */
|
|
#define DUK_STRIDX_GET_YEAR 152 /* 'getYear' */
|
|
#define DUK_STRIDX_TO_JSON 153 /* 'toJSON' */
|
|
#define DUK_STRIDX_TO_ISO_STRING 154 /* 'toISOString' */
|
|
#define DUK_STRIDX_TO_UTC_STRING 155 /* 'toUTCString' */
|
|
#define DUK_STRIDX_SET_UTC_FULL_YEAR 156 /* 'setUTCFullYear' */
|
|
#define DUK_STRIDX_SET_FULL_YEAR 157 /* 'setFullYear' */
|
|
#define DUK_STRIDX_SET_UTC_MONTH 158 /* 'setUTCMonth' */
|
|
#define DUK_STRIDX_SET_MONTH 159 /* 'setMonth' */
|
|
#define DUK_STRIDX_SET_UTC_DATE 160 /* 'setUTCDate' */
|
|
#define DUK_STRIDX_SET_DATE 161 /* 'setDate' */
|
|
#define DUK_STRIDX_SET_UTC_HOURS 162 /* 'setUTCHours' */
|
|
#define DUK_STRIDX_SET_HOURS 163 /* 'setHours' */
|
|
#define DUK_STRIDX_SET_UTC_MINUTES 164 /* 'setUTCMinutes' */
|
|
#define DUK_STRIDX_SET_MINUTES 165 /* 'setMinutes' */
|
|
#define DUK_STRIDX_SET_UTC_SECONDS 166 /* 'setUTCSeconds' */
|
|
#define DUK_STRIDX_SET_SECONDS 167 /* 'setSeconds' */
|
|
#define DUK_STRIDX_SET_UTC_MILLISECONDS 168 /* 'setUTCMilliseconds' */
|
|
#define DUK_STRIDX_SET_MILLISECONDS 169 /* 'setMilliseconds' */
|
|
#define DUK_STRIDX_SET_TIME 170 /* 'setTime' */
|
|
#define DUK_STRIDX_GET_TIMEZONE_OFFSET 171 /* 'getTimezoneOffset' */
|
|
#define DUK_STRIDX_GET_UTC_MILLISECONDS 172 /* 'getUTCMilliseconds' */
|
|
#define DUK_STRIDX_GET_MILLISECONDS 173 /* 'getMilliseconds' */
|
|
#define DUK_STRIDX_GET_UTC_SECONDS 174 /* 'getUTCSeconds' */
|
|
#define DUK_STRIDX_GET_SECONDS 175 /* 'getSeconds' */
|
|
#define DUK_STRIDX_GET_UTC_MINUTES 176 /* 'getUTCMinutes' */
|
|
#define DUK_STRIDX_GET_MINUTES 177 /* 'getMinutes' */
|
|
#define DUK_STRIDX_GET_UTC_HOURS 178 /* 'getUTCHours' */
|
|
#define DUK_STRIDX_GET_HOURS 179 /* 'getHours' */
|
|
#define DUK_STRIDX_GET_UTC_DAY 180 /* 'getUTCDay' */
|
|
#define DUK_STRIDX_GET_DAY 181 /* 'getDay' */
|
|
#define DUK_STRIDX_GET_UTC_DATE 182 /* 'getUTCDate' */
|
|
#define DUK_STRIDX_GET_DATE 183 /* 'getDate' */
|
|
#define DUK_STRIDX_GET_UTC_MONTH 184 /* 'getUTCMonth' */
|
|
#define DUK_STRIDX_GET_MONTH 185 /* 'getMonth' */
|
|
#define DUK_STRIDX_GET_UTC_FULL_YEAR 186 /* 'getUTCFullYear' */
|
|
#define DUK_STRIDX_GET_FULL_YEAR 187 /* 'getFullYear' */
|
|
#define DUK_STRIDX_GET_TIME 188 /* 'getTime' */
|
|
#define DUK_STRIDX_TO_LOCALE_TIME_STRING 189 /* 'toLocaleTimeString' */
|
|
#define DUK_STRIDX_TO_LOCALE_DATE_STRING 190 /* 'toLocaleDateString' */
|
|
#define DUK_STRIDX_TO_TIME_STRING 191 /* 'toTimeString' */
|
|
#define DUK_STRIDX_TO_DATE_STRING 192 /* 'toDateString' */
|
|
#define DUK_STRIDX_NOW 193 /* 'now' */
|
|
#define DUK_STRIDX_UTC 194 /* 'UTC' */
|
|
#define DUK_STRIDX_PARSE 195 /* 'parse' */
|
|
#define DUK_STRIDX_TO_PRECISION 196 /* 'toPrecision' */
|
|
#define DUK_STRIDX_TO_EXPONENTIAL 197 /* 'toExponential' */
|
|
#define DUK_STRIDX_TO_FIXED 198 /* 'toFixed' */
|
|
#define DUK_STRIDX_POSITIVE_INFINITY 199 /* 'POSITIVE_INFINITY' */
|
|
#define DUK_STRIDX_NEGATIVE_INFINITY 200 /* 'NEGATIVE_INFINITY' */
|
|
#define DUK_STRIDX_NAN 201 /* 'NaN' */
|
|
#define DUK_STRIDX_MIN_VALUE 202 /* 'MIN_VALUE' */
|
|
#define DUK_STRIDX_MAX_VALUE 203 /* 'MAX_VALUE' */
|
|
#define DUK_STRIDX_SUBSTR 204 /* 'substr' */
|
|
#define DUK_STRIDX_TRIM 205 /* 'trim' */
|
|
#define DUK_STRIDX_TO_LOCALE_UPPER_CASE 206 /* 'toLocaleUpperCase' */
|
|
#define DUK_STRIDX_TO_UPPER_CASE 207 /* 'toUpperCase' */
|
|
#define DUK_STRIDX_TO_LOCALE_LOWER_CASE 208 /* 'toLocaleLowerCase' */
|
|
#define DUK_STRIDX_TO_LOWER_CASE 209 /* 'toLowerCase' */
|
|
#define DUK_STRIDX_SUBSTRING 210 /* 'substring' */
|
|
#define DUK_STRIDX_SPLIT 211 /* 'split' */
|
|
#define DUK_STRIDX_SEARCH 212 /* 'search' */
|
|
#define DUK_STRIDX_REPLACE 213 /* 'replace' */
|
|
#define DUK_STRIDX_MATCH 214 /* 'match' */
|
|
#define DUK_STRIDX_LOCALE_COMPARE 215 /* 'localeCompare' */
|
|
#define DUK_STRIDX_CHAR_CODE_AT 216 /* 'charCodeAt' */
|
|
#define DUK_STRIDX_CHAR_AT 217 /* 'charAt' */
|
|
#define DUK_STRIDX_FROM_CHAR_CODE 218 /* 'fromCharCode' */
|
|
#define DUK_STRIDX_REDUCE_RIGHT 219 /* 'reduceRight' */
|
|
#define DUK_STRIDX_REDUCE 220 /* 'reduce' */
|
|
#define DUK_STRIDX_FILTER 221 /* 'filter' */
|
|
#define DUK_STRIDX_MAP 222 /* 'map' */
|
|
#define DUK_STRIDX_FOR_EACH 223 /* 'forEach' */
|
|
#define DUK_STRIDX_SOME 224 /* 'some' */
|
|
#define DUK_STRIDX_EVERY 225 /* 'every' */
|
|
#define DUK_STRIDX_LAST_INDEX_OF 226 /* 'lastIndexOf' */
|
|
#define DUK_STRIDX_INDEX_OF 227 /* 'indexOf' */
|
|
#define DUK_STRIDX_UNSHIFT 228 /* 'unshift' */
|
|
#define DUK_STRIDX_SPLICE 229 /* 'splice' */
|
|
#define DUK_STRIDX_SORT 230 /* 'sort' */
|
|
#define DUK_STRIDX_SLICE 231 /* 'slice' */
|
|
#define DUK_STRIDX_SHIFT 232 /* 'shift' */
|
|
#define DUK_STRIDX_REVERSE 233 /* 'reverse' */
|
|
#define DUK_STRIDX_PUSH 234 /* 'push' */
|
|
#define DUK_STRIDX_POP 235 /* 'pop' */
|
|
#define DUK_STRIDX_JOIN 236 /* 'join' */
|
|
#define DUK_STRIDX_CONCAT 237 /* 'concat' */
|
|
#define DUK_STRIDX_IS_ARRAY 238 /* 'isArray' */
|
|
#define DUK_STRIDX_LC_ARGUMENTS 239 /* 'arguments' */
|
|
#define DUK_STRIDX_CALLER 240 /* 'caller' */
|
|
#define DUK_STRIDX_BIND 241 /* 'bind' */
|
|
#define DUK_STRIDX_CALL 242 /* 'call' */
|
|
#define DUK_STRIDX_APPLY 243 /* 'apply' */
|
|
#define DUK_STRIDX_PROPERTY_IS_ENUMERABLE 244 /* 'propertyIsEnumerable' */
|
|
#define DUK_STRIDX_IS_PROTOTYPE_OF 245 /* 'isPrototypeOf' */
|
|
#define DUK_STRIDX_HAS_OWN_PROPERTY 246 /* 'hasOwnProperty' */
|
|
#define DUK_STRIDX_VALUE_OF 247 /* 'valueOf' */
|
|
#define DUK_STRIDX_TO_LOCALE_STRING 248 /* 'toLocaleString' */
|
|
#define DUK_STRIDX_TO_STRING 249 /* 'toString' */
|
|
#define DUK_STRIDX_CONSTRUCTOR 250 /* 'constructor' */
|
|
#define DUK_STRIDX_SET 251 /* 'set' */
|
|
#define DUK_STRIDX_GET 252 /* 'get' */
|
|
#define DUK_STRIDX_ENUMERABLE 253 /* 'enumerable' */
|
|
#define DUK_STRIDX_CONFIGURABLE 254 /* 'configurable' */
|
|
#define DUK_STRIDX_WRITABLE 255 /* 'writable' */
|
|
#define DUK_STRIDX_VALUE 256 /* 'value' */
|
|
#define DUK_STRIDX_KEYS 257 /* 'keys' */
|
|
#define DUK_STRIDX_IS_EXTENSIBLE 258 /* 'isExtensible' */
|
|
#define DUK_STRIDX_IS_FROZEN 259 /* 'isFrozen' */
|
|
#define DUK_STRIDX_IS_SEALED 260 /* 'isSealed' */
|
|
#define DUK_STRIDX_PREVENT_EXTENSIONS 261 /* 'preventExtensions' */
|
|
#define DUK_STRIDX_FREEZE 262 /* 'freeze' */
|
|
#define DUK_STRIDX_SEAL 263 /* 'seal' */
|
|
#define DUK_STRIDX_DEFINE_PROPERTIES 264 /* 'defineProperties' */
|
|
#define DUK_STRIDX_DEFINE_PROPERTY 265 /* 'defineProperty' */
|
|
#define DUK_STRIDX_CREATE 266 /* 'create' */
|
|
#define DUK_STRIDX_GET_OWN_PROPERTY_NAMES 267 /* 'getOwnPropertyNames' */
|
|
#define DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR 268 /* 'getOwnPropertyDescriptor' */
|
|
#define DUK_STRIDX_GET_PROTOTYPE_OF 269 /* 'getPrototypeOf' */
|
|
#define DUK_STRIDX_PROTOTYPE 270 /* 'prototype' */
|
|
#define DUK_STRIDX_LENGTH 271 /* 'length' */
|
|
#define DUK_STRIDX_ALERT 272 /* 'alert' */
|
|
#define DUK_STRIDX_PRINT 273 /* 'print' */
|
|
#define DUK_STRIDX_UNESCAPE 274 /* 'unescape' */
|
|
#define DUK_STRIDX_ESCAPE 275 /* 'escape' */
|
|
#define DUK_STRIDX_ENCODE_URI_COMPONENT 276 /* 'encodeURIComponent' */
|
|
#define DUK_STRIDX_ENCODE_URI 277 /* 'encodeURI' */
|
|
#define DUK_STRIDX_DECODE_URI_COMPONENT 278 /* 'decodeURIComponent' */
|
|
#define DUK_STRIDX_DECODE_URI 279 /* 'decodeURI' */
|
|
#define DUK_STRIDX_IS_FINITE 280 /* 'isFinite' */
|
|
#define DUK_STRIDX_IS_NAN 281 /* 'isNaN' */
|
|
#define DUK_STRIDX_PARSE_FLOAT 282 /* 'parseFloat' */
|
|
#define DUK_STRIDX_PARSE_INT 283 /* 'parseInt' */
|
|
#define DUK_STRIDX_EVAL 284 /* 'eval' */
|
|
#define DUK_STRIDX_URI_ERROR 285 /* 'URIError' */
|
|
#define DUK_STRIDX_TYPE_ERROR 286 /* 'TypeError' */
|
|
#define DUK_STRIDX_SYNTAX_ERROR 287 /* 'SyntaxError' */
|
|
#define DUK_STRIDX_REFERENCE_ERROR 288 /* 'ReferenceError' */
|
|
#define DUK_STRIDX_RANGE_ERROR 289 /* 'RangeError' */
|
|
#define DUK_STRIDX_EVAL_ERROR 290 /* 'EvalError' */
|
|
#define DUK_STRIDX_BREAK 291 /* 'break' */
|
|
#define DUK_STRIDX_CASE 292 /* 'case' */
|
|
#define DUK_STRIDX_CATCH 293 /* 'catch' */
|
|
#define DUK_STRIDX_CONTINUE 294 /* 'continue' */
|
|
#define DUK_STRIDX_DEBUGGER 295 /* 'debugger' */
|
|
#define DUK_STRIDX_DEFAULT 296 /* 'default' */
|
|
#define DUK_STRIDX_DELETE 297 /* 'delete' */
|
|
#define DUK_STRIDX_DO 298 /* 'do' */
|
|
#define DUK_STRIDX_ELSE 299 /* 'else' */
|
|
#define DUK_STRIDX_FINALLY 300 /* 'finally' */
|
|
#define DUK_STRIDX_FOR 301 /* 'for' */
|
|
#define DUK_STRIDX_LC_FUNCTION 302 /* 'function' */
|
|
#define DUK_STRIDX_IF 303 /* 'if' */
|
|
#define DUK_STRIDX_IN 304 /* 'in' */
|
|
#define DUK_STRIDX_INSTANCEOF 305 /* 'instanceof' */
|
|
#define DUK_STRIDX_NEW 306 /* 'new' */
|
|
#define DUK_STRIDX_RETURN 307 /* 'return' */
|
|
#define DUK_STRIDX_SWITCH 308 /* 'switch' */
|
|
#define DUK_STRIDX_THIS 309 /* 'this' */
|
|
#define DUK_STRIDX_THROW 310 /* 'throw' */
|
|
#define DUK_STRIDX_TRY 311 /* 'try' */
|
|
#define DUK_STRIDX_TYPEOF 312 /* 'typeof' */
|
|
#define DUK_STRIDX_VAR 313 /* 'var' */
|
|
#define DUK_STRIDX_VOID 314 /* 'void' */
|
|
#define DUK_STRIDX_WHILE 315 /* 'while' */
|
|
#define DUK_STRIDX_WITH 316 /* 'with' */
|
|
#define DUK_STRIDX_CLASS 317 /* 'class' */
|
|
#define DUK_STRIDX_CONST 318 /* 'const' */
|
|
#define DUK_STRIDX_ENUM 319 /* 'enum' */
|
|
#define DUK_STRIDX_EXPORT 320 /* 'export' */
|
|
#define DUK_STRIDX_EXTENDS 321 /* 'extends' */
|
|
#define DUK_STRIDX_IMPORT 322 /* 'import' */
|
|
#define DUK_STRIDX_SUPER 323 /* 'super' */
|
|
#define DUK_STRIDX_LC_NULL 324 /* 'null' */
|
|
#define DUK_STRIDX_TRUE 325 /* 'true' */
|
|
#define DUK_STRIDX_FALSE 326 /* 'false' */
|
|
#define DUK_STRIDX_IMPLEMENTS 327 /* 'implements' */
|
|
#define DUK_STRIDX_INTERFACE 328 /* 'interface' */
|
|
#define DUK_STRIDX_LET 329 /* 'let' */
|
|
#define DUK_STRIDX_PACKAGE 330 /* 'package' */
|
|
#define DUK_STRIDX_PRIVATE 331 /* 'private' */
|
|
#define DUK_STRIDX_PROTECTED 332 /* 'protected' */
|
|
#define DUK_STRIDX_PUBLIC 333 /* 'public' */
|
|
#define DUK_STRIDX_STATIC 334 /* 'static' */
|
|
#define DUK_STRIDX_YIELD 335 /* 'yield' */
|
|
|
|
#define DUK_HEAP_STRING_UC_LOGGER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_LOGGER)
|
|
#define DUK_HTHREAD_STRING_UC_LOGGER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_LOGGER)
|
|
#define DUK_HEAP_STRING_UC_THREAD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_THREAD)
|
|
#define DUK_HTHREAD_STRING_UC_THREAD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_THREAD)
|
|
#define DUK_HEAP_STRING_UC_POINTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_POINTER)
|
|
#define DUK_HTHREAD_STRING_UC_POINTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_POINTER)
|
|
#define DUK_HEAP_STRING_UC_BUFFER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_BUFFER)
|
|
#define DUK_HTHREAD_STRING_UC_BUFFER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_BUFFER)
|
|
#define DUK_HEAP_STRING_DEC_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEC_ENV)
|
|
#define DUK_HTHREAD_STRING_DEC_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEC_ENV)
|
|
#define DUK_HEAP_STRING_OBJ_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_OBJ_ENV)
|
|
#define DUK_HTHREAD_STRING_OBJ_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_OBJ_ENV)
|
|
#define DUK_HEAP_STRING_EMPTY_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EMPTY_STRING)
|
|
#define DUK_HTHREAD_STRING_EMPTY_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EMPTY_STRING)
|
|
#define DUK_HEAP_STRING_GLOBAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GLOBAL)
|
|
#define DUK_HTHREAD_STRING_GLOBAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GLOBAL)
|
|
#define DUK_HEAP_STRING_UC_ARGUMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_ARGUMENTS)
|
|
#define DUK_HTHREAD_STRING_UC_ARGUMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_ARGUMENTS)
|
|
#define DUK_HEAP_STRING_JSON(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON)
|
|
#define DUK_HTHREAD_STRING_JSON(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON)
|
|
#define DUK_HEAP_STRING_MATH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MATH)
|
|
#define DUK_HTHREAD_STRING_MATH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MATH)
|
|
#define DUK_HEAP_STRING_UC_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_ERROR)
|
|
#define DUK_HTHREAD_STRING_UC_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_ERROR)
|
|
#define DUK_HEAP_STRING_REG_EXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REG_EXP)
|
|
#define DUK_HTHREAD_STRING_REG_EXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REG_EXP)
|
|
#define DUK_HEAP_STRING_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DATE)
|
|
#define DUK_HTHREAD_STRING_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DATE)
|
|
#define DUK_HEAP_STRING_UC_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_NUMBER)
|
|
#define DUK_HTHREAD_STRING_UC_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_NUMBER)
|
|
#define DUK_HEAP_STRING_UC_BOOLEAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_BOOLEAN)
|
|
#define DUK_HTHREAD_STRING_UC_BOOLEAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_BOOLEAN)
|
|
#define DUK_HEAP_STRING_UC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_STRING)
|
|
#define DUK_HTHREAD_STRING_UC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_STRING)
|
|
#define DUK_HEAP_STRING_ARRAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ARRAY)
|
|
#define DUK_HTHREAD_STRING_ARRAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ARRAY)
|
|
#define DUK_HEAP_STRING_UC_FUNCTION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_FUNCTION)
|
|
#define DUK_HTHREAD_STRING_UC_FUNCTION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_FUNCTION)
|
|
#define DUK_HEAP_STRING_UC_OBJECT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_OBJECT)
|
|
#define DUK_HTHREAD_STRING_UC_OBJECT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_OBJECT)
|
|
#define DUK_HEAP_STRING_UC_NULL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_NULL)
|
|
#define DUK_HTHREAD_STRING_UC_NULL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_NULL)
|
|
#define DUK_HEAP_STRING_UC_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_UC_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_UNDEFINED)
|
|
#define DUK_HEAP_STRING_JSON_EXT_FUNCTION2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_FUNCTION2)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_FUNCTION2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_FUNCTION2)
|
|
#define DUK_HEAP_STRING_JSON_EXT_FUNCTION1(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_FUNCTION1)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_FUNCTION1(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_FUNCTION1)
|
|
#define DUK_HEAP_STRING_JSON_EXT_NEGINF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_NEGINF)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_NEGINF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_NEGINF)
|
|
#define DUK_HEAP_STRING_JSON_EXT_POSINF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_POSINF)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_POSINF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_POSINF)
|
|
#define DUK_HEAP_STRING_JSON_EXT_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_NAN)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_NAN)
|
|
#define DUK_HEAP_STRING_JSON_EXT_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_UNDEFINED)
|
|
#define DUK_HEAP_STRING_TO_LOG_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOG_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOG_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOG_STRING)
|
|
#define DUK_HEAP_STRING_CLOG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CLOG)
|
|
#define DUK_HTHREAD_STRING_CLOG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CLOG)
|
|
#define DUK_HEAP_STRING_LC_L(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_L)
|
|
#define DUK_HTHREAD_STRING_LC_L(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_L)
|
|
#define DUK_HEAP_STRING_LC_N(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_N)
|
|
#define DUK_HTHREAD_STRING_LC_N(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_N)
|
|
#define DUK_HEAP_STRING_LC_FATAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_FATAL)
|
|
#define DUK_HTHREAD_STRING_LC_FATAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_FATAL)
|
|
#define DUK_HEAP_STRING_LC_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_ERROR)
|
|
#define DUK_HTHREAD_STRING_LC_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_ERROR)
|
|
#define DUK_HEAP_STRING_LC_WARN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_WARN)
|
|
#define DUK_HTHREAD_STRING_LC_WARN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_WARN)
|
|
#define DUK_HEAP_STRING_LC_DEBUG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_DEBUG)
|
|
#define DUK_HTHREAD_STRING_LC_DEBUG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_DEBUG)
|
|
#define DUK_HEAP_STRING_LC_TRACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_TRACE)
|
|
#define DUK_HTHREAD_STRING_LC_TRACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_TRACE)
|
|
#define DUK_HEAP_STRING_RAW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RAW)
|
|
#define DUK_HTHREAD_STRING_RAW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RAW)
|
|
#define DUK_HEAP_STRING_FMT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FMT)
|
|
#define DUK_HTHREAD_STRING_FMT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FMT)
|
|
#define DUK_HEAP_STRING_CURRENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CURRENT)
|
|
#define DUK_HTHREAD_STRING_CURRENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CURRENT)
|
|
#define DUK_HEAP_STRING_RESUME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RESUME)
|
|
#define DUK_HTHREAD_STRING_RESUME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RESUME)
|
|
#define DUK_HEAP_STRING_COMPACT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMPACT)
|
|
#define DUK_HTHREAD_STRING_COMPACT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMPACT)
|
|
#define DUK_HEAP_STRING_JC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JC)
|
|
#define DUK_HTHREAD_STRING_JC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JC)
|
|
#define DUK_HEAP_STRING_JX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JX)
|
|
#define DUK_HTHREAD_STRING_JX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JX)
|
|
#define DUK_HEAP_STRING_BASE64(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BASE64)
|
|
#define DUK_HTHREAD_STRING_BASE64(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BASE64)
|
|
#define DUK_HEAP_STRING_HEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HEX)
|
|
#define DUK_HTHREAD_STRING_HEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HEX)
|
|
#define DUK_HEAP_STRING_DEC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEC)
|
|
#define DUK_HTHREAD_STRING_DEC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEC)
|
|
#define DUK_HEAP_STRING_ENC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENC)
|
|
#define DUK_HTHREAD_STRING_ENC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENC)
|
|
#define DUK_HEAP_STRING_FIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FIN)
|
|
#define DUK_HTHREAD_STRING_FIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FIN)
|
|
#define DUK_HEAP_STRING_GC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GC)
|
|
#define DUK_HTHREAD_STRING_GC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GC)
|
|
#define DUK_HEAP_STRING_ACT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ACT)
|
|
#define DUK_HTHREAD_STRING_ACT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ACT)
|
|
#define DUK_HEAP_STRING_LC_INFO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_INFO)
|
|
#define DUK_HTHREAD_STRING_LC_INFO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_INFO)
|
|
#define DUK_HEAP_STRING_VERSION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VERSION)
|
|
#define DUK_HTHREAD_STRING_VERSION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VERSION)
|
|
#define DUK_HEAP_STRING_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENV)
|
|
#define DUK_HTHREAD_STRING_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENV)
|
|
#define DUK_HEAP_STRING_MOD_LOADED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MOD_LOADED)
|
|
#define DUK_HTHREAD_STRING_MOD_LOADED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MOD_LOADED)
|
|
#define DUK_HEAP_STRING_MOD_SEARCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MOD_SEARCH)
|
|
#define DUK_HTHREAD_STRING_MOD_SEARCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MOD_SEARCH)
|
|
#define DUK_HEAP_STRING_ERR_THROW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ERR_THROW)
|
|
#define DUK_HTHREAD_STRING_ERR_THROW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ERR_THROW)
|
|
#define DUK_HEAP_STRING_ERR_CREATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ERR_CREATE)
|
|
#define DUK_HTHREAD_STRING_ERR_CREATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ERR_CREATE)
|
|
#define DUK_HEAP_STRING_COMPILE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMPILE)
|
|
#define DUK_HTHREAD_STRING_COMPILE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMPILE)
|
|
#define DUK_HEAP_STRING_INT_REGBASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_REGBASE)
|
|
#define DUK_HTHREAD_STRING_INT_REGBASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_REGBASE)
|
|
#define DUK_HEAP_STRING_INT_THREAD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_THREAD)
|
|
#define DUK_HTHREAD_STRING_INT_THREAD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_THREAD)
|
|
#define DUK_HEAP_STRING_INT_HANDLER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_HANDLER)
|
|
#define DUK_HTHREAD_STRING_INT_HANDLER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_HANDLER)
|
|
#define DUK_HEAP_STRING_INT_FINALIZER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_FINALIZER)
|
|
#define DUK_HTHREAD_STRING_INT_FINALIZER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_FINALIZER)
|
|
#define DUK_HEAP_STRING_INT_CALLEE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_CALLEE)
|
|
#define DUK_HTHREAD_STRING_INT_CALLEE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_CALLEE)
|
|
#define DUK_HEAP_STRING_INT_MAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_MAP)
|
|
#define DUK_HTHREAD_STRING_INT_MAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_MAP)
|
|
#define DUK_HEAP_STRING_INT_ARGS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_ARGS)
|
|
#define DUK_HTHREAD_STRING_INT_ARGS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_ARGS)
|
|
#define DUK_HEAP_STRING_INT_THIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_THIS)
|
|
#define DUK_HTHREAD_STRING_INT_THIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_THIS)
|
|
#define DUK_HEAP_STRING_INT_PC2LINE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_PC2LINE)
|
|
#define DUK_HTHREAD_STRING_INT_PC2LINE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_PC2LINE)
|
|
#define DUK_HEAP_STRING_INT_SOURCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_SOURCE)
|
|
#define DUK_HTHREAD_STRING_INT_SOURCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_SOURCE)
|
|
#define DUK_HEAP_STRING_INT_VARENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VARENV)
|
|
#define DUK_HTHREAD_STRING_INT_VARENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VARENV)
|
|
#define DUK_HEAP_STRING_INT_LEXENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_LEXENV)
|
|
#define DUK_HTHREAD_STRING_INT_LEXENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_LEXENV)
|
|
#define DUK_HEAP_STRING_INT_VARMAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VARMAP)
|
|
#define DUK_HTHREAD_STRING_INT_VARMAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VARMAP)
|
|
#define DUK_HEAP_STRING_INT_FORMALS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_FORMALS)
|
|
#define DUK_HTHREAD_STRING_INT_FORMALS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_FORMALS)
|
|
#define DUK_HEAP_STRING_INT_BYTECODE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_BYTECODE)
|
|
#define DUK_HTHREAD_STRING_INT_BYTECODE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_BYTECODE)
|
|
#define DUK_HEAP_STRING_INT_NEXT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_NEXT)
|
|
#define DUK_HTHREAD_STRING_INT_NEXT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_NEXT)
|
|
#define DUK_HEAP_STRING_INT_TARGET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_TARGET)
|
|
#define DUK_HTHREAD_STRING_INT_TARGET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_TARGET)
|
|
#define DUK_HEAP_STRING_INT_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VALUE)
|
|
#define DUK_HTHREAD_STRING_INT_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VALUE)
|
|
#define DUK_HEAP_STRING_LC_POINTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_POINTER)
|
|
#define DUK_HTHREAD_STRING_LC_POINTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_POINTER)
|
|
#define DUK_HEAP_STRING_LC_BUFFER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_BUFFER)
|
|
#define DUK_HTHREAD_STRING_LC_BUFFER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_BUFFER)
|
|
#define DUK_HEAP_STRING_INT_TRACEDATA(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_TRACEDATA)
|
|
#define DUK_HTHREAD_STRING_INT_TRACEDATA(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_TRACEDATA)
|
|
#define DUK_HEAP_STRING_LINE_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LINE_NUMBER)
|
|
#define DUK_HTHREAD_STRING_LINE_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LINE_NUMBER)
|
|
#define DUK_HEAP_STRING_FILE_NAME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FILE_NAME)
|
|
#define DUK_HTHREAD_STRING_FILE_NAME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FILE_NAME)
|
|
#define DUK_HEAP_STRING_PC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PC)
|
|
#define DUK_HTHREAD_STRING_PC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PC)
|
|
#define DUK_HEAP_STRING_STACK(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STACK)
|
|
#define DUK_HTHREAD_STRING_STACK(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STACK)
|
|
#define DUK_HEAP_STRING_THROW_TYPE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THROW_TYPE_ERROR)
|
|
#define DUK_HTHREAD_STRING_THROW_TYPE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THROW_TYPE_ERROR)
|
|
#define DUK_HEAP_STRING_DUKTAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DUKTAPE)
|
|
#define DUK_HTHREAD_STRING_DUKTAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DUKTAPE)
|
|
#define DUK_HEAP_STRING_ID(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ID)
|
|
#define DUK_HTHREAD_STRING_ID(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ID)
|
|
#define DUK_HEAP_STRING_REQUIRE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REQUIRE)
|
|
#define DUK_HTHREAD_STRING_REQUIRE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REQUIRE)
|
|
#define DUK_HEAP_STRING___PROTO__(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX___PROTO__)
|
|
#define DUK_HTHREAD_STRING___PROTO__(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX___PROTO__)
|
|
#define DUK_HEAP_STRING_SET_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_SET_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_OWN_KEYS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_OWN_KEYS)
|
|
#define DUK_HTHREAD_STRING_OWN_KEYS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_OWN_KEYS)
|
|
#define DUK_HEAP_STRING_ENUMERATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUMERATE)
|
|
#define DUK_HTHREAD_STRING_ENUMERATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUMERATE)
|
|
#define DUK_HEAP_STRING_DELETE_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DELETE_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_DELETE_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DELETE_PROPERTY)
|
|
#define DUK_HEAP_STRING_HAS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HAS)
|
|
#define DUK_HTHREAD_STRING_HAS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HAS)
|
|
#define DUK_HEAP_STRING_PROXY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROXY)
|
|
#define DUK_HTHREAD_STRING_PROXY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROXY)
|
|
#define DUK_HEAP_STRING_CALLEE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALLEE)
|
|
#define DUK_HTHREAD_STRING_CALLEE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALLEE)
|
|
#define DUK_HEAP_STRING_INVALID_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INVALID_DATE)
|
|
#define DUK_HTHREAD_STRING_INVALID_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INVALID_DATE)
|
|
#define DUK_HEAP_STRING_BRACKETED_ELLIPSIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BRACKETED_ELLIPSIS)
|
|
#define DUK_HTHREAD_STRING_BRACKETED_ELLIPSIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BRACKETED_ELLIPSIS)
|
|
#define DUK_HEAP_STRING_NEWLINE_TAB(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEWLINE_TAB)
|
|
#define DUK_HTHREAD_STRING_NEWLINE_TAB(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEWLINE_TAB)
|
|
#define DUK_HEAP_STRING_SPACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPACE)
|
|
#define DUK_HTHREAD_STRING_SPACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPACE)
|
|
#define DUK_HEAP_STRING_COMMA(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMMA)
|
|
#define DUK_HTHREAD_STRING_COMMA(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMMA)
|
|
#define DUK_HEAP_STRING_MINUS_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MINUS_ZERO)
|
|
#define DUK_HTHREAD_STRING_MINUS_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MINUS_ZERO)
|
|
#define DUK_HEAP_STRING_PLUS_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PLUS_ZERO)
|
|
#define DUK_HTHREAD_STRING_PLUS_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PLUS_ZERO)
|
|
#define DUK_HEAP_STRING_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ZERO)
|
|
#define DUK_HTHREAD_STRING_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ZERO)
|
|
#define DUK_HEAP_STRING_MINUS_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MINUS_INFINITY)
|
|
#define DUK_HTHREAD_STRING_MINUS_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MINUS_INFINITY)
|
|
#define DUK_HEAP_STRING_PLUS_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PLUS_INFINITY)
|
|
#define DUK_HTHREAD_STRING_PLUS_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PLUS_INFINITY)
|
|
#define DUK_HEAP_STRING_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INFINITY)
|
|
#define DUK_HTHREAD_STRING_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INFINITY)
|
|
#define DUK_HEAP_STRING_LC_OBJECT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_OBJECT)
|
|
#define DUK_HTHREAD_STRING_LC_OBJECT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_OBJECT)
|
|
#define DUK_HEAP_STRING_LC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_STRING)
|
|
#define DUK_HTHREAD_STRING_LC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_STRING)
|
|
#define DUK_HEAP_STRING_LC_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_NUMBER)
|
|
#define DUK_HTHREAD_STRING_LC_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_NUMBER)
|
|
#define DUK_HEAP_STRING_LC_BOOLEAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_BOOLEAN)
|
|
#define DUK_HTHREAD_STRING_LC_BOOLEAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_BOOLEAN)
|
|
#define DUK_HEAP_STRING_LC_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_LC_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_UNDEFINED)
|
|
#define DUK_HEAP_STRING_STRINGIFY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STRINGIFY)
|
|
#define DUK_HTHREAD_STRING_STRINGIFY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STRINGIFY)
|
|
#define DUK_HEAP_STRING_TAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TAN)
|
|
#define DUK_HTHREAD_STRING_TAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TAN)
|
|
#define DUK_HEAP_STRING_SQRT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT)
|
|
#define DUK_HTHREAD_STRING_SQRT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT)
|
|
#define DUK_HEAP_STRING_SIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SIN)
|
|
#define DUK_HTHREAD_STRING_SIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SIN)
|
|
#define DUK_HEAP_STRING_ROUND(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ROUND)
|
|
#define DUK_HTHREAD_STRING_ROUND(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ROUND)
|
|
#define DUK_HEAP_STRING_RANDOM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RANDOM)
|
|
#define DUK_HTHREAD_STRING_RANDOM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RANDOM)
|
|
#define DUK_HEAP_STRING_POW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POW)
|
|
#define DUK_HTHREAD_STRING_POW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POW)
|
|
#define DUK_HEAP_STRING_MIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MIN)
|
|
#define DUK_HTHREAD_STRING_MIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MIN)
|
|
#define DUK_HEAP_STRING_MAX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAX)
|
|
#define DUK_HTHREAD_STRING_MAX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAX)
|
|
#define DUK_HEAP_STRING_LOG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG)
|
|
#define DUK_HTHREAD_STRING_LOG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG)
|
|
#define DUK_HEAP_STRING_FLOOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FLOOR)
|
|
#define DUK_HTHREAD_STRING_FLOOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FLOOR)
|
|
#define DUK_HEAP_STRING_EXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXP)
|
|
#define DUK_HTHREAD_STRING_EXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXP)
|
|
#define DUK_HEAP_STRING_COS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COS)
|
|
#define DUK_HTHREAD_STRING_COS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COS)
|
|
#define DUK_HEAP_STRING_CEIL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CEIL)
|
|
#define DUK_HTHREAD_STRING_CEIL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CEIL)
|
|
#define DUK_HEAP_STRING_ATAN2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ATAN2)
|
|
#define DUK_HTHREAD_STRING_ATAN2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ATAN2)
|
|
#define DUK_HEAP_STRING_ATAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ATAN)
|
|
#define DUK_HTHREAD_STRING_ATAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ATAN)
|
|
#define DUK_HEAP_STRING_ASIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ASIN)
|
|
#define DUK_HTHREAD_STRING_ASIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ASIN)
|
|
#define DUK_HEAP_STRING_ACOS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ACOS)
|
|
#define DUK_HTHREAD_STRING_ACOS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ACOS)
|
|
#define DUK_HEAP_STRING_ABS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ABS)
|
|
#define DUK_HTHREAD_STRING_ABS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ABS)
|
|
#define DUK_HEAP_STRING_SQRT2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT2)
|
|
#define DUK_HTHREAD_STRING_SQRT2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT2)
|
|
#define DUK_HEAP_STRING_SQRT1_2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT1_2)
|
|
#define DUK_HTHREAD_STRING_SQRT1_2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT1_2)
|
|
#define DUK_HEAP_STRING_PI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PI)
|
|
#define DUK_HTHREAD_STRING_PI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PI)
|
|
#define DUK_HEAP_STRING_LOG10E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG10E)
|
|
#define DUK_HTHREAD_STRING_LOG10E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG10E)
|
|
#define DUK_HEAP_STRING_LOG2E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG2E)
|
|
#define DUK_HTHREAD_STRING_LOG2E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG2E)
|
|
#define DUK_HEAP_STRING_LN2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LN2)
|
|
#define DUK_HTHREAD_STRING_LN2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LN2)
|
|
#define DUK_HEAP_STRING_LN10(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LN10)
|
|
#define DUK_HTHREAD_STRING_LN10(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LN10)
|
|
#define DUK_HEAP_STRING_E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_E)
|
|
#define DUK_HTHREAD_STRING_E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_E)
|
|
#define DUK_HEAP_STRING_MESSAGE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MESSAGE)
|
|
#define DUK_HTHREAD_STRING_MESSAGE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MESSAGE)
|
|
#define DUK_HEAP_STRING_NAME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NAME)
|
|
#define DUK_HTHREAD_STRING_NAME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NAME)
|
|
#define DUK_HEAP_STRING_INPUT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INPUT)
|
|
#define DUK_HTHREAD_STRING_INPUT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INPUT)
|
|
#define DUK_HEAP_STRING_INDEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INDEX)
|
|
#define DUK_HTHREAD_STRING_INDEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INDEX)
|
|
#define DUK_HEAP_STRING_ESCAPED_EMPTY_REGEXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ESCAPED_EMPTY_REGEXP)
|
|
#define DUK_HTHREAD_STRING_ESCAPED_EMPTY_REGEXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ESCAPED_EMPTY_REGEXP)
|
|
#define DUK_HEAP_STRING_LAST_INDEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LAST_INDEX)
|
|
#define DUK_HTHREAD_STRING_LAST_INDEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LAST_INDEX)
|
|
#define DUK_HEAP_STRING_MULTILINE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MULTILINE)
|
|
#define DUK_HTHREAD_STRING_MULTILINE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MULTILINE)
|
|
#define DUK_HEAP_STRING_IGNORE_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IGNORE_CASE)
|
|
#define DUK_HTHREAD_STRING_IGNORE_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IGNORE_CASE)
|
|
#define DUK_HEAP_STRING_SOURCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SOURCE)
|
|
#define DUK_HTHREAD_STRING_SOURCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SOURCE)
|
|
#define DUK_HEAP_STRING_TEST(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TEST)
|
|
#define DUK_HTHREAD_STRING_TEST(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TEST)
|
|
#define DUK_HEAP_STRING_EXEC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXEC)
|
|
#define DUK_HTHREAD_STRING_EXEC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXEC)
|
|
#define DUK_HEAP_STRING_TO_GMT_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_GMT_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_GMT_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_GMT_STRING)
|
|
#define DUK_HEAP_STRING_SET_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_YEAR)
|
|
#define DUK_HEAP_STRING_GET_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_YEAR)
|
|
#define DUK_HEAP_STRING_TO_JSON(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_JSON)
|
|
#define DUK_HTHREAD_STRING_TO_JSON(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_JSON)
|
|
#define DUK_HEAP_STRING_TO_ISO_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_ISO_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_ISO_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_ISO_STRING)
|
|
#define DUK_HEAP_STRING_TO_UTC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_UTC_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_UTC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_UTC_STRING)
|
|
#define DUK_HEAP_STRING_SET_UTC_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_SET_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_SET_UTC_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MONTH)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MONTH)
|
|
#define DUK_HEAP_STRING_SET_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MONTH)
|
|
#define DUK_HTHREAD_STRING_SET_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MONTH)
|
|
#define DUK_HEAP_STRING_SET_UTC_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_DATE)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_DATE)
|
|
#define DUK_HEAP_STRING_SET_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_DATE)
|
|
#define DUK_HTHREAD_STRING_SET_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_DATE)
|
|
#define DUK_HEAP_STRING_SET_UTC_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_HOURS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_HOURS)
|
|
#define DUK_HEAP_STRING_SET_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_HOURS)
|
|
#define DUK_HTHREAD_STRING_SET_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_HOURS)
|
|
#define DUK_HEAP_STRING_SET_UTC_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MINUTES)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MINUTES)
|
|
#define DUK_HEAP_STRING_SET_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MINUTES)
|
|
#define DUK_HTHREAD_STRING_SET_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MINUTES)
|
|
#define DUK_HEAP_STRING_SET_UTC_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_SECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_SECONDS)
|
|
#define DUK_HEAP_STRING_SET_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_SECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_SECONDS)
|
|
#define DUK_HEAP_STRING_SET_UTC_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_SET_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_SET_TIME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_TIME)
|
|
#define DUK_HTHREAD_STRING_SET_TIME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_TIME)
|
|
#define DUK_HEAP_STRING_GET_TIMEZONE_OFFSET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_TIMEZONE_OFFSET)
|
|
#define DUK_HTHREAD_STRING_GET_TIMEZONE_OFFSET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_TIMEZONE_OFFSET)
|
|
#define DUK_HEAP_STRING_GET_UTC_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_GET_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_GET_UTC_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_SECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_SECONDS)
|
|
#define DUK_HEAP_STRING_GET_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_SECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_SECONDS)
|
|
#define DUK_HEAP_STRING_GET_UTC_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MINUTES)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MINUTES)
|
|
#define DUK_HEAP_STRING_GET_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MINUTES)
|
|
#define DUK_HTHREAD_STRING_GET_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MINUTES)
|
|
#define DUK_HEAP_STRING_GET_UTC_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_HOURS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_HOURS)
|
|
#define DUK_HEAP_STRING_GET_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_HOURS)
|
|
#define DUK_HTHREAD_STRING_GET_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_HOURS)
|
|
#define DUK_HEAP_STRING_GET_UTC_DAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_DAY)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_DAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_DAY)
|
|
#define DUK_HEAP_STRING_GET_DAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_DAY)
|
|
#define DUK_HTHREAD_STRING_GET_DAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_DAY)
|
|
#define DUK_HEAP_STRING_GET_UTC_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_DATE)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_DATE)
|
|
#define DUK_HEAP_STRING_GET_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_DATE)
|
|
#define DUK_HTHREAD_STRING_GET_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_DATE)
|
|
#define DUK_HEAP_STRING_GET_UTC_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MONTH)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MONTH)
|
|
#define DUK_HEAP_STRING_GET_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MONTH)
|
|
#define DUK_HTHREAD_STRING_GET_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MONTH)
|
|
#define DUK_HEAP_STRING_GET_UTC_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_GET_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_GET_TIME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_TIME)
|
|
#define DUK_HTHREAD_STRING_GET_TIME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_TIME)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_TIME_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_TIME_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_TIME_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_TIME_STRING)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_DATE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_DATE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_DATE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_DATE_STRING)
|
|
#define DUK_HEAP_STRING_TO_TIME_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_TIME_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_TIME_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_TIME_STRING)
|
|
#define DUK_HEAP_STRING_TO_DATE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_DATE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_DATE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_DATE_STRING)
|
|
#define DUK_HEAP_STRING_NOW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NOW)
|
|
#define DUK_HTHREAD_STRING_NOW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NOW)
|
|
#define DUK_HEAP_STRING_UTC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UTC)
|
|
#define DUK_HTHREAD_STRING_UTC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UTC)
|
|
#define DUK_HEAP_STRING_PARSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE)
|
|
#define DUK_HTHREAD_STRING_PARSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE)
|
|
#define DUK_HEAP_STRING_TO_PRECISION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_PRECISION)
|
|
#define DUK_HTHREAD_STRING_TO_PRECISION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_PRECISION)
|
|
#define DUK_HEAP_STRING_TO_EXPONENTIAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_EXPONENTIAL)
|
|
#define DUK_HTHREAD_STRING_TO_EXPONENTIAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_EXPONENTIAL)
|
|
#define DUK_HEAP_STRING_TO_FIXED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_FIXED)
|
|
#define DUK_HTHREAD_STRING_TO_FIXED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_FIXED)
|
|
#define DUK_HEAP_STRING_POSITIVE_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POSITIVE_INFINITY)
|
|
#define DUK_HTHREAD_STRING_POSITIVE_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POSITIVE_INFINITY)
|
|
#define DUK_HEAP_STRING_NEGATIVE_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEGATIVE_INFINITY)
|
|
#define DUK_HTHREAD_STRING_NEGATIVE_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEGATIVE_INFINITY)
|
|
#define DUK_HEAP_STRING_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NAN)
|
|
#define DUK_HTHREAD_STRING_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NAN)
|
|
#define DUK_HEAP_STRING_MIN_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MIN_VALUE)
|
|
#define DUK_HTHREAD_STRING_MIN_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MIN_VALUE)
|
|
#define DUK_HEAP_STRING_MAX_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAX_VALUE)
|
|
#define DUK_HTHREAD_STRING_MAX_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAX_VALUE)
|
|
#define DUK_HEAP_STRING_SUBSTR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUBSTR)
|
|
#define DUK_HTHREAD_STRING_SUBSTR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUBSTR)
|
|
#define DUK_HEAP_STRING_TRIM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRIM)
|
|
#define DUK_HTHREAD_STRING_TRIM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRIM)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_UPPER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_UPPER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_UPPER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_UPPER_CASE)
|
|
#define DUK_HEAP_STRING_TO_UPPER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_UPPER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_UPPER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_UPPER_CASE)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_LOWER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_LOWER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_LOWER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_LOWER_CASE)
|
|
#define DUK_HEAP_STRING_TO_LOWER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOWER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOWER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOWER_CASE)
|
|
#define DUK_HEAP_STRING_SUBSTRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUBSTRING)
|
|
#define DUK_HTHREAD_STRING_SUBSTRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUBSTRING)
|
|
#define DUK_HEAP_STRING_SPLIT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPLIT)
|
|
#define DUK_HTHREAD_STRING_SPLIT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPLIT)
|
|
#define DUK_HEAP_STRING_SEARCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SEARCH)
|
|
#define DUK_HTHREAD_STRING_SEARCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SEARCH)
|
|
#define DUK_HEAP_STRING_REPLACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REPLACE)
|
|
#define DUK_HTHREAD_STRING_REPLACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REPLACE)
|
|
#define DUK_HEAP_STRING_MATCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MATCH)
|
|
#define DUK_HTHREAD_STRING_MATCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MATCH)
|
|
#define DUK_HEAP_STRING_LOCALE_COMPARE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOCALE_COMPARE)
|
|
#define DUK_HTHREAD_STRING_LOCALE_COMPARE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOCALE_COMPARE)
|
|
#define DUK_HEAP_STRING_CHAR_CODE_AT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CHAR_CODE_AT)
|
|
#define DUK_HTHREAD_STRING_CHAR_CODE_AT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CHAR_CODE_AT)
|
|
#define DUK_HEAP_STRING_CHAR_AT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CHAR_AT)
|
|
#define DUK_HTHREAD_STRING_CHAR_AT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CHAR_AT)
|
|
#define DUK_HEAP_STRING_FROM_CHAR_CODE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FROM_CHAR_CODE)
|
|
#define DUK_HTHREAD_STRING_FROM_CHAR_CODE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FROM_CHAR_CODE)
|
|
#define DUK_HEAP_STRING_REDUCE_RIGHT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REDUCE_RIGHT)
|
|
#define DUK_HTHREAD_STRING_REDUCE_RIGHT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REDUCE_RIGHT)
|
|
#define DUK_HEAP_STRING_REDUCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REDUCE)
|
|
#define DUK_HTHREAD_STRING_REDUCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REDUCE)
|
|
#define DUK_HEAP_STRING_FILTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FILTER)
|
|
#define DUK_HTHREAD_STRING_FILTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FILTER)
|
|
#define DUK_HEAP_STRING_MAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAP)
|
|
#define DUK_HTHREAD_STRING_MAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAP)
|
|
#define DUK_HEAP_STRING_FOR_EACH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FOR_EACH)
|
|
#define DUK_HTHREAD_STRING_FOR_EACH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FOR_EACH)
|
|
#define DUK_HEAP_STRING_SOME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SOME)
|
|
#define DUK_HTHREAD_STRING_SOME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SOME)
|
|
#define DUK_HEAP_STRING_EVERY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVERY)
|
|
#define DUK_HTHREAD_STRING_EVERY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVERY)
|
|
#define DUK_HEAP_STRING_LAST_INDEX_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LAST_INDEX_OF)
|
|
#define DUK_HTHREAD_STRING_LAST_INDEX_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LAST_INDEX_OF)
|
|
#define DUK_HEAP_STRING_INDEX_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INDEX_OF)
|
|
#define DUK_HTHREAD_STRING_INDEX_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INDEX_OF)
|
|
#define DUK_HEAP_STRING_UNSHIFT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UNSHIFT)
|
|
#define DUK_HTHREAD_STRING_UNSHIFT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UNSHIFT)
|
|
#define DUK_HEAP_STRING_SPLICE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPLICE)
|
|
#define DUK_HTHREAD_STRING_SPLICE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPLICE)
|
|
#define DUK_HEAP_STRING_SORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SORT)
|
|
#define DUK_HTHREAD_STRING_SORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SORT)
|
|
#define DUK_HEAP_STRING_SLICE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SLICE)
|
|
#define DUK_HTHREAD_STRING_SLICE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SLICE)
|
|
#define DUK_HEAP_STRING_SHIFT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SHIFT)
|
|
#define DUK_HTHREAD_STRING_SHIFT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SHIFT)
|
|
#define DUK_HEAP_STRING_REVERSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REVERSE)
|
|
#define DUK_HTHREAD_STRING_REVERSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REVERSE)
|
|
#define DUK_HEAP_STRING_PUSH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PUSH)
|
|
#define DUK_HTHREAD_STRING_PUSH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PUSH)
|
|
#define DUK_HEAP_STRING_POP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POP)
|
|
#define DUK_HTHREAD_STRING_POP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POP)
|
|
#define DUK_HEAP_STRING_JOIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JOIN)
|
|
#define DUK_HTHREAD_STRING_JOIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JOIN)
|
|
#define DUK_HEAP_STRING_CONCAT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONCAT)
|
|
#define DUK_HTHREAD_STRING_CONCAT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONCAT)
|
|
#define DUK_HEAP_STRING_IS_ARRAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_ARRAY)
|
|
#define DUK_HTHREAD_STRING_IS_ARRAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_ARRAY)
|
|
#define DUK_HEAP_STRING_LC_ARGUMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_ARGUMENTS)
|
|
#define DUK_HTHREAD_STRING_LC_ARGUMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_ARGUMENTS)
|
|
#define DUK_HEAP_STRING_CALLER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALLER)
|
|
#define DUK_HTHREAD_STRING_CALLER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALLER)
|
|
#define DUK_HEAP_STRING_BIND(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BIND)
|
|
#define DUK_HTHREAD_STRING_BIND(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BIND)
|
|
#define DUK_HEAP_STRING_CALL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALL)
|
|
#define DUK_HTHREAD_STRING_CALL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALL)
|
|
#define DUK_HEAP_STRING_APPLY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_APPLY)
|
|
#define DUK_HTHREAD_STRING_APPLY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_APPLY)
|
|
#define DUK_HEAP_STRING_PROPERTY_IS_ENUMERABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROPERTY_IS_ENUMERABLE)
|
|
#define DUK_HTHREAD_STRING_PROPERTY_IS_ENUMERABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROPERTY_IS_ENUMERABLE)
|
|
#define DUK_HEAP_STRING_IS_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_IS_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_HAS_OWN_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HAS_OWN_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_HAS_OWN_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HAS_OWN_PROPERTY)
|
|
#define DUK_HEAP_STRING_VALUE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VALUE_OF)
|
|
#define DUK_HTHREAD_STRING_VALUE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VALUE_OF)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_STRING)
|
|
#define DUK_HEAP_STRING_TO_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_STRING)
|
|
#define DUK_HEAP_STRING_CONSTRUCTOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONSTRUCTOR)
|
|
#define DUK_HTHREAD_STRING_CONSTRUCTOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONSTRUCTOR)
|
|
#define DUK_HEAP_STRING_SET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET)
|
|
#define DUK_HTHREAD_STRING_SET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET)
|
|
#define DUK_HEAP_STRING_GET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET)
|
|
#define DUK_HTHREAD_STRING_GET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET)
|
|
#define DUK_HEAP_STRING_ENUMERABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUMERABLE)
|
|
#define DUK_HTHREAD_STRING_ENUMERABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUMERABLE)
|
|
#define DUK_HEAP_STRING_CONFIGURABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONFIGURABLE)
|
|
#define DUK_HTHREAD_STRING_CONFIGURABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONFIGURABLE)
|
|
#define DUK_HEAP_STRING_WRITABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WRITABLE)
|
|
#define DUK_HTHREAD_STRING_WRITABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WRITABLE)
|
|
#define DUK_HEAP_STRING_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VALUE)
|
|
#define DUK_HTHREAD_STRING_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VALUE)
|
|
#define DUK_HEAP_STRING_KEYS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_KEYS)
|
|
#define DUK_HTHREAD_STRING_KEYS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_KEYS)
|
|
#define DUK_HEAP_STRING_IS_EXTENSIBLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_EXTENSIBLE)
|
|
#define DUK_HTHREAD_STRING_IS_EXTENSIBLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_EXTENSIBLE)
|
|
#define DUK_HEAP_STRING_IS_FROZEN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_FROZEN)
|
|
#define DUK_HTHREAD_STRING_IS_FROZEN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_FROZEN)
|
|
#define DUK_HEAP_STRING_IS_SEALED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_SEALED)
|
|
#define DUK_HTHREAD_STRING_IS_SEALED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_SEALED)
|
|
#define DUK_HEAP_STRING_PREVENT_EXTENSIONS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PREVENT_EXTENSIONS)
|
|
#define DUK_HTHREAD_STRING_PREVENT_EXTENSIONS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PREVENT_EXTENSIONS)
|
|
#define DUK_HEAP_STRING_FREEZE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FREEZE)
|
|
#define DUK_HTHREAD_STRING_FREEZE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FREEZE)
|
|
#define DUK_HEAP_STRING_SEAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SEAL)
|
|
#define DUK_HTHREAD_STRING_SEAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SEAL)
|
|
#define DUK_HEAP_STRING_DEFINE_PROPERTIES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFINE_PROPERTIES)
|
|
#define DUK_HTHREAD_STRING_DEFINE_PROPERTIES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFINE_PROPERTIES)
|
|
#define DUK_HEAP_STRING_DEFINE_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFINE_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_DEFINE_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFINE_PROPERTY)
|
|
#define DUK_HEAP_STRING_CREATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CREATE)
|
|
#define DUK_HTHREAD_STRING_CREATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CREATE)
|
|
#define DUK_HEAP_STRING_GET_OWN_PROPERTY_NAMES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_OWN_PROPERTY_NAMES)
|
|
#define DUK_HTHREAD_STRING_GET_OWN_PROPERTY_NAMES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_OWN_PROPERTY_NAMES)
|
|
#define DUK_HEAP_STRING_GET_OWN_PROPERTY_DESCRIPTOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR)
|
|
#define DUK_HTHREAD_STRING_GET_OWN_PROPERTY_DESCRIPTOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR)
|
|
#define DUK_HEAP_STRING_GET_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_GET_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_PROTOTYPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROTOTYPE)
|
|
#define DUK_HTHREAD_STRING_PROTOTYPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROTOTYPE)
|
|
#define DUK_HEAP_STRING_LENGTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LENGTH)
|
|
#define DUK_HTHREAD_STRING_LENGTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LENGTH)
|
|
#define DUK_HEAP_STRING_ALERT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ALERT)
|
|
#define DUK_HTHREAD_STRING_ALERT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ALERT)
|
|
#define DUK_HEAP_STRING_PRINT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PRINT)
|
|
#define DUK_HTHREAD_STRING_PRINT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PRINT)
|
|
#define DUK_HEAP_STRING_UNESCAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UNESCAPE)
|
|
#define DUK_HTHREAD_STRING_UNESCAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UNESCAPE)
|
|
#define DUK_HEAP_STRING_ESCAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ESCAPE)
|
|
#define DUK_HTHREAD_STRING_ESCAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ESCAPE)
|
|
#define DUK_HEAP_STRING_ENCODE_URI_COMPONENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENCODE_URI_COMPONENT)
|
|
#define DUK_HTHREAD_STRING_ENCODE_URI_COMPONENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENCODE_URI_COMPONENT)
|
|
#define DUK_HEAP_STRING_ENCODE_URI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENCODE_URI)
|
|
#define DUK_HTHREAD_STRING_ENCODE_URI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENCODE_URI)
|
|
#define DUK_HEAP_STRING_DECODE_URI_COMPONENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DECODE_URI_COMPONENT)
|
|
#define DUK_HTHREAD_STRING_DECODE_URI_COMPONENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DECODE_URI_COMPONENT)
|
|
#define DUK_HEAP_STRING_DECODE_URI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DECODE_URI)
|
|
#define DUK_HTHREAD_STRING_DECODE_URI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DECODE_URI)
|
|
#define DUK_HEAP_STRING_IS_FINITE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_FINITE)
|
|
#define DUK_HTHREAD_STRING_IS_FINITE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_FINITE)
|
|
#define DUK_HEAP_STRING_IS_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_NAN)
|
|
#define DUK_HTHREAD_STRING_IS_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_NAN)
|
|
#define DUK_HEAP_STRING_PARSE_FLOAT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE_FLOAT)
|
|
#define DUK_HTHREAD_STRING_PARSE_FLOAT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE_FLOAT)
|
|
#define DUK_HEAP_STRING_PARSE_INT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE_INT)
|
|
#define DUK_HTHREAD_STRING_PARSE_INT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE_INT)
|
|
#define DUK_HEAP_STRING_EVAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVAL)
|
|
#define DUK_HTHREAD_STRING_EVAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVAL)
|
|
#define DUK_HEAP_STRING_URI_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_URI_ERROR)
|
|
#define DUK_HTHREAD_STRING_URI_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_URI_ERROR)
|
|
#define DUK_HEAP_STRING_TYPE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TYPE_ERROR)
|
|
#define DUK_HTHREAD_STRING_TYPE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TYPE_ERROR)
|
|
#define DUK_HEAP_STRING_SYNTAX_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SYNTAX_ERROR)
|
|
#define DUK_HTHREAD_STRING_SYNTAX_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SYNTAX_ERROR)
|
|
#define DUK_HEAP_STRING_REFERENCE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REFERENCE_ERROR)
|
|
#define DUK_HTHREAD_STRING_REFERENCE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REFERENCE_ERROR)
|
|
#define DUK_HEAP_STRING_RANGE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RANGE_ERROR)
|
|
#define DUK_HTHREAD_STRING_RANGE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RANGE_ERROR)
|
|
#define DUK_HEAP_STRING_EVAL_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVAL_ERROR)
|
|
#define DUK_HTHREAD_STRING_EVAL_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVAL_ERROR)
|
|
#define DUK_HEAP_STRING_BREAK(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BREAK)
|
|
#define DUK_HTHREAD_STRING_BREAK(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BREAK)
|
|
#define DUK_HEAP_STRING_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CASE)
|
|
#define DUK_HTHREAD_STRING_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CASE)
|
|
#define DUK_HEAP_STRING_CATCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CATCH)
|
|
#define DUK_HTHREAD_STRING_CATCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CATCH)
|
|
#define DUK_HEAP_STRING_CONTINUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONTINUE)
|
|
#define DUK_HTHREAD_STRING_CONTINUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONTINUE)
|
|
#define DUK_HEAP_STRING_DEBUGGER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEBUGGER)
|
|
#define DUK_HTHREAD_STRING_DEBUGGER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEBUGGER)
|
|
#define DUK_HEAP_STRING_DEFAULT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFAULT)
|
|
#define DUK_HTHREAD_STRING_DEFAULT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFAULT)
|
|
#define DUK_HEAP_STRING_DELETE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DELETE)
|
|
#define DUK_HTHREAD_STRING_DELETE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DELETE)
|
|
#define DUK_HEAP_STRING_DO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DO)
|
|
#define DUK_HTHREAD_STRING_DO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DO)
|
|
#define DUK_HEAP_STRING_ELSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ELSE)
|
|
#define DUK_HTHREAD_STRING_ELSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ELSE)
|
|
#define DUK_HEAP_STRING_FINALLY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FINALLY)
|
|
#define DUK_HTHREAD_STRING_FINALLY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FINALLY)
|
|
#define DUK_HEAP_STRING_FOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FOR)
|
|
#define DUK_HTHREAD_STRING_FOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FOR)
|
|
#define DUK_HEAP_STRING_LC_FUNCTION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_FUNCTION)
|
|
#define DUK_HTHREAD_STRING_LC_FUNCTION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_FUNCTION)
|
|
#define DUK_HEAP_STRING_IF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IF)
|
|
#define DUK_HTHREAD_STRING_IF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IF)
|
|
#define DUK_HEAP_STRING_IN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IN)
|
|
#define DUK_HTHREAD_STRING_IN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IN)
|
|
#define DUK_HEAP_STRING_INSTANCEOF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INSTANCEOF)
|
|
#define DUK_HTHREAD_STRING_INSTANCEOF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INSTANCEOF)
|
|
#define DUK_HEAP_STRING_NEW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEW)
|
|
#define DUK_HTHREAD_STRING_NEW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEW)
|
|
#define DUK_HEAP_STRING_RETURN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RETURN)
|
|
#define DUK_HTHREAD_STRING_RETURN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RETURN)
|
|
#define DUK_HEAP_STRING_SWITCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SWITCH)
|
|
#define DUK_HTHREAD_STRING_SWITCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SWITCH)
|
|
#define DUK_HEAP_STRING_THIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THIS)
|
|
#define DUK_HTHREAD_STRING_THIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THIS)
|
|
#define DUK_HEAP_STRING_THROW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THROW)
|
|
#define DUK_HTHREAD_STRING_THROW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THROW)
|
|
#define DUK_HEAP_STRING_TRY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRY)
|
|
#define DUK_HTHREAD_STRING_TRY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRY)
|
|
#define DUK_HEAP_STRING_TYPEOF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TYPEOF)
|
|
#define DUK_HTHREAD_STRING_TYPEOF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TYPEOF)
|
|
#define DUK_HEAP_STRING_VAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VAR)
|
|
#define DUK_HTHREAD_STRING_VAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VAR)
|
|
#define DUK_HEAP_STRING_VOID(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VOID)
|
|
#define DUK_HTHREAD_STRING_VOID(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VOID)
|
|
#define DUK_HEAP_STRING_WHILE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WHILE)
|
|
#define DUK_HTHREAD_STRING_WHILE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WHILE)
|
|
#define DUK_HEAP_STRING_WITH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WITH)
|
|
#define DUK_HTHREAD_STRING_WITH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WITH)
|
|
#define DUK_HEAP_STRING_CLASS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CLASS)
|
|
#define DUK_HTHREAD_STRING_CLASS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CLASS)
|
|
#define DUK_HEAP_STRING_CONST(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONST)
|
|
#define DUK_HTHREAD_STRING_CONST(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONST)
|
|
#define DUK_HEAP_STRING_ENUM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUM)
|
|
#define DUK_HTHREAD_STRING_ENUM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUM)
|
|
#define DUK_HEAP_STRING_EXPORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXPORT)
|
|
#define DUK_HTHREAD_STRING_EXPORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXPORT)
|
|
#define DUK_HEAP_STRING_EXTENDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXTENDS)
|
|
#define DUK_HTHREAD_STRING_EXTENDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXTENDS)
|
|
#define DUK_HEAP_STRING_IMPORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IMPORT)
|
|
#define DUK_HTHREAD_STRING_IMPORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IMPORT)
|
|
#define DUK_HEAP_STRING_SUPER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUPER)
|
|
#define DUK_HTHREAD_STRING_SUPER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUPER)
|
|
#define DUK_HEAP_STRING_LC_NULL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_NULL)
|
|
#define DUK_HTHREAD_STRING_LC_NULL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_NULL)
|
|
#define DUK_HEAP_STRING_TRUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRUE)
|
|
#define DUK_HTHREAD_STRING_TRUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRUE)
|
|
#define DUK_HEAP_STRING_FALSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FALSE)
|
|
#define DUK_HTHREAD_STRING_FALSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FALSE)
|
|
#define DUK_HEAP_STRING_IMPLEMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IMPLEMENTS)
|
|
#define DUK_HTHREAD_STRING_IMPLEMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IMPLEMENTS)
|
|
#define DUK_HEAP_STRING_INTERFACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INTERFACE)
|
|
#define DUK_HTHREAD_STRING_INTERFACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INTERFACE)
|
|
#define DUK_HEAP_STRING_LET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LET)
|
|
#define DUK_HTHREAD_STRING_LET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LET)
|
|
#define DUK_HEAP_STRING_PACKAGE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PACKAGE)
|
|
#define DUK_HTHREAD_STRING_PACKAGE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PACKAGE)
|
|
#define DUK_HEAP_STRING_PRIVATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PRIVATE)
|
|
#define DUK_HTHREAD_STRING_PRIVATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PRIVATE)
|
|
#define DUK_HEAP_STRING_PROTECTED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROTECTED)
|
|
#define DUK_HTHREAD_STRING_PROTECTED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROTECTED)
|
|
#define DUK_HEAP_STRING_PUBLIC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PUBLIC)
|
|
#define DUK_HTHREAD_STRING_PUBLIC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PUBLIC)
|
|
#define DUK_HEAP_STRING_STATIC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STATIC)
|
|
#define DUK_HTHREAD_STRING_STATIC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STATIC)
|
|
#define DUK_HEAP_STRING_YIELD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_YIELD)
|
|
#define DUK_HTHREAD_STRING_YIELD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_YIELD)
|
|
|
|
#define DUK_HEAP_NUM_STRINGS 336
|
|
|
|
#define DUK_STRIDX_START_RESERVED 291
|
|
#define DUK_STRIDX_START_STRICT_RESERVED 327
|
|
#define DUK_STRIDX_END_RESERVED 336 /* exclusive endpoint */
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const duk_c_function duk_bi_native_functions[128];
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_builtins_data[1341];
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_initjs_data[187];
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_BUILTINS_DATA_LENGTH 1341
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
#define DUK_BUILTIN_INITJS_DATA_LENGTH 187
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
|
|
#define DUK_BIDX_GLOBAL 0
|
|
#define DUK_BIDX_GLOBAL_ENV 1
|
|
#define DUK_BIDX_OBJECT_CONSTRUCTOR 2
|
|
#define DUK_BIDX_OBJECT_PROTOTYPE 3
|
|
#define DUK_BIDX_FUNCTION_CONSTRUCTOR 4
|
|
#define DUK_BIDX_FUNCTION_PROTOTYPE 5
|
|
#define DUK_BIDX_ARRAY_CONSTRUCTOR 6
|
|
#define DUK_BIDX_ARRAY_PROTOTYPE 7
|
|
#define DUK_BIDX_STRING_CONSTRUCTOR 8
|
|
#define DUK_BIDX_STRING_PROTOTYPE 9
|
|
#define DUK_BIDX_BOOLEAN_CONSTRUCTOR 10
|
|
#define DUK_BIDX_BOOLEAN_PROTOTYPE 11
|
|
#define DUK_BIDX_NUMBER_CONSTRUCTOR 12
|
|
#define DUK_BIDX_NUMBER_PROTOTYPE 13
|
|
#define DUK_BIDX_DATE_CONSTRUCTOR 14
|
|
#define DUK_BIDX_DATE_PROTOTYPE 15
|
|
#define DUK_BIDX_REGEXP_CONSTRUCTOR 16
|
|
#define DUK_BIDX_REGEXP_PROTOTYPE 17
|
|
#define DUK_BIDX_ERROR_CONSTRUCTOR 18
|
|
#define DUK_BIDX_ERROR_PROTOTYPE 19
|
|
#define DUK_BIDX_EVAL_ERROR_CONSTRUCTOR 20
|
|
#define DUK_BIDX_EVAL_ERROR_PROTOTYPE 21
|
|
#define DUK_BIDX_RANGE_ERROR_CONSTRUCTOR 22
|
|
#define DUK_BIDX_RANGE_ERROR_PROTOTYPE 23
|
|
#define DUK_BIDX_REFERENCE_ERROR_CONSTRUCTOR 24
|
|
#define DUK_BIDX_REFERENCE_ERROR_PROTOTYPE 25
|
|
#define DUK_BIDX_SYNTAX_ERROR_CONSTRUCTOR 26
|
|
#define DUK_BIDX_SYNTAX_ERROR_PROTOTYPE 27
|
|
#define DUK_BIDX_TYPE_ERROR_CONSTRUCTOR 28
|
|
#define DUK_BIDX_TYPE_ERROR_PROTOTYPE 29
|
|
#define DUK_BIDX_URI_ERROR_CONSTRUCTOR 30
|
|
#define DUK_BIDX_URI_ERROR_PROTOTYPE 31
|
|
#define DUK_BIDX_MATH 32
|
|
#define DUK_BIDX_JSON 33
|
|
#define DUK_BIDX_TYPE_ERROR_THROWER 34
|
|
#define DUK_BIDX_PROXY_CONSTRUCTOR 35
|
|
#define DUK_BIDX_DUKTAPE 36
|
|
#define DUK_BIDX_THREAD_CONSTRUCTOR 37
|
|
#define DUK_BIDX_THREAD_PROTOTYPE 38
|
|
#define DUK_BIDX_BUFFER_CONSTRUCTOR 39
|
|
#define DUK_BIDX_BUFFER_PROTOTYPE 40
|
|
#define DUK_BIDX_POINTER_CONSTRUCTOR 41
|
|
#define DUK_BIDX_POINTER_PROTOTYPE 42
|
|
#define DUK_BIDX_LOGGER_CONSTRUCTOR 43
|
|
#define DUK_BIDX_LOGGER_PROTOTYPE 44
|
|
#define DUK_BIDX_DOUBLE_ERROR 45
|
|
|
|
#define DUK_NUM_BUILTINS 46
|
|
|
|
#elif defined(DUK_USE_DOUBLE_BE)
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_strings_data[1943];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STRDATA_DATA_LENGTH 1943
|
|
#define DUK_STRDATA_MAX_STRLEN 24
|
|
|
|
#define DUK_STRIDX_UC_LOGGER 0 /* 'Logger' */
|
|
#define DUK_STRIDX_UC_THREAD 1 /* 'Thread' */
|
|
#define DUK_STRIDX_UC_POINTER 2 /* 'Pointer' */
|
|
#define DUK_STRIDX_UC_BUFFER 3 /* 'Buffer' */
|
|
#define DUK_STRIDX_DEC_ENV 4 /* 'DecEnv' */
|
|
#define DUK_STRIDX_OBJ_ENV 5 /* 'ObjEnv' */
|
|
#define DUK_STRIDX_EMPTY_STRING 6 /* '' */
|
|
#define DUK_STRIDX_GLOBAL 7 /* 'global' */
|
|
#define DUK_STRIDX_UC_ARGUMENTS 8 /* 'Arguments' */
|
|
#define DUK_STRIDX_JSON 9 /* 'JSON' */
|
|
#define DUK_STRIDX_MATH 10 /* 'Math' */
|
|
#define DUK_STRIDX_UC_ERROR 11 /* 'Error' */
|
|
#define DUK_STRIDX_REG_EXP 12 /* 'RegExp' */
|
|
#define DUK_STRIDX_DATE 13 /* 'Date' */
|
|
#define DUK_STRIDX_UC_NUMBER 14 /* 'Number' */
|
|
#define DUK_STRIDX_UC_BOOLEAN 15 /* 'Boolean' */
|
|
#define DUK_STRIDX_UC_STRING 16 /* 'String' */
|
|
#define DUK_STRIDX_ARRAY 17 /* 'Array' */
|
|
#define DUK_STRIDX_UC_FUNCTION 18 /* 'Function' */
|
|
#define DUK_STRIDX_UC_OBJECT 19 /* 'Object' */
|
|
#define DUK_STRIDX_UC_NULL 20 /* 'Null' */
|
|
#define DUK_STRIDX_UC_UNDEFINED 21 /* 'Undefined' */
|
|
#define DUK_STRIDX_JSON_EXT_FUNCTION2 22 /* '{_func:true}' */
|
|
#define DUK_STRIDX_JSON_EXT_FUNCTION1 23 /* '{"_func":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_NEGINF 24 /* '{"_ninf":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_POSINF 25 /* '{"_inf":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_NAN 26 /* '{"_nan":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_UNDEFINED 27 /* '{"_undef":true}' */
|
|
#define DUK_STRIDX_TO_LOG_STRING 28 /* 'toLogString' */
|
|
#define DUK_STRIDX_CLOG 29 /* 'clog' */
|
|
#define DUK_STRIDX_LC_L 30 /* 'l' */
|
|
#define DUK_STRIDX_LC_N 31 /* 'n' */
|
|
#define DUK_STRIDX_LC_FATAL 32 /* 'fatal' */
|
|
#define DUK_STRIDX_LC_ERROR 33 /* 'error' */
|
|
#define DUK_STRIDX_LC_WARN 34 /* 'warn' */
|
|
#define DUK_STRIDX_LC_DEBUG 35 /* 'debug' */
|
|
#define DUK_STRIDX_LC_TRACE 36 /* 'trace' */
|
|
#define DUK_STRIDX_RAW 37 /* 'raw' */
|
|
#define DUK_STRIDX_FMT 38 /* 'fmt' */
|
|
#define DUK_STRIDX_CURRENT 39 /* 'current' */
|
|
#define DUK_STRIDX_RESUME 40 /* 'resume' */
|
|
#define DUK_STRIDX_COMPACT 41 /* 'compact' */
|
|
#define DUK_STRIDX_JC 42 /* 'jc' */
|
|
#define DUK_STRIDX_JX 43 /* 'jx' */
|
|
#define DUK_STRIDX_BASE64 44 /* 'base64' */
|
|
#define DUK_STRIDX_HEX 45 /* 'hex' */
|
|
#define DUK_STRIDX_DEC 46 /* 'dec' */
|
|
#define DUK_STRIDX_ENC 47 /* 'enc' */
|
|
#define DUK_STRIDX_FIN 48 /* 'fin' */
|
|
#define DUK_STRIDX_GC 49 /* 'gc' */
|
|
#define DUK_STRIDX_ACT 50 /* 'act' */
|
|
#define DUK_STRIDX_LC_INFO 51 /* 'info' */
|
|
#define DUK_STRIDX_VERSION 52 /* 'version' */
|
|
#define DUK_STRIDX_ENV 53 /* 'env' */
|
|
#define DUK_STRIDX_MOD_LOADED 54 /* 'modLoaded' */
|
|
#define DUK_STRIDX_MOD_SEARCH 55 /* 'modSearch' */
|
|
#define DUK_STRIDX_ERR_THROW 56 /* 'errThrow' */
|
|
#define DUK_STRIDX_ERR_CREATE 57 /* 'errCreate' */
|
|
#define DUK_STRIDX_COMPILE 58 /* 'compile' */
|
|
#define DUK_STRIDX_INT_REGBASE 59 /* '\x00Regbase' */
|
|
#define DUK_STRIDX_INT_THREAD 60 /* '\x00Thread' */
|
|
#define DUK_STRIDX_INT_HANDLER 61 /* '\x00Handler' */
|
|
#define DUK_STRIDX_INT_FINALIZER 62 /* '\x00Finalizer' */
|
|
#define DUK_STRIDX_INT_CALLEE 63 /* '\x00Callee' */
|
|
#define DUK_STRIDX_INT_MAP 64 /* '\x00Map' */
|
|
#define DUK_STRIDX_INT_ARGS 65 /* '\x00Args' */
|
|
#define DUK_STRIDX_INT_THIS 66 /* '\x00This' */
|
|
#define DUK_STRIDX_INT_PC2LINE 67 /* '\x00Pc2line' */
|
|
#define DUK_STRIDX_INT_SOURCE 68 /* '\x00Source' */
|
|
#define DUK_STRIDX_INT_VARENV 69 /* '\x00Varenv' */
|
|
#define DUK_STRIDX_INT_LEXENV 70 /* '\x00Lexenv' */
|
|
#define DUK_STRIDX_INT_VARMAP 71 /* '\x00Varmap' */
|
|
#define DUK_STRIDX_INT_FORMALS 72 /* '\x00Formals' */
|
|
#define DUK_STRIDX_INT_BYTECODE 73 /* '\x00Bytecode' */
|
|
#define DUK_STRIDX_INT_NEXT 74 /* '\x00Next' */
|
|
#define DUK_STRIDX_INT_TARGET 75 /* '\x00Target' */
|
|
#define DUK_STRIDX_INT_VALUE 76 /* '\x00Value' */
|
|
#define DUK_STRIDX_LC_POINTER 77 /* 'pointer' */
|
|
#define DUK_STRIDX_LC_BUFFER 78 /* 'buffer' */
|
|
#define DUK_STRIDX_INT_TRACEDATA 79 /* '\x00Tracedata' */
|
|
#define DUK_STRIDX_LINE_NUMBER 80 /* 'lineNumber' */
|
|
#define DUK_STRIDX_FILE_NAME 81 /* 'fileName' */
|
|
#define DUK_STRIDX_PC 82 /* 'pc' */
|
|
#define DUK_STRIDX_STACK 83 /* 'stack' */
|
|
#define DUK_STRIDX_THROW_TYPE_ERROR 84 /* 'ThrowTypeError' */
|
|
#define DUK_STRIDX_DUKTAPE 85 /* 'Duktape' */
|
|
#define DUK_STRIDX_ID 86 /* 'id' */
|
|
#define DUK_STRIDX_REQUIRE 87 /* 'require' */
|
|
#define DUK_STRIDX___PROTO__ 88 /* '__proto__' */
|
|
#define DUK_STRIDX_SET_PROTOTYPE_OF 89 /* 'setPrototypeOf' */
|
|
#define DUK_STRIDX_OWN_KEYS 90 /* 'ownKeys' */
|
|
#define DUK_STRIDX_ENUMERATE 91 /* 'enumerate' */
|
|
#define DUK_STRIDX_DELETE_PROPERTY 92 /* 'deleteProperty' */
|
|
#define DUK_STRIDX_HAS 93 /* 'has' */
|
|
#define DUK_STRIDX_PROXY 94 /* 'Proxy' */
|
|
#define DUK_STRIDX_CALLEE 95 /* 'callee' */
|
|
#define DUK_STRIDX_INVALID_DATE 96 /* 'Invalid Date' */
|
|
#define DUK_STRIDX_BRACKETED_ELLIPSIS 97 /* '[...]' */
|
|
#define DUK_STRIDX_NEWLINE_TAB 98 /* '\n\t' */
|
|
#define DUK_STRIDX_SPACE 99 /* ' ' */
|
|
#define DUK_STRIDX_COMMA 100 /* ',' */
|
|
#define DUK_STRIDX_MINUS_ZERO 101 /* '-0' */
|
|
#define DUK_STRIDX_PLUS_ZERO 102 /* '+0' */
|
|
#define DUK_STRIDX_ZERO 103 /* '0' */
|
|
#define DUK_STRIDX_MINUS_INFINITY 104 /* '-Infinity' */
|
|
#define DUK_STRIDX_PLUS_INFINITY 105 /* '+Infinity' */
|
|
#define DUK_STRIDX_INFINITY 106 /* 'Infinity' */
|
|
#define DUK_STRIDX_LC_OBJECT 107 /* 'object' */
|
|
#define DUK_STRIDX_LC_STRING 108 /* 'string' */
|
|
#define DUK_STRIDX_LC_NUMBER 109 /* 'number' */
|
|
#define DUK_STRIDX_LC_BOOLEAN 110 /* 'boolean' */
|
|
#define DUK_STRIDX_LC_UNDEFINED 111 /* 'undefined' */
|
|
#define DUK_STRIDX_STRINGIFY 112 /* 'stringify' */
|
|
#define DUK_STRIDX_TAN 113 /* 'tan' */
|
|
#define DUK_STRIDX_SQRT 114 /* 'sqrt' */
|
|
#define DUK_STRIDX_SIN 115 /* 'sin' */
|
|
#define DUK_STRIDX_ROUND 116 /* 'round' */
|
|
#define DUK_STRIDX_RANDOM 117 /* 'random' */
|
|
#define DUK_STRIDX_POW 118 /* 'pow' */
|
|
#define DUK_STRIDX_MIN 119 /* 'min' */
|
|
#define DUK_STRIDX_MAX 120 /* 'max' */
|
|
#define DUK_STRIDX_LOG 121 /* 'log' */
|
|
#define DUK_STRIDX_FLOOR 122 /* 'floor' */
|
|
#define DUK_STRIDX_EXP 123 /* 'exp' */
|
|
#define DUK_STRIDX_COS 124 /* 'cos' */
|
|
#define DUK_STRIDX_CEIL 125 /* 'ceil' */
|
|
#define DUK_STRIDX_ATAN2 126 /* 'atan2' */
|
|
#define DUK_STRIDX_ATAN 127 /* 'atan' */
|
|
#define DUK_STRIDX_ASIN 128 /* 'asin' */
|
|
#define DUK_STRIDX_ACOS 129 /* 'acos' */
|
|
#define DUK_STRIDX_ABS 130 /* 'abs' */
|
|
#define DUK_STRIDX_SQRT2 131 /* 'SQRT2' */
|
|
#define DUK_STRIDX_SQRT1_2 132 /* 'SQRT1_2' */
|
|
#define DUK_STRIDX_PI 133 /* 'PI' */
|
|
#define DUK_STRIDX_LOG10E 134 /* 'LOG10E' */
|
|
#define DUK_STRIDX_LOG2E 135 /* 'LOG2E' */
|
|
#define DUK_STRIDX_LN2 136 /* 'LN2' */
|
|
#define DUK_STRIDX_LN10 137 /* 'LN10' */
|
|
#define DUK_STRIDX_E 138 /* 'E' */
|
|
#define DUK_STRIDX_MESSAGE 139 /* 'message' */
|
|
#define DUK_STRIDX_NAME 140 /* 'name' */
|
|
#define DUK_STRIDX_INPUT 141 /* 'input' */
|
|
#define DUK_STRIDX_INDEX 142 /* 'index' */
|
|
#define DUK_STRIDX_ESCAPED_EMPTY_REGEXP 143 /* '(?:)' */
|
|
#define DUK_STRIDX_LAST_INDEX 144 /* 'lastIndex' */
|
|
#define DUK_STRIDX_MULTILINE 145 /* 'multiline' */
|
|
#define DUK_STRIDX_IGNORE_CASE 146 /* 'ignoreCase' */
|
|
#define DUK_STRIDX_SOURCE 147 /* 'source' */
|
|
#define DUK_STRIDX_TEST 148 /* 'test' */
|
|
#define DUK_STRIDX_EXEC 149 /* 'exec' */
|
|
#define DUK_STRIDX_TO_GMT_STRING 150 /* 'toGMTString' */
|
|
#define DUK_STRIDX_SET_YEAR 151 /* 'setYear' */
|
|
#define DUK_STRIDX_GET_YEAR 152 /* 'getYear' */
|
|
#define DUK_STRIDX_TO_JSON 153 /* 'toJSON' */
|
|
#define DUK_STRIDX_TO_ISO_STRING 154 /* 'toISOString' */
|
|
#define DUK_STRIDX_TO_UTC_STRING 155 /* 'toUTCString' */
|
|
#define DUK_STRIDX_SET_UTC_FULL_YEAR 156 /* 'setUTCFullYear' */
|
|
#define DUK_STRIDX_SET_FULL_YEAR 157 /* 'setFullYear' */
|
|
#define DUK_STRIDX_SET_UTC_MONTH 158 /* 'setUTCMonth' */
|
|
#define DUK_STRIDX_SET_MONTH 159 /* 'setMonth' */
|
|
#define DUK_STRIDX_SET_UTC_DATE 160 /* 'setUTCDate' */
|
|
#define DUK_STRIDX_SET_DATE 161 /* 'setDate' */
|
|
#define DUK_STRIDX_SET_UTC_HOURS 162 /* 'setUTCHours' */
|
|
#define DUK_STRIDX_SET_HOURS 163 /* 'setHours' */
|
|
#define DUK_STRIDX_SET_UTC_MINUTES 164 /* 'setUTCMinutes' */
|
|
#define DUK_STRIDX_SET_MINUTES 165 /* 'setMinutes' */
|
|
#define DUK_STRIDX_SET_UTC_SECONDS 166 /* 'setUTCSeconds' */
|
|
#define DUK_STRIDX_SET_SECONDS 167 /* 'setSeconds' */
|
|
#define DUK_STRIDX_SET_UTC_MILLISECONDS 168 /* 'setUTCMilliseconds' */
|
|
#define DUK_STRIDX_SET_MILLISECONDS 169 /* 'setMilliseconds' */
|
|
#define DUK_STRIDX_SET_TIME 170 /* 'setTime' */
|
|
#define DUK_STRIDX_GET_TIMEZONE_OFFSET 171 /* 'getTimezoneOffset' */
|
|
#define DUK_STRIDX_GET_UTC_MILLISECONDS 172 /* 'getUTCMilliseconds' */
|
|
#define DUK_STRIDX_GET_MILLISECONDS 173 /* 'getMilliseconds' */
|
|
#define DUK_STRIDX_GET_UTC_SECONDS 174 /* 'getUTCSeconds' */
|
|
#define DUK_STRIDX_GET_SECONDS 175 /* 'getSeconds' */
|
|
#define DUK_STRIDX_GET_UTC_MINUTES 176 /* 'getUTCMinutes' */
|
|
#define DUK_STRIDX_GET_MINUTES 177 /* 'getMinutes' */
|
|
#define DUK_STRIDX_GET_UTC_HOURS 178 /* 'getUTCHours' */
|
|
#define DUK_STRIDX_GET_HOURS 179 /* 'getHours' */
|
|
#define DUK_STRIDX_GET_UTC_DAY 180 /* 'getUTCDay' */
|
|
#define DUK_STRIDX_GET_DAY 181 /* 'getDay' */
|
|
#define DUK_STRIDX_GET_UTC_DATE 182 /* 'getUTCDate' */
|
|
#define DUK_STRIDX_GET_DATE 183 /* 'getDate' */
|
|
#define DUK_STRIDX_GET_UTC_MONTH 184 /* 'getUTCMonth' */
|
|
#define DUK_STRIDX_GET_MONTH 185 /* 'getMonth' */
|
|
#define DUK_STRIDX_GET_UTC_FULL_YEAR 186 /* 'getUTCFullYear' */
|
|
#define DUK_STRIDX_GET_FULL_YEAR 187 /* 'getFullYear' */
|
|
#define DUK_STRIDX_GET_TIME 188 /* 'getTime' */
|
|
#define DUK_STRIDX_TO_LOCALE_TIME_STRING 189 /* 'toLocaleTimeString' */
|
|
#define DUK_STRIDX_TO_LOCALE_DATE_STRING 190 /* 'toLocaleDateString' */
|
|
#define DUK_STRIDX_TO_TIME_STRING 191 /* 'toTimeString' */
|
|
#define DUK_STRIDX_TO_DATE_STRING 192 /* 'toDateString' */
|
|
#define DUK_STRIDX_NOW 193 /* 'now' */
|
|
#define DUK_STRIDX_UTC 194 /* 'UTC' */
|
|
#define DUK_STRIDX_PARSE 195 /* 'parse' */
|
|
#define DUK_STRIDX_TO_PRECISION 196 /* 'toPrecision' */
|
|
#define DUK_STRIDX_TO_EXPONENTIAL 197 /* 'toExponential' */
|
|
#define DUK_STRIDX_TO_FIXED 198 /* 'toFixed' */
|
|
#define DUK_STRIDX_POSITIVE_INFINITY 199 /* 'POSITIVE_INFINITY' */
|
|
#define DUK_STRIDX_NEGATIVE_INFINITY 200 /* 'NEGATIVE_INFINITY' */
|
|
#define DUK_STRIDX_NAN 201 /* 'NaN' */
|
|
#define DUK_STRIDX_MIN_VALUE 202 /* 'MIN_VALUE' */
|
|
#define DUK_STRIDX_MAX_VALUE 203 /* 'MAX_VALUE' */
|
|
#define DUK_STRIDX_SUBSTR 204 /* 'substr' */
|
|
#define DUK_STRIDX_TRIM 205 /* 'trim' */
|
|
#define DUK_STRIDX_TO_LOCALE_UPPER_CASE 206 /* 'toLocaleUpperCase' */
|
|
#define DUK_STRIDX_TO_UPPER_CASE 207 /* 'toUpperCase' */
|
|
#define DUK_STRIDX_TO_LOCALE_LOWER_CASE 208 /* 'toLocaleLowerCase' */
|
|
#define DUK_STRIDX_TO_LOWER_CASE 209 /* 'toLowerCase' */
|
|
#define DUK_STRIDX_SUBSTRING 210 /* 'substring' */
|
|
#define DUK_STRIDX_SPLIT 211 /* 'split' */
|
|
#define DUK_STRIDX_SEARCH 212 /* 'search' */
|
|
#define DUK_STRIDX_REPLACE 213 /* 'replace' */
|
|
#define DUK_STRIDX_MATCH 214 /* 'match' */
|
|
#define DUK_STRIDX_LOCALE_COMPARE 215 /* 'localeCompare' */
|
|
#define DUK_STRIDX_CHAR_CODE_AT 216 /* 'charCodeAt' */
|
|
#define DUK_STRIDX_CHAR_AT 217 /* 'charAt' */
|
|
#define DUK_STRIDX_FROM_CHAR_CODE 218 /* 'fromCharCode' */
|
|
#define DUK_STRIDX_REDUCE_RIGHT 219 /* 'reduceRight' */
|
|
#define DUK_STRIDX_REDUCE 220 /* 'reduce' */
|
|
#define DUK_STRIDX_FILTER 221 /* 'filter' */
|
|
#define DUK_STRIDX_MAP 222 /* 'map' */
|
|
#define DUK_STRIDX_FOR_EACH 223 /* 'forEach' */
|
|
#define DUK_STRIDX_SOME 224 /* 'some' */
|
|
#define DUK_STRIDX_EVERY 225 /* 'every' */
|
|
#define DUK_STRIDX_LAST_INDEX_OF 226 /* 'lastIndexOf' */
|
|
#define DUK_STRIDX_INDEX_OF 227 /* 'indexOf' */
|
|
#define DUK_STRIDX_UNSHIFT 228 /* 'unshift' */
|
|
#define DUK_STRIDX_SPLICE 229 /* 'splice' */
|
|
#define DUK_STRIDX_SORT 230 /* 'sort' */
|
|
#define DUK_STRIDX_SLICE 231 /* 'slice' */
|
|
#define DUK_STRIDX_SHIFT 232 /* 'shift' */
|
|
#define DUK_STRIDX_REVERSE 233 /* 'reverse' */
|
|
#define DUK_STRIDX_PUSH 234 /* 'push' */
|
|
#define DUK_STRIDX_POP 235 /* 'pop' */
|
|
#define DUK_STRIDX_JOIN 236 /* 'join' */
|
|
#define DUK_STRIDX_CONCAT 237 /* 'concat' */
|
|
#define DUK_STRIDX_IS_ARRAY 238 /* 'isArray' */
|
|
#define DUK_STRIDX_LC_ARGUMENTS 239 /* 'arguments' */
|
|
#define DUK_STRIDX_CALLER 240 /* 'caller' */
|
|
#define DUK_STRIDX_BIND 241 /* 'bind' */
|
|
#define DUK_STRIDX_CALL 242 /* 'call' */
|
|
#define DUK_STRIDX_APPLY 243 /* 'apply' */
|
|
#define DUK_STRIDX_PROPERTY_IS_ENUMERABLE 244 /* 'propertyIsEnumerable' */
|
|
#define DUK_STRIDX_IS_PROTOTYPE_OF 245 /* 'isPrototypeOf' */
|
|
#define DUK_STRIDX_HAS_OWN_PROPERTY 246 /* 'hasOwnProperty' */
|
|
#define DUK_STRIDX_VALUE_OF 247 /* 'valueOf' */
|
|
#define DUK_STRIDX_TO_LOCALE_STRING 248 /* 'toLocaleString' */
|
|
#define DUK_STRIDX_TO_STRING 249 /* 'toString' */
|
|
#define DUK_STRIDX_CONSTRUCTOR 250 /* 'constructor' */
|
|
#define DUK_STRIDX_SET 251 /* 'set' */
|
|
#define DUK_STRIDX_GET 252 /* 'get' */
|
|
#define DUK_STRIDX_ENUMERABLE 253 /* 'enumerable' */
|
|
#define DUK_STRIDX_CONFIGURABLE 254 /* 'configurable' */
|
|
#define DUK_STRIDX_WRITABLE 255 /* 'writable' */
|
|
#define DUK_STRIDX_VALUE 256 /* 'value' */
|
|
#define DUK_STRIDX_KEYS 257 /* 'keys' */
|
|
#define DUK_STRIDX_IS_EXTENSIBLE 258 /* 'isExtensible' */
|
|
#define DUK_STRIDX_IS_FROZEN 259 /* 'isFrozen' */
|
|
#define DUK_STRIDX_IS_SEALED 260 /* 'isSealed' */
|
|
#define DUK_STRIDX_PREVENT_EXTENSIONS 261 /* 'preventExtensions' */
|
|
#define DUK_STRIDX_FREEZE 262 /* 'freeze' */
|
|
#define DUK_STRIDX_SEAL 263 /* 'seal' */
|
|
#define DUK_STRIDX_DEFINE_PROPERTIES 264 /* 'defineProperties' */
|
|
#define DUK_STRIDX_DEFINE_PROPERTY 265 /* 'defineProperty' */
|
|
#define DUK_STRIDX_CREATE 266 /* 'create' */
|
|
#define DUK_STRIDX_GET_OWN_PROPERTY_NAMES 267 /* 'getOwnPropertyNames' */
|
|
#define DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR 268 /* 'getOwnPropertyDescriptor' */
|
|
#define DUK_STRIDX_GET_PROTOTYPE_OF 269 /* 'getPrototypeOf' */
|
|
#define DUK_STRIDX_PROTOTYPE 270 /* 'prototype' */
|
|
#define DUK_STRIDX_LENGTH 271 /* 'length' */
|
|
#define DUK_STRIDX_ALERT 272 /* 'alert' */
|
|
#define DUK_STRIDX_PRINT 273 /* 'print' */
|
|
#define DUK_STRIDX_UNESCAPE 274 /* 'unescape' */
|
|
#define DUK_STRIDX_ESCAPE 275 /* 'escape' */
|
|
#define DUK_STRIDX_ENCODE_URI_COMPONENT 276 /* 'encodeURIComponent' */
|
|
#define DUK_STRIDX_ENCODE_URI 277 /* 'encodeURI' */
|
|
#define DUK_STRIDX_DECODE_URI_COMPONENT 278 /* 'decodeURIComponent' */
|
|
#define DUK_STRIDX_DECODE_URI 279 /* 'decodeURI' */
|
|
#define DUK_STRIDX_IS_FINITE 280 /* 'isFinite' */
|
|
#define DUK_STRIDX_IS_NAN 281 /* 'isNaN' */
|
|
#define DUK_STRIDX_PARSE_FLOAT 282 /* 'parseFloat' */
|
|
#define DUK_STRIDX_PARSE_INT 283 /* 'parseInt' */
|
|
#define DUK_STRIDX_EVAL 284 /* 'eval' */
|
|
#define DUK_STRIDX_URI_ERROR 285 /* 'URIError' */
|
|
#define DUK_STRIDX_TYPE_ERROR 286 /* 'TypeError' */
|
|
#define DUK_STRIDX_SYNTAX_ERROR 287 /* 'SyntaxError' */
|
|
#define DUK_STRIDX_REFERENCE_ERROR 288 /* 'ReferenceError' */
|
|
#define DUK_STRIDX_RANGE_ERROR 289 /* 'RangeError' */
|
|
#define DUK_STRIDX_EVAL_ERROR 290 /* 'EvalError' */
|
|
#define DUK_STRIDX_BREAK 291 /* 'break' */
|
|
#define DUK_STRIDX_CASE 292 /* 'case' */
|
|
#define DUK_STRIDX_CATCH 293 /* 'catch' */
|
|
#define DUK_STRIDX_CONTINUE 294 /* 'continue' */
|
|
#define DUK_STRIDX_DEBUGGER 295 /* 'debugger' */
|
|
#define DUK_STRIDX_DEFAULT 296 /* 'default' */
|
|
#define DUK_STRIDX_DELETE 297 /* 'delete' */
|
|
#define DUK_STRIDX_DO 298 /* 'do' */
|
|
#define DUK_STRIDX_ELSE 299 /* 'else' */
|
|
#define DUK_STRIDX_FINALLY 300 /* 'finally' */
|
|
#define DUK_STRIDX_FOR 301 /* 'for' */
|
|
#define DUK_STRIDX_LC_FUNCTION 302 /* 'function' */
|
|
#define DUK_STRIDX_IF 303 /* 'if' */
|
|
#define DUK_STRIDX_IN 304 /* 'in' */
|
|
#define DUK_STRIDX_INSTANCEOF 305 /* 'instanceof' */
|
|
#define DUK_STRIDX_NEW 306 /* 'new' */
|
|
#define DUK_STRIDX_RETURN 307 /* 'return' */
|
|
#define DUK_STRIDX_SWITCH 308 /* 'switch' */
|
|
#define DUK_STRIDX_THIS 309 /* 'this' */
|
|
#define DUK_STRIDX_THROW 310 /* 'throw' */
|
|
#define DUK_STRIDX_TRY 311 /* 'try' */
|
|
#define DUK_STRIDX_TYPEOF 312 /* 'typeof' */
|
|
#define DUK_STRIDX_VAR 313 /* 'var' */
|
|
#define DUK_STRIDX_VOID 314 /* 'void' */
|
|
#define DUK_STRIDX_WHILE 315 /* 'while' */
|
|
#define DUK_STRIDX_WITH 316 /* 'with' */
|
|
#define DUK_STRIDX_CLASS 317 /* 'class' */
|
|
#define DUK_STRIDX_CONST 318 /* 'const' */
|
|
#define DUK_STRIDX_ENUM 319 /* 'enum' */
|
|
#define DUK_STRIDX_EXPORT 320 /* 'export' */
|
|
#define DUK_STRIDX_EXTENDS 321 /* 'extends' */
|
|
#define DUK_STRIDX_IMPORT 322 /* 'import' */
|
|
#define DUK_STRIDX_SUPER 323 /* 'super' */
|
|
#define DUK_STRIDX_LC_NULL 324 /* 'null' */
|
|
#define DUK_STRIDX_TRUE 325 /* 'true' */
|
|
#define DUK_STRIDX_FALSE 326 /* 'false' */
|
|
#define DUK_STRIDX_IMPLEMENTS 327 /* 'implements' */
|
|
#define DUK_STRIDX_INTERFACE 328 /* 'interface' */
|
|
#define DUK_STRIDX_LET 329 /* 'let' */
|
|
#define DUK_STRIDX_PACKAGE 330 /* 'package' */
|
|
#define DUK_STRIDX_PRIVATE 331 /* 'private' */
|
|
#define DUK_STRIDX_PROTECTED 332 /* 'protected' */
|
|
#define DUK_STRIDX_PUBLIC 333 /* 'public' */
|
|
#define DUK_STRIDX_STATIC 334 /* 'static' */
|
|
#define DUK_STRIDX_YIELD 335 /* 'yield' */
|
|
|
|
#define DUK_HEAP_STRING_UC_LOGGER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_LOGGER)
|
|
#define DUK_HTHREAD_STRING_UC_LOGGER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_LOGGER)
|
|
#define DUK_HEAP_STRING_UC_THREAD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_THREAD)
|
|
#define DUK_HTHREAD_STRING_UC_THREAD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_THREAD)
|
|
#define DUK_HEAP_STRING_UC_POINTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_POINTER)
|
|
#define DUK_HTHREAD_STRING_UC_POINTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_POINTER)
|
|
#define DUK_HEAP_STRING_UC_BUFFER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_BUFFER)
|
|
#define DUK_HTHREAD_STRING_UC_BUFFER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_BUFFER)
|
|
#define DUK_HEAP_STRING_DEC_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEC_ENV)
|
|
#define DUK_HTHREAD_STRING_DEC_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEC_ENV)
|
|
#define DUK_HEAP_STRING_OBJ_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_OBJ_ENV)
|
|
#define DUK_HTHREAD_STRING_OBJ_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_OBJ_ENV)
|
|
#define DUK_HEAP_STRING_EMPTY_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EMPTY_STRING)
|
|
#define DUK_HTHREAD_STRING_EMPTY_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EMPTY_STRING)
|
|
#define DUK_HEAP_STRING_GLOBAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GLOBAL)
|
|
#define DUK_HTHREAD_STRING_GLOBAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GLOBAL)
|
|
#define DUK_HEAP_STRING_UC_ARGUMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_ARGUMENTS)
|
|
#define DUK_HTHREAD_STRING_UC_ARGUMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_ARGUMENTS)
|
|
#define DUK_HEAP_STRING_JSON(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON)
|
|
#define DUK_HTHREAD_STRING_JSON(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON)
|
|
#define DUK_HEAP_STRING_MATH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MATH)
|
|
#define DUK_HTHREAD_STRING_MATH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MATH)
|
|
#define DUK_HEAP_STRING_UC_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_ERROR)
|
|
#define DUK_HTHREAD_STRING_UC_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_ERROR)
|
|
#define DUK_HEAP_STRING_REG_EXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REG_EXP)
|
|
#define DUK_HTHREAD_STRING_REG_EXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REG_EXP)
|
|
#define DUK_HEAP_STRING_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DATE)
|
|
#define DUK_HTHREAD_STRING_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DATE)
|
|
#define DUK_HEAP_STRING_UC_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_NUMBER)
|
|
#define DUK_HTHREAD_STRING_UC_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_NUMBER)
|
|
#define DUK_HEAP_STRING_UC_BOOLEAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_BOOLEAN)
|
|
#define DUK_HTHREAD_STRING_UC_BOOLEAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_BOOLEAN)
|
|
#define DUK_HEAP_STRING_UC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_STRING)
|
|
#define DUK_HTHREAD_STRING_UC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_STRING)
|
|
#define DUK_HEAP_STRING_ARRAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ARRAY)
|
|
#define DUK_HTHREAD_STRING_ARRAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ARRAY)
|
|
#define DUK_HEAP_STRING_UC_FUNCTION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_FUNCTION)
|
|
#define DUK_HTHREAD_STRING_UC_FUNCTION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_FUNCTION)
|
|
#define DUK_HEAP_STRING_UC_OBJECT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_OBJECT)
|
|
#define DUK_HTHREAD_STRING_UC_OBJECT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_OBJECT)
|
|
#define DUK_HEAP_STRING_UC_NULL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_NULL)
|
|
#define DUK_HTHREAD_STRING_UC_NULL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_NULL)
|
|
#define DUK_HEAP_STRING_UC_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_UC_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_UNDEFINED)
|
|
#define DUK_HEAP_STRING_JSON_EXT_FUNCTION2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_FUNCTION2)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_FUNCTION2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_FUNCTION2)
|
|
#define DUK_HEAP_STRING_JSON_EXT_FUNCTION1(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_FUNCTION1)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_FUNCTION1(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_FUNCTION1)
|
|
#define DUK_HEAP_STRING_JSON_EXT_NEGINF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_NEGINF)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_NEGINF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_NEGINF)
|
|
#define DUK_HEAP_STRING_JSON_EXT_POSINF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_POSINF)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_POSINF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_POSINF)
|
|
#define DUK_HEAP_STRING_JSON_EXT_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_NAN)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_NAN)
|
|
#define DUK_HEAP_STRING_JSON_EXT_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_UNDEFINED)
|
|
#define DUK_HEAP_STRING_TO_LOG_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOG_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOG_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOG_STRING)
|
|
#define DUK_HEAP_STRING_CLOG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CLOG)
|
|
#define DUK_HTHREAD_STRING_CLOG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CLOG)
|
|
#define DUK_HEAP_STRING_LC_L(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_L)
|
|
#define DUK_HTHREAD_STRING_LC_L(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_L)
|
|
#define DUK_HEAP_STRING_LC_N(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_N)
|
|
#define DUK_HTHREAD_STRING_LC_N(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_N)
|
|
#define DUK_HEAP_STRING_LC_FATAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_FATAL)
|
|
#define DUK_HTHREAD_STRING_LC_FATAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_FATAL)
|
|
#define DUK_HEAP_STRING_LC_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_ERROR)
|
|
#define DUK_HTHREAD_STRING_LC_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_ERROR)
|
|
#define DUK_HEAP_STRING_LC_WARN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_WARN)
|
|
#define DUK_HTHREAD_STRING_LC_WARN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_WARN)
|
|
#define DUK_HEAP_STRING_LC_DEBUG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_DEBUG)
|
|
#define DUK_HTHREAD_STRING_LC_DEBUG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_DEBUG)
|
|
#define DUK_HEAP_STRING_LC_TRACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_TRACE)
|
|
#define DUK_HTHREAD_STRING_LC_TRACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_TRACE)
|
|
#define DUK_HEAP_STRING_RAW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RAW)
|
|
#define DUK_HTHREAD_STRING_RAW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RAW)
|
|
#define DUK_HEAP_STRING_FMT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FMT)
|
|
#define DUK_HTHREAD_STRING_FMT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FMT)
|
|
#define DUK_HEAP_STRING_CURRENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CURRENT)
|
|
#define DUK_HTHREAD_STRING_CURRENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CURRENT)
|
|
#define DUK_HEAP_STRING_RESUME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RESUME)
|
|
#define DUK_HTHREAD_STRING_RESUME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RESUME)
|
|
#define DUK_HEAP_STRING_COMPACT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMPACT)
|
|
#define DUK_HTHREAD_STRING_COMPACT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMPACT)
|
|
#define DUK_HEAP_STRING_JC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JC)
|
|
#define DUK_HTHREAD_STRING_JC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JC)
|
|
#define DUK_HEAP_STRING_JX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JX)
|
|
#define DUK_HTHREAD_STRING_JX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JX)
|
|
#define DUK_HEAP_STRING_BASE64(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BASE64)
|
|
#define DUK_HTHREAD_STRING_BASE64(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BASE64)
|
|
#define DUK_HEAP_STRING_HEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HEX)
|
|
#define DUK_HTHREAD_STRING_HEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HEX)
|
|
#define DUK_HEAP_STRING_DEC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEC)
|
|
#define DUK_HTHREAD_STRING_DEC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEC)
|
|
#define DUK_HEAP_STRING_ENC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENC)
|
|
#define DUK_HTHREAD_STRING_ENC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENC)
|
|
#define DUK_HEAP_STRING_FIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FIN)
|
|
#define DUK_HTHREAD_STRING_FIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FIN)
|
|
#define DUK_HEAP_STRING_GC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GC)
|
|
#define DUK_HTHREAD_STRING_GC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GC)
|
|
#define DUK_HEAP_STRING_ACT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ACT)
|
|
#define DUK_HTHREAD_STRING_ACT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ACT)
|
|
#define DUK_HEAP_STRING_LC_INFO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_INFO)
|
|
#define DUK_HTHREAD_STRING_LC_INFO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_INFO)
|
|
#define DUK_HEAP_STRING_VERSION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VERSION)
|
|
#define DUK_HTHREAD_STRING_VERSION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VERSION)
|
|
#define DUK_HEAP_STRING_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENV)
|
|
#define DUK_HTHREAD_STRING_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENV)
|
|
#define DUK_HEAP_STRING_MOD_LOADED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MOD_LOADED)
|
|
#define DUK_HTHREAD_STRING_MOD_LOADED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MOD_LOADED)
|
|
#define DUK_HEAP_STRING_MOD_SEARCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MOD_SEARCH)
|
|
#define DUK_HTHREAD_STRING_MOD_SEARCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MOD_SEARCH)
|
|
#define DUK_HEAP_STRING_ERR_THROW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ERR_THROW)
|
|
#define DUK_HTHREAD_STRING_ERR_THROW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ERR_THROW)
|
|
#define DUK_HEAP_STRING_ERR_CREATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ERR_CREATE)
|
|
#define DUK_HTHREAD_STRING_ERR_CREATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ERR_CREATE)
|
|
#define DUK_HEAP_STRING_COMPILE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMPILE)
|
|
#define DUK_HTHREAD_STRING_COMPILE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMPILE)
|
|
#define DUK_HEAP_STRING_INT_REGBASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_REGBASE)
|
|
#define DUK_HTHREAD_STRING_INT_REGBASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_REGBASE)
|
|
#define DUK_HEAP_STRING_INT_THREAD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_THREAD)
|
|
#define DUK_HTHREAD_STRING_INT_THREAD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_THREAD)
|
|
#define DUK_HEAP_STRING_INT_HANDLER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_HANDLER)
|
|
#define DUK_HTHREAD_STRING_INT_HANDLER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_HANDLER)
|
|
#define DUK_HEAP_STRING_INT_FINALIZER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_FINALIZER)
|
|
#define DUK_HTHREAD_STRING_INT_FINALIZER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_FINALIZER)
|
|
#define DUK_HEAP_STRING_INT_CALLEE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_CALLEE)
|
|
#define DUK_HTHREAD_STRING_INT_CALLEE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_CALLEE)
|
|
#define DUK_HEAP_STRING_INT_MAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_MAP)
|
|
#define DUK_HTHREAD_STRING_INT_MAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_MAP)
|
|
#define DUK_HEAP_STRING_INT_ARGS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_ARGS)
|
|
#define DUK_HTHREAD_STRING_INT_ARGS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_ARGS)
|
|
#define DUK_HEAP_STRING_INT_THIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_THIS)
|
|
#define DUK_HTHREAD_STRING_INT_THIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_THIS)
|
|
#define DUK_HEAP_STRING_INT_PC2LINE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_PC2LINE)
|
|
#define DUK_HTHREAD_STRING_INT_PC2LINE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_PC2LINE)
|
|
#define DUK_HEAP_STRING_INT_SOURCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_SOURCE)
|
|
#define DUK_HTHREAD_STRING_INT_SOURCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_SOURCE)
|
|
#define DUK_HEAP_STRING_INT_VARENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VARENV)
|
|
#define DUK_HTHREAD_STRING_INT_VARENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VARENV)
|
|
#define DUK_HEAP_STRING_INT_LEXENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_LEXENV)
|
|
#define DUK_HTHREAD_STRING_INT_LEXENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_LEXENV)
|
|
#define DUK_HEAP_STRING_INT_VARMAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VARMAP)
|
|
#define DUK_HTHREAD_STRING_INT_VARMAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VARMAP)
|
|
#define DUK_HEAP_STRING_INT_FORMALS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_FORMALS)
|
|
#define DUK_HTHREAD_STRING_INT_FORMALS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_FORMALS)
|
|
#define DUK_HEAP_STRING_INT_BYTECODE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_BYTECODE)
|
|
#define DUK_HTHREAD_STRING_INT_BYTECODE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_BYTECODE)
|
|
#define DUK_HEAP_STRING_INT_NEXT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_NEXT)
|
|
#define DUK_HTHREAD_STRING_INT_NEXT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_NEXT)
|
|
#define DUK_HEAP_STRING_INT_TARGET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_TARGET)
|
|
#define DUK_HTHREAD_STRING_INT_TARGET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_TARGET)
|
|
#define DUK_HEAP_STRING_INT_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VALUE)
|
|
#define DUK_HTHREAD_STRING_INT_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VALUE)
|
|
#define DUK_HEAP_STRING_LC_POINTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_POINTER)
|
|
#define DUK_HTHREAD_STRING_LC_POINTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_POINTER)
|
|
#define DUK_HEAP_STRING_LC_BUFFER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_BUFFER)
|
|
#define DUK_HTHREAD_STRING_LC_BUFFER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_BUFFER)
|
|
#define DUK_HEAP_STRING_INT_TRACEDATA(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_TRACEDATA)
|
|
#define DUK_HTHREAD_STRING_INT_TRACEDATA(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_TRACEDATA)
|
|
#define DUK_HEAP_STRING_LINE_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LINE_NUMBER)
|
|
#define DUK_HTHREAD_STRING_LINE_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LINE_NUMBER)
|
|
#define DUK_HEAP_STRING_FILE_NAME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FILE_NAME)
|
|
#define DUK_HTHREAD_STRING_FILE_NAME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FILE_NAME)
|
|
#define DUK_HEAP_STRING_PC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PC)
|
|
#define DUK_HTHREAD_STRING_PC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PC)
|
|
#define DUK_HEAP_STRING_STACK(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STACK)
|
|
#define DUK_HTHREAD_STRING_STACK(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STACK)
|
|
#define DUK_HEAP_STRING_THROW_TYPE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THROW_TYPE_ERROR)
|
|
#define DUK_HTHREAD_STRING_THROW_TYPE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THROW_TYPE_ERROR)
|
|
#define DUK_HEAP_STRING_DUKTAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DUKTAPE)
|
|
#define DUK_HTHREAD_STRING_DUKTAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DUKTAPE)
|
|
#define DUK_HEAP_STRING_ID(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ID)
|
|
#define DUK_HTHREAD_STRING_ID(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ID)
|
|
#define DUK_HEAP_STRING_REQUIRE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REQUIRE)
|
|
#define DUK_HTHREAD_STRING_REQUIRE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REQUIRE)
|
|
#define DUK_HEAP_STRING___PROTO__(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX___PROTO__)
|
|
#define DUK_HTHREAD_STRING___PROTO__(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX___PROTO__)
|
|
#define DUK_HEAP_STRING_SET_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_SET_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_OWN_KEYS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_OWN_KEYS)
|
|
#define DUK_HTHREAD_STRING_OWN_KEYS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_OWN_KEYS)
|
|
#define DUK_HEAP_STRING_ENUMERATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUMERATE)
|
|
#define DUK_HTHREAD_STRING_ENUMERATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUMERATE)
|
|
#define DUK_HEAP_STRING_DELETE_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DELETE_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_DELETE_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DELETE_PROPERTY)
|
|
#define DUK_HEAP_STRING_HAS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HAS)
|
|
#define DUK_HTHREAD_STRING_HAS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HAS)
|
|
#define DUK_HEAP_STRING_PROXY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROXY)
|
|
#define DUK_HTHREAD_STRING_PROXY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROXY)
|
|
#define DUK_HEAP_STRING_CALLEE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALLEE)
|
|
#define DUK_HTHREAD_STRING_CALLEE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALLEE)
|
|
#define DUK_HEAP_STRING_INVALID_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INVALID_DATE)
|
|
#define DUK_HTHREAD_STRING_INVALID_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INVALID_DATE)
|
|
#define DUK_HEAP_STRING_BRACKETED_ELLIPSIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BRACKETED_ELLIPSIS)
|
|
#define DUK_HTHREAD_STRING_BRACKETED_ELLIPSIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BRACKETED_ELLIPSIS)
|
|
#define DUK_HEAP_STRING_NEWLINE_TAB(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEWLINE_TAB)
|
|
#define DUK_HTHREAD_STRING_NEWLINE_TAB(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEWLINE_TAB)
|
|
#define DUK_HEAP_STRING_SPACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPACE)
|
|
#define DUK_HTHREAD_STRING_SPACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPACE)
|
|
#define DUK_HEAP_STRING_COMMA(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMMA)
|
|
#define DUK_HTHREAD_STRING_COMMA(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMMA)
|
|
#define DUK_HEAP_STRING_MINUS_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MINUS_ZERO)
|
|
#define DUK_HTHREAD_STRING_MINUS_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MINUS_ZERO)
|
|
#define DUK_HEAP_STRING_PLUS_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PLUS_ZERO)
|
|
#define DUK_HTHREAD_STRING_PLUS_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PLUS_ZERO)
|
|
#define DUK_HEAP_STRING_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ZERO)
|
|
#define DUK_HTHREAD_STRING_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ZERO)
|
|
#define DUK_HEAP_STRING_MINUS_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MINUS_INFINITY)
|
|
#define DUK_HTHREAD_STRING_MINUS_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MINUS_INFINITY)
|
|
#define DUK_HEAP_STRING_PLUS_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PLUS_INFINITY)
|
|
#define DUK_HTHREAD_STRING_PLUS_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PLUS_INFINITY)
|
|
#define DUK_HEAP_STRING_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INFINITY)
|
|
#define DUK_HTHREAD_STRING_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INFINITY)
|
|
#define DUK_HEAP_STRING_LC_OBJECT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_OBJECT)
|
|
#define DUK_HTHREAD_STRING_LC_OBJECT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_OBJECT)
|
|
#define DUK_HEAP_STRING_LC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_STRING)
|
|
#define DUK_HTHREAD_STRING_LC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_STRING)
|
|
#define DUK_HEAP_STRING_LC_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_NUMBER)
|
|
#define DUK_HTHREAD_STRING_LC_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_NUMBER)
|
|
#define DUK_HEAP_STRING_LC_BOOLEAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_BOOLEAN)
|
|
#define DUK_HTHREAD_STRING_LC_BOOLEAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_BOOLEAN)
|
|
#define DUK_HEAP_STRING_LC_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_LC_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_UNDEFINED)
|
|
#define DUK_HEAP_STRING_STRINGIFY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STRINGIFY)
|
|
#define DUK_HTHREAD_STRING_STRINGIFY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STRINGIFY)
|
|
#define DUK_HEAP_STRING_TAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TAN)
|
|
#define DUK_HTHREAD_STRING_TAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TAN)
|
|
#define DUK_HEAP_STRING_SQRT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT)
|
|
#define DUK_HTHREAD_STRING_SQRT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT)
|
|
#define DUK_HEAP_STRING_SIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SIN)
|
|
#define DUK_HTHREAD_STRING_SIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SIN)
|
|
#define DUK_HEAP_STRING_ROUND(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ROUND)
|
|
#define DUK_HTHREAD_STRING_ROUND(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ROUND)
|
|
#define DUK_HEAP_STRING_RANDOM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RANDOM)
|
|
#define DUK_HTHREAD_STRING_RANDOM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RANDOM)
|
|
#define DUK_HEAP_STRING_POW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POW)
|
|
#define DUK_HTHREAD_STRING_POW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POW)
|
|
#define DUK_HEAP_STRING_MIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MIN)
|
|
#define DUK_HTHREAD_STRING_MIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MIN)
|
|
#define DUK_HEAP_STRING_MAX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAX)
|
|
#define DUK_HTHREAD_STRING_MAX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAX)
|
|
#define DUK_HEAP_STRING_LOG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG)
|
|
#define DUK_HTHREAD_STRING_LOG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG)
|
|
#define DUK_HEAP_STRING_FLOOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FLOOR)
|
|
#define DUK_HTHREAD_STRING_FLOOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FLOOR)
|
|
#define DUK_HEAP_STRING_EXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXP)
|
|
#define DUK_HTHREAD_STRING_EXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXP)
|
|
#define DUK_HEAP_STRING_COS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COS)
|
|
#define DUK_HTHREAD_STRING_COS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COS)
|
|
#define DUK_HEAP_STRING_CEIL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CEIL)
|
|
#define DUK_HTHREAD_STRING_CEIL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CEIL)
|
|
#define DUK_HEAP_STRING_ATAN2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ATAN2)
|
|
#define DUK_HTHREAD_STRING_ATAN2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ATAN2)
|
|
#define DUK_HEAP_STRING_ATAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ATAN)
|
|
#define DUK_HTHREAD_STRING_ATAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ATAN)
|
|
#define DUK_HEAP_STRING_ASIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ASIN)
|
|
#define DUK_HTHREAD_STRING_ASIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ASIN)
|
|
#define DUK_HEAP_STRING_ACOS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ACOS)
|
|
#define DUK_HTHREAD_STRING_ACOS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ACOS)
|
|
#define DUK_HEAP_STRING_ABS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ABS)
|
|
#define DUK_HTHREAD_STRING_ABS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ABS)
|
|
#define DUK_HEAP_STRING_SQRT2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT2)
|
|
#define DUK_HTHREAD_STRING_SQRT2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT2)
|
|
#define DUK_HEAP_STRING_SQRT1_2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT1_2)
|
|
#define DUK_HTHREAD_STRING_SQRT1_2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT1_2)
|
|
#define DUK_HEAP_STRING_PI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PI)
|
|
#define DUK_HTHREAD_STRING_PI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PI)
|
|
#define DUK_HEAP_STRING_LOG10E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG10E)
|
|
#define DUK_HTHREAD_STRING_LOG10E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG10E)
|
|
#define DUK_HEAP_STRING_LOG2E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG2E)
|
|
#define DUK_HTHREAD_STRING_LOG2E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG2E)
|
|
#define DUK_HEAP_STRING_LN2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LN2)
|
|
#define DUK_HTHREAD_STRING_LN2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LN2)
|
|
#define DUK_HEAP_STRING_LN10(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LN10)
|
|
#define DUK_HTHREAD_STRING_LN10(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LN10)
|
|
#define DUK_HEAP_STRING_E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_E)
|
|
#define DUK_HTHREAD_STRING_E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_E)
|
|
#define DUK_HEAP_STRING_MESSAGE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MESSAGE)
|
|
#define DUK_HTHREAD_STRING_MESSAGE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MESSAGE)
|
|
#define DUK_HEAP_STRING_NAME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NAME)
|
|
#define DUK_HTHREAD_STRING_NAME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NAME)
|
|
#define DUK_HEAP_STRING_INPUT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INPUT)
|
|
#define DUK_HTHREAD_STRING_INPUT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INPUT)
|
|
#define DUK_HEAP_STRING_INDEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INDEX)
|
|
#define DUK_HTHREAD_STRING_INDEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INDEX)
|
|
#define DUK_HEAP_STRING_ESCAPED_EMPTY_REGEXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ESCAPED_EMPTY_REGEXP)
|
|
#define DUK_HTHREAD_STRING_ESCAPED_EMPTY_REGEXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ESCAPED_EMPTY_REGEXP)
|
|
#define DUK_HEAP_STRING_LAST_INDEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LAST_INDEX)
|
|
#define DUK_HTHREAD_STRING_LAST_INDEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LAST_INDEX)
|
|
#define DUK_HEAP_STRING_MULTILINE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MULTILINE)
|
|
#define DUK_HTHREAD_STRING_MULTILINE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MULTILINE)
|
|
#define DUK_HEAP_STRING_IGNORE_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IGNORE_CASE)
|
|
#define DUK_HTHREAD_STRING_IGNORE_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IGNORE_CASE)
|
|
#define DUK_HEAP_STRING_SOURCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SOURCE)
|
|
#define DUK_HTHREAD_STRING_SOURCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SOURCE)
|
|
#define DUK_HEAP_STRING_TEST(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TEST)
|
|
#define DUK_HTHREAD_STRING_TEST(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TEST)
|
|
#define DUK_HEAP_STRING_EXEC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXEC)
|
|
#define DUK_HTHREAD_STRING_EXEC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXEC)
|
|
#define DUK_HEAP_STRING_TO_GMT_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_GMT_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_GMT_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_GMT_STRING)
|
|
#define DUK_HEAP_STRING_SET_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_YEAR)
|
|
#define DUK_HEAP_STRING_GET_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_YEAR)
|
|
#define DUK_HEAP_STRING_TO_JSON(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_JSON)
|
|
#define DUK_HTHREAD_STRING_TO_JSON(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_JSON)
|
|
#define DUK_HEAP_STRING_TO_ISO_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_ISO_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_ISO_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_ISO_STRING)
|
|
#define DUK_HEAP_STRING_TO_UTC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_UTC_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_UTC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_UTC_STRING)
|
|
#define DUK_HEAP_STRING_SET_UTC_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_SET_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_SET_UTC_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MONTH)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MONTH)
|
|
#define DUK_HEAP_STRING_SET_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MONTH)
|
|
#define DUK_HTHREAD_STRING_SET_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MONTH)
|
|
#define DUK_HEAP_STRING_SET_UTC_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_DATE)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_DATE)
|
|
#define DUK_HEAP_STRING_SET_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_DATE)
|
|
#define DUK_HTHREAD_STRING_SET_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_DATE)
|
|
#define DUK_HEAP_STRING_SET_UTC_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_HOURS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_HOURS)
|
|
#define DUK_HEAP_STRING_SET_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_HOURS)
|
|
#define DUK_HTHREAD_STRING_SET_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_HOURS)
|
|
#define DUK_HEAP_STRING_SET_UTC_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MINUTES)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MINUTES)
|
|
#define DUK_HEAP_STRING_SET_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MINUTES)
|
|
#define DUK_HTHREAD_STRING_SET_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MINUTES)
|
|
#define DUK_HEAP_STRING_SET_UTC_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_SECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_SECONDS)
|
|
#define DUK_HEAP_STRING_SET_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_SECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_SECONDS)
|
|
#define DUK_HEAP_STRING_SET_UTC_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_SET_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_SET_TIME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_TIME)
|
|
#define DUK_HTHREAD_STRING_SET_TIME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_TIME)
|
|
#define DUK_HEAP_STRING_GET_TIMEZONE_OFFSET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_TIMEZONE_OFFSET)
|
|
#define DUK_HTHREAD_STRING_GET_TIMEZONE_OFFSET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_TIMEZONE_OFFSET)
|
|
#define DUK_HEAP_STRING_GET_UTC_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_GET_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_GET_UTC_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_SECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_SECONDS)
|
|
#define DUK_HEAP_STRING_GET_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_SECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_SECONDS)
|
|
#define DUK_HEAP_STRING_GET_UTC_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MINUTES)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MINUTES)
|
|
#define DUK_HEAP_STRING_GET_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MINUTES)
|
|
#define DUK_HTHREAD_STRING_GET_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MINUTES)
|
|
#define DUK_HEAP_STRING_GET_UTC_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_HOURS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_HOURS)
|
|
#define DUK_HEAP_STRING_GET_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_HOURS)
|
|
#define DUK_HTHREAD_STRING_GET_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_HOURS)
|
|
#define DUK_HEAP_STRING_GET_UTC_DAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_DAY)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_DAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_DAY)
|
|
#define DUK_HEAP_STRING_GET_DAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_DAY)
|
|
#define DUK_HTHREAD_STRING_GET_DAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_DAY)
|
|
#define DUK_HEAP_STRING_GET_UTC_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_DATE)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_DATE)
|
|
#define DUK_HEAP_STRING_GET_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_DATE)
|
|
#define DUK_HTHREAD_STRING_GET_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_DATE)
|
|
#define DUK_HEAP_STRING_GET_UTC_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MONTH)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MONTH)
|
|
#define DUK_HEAP_STRING_GET_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MONTH)
|
|
#define DUK_HTHREAD_STRING_GET_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MONTH)
|
|
#define DUK_HEAP_STRING_GET_UTC_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_GET_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_GET_TIME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_TIME)
|
|
#define DUK_HTHREAD_STRING_GET_TIME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_TIME)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_TIME_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_TIME_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_TIME_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_TIME_STRING)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_DATE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_DATE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_DATE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_DATE_STRING)
|
|
#define DUK_HEAP_STRING_TO_TIME_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_TIME_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_TIME_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_TIME_STRING)
|
|
#define DUK_HEAP_STRING_TO_DATE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_DATE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_DATE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_DATE_STRING)
|
|
#define DUK_HEAP_STRING_NOW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NOW)
|
|
#define DUK_HTHREAD_STRING_NOW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NOW)
|
|
#define DUK_HEAP_STRING_UTC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UTC)
|
|
#define DUK_HTHREAD_STRING_UTC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UTC)
|
|
#define DUK_HEAP_STRING_PARSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE)
|
|
#define DUK_HTHREAD_STRING_PARSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE)
|
|
#define DUK_HEAP_STRING_TO_PRECISION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_PRECISION)
|
|
#define DUK_HTHREAD_STRING_TO_PRECISION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_PRECISION)
|
|
#define DUK_HEAP_STRING_TO_EXPONENTIAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_EXPONENTIAL)
|
|
#define DUK_HTHREAD_STRING_TO_EXPONENTIAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_EXPONENTIAL)
|
|
#define DUK_HEAP_STRING_TO_FIXED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_FIXED)
|
|
#define DUK_HTHREAD_STRING_TO_FIXED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_FIXED)
|
|
#define DUK_HEAP_STRING_POSITIVE_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POSITIVE_INFINITY)
|
|
#define DUK_HTHREAD_STRING_POSITIVE_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POSITIVE_INFINITY)
|
|
#define DUK_HEAP_STRING_NEGATIVE_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEGATIVE_INFINITY)
|
|
#define DUK_HTHREAD_STRING_NEGATIVE_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEGATIVE_INFINITY)
|
|
#define DUK_HEAP_STRING_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NAN)
|
|
#define DUK_HTHREAD_STRING_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NAN)
|
|
#define DUK_HEAP_STRING_MIN_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MIN_VALUE)
|
|
#define DUK_HTHREAD_STRING_MIN_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MIN_VALUE)
|
|
#define DUK_HEAP_STRING_MAX_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAX_VALUE)
|
|
#define DUK_HTHREAD_STRING_MAX_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAX_VALUE)
|
|
#define DUK_HEAP_STRING_SUBSTR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUBSTR)
|
|
#define DUK_HTHREAD_STRING_SUBSTR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUBSTR)
|
|
#define DUK_HEAP_STRING_TRIM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRIM)
|
|
#define DUK_HTHREAD_STRING_TRIM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRIM)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_UPPER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_UPPER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_UPPER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_UPPER_CASE)
|
|
#define DUK_HEAP_STRING_TO_UPPER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_UPPER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_UPPER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_UPPER_CASE)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_LOWER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_LOWER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_LOWER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_LOWER_CASE)
|
|
#define DUK_HEAP_STRING_TO_LOWER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOWER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOWER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOWER_CASE)
|
|
#define DUK_HEAP_STRING_SUBSTRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUBSTRING)
|
|
#define DUK_HTHREAD_STRING_SUBSTRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUBSTRING)
|
|
#define DUK_HEAP_STRING_SPLIT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPLIT)
|
|
#define DUK_HTHREAD_STRING_SPLIT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPLIT)
|
|
#define DUK_HEAP_STRING_SEARCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SEARCH)
|
|
#define DUK_HTHREAD_STRING_SEARCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SEARCH)
|
|
#define DUK_HEAP_STRING_REPLACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REPLACE)
|
|
#define DUK_HTHREAD_STRING_REPLACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REPLACE)
|
|
#define DUK_HEAP_STRING_MATCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MATCH)
|
|
#define DUK_HTHREAD_STRING_MATCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MATCH)
|
|
#define DUK_HEAP_STRING_LOCALE_COMPARE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOCALE_COMPARE)
|
|
#define DUK_HTHREAD_STRING_LOCALE_COMPARE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOCALE_COMPARE)
|
|
#define DUK_HEAP_STRING_CHAR_CODE_AT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CHAR_CODE_AT)
|
|
#define DUK_HTHREAD_STRING_CHAR_CODE_AT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CHAR_CODE_AT)
|
|
#define DUK_HEAP_STRING_CHAR_AT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CHAR_AT)
|
|
#define DUK_HTHREAD_STRING_CHAR_AT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CHAR_AT)
|
|
#define DUK_HEAP_STRING_FROM_CHAR_CODE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FROM_CHAR_CODE)
|
|
#define DUK_HTHREAD_STRING_FROM_CHAR_CODE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FROM_CHAR_CODE)
|
|
#define DUK_HEAP_STRING_REDUCE_RIGHT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REDUCE_RIGHT)
|
|
#define DUK_HTHREAD_STRING_REDUCE_RIGHT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REDUCE_RIGHT)
|
|
#define DUK_HEAP_STRING_REDUCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REDUCE)
|
|
#define DUK_HTHREAD_STRING_REDUCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REDUCE)
|
|
#define DUK_HEAP_STRING_FILTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FILTER)
|
|
#define DUK_HTHREAD_STRING_FILTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FILTER)
|
|
#define DUK_HEAP_STRING_MAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAP)
|
|
#define DUK_HTHREAD_STRING_MAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAP)
|
|
#define DUK_HEAP_STRING_FOR_EACH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FOR_EACH)
|
|
#define DUK_HTHREAD_STRING_FOR_EACH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FOR_EACH)
|
|
#define DUK_HEAP_STRING_SOME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SOME)
|
|
#define DUK_HTHREAD_STRING_SOME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SOME)
|
|
#define DUK_HEAP_STRING_EVERY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVERY)
|
|
#define DUK_HTHREAD_STRING_EVERY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVERY)
|
|
#define DUK_HEAP_STRING_LAST_INDEX_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LAST_INDEX_OF)
|
|
#define DUK_HTHREAD_STRING_LAST_INDEX_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LAST_INDEX_OF)
|
|
#define DUK_HEAP_STRING_INDEX_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INDEX_OF)
|
|
#define DUK_HTHREAD_STRING_INDEX_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INDEX_OF)
|
|
#define DUK_HEAP_STRING_UNSHIFT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UNSHIFT)
|
|
#define DUK_HTHREAD_STRING_UNSHIFT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UNSHIFT)
|
|
#define DUK_HEAP_STRING_SPLICE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPLICE)
|
|
#define DUK_HTHREAD_STRING_SPLICE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPLICE)
|
|
#define DUK_HEAP_STRING_SORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SORT)
|
|
#define DUK_HTHREAD_STRING_SORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SORT)
|
|
#define DUK_HEAP_STRING_SLICE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SLICE)
|
|
#define DUK_HTHREAD_STRING_SLICE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SLICE)
|
|
#define DUK_HEAP_STRING_SHIFT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SHIFT)
|
|
#define DUK_HTHREAD_STRING_SHIFT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SHIFT)
|
|
#define DUK_HEAP_STRING_REVERSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REVERSE)
|
|
#define DUK_HTHREAD_STRING_REVERSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REVERSE)
|
|
#define DUK_HEAP_STRING_PUSH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PUSH)
|
|
#define DUK_HTHREAD_STRING_PUSH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PUSH)
|
|
#define DUK_HEAP_STRING_POP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POP)
|
|
#define DUK_HTHREAD_STRING_POP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POP)
|
|
#define DUK_HEAP_STRING_JOIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JOIN)
|
|
#define DUK_HTHREAD_STRING_JOIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JOIN)
|
|
#define DUK_HEAP_STRING_CONCAT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONCAT)
|
|
#define DUK_HTHREAD_STRING_CONCAT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONCAT)
|
|
#define DUK_HEAP_STRING_IS_ARRAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_ARRAY)
|
|
#define DUK_HTHREAD_STRING_IS_ARRAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_ARRAY)
|
|
#define DUK_HEAP_STRING_LC_ARGUMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_ARGUMENTS)
|
|
#define DUK_HTHREAD_STRING_LC_ARGUMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_ARGUMENTS)
|
|
#define DUK_HEAP_STRING_CALLER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALLER)
|
|
#define DUK_HTHREAD_STRING_CALLER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALLER)
|
|
#define DUK_HEAP_STRING_BIND(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BIND)
|
|
#define DUK_HTHREAD_STRING_BIND(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BIND)
|
|
#define DUK_HEAP_STRING_CALL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALL)
|
|
#define DUK_HTHREAD_STRING_CALL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALL)
|
|
#define DUK_HEAP_STRING_APPLY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_APPLY)
|
|
#define DUK_HTHREAD_STRING_APPLY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_APPLY)
|
|
#define DUK_HEAP_STRING_PROPERTY_IS_ENUMERABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROPERTY_IS_ENUMERABLE)
|
|
#define DUK_HTHREAD_STRING_PROPERTY_IS_ENUMERABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROPERTY_IS_ENUMERABLE)
|
|
#define DUK_HEAP_STRING_IS_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_IS_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_HAS_OWN_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HAS_OWN_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_HAS_OWN_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HAS_OWN_PROPERTY)
|
|
#define DUK_HEAP_STRING_VALUE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VALUE_OF)
|
|
#define DUK_HTHREAD_STRING_VALUE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VALUE_OF)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_STRING)
|
|
#define DUK_HEAP_STRING_TO_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_STRING)
|
|
#define DUK_HEAP_STRING_CONSTRUCTOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONSTRUCTOR)
|
|
#define DUK_HTHREAD_STRING_CONSTRUCTOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONSTRUCTOR)
|
|
#define DUK_HEAP_STRING_SET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET)
|
|
#define DUK_HTHREAD_STRING_SET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET)
|
|
#define DUK_HEAP_STRING_GET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET)
|
|
#define DUK_HTHREAD_STRING_GET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET)
|
|
#define DUK_HEAP_STRING_ENUMERABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUMERABLE)
|
|
#define DUK_HTHREAD_STRING_ENUMERABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUMERABLE)
|
|
#define DUK_HEAP_STRING_CONFIGURABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONFIGURABLE)
|
|
#define DUK_HTHREAD_STRING_CONFIGURABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONFIGURABLE)
|
|
#define DUK_HEAP_STRING_WRITABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WRITABLE)
|
|
#define DUK_HTHREAD_STRING_WRITABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WRITABLE)
|
|
#define DUK_HEAP_STRING_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VALUE)
|
|
#define DUK_HTHREAD_STRING_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VALUE)
|
|
#define DUK_HEAP_STRING_KEYS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_KEYS)
|
|
#define DUK_HTHREAD_STRING_KEYS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_KEYS)
|
|
#define DUK_HEAP_STRING_IS_EXTENSIBLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_EXTENSIBLE)
|
|
#define DUK_HTHREAD_STRING_IS_EXTENSIBLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_EXTENSIBLE)
|
|
#define DUK_HEAP_STRING_IS_FROZEN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_FROZEN)
|
|
#define DUK_HTHREAD_STRING_IS_FROZEN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_FROZEN)
|
|
#define DUK_HEAP_STRING_IS_SEALED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_SEALED)
|
|
#define DUK_HTHREAD_STRING_IS_SEALED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_SEALED)
|
|
#define DUK_HEAP_STRING_PREVENT_EXTENSIONS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PREVENT_EXTENSIONS)
|
|
#define DUK_HTHREAD_STRING_PREVENT_EXTENSIONS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PREVENT_EXTENSIONS)
|
|
#define DUK_HEAP_STRING_FREEZE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FREEZE)
|
|
#define DUK_HTHREAD_STRING_FREEZE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FREEZE)
|
|
#define DUK_HEAP_STRING_SEAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SEAL)
|
|
#define DUK_HTHREAD_STRING_SEAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SEAL)
|
|
#define DUK_HEAP_STRING_DEFINE_PROPERTIES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFINE_PROPERTIES)
|
|
#define DUK_HTHREAD_STRING_DEFINE_PROPERTIES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFINE_PROPERTIES)
|
|
#define DUK_HEAP_STRING_DEFINE_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFINE_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_DEFINE_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFINE_PROPERTY)
|
|
#define DUK_HEAP_STRING_CREATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CREATE)
|
|
#define DUK_HTHREAD_STRING_CREATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CREATE)
|
|
#define DUK_HEAP_STRING_GET_OWN_PROPERTY_NAMES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_OWN_PROPERTY_NAMES)
|
|
#define DUK_HTHREAD_STRING_GET_OWN_PROPERTY_NAMES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_OWN_PROPERTY_NAMES)
|
|
#define DUK_HEAP_STRING_GET_OWN_PROPERTY_DESCRIPTOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR)
|
|
#define DUK_HTHREAD_STRING_GET_OWN_PROPERTY_DESCRIPTOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR)
|
|
#define DUK_HEAP_STRING_GET_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_GET_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_PROTOTYPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROTOTYPE)
|
|
#define DUK_HTHREAD_STRING_PROTOTYPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROTOTYPE)
|
|
#define DUK_HEAP_STRING_LENGTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LENGTH)
|
|
#define DUK_HTHREAD_STRING_LENGTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LENGTH)
|
|
#define DUK_HEAP_STRING_ALERT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ALERT)
|
|
#define DUK_HTHREAD_STRING_ALERT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ALERT)
|
|
#define DUK_HEAP_STRING_PRINT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PRINT)
|
|
#define DUK_HTHREAD_STRING_PRINT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PRINT)
|
|
#define DUK_HEAP_STRING_UNESCAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UNESCAPE)
|
|
#define DUK_HTHREAD_STRING_UNESCAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UNESCAPE)
|
|
#define DUK_HEAP_STRING_ESCAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ESCAPE)
|
|
#define DUK_HTHREAD_STRING_ESCAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ESCAPE)
|
|
#define DUK_HEAP_STRING_ENCODE_URI_COMPONENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENCODE_URI_COMPONENT)
|
|
#define DUK_HTHREAD_STRING_ENCODE_URI_COMPONENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENCODE_URI_COMPONENT)
|
|
#define DUK_HEAP_STRING_ENCODE_URI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENCODE_URI)
|
|
#define DUK_HTHREAD_STRING_ENCODE_URI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENCODE_URI)
|
|
#define DUK_HEAP_STRING_DECODE_URI_COMPONENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DECODE_URI_COMPONENT)
|
|
#define DUK_HTHREAD_STRING_DECODE_URI_COMPONENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DECODE_URI_COMPONENT)
|
|
#define DUK_HEAP_STRING_DECODE_URI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DECODE_URI)
|
|
#define DUK_HTHREAD_STRING_DECODE_URI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DECODE_URI)
|
|
#define DUK_HEAP_STRING_IS_FINITE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_FINITE)
|
|
#define DUK_HTHREAD_STRING_IS_FINITE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_FINITE)
|
|
#define DUK_HEAP_STRING_IS_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_NAN)
|
|
#define DUK_HTHREAD_STRING_IS_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_NAN)
|
|
#define DUK_HEAP_STRING_PARSE_FLOAT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE_FLOAT)
|
|
#define DUK_HTHREAD_STRING_PARSE_FLOAT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE_FLOAT)
|
|
#define DUK_HEAP_STRING_PARSE_INT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE_INT)
|
|
#define DUK_HTHREAD_STRING_PARSE_INT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE_INT)
|
|
#define DUK_HEAP_STRING_EVAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVAL)
|
|
#define DUK_HTHREAD_STRING_EVAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVAL)
|
|
#define DUK_HEAP_STRING_URI_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_URI_ERROR)
|
|
#define DUK_HTHREAD_STRING_URI_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_URI_ERROR)
|
|
#define DUK_HEAP_STRING_TYPE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TYPE_ERROR)
|
|
#define DUK_HTHREAD_STRING_TYPE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TYPE_ERROR)
|
|
#define DUK_HEAP_STRING_SYNTAX_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SYNTAX_ERROR)
|
|
#define DUK_HTHREAD_STRING_SYNTAX_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SYNTAX_ERROR)
|
|
#define DUK_HEAP_STRING_REFERENCE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REFERENCE_ERROR)
|
|
#define DUK_HTHREAD_STRING_REFERENCE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REFERENCE_ERROR)
|
|
#define DUK_HEAP_STRING_RANGE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RANGE_ERROR)
|
|
#define DUK_HTHREAD_STRING_RANGE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RANGE_ERROR)
|
|
#define DUK_HEAP_STRING_EVAL_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVAL_ERROR)
|
|
#define DUK_HTHREAD_STRING_EVAL_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVAL_ERROR)
|
|
#define DUK_HEAP_STRING_BREAK(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BREAK)
|
|
#define DUK_HTHREAD_STRING_BREAK(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BREAK)
|
|
#define DUK_HEAP_STRING_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CASE)
|
|
#define DUK_HTHREAD_STRING_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CASE)
|
|
#define DUK_HEAP_STRING_CATCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CATCH)
|
|
#define DUK_HTHREAD_STRING_CATCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CATCH)
|
|
#define DUK_HEAP_STRING_CONTINUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONTINUE)
|
|
#define DUK_HTHREAD_STRING_CONTINUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONTINUE)
|
|
#define DUK_HEAP_STRING_DEBUGGER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEBUGGER)
|
|
#define DUK_HTHREAD_STRING_DEBUGGER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEBUGGER)
|
|
#define DUK_HEAP_STRING_DEFAULT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFAULT)
|
|
#define DUK_HTHREAD_STRING_DEFAULT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFAULT)
|
|
#define DUK_HEAP_STRING_DELETE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DELETE)
|
|
#define DUK_HTHREAD_STRING_DELETE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DELETE)
|
|
#define DUK_HEAP_STRING_DO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DO)
|
|
#define DUK_HTHREAD_STRING_DO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DO)
|
|
#define DUK_HEAP_STRING_ELSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ELSE)
|
|
#define DUK_HTHREAD_STRING_ELSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ELSE)
|
|
#define DUK_HEAP_STRING_FINALLY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FINALLY)
|
|
#define DUK_HTHREAD_STRING_FINALLY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FINALLY)
|
|
#define DUK_HEAP_STRING_FOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FOR)
|
|
#define DUK_HTHREAD_STRING_FOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FOR)
|
|
#define DUK_HEAP_STRING_LC_FUNCTION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_FUNCTION)
|
|
#define DUK_HTHREAD_STRING_LC_FUNCTION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_FUNCTION)
|
|
#define DUK_HEAP_STRING_IF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IF)
|
|
#define DUK_HTHREAD_STRING_IF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IF)
|
|
#define DUK_HEAP_STRING_IN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IN)
|
|
#define DUK_HTHREAD_STRING_IN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IN)
|
|
#define DUK_HEAP_STRING_INSTANCEOF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INSTANCEOF)
|
|
#define DUK_HTHREAD_STRING_INSTANCEOF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INSTANCEOF)
|
|
#define DUK_HEAP_STRING_NEW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEW)
|
|
#define DUK_HTHREAD_STRING_NEW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEW)
|
|
#define DUK_HEAP_STRING_RETURN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RETURN)
|
|
#define DUK_HTHREAD_STRING_RETURN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RETURN)
|
|
#define DUK_HEAP_STRING_SWITCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SWITCH)
|
|
#define DUK_HTHREAD_STRING_SWITCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SWITCH)
|
|
#define DUK_HEAP_STRING_THIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THIS)
|
|
#define DUK_HTHREAD_STRING_THIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THIS)
|
|
#define DUK_HEAP_STRING_THROW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THROW)
|
|
#define DUK_HTHREAD_STRING_THROW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THROW)
|
|
#define DUK_HEAP_STRING_TRY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRY)
|
|
#define DUK_HTHREAD_STRING_TRY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRY)
|
|
#define DUK_HEAP_STRING_TYPEOF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TYPEOF)
|
|
#define DUK_HTHREAD_STRING_TYPEOF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TYPEOF)
|
|
#define DUK_HEAP_STRING_VAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VAR)
|
|
#define DUK_HTHREAD_STRING_VAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VAR)
|
|
#define DUK_HEAP_STRING_VOID(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VOID)
|
|
#define DUK_HTHREAD_STRING_VOID(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VOID)
|
|
#define DUK_HEAP_STRING_WHILE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WHILE)
|
|
#define DUK_HTHREAD_STRING_WHILE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WHILE)
|
|
#define DUK_HEAP_STRING_WITH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WITH)
|
|
#define DUK_HTHREAD_STRING_WITH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WITH)
|
|
#define DUK_HEAP_STRING_CLASS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CLASS)
|
|
#define DUK_HTHREAD_STRING_CLASS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CLASS)
|
|
#define DUK_HEAP_STRING_CONST(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONST)
|
|
#define DUK_HTHREAD_STRING_CONST(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONST)
|
|
#define DUK_HEAP_STRING_ENUM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUM)
|
|
#define DUK_HTHREAD_STRING_ENUM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUM)
|
|
#define DUK_HEAP_STRING_EXPORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXPORT)
|
|
#define DUK_HTHREAD_STRING_EXPORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXPORT)
|
|
#define DUK_HEAP_STRING_EXTENDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXTENDS)
|
|
#define DUK_HTHREAD_STRING_EXTENDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXTENDS)
|
|
#define DUK_HEAP_STRING_IMPORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IMPORT)
|
|
#define DUK_HTHREAD_STRING_IMPORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IMPORT)
|
|
#define DUK_HEAP_STRING_SUPER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUPER)
|
|
#define DUK_HTHREAD_STRING_SUPER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUPER)
|
|
#define DUK_HEAP_STRING_LC_NULL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_NULL)
|
|
#define DUK_HTHREAD_STRING_LC_NULL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_NULL)
|
|
#define DUK_HEAP_STRING_TRUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRUE)
|
|
#define DUK_HTHREAD_STRING_TRUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRUE)
|
|
#define DUK_HEAP_STRING_FALSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FALSE)
|
|
#define DUK_HTHREAD_STRING_FALSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FALSE)
|
|
#define DUK_HEAP_STRING_IMPLEMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IMPLEMENTS)
|
|
#define DUK_HTHREAD_STRING_IMPLEMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IMPLEMENTS)
|
|
#define DUK_HEAP_STRING_INTERFACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INTERFACE)
|
|
#define DUK_HTHREAD_STRING_INTERFACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INTERFACE)
|
|
#define DUK_HEAP_STRING_LET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LET)
|
|
#define DUK_HTHREAD_STRING_LET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LET)
|
|
#define DUK_HEAP_STRING_PACKAGE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PACKAGE)
|
|
#define DUK_HTHREAD_STRING_PACKAGE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PACKAGE)
|
|
#define DUK_HEAP_STRING_PRIVATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PRIVATE)
|
|
#define DUK_HTHREAD_STRING_PRIVATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PRIVATE)
|
|
#define DUK_HEAP_STRING_PROTECTED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROTECTED)
|
|
#define DUK_HTHREAD_STRING_PROTECTED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROTECTED)
|
|
#define DUK_HEAP_STRING_PUBLIC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PUBLIC)
|
|
#define DUK_HTHREAD_STRING_PUBLIC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PUBLIC)
|
|
#define DUK_HEAP_STRING_STATIC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STATIC)
|
|
#define DUK_HTHREAD_STRING_STATIC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STATIC)
|
|
#define DUK_HEAP_STRING_YIELD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_YIELD)
|
|
#define DUK_HTHREAD_STRING_YIELD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_YIELD)
|
|
|
|
#define DUK_HEAP_NUM_STRINGS 336
|
|
|
|
#define DUK_STRIDX_START_RESERVED 291
|
|
#define DUK_STRIDX_START_STRICT_RESERVED 327
|
|
#define DUK_STRIDX_END_RESERVED 336 /* exclusive endpoint */
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const duk_c_function duk_bi_native_functions[128];
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_builtins_data[1341];
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_initjs_data[187];
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_BUILTINS_DATA_LENGTH 1341
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
#define DUK_BUILTIN_INITJS_DATA_LENGTH 187
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
|
|
#define DUK_BIDX_GLOBAL 0
|
|
#define DUK_BIDX_GLOBAL_ENV 1
|
|
#define DUK_BIDX_OBJECT_CONSTRUCTOR 2
|
|
#define DUK_BIDX_OBJECT_PROTOTYPE 3
|
|
#define DUK_BIDX_FUNCTION_CONSTRUCTOR 4
|
|
#define DUK_BIDX_FUNCTION_PROTOTYPE 5
|
|
#define DUK_BIDX_ARRAY_CONSTRUCTOR 6
|
|
#define DUK_BIDX_ARRAY_PROTOTYPE 7
|
|
#define DUK_BIDX_STRING_CONSTRUCTOR 8
|
|
#define DUK_BIDX_STRING_PROTOTYPE 9
|
|
#define DUK_BIDX_BOOLEAN_CONSTRUCTOR 10
|
|
#define DUK_BIDX_BOOLEAN_PROTOTYPE 11
|
|
#define DUK_BIDX_NUMBER_CONSTRUCTOR 12
|
|
#define DUK_BIDX_NUMBER_PROTOTYPE 13
|
|
#define DUK_BIDX_DATE_CONSTRUCTOR 14
|
|
#define DUK_BIDX_DATE_PROTOTYPE 15
|
|
#define DUK_BIDX_REGEXP_CONSTRUCTOR 16
|
|
#define DUK_BIDX_REGEXP_PROTOTYPE 17
|
|
#define DUK_BIDX_ERROR_CONSTRUCTOR 18
|
|
#define DUK_BIDX_ERROR_PROTOTYPE 19
|
|
#define DUK_BIDX_EVAL_ERROR_CONSTRUCTOR 20
|
|
#define DUK_BIDX_EVAL_ERROR_PROTOTYPE 21
|
|
#define DUK_BIDX_RANGE_ERROR_CONSTRUCTOR 22
|
|
#define DUK_BIDX_RANGE_ERROR_PROTOTYPE 23
|
|
#define DUK_BIDX_REFERENCE_ERROR_CONSTRUCTOR 24
|
|
#define DUK_BIDX_REFERENCE_ERROR_PROTOTYPE 25
|
|
#define DUK_BIDX_SYNTAX_ERROR_CONSTRUCTOR 26
|
|
#define DUK_BIDX_SYNTAX_ERROR_PROTOTYPE 27
|
|
#define DUK_BIDX_TYPE_ERROR_CONSTRUCTOR 28
|
|
#define DUK_BIDX_TYPE_ERROR_PROTOTYPE 29
|
|
#define DUK_BIDX_URI_ERROR_CONSTRUCTOR 30
|
|
#define DUK_BIDX_URI_ERROR_PROTOTYPE 31
|
|
#define DUK_BIDX_MATH 32
|
|
#define DUK_BIDX_JSON 33
|
|
#define DUK_BIDX_TYPE_ERROR_THROWER 34
|
|
#define DUK_BIDX_PROXY_CONSTRUCTOR 35
|
|
#define DUK_BIDX_DUKTAPE 36
|
|
#define DUK_BIDX_THREAD_CONSTRUCTOR 37
|
|
#define DUK_BIDX_THREAD_PROTOTYPE 38
|
|
#define DUK_BIDX_BUFFER_CONSTRUCTOR 39
|
|
#define DUK_BIDX_BUFFER_PROTOTYPE 40
|
|
#define DUK_BIDX_POINTER_CONSTRUCTOR 41
|
|
#define DUK_BIDX_POINTER_PROTOTYPE 42
|
|
#define DUK_BIDX_LOGGER_CONSTRUCTOR 43
|
|
#define DUK_BIDX_LOGGER_PROTOTYPE 44
|
|
#define DUK_BIDX_DOUBLE_ERROR 45
|
|
|
|
#define DUK_NUM_BUILTINS 46
|
|
|
|
#elif defined(DUK_USE_DOUBLE_ME)
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_strings_data[1943];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STRDATA_DATA_LENGTH 1943
|
|
#define DUK_STRDATA_MAX_STRLEN 24
|
|
|
|
#define DUK_STRIDX_UC_LOGGER 0 /* 'Logger' */
|
|
#define DUK_STRIDX_UC_THREAD 1 /* 'Thread' */
|
|
#define DUK_STRIDX_UC_POINTER 2 /* 'Pointer' */
|
|
#define DUK_STRIDX_UC_BUFFER 3 /* 'Buffer' */
|
|
#define DUK_STRIDX_DEC_ENV 4 /* 'DecEnv' */
|
|
#define DUK_STRIDX_OBJ_ENV 5 /* 'ObjEnv' */
|
|
#define DUK_STRIDX_EMPTY_STRING 6 /* '' */
|
|
#define DUK_STRIDX_GLOBAL 7 /* 'global' */
|
|
#define DUK_STRIDX_UC_ARGUMENTS 8 /* 'Arguments' */
|
|
#define DUK_STRIDX_JSON 9 /* 'JSON' */
|
|
#define DUK_STRIDX_MATH 10 /* 'Math' */
|
|
#define DUK_STRIDX_UC_ERROR 11 /* 'Error' */
|
|
#define DUK_STRIDX_REG_EXP 12 /* 'RegExp' */
|
|
#define DUK_STRIDX_DATE 13 /* 'Date' */
|
|
#define DUK_STRIDX_UC_NUMBER 14 /* 'Number' */
|
|
#define DUK_STRIDX_UC_BOOLEAN 15 /* 'Boolean' */
|
|
#define DUK_STRIDX_UC_STRING 16 /* 'String' */
|
|
#define DUK_STRIDX_ARRAY 17 /* 'Array' */
|
|
#define DUK_STRIDX_UC_FUNCTION 18 /* 'Function' */
|
|
#define DUK_STRIDX_UC_OBJECT 19 /* 'Object' */
|
|
#define DUK_STRIDX_UC_NULL 20 /* 'Null' */
|
|
#define DUK_STRIDX_UC_UNDEFINED 21 /* 'Undefined' */
|
|
#define DUK_STRIDX_JSON_EXT_FUNCTION2 22 /* '{_func:true}' */
|
|
#define DUK_STRIDX_JSON_EXT_FUNCTION1 23 /* '{"_func":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_NEGINF 24 /* '{"_ninf":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_POSINF 25 /* '{"_inf":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_NAN 26 /* '{"_nan":true}' */
|
|
#define DUK_STRIDX_JSON_EXT_UNDEFINED 27 /* '{"_undef":true}' */
|
|
#define DUK_STRIDX_TO_LOG_STRING 28 /* 'toLogString' */
|
|
#define DUK_STRIDX_CLOG 29 /* 'clog' */
|
|
#define DUK_STRIDX_LC_L 30 /* 'l' */
|
|
#define DUK_STRIDX_LC_N 31 /* 'n' */
|
|
#define DUK_STRIDX_LC_FATAL 32 /* 'fatal' */
|
|
#define DUK_STRIDX_LC_ERROR 33 /* 'error' */
|
|
#define DUK_STRIDX_LC_WARN 34 /* 'warn' */
|
|
#define DUK_STRIDX_LC_DEBUG 35 /* 'debug' */
|
|
#define DUK_STRIDX_LC_TRACE 36 /* 'trace' */
|
|
#define DUK_STRIDX_RAW 37 /* 'raw' */
|
|
#define DUK_STRIDX_FMT 38 /* 'fmt' */
|
|
#define DUK_STRIDX_CURRENT 39 /* 'current' */
|
|
#define DUK_STRIDX_RESUME 40 /* 'resume' */
|
|
#define DUK_STRIDX_COMPACT 41 /* 'compact' */
|
|
#define DUK_STRIDX_JC 42 /* 'jc' */
|
|
#define DUK_STRIDX_JX 43 /* 'jx' */
|
|
#define DUK_STRIDX_BASE64 44 /* 'base64' */
|
|
#define DUK_STRIDX_HEX 45 /* 'hex' */
|
|
#define DUK_STRIDX_DEC 46 /* 'dec' */
|
|
#define DUK_STRIDX_ENC 47 /* 'enc' */
|
|
#define DUK_STRIDX_FIN 48 /* 'fin' */
|
|
#define DUK_STRIDX_GC 49 /* 'gc' */
|
|
#define DUK_STRIDX_ACT 50 /* 'act' */
|
|
#define DUK_STRIDX_LC_INFO 51 /* 'info' */
|
|
#define DUK_STRIDX_VERSION 52 /* 'version' */
|
|
#define DUK_STRIDX_ENV 53 /* 'env' */
|
|
#define DUK_STRIDX_MOD_LOADED 54 /* 'modLoaded' */
|
|
#define DUK_STRIDX_MOD_SEARCH 55 /* 'modSearch' */
|
|
#define DUK_STRIDX_ERR_THROW 56 /* 'errThrow' */
|
|
#define DUK_STRIDX_ERR_CREATE 57 /* 'errCreate' */
|
|
#define DUK_STRIDX_COMPILE 58 /* 'compile' */
|
|
#define DUK_STRIDX_INT_REGBASE 59 /* '\x00Regbase' */
|
|
#define DUK_STRIDX_INT_THREAD 60 /* '\x00Thread' */
|
|
#define DUK_STRIDX_INT_HANDLER 61 /* '\x00Handler' */
|
|
#define DUK_STRIDX_INT_FINALIZER 62 /* '\x00Finalizer' */
|
|
#define DUK_STRIDX_INT_CALLEE 63 /* '\x00Callee' */
|
|
#define DUK_STRIDX_INT_MAP 64 /* '\x00Map' */
|
|
#define DUK_STRIDX_INT_ARGS 65 /* '\x00Args' */
|
|
#define DUK_STRIDX_INT_THIS 66 /* '\x00This' */
|
|
#define DUK_STRIDX_INT_PC2LINE 67 /* '\x00Pc2line' */
|
|
#define DUK_STRIDX_INT_SOURCE 68 /* '\x00Source' */
|
|
#define DUK_STRIDX_INT_VARENV 69 /* '\x00Varenv' */
|
|
#define DUK_STRIDX_INT_LEXENV 70 /* '\x00Lexenv' */
|
|
#define DUK_STRIDX_INT_VARMAP 71 /* '\x00Varmap' */
|
|
#define DUK_STRIDX_INT_FORMALS 72 /* '\x00Formals' */
|
|
#define DUK_STRIDX_INT_BYTECODE 73 /* '\x00Bytecode' */
|
|
#define DUK_STRIDX_INT_NEXT 74 /* '\x00Next' */
|
|
#define DUK_STRIDX_INT_TARGET 75 /* '\x00Target' */
|
|
#define DUK_STRIDX_INT_VALUE 76 /* '\x00Value' */
|
|
#define DUK_STRIDX_LC_POINTER 77 /* 'pointer' */
|
|
#define DUK_STRIDX_LC_BUFFER 78 /* 'buffer' */
|
|
#define DUK_STRIDX_INT_TRACEDATA 79 /* '\x00Tracedata' */
|
|
#define DUK_STRIDX_LINE_NUMBER 80 /* 'lineNumber' */
|
|
#define DUK_STRIDX_FILE_NAME 81 /* 'fileName' */
|
|
#define DUK_STRIDX_PC 82 /* 'pc' */
|
|
#define DUK_STRIDX_STACK 83 /* 'stack' */
|
|
#define DUK_STRIDX_THROW_TYPE_ERROR 84 /* 'ThrowTypeError' */
|
|
#define DUK_STRIDX_DUKTAPE 85 /* 'Duktape' */
|
|
#define DUK_STRIDX_ID 86 /* 'id' */
|
|
#define DUK_STRIDX_REQUIRE 87 /* 'require' */
|
|
#define DUK_STRIDX___PROTO__ 88 /* '__proto__' */
|
|
#define DUK_STRIDX_SET_PROTOTYPE_OF 89 /* 'setPrototypeOf' */
|
|
#define DUK_STRIDX_OWN_KEYS 90 /* 'ownKeys' */
|
|
#define DUK_STRIDX_ENUMERATE 91 /* 'enumerate' */
|
|
#define DUK_STRIDX_DELETE_PROPERTY 92 /* 'deleteProperty' */
|
|
#define DUK_STRIDX_HAS 93 /* 'has' */
|
|
#define DUK_STRIDX_PROXY 94 /* 'Proxy' */
|
|
#define DUK_STRIDX_CALLEE 95 /* 'callee' */
|
|
#define DUK_STRIDX_INVALID_DATE 96 /* 'Invalid Date' */
|
|
#define DUK_STRIDX_BRACKETED_ELLIPSIS 97 /* '[...]' */
|
|
#define DUK_STRIDX_NEWLINE_TAB 98 /* '\n\t' */
|
|
#define DUK_STRIDX_SPACE 99 /* ' ' */
|
|
#define DUK_STRIDX_COMMA 100 /* ',' */
|
|
#define DUK_STRIDX_MINUS_ZERO 101 /* '-0' */
|
|
#define DUK_STRIDX_PLUS_ZERO 102 /* '+0' */
|
|
#define DUK_STRIDX_ZERO 103 /* '0' */
|
|
#define DUK_STRIDX_MINUS_INFINITY 104 /* '-Infinity' */
|
|
#define DUK_STRIDX_PLUS_INFINITY 105 /* '+Infinity' */
|
|
#define DUK_STRIDX_INFINITY 106 /* 'Infinity' */
|
|
#define DUK_STRIDX_LC_OBJECT 107 /* 'object' */
|
|
#define DUK_STRIDX_LC_STRING 108 /* 'string' */
|
|
#define DUK_STRIDX_LC_NUMBER 109 /* 'number' */
|
|
#define DUK_STRIDX_LC_BOOLEAN 110 /* 'boolean' */
|
|
#define DUK_STRIDX_LC_UNDEFINED 111 /* 'undefined' */
|
|
#define DUK_STRIDX_STRINGIFY 112 /* 'stringify' */
|
|
#define DUK_STRIDX_TAN 113 /* 'tan' */
|
|
#define DUK_STRIDX_SQRT 114 /* 'sqrt' */
|
|
#define DUK_STRIDX_SIN 115 /* 'sin' */
|
|
#define DUK_STRIDX_ROUND 116 /* 'round' */
|
|
#define DUK_STRIDX_RANDOM 117 /* 'random' */
|
|
#define DUK_STRIDX_POW 118 /* 'pow' */
|
|
#define DUK_STRIDX_MIN 119 /* 'min' */
|
|
#define DUK_STRIDX_MAX 120 /* 'max' */
|
|
#define DUK_STRIDX_LOG 121 /* 'log' */
|
|
#define DUK_STRIDX_FLOOR 122 /* 'floor' */
|
|
#define DUK_STRIDX_EXP 123 /* 'exp' */
|
|
#define DUK_STRIDX_COS 124 /* 'cos' */
|
|
#define DUK_STRIDX_CEIL 125 /* 'ceil' */
|
|
#define DUK_STRIDX_ATAN2 126 /* 'atan2' */
|
|
#define DUK_STRIDX_ATAN 127 /* 'atan' */
|
|
#define DUK_STRIDX_ASIN 128 /* 'asin' */
|
|
#define DUK_STRIDX_ACOS 129 /* 'acos' */
|
|
#define DUK_STRIDX_ABS 130 /* 'abs' */
|
|
#define DUK_STRIDX_SQRT2 131 /* 'SQRT2' */
|
|
#define DUK_STRIDX_SQRT1_2 132 /* 'SQRT1_2' */
|
|
#define DUK_STRIDX_PI 133 /* 'PI' */
|
|
#define DUK_STRIDX_LOG10E 134 /* 'LOG10E' */
|
|
#define DUK_STRIDX_LOG2E 135 /* 'LOG2E' */
|
|
#define DUK_STRIDX_LN2 136 /* 'LN2' */
|
|
#define DUK_STRIDX_LN10 137 /* 'LN10' */
|
|
#define DUK_STRIDX_E 138 /* 'E' */
|
|
#define DUK_STRIDX_MESSAGE 139 /* 'message' */
|
|
#define DUK_STRIDX_NAME 140 /* 'name' */
|
|
#define DUK_STRIDX_INPUT 141 /* 'input' */
|
|
#define DUK_STRIDX_INDEX 142 /* 'index' */
|
|
#define DUK_STRIDX_ESCAPED_EMPTY_REGEXP 143 /* '(?:)' */
|
|
#define DUK_STRIDX_LAST_INDEX 144 /* 'lastIndex' */
|
|
#define DUK_STRIDX_MULTILINE 145 /* 'multiline' */
|
|
#define DUK_STRIDX_IGNORE_CASE 146 /* 'ignoreCase' */
|
|
#define DUK_STRIDX_SOURCE 147 /* 'source' */
|
|
#define DUK_STRIDX_TEST 148 /* 'test' */
|
|
#define DUK_STRIDX_EXEC 149 /* 'exec' */
|
|
#define DUK_STRIDX_TO_GMT_STRING 150 /* 'toGMTString' */
|
|
#define DUK_STRIDX_SET_YEAR 151 /* 'setYear' */
|
|
#define DUK_STRIDX_GET_YEAR 152 /* 'getYear' */
|
|
#define DUK_STRIDX_TO_JSON 153 /* 'toJSON' */
|
|
#define DUK_STRIDX_TO_ISO_STRING 154 /* 'toISOString' */
|
|
#define DUK_STRIDX_TO_UTC_STRING 155 /* 'toUTCString' */
|
|
#define DUK_STRIDX_SET_UTC_FULL_YEAR 156 /* 'setUTCFullYear' */
|
|
#define DUK_STRIDX_SET_FULL_YEAR 157 /* 'setFullYear' */
|
|
#define DUK_STRIDX_SET_UTC_MONTH 158 /* 'setUTCMonth' */
|
|
#define DUK_STRIDX_SET_MONTH 159 /* 'setMonth' */
|
|
#define DUK_STRIDX_SET_UTC_DATE 160 /* 'setUTCDate' */
|
|
#define DUK_STRIDX_SET_DATE 161 /* 'setDate' */
|
|
#define DUK_STRIDX_SET_UTC_HOURS 162 /* 'setUTCHours' */
|
|
#define DUK_STRIDX_SET_HOURS 163 /* 'setHours' */
|
|
#define DUK_STRIDX_SET_UTC_MINUTES 164 /* 'setUTCMinutes' */
|
|
#define DUK_STRIDX_SET_MINUTES 165 /* 'setMinutes' */
|
|
#define DUK_STRIDX_SET_UTC_SECONDS 166 /* 'setUTCSeconds' */
|
|
#define DUK_STRIDX_SET_SECONDS 167 /* 'setSeconds' */
|
|
#define DUK_STRIDX_SET_UTC_MILLISECONDS 168 /* 'setUTCMilliseconds' */
|
|
#define DUK_STRIDX_SET_MILLISECONDS 169 /* 'setMilliseconds' */
|
|
#define DUK_STRIDX_SET_TIME 170 /* 'setTime' */
|
|
#define DUK_STRIDX_GET_TIMEZONE_OFFSET 171 /* 'getTimezoneOffset' */
|
|
#define DUK_STRIDX_GET_UTC_MILLISECONDS 172 /* 'getUTCMilliseconds' */
|
|
#define DUK_STRIDX_GET_MILLISECONDS 173 /* 'getMilliseconds' */
|
|
#define DUK_STRIDX_GET_UTC_SECONDS 174 /* 'getUTCSeconds' */
|
|
#define DUK_STRIDX_GET_SECONDS 175 /* 'getSeconds' */
|
|
#define DUK_STRIDX_GET_UTC_MINUTES 176 /* 'getUTCMinutes' */
|
|
#define DUK_STRIDX_GET_MINUTES 177 /* 'getMinutes' */
|
|
#define DUK_STRIDX_GET_UTC_HOURS 178 /* 'getUTCHours' */
|
|
#define DUK_STRIDX_GET_HOURS 179 /* 'getHours' */
|
|
#define DUK_STRIDX_GET_UTC_DAY 180 /* 'getUTCDay' */
|
|
#define DUK_STRIDX_GET_DAY 181 /* 'getDay' */
|
|
#define DUK_STRIDX_GET_UTC_DATE 182 /* 'getUTCDate' */
|
|
#define DUK_STRIDX_GET_DATE 183 /* 'getDate' */
|
|
#define DUK_STRIDX_GET_UTC_MONTH 184 /* 'getUTCMonth' */
|
|
#define DUK_STRIDX_GET_MONTH 185 /* 'getMonth' */
|
|
#define DUK_STRIDX_GET_UTC_FULL_YEAR 186 /* 'getUTCFullYear' */
|
|
#define DUK_STRIDX_GET_FULL_YEAR 187 /* 'getFullYear' */
|
|
#define DUK_STRIDX_GET_TIME 188 /* 'getTime' */
|
|
#define DUK_STRIDX_TO_LOCALE_TIME_STRING 189 /* 'toLocaleTimeString' */
|
|
#define DUK_STRIDX_TO_LOCALE_DATE_STRING 190 /* 'toLocaleDateString' */
|
|
#define DUK_STRIDX_TO_TIME_STRING 191 /* 'toTimeString' */
|
|
#define DUK_STRIDX_TO_DATE_STRING 192 /* 'toDateString' */
|
|
#define DUK_STRIDX_NOW 193 /* 'now' */
|
|
#define DUK_STRIDX_UTC 194 /* 'UTC' */
|
|
#define DUK_STRIDX_PARSE 195 /* 'parse' */
|
|
#define DUK_STRIDX_TO_PRECISION 196 /* 'toPrecision' */
|
|
#define DUK_STRIDX_TO_EXPONENTIAL 197 /* 'toExponential' */
|
|
#define DUK_STRIDX_TO_FIXED 198 /* 'toFixed' */
|
|
#define DUK_STRIDX_POSITIVE_INFINITY 199 /* 'POSITIVE_INFINITY' */
|
|
#define DUK_STRIDX_NEGATIVE_INFINITY 200 /* 'NEGATIVE_INFINITY' */
|
|
#define DUK_STRIDX_NAN 201 /* 'NaN' */
|
|
#define DUK_STRIDX_MIN_VALUE 202 /* 'MIN_VALUE' */
|
|
#define DUK_STRIDX_MAX_VALUE 203 /* 'MAX_VALUE' */
|
|
#define DUK_STRIDX_SUBSTR 204 /* 'substr' */
|
|
#define DUK_STRIDX_TRIM 205 /* 'trim' */
|
|
#define DUK_STRIDX_TO_LOCALE_UPPER_CASE 206 /* 'toLocaleUpperCase' */
|
|
#define DUK_STRIDX_TO_UPPER_CASE 207 /* 'toUpperCase' */
|
|
#define DUK_STRIDX_TO_LOCALE_LOWER_CASE 208 /* 'toLocaleLowerCase' */
|
|
#define DUK_STRIDX_TO_LOWER_CASE 209 /* 'toLowerCase' */
|
|
#define DUK_STRIDX_SUBSTRING 210 /* 'substring' */
|
|
#define DUK_STRIDX_SPLIT 211 /* 'split' */
|
|
#define DUK_STRIDX_SEARCH 212 /* 'search' */
|
|
#define DUK_STRIDX_REPLACE 213 /* 'replace' */
|
|
#define DUK_STRIDX_MATCH 214 /* 'match' */
|
|
#define DUK_STRIDX_LOCALE_COMPARE 215 /* 'localeCompare' */
|
|
#define DUK_STRIDX_CHAR_CODE_AT 216 /* 'charCodeAt' */
|
|
#define DUK_STRIDX_CHAR_AT 217 /* 'charAt' */
|
|
#define DUK_STRIDX_FROM_CHAR_CODE 218 /* 'fromCharCode' */
|
|
#define DUK_STRIDX_REDUCE_RIGHT 219 /* 'reduceRight' */
|
|
#define DUK_STRIDX_REDUCE 220 /* 'reduce' */
|
|
#define DUK_STRIDX_FILTER 221 /* 'filter' */
|
|
#define DUK_STRIDX_MAP 222 /* 'map' */
|
|
#define DUK_STRIDX_FOR_EACH 223 /* 'forEach' */
|
|
#define DUK_STRIDX_SOME 224 /* 'some' */
|
|
#define DUK_STRIDX_EVERY 225 /* 'every' */
|
|
#define DUK_STRIDX_LAST_INDEX_OF 226 /* 'lastIndexOf' */
|
|
#define DUK_STRIDX_INDEX_OF 227 /* 'indexOf' */
|
|
#define DUK_STRIDX_UNSHIFT 228 /* 'unshift' */
|
|
#define DUK_STRIDX_SPLICE 229 /* 'splice' */
|
|
#define DUK_STRIDX_SORT 230 /* 'sort' */
|
|
#define DUK_STRIDX_SLICE 231 /* 'slice' */
|
|
#define DUK_STRIDX_SHIFT 232 /* 'shift' */
|
|
#define DUK_STRIDX_REVERSE 233 /* 'reverse' */
|
|
#define DUK_STRIDX_PUSH 234 /* 'push' */
|
|
#define DUK_STRIDX_POP 235 /* 'pop' */
|
|
#define DUK_STRIDX_JOIN 236 /* 'join' */
|
|
#define DUK_STRIDX_CONCAT 237 /* 'concat' */
|
|
#define DUK_STRIDX_IS_ARRAY 238 /* 'isArray' */
|
|
#define DUK_STRIDX_LC_ARGUMENTS 239 /* 'arguments' */
|
|
#define DUK_STRIDX_CALLER 240 /* 'caller' */
|
|
#define DUK_STRIDX_BIND 241 /* 'bind' */
|
|
#define DUK_STRIDX_CALL 242 /* 'call' */
|
|
#define DUK_STRIDX_APPLY 243 /* 'apply' */
|
|
#define DUK_STRIDX_PROPERTY_IS_ENUMERABLE 244 /* 'propertyIsEnumerable' */
|
|
#define DUK_STRIDX_IS_PROTOTYPE_OF 245 /* 'isPrototypeOf' */
|
|
#define DUK_STRIDX_HAS_OWN_PROPERTY 246 /* 'hasOwnProperty' */
|
|
#define DUK_STRIDX_VALUE_OF 247 /* 'valueOf' */
|
|
#define DUK_STRIDX_TO_LOCALE_STRING 248 /* 'toLocaleString' */
|
|
#define DUK_STRIDX_TO_STRING 249 /* 'toString' */
|
|
#define DUK_STRIDX_CONSTRUCTOR 250 /* 'constructor' */
|
|
#define DUK_STRIDX_SET 251 /* 'set' */
|
|
#define DUK_STRIDX_GET 252 /* 'get' */
|
|
#define DUK_STRIDX_ENUMERABLE 253 /* 'enumerable' */
|
|
#define DUK_STRIDX_CONFIGURABLE 254 /* 'configurable' */
|
|
#define DUK_STRIDX_WRITABLE 255 /* 'writable' */
|
|
#define DUK_STRIDX_VALUE 256 /* 'value' */
|
|
#define DUK_STRIDX_KEYS 257 /* 'keys' */
|
|
#define DUK_STRIDX_IS_EXTENSIBLE 258 /* 'isExtensible' */
|
|
#define DUK_STRIDX_IS_FROZEN 259 /* 'isFrozen' */
|
|
#define DUK_STRIDX_IS_SEALED 260 /* 'isSealed' */
|
|
#define DUK_STRIDX_PREVENT_EXTENSIONS 261 /* 'preventExtensions' */
|
|
#define DUK_STRIDX_FREEZE 262 /* 'freeze' */
|
|
#define DUK_STRIDX_SEAL 263 /* 'seal' */
|
|
#define DUK_STRIDX_DEFINE_PROPERTIES 264 /* 'defineProperties' */
|
|
#define DUK_STRIDX_DEFINE_PROPERTY 265 /* 'defineProperty' */
|
|
#define DUK_STRIDX_CREATE 266 /* 'create' */
|
|
#define DUK_STRIDX_GET_OWN_PROPERTY_NAMES 267 /* 'getOwnPropertyNames' */
|
|
#define DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR 268 /* 'getOwnPropertyDescriptor' */
|
|
#define DUK_STRIDX_GET_PROTOTYPE_OF 269 /* 'getPrototypeOf' */
|
|
#define DUK_STRIDX_PROTOTYPE 270 /* 'prototype' */
|
|
#define DUK_STRIDX_LENGTH 271 /* 'length' */
|
|
#define DUK_STRIDX_ALERT 272 /* 'alert' */
|
|
#define DUK_STRIDX_PRINT 273 /* 'print' */
|
|
#define DUK_STRIDX_UNESCAPE 274 /* 'unescape' */
|
|
#define DUK_STRIDX_ESCAPE 275 /* 'escape' */
|
|
#define DUK_STRIDX_ENCODE_URI_COMPONENT 276 /* 'encodeURIComponent' */
|
|
#define DUK_STRIDX_ENCODE_URI 277 /* 'encodeURI' */
|
|
#define DUK_STRIDX_DECODE_URI_COMPONENT 278 /* 'decodeURIComponent' */
|
|
#define DUK_STRIDX_DECODE_URI 279 /* 'decodeURI' */
|
|
#define DUK_STRIDX_IS_FINITE 280 /* 'isFinite' */
|
|
#define DUK_STRIDX_IS_NAN 281 /* 'isNaN' */
|
|
#define DUK_STRIDX_PARSE_FLOAT 282 /* 'parseFloat' */
|
|
#define DUK_STRIDX_PARSE_INT 283 /* 'parseInt' */
|
|
#define DUK_STRIDX_EVAL 284 /* 'eval' */
|
|
#define DUK_STRIDX_URI_ERROR 285 /* 'URIError' */
|
|
#define DUK_STRIDX_TYPE_ERROR 286 /* 'TypeError' */
|
|
#define DUK_STRIDX_SYNTAX_ERROR 287 /* 'SyntaxError' */
|
|
#define DUK_STRIDX_REFERENCE_ERROR 288 /* 'ReferenceError' */
|
|
#define DUK_STRIDX_RANGE_ERROR 289 /* 'RangeError' */
|
|
#define DUK_STRIDX_EVAL_ERROR 290 /* 'EvalError' */
|
|
#define DUK_STRIDX_BREAK 291 /* 'break' */
|
|
#define DUK_STRIDX_CASE 292 /* 'case' */
|
|
#define DUK_STRIDX_CATCH 293 /* 'catch' */
|
|
#define DUK_STRIDX_CONTINUE 294 /* 'continue' */
|
|
#define DUK_STRIDX_DEBUGGER 295 /* 'debugger' */
|
|
#define DUK_STRIDX_DEFAULT 296 /* 'default' */
|
|
#define DUK_STRIDX_DELETE 297 /* 'delete' */
|
|
#define DUK_STRIDX_DO 298 /* 'do' */
|
|
#define DUK_STRIDX_ELSE 299 /* 'else' */
|
|
#define DUK_STRIDX_FINALLY 300 /* 'finally' */
|
|
#define DUK_STRIDX_FOR 301 /* 'for' */
|
|
#define DUK_STRIDX_LC_FUNCTION 302 /* 'function' */
|
|
#define DUK_STRIDX_IF 303 /* 'if' */
|
|
#define DUK_STRIDX_IN 304 /* 'in' */
|
|
#define DUK_STRIDX_INSTANCEOF 305 /* 'instanceof' */
|
|
#define DUK_STRIDX_NEW 306 /* 'new' */
|
|
#define DUK_STRIDX_RETURN 307 /* 'return' */
|
|
#define DUK_STRIDX_SWITCH 308 /* 'switch' */
|
|
#define DUK_STRIDX_THIS 309 /* 'this' */
|
|
#define DUK_STRIDX_THROW 310 /* 'throw' */
|
|
#define DUK_STRIDX_TRY 311 /* 'try' */
|
|
#define DUK_STRIDX_TYPEOF 312 /* 'typeof' */
|
|
#define DUK_STRIDX_VAR 313 /* 'var' */
|
|
#define DUK_STRIDX_VOID 314 /* 'void' */
|
|
#define DUK_STRIDX_WHILE 315 /* 'while' */
|
|
#define DUK_STRIDX_WITH 316 /* 'with' */
|
|
#define DUK_STRIDX_CLASS 317 /* 'class' */
|
|
#define DUK_STRIDX_CONST 318 /* 'const' */
|
|
#define DUK_STRIDX_ENUM 319 /* 'enum' */
|
|
#define DUK_STRIDX_EXPORT 320 /* 'export' */
|
|
#define DUK_STRIDX_EXTENDS 321 /* 'extends' */
|
|
#define DUK_STRIDX_IMPORT 322 /* 'import' */
|
|
#define DUK_STRIDX_SUPER 323 /* 'super' */
|
|
#define DUK_STRIDX_LC_NULL 324 /* 'null' */
|
|
#define DUK_STRIDX_TRUE 325 /* 'true' */
|
|
#define DUK_STRIDX_FALSE 326 /* 'false' */
|
|
#define DUK_STRIDX_IMPLEMENTS 327 /* 'implements' */
|
|
#define DUK_STRIDX_INTERFACE 328 /* 'interface' */
|
|
#define DUK_STRIDX_LET 329 /* 'let' */
|
|
#define DUK_STRIDX_PACKAGE 330 /* 'package' */
|
|
#define DUK_STRIDX_PRIVATE 331 /* 'private' */
|
|
#define DUK_STRIDX_PROTECTED 332 /* 'protected' */
|
|
#define DUK_STRIDX_PUBLIC 333 /* 'public' */
|
|
#define DUK_STRIDX_STATIC 334 /* 'static' */
|
|
#define DUK_STRIDX_YIELD 335 /* 'yield' */
|
|
|
|
#define DUK_HEAP_STRING_UC_LOGGER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_LOGGER)
|
|
#define DUK_HTHREAD_STRING_UC_LOGGER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_LOGGER)
|
|
#define DUK_HEAP_STRING_UC_THREAD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_THREAD)
|
|
#define DUK_HTHREAD_STRING_UC_THREAD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_THREAD)
|
|
#define DUK_HEAP_STRING_UC_POINTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_POINTER)
|
|
#define DUK_HTHREAD_STRING_UC_POINTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_POINTER)
|
|
#define DUK_HEAP_STRING_UC_BUFFER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_BUFFER)
|
|
#define DUK_HTHREAD_STRING_UC_BUFFER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_BUFFER)
|
|
#define DUK_HEAP_STRING_DEC_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEC_ENV)
|
|
#define DUK_HTHREAD_STRING_DEC_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEC_ENV)
|
|
#define DUK_HEAP_STRING_OBJ_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_OBJ_ENV)
|
|
#define DUK_HTHREAD_STRING_OBJ_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_OBJ_ENV)
|
|
#define DUK_HEAP_STRING_EMPTY_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EMPTY_STRING)
|
|
#define DUK_HTHREAD_STRING_EMPTY_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EMPTY_STRING)
|
|
#define DUK_HEAP_STRING_GLOBAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GLOBAL)
|
|
#define DUK_HTHREAD_STRING_GLOBAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GLOBAL)
|
|
#define DUK_HEAP_STRING_UC_ARGUMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_ARGUMENTS)
|
|
#define DUK_HTHREAD_STRING_UC_ARGUMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_ARGUMENTS)
|
|
#define DUK_HEAP_STRING_JSON(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON)
|
|
#define DUK_HTHREAD_STRING_JSON(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON)
|
|
#define DUK_HEAP_STRING_MATH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MATH)
|
|
#define DUK_HTHREAD_STRING_MATH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MATH)
|
|
#define DUK_HEAP_STRING_UC_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_ERROR)
|
|
#define DUK_HTHREAD_STRING_UC_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_ERROR)
|
|
#define DUK_HEAP_STRING_REG_EXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REG_EXP)
|
|
#define DUK_HTHREAD_STRING_REG_EXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REG_EXP)
|
|
#define DUK_HEAP_STRING_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DATE)
|
|
#define DUK_HTHREAD_STRING_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DATE)
|
|
#define DUK_HEAP_STRING_UC_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_NUMBER)
|
|
#define DUK_HTHREAD_STRING_UC_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_NUMBER)
|
|
#define DUK_HEAP_STRING_UC_BOOLEAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_BOOLEAN)
|
|
#define DUK_HTHREAD_STRING_UC_BOOLEAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_BOOLEAN)
|
|
#define DUK_HEAP_STRING_UC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_STRING)
|
|
#define DUK_HTHREAD_STRING_UC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_STRING)
|
|
#define DUK_HEAP_STRING_ARRAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ARRAY)
|
|
#define DUK_HTHREAD_STRING_ARRAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ARRAY)
|
|
#define DUK_HEAP_STRING_UC_FUNCTION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_FUNCTION)
|
|
#define DUK_HTHREAD_STRING_UC_FUNCTION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_FUNCTION)
|
|
#define DUK_HEAP_STRING_UC_OBJECT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_OBJECT)
|
|
#define DUK_HTHREAD_STRING_UC_OBJECT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_OBJECT)
|
|
#define DUK_HEAP_STRING_UC_NULL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_NULL)
|
|
#define DUK_HTHREAD_STRING_UC_NULL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_NULL)
|
|
#define DUK_HEAP_STRING_UC_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UC_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_UC_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UC_UNDEFINED)
|
|
#define DUK_HEAP_STRING_JSON_EXT_FUNCTION2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_FUNCTION2)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_FUNCTION2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_FUNCTION2)
|
|
#define DUK_HEAP_STRING_JSON_EXT_FUNCTION1(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_FUNCTION1)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_FUNCTION1(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_FUNCTION1)
|
|
#define DUK_HEAP_STRING_JSON_EXT_NEGINF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_NEGINF)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_NEGINF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_NEGINF)
|
|
#define DUK_HEAP_STRING_JSON_EXT_POSINF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_POSINF)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_POSINF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_POSINF)
|
|
#define DUK_HEAP_STRING_JSON_EXT_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_NAN)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_NAN)
|
|
#define DUK_HEAP_STRING_JSON_EXT_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JSON_EXT_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_JSON_EXT_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JSON_EXT_UNDEFINED)
|
|
#define DUK_HEAP_STRING_TO_LOG_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOG_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOG_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOG_STRING)
|
|
#define DUK_HEAP_STRING_CLOG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CLOG)
|
|
#define DUK_HTHREAD_STRING_CLOG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CLOG)
|
|
#define DUK_HEAP_STRING_LC_L(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_L)
|
|
#define DUK_HTHREAD_STRING_LC_L(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_L)
|
|
#define DUK_HEAP_STRING_LC_N(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_N)
|
|
#define DUK_HTHREAD_STRING_LC_N(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_N)
|
|
#define DUK_HEAP_STRING_LC_FATAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_FATAL)
|
|
#define DUK_HTHREAD_STRING_LC_FATAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_FATAL)
|
|
#define DUK_HEAP_STRING_LC_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_ERROR)
|
|
#define DUK_HTHREAD_STRING_LC_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_ERROR)
|
|
#define DUK_HEAP_STRING_LC_WARN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_WARN)
|
|
#define DUK_HTHREAD_STRING_LC_WARN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_WARN)
|
|
#define DUK_HEAP_STRING_LC_DEBUG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_DEBUG)
|
|
#define DUK_HTHREAD_STRING_LC_DEBUG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_DEBUG)
|
|
#define DUK_HEAP_STRING_LC_TRACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_TRACE)
|
|
#define DUK_HTHREAD_STRING_LC_TRACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_TRACE)
|
|
#define DUK_HEAP_STRING_RAW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RAW)
|
|
#define DUK_HTHREAD_STRING_RAW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RAW)
|
|
#define DUK_HEAP_STRING_FMT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FMT)
|
|
#define DUK_HTHREAD_STRING_FMT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FMT)
|
|
#define DUK_HEAP_STRING_CURRENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CURRENT)
|
|
#define DUK_HTHREAD_STRING_CURRENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CURRENT)
|
|
#define DUK_HEAP_STRING_RESUME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RESUME)
|
|
#define DUK_HTHREAD_STRING_RESUME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RESUME)
|
|
#define DUK_HEAP_STRING_COMPACT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMPACT)
|
|
#define DUK_HTHREAD_STRING_COMPACT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMPACT)
|
|
#define DUK_HEAP_STRING_JC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JC)
|
|
#define DUK_HTHREAD_STRING_JC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JC)
|
|
#define DUK_HEAP_STRING_JX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JX)
|
|
#define DUK_HTHREAD_STRING_JX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JX)
|
|
#define DUK_HEAP_STRING_BASE64(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BASE64)
|
|
#define DUK_HTHREAD_STRING_BASE64(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BASE64)
|
|
#define DUK_HEAP_STRING_HEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HEX)
|
|
#define DUK_HTHREAD_STRING_HEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HEX)
|
|
#define DUK_HEAP_STRING_DEC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEC)
|
|
#define DUK_HTHREAD_STRING_DEC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEC)
|
|
#define DUK_HEAP_STRING_ENC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENC)
|
|
#define DUK_HTHREAD_STRING_ENC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENC)
|
|
#define DUK_HEAP_STRING_FIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FIN)
|
|
#define DUK_HTHREAD_STRING_FIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FIN)
|
|
#define DUK_HEAP_STRING_GC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GC)
|
|
#define DUK_HTHREAD_STRING_GC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GC)
|
|
#define DUK_HEAP_STRING_ACT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ACT)
|
|
#define DUK_HTHREAD_STRING_ACT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ACT)
|
|
#define DUK_HEAP_STRING_LC_INFO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_INFO)
|
|
#define DUK_HTHREAD_STRING_LC_INFO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_INFO)
|
|
#define DUK_HEAP_STRING_VERSION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VERSION)
|
|
#define DUK_HTHREAD_STRING_VERSION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VERSION)
|
|
#define DUK_HEAP_STRING_ENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENV)
|
|
#define DUK_HTHREAD_STRING_ENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENV)
|
|
#define DUK_HEAP_STRING_MOD_LOADED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MOD_LOADED)
|
|
#define DUK_HTHREAD_STRING_MOD_LOADED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MOD_LOADED)
|
|
#define DUK_HEAP_STRING_MOD_SEARCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MOD_SEARCH)
|
|
#define DUK_HTHREAD_STRING_MOD_SEARCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MOD_SEARCH)
|
|
#define DUK_HEAP_STRING_ERR_THROW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ERR_THROW)
|
|
#define DUK_HTHREAD_STRING_ERR_THROW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ERR_THROW)
|
|
#define DUK_HEAP_STRING_ERR_CREATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ERR_CREATE)
|
|
#define DUK_HTHREAD_STRING_ERR_CREATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ERR_CREATE)
|
|
#define DUK_HEAP_STRING_COMPILE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMPILE)
|
|
#define DUK_HTHREAD_STRING_COMPILE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMPILE)
|
|
#define DUK_HEAP_STRING_INT_REGBASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_REGBASE)
|
|
#define DUK_HTHREAD_STRING_INT_REGBASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_REGBASE)
|
|
#define DUK_HEAP_STRING_INT_THREAD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_THREAD)
|
|
#define DUK_HTHREAD_STRING_INT_THREAD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_THREAD)
|
|
#define DUK_HEAP_STRING_INT_HANDLER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_HANDLER)
|
|
#define DUK_HTHREAD_STRING_INT_HANDLER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_HANDLER)
|
|
#define DUK_HEAP_STRING_INT_FINALIZER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_FINALIZER)
|
|
#define DUK_HTHREAD_STRING_INT_FINALIZER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_FINALIZER)
|
|
#define DUK_HEAP_STRING_INT_CALLEE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_CALLEE)
|
|
#define DUK_HTHREAD_STRING_INT_CALLEE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_CALLEE)
|
|
#define DUK_HEAP_STRING_INT_MAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_MAP)
|
|
#define DUK_HTHREAD_STRING_INT_MAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_MAP)
|
|
#define DUK_HEAP_STRING_INT_ARGS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_ARGS)
|
|
#define DUK_HTHREAD_STRING_INT_ARGS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_ARGS)
|
|
#define DUK_HEAP_STRING_INT_THIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_THIS)
|
|
#define DUK_HTHREAD_STRING_INT_THIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_THIS)
|
|
#define DUK_HEAP_STRING_INT_PC2LINE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_PC2LINE)
|
|
#define DUK_HTHREAD_STRING_INT_PC2LINE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_PC2LINE)
|
|
#define DUK_HEAP_STRING_INT_SOURCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_SOURCE)
|
|
#define DUK_HTHREAD_STRING_INT_SOURCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_SOURCE)
|
|
#define DUK_HEAP_STRING_INT_VARENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VARENV)
|
|
#define DUK_HTHREAD_STRING_INT_VARENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VARENV)
|
|
#define DUK_HEAP_STRING_INT_LEXENV(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_LEXENV)
|
|
#define DUK_HTHREAD_STRING_INT_LEXENV(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_LEXENV)
|
|
#define DUK_HEAP_STRING_INT_VARMAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VARMAP)
|
|
#define DUK_HTHREAD_STRING_INT_VARMAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VARMAP)
|
|
#define DUK_HEAP_STRING_INT_FORMALS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_FORMALS)
|
|
#define DUK_HTHREAD_STRING_INT_FORMALS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_FORMALS)
|
|
#define DUK_HEAP_STRING_INT_BYTECODE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_BYTECODE)
|
|
#define DUK_HTHREAD_STRING_INT_BYTECODE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_BYTECODE)
|
|
#define DUK_HEAP_STRING_INT_NEXT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_NEXT)
|
|
#define DUK_HTHREAD_STRING_INT_NEXT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_NEXT)
|
|
#define DUK_HEAP_STRING_INT_TARGET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_TARGET)
|
|
#define DUK_HTHREAD_STRING_INT_TARGET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_TARGET)
|
|
#define DUK_HEAP_STRING_INT_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_VALUE)
|
|
#define DUK_HTHREAD_STRING_INT_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_VALUE)
|
|
#define DUK_HEAP_STRING_LC_POINTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_POINTER)
|
|
#define DUK_HTHREAD_STRING_LC_POINTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_POINTER)
|
|
#define DUK_HEAP_STRING_LC_BUFFER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_BUFFER)
|
|
#define DUK_HTHREAD_STRING_LC_BUFFER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_BUFFER)
|
|
#define DUK_HEAP_STRING_INT_TRACEDATA(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INT_TRACEDATA)
|
|
#define DUK_HTHREAD_STRING_INT_TRACEDATA(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INT_TRACEDATA)
|
|
#define DUK_HEAP_STRING_LINE_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LINE_NUMBER)
|
|
#define DUK_HTHREAD_STRING_LINE_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LINE_NUMBER)
|
|
#define DUK_HEAP_STRING_FILE_NAME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FILE_NAME)
|
|
#define DUK_HTHREAD_STRING_FILE_NAME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FILE_NAME)
|
|
#define DUK_HEAP_STRING_PC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PC)
|
|
#define DUK_HTHREAD_STRING_PC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PC)
|
|
#define DUK_HEAP_STRING_STACK(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STACK)
|
|
#define DUK_HTHREAD_STRING_STACK(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STACK)
|
|
#define DUK_HEAP_STRING_THROW_TYPE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THROW_TYPE_ERROR)
|
|
#define DUK_HTHREAD_STRING_THROW_TYPE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THROW_TYPE_ERROR)
|
|
#define DUK_HEAP_STRING_DUKTAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DUKTAPE)
|
|
#define DUK_HTHREAD_STRING_DUKTAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DUKTAPE)
|
|
#define DUK_HEAP_STRING_ID(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ID)
|
|
#define DUK_HTHREAD_STRING_ID(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ID)
|
|
#define DUK_HEAP_STRING_REQUIRE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REQUIRE)
|
|
#define DUK_HTHREAD_STRING_REQUIRE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REQUIRE)
|
|
#define DUK_HEAP_STRING___PROTO__(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX___PROTO__)
|
|
#define DUK_HTHREAD_STRING___PROTO__(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX___PROTO__)
|
|
#define DUK_HEAP_STRING_SET_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_SET_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_OWN_KEYS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_OWN_KEYS)
|
|
#define DUK_HTHREAD_STRING_OWN_KEYS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_OWN_KEYS)
|
|
#define DUK_HEAP_STRING_ENUMERATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUMERATE)
|
|
#define DUK_HTHREAD_STRING_ENUMERATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUMERATE)
|
|
#define DUK_HEAP_STRING_DELETE_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DELETE_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_DELETE_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DELETE_PROPERTY)
|
|
#define DUK_HEAP_STRING_HAS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HAS)
|
|
#define DUK_HTHREAD_STRING_HAS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HAS)
|
|
#define DUK_HEAP_STRING_PROXY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROXY)
|
|
#define DUK_HTHREAD_STRING_PROXY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROXY)
|
|
#define DUK_HEAP_STRING_CALLEE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALLEE)
|
|
#define DUK_HTHREAD_STRING_CALLEE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALLEE)
|
|
#define DUK_HEAP_STRING_INVALID_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INVALID_DATE)
|
|
#define DUK_HTHREAD_STRING_INVALID_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INVALID_DATE)
|
|
#define DUK_HEAP_STRING_BRACKETED_ELLIPSIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BRACKETED_ELLIPSIS)
|
|
#define DUK_HTHREAD_STRING_BRACKETED_ELLIPSIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BRACKETED_ELLIPSIS)
|
|
#define DUK_HEAP_STRING_NEWLINE_TAB(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEWLINE_TAB)
|
|
#define DUK_HTHREAD_STRING_NEWLINE_TAB(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEWLINE_TAB)
|
|
#define DUK_HEAP_STRING_SPACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPACE)
|
|
#define DUK_HTHREAD_STRING_SPACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPACE)
|
|
#define DUK_HEAP_STRING_COMMA(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COMMA)
|
|
#define DUK_HTHREAD_STRING_COMMA(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COMMA)
|
|
#define DUK_HEAP_STRING_MINUS_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MINUS_ZERO)
|
|
#define DUK_HTHREAD_STRING_MINUS_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MINUS_ZERO)
|
|
#define DUK_HEAP_STRING_PLUS_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PLUS_ZERO)
|
|
#define DUK_HTHREAD_STRING_PLUS_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PLUS_ZERO)
|
|
#define DUK_HEAP_STRING_ZERO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ZERO)
|
|
#define DUK_HTHREAD_STRING_ZERO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ZERO)
|
|
#define DUK_HEAP_STRING_MINUS_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MINUS_INFINITY)
|
|
#define DUK_HTHREAD_STRING_MINUS_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MINUS_INFINITY)
|
|
#define DUK_HEAP_STRING_PLUS_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PLUS_INFINITY)
|
|
#define DUK_HTHREAD_STRING_PLUS_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PLUS_INFINITY)
|
|
#define DUK_HEAP_STRING_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INFINITY)
|
|
#define DUK_HTHREAD_STRING_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INFINITY)
|
|
#define DUK_HEAP_STRING_LC_OBJECT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_OBJECT)
|
|
#define DUK_HTHREAD_STRING_LC_OBJECT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_OBJECT)
|
|
#define DUK_HEAP_STRING_LC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_STRING)
|
|
#define DUK_HTHREAD_STRING_LC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_STRING)
|
|
#define DUK_HEAP_STRING_LC_NUMBER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_NUMBER)
|
|
#define DUK_HTHREAD_STRING_LC_NUMBER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_NUMBER)
|
|
#define DUK_HEAP_STRING_LC_BOOLEAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_BOOLEAN)
|
|
#define DUK_HTHREAD_STRING_LC_BOOLEAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_BOOLEAN)
|
|
#define DUK_HEAP_STRING_LC_UNDEFINED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_UNDEFINED)
|
|
#define DUK_HTHREAD_STRING_LC_UNDEFINED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_UNDEFINED)
|
|
#define DUK_HEAP_STRING_STRINGIFY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STRINGIFY)
|
|
#define DUK_HTHREAD_STRING_STRINGIFY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STRINGIFY)
|
|
#define DUK_HEAP_STRING_TAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TAN)
|
|
#define DUK_HTHREAD_STRING_TAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TAN)
|
|
#define DUK_HEAP_STRING_SQRT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT)
|
|
#define DUK_HTHREAD_STRING_SQRT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT)
|
|
#define DUK_HEAP_STRING_SIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SIN)
|
|
#define DUK_HTHREAD_STRING_SIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SIN)
|
|
#define DUK_HEAP_STRING_ROUND(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ROUND)
|
|
#define DUK_HTHREAD_STRING_ROUND(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ROUND)
|
|
#define DUK_HEAP_STRING_RANDOM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RANDOM)
|
|
#define DUK_HTHREAD_STRING_RANDOM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RANDOM)
|
|
#define DUK_HEAP_STRING_POW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POW)
|
|
#define DUK_HTHREAD_STRING_POW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POW)
|
|
#define DUK_HEAP_STRING_MIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MIN)
|
|
#define DUK_HTHREAD_STRING_MIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MIN)
|
|
#define DUK_HEAP_STRING_MAX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAX)
|
|
#define DUK_HTHREAD_STRING_MAX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAX)
|
|
#define DUK_HEAP_STRING_LOG(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG)
|
|
#define DUK_HTHREAD_STRING_LOG(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG)
|
|
#define DUK_HEAP_STRING_FLOOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FLOOR)
|
|
#define DUK_HTHREAD_STRING_FLOOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FLOOR)
|
|
#define DUK_HEAP_STRING_EXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXP)
|
|
#define DUK_HTHREAD_STRING_EXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXP)
|
|
#define DUK_HEAP_STRING_COS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_COS)
|
|
#define DUK_HTHREAD_STRING_COS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_COS)
|
|
#define DUK_HEAP_STRING_CEIL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CEIL)
|
|
#define DUK_HTHREAD_STRING_CEIL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CEIL)
|
|
#define DUK_HEAP_STRING_ATAN2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ATAN2)
|
|
#define DUK_HTHREAD_STRING_ATAN2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ATAN2)
|
|
#define DUK_HEAP_STRING_ATAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ATAN)
|
|
#define DUK_HTHREAD_STRING_ATAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ATAN)
|
|
#define DUK_HEAP_STRING_ASIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ASIN)
|
|
#define DUK_HTHREAD_STRING_ASIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ASIN)
|
|
#define DUK_HEAP_STRING_ACOS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ACOS)
|
|
#define DUK_HTHREAD_STRING_ACOS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ACOS)
|
|
#define DUK_HEAP_STRING_ABS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ABS)
|
|
#define DUK_HTHREAD_STRING_ABS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ABS)
|
|
#define DUK_HEAP_STRING_SQRT2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT2)
|
|
#define DUK_HTHREAD_STRING_SQRT2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT2)
|
|
#define DUK_HEAP_STRING_SQRT1_2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SQRT1_2)
|
|
#define DUK_HTHREAD_STRING_SQRT1_2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SQRT1_2)
|
|
#define DUK_HEAP_STRING_PI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PI)
|
|
#define DUK_HTHREAD_STRING_PI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PI)
|
|
#define DUK_HEAP_STRING_LOG10E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG10E)
|
|
#define DUK_HTHREAD_STRING_LOG10E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG10E)
|
|
#define DUK_HEAP_STRING_LOG2E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOG2E)
|
|
#define DUK_HTHREAD_STRING_LOG2E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOG2E)
|
|
#define DUK_HEAP_STRING_LN2(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LN2)
|
|
#define DUK_HTHREAD_STRING_LN2(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LN2)
|
|
#define DUK_HEAP_STRING_LN10(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LN10)
|
|
#define DUK_HTHREAD_STRING_LN10(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LN10)
|
|
#define DUK_HEAP_STRING_E(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_E)
|
|
#define DUK_HTHREAD_STRING_E(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_E)
|
|
#define DUK_HEAP_STRING_MESSAGE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MESSAGE)
|
|
#define DUK_HTHREAD_STRING_MESSAGE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MESSAGE)
|
|
#define DUK_HEAP_STRING_NAME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NAME)
|
|
#define DUK_HTHREAD_STRING_NAME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NAME)
|
|
#define DUK_HEAP_STRING_INPUT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INPUT)
|
|
#define DUK_HTHREAD_STRING_INPUT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INPUT)
|
|
#define DUK_HEAP_STRING_INDEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INDEX)
|
|
#define DUK_HTHREAD_STRING_INDEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INDEX)
|
|
#define DUK_HEAP_STRING_ESCAPED_EMPTY_REGEXP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ESCAPED_EMPTY_REGEXP)
|
|
#define DUK_HTHREAD_STRING_ESCAPED_EMPTY_REGEXP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ESCAPED_EMPTY_REGEXP)
|
|
#define DUK_HEAP_STRING_LAST_INDEX(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LAST_INDEX)
|
|
#define DUK_HTHREAD_STRING_LAST_INDEX(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LAST_INDEX)
|
|
#define DUK_HEAP_STRING_MULTILINE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MULTILINE)
|
|
#define DUK_HTHREAD_STRING_MULTILINE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MULTILINE)
|
|
#define DUK_HEAP_STRING_IGNORE_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IGNORE_CASE)
|
|
#define DUK_HTHREAD_STRING_IGNORE_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IGNORE_CASE)
|
|
#define DUK_HEAP_STRING_SOURCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SOURCE)
|
|
#define DUK_HTHREAD_STRING_SOURCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SOURCE)
|
|
#define DUK_HEAP_STRING_TEST(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TEST)
|
|
#define DUK_HTHREAD_STRING_TEST(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TEST)
|
|
#define DUK_HEAP_STRING_EXEC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXEC)
|
|
#define DUK_HTHREAD_STRING_EXEC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXEC)
|
|
#define DUK_HEAP_STRING_TO_GMT_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_GMT_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_GMT_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_GMT_STRING)
|
|
#define DUK_HEAP_STRING_SET_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_YEAR)
|
|
#define DUK_HEAP_STRING_GET_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_YEAR)
|
|
#define DUK_HEAP_STRING_TO_JSON(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_JSON)
|
|
#define DUK_HTHREAD_STRING_TO_JSON(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_JSON)
|
|
#define DUK_HEAP_STRING_TO_ISO_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_ISO_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_ISO_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_ISO_STRING)
|
|
#define DUK_HEAP_STRING_TO_UTC_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_UTC_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_UTC_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_UTC_STRING)
|
|
#define DUK_HEAP_STRING_SET_UTC_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_SET_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_SET_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_SET_UTC_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MONTH)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MONTH)
|
|
#define DUK_HEAP_STRING_SET_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MONTH)
|
|
#define DUK_HTHREAD_STRING_SET_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MONTH)
|
|
#define DUK_HEAP_STRING_SET_UTC_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_DATE)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_DATE)
|
|
#define DUK_HEAP_STRING_SET_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_DATE)
|
|
#define DUK_HTHREAD_STRING_SET_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_DATE)
|
|
#define DUK_HEAP_STRING_SET_UTC_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_HOURS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_HOURS)
|
|
#define DUK_HEAP_STRING_SET_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_HOURS)
|
|
#define DUK_HTHREAD_STRING_SET_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_HOURS)
|
|
#define DUK_HEAP_STRING_SET_UTC_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MINUTES)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MINUTES)
|
|
#define DUK_HEAP_STRING_SET_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MINUTES)
|
|
#define DUK_HTHREAD_STRING_SET_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MINUTES)
|
|
#define DUK_HEAP_STRING_SET_UTC_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_SECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_SECONDS)
|
|
#define DUK_HEAP_STRING_SET_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_SECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_SECONDS)
|
|
#define DUK_HEAP_STRING_SET_UTC_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_UTC_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_UTC_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_UTC_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_SET_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_SET_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_SET_TIME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET_TIME)
|
|
#define DUK_HTHREAD_STRING_SET_TIME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET_TIME)
|
|
#define DUK_HEAP_STRING_GET_TIMEZONE_OFFSET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_TIMEZONE_OFFSET)
|
|
#define DUK_HTHREAD_STRING_GET_TIMEZONE_OFFSET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_TIMEZONE_OFFSET)
|
|
#define DUK_HEAP_STRING_GET_UTC_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_GET_MILLISECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MILLISECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_MILLISECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MILLISECONDS)
|
|
#define DUK_HEAP_STRING_GET_UTC_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_SECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_SECONDS)
|
|
#define DUK_HEAP_STRING_GET_SECONDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_SECONDS)
|
|
#define DUK_HTHREAD_STRING_GET_SECONDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_SECONDS)
|
|
#define DUK_HEAP_STRING_GET_UTC_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MINUTES)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MINUTES)
|
|
#define DUK_HEAP_STRING_GET_MINUTES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MINUTES)
|
|
#define DUK_HTHREAD_STRING_GET_MINUTES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MINUTES)
|
|
#define DUK_HEAP_STRING_GET_UTC_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_HOURS)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_HOURS)
|
|
#define DUK_HEAP_STRING_GET_HOURS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_HOURS)
|
|
#define DUK_HTHREAD_STRING_GET_HOURS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_HOURS)
|
|
#define DUK_HEAP_STRING_GET_UTC_DAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_DAY)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_DAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_DAY)
|
|
#define DUK_HEAP_STRING_GET_DAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_DAY)
|
|
#define DUK_HTHREAD_STRING_GET_DAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_DAY)
|
|
#define DUK_HEAP_STRING_GET_UTC_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_DATE)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_DATE)
|
|
#define DUK_HEAP_STRING_GET_DATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_DATE)
|
|
#define DUK_HTHREAD_STRING_GET_DATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_DATE)
|
|
#define DUK_HEAP_STRING_GET_UTC_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_MONTH)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_MONTH)
|
|
#define DUK_HEAP_STRING_GET_MONTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_MONTH)
|
|
#define DUK_HTHREAD_STRING_GET_MONTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_MONTH)
|
|
#define DUK_HEAP_STRING_GET_UTC_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_UTC_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_UTC_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_UTC_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_GET_FULL_YEAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_FULL_YEAR)
|
|
#define DUK_HTHREAD_STRING_GET_FULL_YEAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_FULL_YEAR)
|
|
#define DUK_HEAP_STRING_GET_TIME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_TIME)
|
|
#define DUK_HTHREAD_STRING_GET_TIME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_TIME)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_TIME_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_TIME_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_TIME_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_TIME_STRING)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_DATE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_DATE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_DATE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_DATE_STRING)
|
|
#define DUK_HEAP_STRING_TO_TIME_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_TIME_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_TIME_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_TIME_STRING)
|
|
#define DUK_HEAP_STRING_TO_DATE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_DATE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_DATE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_DATE_STRING)
|
|
#define DUK_HEAP_STRING_NOW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NOW)
|
|
#define DUK_HTHREAD_STRING_NOW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NOW)
|
|
#define DUK_HEAP_STRING_UTC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UTC)
|
|
#define DUK_HTHREAD_STRING_UTC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UTC)
|
|
#define DUK_HEAP_STRING_PARSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE)
|
|
#define DUK_HTHREAD_STRING_PARSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE)
|
|
#define DUK_HEAP_STRING_TO_PRECISION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_PRECISION)
|
|
#define DUK_HTHREAD_STRING_TO_PRECISION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_PRECISION)
|
|
#define DUK_HEAP_STRING_TO_EXPONENTIAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_EXPONENTIAL)
|
|
#define DUK_HTHREAD_STRING_TO_EXPONENTIAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_EXPONENTIAL)
|
|
#define DUK_HEAP_STRING_TO_FIXED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_FIXED)
|
|
#define DUK_HTHREAD_STRING_TO_FIXED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_FIXED)
|
|
#define DUK_HEAP_STRING_POSITIVE_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POSITIVE_INFINITY)
|
|
#define DUK_HTHREAD_STRING_POSITIVE_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POSITIVE_INFINITY)
|
|
#define DUK_HEAP_STRING_NEGATIVE_INFINITY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEGATIVE_INFINITY)
|
|
#define DUK_HTHREAD_STRING_NEGATIVE_INFINITY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEGATIVE_INFINITY)
|
|
#define DUK_HEAP_STRING_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NAN)
|
|
#define DUK_HTHREAD_STRING_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NAN)
|
|
#define DUK_HEAP_STRING_MIN_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MIN_VALUE)
|
|
#define DUK_HTHREAD_STRING_MIN_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MIN_VALUE)
|
|
#define DUK_HEAP_STRING_MAX_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAX_VALUE)
|
|
#define DUK_HTHREAD_STRING_MAX_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAX_VALUE)
|
|
#define DUK_HEAP_STRING_SUBSTR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUBSTR)
|
|
#define DUK_HTHREAD_STRING_SUBSTR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUBSTR)
|
|
#define DUK_HEAP_STRING_TRIM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRIM)
|
|
#define DUK_HTHREAD_STRING_TRIM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRIM)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_UPPER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_UPPER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_UPPER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_UPPER_CASE)
|
|
#define DUK_HEAP_STRING_TO_UPPER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_UPPER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_UPPER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_UPPER_CASE)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_LOWER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_LOWER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_LOWER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_LOWER_CASE)
|
|
#define DUK_HEAP_STRING_TO_LOWER_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOWER_CASE)
|
|
#define DUK_HTHREAD_STRING_TO_LOWER_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOWER_CASE)
|
|
#define DUK_HEAP_STRING_SUBSTRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUBSTRING)
|
|
#define DUK_HTHREAD_STRING_SUBSTRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUBSTRING)
|
|
#define DUK_HEAP_STRING_SPLIT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPLIT)
|
|
#define DUK_HTHREAD_STRING_SPLIT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPLIT)
|
|
#define DUK_HEAP_STRING_SEARCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SEARCH)
|
|
#define DUK_HTHREAD_STRING_SEARCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SEARCH)
|
|
#define DUK_HEAP_STRING_REPLACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REPLACE)
|
|
#define DUK_HTHREAD_STRING_REPLACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REPLACE)
|
|
#define DUK_HEAP_STRING_MATCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MATCH)
|
|
#define DUK_HTHREAD_STRING_MATCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MATCH)
|
|
#define DUK_HEAP_STRING_LOCALE_COMPARE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LOCALE_COMPARE)
|
|
#define DUK_HTHREAD_STRING_LOCALE_COMPARE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LOCALE_COMPARE)
|
|
#define DUK_HEAP_STRING_CHAR_CODE_AT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CHAR_CODE_AT)
|
|
#define DUK_HTHREAD_STRING_CHAR_CODE_AT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CHAR_CODE_AT)
|
|
#define DUK_HEAP_STRING_CHAR_AT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CHAR_AT)
|
|
#define DUK_HTHREAD_STRING_CHAR_AT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CHAR_AT)
|
|
#define DUK_HEAP_STRING_FROM_CHAR_CODE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FROM_CHAR_CODE)
|
|
#define DUK_HTHREAD_STRING_FROM_CHAR_CODE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FROM_CHAR_CODE)
|
|
#define DUK_HEAP_STRING_REDUCE_RIGHT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REDUCE_RIGHT)
|
|
#define DUK_HTHREAD_STRING_REDUCE_RIGHT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REDUCE_RIGHT)
|
|
#define DUK_HEAP_STRING_REDUCE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REDUCE)
|
|
#define DUK_HTHREAD_STRING_REDUCE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REDUCE)
|
|
#define DUK_HEAP_STRING_FILTER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FILTER)
|
|
#define DUK_HTHREAD_STRING_FILTER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FILTER)
|
|
#define DUK_HEAP_STRING_MAP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_MAP)
|
|
#define DUK_HTHREAD_STRING_MAP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_MAP)
|
|
#define DUK_HEAP_STRING_FOR_EACH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FOR_EACH)
|
|
#define DUK_HTHREAD_STRING_FOR_EACH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FOR_EACH)
|
|
#define DUK_HEAP_STRING_SOME(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SOME)
|
|
#define DUK_HTHREAD_STRING_SOME(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SOME)
|
|
#define DUK_HEAP_STRING_EVERY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVERY)
|
|
#define DUK_HTHREAD_STRING_EVERY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVERY)
|
|
#define DUK_HEAP_STRING_LAST_INDEX_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LAST_INDEX_OF)
|
|
#define DUK_HTHREAD_STRING_LAST_INDEX_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LAST_INDEX_OF)
|
|
#define DUK_HEAP_STRING_INDEX_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INDEX_OF)
|
|
#define DUK_HTHREAD_STRING_INDEX_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INDEX_OF)
|
|
#define DUK_HEAP_STRING_UNSHIFT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UNSHIFT)
|
|
#define DUK_HTHREAD_STRING_UNSHIFT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UNSHIFT)
|
|
#define DUK_HEAP_STRING_SPLICE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SPLICE)
|
|
#define DUK_HTHREAD_STRING_SPLICE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SPLICE)
|
|
#define DUK_HEAP_STRING_SORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SORT)
|
|
#define DUK_HTHREAD_STRING_SORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SORT)
|
|
#define DUK_HEAP_STRING_SLICE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SLICE)
|
|
#define DUK_HTHREAD_STRING_SLICE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SLICE)
|
|
#define DUK_HEAP_STRING_SHIFT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SHIFT)
|
|
#define DUK_HTHREAD_STRING_SHIFT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SHIFT)
|
|
#define DUK_HEAP_STRING_REVERSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REVERSE)
|
|
#define DUK_HTHREAD_STRING_REVERSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REVERSE)
|
|
#define DUK_HEAP_STRING_PUSH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PUSH)
|
|
#define DUK_HTHREAD_STRING_PUSH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PUSH)
|
|
#define DUK_HEAP_STRING_POP(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_POP)
|
|
#define DUK_HTHREAD_STRING_POP(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_POP)
|
|
#define DUK_HEAP_STRING_JOIN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_JOIN)
|
|
#define DUK_HTHREAD_STRING_JOIN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_JOIN)
|
|
#define DUK_HEAP_STRING_CONCAT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONCAT)
|
|
#define DUK_HTHREAD_STRING_CONCAT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONCAT)
|
|
#define DUK_HEAP_STRING_IS_ARRAY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_ARRAY)
|
|
#define DUK_HTHREAD_STRING_IS_ARRAY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_ARRAY)
|
|
#define DUK_HEAP_STRING_LC_ARGUMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_ARGUMENTS)
|
|
#define DUK_HTHREAD_STRING_LC_ARGUMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_ARGUMENTS)
|
|
#define DUK_HEAP_STRING_CALLER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALLER)
|
|
#define DUK_HTHREAD_STRING_CALLER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALLER)
|
|
#define DUK_HEAP_STRING_BIND(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BIND)
|
|
#define DUK_HTHREAD_STRING_BIND(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BIND)
|
|
#define DUK_HEAP_STRING_CALL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CALL)
|
|
#define DUK_HTHREAD_STRING_CALL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CALL)
|
|
#define DUK_HEAP_STRING_APPLY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_APPLY)
|
|
#define DUK_HTHREAD_STRING_APPLY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_APPLY)
|
|
#define DUK_HEAP_STRING_PROPERTY_IS_ENUMERABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROPERTY_IS_ENUMERABLE)
|
|
#define DUK_HTHREAD_STRING_PROPERTY_IS_ENUMERABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROPERTY_IS_ENUMERABLE)
|
|
#define DUK_HEAP_STRING_IS_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_IS_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_HAS_OWN_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_HAS_OWN_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_HAS_OWN_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_HAS_OWN_PROPERTY)
|
|
#define DUK_HEAP_STRING_VALUE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VALUE_OF)
|
|
#define DUK_HTHREAD_STRING_VALUE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VALUE_OF)
|
|
#define DUK_HEAP_STRING_TO_LOCALE_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_LOCALE_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_LOCALE_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_LOCALE_STRING)
|
|
#define DUK_HEAP_STRING_TO_STRING(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TO_STRING)
|
|
#define DUK_HTHREAD_STRING_TO_STRING(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TO_STRING)
|
|
#define DUK_HEAP_STRING_CONSTRUCTOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONSTRUCTOR)
|
|
#define DUK_HTHREAD_STRING_CONSTRUCTOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONSTRUCTOR)
|
|
#define DUK_HEAP_STRING_SET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SET)
|
|
#define DUK_HTHREAD_STRING_SET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SET)
|
|
#define DUK_HEAP_STRING_GET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET)
|
|
#define DUK_HTHREAD_STRING_GET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET)
|
|
#define DUK_HEAP_STRING_ENUMERABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUMERABLE)
|
|
#define DUK_HTHREAD_STRING_ENUMERABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUMERABLE)
|
|
#define DUK_HEAP_STRING_CONFIGURABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONFIGURABLE)
|
|
#define DUK_HTHREAD_STRING_CONFIGURABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONFIGURABLE)
|
|
#define DUK_HEAP_STRING_WRITABLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WRITABLE)
|
|
#define DUK_HTHREAD_STRING_WRITABLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WRITABLE)
|
|
#define DUK_HEAP_STRING_VALUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VALUE)
|
|
#define DUK_HTHREAD_STRING_VALUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VALUE)
|
|
#define DUK_HEAP_STRING_KEYS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_KEYS)
|
|
#define DUK_HTHREAD_STRING_KEYS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_KEYS)
|
|
#define DUK_HEAP_STRING_IS_EXTENSIBLE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_EXTENSIBLE)
|
|
#define DUK_HTHREAD_STRING_IS_EXTENSIBLE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_EXTENSIBLE)
|
|
#define DUK_HEAP_STRING_IS_FROZEN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_FROZEN)
|
|
#define DUK_HTHREAD_STRING_IS_FROZEN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_FROZEN)
|
|
#define DUK_HEAP_STRING_IS_SEALED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_SEALED)
|
|
#define DUK_HTHREAD_STRING_IS_SEALED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_SEALED)
|
|
#define DUK_HEAP_STRING_PREVENT_EXTENSIONS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PREVENT_EXTENSIONS)
|
|
#define DUK_HTHREAD_STRING_PREVENT_EXTENSIONS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PREVENT_EXTENSIONS)
|
|
#define DUK_HEAP_STRING_FREEZE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FREEZE)
|
|
#define DUK_HTHREAD_STRING_FREEZE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FREEZE)
|
|
#define DUK_HEAP_STRING_SEAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SEAL)
|
|
#define DUK_HTHREAD_STRING_SEAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SEAL)
|
|
#define DUK_HEAP_STRING_DEFINE_PROPERTIES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFINE_PROPERTIES)
|
|
#define DUK_HTHREAD_STRING_DEFINE_PROPERTIES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFINE_PROPERTIES)
|
|
#define DUK_HEAP_STRING_DEFINE_PROPERTY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFINE_PROPERTY)
|
|
#define DUK_HTHREAD_STRING_DEFINE_PROPERTY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFINE_PROPERTY)
|
|
#define DUK_HEAP_STRING_CREATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CREATE)
|
|
#define DUK_HTHREAD_STRING_CREATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CREATE)
|
|
#define DUK_HEAP_STRING_GET_OWN_PROPERTY_NAMES(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_OWN_PROPERTY_NAMES)
|
|
#define DUK_HTHREAD_STRING_GET_OWN_PROPERTY_NAMES(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_OWN_PROPERTY_NAMES)
|
|
#define DUK_HEAP_STRING_GET_OWN_PROPERTY_DESCRIPTOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR)
|
|
#define DUK_HTHREAD_STRING_GET_OWN_PROPERTY_DESCRIPTOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_OWN_PROPERTY_DESCRIPTOR)
|
|
#define DUK_HEAP_STRING_GET_PROTOTYPE_OF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_GET_PROTOTYPE_OF)
|
|
#define DUK_HTHREAD_STRING_GET_PROTOTYPE_OF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_GET_PROTOTYPE_OF)
|
|
#define DUK_HEAP_STRING_PROTOTYPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROTOTYPE)
|
|
#define DUK_HTHREAD_STRING_PROTOTYPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROTOTYPE)
|
|
#define DUK_HEAP_STRING_LENGTH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LENGTH)
|
|
#define DUK_HTHREAD_STRING_LENGTH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LENGTH)
|
|
#define DUK_HEAP_STRING_ALERT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ALERT)
|
|
#define DUK_HTHREAD_STRING_ALERT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ALERT)
|
|
#define DUK_HEAP_STRING_PRINT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PRINT)
|
|
#define DUK_HTHREAD_STRING_PRINT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PRINT)
|
|
#define DUK_HEAP_STRING_UNESCAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_UNESCAPE)
|
|
#define DUK_HTHREAD_STRING_UNESCAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_UNESCAPE)
|
|
#define DUK_HEAP_STRING_ESCAPE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ESCAPE)
|
|
#define DUK_HTHREAD_STRING_ESCAPE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ESCAPE)
|
|
#define DUK_HEAP_STRING_ENCODE_URI_COMPONENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENCODE_URI_COMPONENT)
|
|
#define DUK_HTHREAD_STRING_ENCODE_URI_COMPONENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENCODE_URI_COMPONENT)
|
|
#define DUK_HEAP_STRING_ENCODE_URI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENCODE_URI)
|
|
#define DUK_HTHREAD_STRING_ENCODE_URI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENCODE_URI)
|
|
#define DUK_HEAP_STRING_DECODE_URI_COMPONENT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DECODE_URI_COMPONENT)
|
|
#define DUK_HTHREAD_STRING_DECODE_URI_COMPONENT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DECODE_URI_COMPONENT)
|
|
#define DUK_HEAP_STRING_DECODE_URI(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DECODE_URI)
|
|
#define DUK_HTHREAD_STRING_DECODE_URI(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DECODE_URI)
|
|
#define DUK_HEAP_STRING_IS_FINITE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_FINITE)
|
|
#define DUK_HTHREAD_STRING_IS_FINITE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_FINITE)
|
|
#define DUK_HEAP_STRING_IS_NAN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IS_NAN)
|
|
#define DUK_HTHREAD_STRING_IS_NAN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IS_NAN)
|
|
#define DUK_HEAP_STRING_PARSE_FLOAT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE_FLOAT)
|
|
#define DUK_HTHREAD_STRING_PARSE_FLOAT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE_FLOAT)
|
|
#define DUK_HEAP_STRING_PARSE_INT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PARSE_INT)
|
|
#define DUK_HTHREAD_STRING_PARSE_INT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PARSE_INT)
|
|
#define DUK_HEAP_STRING_EVAL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVAL)
|
|
#define DUK_HTHREAD_STRING_EVAL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVAL)
|
|
#define DUK_HEAP_STRING_URI_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_URI_ERROR)
|
|
#define DUK_HTHREAD_STRING_URI_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_URI_ERROR)
|
|
#define DUK_HEAP_STRING_TYPE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TYPE_ERROR)
|
|
#define DUK_HTHREAD_STRING_TYPE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TYPE_ERROR)
|
|
#define DUK_HEAP_STRING_SYNTAX_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SYNTAX_ERROR)
|
|
#define DUK_HTHREAD_STRING_SYNTAX_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SYNTAX_ERROR)
|
|
#define DUK_HEAP_STRING_REFERENCE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_REFERENCE_ERROR)
|
|
#define DUK_HTHREAD_STRING_REFERENCE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_REFERENCE_ERROR)
|
|
#define DUK_HEAP_STRING_RANGE_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RANGE_ERROR)
|
|
#define DUK_HTHREAD_STRING_RANGE_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RANGE_ERROR)
|
|
#define DUK_HEAP_STRING_EVAL_ERROR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EVAL_ERROR)
|
|
#define DUK_HTHREAD_STRING_EVAL_ERROR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EVAL_ERROR)
|
|
#define DUK_HEAP_STRING_BREAK(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_BREAK)
|
|
#define DUK_HTHREAD_STRING_BREAK(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_BREAK)
|
|
#define DUK_HEAP_STRING_CASE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CASE)
|
|
#define DUK_HTHREAD_STRING_CASE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CASE)
|
|
#define DUK_HEAP_STRING_CATCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CATCH)
|
|
#define DUK_HTHREAD_STRING_CATCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CATCH)
|
|
#define DUK_HEAP_STRING_CONTINUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONTINUE)
|
|
#define DUK_HTHREAD_STRING_CONTINUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONTINUE)
|
|
#define DUK_HEAP_STRING_DEBUGGER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEBUGGER)
|
|
#define DUK_HTHREAD_STRING_DEBUGGER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEBUGGER)
|
|
#define DUK_HEAP_STRING_DEFAULT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DEFAULT)
|
|
#define DUK_HTHREAD_STRING_DEFAULT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DEFAULT)
|
|
#define DUK_HEAP_STRING_DELETE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DELETE)
|
|
#define DUK_HTHREAD_STRING_DELETE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DELETE)
|
|
#define DUK_HEAP_STRING_DO(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_DO)
|
|
#define DUK_HTHREAD_STRING_DO(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_DO)
|
|
#define DUK_HEAP_STRING_ELSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ELSE)
|
|
#define DUK_HTHREAD_STRING_ELSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ELSE)
|
|
#define DUK_HEAP_STRING_FINALLY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FINALLY)
|
|
#define DUK_HTHREAD_STRING_FINALLY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FINALLY)
|
|
#define DUK_HEAP_STRING_FOR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FOR)
|
|
#define DUK_HTHREAD_STRING_FOR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FOR)
|
|
#define DUK_HEAP_STRING_LC_FUNCTION(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_FUNCTION)
|
|
#define DUK_HTHREAD_STRING_LC_FUNCTION(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_FUNCTION)
|
|
#define DUK_HEAP_STRING_IF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IF)
|
|
#define DUK_HTHREAD_STRING_IF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IF)
|
|
#define DUK_HEAP_STRING_IN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IN)
|
|
#define DUK_HTHREAD_STRING_IN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IN)
|
|
#define DUK_HEAP_STRING_INSTANCEOF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INSTANCEOF)
|
|
#define DUK_HTHREAD_STRING_INSTANCEOF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INSTANCEOF)
|
|
#define DUK_HEAP_STRING_NEW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_NEW)
|
|
#define DUK_HTHREAD_STRING_NEW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_NEW)
|
|
#define DUK_HEAP_STRING_RETURN(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_RETURN)
|
|
#define DUK_HTHREAD_STRING_RETURN(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_RETURN)
|
|
#define DUK_HEAP_STRING_SWITCH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SWITCH)
|
|
#define DUK_HTHREAD_STRING_SWITCH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SWITCH)
|
|
#define DUK_HEAP_STRING_THIS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THIS)
|
|
#define DUK_HTHREAD_STRING_THIS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THIS)
|
|
#define DUK_HEAP_STRING_THROW(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_THROW)
|
|
#define DUK_HTHREAD_STRING_THROW(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_THROW)
|
|
#define DUK_HEAP_STRING_TRY(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRY)
|
|
#define DUK_HTHREAD_STRING_TRY(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRY)
|
|
#define DUK_HEAP_STRING_TYPEOF(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TYPEOF)
|
|
#define DUK_HTHREAD_STRING_TYPEOF(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TYPEOF)
|
|
#define DUK_HEAP_STRING_VAR(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VAR)
|
|
#define DUK_HTHREAD_STRING_VAR(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VAR)
|
|
#define DUK_HEAP_STRING_VOID(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_VOID)
|
|
#define DUK_HTHREAD_STRING_VOID(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_VOID)
|
|
#define DUK_HEAP_STRING_WHILE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WHILE)
|
|
#define DUK_HTHREAD_STRING_WHILE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WHILE)
|
|
#define DUK_HEAP_STRING_WITH(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_WITH)
|
|
#define DUK_HTHREAD_STRING_WITH(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_WITH)
|
|
#define DUK_HEAP_STRING_CLASS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CLASS)
|
|
#define DUK_HTHREAD_STRING_CLASS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CLASS)
|
|
#define DUK_HEAP_STRING_CONST(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_CONST)
|
|
#define DUK_HTHREAD_STRING_CONST(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_CONST)
|
|
#define DUK_HEAP_STRING_ENUM(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_ENUM)
|
|
#define DUK_HTHREAD_STRING_ENUM(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_ENUM)
|
|
#define DUK_HEAP_STRING_EXPORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXPORT)
|
|
#define DUK_HTHREAD_STRING_EXPORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXPORT)
|
|
#define DUK_HEAP_STRING_EXTENDS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_EXTENDS)
|
|
#define DUK_HTHREAD_STRING_EXTENDS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_EXTENDS)
|
|
#define DUK_HEAP_STRING_IMPORT(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IMPORT)
|
|
#define DUK_HTHREAD_STRING_IMPORT(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IMPORT)
|
|
#define DUK_HEAP_STRING_SUPER(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_SUPER)
|
|
#define DUK_HTHREAD_STRING_SUPER(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_SUPER)
|
|
#define DUK_HEAP_STRING_LC_NULL(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LC_NULL)
|
|
#define DUK_HTHREAD_STRING_LC_NULL(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LC_NULL)
|
|
#define DUK_HEAP_STRING_TRUE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_TRUE)
|
|
#define DUK_HTHREAD_STRING_TRUE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_TRUE)
|
|
#define DUK_HEAP_STRING_FALSE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_FALSE)
|
|
#define DUK_HTHREAD_STRING_FALSE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_FALSE)
|
|
#define DUK_HEAP_STRING_IMPLEMENTS(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_IMPLEMENTS)
|
|
#define DUK_HTHREAD_STRING_IMPLEMENTS(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_IMPLEMENTS)
|
|
#define DUK_HEAP_STRING_INTERFACE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_INTERFACE)
|
|
#define DUK_HTHREAD_STRING_INTERFACE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_INTERFACE)
|
|
#define DUK_HEAP_STRING_LET(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_LET)
|
|
#define DUK_HTHREAD_STRING_LET(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_LET)
|
|
#define DUK_HEAP_STRING_PACKAGE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PACKAGE)
|
|
#define DUK_HTHREAD_STRING_PACKAGE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PACKAGE)
|
|
#define DUK_HEAP_STRING_PRIVATE(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PRIVATE)
|
|
#define DUK_HTHREAD_STRING_PRIVATE(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PRIVATE)
|
|
#define DUK_HEAP_STRING_PROTECTED(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PROTECTED)
|
|
#define DUK_HTHREAD_STRING_PROTECTED(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PROTECTED)
|
|
#define DUK_HEAP_STRING_PUBLIC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_PUBLIC)
|
|
#define DUK_HTHREAD_STRING_PUBLIC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_PUBLIC)
|
|
#define DUK_HEAP_STRING_STATIC(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_STATIC)
|
|
#define DUK_HTHREAD_STRING_STATIC(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_STATIC)
|
|
#define DUK_HEAP_STRING_YIELD(heap) DUK_HEAP_GET_STRING((heap),DUK_STRIDX_YIELD)
|
|
#define DUK_HTHREAD_STRING_YIELD(thr) DUK_HTHREAD_GET_STRING((thr),DUK_STRIDX_YIELD)
|
|
|
|
#define DUK_HEAP_NUM_STRINGS 336
|
|
|
|
#define DUK_STRIDX_START_RESERVED 291
|
|
#define DUK_STRIDX_START_STRICT_RESERVED 327
|
|
#define DUK_STRIDX_END_RESERVED 336 /* exclusive endpoint */
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const duk_c_function duk_bi_native_functions[128];
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_builtins_data[1341];
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
DUK_INTERNAL_DECL const duk_uint8_t duk_initjs_data[187];
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_BUILTINS_DATA_LENGTH 1341
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
#define DUK_BUILTIN_INITJS_DATA_LENGTH 187
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
|
|
#define DUK_BIDX_GLOBAL 0
|
|
#define DUK_BIDX_GLOBAL_ENV 1
|
|
#define DUK_BIDX_OBJECT_CONSTRUCTOR 2
|
|
#define DUK_BIDX_OBJECT_PROTOTYPE 3
|
|
#define DUK_BIDX_FUNCTION_CONSTRUCTOR 4
|
|
#define DUK_BIDX_FUNCTION_PROTOTYPE 5
|
|
#define DUK_BIDX_ARRAY_CONSTRUCTOR 6
|
|
#define DUK_BIDX_ARRAY_PROTOTYPE 7
|
|
#define DUK_BIDX_STRING_CONSTRUCTOR 8
|
|
#define DUK_BIDX_STRING_PROTOTYPE 9
|
|
#define DUK_BIDX_BOOLEAN_CONSTRUCTOR 10
|
|
#define DUK_BIDX_BOOLEAN_PROTOTYPE 11
|
|
#define DUK_BIDX_NUMBER_CONSTRUCTOR 12
|
|
#define DUK_BIDX_NUMBER_PROTOTYPE 13
|
|
#define DUK_BIDX_DATE_CONSTRUCTOR 14
|
|
#define DUK_BIDX_DATE_PROTOTYPE 15
|
|
#define DUK_BIDX_REGEXP_CONSTRUCTOR 16
|
|
#define DUK_BIDX_REGEXP_PROTOTYPE 17
|
|
#define DUK_BIDX_ERROR_CONSTRUCTOR 18
|
|
#define DUK_BIDX_ERROR_PROTOTYPE 19
|
|
#define DUK_BIDX_EVAL_ERROR_CONSTRUCTOR 20
|
|
#define DUK_BIDX_EVAL_ERROR_PROTOTYPE 21
|
|
#define DUK_BIDX_RANGE_ERROR_CONSTRUCTOR 22
|
|
#define DUK_BIDX_RANGE_ERROR_PROTOTYPE 23
|
|
#define DUK_BIDX_REFERENCE_ERROR_CONSTRUCTOR 24
|
|
#define DUK_BIDX_REFERENCE_ERROR_PROTOTYPE 25
|
|
#define DUK_BIDX_SYNTAX_ERROR_CONSTRUCTOR 26
|
|
#define DUK_BIDX_SYNTAX_ERROR_PROTOTYPE 27
|
|
#define DUK_BIDX_TYPE_ERROR_CONSTRUCTOR 28
|
|
#define DUK_BIDX_TYPE_ERROR_PROTOTYPE 29
|
|
#define DUK_BIDX_URI_ERROR_CONSTRUCTOR 30
|
|
#define DUK_BIDX_URI_ERROR_PROTOTYPE 31
|
|
#define DUK_BIDX_MATH 32
|
|
#define DUK_BIDX_JSON 33
|
|
#define DUK_BIDX_TYPE_ERROR_THROWER 34
|
|
#define DUK_BIDX_PROXY_CONSTRUCTOR 35
|
|
#define DUK_BIDX_DUKTAPE 36
|
|
#define DUK_BIDX_THREAD_CONSTRUCTOR 37
|
|
#define DUK_BIDX_THREAD_PROTOTYPE 38
|
|
#define DUK_BIDX_BUFFER_CONSTRUCTOR 39
|
|
#define DUK_BIDX_BUFFER_PROTOTYPE 40
|
|
#define DUK_BIDX_POINTER_CONSTRUCTOR 41
|
|
#define DUK_BIDX_POINTER_PROTOTYPE 42
|
|
#define DUK_BIDX_LOGGER_CONSTRUCTOR 43
|
|
#define DUK_BIDX_LOGGER_PROTOTYPE 44
|
|
#define DUK_BIDX_DOUBLE_ERROR 45
|
|
|
|
#define DUK_NUM_BUILTINS 46
|
|
|
|
#else
|
|
#error invalid endianness defines
|
|
#endif
|
|
#endif /* DUK_BUILTINS_H_INCLUDED */
|
|
#line 50 "duk_internal.h"
|
|
|
|
#line 1 "duk_strings.h"
|
|
/*
|
|
* Shared error messages: declarations and macros
|
|
*
|
|
* Error messages are accessed through macros with fine-grained, explicit
|
|
* error message distinctions. Concrete error messages are selected by the
|
|
* macros and multiple macros can map to the same concrete string to save
|
|
* on code footprint. This allows flexible footprint/verbosity tuning with
|
|
* minimal code impact. There are a few limitations to this approach:
|
|
* (1) switching between plain messages and format strings doesn't work
|
|
* conveniently, and (2) conditional strings are a bit awkward to handle.
|
|
*
|
|
* Because format strings behave differently in the call site (they need to
|
|
* be followed by format arguments), they have a special prefix (DUK_STR_FMT_
|
|
* and duk_str_fmt_).
|
|
*
|
|
* On some compilers using explicit shared strings is preferable; on others
|
|
* it may be better to use straight literals because the compiler will combine
|
|
* them anyway, and such strings won't end up unnecessarily in a symbol table.
|
|
*/
|
|
|
|
#ifndef DUK_ERRMSG_H_INCLUDED
|
|
#define DUK_ERRMSG_H_INCLUDED
|
|
|
|
#define DUK_STR_INTERNAL_ERROR duk_str_internal_error
|
|
#define DUK_STR_INVALID_COUNT duk_str_invalid_count
|
|
#define DUK_STR_INVALID_CALL_ARGS duk_str_invalid_call_args
|
|
#define DUK_STR_NOT_CONSTRUCTABLE duk_str_not_constructable
|
|
#define DUK_STR_NOT_CALLABLE duk_str_not_callable
|
|
#define DUK_STR_NOT_EXTENSIBLE duk_str_not_extensible
|
|
#define DUK_STR_NOT_WRITABLE duk_str_not_writable
|
|
#define DUK_STR_NOT_CONFIGURABLE duk_str_not_configurable
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_internal_error;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_count;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_call_args;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_constructable;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_callable;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_extensible;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_writable;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_configurable;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_INVALID_CONTEXT duk_str_invalid_context
|
|
#define DUK_STR_INVALID_INDEX duk_str_invalid_index
|
|
#define DUK_STR_PUSH_BEYOND_ALLOC_STACK duk_str_push_beyond_alloc_stack
|
|
#define DUK_STR_NOT_UNDEFINED duk_str_not_undefined
|
|
#define DUK_STR_NOT_NULL duk_str_not_null
|
|
#define DUK_STR_NOT_BOOLEAN duk_str_not_boolean
|
|
#define DUK_STR_NOT_NUMBER duk_str_not_number
|
|
#define DUK_STR_NOT_STRING duk_str_not_string
|
|
#define DUK_STR_NOT_POINTER duk_str_not_pointer
|
|
#define DUK_STR_NOT_BUFFER duk_str_not_buffer
|
|
#define DUK_STR_UNEXPECTED_TYPE duk_str_unexpected_type
|
|
#define DUK_STR_NOT_THREAD duk_str_not_thread
|
|
#if 0 /*unused*/
|
|
#define DUK_STR_NOT_COMPILEDFUNCTION duk_str_not_compiledfunction
|
|
#endif
|
|
#define DUK_STR_NOT_NATIVEFUNCTION duk_str_not_nativefunction
|
|
#define DUK_STR_NOT_C_FUNCTION duk_str_not_c_function
|
|
#define DUK_STR_DEFAULTVALUE_COERCE_FAILED duk_str_defaultvalue_coerce_failed
|
|
#define DUK_STR_NUMBER_OUTSIDE_RANGE duk_str_number_outside_range
|
|
#define DUK_STR_NOT_OBJECT_COERCIBLE duk_str_not_object_coercible
|
|
#define DUK_STR_STRING_TOO_LONG duk_str_string_too_long
|
|
#define DUK_STR_BUFFER_TOO_LONG duk_str_buffer_too_long
|
|
#define DUK_STR_SPRINTF_TOO_LONG duk_str_sprintf_too_long
|
|
#define DUK_STR_OBJECT_ALLOC_FAILED duk_str_object_alloc_failed
|
|
#define DUK_STR_THREAD_ALLOC_FAILED duk_str_thread_alloc_failed
|
|
#define DUK_STR_FUNC_ALLOC_FAILED duk_str_func_alloc_failed
|
|
#define DUK_STR_BUFFER_ALLOC_FAILED duk_str_buffer_alloc_failed
|
|
#define DUK_STR_POP_TOO_MANY duk_str_pop_too_many
|
|
#define DUK_STR_BUFFER_NOT_DYNAMIC duk_str_buffer_not_dynamic
|
|
#define DUK_STR_FAILED_TO_EXTEND_VALSTACK duk_str_failed_to_extend_valstack
|
|
#define DUK_STR_BASE64_ENCODE_FAILED duk_str_base64_encode_failed
|
|
#define DUK_STR_BASE64_DECODE_FAILED duk_str_base64_decode_failed
|
|
#define DUK_STR_HEX_DECODE_FAILED duk_str_hex_decode_failed
|
|
#define DUK_STR_NO_SOURCECODE duk_str_no_sourcecode
|
|
#define DUK_STR_CONCAT_RESULT_TOO_LONG duk_str_concat_result_too_long
|
|
#define DUK_STR_UNIMPLEMENTED duk_str_unimplemented
|
|
#define DUK_STR_ARRAY_LENGTH_OVER_2G duk_str_array_length_over_2g
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_context;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_index;
|
|
DUK_INTERNAL_DECL const char *duk_str_push_beyond_alloc_stack;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_undefined;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_null;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_boolean;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_number;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_string;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_pointer;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_buffer;
|
|
DUK_INTERNAL_DECL const char *duk_str_unexpected_type;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_thread;
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL const char *duk_str_not_compiledfunction;
|
|
#endif
|
|
DUK_INTERNAL_DECL const char *duk_str_not_nativefunction;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_c_function;
|
|
DUK_INTERNAL_DECL const char *duk_str_defaultvalue_coerce_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_number_outside_range;
|
|
DUK_INTERNAL_DECL const char *duk_str_not_object_coercible;
|
|
DUK_INTERNAL_DECL const char *duk_str_string_too_long;
|
|
DUK_INTERNAL_DECL const char *duk_str_buffer_too_long;
|
|
DUK_INTERNAL_DECL const char *duk_str_sprintf_too_long;
|
|
DUK_INTERNAL_DECL const char *duk_str_object_alloc_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_thread_alloc_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_func_alloc_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_buffer_alloc_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_pop_too_many;
|
|
DUK_INTERNAL_DECL const char *duk_str_buffer_not_dynamic;
|
|
DUK_INTERNAL_DECL const char *duk_str_failed_to_extend_valstack;
|
|
DUK_INTERNAL_DECL const char *duk_str_base64_encode_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_base64_decode_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_hex_decode_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_no_sourcecode;
|
|
DUK_INTERNAL_DECL const char *duk_str_concat_result_too_long;
|
|
DUK_INTERNAL_DECL const char *duk_str_unimplemented;
|
|
DUK_INTERNAL_DECL const char *duk_str_array_length_over_2g;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_FMT_PTR duk_str_fmt_ptr
|
|
#define DUK_STR_FMT_INVALID_JSON duk_str_fmt_invalid_json
|
|
#define DUK_STR_JSONDEC_RECLIMIT duk_str_jsondec_reclimit
|
|
#define DUK_STR_JSONENC_RECLIMIT duk_str_jsonenc_reclimit
|
|
#define DUK_STR_CYCLIC_INPUT duk_str_cyclic_input
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_fmt_ptr;
|
|
DUK_INTERNAL_DECL const char *duk_str_fmt_invalid_json;
|
|
DUK_INTERNAL_DECL const char *duk_str_jsondec_reclimit;
|
|
DUK_INTERNAL_DECL const char *duk_str_jsonenc_reclimit;
|
|
DUK_INTERNAL_DECL const char *duk_str_cyclic_input;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_PROXY_REVOKED duk_str_proxy_revoked
|
|
#define DUK_STR_OBJECT_RESIZE_FAILED duk_str_object_resize_failed
|
|
#define DUK_STR_INVALID_BASE duk_str_invalid_base
|
|
#define DUK_STR_STRICT_CALLER_READ duk_str_strict_caller_read
|
|
#define DUK_STR_PROXY_REJECTED duk_str_proxy_rejected
|
|
#define DUK_STR_INVALID_ARRAY_LENGTH duk_str_invalid_array_length
|
|
#define DUK_STR_ARRAY_LENGTH_WRITE_FAILED duk_str_array_length_write_failed
|
|
#define DUK_STR_ARRAY_LENGTH_NOT_WRITABLE duk_str_array_length_not_writable
|
|
#define DUK_STR_SETTER_UNDEFINED duk_str_setter_undefined
|
|
#define DUK_STR_REDEFINE_VIRT_PROP duk_str_redefine_virt_prop
|
|
#define DUK_STR_INVALID_DESCRIPTOR duk_str_invalid_descriptor
|
|
#define DUK_STR_PROPERTY_IS_VIRTUAL duk_str_property_is_virtual
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_proxy_revoked;
|
|
DUK_INTERNAL_DECL const char *duk_str_object_resize_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_base;
|
|
DUK_INTERNAL_DECL const char *duk_str_strict_caller_read;
|
|
DUK_INTERNAL_DECL const char *duk_str_proxy_rejected;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_array_length;
|
|
DUK_INTERNAL_DECL const char *duk_str_array_length_write_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_array_length_not_writable;
|
|
DUK_INTERNAL_DECL const char *duk_str_setter_undefined;
|
|
DUK_INTERNAL_DECL const char *duk_str_redefine_virt_prop;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_descriptor;
|
|
DUK_INTERNAL_DECL const char *duk_str_property_is_virtual;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_PARSE_ERROR duk_str_parse_error
|
|
#define DUK_STR_DUPLICATE_LABEL duk_str_duplicate_label
|
|
#define DUK_STR_INVALID_LABEL duk_str_invalid_label
|
|
#define DUK_STR_INVALID_ARRAY_LITERAL duk_str_invalid_array_literal
|
|
#define DUK_STR_INVALID_OBJECT_LITERAL duk_str_invalid_object_literal
|
|
#define DUK_STR_INVALID_VAR_DECLARATION duk_str_invalid_var_declaration
|
|
#define DUK_STR_CANNOT_DELETE_IDENTIFIER duk_str_cannot_delete_identifier
|
|
#define DUK_STR_INVALID_EXPRESSION duk_str_invalid_expression
|
|
#define DUK_STR_INVALID_LVALUE duk_str_invalid_lvalue
|
|
#define DUK_STR_EXPECTED_IDENTIFIER duk_str_expected_identifier
|
|
#define DUK_STR_EMPTY_EXPR_NOT_ALLOWED duk_str_empty_expr_not_allowed
|
|
#define DUK_STR_INVALID_FOR duk_str_invalid_for
|
|
#define DUK_STR_INVALID_SWITCH duk_str_invalid_switch
|
|
#define DUK_STR_INVALID_BREAK_CONT_LABEL duk_str_invalid_break_cont_label
|
|
#define DUK_STR_INVALID_RETURN duk_str_invalid_return
|
|
#define DUK_STR_INVALID_TRY duk_str_invalid_try
|
|
#define DUK_STR_INVALID_THROW duk_str_invalid_throw
|
|
#define DUK_STR_WITH_IN_STRICT_MODE duk_str_with_in_strict_mode
|
|
#define DUK_STR_FUNC_STMT_NOT_ALLOWED duk_str_func_stmt_not_allowed
|
|
#define DUK_STR_UNTERMINATED_STMT duk_str_unterminated_stmt
|
|
#define DUK_STR_INVALID_ARG_NAME duk_str_invalid_arg_name
|
|
#define DUK_STR_INVALID_FUNC_NAME duk_str_invalid_func_name
|
|
#define DUK_STR_INVALID_GETSET_NAME duk_str_invalid_getset_name
|
|
#define DUK_STR_FUNC_NAME_REQUIRED duk_str_func_name_required
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_parse_error;
|
|
DUK_INTERNAL_DECL const char *duk_str_duplicate_label;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_label;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_array_literal;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_object_literal;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_var_declaration;
|
|
DUK_INTERNAL_DECL const char *duk_str_cannot_delete_identifier;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_expression;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_lvalue;
|
|
DUK_INTERNAL_DECL const char *duk_str_expected_identifier;
|
|
DUK_INTERNAL_DECL const char *duk_str_empty_expr_not_allowed;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_for;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_switch;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_break_cont_label;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_return;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_try;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_throw;
|
|
DUK_INTERNAL_DECL const char *duk_str_with_in_strict_mode;
|
|
DUK_INTERNAL_DECL const char *duk_str_func_stmt_not_allowed;
|
|
DUK_INTERNAL_DECL const char *duk_str_unterminated_stmt;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_arg_name;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_func_name;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_getset_name;
|
|
DUK_INTERNAL_DECL const char *duk_str_func_name_required;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_INTERNAL_ERROR_EXEC_LONGJMP duk_str_internal_error_exec_longjmp
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_internal_error_exec_longjmp;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_INVALID_QUANTIFIER_NO_ATOM duk_str_invalid_quantifier_no_atom
|
|
#define DUK_STR_INVALID_QUANTIFIER_VALUES duk_str_invalid_quantifier_values
|
|
#define DUK_STR_QUANTIFIER_TOO_MANY_COPIES duk_str_quantifier_too_many_copies
|
|
#define DUK_STR_UNEXPECTED_CLOSING_PAREN duk_str_unexpected_closing_paren
|
|
#define DUK_STR_UNEXPECTED_END_OF_PATTERN duk_str_unexpected_end_of_pattern
|
|
#define DUK_STR_UNEXPECTED_REGEXP_TOKEN duk_str_unexpected_regexp_token
|
|
#define DUK_STR_INVALID_REGEXP_FLAGS duk_str_invalid_regexp_flags
|
|
#define DUK_STR_INVALID_BACKREFS duk_str_invalid_backrefs
|
|
#define DUK_STR_REGEXP_BACKTRACK_FAILED duk_str_regexp_backtrack_failed
|
|
#define DUK_STR_REGEXP_ADVANCE_FAILED duk_str_regexp_advance_failed
|
|
#define DUK_STR_REGEXP_INTERNAL_ERROR duk_str_regexp_internal_error
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_quantifier_no_atom;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_quantifier_values;
|
|
DUK_INTERNAL_DECL const char *duk_str_quantifier_too_many_copies;
|
|
DUK_INTERNAL_DECL const char *duk_str_unexpected_closing_paren;
|
|
DUK_INTERNAL_DECL const char *duk_str_unexpected_end_of_pattern;
|
|
DUK_INTERNAL_DECL const char *duk_str_unexpected_regexp_token;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_regexp_flags;
|
|
DUK_INTERNAL_DECL const char *duk_str_invalid_backrefs;
|
|
DUK_INTERNAL_DECL const char *duk_str_regexp_backtrack_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_regexp_advance_failed;
|
|
DUK_INTERNAL_DECL const char *duk_str_regexp_internal_error;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_VALSTACK_LIMIT duk_str_valstack_limit
|
|
#define DUK_STR_CALLSTACK_LIMIT duk_str_callstack_limit
|
|
#define DUK_STR_CATCHSTACK_LIMIT duk_str_catchstack_limit
|
|
#define DUK_STR_OBJECT_PROPERTY_LIMIT duk_str_object_property_limit
|
|
#define DUK_STR_PROTOTYPE_CHAIN_LIMIT duk_str_prototype_chain_limit
|
|
#define DUK_STR_BOUND_CHAIN_LIMIT duk_str_bound_chain_limit
|
|
#define DUK_STR_C_CALLSTACK_LIMIT duk_str_c_callstack_limit
|
|
#define DUK_STR_COMPILER_RECURSION_LIMIT duk_str_compiler_recursion_limit
|
|
#define DUK_STR_BYTECODE_LIMIT duk_str_bytecode_limit
|
|
#define DUK_STR_REG_LIMIT duk_str_reg_limit
|
|
#define DUK_STR_TEMP_LIMIT duk_str_temp_limit
|
|
#define DUK_STR_CONST_LIMIT duk_str_const_limit
|
|
#define DUK_STR_FUNC_LIMIT duk_str_func_limit
|
|
#define DUK_STR_REGEXP_COMPILER_RECURSION_LIMIT duk_str_regexp_compiler_recursion_limit
|
|
#define DUK_STR_REGEXP_EXECUTOR_RECURSION_LIMIT duk_str_regexp_executor_recursion_limit
|
|
#define DUK_STR_REGEXP_EXECUTOR_STEP_LIMIT duk_str_regexp_executor_step_limit
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_valstack_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_callstack_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_catchstack_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_object_property_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_prototype_chain_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_bound_chain_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_c_callstack_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_compiler_recursion_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_bytecode_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_reg_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_temp_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_const_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_func_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_regexp_compiler_recursion_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_regexp_executor_recursion_limit;
|
|
DUK_INTERNAL_DECL const char *duk_str_regexp_executor_step_limit;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#define DUK_STR_ANON duk_str_anon
|
|
#define DUK_STR_REALLOC_FAILED duk_str_realloc_failed
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_str_anon;
|
|
DUK_INTERNAL_DECL const char *duk_str_realloc_failed;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
#endif /* DUK_ERRMSG_H_INCLUDED */
|
|
#line 1 "duk_js_bytecode.h"
|
|
/*
|
|
* Ecmascript bytecode
|
|
*/
|
|
|
|
#ifndef DUK_JS_BYTECODE_H_INCLUDED
|
|
#define DUK_JS_BYTECODE_H_INCLUDED
|
|
|
|
/*
|
|
* Logical instruction layout
|
|
* ==========================
|
|
*
|
|
* !3!3!2!2!2!2!2!2!2!2!2!2!1!1!1!1!1!1!1!1!1!1! ! ! ! ! ! ! ! ! ! !
|
|
* !1!0!9!8!7!6!5!4!3!2!1!0!9!8!7!6!5!4!3!2!1!0!9!8!7!6!5!4!3!2!1!0!
|
|
* +---------------------------------------------------+-----------+
|
|
* ! C ! B ! A ! OP !
|
|
* +---------------------------------------------------+-----------+
|
|
*
|
|
* OP (6 bits): opcode (DUK_OP_*), access should be fastest
|
|
* A (8 bits): typically a target register number
|
|
* B (9 bits): typically first source register/constant number
|
|
* C (9 bits): typically second source register/constant number
|
|
*
|
|
* Some instructions combine BC or ABC together for larger parameter values.
|
|
* Signed integers (e.g. jump offsets) are encoded as unsigned, with an opcode
|
|
* specific bias. B and C may denote a register or a constant, see
|
|
* DUK_BC_ISREG() and DUK_BC_ISCONST().
|
|
*
|
|
* Note: macro naming is a bit misleading, e.g. "ABC" in macro name but
|
|
* the field layout is logically "CBA".
|
|
*/
|
|
|
|
typedef duk_uint32_t duk_instr_t;
|
|
|
|
#define DUK_DEC_OP(x) ((x) & 0x3fUL)
|
|
#define DUK_DEC_A(x) (((x) >> 6) & 0xffUL)
|
|
#define DUK_DEC_B(x) (((x) >> 14) & 0x1ffUL)
|
|
#define DUK_DEC_C(x) (((x) >> 23) & 0x1ffUL)
|
|
#define DUK_DEC_BC(x) (((x) >> 14) & 0x3ffffUL)
|
|
#define DUK_DEC_ABC(x) (((x) >> 6) & 0x3ffffffUL)
|
|
|
|
#define DUK_ENC_OP(op) ((duk_instr_t) (op))
|
|
#define DUK_ENC_OP_ABC(op,abc) ((duk_instr_t) ( \
|
|
(((duk_instr_t) (abc)) << 6) | \
|
|
((duk_instr_t) (op)) \
|
|
))
|
|
#define DUK_ENC_OP_A_BC(op,a,bc) ((duk_instr_t) ( \
|
|
(((duk_instr_t) (bc)) << 14) | \
|
|
(((duk_instr_t) (a)) << 6) | \
|
|
((duk_instr_t) (op)) \
|
|
))
|
|
#define DUK_ENC_OP_A_B_C(op,a,b,c) ((duk_instr_t) ( \
|
|
(((duk_instr_t) (c)) << 23) | \
|
|
(((duk_instr_t) (b)) << 14) | \
|
|
(((duk_instr_t) (a)) << 6) | \
|
|
((duk_instr_t) (op)) \
|
|
))
|
|
#define DUK_ENC_OP_A_B(op,a,b) DUK_ENC_OP_A_B_C(op,a,b,0)
|
|
#define DUK_ENC_OP_A(op,a) DUK_ENC_OP_A_B_C(op,a,0,0)
|
|
|
|
/* Constants should be signed so that signed arithmetic involving them
|
|
* won't cause values to be coerced accidentally to unsigned.
|
|
*/
|
|
#define DUK_BC_OP_MIN 0
|
|
#define DUK_BC_OP_MAX 0x3fL
|
|
#define DUK_BC_A_MIN 0
|
|
#define DUK_BC_A_MAX 0xffL
|
|
#define DUK_BC_B_MIN 0
|
|
#define DUK_BC_B_MAX 0x1ffL
|
|
#define DUK_BC_C_MIN 0
|
|
#define DUK_BC_C_MAX 0x1ffL
|
|
#define DUK_BC_BC_MIN 0
|
|
#define DUK_BC_BC_MAX 0x3ffffL
|
|
#define DUK_BC_ABC_MIN 0
|
|
#define DUK_BC_ABC_MAX 0x3ffffffL
|
|
#define DUK_BC_EXTRAOP_MIN DUK_BC_A_MIN
|
|
#define DUK_BC_EXTRAOP_MAX DUK_BC_A_MAX
|
|
|
|
#define DUK_OP_LDREG 0
|
|
#define DUK_OP_STREG 1
|
|
#define DUK_OP_LDCONST 2
|
|
#define DUK_OP_LDINT 3
|
|
#define DUK_OP_LDINTX 4
|
|
#define DUK_OP_MPUTOBJ 5
|
|
#define DUK_OP_MPUTOBJI 6
|
|
#define DUK_OP_MPUTARR 7
|
|
#define DUK_OP_MPUTARRI 8
|
|
#define DUK_OP_NEW 9
|
|
#define DUK_OP_NEWI 10
|
|
#define DUK_OP_REGEXP 11
|
|
#define DUK_OP_CSREG 12
|
|
#define DUK_OP_CSREGI 13
|
|
#define DUK_OP_GETVAR 14
|
|
#define DUK_OP_PUTVAR 15
|
|
#define DUK_OP_DECLVAR 16
|
|
#define DUK_OP_DELVAR 17
|
|
#define DUK_OP_CSVAR 18
|
|
#define DUK_OP_CSVARI 19
|
|
#define DUK_OP_CLOSURE 20
|
|
#define DUK_OP_GETPROP 21
|
|
#define DUK_OP_PUTPROP 22
|
|
#define DUK_OP_DELPROP 23
|
|
#define DUK_OP_CSPROP 24
|
|
#define DUK_OP_CSPROPI 25
|
|
#define DUK_OP_ADD 26
|
|
#define DUK_OP_SUB 27
|
|
#define DUK_OP_MUL 28
|
|
#define DUK_OP_DIV 29
|
|
#define DUK_OP_MOD 30
|
|
#define DUK_OP_BAND 31
|
|
#define DUK_OP_BOR 32
|
|
#define DUK_OP_BXOR 33
|
|
#define DUK_OP_BASL 34
|
|
#define DUK_OP_BLSR 35
|
|
#define DUK_OP_BASR 36
|
|
#define DUK_OP_EQ 37
|
|
#define DUK_OP_NEQ 38
|
|
#define DUK_OP_SEQ 39
|
|
#define DUK_OP_SNEQ 40
|
|
#define DUK_OP_GT 41
|
|
#define DUK_OP_GE 42
|
|
#define DUK_OP_LT 43
|
|
#define DUK_OP_LE 44
|
|
#define DUK_OP_IF 45
|
|
#define DUK_OP_JUMP 46
|
|
#define DUK_OP_RETURN 47
|
|
#define DUK_OP_CALL 48
|
|
#define DUK_OP_CALLI 49
|
|
#define DUK_OP_TRYCATCH 50
|
|
#define DUK_OP_EXTRA 51
|
|
#define DUK_OP_PREINCR 52 /* pre/post opcode values have constraints, */
|
|
#define DUK_OP_PREDECR 53 /* see duk_js_executor.c */
|
|
#define DUK_OP_POSTINCR 54
|
|
#define DUK_OP_POSTDECR 55
|
|
#define DUK_OP_PREINCV 56
|
|
#define DUK_OP_PREDECV 57
|
|
#define DUK_OP_POSTINCV 58
|
|
#define DUK_OP_POSTDECV 59
|
|
#define DUK_OP_PREINCP 60
|
|
#define DUK_OP_PREDECP 61
|
|
#define DUK_OP_POSTINCP 62
|
|
#define DUK_OP_POSTDECP 63
|
|
#define DUK_OP_NONE 64 /* dummy value used as marker */
|
|
|
|
/* DUK_OP_EXTRA, sub-operation in A */
|
|
#define DUK_EXTRAOP_NOP 0
|
|
#define DUK_EXTRAOP_INVALID 1
|
|
#define DUK_EXTRAOP_LDTHIS 2
|
|
#define DUK_EXTRAOP_LDUNDEF 3
|
|
#define DUK_EXTRAOP_LDNULL 4
|
|
#define DUK_EXTRAOP_LDTRUE 5
|
|
#define DUK_EXTRAOP_LDFALSE 6
|
|
#define DUK_EXTRAOP_NEWOBJ 7
|
|
#define DUK_EXTRAOP_NEWARR 8
|
|
#define DUK_EXTRAOP_SETALEN 9
|
|
#define DUK_EXTRAOP_TYPEOF 10
|
|
#define DUK_EXTRAOP_TYPEOFID 11
|
|
#define DUK_EXTRAOP_INITENUM 12
|
|
#define DUK_EXTRAOP_NEXTENUM 13
|
|
#define DUK_EXTRAOP_INITSET 14
|
|
#define DUK_EXTRAOP_INITSETI 15
|
|
#define DUK_EXTRAOP_INITGET 16
|
|
#define DUK_EXTRAOP_INITGETI 17
|
|
#define DUK_EXTRAOP_ENDTRY 18
|
|
#define DUK_EXTRAOP_ENDCATCH 19
|
|
#define DUK_EXTRAOP_ENDFIN 20
|
|
#define DUK_EXTRAOP_THROW 21
|
|
#define DUK_EXTRAOP_INVLHS 22
|
|
#define DUK_EXTRAOP_UNM 23
|
|
#define DUK_EXTRAOP_UNP 24
|
|
#define DUK_EXTRAOP_DEBUGGER 25
|
|
#define DUK_EXTRAOP_BREAK 26
|
|
#define DUK_EXTRAOP_CONTINUE 27
|
|
#define DUK_EXTRAOP_BNOT 28
|
|
#define DUK_EXTRAOP_LNOT 29
|
|
#define DUK_EXTRAOP_INSTOF 30
|
|
#define DUK_EXTRAOP_IN 31
|
|
#define DUK_EXTRAOP_LABEL 32
|
|
#define DUK_EXTRAOP_ENDLABEL 33
|
|
|
|
/* DUK_OP_EXTRA for debugging */
|
|
#define DUK_EXTRAOP_DUMPREG 128
|
|
#define DUK_EXTRAOP_DUMPREGS 129
|
|
#define DUK_EXTRAOP_LOGMARK 130
|
|
|
|
/* DUK_OP_CALL flags in A */
|
|
#define DUK_BC_CALL_FLAG_TAILCALL (1 << 0)
|
|
#define DUK_BC_CALL_FLAG_EVALCALL (1 << 1)
|
|
|
|
/* DUK_OP_TRYCATCH flags in A */
|
|
#define DUK_BC_TRYCATCH_FLAG_HAVE_CATCH (1 << 0)
|
|
#define DUK_BC_TRYCATCH_FLAG_HAVE_FINALLY (1 << 1)
|
|
#define DUK_BC_TRYCATCH_FLAG_CATCH_BINDING (1 << 2)
|
|
#define DUK_BC_TRYCATCH_FLAG_WITH_BINDING (1 << 3)
|
|
|
|
/* DUK_OP_RETURN flags in A */
|
|
#define DUK_BC_RETURN_FLAG_FAST (1 << 0)
|
|
#define DUK_BC_RETURN_FLAG_HAVE_RETVAL (1 << 1)
|
|
|
|
/* DUK_OP_DECLVAR flags in A; bottom bits are reserved for propdesc flags (DUK_PROPDESC_FLAG_XXX) */
|
|
#define DUK_BC_DECLVAR_FLAG_UNDEF_VALUE (1 << 4) /* use 'undefined' for value automatically */
|
|
#define DUK_BC_DECLVAR_FLAG_FUNC_DECL (1 << 5) /* function declaration */
|
|
|
|
/* misc constants and helper macros */
|
|
#define DUK_BC_REGLIMIT 256 /* if B/C is >= this value, refers to a const */
|
|
#define DUK_BC_ISREG(x) ((x) < DUK_BC_REGLIMIT)
|
|
#define DUK_BC_ISCONST(x) ((x) >= DUK_BC_REGLIMIT)
|
|
#define DUK_BC_LDINT_BIAS (1L << 17)
|
|
#define DUK_BC_LDINTX_SHIFT 18
|
|
#define DUK_BC_JUMP_BIAS (1L << 25)
|
|
|
|
#endif /* DUK_JS_BYTECODE_H_INCLUDED */
|
|
#line 1 "duk_lexer.h"
|
|
/*
|
|
* Lexer defines.
|
|
*/
|
|
|
|
#ifndef DUK_LEXER_H_INCLUDED
|
|
#define DUK_LEXER_H_INCLUDED
|
|
|
|
typedef void (*duk_re_range_callback)(void *user, duk_codepoint_t r1, duk_codepoint_t r2, duk_bool_t direct);
|
|
|
|
/*
|
|
* A token is interpreted as any possible production of InputElementDiv
|
|
* and InputElementRegExp, see E5 Section 7 in its entirety. Note that
|
|
* the E5 "Token" production does not cover all actual tokens of the
|
|
* language (which is explicitly stated in the specification, Section 7.5).
|
|
* Null and boolean literals are defined as part of both ReservedWord
|
|
* (E5 Section 7.6.1) and Literal (E5 Section 7.8) productions. Here,
|
|
* null and boolean values have literal tokens, and are not reserved
|
|
* words.
|
|
*
|
|
* Decimal literal negative/positive sign is -not- part of DUK_TOK_NUMBER.
|
|
* The number tokens always have a non-negative value. The unary minus
|
|
* operator in "-1.0" is optimized during compilation to yield a single
|
|
* negative constant.
|
|
*
|
|
* Token numbering is free except that reserved words are required to be
|
|
* in a continuous range and in a particular order. See genstrings.py.
|
|
*/
|
|
|
|
#define DUK_LEXER_INITCTX(ctx) duk_lexer_initctx((ctx))
|
|
|
|
#define DUK_LEXER_SETPOINT(ctx,pt) duk_lexer_setpoint((ctx), (pt))
|
|
|
|
#define DUK_LEXER_GETPOINT(ctx,pt) do { (pt)->offset = (ctx)->offsets[0]; \
|
|
(pt)->line = (ctx)->lines[0]; } while (0)
|
|
|
|
/* currently 6 characters of lookup are actually needed (duk_lexer.c) */
|
|
#define DUK_LEXER_WINDOW_SIZE 8
|
|
|
|
#define DUK_TOK_MINVAL 0
|
|
|
|
/* returned after EOF (infinite amount) */
|
|
#define DUK_TOK_EOF 0
|
|
|
|
/* line terminator or multi-line comment with internal lineterm (E5 Sections 7.3, 7.4) */
|
|
#define DUK_TOK_LINETERM 1
|
|
|
|
/* single-line comment or multi-line comment without internal lineterm (E5 Section 7.4) */
|
|
#define DUK_TOK_COMMENT 2
|
|
|
|
/* identifier names (E5 Section 7.6) */
|
|
#define DUK_TOK_IDENTIFIER 3
|
|
|
|
/* reserved words: keywords */
|
|
#define DUK_TOK_START_RESERVED 4
|
|
#define DUK_TOK_BREAK 4
|
|
#define DUK_TOK_CASE 5
|
|
#define DUK_TOK_CATCH 6
|
|
#define DUK_TOK_CONTINUE 7
|
|
#define DUK_TOK_DEBUGGER 8
|
|
#define DUK_TOK_DEFAULT 9
|
|
#define DUK_TOK_DELETE 10
|
|
#define DUK_TOK_DO 11
|
|
#define DUK_TOK_ELSE 12
|
|
#define DUK_TOK_FINALLY 13
|
|
#define DUK_TOK_FOR 14
|
|
#define DUK_TOK_FUNCTION 15
|
|
#define DUK_TOK_IF 16
|
|
#define DUK_TOK_IN 17
|
|
#define DUK_TOK_INSTANCEOF 18
|
|
#define DUK_TOK_NEW 19
|
|
#define DUK_TOK_RETURN 20
|
|
#define DUK_TOK_SWITCH 21
|
|
#define DUK_TOK_THIS 22
|
|
#define DUK_TOK_THROW 23
|
|
#define DUK_TOK_TRY 24
|
|
#define DUK_TOK_TYPEOF 25
|
|
#define DUK_TOK_VAR 26
|
|
#define DUK_TOK_VOID 27
|
|
#define DUK_TOK_WHILE 28
|
|
#define DUK_TOK_WITH 29
|
|
|
|
/* reserved words: future reserved words */
|
|
#define DUK_TOK_CLASS 30
|
|
#define DUK_TOK_CONST 31
|
|
#define DUK_TOK_ENUM 32
|
|
#define DUK_TOK_EXPORT 33
|
|
#define DUK_TOK_EXTENDS 34
|
|
#define DUK_TOK_IMPORT 35
|
|
#define DUK_TOK_SUPER 36
|
|
|
|
/* "null", "true", and "false" are always reserved words.
|
|
* Note that "get" and "set" are not!
|
|
*/
|
|
#define DUK_TOK_NULL 37
|
|
#define DUK_TOK_TRUE 38
|
|
#define DUK_TOK_FALSE 39
|
|
|
|
/* reserved words: additional future reserved words in strict mode */
|
|
#define DUK_TOK_START_STRICT_RESERVED 40 /* inclusive */
|
|
#define DUK_TOK_IMPLEMENTS 40
|
|
#define DUK_TOK_INTERFACE 41
|
|
#define DUK_TOK_LET 42
|
|
#define DUK_TOK_PACKAGE 43
|
|
#define DUK_TOK_PRIVATE 44
|
|
#define DUK_TOK_PROTECTED 45
|
|
#define DUK_TOK_PUBLIC 46
|
|
#define DUK_TOK_STATIC 47
|
|
#define DUK_TOK_YIELD 48
|
|
|
|
#define DUK_TOK_END_RESERVED 49 /* exclusive */
|
|
|
|
/* "get" and "set" are tokens but NOT ReservedWords. They are currently
|
|
* parsed and identifiers and these defines are actually now unused.
|
|
*/
|
|
#define DUK_TOK_GET 49
|
|
#define DUK_TOK_SET 50
|
|
|
|
/* punctuators (unlike the spec, also includes "/" and "/=") */
|
|
#define DUK_TOK_LCURLY 51
|
|
#define DUK_TOK_RCURLY 52
|
|
#define DUK_TOK_LBRACKET 53
|
|
#define DUK_TOK_RBRACKET 54
|
|
#define DUK_TOK_LPAREN 55
|
|
#define DUK_TOK_RPAREN 56
|
|
#define DUK_TOK_PERIOD 57
|
|
#define DUK_TOK_SEMICOLON 58
|
|
#define DUK_TOK_COMMA 59
|
|
#define DUK_TOK_LT 60
|
|
#define DUK_TOK_GT 61
|
|
#define DUK_TOK_LE 62
|
|
#define DUK_TOK_GE 63
|
|
#define DUK_TOK_EQ 64
|
|
#define DUK_TOK_NEQ 65
|
|
#define DUK_TOK_SEQ 66
|
|
#define DUK_TOK_SNEQ 67
|
|
#define DUK_TOK_ADD 68
|
|
#define DUK_TOK_SUB 69
|
|
#define DUK_TOK_MUL 70
|
|
#define DUK_TOK_DIV 71
|
|
#define DUK_TOK_MOD 72
|
|
#define DUK_TOK_INCREMENT 73
|
|
#define DUK_TOK_DECREMENT 74
|
|
#define DUK_TOK_ALSHIFT 75 /* named "arithmetic" because result is signed */
|
|
#define DUK_TOK_ARSHIFT 76
|
|
#define DUK_TOK_RSHIFT 77
|
|
#define DUK_TOK_BAND 78
|
|
#define DUK_TOK_BOR 79
|
|
#define DUK_TOK_BXOR 80
|
|
#define DUK_TOK_LNOT 81
|
|
#define DUK_TOK_BNOT 82
|
|
#define DUK_TOK_LAND 83
|
|
#define DUK_TOK_LOR 84
|
|
#define DUK_TOK_QUESTION 85
|
|
#define DUK_TOK_COLON 86
|
|
#define DUK_TOK_EQUALSIGN 87
|
|
#define DUK_TOK_ADD_EQ 88
|
|
#define DUK_TOK_SUB_EQ 89
|
|
#define DUK_TOK_MUL_EQ 90
|
|
#define DUK_TOK_DIV_EQ 91
|
|
#define DUK_TOK_MOD_EQ 92
|
|
#define DUK_TOK_ALSHIFT_EQ 93
|
|
#define DUK_TOK_ARSHIFT_EQ 94
|
|
#define DUK_TOK_RSHIFT_EQ 95
|
|
#define DUK_TOK_BAND_EQ 96
|
|
#define DUK_TOK_BOR_EQ 97
|
|
#define DUK_TOK_BXOR_EQ 98
|
|
|
|
/* literals (E5 Section 7.8), except null, true, false, which are treated
|
|
* like reserved words (above).
|
|
*/
|
|
#define DUK_TOK_NUMBER 99
|
|
#define DUK_TOK_STRING 100
|
|
#define DUK_TOK_REGEXP 101
|
|
|
|
#define DUK_TOK_MAXVAL 101 /* inclusive */
|
|
|
|
/* Convert heap string index to a token (reserved words) */
|
|
#define DUK_STRIDX_TO_TOK(x) ((x) - DUK_STRIDX_START_RESERVED + DUK_TOK_START_RESERVED)
|
|
|
|
/* Sanity check */
|
|
#if (DUK_TOK_MAXVAL > 255)
|
|
#error DUK_TOK_MAXVAL too large, code assumes it fits into 8 bits
|
|
#endif
|
|
|
|
/* Sanity checks for string and token defines */
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_BREAK) != DUK_TOK_BREAK)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_CASE) != DUK_TOK_CASE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_CATCH) != DUK_TOK_CATCH)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_CONTINUE) != DUK_TOK_CONTINUE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_DEBUGGER) != DUK_TOK_DEBUGGER)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_DEFAULT) != DUK_TOK_DEFAULT)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_DELETE) != DUK_TOK_DELETE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_DO) != DUK_TOK_DO)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_ELSE) != DUK_TOK_ELSE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_FINALLY) != DUK_TOK_FINALLY)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_FOR) != DUK_TOK_FOR)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_LC_FUNCTION) != DUK_TOK_FUNCTION)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_IF) != DUK_TOK_IF)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_IN) != DUK_TOK_IN)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_INSTANCEOF) != DUK_TOK_INSTANCEOF)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_NEW) != DUK_TOK_NEW)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_RETURN) != DUK_TOK_RETURN)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_SWITCH) != DUK_TOK_SWITCH)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_THIS) != DUK_TOK_THIS)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_THROW) != DUK_TOK_THROW)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_TRY) != DUK_TOK_TRY)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_TYPEOF) != DUK_TOK_TYPEOF)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_VAR) != DUK_TOK_VAR)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_VOID) != DUK_TOK_VOID)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_WHILE) != DUK_TOK_WHILE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_WITH) != DUK_TOK_WITH)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_CLASS) != DUK_TOK_CLASS)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_CONST) != DUK_TOK_CONST)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_ENUM) != DUK_TOK_ENUM)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_EXPORT) != DUK_TOK_EXPORT)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_EXTENDS) != DUK_TOK_EXTENDS)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_IMPORT) != DUK_TOK_IMPORT)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_SUPER) != DUK_TOK_SUPER)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_LC_NULL) != DUK_TOK_NULL)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_TRUE) != DUK_TOK_TRUE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_FALSE) != DUK_TOK_FALSE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_IMPLEMENTS) != DUK_TOK_IMPLEMENTS)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_INTERFACE) != DUK_TOK_INTERFACE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_LET) != DUK_TOK_LET)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_PACKAGE) != DUK_TOK_PACKAGE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_PRIVATE) != DUK_TOK_PRIVATE)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_PROTECTED) != DUK_TOK_PROTECTED)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_PUBLIC) != DUK_TOK_PUBLIC)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_STATIC) != DUK_TOK_STATIC)
|
|
#error mismatch in token defines
|
|
#endif
|
|
#if (DUK_STRIDX_TO_TOK(DUK_STRIDX_YIELD) != DUK_TOK_YIELD)
|
|
#error mismatch in token defines
|
|
#endif
|
|
|
|
/* Regexp tokens */
|
|
#define DUK_RETOK_EOF 0
|
|
#define DUK_RETOK_DISJUNCTION 1
|
|
#define DUK_RETOK_QUANTIFIER 2
|
|
#define DUK_RETOK_ASSERT_START 3
|
|
#define DUK_RETOK_ASSERT_END 4
|
|
#define DUK_RETOK_ASSERT_WORD_BOUNDARY 5
|
|
#define DUK_RETOK_ASSERT_NOT_WORD_BOUNDARY 6
|
|
#define DUK_RETOK_ASSERT_START_POS_LOOKAHEAD 7
|
|
#define DUK_RETOK_ASSERT_START_NEG_LOOKAHEAD 8
|
|
#define DUK_RETOK_ATOM_PERIOD 9
|
|
#define DUK_RETOK_ATOM_CHAR 10
|
|
#define DUK_RETOK_ATOM_DIGIT 11
|
|
#define DUK_RETOK_ATOM_NOT_DIGIT 12
|
|
#define DUK_RETOK_ATOM_WHITE 13
|
|
#define DUK_RETOK_ATOM_NOT_WHITE 14
|
|
#define DUK_RETOK_ATOM_WORD_CHAR 15
|
|
#define DUK_RETOK_ATOM_NOT_WORD_CHAR 16
|
|
#define DUK_RETOK_ATOM_BACKREFERENCE 17
|
|
#define DUK_RETOK_ATOM_START_CAPTURE_GROUP 18
|
|
#define DUK_RETOK_ATOM_START_NONCAPTURE_GROUP 19
|
|
#define DUK_RETOK_ATOM_START_CHARCLASS 20
|
|
#define DUK_RETOK_ATOM_START_CHARCLASS_INVERTED 21
|
|
#define DUK_RETOK_ATOM_END_GROUP 22
|
|
|
|
/* constants for duk_lexer_ctx.buf */
|
|
#define DUK_LEXER_TEMP_BUF_INITIAL 64
|
|
#define DUK_LEXER_TEMP_BUF_LIMIT 256
|
|
|
|
/* A token value. Can be memcpy()'d, but note that slot1/slot2 values are on the valstack. */
|
|
struct duk_token {
|
|
duk_small_int_t t; /* token type (with reserved word identification) */
|
|
duk_small_int_t t_nores; /* token type (with reserved words as DUK_TOK_IDENTIFER) */
|
|
duk_double_t num; /* numeric value of token */
|
|
duk_hstring *str1; /* string 1 of token (borrowed, stored to ctx->slot1_idx) */
|
|
duk_hstring *str2; /* string 2 of token (borrowed, stored to ctx->slot1_idx) */
|
|
duk_size_t start_offset; /* start byte offset of token in lexer input */
|
|
duk_int_t start_line; /* start line of token (first char) */
|
|
duk_int_t num_escapes; /* number of escapes and line continuations (for directive prologue) */
|
|
duk_bool_t lineterm; /* token was preceded by a lineterm */
|
|
duk_bool_t allow_auto_semi; /* token allows automatic semicolon insertion (eof or preceded by newline) */
|
|
};
|
|
|
|
#define DUK_RE_QUANTIFIER_INFINITE ((duk_uint32_t) 0xffffffffUL)
|
|
|
|
/* A regexp token value. */
|
|
struct duk_re_token {
|
|
duk_small_int_t t; /* token type */
|
|
duk_small_int_t greedy;
|
|
duk_uint_fast32_t num; /* numeric value (character, count) */
|
|
duk_uint_fast32_t qmin;
|
|
duk_uint_fast32_t qmax;
|
|
};
|
|
|
|
/* A structure for 'snapshotting' a point for rewinding */
|
|
struct duk_lexer_point {
|
|
duk_size_t offset;
|
|
duk_int_t line;
|
|
};
|
|
|
|
/* Lexer context. Same context is used for Ecmascript and Regexp parsing. */
|
|
struct duk_lexer_ctx {
|
|
duk_hthread *thr; /* thread; minimizes argument passing */
|
|
|
|
const duk_uint8_t *input; /* input string (may be a user pointer) */
|
|
duk_size_t input_length; /* input byte length */
|
|
duk_size_t input_offset; /* input offset for window leading edge (not window[0]) */
|
|
|
|
duk_codepoint_t window[DUK_LEXER_WINDOW_SIZE]; /* window of unicode code points */
|
|
duk_size_t offsets[DUK_LEXER_WINDOW_SIZE]; /* input byte offset for each char */
|
|
duk_int_t lines[DUK_LEXER_WINDOW_SIZE]; /* input lines for each char */
|
|
duk_int_t input_line; /* input linenumber at input_offset (not window[0]), init to 1 */
|
|
duk_idx_t slot1_idx; /* valstack slot for 1st token value */
|
|
duk_idx_t slot2_idx; /* valstack slot for 2nd token value */
|
|
duk_idx_t buf_idx; /* valstack slot for temp buffer */
|
|
duk_hbuffer_dynamic *buf; /* temp accumulation buffer (on valstack) */
|
|
|
|
duk_int_t token_count; /* number of tokens parsed */
|
|
duk_int_t token_limit; /* maximum token count before error (sanity backstop) */
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL void duk_lexer_initctx(duk_lexer_ctx *lex_ctx);
|
|
|
|
DUK_INTERNAL_DECL void duk_lexer_setpoint(duk_lexer_ctx *lex_ctx, duk_lexer_point *pt);
|
|
|
|
DUK_INTERNAL_DECL
|
|
void duk_lexer_parse_js_input_element(duk_lexer_ctx *lex_ctx,
|
|
duk_token *out_token,
|
|
duk_bool_t strict_mode,
|
|
duk_bool_t regexp_mode);
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
DUK_INTERNAL_DECL void duk_lexer_parse_re_token(duk_lexer_ctx *lex_ctx, duk_re_token *out_token);
|
|
DUK_INTERNAL_DECL void duk_lexer_parse_re_ranges(duk_lexer_ctx *lex_ctx, duk_re_range_callback gen_range, void *userdata);
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
#endif /* DUK_LEXER_H_INCLUDED */
|
|
#line 1 "duk_js_compiler.h"
|
|
/*
|
|
* Ecmascript compiler.
|
|
*/
|
|
|
|
#ifndef DUK_JS_COMPILER_H_INCLUDED
|
|
#define DUK_JS_COMPILER_H_INCLUDED
|
|
|
|
/* ecmascript compiler limits */
|
|
#if defined(DUK_USE_DEEP_C_STACK)
|
|
#define DUK_COMPILER_RECURSION_LIMIT 2500L
|
|
#else
|
|
#define DUK_COMPILER_RECURSION_LIMIT 50L
|
|
#endif
|
|
#define DUK_COMPILER_TOKEN_LIMIT 100000000L /* 1e8: protects against deeply nested inner functions */
|
|
|
|
/* maximum loopcount for peephole optimization */
|
|
#define DUK_COMPILER_PEEPHOLE_MAXITER 3
|
|
|
|
/* maximum bytecode length in instructions */
|
|
#define DUK_COMPILER_MAX_BYTECODE_LENGTH (256L * 1024L * 1024L) /* 1 GB */
|
|
|
|
/*
|
|
* Compiler intermediate values
|
|
*
|
|
* Intermediate values describe either plain values (e.g. strings or
|
|
* numbers) or binary operations which have not yet been coerced into
|
|
* either a left-hand-side or right-hand-side role (e.g. object property).
|
|
*/
|
|
|
|
#define DUK_IVAL_NONE 0 /* no value */
|
|
#define DUK_IVAL_PLAIN 1 /* register, constant, or value */
|
|
#define DUK_IVAL_ARITH 2 /* binary arithmetic; DUK_OP_ADD, DUK_OP_EQ, other binary ops */
|
|
#define DUK_IVAL_ARITH_EXTRAOP 3 /* binary arithmetic using extraops; DUK_EXTRAOP_INSTOF etc */
|
|
#define DUK_IVAL_PROP 4 /* property access */
|
|
#define DUK_IVAL_VAR 5 /* variable access */
|
|
|
|
#define DUK_ISPEC_NONE 0 /* no value */
|
|
#define DUK_ISPEC_VALUE 1 /* value resides in 'valstack_idx' */
|
|
#define DUK_ISPEC_REGCONST 2 /* value resides in a register or constant */
|
|
|
|
/* bit mask which indicates that a regconst is a constant instead of a register */
|
|
#define DUK_JS_CONST_MARKER 0x80000000UL
|
|
|
|
/* type to represent a reg/const reference during compilation */
|
|
typedef duk_uint32_t duk_regconst_t;
|
|
|
|
/* type to represent a straight register reference, with <0 indicating none */
|
|
typedef duk_int32_t duk_reg_t;
|
|
|
|
typedef struct {
|
|
duk_small_uint_t t; /* DUK_ISPEC_XXX */
|
|
duk_regconst_t regconst;
|
|
duk_idx_t valstack_idx; /* always set; points to a reserved valstack slot */
|
|
} duk_ispec;
|
|
|
|
typedef struct {
|
|
/*
|
|
* PLAIN: x1
|
|
* ARITH: x1 <op> x2
|
|
* PROP: x1.x2
|
|
* VAR: x1 (name)
|
|
*/
|
|
|
|
/* XXX: can be optimized for smaller footprint esp. on 32-bit environments */
|
|
duk_small_uint_t t; /* DUK_IVAL_XXX */
|
|
duk_small_uint_t op; /* bytecode opcode (or extraop) for binary ops */
|
|
duk_ispec x1;
|
|
duk_ispec x2;
|
|
} duk_ivalue;
|
|
|
|
/*
|
|
* Bytecode instruction representation during compilation
|
|
*
|
|
* Contains the actual instruction and (optionally) debug info.
|
|
*/
|
|
|
|
struct duk_compiler_instr {
|
|
duk_instr_t ins;
|
|
#if defined(DUK_USE_PC2LINE)
|
|
duk_uint32_t line;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Compiler state
|
|
*/
|
|
|
|
#define DUK_LABEL_FLAG_ALLOW_BREAK (1 << 0)
|
|
#define DUK_LABEL_FLAG_ALLOW_CONTINUE (1 << 1)
|
|
|
|
#define DUK_DECL_TYPE_VAR 0
|
|
#define DUK_DECL_TYPE_FUNC 1
|
|
|
|
/* XXX: optimize to 16 bytes */
|
|
typedef struct {
|
|
duk_small_uint_t flags;
|
|
duk_int_t label_id; /* numeric label_id (-1 reserved as marker) */
|
|
duk_hstring *h_label; /* borrowed label name */
|
|
duk_int_t catch_depth; /* catch depth at point of definition */
|
|
duk_int_t pc_label; /* pc of label statement:
|
|
* pc+1: break jump site
|
|
* pc+2: continue jump site
|
|
*/
|
|
|
|
/* Fast jumps (which avoid longjmp) jump directly to the jump sites
|
|
* which are always known even while the iteration/switch statement
|
|
* is still being parsed. A final peephole pass "straightens out"
|
|
* the jumps.
|
|
*/
|
|
} duk_labelinfo;
|
|
|
|
/* Compiling state of one function, eventually converted to duk_hcompiledfunction */
|
|
struct duk_compiler_func {
|
|
/* These pointers are at the start of the struct so that they pack
|
|
* nicely. Mixing pointers and integer values is bad on some
|
|
* platforms (e.g. if int is 32 bits and pointers are 64 bits).
|
|
*/
|
|
|
|
duk_hstring *h_name; /* function name (borrowed reference), ends up in _name */
|
|
duk_hbuffer_dynamic *h_code; /* C array of duk_compiler_instr */
|
|
duk_hobject *h_consts; /* array */
|
|
duk_hobject *h_funcs; /* array of function templates: [func1, offset1, line1, func2, offset2, line2]
|
|
* offset/line points to closing brace to allow skipping on pass 2
|
|
*/
|
|
duk_hobject *h_decls; /* array of declarations: [ name1, val1, name2, val2, ... ]
|
|
* valN = (typeN) | (fnum << 8), where fnum is inner func number (0 for vars)
|
|
* record function and variable declarations in pass 1
|
|
*/
|
|
duk_hobject *h_labelnames; /* array of active label names */
|
|
duk_hbuffer_dynamic *h_labelinfos; /* C array of duk_labelinfo */
|
|
duk_hobject *h_argnames; /* array of formal argument names (-> _Formals) */
|
|
duk_hobject *h_varmap; /* variable map for pass 2 (identifier -> register number or null (unmapped)) */
|
|
|
|
/* value stack indices for tracking objects */
|
|
duk_idx_t code_idx;
|
|
duk_idx_t consts_idx;
|
|
duk_idx_t funcs_idx;
|
|
duk_idx_t decls_idx;
|
|
duk_idx_t labelnames_idx;
|
|
duk_idx_t labelinfos_idx;
|
|
duk_idx_t argnames_idx;
|
|
duk_idx_t varmap_idx;
|
|
|
|
/* temp reg handling */
|
|
duk_reg_t temp_first; /* first register that is a temporary (below: variables) */
|
|
duk_reg_t temp_next; /* next temporary register to allocate */
|
|
duk_reg_t temp_max; /* highest value of temp_reg (temp_max - 1 is highest used reg) */
|
|
|
|
/* shuffle registers if large number of regs/consts */
|
|
duk_reg_t shuffle1;
|
|
duk_reg_t shuffle2;
|
|
duk_reg_t shuffle3;
|
|
|
|
/* stats for current expression being parsed */
|
|
duk_int_t nud_count;
|
|
duk_int_t led_count;
|
|
duk_int_t paren_level; /* parenthesis count, 0 = top level */
|
|
duk_bool_t expr_lhs; /* expression is left-hand-side compatible */
|
|
duk_bool_t allow_in; /* current paren level allows 'in' token */
|
|
|
|
/* misc */
|
|
duk_int_t stmt_next; /* statement id allocation (running counter) */
|
|
duk_int_t label_next; /* label id allocation (running counter) */
|
|
duk_int_t catch_depth; /* catch stack depth */
|
|
duk_int_t with_depth; /* with stack depth (affects identifier lookups) */
|
|
duk_int_t fnum_next; /* inner function numbering */
|
|
duk_int_t num_formals; /* number of formal arguments */
|
|
duk_reg_t reg_stmt_value; /* register for writing value of 'non-empty' statements (global or eval code), -1 is marker */
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
duk_int_t min_line; /* XXX: typing (duk_hcompiledfunction has duk_uint32_t) */
|
|
duk_int_t max_line;
|
|
#endif
|
|
|
|
/* status booleans */
|
|
duk_bool_t is_function; /* is an actual function (not global/eval code) */
|
|
duk_bool_t is_eval; /* is eval code */
|
|
duk_bool_t is_global; /* is global code */
|
|
duk_bool_t is_setget; /* is a setter/getter */
|
|
duk_bool_t is_decl; /* is a function declaration (as opposed to function expression) */
|
|
duk_bool_t is_strict; /* function is strict */
|
|
duk_bool_t is_notail; /* function must not be tailcalled */
|
|
duk_bool_t in_directive_prologue; /* parsing in "directive prologue", recognize directives */
|
|
duk_bool_t in_scanning; /* parsing in "scanning" phase (first pass) */
|
|
duk_bool_t may_direct_eval; /* function may call direct eval */
|
|
duk_bool_t id_access_arguments; /* function refers to 'arguments' identifier */
|
|
duk_bool_t id_access_slow; /* function makes one or more slow path accesses */
|
|
duk_bool_t is_arguments_shadowed; /* argument/function declaration shadows 'arguments' */
|
|
duk_bool_t needs_shuffle; /* function needs shuffle registers */
|
|
duk_bool_t reject_regexp_in_adv; /* reject RegExp literal on next advance() call; needed for handling IdentifierName productions */
|
|
};
|
|
|
|
struct duk_compiler_ctx {
|
|
duk_hthread *thr;
|
|
|
|
/* filename being compiled (ends up in functions' '_filename' property) */
|
|
duk_hstring *h_filename; /* borrowed reference */
|
|
|
|
/* lexing (tokenization) state (contains two valstack slot indices) */
|
|
duk_lexer_ctx lex;
|
|
|
|
/* current and previous token for parsing */
|
|
duk_token prev_token;
|
|
duk_token curr_token;
|
|
duk_idx_t tok11_idx; /* curr_token slot1 (matches 'lex' slot1_idx) */
|
|
duk_idx_t tok12_idx; /* curr_token slot2 (matches 'lex' slot2_idx) */
|
|
duk_idx_t tok21_idx; /* prev_token slot1 */
|
|
duk_idx_t tok22_idx; /* prev_token slot2 */
|
|
|
|
/* recursion limit */
|
|
duk_int_t recursion_depth;
|
|
duk_int_t recursion_limit;
|
|
|
|
/* code emission temporary */
|
|
duk_int_t emit_jumpslot_pc;
|
|
|
|
/* current function being compiled (embedded instead of pointer for more compact access) */
|
|
duk_compiler_func curr_func;
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
#define DUK_JS_COMPILE_FLAG_EVAL (1 << 0) /* source is eval code (not program) */
|
|
#define DUK_JS_COMPILE_FLAG_STRICT (1 << 1) /* strict outer context */
|
|
#define DUK_JS_COMPILE_FLAG_FUNCEXPR (1 << 2) /* source is a function expression (used for Function constructor) */
|
|
|
|
DUK_INTERNAL_DECL void duk_js_compile(duk_hthread *thr, const duk_uint8_t *src_buffer, duk_size_t src_length, duk_small_uint_t flags);
|
|
|
|
#endif /* DUK_JS_COMPILER_H_INCLUDED */
|
|
#line 1 "duk_regexp.h"
|
|
/*
|
|
* Regular expression structs, constants, and bytecode defines.
|
|
*/
|
|
|
|
#ifndef DUK_REGEXP_H_INCLUDED
|
|
#define DUK_REGEXP_H_INCLUDED
|
|
|
|
/* maximum bytecode copies for {n,m} quantifiers */
|
|
#define DUK_RE_MAX_ATOM_COPIES 1000
|
|
|
|
/* regexp compilation limits */
|
|
#if defined(DUK_USE_DEEP_C_STACK)
|
|
#define DUK_RE_COMPILE_RECURSION_LIMIT 10000
|
|
#else
|
|
#define DUK_RE_COMPILE_RECURSION_LIMIT 100
|
|
#endif
|
|
#define DUK_RE_COMPILE_TOKEN_LIMIT 100000000L /* 1e8 */
|
|
|
|
/* regexp execution limits */
|
|
#if defined(DUK_USE_DEEP_C_STACK)
|
|
#define DUK_RE_EXECUTE_RECURSION_LIMIT 10000
|
|
#else
|
|
#define DUK_RE_EXECUTE_RECURSION_LIMIT 100
|
|
#endif
|
|
#define DUK_RE_EXECUTE_STEPS_LIMIT 1000000000L /* 1e9 */
|
|
|
|
/* regexp opcodes */
|
|
#define DUK_REOP_MATCH 1
|
|
#define DUK_REOP_CHAR 2
|
|
#define DUK_REOP_PERIOD 3
|
|
#define DUK_REOP_RANGES 4
|
|
#define DUK_REOP_INVRANGES 5
|
|
#define DUK_REOP_JUMP 6
|
|
#define DUK_REOP_SPLIT1 7
|
|
#define DUK_REOP_SPLIT2 8
|
|
#define DUK_REOP_SQMINIMAL 9
|
|
#define DUK_REOP_SQGREEDY 10
|
|
#define DUK_REOP_SAVE 11
|
|
#define DUK_REOP_WIPERANGE 12
|
|
#define DUK_REOP_LOOKPOS 13
|
|
#define DUK_REOP_LOOKNEG 14
|
|
#define DUK_REOP_BACKREFERENCE 15
|
|
#define DUK_REOP_ASSERT_START 16
|
|
#define DUK_REOP_ASSERT_END 17
|
|
#define DUK_REOP_ASSERT_WORD_BOUNDARY 18
|
|
#define DUK_REOP_ASSERT_NOT_WORD_BOUNDARY 19
|
|
|
|
/* flags */
|
|
#define DUK_RE_FLAG_GLOBAL (1 << 0)
|
|
#define DUK_RE_FLAG_IGNORE_CASE (1 << 1)
|
|
#define DUK_RE_FLAG_MULTILINE (1 << 2)
|
|
|
|
struct duk_re_matcher_ctx {
|
|
duk_hthread *thr;
|
|
|
|
duk_uint32_t re_flags;
|
|
const duk_uint8_t *input;
|
|
const duk_uint8_t *input_end;
|
|
const duk_uint8_t *bytecode;
|
|
const duk_uint8_t *bytecode_end;
|
|
const duk_uint8_t **saved; /* allocated from valstack (fixed buffer) */
|
|
duk_uint32_t nsaved;
|
|
duk_uint32_t recursion_depth;
|
|
duk_uint32_t recursion_limit;
|
|
duk_uint32_t steps_count;
|
|
duk_uint32_t steps_limit;
|
|
};
|
|
|
|
struct duk_re_compiler_ctx {
|
|
duk_hthread *thr;
|
|
|
|
duk_uint32_t re_flags;
|
|
duk_lexer_ctx lex;
|
|
duk_re_token curr_token;
|
|
duk_hbuffer_dynamic *buf;
|
|
duk_uint32_t captures; /* highest capture number emitted so far (used as: ++captures) */
|
|
duk_uint32_t highest_backref;
|
|
duk_uint32_t recursion_depth;
|
|
duk_uint32_t recursion_limit;
|
|
duk_uint32_t nranges; /* internal temporary value, used for char classes */
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL void duk_regexp_compile(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_regexp_create_instance(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_regexp_match(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_regexp_match_force_global(duk_hthread *thr); /* hacky helper for String.prototype.split() */
|
|
|
|
#endif /* DUK_REGEXP_H_INCLUDED */
|
|
#line 1 "duk_tval.h"
|
|
/*
|
|
* Tagged type definition (duk_tval) and accessor macros.
|
|
*
|
|
* Access all fields through the accessor macros, as the representation
|
|
* is quite tricky.
|
|
*
|
|
* There are two packed type alternatives: an 8-byte representation
|
|
* based on an IEEE double (preferred for compactness), and a 12-byte
|
|
* representation (portability). The latter is needed also in e.g.
|
|
* 64-bit environments (it usually pads to 16 bytes per value).
|
|
*
|
|
* Selecting the tagged type format involves many trade-offs (memory
|
|
* use, size and performance of generated code, portability, etc),
|
|
* see doc/types.txt for a detailed discussion (especially of how the
|
|
* IEEE double format is used to pack tagged values).
|
|
*
|
|
* NB: because macro arguments are often expressions, macros should
|
|
* avoid evaluating their argument more than once.
|
|
*/
|
|
|
|
#ifndef DUK_TVAL_H_INCLUDED
|
|
#define DUK_TVAL_H_INCLUDED
|
|
|
|
/* sanity */
|
|
#if !defined(DUK_USE_DOUBLE_LE) && !defined(DUK_USE_DOUBLE_ME) && !defined(DUK_USE_DOUBLE_BE)
|
|
#error unsupported: cannot determine byte order variant
|
|
#endif
|
|
|
|
#ifdef DUK_USE_PACKED_TVAL
|
|
/* ======================================================================== */
|
|
|
|
/*
|
|
* Packed 8-byte representation
|
|
*/
|
|
|
|
/* sanity */
|
|
#if !defined(DUK_USE_PACKED_TVAL_POSSIBLE)
|
|
#error packed representation not supported
|
|
#endif
|
|
|
|
/* use duk_double_union as duk_tval directly */
|
|
typedef union duk_double_union duk_tval;
|
|
|
|
/* tags */
|
|
#define DUK_TAG_NORMALIZED_NAN 0x7ff8UL /* the NaN variant we use */
|
|
/* avoid tag 0xfff0, no risk of confusion with negative infinity */
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TAG_FASTINT 0xfff1UL /* embed: integer value */
|
|
#endif
|
|
#define DUK_TAG_UNDEFINED 0xfff2UL /* embed: 0 or 1 (normal or unused) */
|
|
#define DUK_TAG_NULL 0xfff3UL /* embed: nothing */
|
|
#define DUK_TAG_BOOLEAN 0xfff4UL /* embed: 0 or 1 (false or true) */
|
|
/* DUK_TAG_NUMBER would logically go here, but it has multiple 'tags' */
|
|
#define DUK_TAG_POINTER 0xfff5UL /* embed: void ptr */
|
|
#define DUK_TAG_LIGHTFUNC 0xfff6UL /* embed: func ptr */
|
|
#define DUK_TAG_STRING 0xfff7UL /* embed: duk_hstring ptr */
|
|
#define DUK_TAG_OBJECT 0xfff8UL /* embed: duk_hobject ptr */
|
|
#define DUK_TAG_BUFFER 0xfff9UL /* embed: duk_hbuffer ptr */
|
|
|
|
/* for convenience */
|
|
#define DUK_XTAG_UNDEFINED_ACTUAL 0xfff20000UL
|
|
#define DUK_XTAG_UNDEFINED_UNUSED 0xfff20001UL
|
|
#define DUK_XTAG_NULL 0xfff30000UL
|
|
#define DUK_XTAG_BOOLEAN_FALSE 0xfff40000UL
|
|
#define DUK_XTAG_BOOLEAN_TRUE 0xfff40001UL
|
|
|
|
/* two casts to avoid gcc warning: "warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]" */
|
|
#ifdef DUK_USE_64BIT_OPS
|
|
#ifdef DUK_USE_DOUBLE_ME
|
|
#define DUK__TVAL_SET_TAGGEDPOINTER(v,h,tag) do { \
|
|
(v)->ull[DUK_DBL_IDX_ULL0] = (((duk_uint64_t) (tag)) << 16) | (((duk_uint64_t) (duk_uint32_t) (h)) << 32); \
|
|
} while (0)
|
|
#else
|
|
#define DUK__TVAL_SET_TAGGEDPOINTER(v,h,tag) do { \
|
|
(v)->ull[DUK_DBL_IDX_ULL0] = (((duk_uint64_t) (tag)) << 48) | ((duk_uint64_t) (duk_uint32_t) (h)); \
|
|
} while (0)
|
|
#endif
|
|
#else /* DUK_USE_64BIT_OPS */
|
|
#define DUK__TVAL_SET_TAGGEDPOINTER(v,h,tag) do { \
|
|
(v)->ui[DUK_DBL_IDX_UI0] = ((duk_uint32_t) (tag)) << 16; \
|
|
(v)->ui[DUK_DBL_IDX_UI1] = (duk_uint32_t) (h); \
|
|
} while (0)
|
|
#endif /* DUK_USE_64BIT_OPS */
|
|
|
|
#ifdef DUK_USE_64BIT_OPS
|
|
/* Double casting for pointer to avoid gcc warning (cast from pointer to integer of different size) */
|
|
#ifdef DUK_USE_DOUBLE_ME
|
|
#define DUK__TVAL_SET_LIGHTFUNC(v,fp,flags) do { \
|
|
(v)->ull[DUK_DBL_IDX_ULL0] = (((duk_uint64_t) DUK_TAG_LIGHTFUNC) << 16) | \
|
|
((duk_uint64_t) (flags)) | \
|
|
(((duk_uint64_t) (duk_uint32_t) (fp)) << 32); \
|
|
} while (0)
|
|
#else
|
|
#define DUK__TVAL_SET_LIGHTFUNC(v,fp,flags) do { \
|
|
(v)->ull[DUK_DBL_IDX_ULL0] = (((duk_uint64_t) DUK_TAG_LIGHTFUNC) << 48) | \
|
|
(((duk_uint64_t) (flags)) << 32) | \
|
|
((duk_uint64_t) (duk_uint32_t) (fp)); \
|
|
} while (0)
|
|
#endif
|
|
#else /* DUK_USE_64BIT_OPS */
|
|
#define DUK__TVAL_SET_LIGHTFUNC(v,fp,flags) do { \
|
|
(v)->ui[DUK_DBL_IDX_UI0] = (((duk_uint32_t) DUK_TAG_LIGHTFUNC) << 16) | ((duk_uint32_t) (flags)); \
|
|
(v)->ui[DUK_DBL_IDX_UI1] = (duk_uint32_t) (fp); \
|
|
} while (0)
|
|
#endif /* DUK_USE_64BIT_OPS */
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Note: masking is done for 'i' to deal with negative numbers correctly */
|
|
#ifdef DUK_USE_DOUBLE_ME
|
|
#define DUK__TVAL_SET_FASTINT(v,i) do { \
|
|
(v)->ui[DUK_DBL_IDX_UI0] = ((duk_uint32_t) DUK_TAG_FASTINT) << 16 | (((duk_uint32_t) ((i) >> 32)) & 0x0000ffffUL); \
|
|
(v)->ui[DUK_DBL_IDX_UI1] = (duk_uint32_t) (i); \
|
|
} while (0)
|
|
#define DUK__TVAL_SET_FASTINT_U32(v,i) do { \
|
|
(v)->ui[DUK_DBL_IDX_UI0] = ((duk_uint32_t) DUK_TAG_FASTINT) << 16; \
|
|
(v)->ui[DUK_DBL_IDX_UI1] = (duk_uint32_t) (i); \
|
|
} while (0)
|
|
#else
|
|
#define DUK__TVAL_SET_FASTINT(v,i) do { \
|
|
(v)->ull[DUK_DBL_IDX_ULL0] = (((duk_uint64_t) DUK_TAG_FASTINT) << 48) | (((duk_uint64_t) (i)) & 0x0000ffffffffffffULL); \
|
|
} while (0)
|
|
#define DUK__TVAL_SET_FASTINT_U32(v,i) do { \
|
|
(v)->ull[DUK_DBL_IDX_ULL0] = (((duk_uint64_t) DUK_TAG_FASTINT) << 48) | (duk_uint64_t) (i); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define DUK__TVAL_SET_FASTINT_I32(v,i) do { \
|
|
duk_int64_t duk__tmp = (duk_int64_t) (i); \
|
|
DUK_TVAL_SET_FASTINT((v), duk__tmp); \
|
|
} while (0)
|
|
|
|
/* XXX: clumsy sign extend and masking of 16 topmost bits */
|
|
#ifdef DUK_USE_DOUBLE_ME
|
|
#define DUK__TVAL_GET_FASTINT(v) (((duk_int64_t) ((((duk_uint64_t) (v)->ui[DUK_DBL_IDX_UI0]) << 32) | ((duk_uint64_t) (v)->ui[DUK_DBL_IDX_UI1]))) << 16 >> 16)
|
|
#else
|
|
#define DUK__TVAL_GET_FASTINT(v) ((((duk_int64_t) (v)->ull[DUK_DBL_IDX_ULL0]) << 16) >> 16)
|
|
#endif
|
|
#define DUK__TVAL_GET_FASTINT_U32(v) ((v)->ui[DUK_DBL_IDX_UI1])
|
|
#define DUK__TVAL_GET_FASTINT_I32(v) ((duk_int32_t) (v)->ui[DUK_DBL_IDX_UI1])
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
#define DUK_TVAL_SET_UNDEFINED_ACTUAL(v) DUK_DBLUNION_SET_HIGH32((v), DUK_XTAG_UNDEFINED_ACTUAL)
|
|
#define DUK_TVAL_SET_UNDEFINED_UNUSED(v) DUK_DBLUNION_SET_HIGH32((v), DUK_XTAG_UNDEFINED_UNUSED)
|
|
|
|
/* Note: 16-bit initializer suffices (unlike for undefined/boolean) */
|
|
#define DUK_TVAL_SET_NULL(v) do { \
|
|
(v)->us[DUK_DBL_IDX_US0] = (duk_uint16_t) DUK_TAG_NULL; \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_BOOLEAN(v,val) DUK_DBLUNION_SET_HIGH32((v), (((duk_uint32_t) DUK_TAG_BOOLEAN) << 16) | ((duk_uint32_t) (val)))
|
|
|
|
#define DUK_TVAL_SET_NAN(v) DUK_DBLUNION_SET_NAN_FULL((v))
|
|
|
|
/* Assumes that caller has normalized NaNs, otherwise trouble ahead. */
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TVAL_SET_DOUBLE(v,d) DUK_DBLUNION_SET_DOUBLE((v), (d))
|
|
#define DUK_TVAL_SET_FASTINT(v,i) DUK__TVAL_SET_FASTINT((v), (i))
|
|
#define DUK_TVAL_SET_FASTINT_I32(v,i) DUK__TVAL_SET_FASTINT_I32((v), (i))
|
|
#define DUK_TVAL_SET_FASTINT_U32(v,i) DUK__TVAL_SET_FASTINT_U32((v), (i))
|
|
#define DUK_TVAL_SET_NUMBER_CHKFAST(v,d) duk_tval_set_number_chkfast((v), (d))
|
|
#define DUK_TVAL_SET_NUMBER(v,d) DUK_DBLUNION_SET_DOUBLE((v), (d))
|
|
#define DUK_TVAL_CHKFAST_INPLACE(v) do { \
|
|
duk_tval *duk__tv; \
|
|
duk_double_t duk__d; \
|
|
duk__tv = (v); \
|
|
if (DUK_TVAL_IS_DOUBLE(duk__tv)) { \
|
|
duk__d = DUK_TVAL_GET_DOUBLE(duk__tv); \
|
|
DUK_TVAL_SET_NUMBER_CHKFAST(duk__tv, duk__d); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define DUK_TVAL_SET_NUMBER(v,d) DUK_DBLUNION_SET_DOUBLE((v), (d))
|
|
#define DUK_TVAL_SET_NUMBER_CHKFAST(v,d) DUK_TVAL_SET_NUMBER((v), (d))
|
|
#define DUK_TVAL_SET_DOUBLE(v,d) DUK_TVAL_SET_NUMBER((v), (d))
|
|
#define DUK_TVAL_CHKFAST_INPLACE(v) do { } while (0)
|
|
#endif
|
|
|
|
#define DUK_TVAL_SET_LIGHTFUNC(v,fp,flags) DUK__TVAL_SET_LIGHTFUNC((v), (fp), (flags))
|
|
#define DUK_TVAL_SET_STRING(v,h) DUK__TVAL_SET_TAGGEDPOINTER((v), (h), DUK_TAG_STRING)
|
|
#define DUK_TVAL_SET_OBJECT(v,h) DUK__TVAL_SET_TAGGEDPOINTER((v), (h), DUK_TAG_OBJECT)
|
|
#define DUK_TVAL_SET_BUFFER(v,h) DUK__TVAL_SET_TAGGEDPOINTER((v), (h), DUK_TAG_BUFFER)
|
|
#define DUK_TVAL_SET_POINTER(v,p) DUK__TVAL_SET_TAGGEDPOINTER((v), (p), DUK_TAG_POINTER)
|
|
|
|
#define DUK_TVAL_SET_TVAL(v,x) do { *(v) = *(x); } while (0)
|
|
|
|
/* getters */
|
|
#define DUK_TVAL_GET_BOOLEAN(v) ((int) (v)->us[DUK_DBL_IDX_US1])
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TVAL_GET_DOUBLE(v) ((v)->d)
|
|
#define DUK_TVAL_GET_FASTINT(v) DUK__TVAL_GET_FASTINT((v))
|
|
#define DUK_TVAL_GET_FASTINT_U32(v) DUK__TVAL_GET_FASTINT_U32((v))
|
|
#define DUK_TVAL_GET_FASTINT_I32(v) DUK__TVAL_GET_FASTINT_I32((v))
|
|
#define DUK_TVAL_GET_NUMBER(v) duk_tval_get_number_packed((v))
|
|
#else
|
|
#define DUK_TVAL_GET_NUMBER(v) ((v)->d)
|
|
#define DUK_TVAL_GET_DOUBLE(v) ((v)->d)
|
|
#endif
|
|
#define DUK_TVAL_GET_LIGHTFUNC(v,out_fp,out_flags) do { \
|
|
(out_flags) = (v)->ui[DUK_DBL_IDX_UI0] & 0xffffUL; \
|
|
(out_fp) = (duk_c_function) (v)->ui[DUK_DBL_IDX_UI1]; \
|
|
} while (0)
|
|
#define DUK_TVAL_GET_LIGHTFUNC_FUNCPTR(v) ((duk_c_function) ((v)->ui[DUK_DBL_IDX_UI1]))
|
|
#define DUK_TVAL_GET_LIGHTFUNC_FLAGS(v) (((int) (v)->ui[DUK_DBL_IDX_UI0]) & 0xffffUL)
|
|
#define DUK_TVAL_GET_STRING(v) ((duk_hstring *) (v)->vp[DUK_DBL_IDX_VP1])
|
|
#define DUK_TVAL_GET_OBJECT(v) ((duk_hobject *) (v)->vp[DUK_DBL_IDX_VP1])
|
|
#define DUK_TVAL_GET_BUFFER(v) ((duk_hbuffer *) (v)->vp[DUK_DBL_IDX_VP1])
|
|
#define DUK_TVAL_GET_POINTER(v) ((void *) (v)->vp[DUK_DBL_IDX_VP1])
|
|
#define DUK_TVAL_GET_HEAPHDR(v) ((duk_heaphdr *) (v)->vp[DUK_DBL_IDX_VP1])
|
|
|
|
/* decoding */
|
|
#define DUK_TVAL_GET_TAG(v) ((duk_small_uint_t) (v)->us[DUK_DBL_IDX_US0])
|
|
|
|
#define DUK_TVAL_IS_UNDEFINED(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_UNDEFINED)
|
|
#define DUK_TVAL_IS_UNDEFINED_ACTUAL(v) ((v)->ui[DUK_DBL_IDX_UI0] == DUK_XTAG_UNDEFINED_ACTUAL)
|
|
#define DUK_TVAL_IS_UNDEFINED_UNUSED(v) ((v)->ui[DUK_DBL_IDX_UI0] == DUK_XTAG_UNDEFINED_UNUSED)
|
|
#define DUK_TVAL_IS_NULL(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_NULL)
|
|
#define DUK_TVAL_IS_BOOLEAN(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_BOOLEAN)
|
|
#define DUK_TVAL_IS_BOOLEAN_TRUE(v) ((v)->ui[DUK_DBL_IDX_UI0] == DUK_XTAG_BOOLEAN_TRUE)
|
|
#define DUK_TVAL_IS_BOOLEAN_FALSE(v) ((v)->ui[DUK_DBL_IDX_UI0] == DUK_XTAG_BOOLEAN_FALSE)
|
|
#define DUK_TVAL_IS_LIGHTFUNC(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_LIGHTFUNC)
|
|
#define DUK_TVAL_IS_STRING(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_STRING)
|
|
#define DUK_TVAL_IS_OBJECT(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_OBJECT)
|
|
#define DUK_TVAL_IS_BUFFER(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_BUFFER)
|
|
#define DUK_TVAL_IS_POINTER(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_POINTER)
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* 0xfff0 is -Infinity */
|
|
#define DUK_TVAL_IS_DOUBLE(v) (DUK_TVAL_GET_TAG((v)) <= 0xfff0UL)
|
|
#define DUK_TVAL_IS_FASTINT(v) (DUK_TVAL_GET_TAG((v)) == DUK_TAG_FASTINT)
|
|
#define DUK_TVAL_IS_NUMBER(v) (DUK_TVAL_GET_TAG((v)) <= 0xfff1UL)
|
|
#else
|
|
#define DUK_TVAL_IS_NUMBER(v) (DUK_TVAL_GET_TAG((v)) <= 0xfff0UL)
|
|
#define DUK_TVAL_IS_DOUBLE(v) DUK_TVAL_IS_NUMBER((v))
|
|
#endif
|
|
|
|
#define DUK_TVAL_IS_HEAP_ALLOCATED(v) (DUK_TVAL_GET_TAG((v)) >= DUK_TAG_STRING)
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Inlining is only effective in a single file build. */
|
|
DUK_INTERNAL_DECL DUK_ALWAYS_INLINE duk_double_t duk_tval_get_number_packed(duk_tval *tv);
|
|
#endif
|
|
|
|
#else /* DUK_USE_PACKED_TVAL */
|
|
/* ======================================================================== */
|
|
|
|
/*
|
|
* Portable 12-byte representation
|
|
*/
|
|
|
|
/* Note: not initializing all bytes is normally not an issue: Duktape won't
|
|
* read or use the uninitialized bytes so valgrind won't issue warnings.
|
|
* In some special cases a harmless valgrind warning may be issued though.
|
|
* For example, the DumpHeap debugger command writes out a compiled function's
|
|
* 'data' area as is, including any uninitialized bytes, which causes a
|
|
* valgrind warning.
|
|
*/
|
|
|
|
typedef struct duk_tval_struct duk_tval;
|
|
|
|
struct duk_tval_struct {
|
|
duk_small_uint_t t;
|
|
duk_small_uint_t v_extra;
|
|
union {
|
|
duk_double_t d;
|
|
duk_small_int_t i;
|
|
#if defined(DUK_USE_FASTINT)
|
|
duk_int64_t fi; /* if present, forces 16-byte duk_tval */
|
|
#endif
|
|
void *voidptr;
|
|
duk_hstring *hstring;
|
|
duk_hobject *hobject;
|
|
duk_hcompiledfunction *hcompiledfunction;
|
|
duk_hnativefunction *hnativefunction;
|
|
duk_hthread *hthread;
|
|
duk_hbuffer *hbuffer;
|
|
duk_heaphdr *heaphdr;
|
|
duk_c_function lightfunc;
|
|
} v;
|
|
};
|
|
|
|
#define DUK__TAG_NUMBER 0 /* not exposed */
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TAG_FASTINT 1
|
|
#endif
|
|
#define DUK_TAG_UNDEFINED 2
|
|
#define DUK_TAG_NULL 3
|
|
#define DUK_TAG_BOOLEAN 4
|
|
#define DUK_TAG_POINTER 5
|
|
#define DUK_TAG_LIGHTFUNC 6
|
|
#define DUK_TAG_STRING 7
|
|
#define DUK_TAG_OBJECT 8
|
|
#define DUK_TAG_BUFFER 9
|
|
|
|
/* DUK__TAG_NUMBER is intentionally first, as it is the default clause in code
|
|
* to support the 8-byte representation. Further, it is a non-heap-allocated
|
|
* type so it should come before DUK_TAG_STRING. Finally, it should not break
|
|
* the tag value ranges covered by case-clauses in a switch-case.
|
|
*/
|
|
|
|
/* setters */
|
|
#define DUK_TVAL_SET_UNDEFINED_ACTUAL(tv) do { \
|
|
(tv)->t = DUK_TAG_UNDEFINED; \
|
|
(tv)->v.i = 0; \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_UNDEFINED_UNUSED(tv) do { \
|
|
(tv)->t = DUK_TAG_UNDEFINED; \
|
|
(tv)->v.i = 1; \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_NULL(tv) do { \
|
|
(tv)->t = DUK_TAG_NULL; \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_BOOLEAN(tv,val) do { \
|
|
(tv)->t = DUK_TAG_BOOLEAN; \
|
|
(tv)->v.i = (val); \
|
|
} while (0)
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TVAL_SET_DOUBLE(tv,val) do { \
|
|
(tv)->t = DUK__TAG_NUMBER; \
|
|
(tv)->v.d = (val); \
|
|
} while (0)
|
|
#define DUK_TVAL_SET_FASTINT(tv,val) do { \
|
|
(tv)->t = DUK_TAG_FASTINT; \
|
|
(tv)->v.fi = (val); \
|
|
} while (0)
|
|
#define DUK_TVAL_SET_FASTINT_U32(tv,val) do { \
|
|
(tv)->t = DUK_TAG_FASTINT; \
|
|
(tv)->v.fi = (duk_int64_t) (val); \
|
|
} while (0)
|
|
#define DUK_TVAL_SET_FASTINT_I32(tv,val) do { \
|
|
(tv)->t = DUK_TAG_FASTINT; \
|
|
(tv)->v.fi = (duk_int64_t) (val); \
|
|
} while (0)
|
|
#define DUK_TVAL_SET_NUMBER_CHKFAST(tv,d) \
|
|
duk_tval_set_number_chkfast((tv), (d))
|
|
#define DUK_TVAL_SET_NUMBER(tv,val) \
|
|
DUK_TVAL_SET_DOUBLE((tv), (val))
|
|
#define DUK_TVAL_CHKFAST_INPLACE(v) do { \
|
|
duk_tval *duk__tv; \
|
|
duk_double_t duk__d; \
|
|
duk__tv = (v); \
|
|
if (DUK_TVAL_IS_DOUBLE(duk__tv)) { \
|
|
duk__d = DUK_TVAL_GET_DOUBLE(duk__tv); \
|
|
DUK_TVAL_SET_NUMBER_CHKFAST(duk__tv, duk__d); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define DUK_TVAL_SET_NUMBER(tv,val) do { \
|
|
(tv)->t = DUK__TAG_NUMBER; \
|
|
(tv)->v.d = (val); \
|
|
} while (0)
|
|
#define DUK_TVAL_SET_NUMBER_CHKFAST(v,d) \
|
|
DUK_TVAL_SET_NUMBER((tv), (d))
|
|
#define DUK_TVAL_SET_DOUBLE(v,d) \
|
|
DUK_TVAL_SET_NUMBER((tv), (d))
|
|
#define DUK_TVAL_CHKFAST_INPLACE(v) do { } while (0)
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
#define DUK_TVAL_SET_POINTER(tv,hptr) do { \
|
|
(tv)->t = DUK_TAG_POINTER; \
|
|
(tv)->v.voidptr = (hptr); \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_LIGHTFUNC(tv,fp,flags) do { \
|
|
(tv)->t = DUK_TAG_LIGHTFUNC; \
|
|
(tv)->v_extra = (flags); \
|
|
(tv)->v.lightfunc = (duk_c_function) (fp); \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_STRING(tv,hptr) do { \
|
|
(tv)->t = DUK_TAG_STRING; \
|
|
(tv)->v.hstring = (hptr); \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_OBJECT(tv,hptr) do { \
|
|
(tv)->t = DUK_TAG_OBJECT; \
|
|
(tv)->v.hobject = (hptr); \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_BUFFER(tv,hptr) do { \
|
|
(tv)->t = DUK_TAG_BUFFER; \
|
|
(tv)->v.hbuffer = (hptr); \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_NAN(tv) do { \
|
|
/* in non-packed representation we don't care about which NaN is used */ \
|
|
(tv)->t = DUK__TAG_NUMBER; \
|
|
(tv)->v.d = DUK_DOUBLE_NAN; \
|
|
} while (0)
|
|
|
|
#define DUK_TVAL_SET_TVAL(v,x) do { *(v) = *(x); } while (0)
|
|
|
|
/* getters */
|
|
#define DUK_TVAL_GET_BOOLEAN(tv) ((tv)->v.i)
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TVAL_GET_DOUBLE(tv) ((tv)->v.d)
|
|
#define DUK_TVAL_GET_FASTINT(tv) ((tv)->v.fi)
|
|
#define DUK_TVAL_GET_FASTINT_U32(tv) ((duk_uint32_t) ((tv)->v.fi))
|
|
#define DUK_TVAL_GET_FASTINT_I32(tv) ((duk_int32_t) ((tv)->v.fi))
|
|
#if 0
|
|
#define DUK_TVAL_GET_NUMBER(tv) (DUK_TVAL_IS_FASTINT((tv)) ? \
|
|
(duk_double_t) DUK_TVAL_GET_FASTINT((tv)) : \
|
|
DUK_TVAL_GET_DOUBLE((tv)))
|
|
#define DUK_TVAL_GET_NUMBER(tv) duk_tval_get_number_unpacked((tv))
|
|
#else
|
|
/* This seems reasonable overall. */
|
|
#define DUK_TVAL_GET_NUMBER(tv) (DUK_TVAL_IS_FASTINT((tv)) ? \
|
|
duk_tval_get_number_unpacked_fastint((tv)) : \
|
|
DUK_TVAL_GET_DOUBLE((tv)))
|
|
#endif
|
|
#else
|
|
#define DUK_TVAL_GET_NUMBER(tv) ((tv)->v.d)
|
|
#define DUK_TVAL_GET_DOUBLE(tv) ((tv)->v.d)
|
|
#endif /* DUK_USE_FASTINT */
|
|
#define DUK_TVAL_GET_POINTER(tv) ((tv)->v.voidptr)
|
|
#define DUK_TVAL_GET_LIGHTFUNC(tv,out_fp,out_flags) do { \
|
|
(out_flags) = (duk_uint32_t) (tv)->v_extra; \
|
|
(out_fp) = (tv)->v.lightfunc; \
|
|
} while (0)
|
|
#define DUK_TVAL_GET_LIGHTFUNC_FUNCPTR(tv) ((tv)->v.lightfunc)
|
|
#define DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv) ((duk_uint32_t) ((tv)->v_extra))
|
|
#define DUK_TVAL_GET_STRING(tv) ((tv)->v.hstring)
|
|
#define DUK_TVAL_GET_OBJECT(tv) ((tv)->v.hobject)
|
|
#define DUK_TVAL_GET_BUFFER(tv) ((tv)->v.hbuffer)
|
|
#define DUK_TVAL_GET_HEAPHDR(tv) ((tv)->v.heaphdr)
|
|
|
|
/* decoding */
|
|
#define DUK_TVAL_GET_TAG(tv) ((tv)->t)
|
|
#define DUK_TVAL_IS_UNDEFINED(tv) ((tv)->t == DUK_TAG_UNDEFINED)
|
|
#define DUK_TVAL_IS_UNDEFINED_ACTUAL(tv) (((tv)->t == DUK_TAG_UNDEFINED) && ((tv)->v.i == 0))
|
|
#define DUK_TVAL_IS_UNDEFINED_UNUSED(tv) (((tv)->t == DUK_TAG_UNDEFINED) && ((tv)->v.i != 0))
|
|
#define DUK_TVAL_IS_NULL(tv) ((tv)->t == DUK_TAG_NULL)
|
|
#define DUK_TVAL_IS_BOOLEAN(tv) ((tv)->t == DUK_TAG_BOOLEAN)
|
|
#define DUK_TVAL_IS_BOOLEAN_TRUE(tv) (((tv)->t == DUK_TAG_BOOLEAN) && ((tv)->v.i != 0))
|
|
#define DUK_TVAL_IS_BOOLEAN_FALSE(tv) (((tv)->t == DUK_TAG_BOOLEAN) && ((tv)->v.i == 0))
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_TVAL_IS_DOUBLE(tv) ((tv)->t == DUK__TAG_NUMBER)
|
|
#define DUK_TVAL_IS_FASTINT(tv) ((tv)->t == DUK_TAG_FASTINT)
|
|
#define DUK_TVAL_IS_NUMBER(tv) ((tv)->t == DUK__TAG_NUMBER || \
|
|
(tv)->t == DUK_TAG_FASTINT)
|
|
#else
|
|
#define DUK_TVAL_IS_NUMBER(tv) ((tv)->t == DUK__TAG_NUMBER)
|
|
#define DUK_TVAL_IS_DOUBLE(v) DUK_TVAL_IS_NUMBER((v))
|
|
#endif /* DUK_USE_FASTINT */
|
|
#define DUK_TVAL_IS_POINTER(tv) ((tv)->t == DUK_TAG_POINTER)
|
|
#define DUK_TVAL_IS_LIGHTFUNC(tv) ((tv)->t == DUK_TAG_LIGHTFUNC)
|
|
#define DUK_TVAL_IS_STRING(tv) ((tv)->t == DUK_TAG_STRING)
|
|
#define DUK_TVAL_IS_OBJECT(tv) ((tv)->t == DUK_TAG_OBJECT)
|
|
#define DUK_TVAL_IS_BUFFER(tv) ((tv)->t == DUK_TAG_BUFFER)
|
|
|
|
#define DUK_TVAL_IS_HEAP_ALLOCATED(tv) ((tv)->t >= DUK_TAG_STRING)
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Inlining is only effective in a single file build. */
|
|
#if 0
|
|
DUK_INTERNAL_DECL DUK_ALWAYS_INLINE duk_double_t duk_tval_get_number_unpacked(duk_tval *tv);
|
|
#endif
|
|
DUK_INTERNAL_DECL DUK_ALWAYS_INLINE duk_double_t duk_tval_get_number_unpacked_fastint(duk_tval *tv);
|
|
#endif
|
|
|
|
#endif /* DUK_USE_PACKED_TVAL */
|
|
|
|
/*
|
|
* Convenience (independent of representation)
|
|
*/
|
|
|
|
#define DUK_TVAL_SET_BOOLEAN_TRUE(v) DUK_TVAL_SET_BOOLEAN(v, 1)
|
|
#define DUK_TVAL_SET_BOOLEAN_FALSE(v) DUK_TVAL_SET_BOOLEAN(v, 0)
|
|
|
|
/* Lightfunc flags packing and unpacking. */
|
|
/* Sign extend: 0x0000##00 -> 0x##000000 -> sign extend to 0xssssss## */
|
|
#define DUK_LFUNC_FLAGS_GET_MAGIC(lf_flags) \
|
|
((((duk_int32_t) (lf_flags)) << 16) >> 24)
|
|
#define DUK_LFUNC_FLAGS_GET_LENGTH(lf_flags) \
|
|
(((lf_flags) >> 4) & 0x0f)
|
|
#define DUK_LFUNC_FLAGS_GET_NARGS(lf_flags) \
|
|
((lf_flags) & 0x0f)
|
|
#define DUK_LFUNC_FLAGS_PACK(magic,length,nargs) \
|
|
(((magic) & 0xff) << 8) | ((length) << 4) | (nargs)
|
|
|
|
#define DUK_LFUNC_NARGS_VARARGS 0x0f /* varargs marker */
|
|
#define DUK_LFUNC_NARGS_MIN 0x00
|
|
#define DUK_LFUNC_NARGS_MAX 0x0e /* max, excl. varargs marker */
|
|
#define DUK_LFUNC_LENGTH_MIN 0x00
|
|
#define DUK_LFUNC_LENGTH_MAX 0x0f
|
|
#define DUK_LFUNC_MAGIC_MIN (-0x80)
|
|
#define DUK_LFUNC_MAGIC_MAX 0x7f
|
|
|
|
/* fastint constants etc */
|
|
#if defined(DUK_USE_FASTINT)
|
|
#define DUK_FASTINT_MIN (-0x800000000000LL)
|
|
#define DUK_FASTINT_MAX 0x7fffffffffffLL
|
|
#define DUK_FASTINT_BITS 48
|
|
|
|
DUK_INTERNAL_DECL void duk_tval_set_number_chkfast(duk_tval *tv, duk_double_t x);
|
|
#endif
|
|
|
|
#endif /* DUK_TVAL_H_INCLUDED */
|
|
#line 1 "duk_heaphdr.h"
|
|
/*
|
|
* Heap header definition and assorted macros, including ref counting.
|
|
* Access all fields through the accessor macros.
|
|
*/
|
|
|
|
#ifndef DUK_HEAPHDR_H_INCLUDED
|
|
#define DUK_HEAPHDR_H_INCLUDED
|
|
|
|
/*
|
|
* Common heap header
|
|
*
|
|
* All heap objects share the same flags and refcount fields. Objects other
|
|
* than strings also need to have a single or double linked list pointers
|
|
* for insertion into the "heap allocated" list. Strings are held in the
|
|
* heap-wide string table so they don't need link pointers.
|
|
*
|
|
* Technically, 'h_refcount' must be wide enough to guarantee that it cannot
|
|
* wrap (otherwise objects might be freed incorrectly after wrapping). This
|
|
* means essentially that the refcount field must be as wide as data pointers.
|
|
* On 64-bit platforms this means that the refcount needs to be 64 bits even
|
|
* if an 'int' is 32 bits. This is a bit unfortunate, and compromising on
|
|
* this might be reasonable in the future.
|
|
*
|
|
* Heap header size on 32-bit platforms: 8 bytes without reference counting,
|
|
* 16 bytes with reference counting.
|
|
*/
|
|
|
|
struct duk_heaphdr {
|
|
duk_uint32_t h_flags;
|
|
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
#if defined(DUK_USE_REFCOUNT16)
|
|
duk_uint16_t h_refcount16;
|
|
#else
|
|
duk_size_t h_refcount;
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t h_next16;
|
|
#else
|
|
duk_heaphdr *h_next;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DOUBLE_LINKED_HEAP)
|
|
/* refcounting requires direct heap frees, which in turn requires a dual linked heap */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t h_prev16;
|
|
#else
|
|
duk_heaphdr *h_prev;
|
|
#endif
|
|
#endif
|
|
|
|
/* When DUK_USE_HEAPPTR16 (and DUK_USE_REFCOUNT16) is in use, the
|
|
* struct won't align nicely to 4 bytes. This 16-bit extra field
|
|
* is added to make the alignment clean; the field can be used by
|
|
* heap objects when 16-bit packing is used. This field is now
|
|
* conditional to DUK_USE_HEAPPTR16 only, but it is intended to be
|
|
* used with DUK_USE_REFCOUNT16 and DUK_USE_DOUBLE_LINKED_HEAP;
|
|
* this only matter to low memory environments anyway.
|
|
*/
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t h_extra16;
|
|
#endif
|
|
};
|
|
|
|
struct duk_heaphdr_string {
|
|
/* 16 bits would be enough for shared heaphdr flags and duk_hstring
|
|
* flags. The initial parts of duk_heaphdr_string and duk_heaphdr
|
|
* must match so changing the flags field size here would be quite
|
|
* awkward. However, to minimize struct size, we can pack at least
|
|
* 16 bits of duk_hstring data into the flags field.
|
|
*/
|
|
duk_uint32_t h_flags;
|
|
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
#if defined(DUK_USE_REFCOUNT16)
|
|
duk_uint16_t h_refcount16;
|
|
#else
|
|
duk_size_t h_refcount;
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
#define DUK_HEAPHDR_FLAGS_TYPE_MASK 0x00000003UL
|
|
#define DUK_HEAPHDR_FLAGS_FLAG_MASK (~DUK_HEAPHDR_FLAGS_TYPE_MASK)
|
|
|
|
/* 2 bits for heap type */
|
|
#define DUK_HEAPHDR_FLAGS_HEAP_START 2 /* 4 heap flags */
|
|
#define DUK_HEAPHDR_FLAGS_USER_START 6 /* 26 user flags */
|
|
|
|
#define DUK_HEAPHDR_HEAP_FLAG_NUMBER(n) (DUK_HEAPHDR_FLAGS_HEAP_START + (n))
|
|
#define DUK_HEAPHDR_USER_FLAG_NUMBER(n) (DUK_HEAPHDR_FLAGS_USER_START + (n))
|
|
#define DUK_HEAPHDR_HEAP_FLAG(n) (1UL << (DUK_HEAPHDR_FLAGS_HEAP_START + (n)))
|
|
#define DUK_HEAPHDR_USER_FLAG(n) (1UL << (DUK_HEAPHDR_FLAGS_USER_START + (n)))
|
|
|
|
#define DUK_HEAPHDR_FLAG_REACHABLE DUK_HEAPHDR_HEAP_FLAG(0) /* mark-and-sweep: reachable */
|
|
#define DUK_HEAPHDR_FLAG_TEMPROOT DUK_HEAPHDR_HEAP_FLAG(1) /* mark-and-sweep: children not processed */
|
|
#define DUK_HEAPHDR_FLAG_FINALIZABLE DUK_HEAPHDR_HEAP_FLAG(2) /* mark-and-sweep: finalizable (on current pass) */
|
|
#define DUK_HEAPHDR_FLAG_FINALIZED DUK_HEAPHDR_HEAP_FLAG(3) /* mark-and-sweep: finalized (on previous pass) */
|
|
|
|
#define DUK_HTYPE_MIN 1
|
|
#define DUK_HTYPE_STRING 1
|
|
#define DUK_HTYPE_OBJECT 2
|
|
#define DUK_HTYPE_BUFFER 3
|
|
#define DUK_HTYPE_MAX 3
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HEAPHDR_GET_NEXT(heap,h) \
|
|
((duk_heaphdr *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (h)->h_next16))
|
|
#define DUK_HEAPHDR_SET_NEXT(heap,h,val) do { \
|
|
(h)->h_next16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) val); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HEAPHDR_GET_NEXT(heap,h) ((h)->h_next)
|
|
#define DUK_HEAPHDR_SET_NEXT(heap,h,val) do { \
|
|
(h)->h_next = (val); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DOUBLE_LINKED_HEAP)
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HEAPHDR_GET_PREV(heap,h) \
|
|
((duk_heaphdr *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (h)->h_prev16))
|
|
#define DUK_HEAPHDR_SET_PREV(heap,h,val) do { \
|
|
(h)->h_prev16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (val)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HEAPHDR_GET_PREV(heap,h) ((h)->h_prev)
|
|
#define DUK_HEAPHDR_SET_PREV(heap,h,val) do { \
|
|
(h)->h_prev = (val); \
|
|
} while (0)
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
#if defined(DUK_USE_REFCOUNT16)
|
|
#define DUK_HEAPHDR_GET_REFCOUNT(h) ((h)->h_refcount16)
|
|
#define DUK_HEAPHDR_SET_REFCOUNT(h,val) do { \
|
|
(h)->h_refcount16 = (val); \
|
|
} while (0)
|
|
#define DUK_HEAPHDR_PREINC_REFCOUNT(h) (++(h)->h_refcount16) /* result: updated refcount */
|
|
#define DUK_HEAPHDR_PREDEC_REFCOUNT(h) (--(h)->h_refcount16) /* result: updated refcount */
|
|
#else
|
|
#define DUK_HEAPHDR_GET_REFCOUNT(h) ((h)->h_refcount)
|
|
#define DUK_HEAPHDR_SET_REFCOUNT(h,val) do { \
|
|
(h)->h_refcount = (val); \
|
|
} while (0)
|
|
#define DUK_HEAPHDR_PREINC_REFCOUNT(h) (++(h)->h_refcount) /* result: updated refcount */
|
|
#define DUK_HEAPHDR_PREDEC_REFCOUNT(h) (--(h)->h_refcount) /* result: updated refcount */
|
|
#endif
|
|
#else
|
|
/* refcount macros not defined without refcounting, caller must #ifdef now */
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
|
|
/*
|
|
* Note: type is treated as a field separate from flags, so some masking is
|
|
* involved in the macros below.
|
|
*/
|
|
|
|
#define DUK_HEAPHDR_GET_FLAGS_RAW(h) ((h)->h_flags)
|
|
|
|
#define DUK_HEAPHDR_GET_FLAGS(h) ((h)->h_flags & DUK_HEAPHDR_FLAGS_FLAG_MASK)
|
|
#define DUK_HEAPHDR_SET_FLAGS(h,val) do { \
|
|
(h)->h_flags = ((h)->h_flags & ~(DUK_HEAPHDR_FLAGS_FLAG_MASK)) | (val); \
|
|
} while (0)
|
|
|
|
#define DUK_HEAPHDR_GET_TYPE(h) ((h)->h_flags & DUK_HEAPHDR_FLAGS_TYPE_MASK)
|
|
#define DUK_HEAPHDR_SET_TYPE(h,val) do { \
|
|
(h)->h_flags = ((h)->h_flags & ~(DUK_HEAPHDR_FLAGS_TYPE_MASK)) | (val); \
|
|
} while (0)
|
|
|
|
#define DUK_HEAPHDR_HTYPE_VALID(h) ( \
|
|
DUK_HEAPHDR_GET_TYPE((h)) >= DUK_HTYPE_MIN && \
|
|
DUK_HEAPHDR_GET_TYPE((h)) <= DUK_HTYPE_MAX \
|
|
)
|
|
|
|
#define DUK_HEAPHDR_SET_TYPE_AND_FLAGS(h,tval,fval) do { \
|
|
(h)->h_flags = ((tval) & DUK_HEAPHDR_FLAGS_TYPE_MASK) | \
|
|
((fval) & DUK_HEAPHDR_FLAGS_FLAG_MASK); \
|
|
} while (0)
|
|
|
|
#define DUK_HEAPHDR_SET_FLAG_BITS(h,bits) do { \
|
|
DUK_ASSERT(((bits) & ~(DUK_HEAPHDR_FLAGS_FLAG_MASK)) == 0); \
|
|
(h)->h_flags |= (bits); \
|
|
} while (0)
|
|
|
|
#define DUK_HEAPHDR_CLEAR_FLAG_BITS(h,bits) do { \
|
|
DUK_ASSERT(((bits) & ~(DUK_HEAPHDR_FLAGS_FLAG_MASK)) == 0); \
|
|
(h)->h_flags &= ~((bits)); \
|
|
} while (0)
|
|
|
|
#define DUK_HEAPHDR_CHECK_FLAG_BITS(h,bits) (((h)->h_flags & (bits)) != 0)
|
|
|
|
#define DUK_HEAPHDR_SET_REACHABLE(h) DUK_HEAPHDR_SET_FLAG_BITS((h),DUK_HEAPHDR_FLAG_REACHABLE)
|
|
#define DUK_HEAPHDR_CLEAR_REACHABLE(h) DUK_HEAPHDR_CLEAR_FLAG_BITS((h),DUK_HEAPHDR_FLAG_REACHABLE)
|
|
#define DUK_HEAPHDR_HAS_REACHABLE(h) DUK_HEAPHDR_CHECK_FLAG_BITS((h),DUK_HEAPHDR_FLAG_REACHABLE)
|
|
|
|
#define DUK_HEAPHDR_SET_TEMPROOT(h) DUK_HEAPHDR_SET_FLAG_BITS((h),DUK_HEAPHDR_FLAG_TEMPROOT)
|
|
#define DUK_HEAPHDR_CLEAR_TEMPROOT(h) DUK_HEAPHDR_CLEAR_FLAG_BITS((h),DUK_HEAPHDR_FLAG_TEMPROOT)
|
|
#define DUK_HEAPHDR_HAS_TEMPROOT(h) DUK_HEAPHDR_CHECK_FLAG_BITS((h),DUK_HEAPHDR_FLAG_TEMPROOT)
|
|
|
|
#define DUK_HEAPHDR_SET_FINALIZABLE(h) DUK_HEAPHDR_SET_FLAG_BITS((h),DUK_HEAPHDR_FLAG_FINALIZABLE)
|
|
#define DUK_HEAPHDR_CLEAR_FINALIZABLE(h) DUK_HEAPHDR_CLEAR_FLAG_BITS((h),DUK_HEAPHDR_FLAG_FINALIZABLE)
|
|
#define DUK_HEAPHDR_HAS_FINALIZABLE(h) DUK_HEAPHDR_CHECK_FLAG_BITS((h),DUK_HEAPHDR_FLAG_FINALIZABLE)
|
|
|
|
#define DUK_HEAPHDR_SET_FINALIZED(h) DUK_HEAPHDR_SET_FLAG_BITS((h),DUK_HEAPHDR_FLAG_FINALIZED)
|
|
#define DUK_HEAPHDR_CLEAR_FINALIZED(h) DUK_HEAPHDR_CLEAR_FLAG_BITS((h),DUK_HEAPHDR_FLAG_FINALIZED)
|
|
#define DUK_HEAPHDR_HAS_FINALIZED(h) DUK_HEAPHDR_CHECK_FLAG_BITS((h),DUK_HEAPHDR_FLAG_FINALIZED)
|
|
|
|
/* get or set a range of flags; m=first bit number, n=number of bits */
|
|
#define DUK_HEAPHDR_GET_FLAG_RANGE(h,m,n) (((h)->h_flags >> (m)) & ((1UL << (n)) - 1UL))
|
|
|
|
#define DUK_HEAPHDR_SET_FLAG_RANGE(h,m,n,v) do { \
|
|
(h)->h_flags = \
|
|
((h)->h_flags & (~(((1 << (n)) - 1) << (m)))) \
|
|
| ((v) << (m)); \
|
|
} while (0)
|
|
|
|
/* init pointer fields to null */
|
|
#if defined(DUK_USE_DOUBLE_LINKED_HEAP)
|
|
#define DUK_HEAPHDR_INIT_NULLS(h) do { \
|
|
DUK_HEAPHDR_SET_NEXT((h), (void *) NULL); \
|
|
DUK_HEAPHDR_SET_PREV((h), (void *) NULL); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HEAPHDR_INIT_NULLS(h) do { \
|
|
DUK_HEAPHDR_SET_NEXT((h), (void *) NULL); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define DUK_HEAPHDR_STRING_INIT_NULLS(h) /* currently nop */
|
|
|
|
/*
|
|
* Reference counting helper macros. The macros take a thread argument
|
|
* and must thus always be executed in a specific thread context. The
|
|
* thread argument is needed for features like finalization. Currently
|
|
* it is not required for INCREF, but it is included just in case.
|
|
*
|
|
* Note that 'raw' macros such as DUK_HEAPHDR_GET_REFCOUNT() are not
|
|
* defined without DUK_USE_REFERENCE_COUNTING, so caller must #ifdef
|
|
* around them.
|
|
*/
|
|
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
|
|
/* Fast variants, inline refcount operations except for refzero handling.
|
|
* Can be used explicitly when speed is always more important than size.
|
|
* For a good compiler and a single file build, these are basically the
|
|
* same as a forced inline.
|
|
*/
|
|
#define DUK_TVAL_INCREF_FAST(thr,tv) do { \
|
|
duk_tval *duk__tv = (tv); \
|
|
DUK_ASSERT(duk__tv != NULL); \
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(duk__tv)) { \
|
|
duk_heaphdr *duk__h = DUK_TVAL_GET_HEAPHDR(duk__tv); \
|
|
DUK_ASSERT(duk__h != NULL); \
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(duk__h)); \
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(duk__h); \
|
|
} \
|
|
} while (0)
|
|
#define DUK_TVAL_DECREF_FAST(thr,tv) do { \
|
|
duk_tval *duk__tv = (tv); \
|
|
DUK_ASSERT(duk__tv != NULL); \
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(duk__tv)) { \
|
|
duk_heaphdr *duk__h = DUK_TVAL_GET_HEAPHDR(duk__tv); \
|
|
DUK_ASSERT(duk__h != NULL); \
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(duk__h)); \
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(duk__h) > 0); \
|
|
if (DUK_HEAPHDR_PREDEC_REFCOUNT(duk__h) == 0) { \
|
|
duk_heaphdr_refzero((thr), duk__h); \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
#define DUK_HEAPHDR_INCREF_FAST(thr,h) do { \
|
|
duk_heaphdr *duk__h = (duk_heaphdr *) (h); \
|
|
DUK_ASSERT(duk__h != NULL); \
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(duk__h)); \
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(duk__h); \
|
|
} while (0)
|
|
#define DUK_HEAPHDR_DECREF_FAST(thr,h) do { \
|
|
duk_heaphdr *duk__h = (duk_heaphdr *) (h); \
|
|
DUK_ASSERT(duk__h != NULL); \
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(duk__h)); \
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(duk__h) > 0); \
|
|
if (DUK_HEAPHDR_PREDEC_REFCOUNT(duk__h) == 0) { \
|
|
duk_heaphdr_refzero((thr), duk__h); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Slow variants, call to a helper to reduce code size.
|
|
* Can be used explicitly when size is always more important than speed.
|
|
*/
|
|
#define DUK_TVAL_INCREF_SLOW(thr,tv) do { \
|
|
duk_tval_incref((tv)); \
|
|
} while (0)
|
|
#define DUK_TVAL_DECREF_SLOW(thr,tv) do { \
|
|
duk_tval_decref((thr), (tv)); \
|
|
} while (0)
|
|
#define DUK_HEAPHDR_INCREF_SLOW(thr,h) do { \
|
|
duk_heaphdr_incref((duk_heaphdr *) (h)); \
|
|
} while (0)
|
|
#define DUK_HEAPHDR_DECREF_SLOW(thr,h) do { \
|
|
duk_heaphdr_decref((thr), (duk_heaphdr *) (h)); \
|
|
} while (0)
|
|
|
|
/* Default variants. Selection depends on speed/size preference.
|
|
* Concretely: with gcc 4.8.1 -Os x64 the difference in final binary
|
|
* is about +1kB for _FAST variants.
|
|
*/
|
|
#if defined(DUK_USE_FAST_REFCOUNT_DEFAULT)
|
|
#define DUK_TVAL_INCREF(thr,tv) DUK_TVAL_INCREF_FAST((thr),(tv))
|
|
#define DUK_TVAL_DECREF(thr,tv) DUK_TVAL_DECREF_FAST((thr),(tv))
|
|
#define DUK_HEAPHDR_INCREF(thr,h) DUK_HEAPHDR_INCREF_FAST((thr),(h))
|
|
#define DUK_HEAPHDR_DECREF(thr,h) DUK_HEAPHDR_DECREF_FAST((thr),(h))
|
|
#else
|
|
#define DUK_TVAL_INCREF(thr,tv) DUK_TVAL_INCREF_SLOW((thr),(tv))
|
|
#define DUK_TVAL_DECREF(thr,tv) DUK_TVAL_DECREF_SLOW((thr),(tv))
|
|
#define DUK_HEAPHDR_INCREF(thr,h) DUK_HEAPHDR_INCREF_SLOW((thr),(h))
|
|
#define DUK_HEAPHDR_DECREF(thr,h) DUK_HEAPHDR_DECREF_SLOW((thr),(h))
|
|
#endif
|
|
|
|
/* Casting convenience. */
|
|
#define DUK_HSTRING_INCREF(thr,h) DUK_HEAPHDR_INCREF((thr),(duk_heaphdr *) (h))
|
|
#define DUK_HSTRING_DECREF(thr,h) DUK_HEAPHDR_DECREF((thr),(duk_heaphdr *) (h))
|
|
#define DUK_HOBJECT_INCREF(thr,h) DUK_HEAPHDR_INCREF((thr),(duk_heaphdr *) (h))
|
|
#define DUK_HOBJECT_DECREF(thr,h) DUK_HEAPHDR_DECREF((thr),(duk_heaphdr *) (h))
|
|
#define DUK_HBUFFER_INCREF(thr,h) DUK_HEAPHDR_INCREF((thr),(duk_heaphdr *) (h))
|
|
#define DUK_HBUFFER_DECREF(thr,h) DUK_HEAPHDR_DECREF((thr),(duk_heaphdr *) (h))
|
|
#define DUK_HCOMPILEDFUNCTION_INCREF(thr,h) DUK_HEAPHDR_INCREF((thr),(duk_heaphdr *) &(h)->obj)
|
|
#define DUK_HCOMPILEDFUNCTION_DECREF(thr,h) DUK_HEAPHDR_DECREF((thr),(duk_heaphdr *) &(h)->obj)
|
|
#define DUK_HNATIVEFUNCTION_INCREF(thr,h) DUK_HEAPHDR_INCREF((thr),(duk_heaphdr *) &(h)->obj)
|
|
#define DUK_HNATIVEFUNCTION_DECREF(thr,h) DUK_HEAPHDR_DECREF((thr),(duk_heaphdr *) &(h)->obj)
|
|
#define DUK_HTHREAD_INCREF(thr,h) DUK_HEAPHDR_INCREF((thr),(duk_heaphdr *) &(h)->obj)
|
|
#define DUK_HTHREAD_DECREF(thr,h) DUK_HEAPHDR_DECREF((thr),(duk_heaphdr *) &(h)->obj)
|
|
|
|
/* Convenience for some situations; the above macros don't allow NULLs
|
|
* for performance reasons.
|
|
*/
|
|
#define DUK_HOBJECT_INCREF_ALLOWNULL(thr,h) do { \
|
|
if ((h) != NULL) { \
|
|
DUK_HEAPHDR_INCREF((thr), (duk_heaphdr *) (h)); \
|
|
} \
|
|
} while (0)
|
|
#define DUK_HOBJECT_DECREF_ALLOWNULL(thr,h) do { \
|
|
if ((h) != NULL) { \
|
|
DUK_HEAPHDR_DECREF((thr), (duk_heaphdr *) (h)); \
|
|
} \
|
|
} while (0)
|
|
|
|
#else /* DUK_USE_REFERENCE_COUNTING */
|
|
|
|
#define DUK_TVAL_INCREF_FAST(thr,v) do {} while (0) /* nop */
|
|
#define DUK_TVAL_DECREF_FAST(thr,v) do {} while (0) /* nop */
|
|
#define DUK_TVAL_INCREF_SLOW(thr,v) do {} while (0) /* nop */
|
|
#define DUK_TVAL_DECREF_SLOW(thr,v) do {} while (0) /* nop */
|
|
#define DUK_TVAL_INCREF(thr,v) do {} while (0) /* nop */
|
|
#define DUK_TVAL_DECREF(thr,v) do {} while (0) /* nop */
|
|
#define DUK_HEAPHDR_INCREF_FAST(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HEAPHDR_DECREF_FAST(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HEAPHDR_INCREF_SLOW(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HEAPHDR_DECREF_SLOW(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HEAPHDR_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HEAPHDR_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HSTRING_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HSTRING_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HOBJECT_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HOBJECT_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HBUFFER_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HBUFFER_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HCOMPILEDFUNCTION_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HCOMPILEDFUNCTION_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HNATIVEFUNCTION_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HNATIVEFUNCTION_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HTHREAD_INCREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HTHREAD_DECREF(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HOBJECT_INCREF_ALLOWNULL(thr,h) do {} while (0) /* nop */
|
|
#define DUK_HOBJECT_DECREF_ALLOWNULL(thr,h) do {} while (0) /* nop */
|
|
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
|
|
#endif /* DUK_HEAPHDR_H_INCLUDED */
|
|
#line 1 "duk_api_internal.h"
|
|
/*
|
|
* Internal API calls which have (stack and other) semantics similar
|
|
* to the public API.
|
|
*/
|
|
|
|
#ifndef DUK_API_INTERNAL_H_INCLUDED
|
|
#define DUK_API_INTERNAL_H_INCLUDED
|
|
|
|
/* duk_push_sprintf constants */
|
|
#define DUK_PUSH_SPRINTF_INITIAL_SIZE 256L
|
|
#define DUK_PUSH_SPRINTF_SANITY_LIMIT (1L * 1024L * 1024L * 1024L)
|
|
|
|
/* Flag ORed to err_code to indicate __FILE__ / __LINE__ is not
|
|
* blamed as source of error for error fileName / lineNumber.
|
|
*/
|
|
#define DUK_ERRCODE_FLAG_NOBLAME_FILELINE (1L << 24)
|
|
|
|
/* Valstack resize flags */
|
|
#define DUK_VSRESIZE_FLAG_SHRINK (1 << 0)
|
|
#define DUK_VSRESIZE_FLAG_COMPACT (1 << 1)
|
|
#define DUK_VSRESIZE_FLAG_THROW (1 << 2)
|
|
|
|
/* Current convention is to use duk_size_t for value stack sizes and global indices,
|
|
* and duk_idx_t for local frame indices.
|
|
*/
|
|
DUK_INTERNAL_DECL
|
|
duk_bool_t duk_valstack_resize_raw(duk_context *ctx,
|
|
duk_size_t min_new_size,
|
|
duk_small_uint_t flags);
|
|
|
|
DUK_INTERNAL_DECL duk_tval *duk_get_tval(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_tval *duk_require_tval(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL void duk_push_tval(duk_context *ctx, duk_tval *tv);
|
|
|
|
/* Push the current 'this' binding; throw TypeError if binding is not object
|
|
* coercible (CheckObjectCoercible).
|
|
*/
|
|
DUK_INTERNAL_DECL void duk_push_this_check_object_coercible(duk_context *ctx);
|
|
|
|
/* duk_push_this() + CheckObjectCoercible() + duk_to_object() */
|
|
DUK_INTERNAL_DECL duk_hobject *duk_push_this_coercible_to_object(duk_context *ctx);
|
|
|
|
/* duk_push_this() + CheckObjectCoercible() + duk_to_string() */
|
|
DUK_INTERNAL_DECL duk_hstring *duk_push_this_coercible_to_string(duk_context *ctx);
|
|
|
|
/* duk_push_(u)int() is guaranteed to support at least (un)signed 32-bit range */
|
|
#define duk_push_u32(ctx,val) \
|
|
duk_push_uint((ctx), (duk_uint_t) (val))
|
|
#define duk_push_i32(ctx,val) \
|
|
duk_push_int((ctx), (duk_int_t) (val))
|
|
|
|
/* sometimes stack and array indices need to go on the stack */
|
|
#define duk_push_idx(ctx,val) \
|
|
duk_push_int((ctx), (duk_int_t) (val))
|
|
#define duk_push_uarridx(ctx,val) \
|
|
duk_push_uint((ctx), (duk_uint_t) (val))
|
|
#define duk_push_size_t(ctx,val) \
|
|
duk_push_uint((ctx), (duk_uint_t) (val)) /* XXX: assumed to fit for now */
|
|
|
|
/* internal helper for looking up a tagged type */
|
|
#define DUK_GETTAGGED_FLAG_ALLOW_NULL (1L << 24)
|
|
#define DUK_GETTAGGED_FLAG_CHECK_CLASS (1L << 25)
|
|
#define DUK_GETTAGGED_CLASS_SHIFT 16
|
|
|
|
DUK_INTERNAL_DECL duk_heaphdr *duk_get_tagged_heaphdr_raw(duk_context *ctx, duk_idx_t index, duk_uint_t flags_and_tag);
|
|
|
|
DUK_INTERNAL_DECL duk_hstring *duk_get_hstring(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hobject *duk_get_hobject(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hbuffer *duk_get_hbuffer(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hthread *duk_get_hthread(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hcompiledfunction *duk_get_hcompiledfunction(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hnativefunction *duk_get_hnativefunction(duk_context *ctx, duk_idx_t index);
|
|
|
|
#define duk_get_hobject_with_class(ctx,index,classnum) \
|
|
((duk_hobject *) duk_get_tagged_heaphdr_raw((ctx), (index), \
|
|
DUK_TAG_OBJECT | DUK_GETTAGGED_FLAG_ALLOW_NULL | \
|
|
DUK_GETTAGGED_FLAG_CHECK_CLASS | ((classnum) << DUK_GETTAGGED_CLASS_SHIFT)))
|
|
|
|
#if 0 /* This would be pointless: unexpected type and lightfunc would both return NULL */
|
|
DUK_INTERNAL_DECL duk_hobject *duk_get_hobject_or_lfunc(duk_context *ctx, duk_idx_t index);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_hobject *duk_get_hobject_or_lfunc_coerce(duk_context *ctx, duk_idx_t index);
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL void *duk_get_voidptr(duk_context *ctx, duk_idx_t index);
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL duk_hstring *duk_to_hstring(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_int_t duk_to_int_clamped_raw(duk_context *ctx, duk_idx_t index, duk_int_t minval, duk_int_t maxval, duk_bool_t *out_clamped); /* out_clamped=NULL, RangeError if outside range */
|
|
DUK_INTERNAL_DECL duk_int_t duk_to_int_clamped(duk_context *ctx, duk_idx_t index, duk_int_t minval, duk_int_t maxval);
|
|
DUK_INTERNAL_DECL duk_int_t duk_to_int_check_range(duk_context *ctx, duk_idx_t index, duk_int_t minval, duk_int_t maxval);
|
|
|
|
DUK_INTERNAL_DECL duk_hstring *duk_require_hstring(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hobject *duk_require_hobject(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hbuffer *duk_require_hbuffer(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hthread *duk_require_hthread(duk_context *ctx, duk_idx_t index);
|
|
#if 0 /*unused */
|
|
DUK_INTERNAL_DECL duk_hcompiledfunction *duk_require_hcompiledfunction(duk_context *ctx, duk_idx_t index);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_hnativefunction *duk_require_hnativefunction(duk_context *ctx, duk_idx_t index);
|
|
|
|
#define duk_require_hobject_with_class(ctx,index,classnum) \
|
|
((duk_hobject *) duk_get_tagged_heaphdr_raw((ctx), (index), \
|
|
DUK_TAG_OBJECT | \
|
|
DUK_GETTAGGED_FLAG_CHECK_CLASS | ((classnum) << DUK_GETTAGGED_CLASS_SHIFT)))
|
|
|
|
DUK_INTERNAL_DECL duk_hobject *duk_require_hobject_or_lfunc(duk_context *ctx, duk_idx_t index);
|
|
DUK_INTERNAL_DECL duk_hobject *duk_require_hobject_or_lfunc_coerce(duk_context *ctx, duk_idx_t index);
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK_INTERNAL_DECL void duk_push_unused(duk_context *ctx);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_push_hstring(duk_context *ctx, duk_hstring *h);
|
|
DUK_INTERNAL_DECL void duk_push_hstring_stridx(duk_context *ctx, duk_small_int_t stridx);
|
|
DUK_INTERNAL_DECL void duk_push_hobject(duk_context *ctx, duk_hobject *h);
|
|
DUK_INTERNAL_DECL void duk_push_hbuffer(duk_context *ctx, duk_hbuffer *h);
|
|
#define duk_push_hthread(ctx,h) \
|
|
duk_push_hobject((ctx), (duk_hobject *) (h))
|
|
#define duk_push_hcompiledfunction(ctx,h) \
|
|
duk_push_hobject((ctx), (duk_hobject *) (h))
|
|
#define duk_push_hnativefunction(ctx,h) \
|
|
duk_push_hobject((ctx), (duk_hobject *) (h))
|
|
DUK_INTERNAL_DECL void duk_push_hobject_bidx(duk_context *ctx, duk_small_int_t builtin_idx);
|
|
DUK_INTERNAL_DECL duk_idx_t duk_push_object_helper(duk_context *ctx, duk_uint_t hobject_flags_and_class, duk_small_int_t prototype_bidx);
|
|
DUK_INTERNAL_DECL duk_idx_t duk_push_object_helper_proto(duk_context *ctx, duk_uint_t hobject_flags_and_class, duk_hobject *proto);
|
|
DUK_INTERNAL_DECL duk_idx_t duk_push_object_internal(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_idx_t duk_push_compiledfunction(duk_context *ctx);
|
|
DUK_INTERNAL_DECL void duk_push_c_function_noexotic(duk_context *ctx, duk_c_function func, duk_int_t nargs);
|
|
DUK_INTERNAL_DECL void duk_push_c_function_noconstruct_noexotic(duk_context *ctx, duk_c_function func, duk_int_t nargs);
|
|
|
|
DUK_INTERNAL_DECL void duk_push_string_funcptr(duk_context *ctx, duk_uint8_t *ptr, duk_size_t sz);
|
|
DUK_INTERNAL_DECL void duk_push_lightfunc_name(duk_context *ctx, duk_tval *tv);
|
|
DUK_INTERNAL_DECL void duk_push_lightfunc_tostring(duk_context *ctx, duk_tval *tv);
|
|
|
|
DUK_INTERNAL_DECL duk_bool_t duk_get_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx); /* [] -> [val] */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_put_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx); /* [val] -> [] */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_del_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx); /* [] -> [] */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_has_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx); /* [] -> [] */
|
|
|
|
DUK_INTERNAL_DECL duk_bool_t duk_get_prop_stridx_boolean(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_bool_t *out_has_prop); /* [] -> [] */
|
|
|
|
DUK_INTERNAL_DECL void duk_xdef_prop(duk_context *ctx, duk_idx_t obj_index, duk_small_uint_t desc_flags); /* [key val] -> [] */
|
|
DUK_INTERNAL_DECL void duk_xdef_prop_index(duk_context *ctx, duk_idx_t obj_index, duk_uarridx_t arr_index, duk_small_uint_t desc_flags); /* [val] -> [] */
|
|
DUK_INTERNAL_DECL void duk_xdef_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_small_uint_t desc_flags); /* [val] -> [] */
|
|
DUK_INTERNAL_DECL void duk_xdef_prop_stridx_builtin(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_small_int_t builtin_idx, duk_small_uint_t desc_flags); /* [] -> [] */
|
|
DUK_INTERNAL_DECL void duk_xdef_prop_stridx_thrower(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_small_uint_t desc_flags); /* [] -> [] */
|
|
|
|
/* These are macros for now, but could be separate functions to reduce code
|
|
* footprint (check call site count before refactoring).
|
|
*/
|
|
#define duk_xdef_prop_wec(ctx,obj_index) \
|
|
duk_xdef_prop((ctx), (obj_index), DUK_PROPDESC_FLAGS_WEC)
|
|
#define duk_xdef_prop_index_wec(ctx,obj_index,arr_index) \
|
|
duk_xdef_prop_index((ctx), (obj_index), (arr_index), DUK_PROPDESC_FLAGS_WEC)
|
|
#define duk_xdef_prop_stridx_wec(ctx,obj_index,stridx) \
|
|
duk_xdef_prop_stridx((ctx), (obj_index), (stridx), DUK_PROPDESC_FLAGS_WEC)
|
|
|
|
/* Set object 'length'. */
|
|
DUK_INTERNAL_DECL void duk_set_length(duk_context *ctx, duk_idx_t index, duk_size_t length);
|
|
|
|
#endif /* DUK_API_INTERNAL_H_INCLUDED */
|
|
#line 1 "duk_hstring.h"
|
|
/*
|
|
* Heap string representation.
|
|
*
|
|
* Strings are byte sequences ordinarily stored in extended UTF-8 format,
|
|
* allowing values larger than the official UTF-8 range (used internally)
|
|
* and also allowing UTF-8 encoding of surrogate pairs (CESU-8 format).
|
|
* Strings may also be invalid UTF-8 altogether which is the case e.g. with
|
|
* strings used as internal property names and raw buffers converted to
|
|
* strings. In such cases the 'clen' field contains an inaccurate value.
|
|
*
|
|
* Ecmascript requires support for 32-bit long strings. However, since each
|
|
* 16-bit codepoint can take 3 bytes in CESU-8, this representation can only
|
|
* support about 1.4G codepoint long strings in extreme cases. This is not
|
|
* really a practical issue.
|
|
*/
|
|
|
|
#ifndef DUK_HSTRING_H_INCLUDED
|
|
#define DUK_HSTRING_H_INCLUDED
|
|
|
|
/* Impose a maximum string length for now. Restricted artificially to
|
|
* ensure adding a heap header length won't overflow size_t. The limit
|
|
* should be synchronized with DUK_HBUFFER_MAX_BYTELEN.
|
|
*
|
|
* E5.1 makes provisions to support strings longer than 4G characters.
|
|
* This limit should be eliminated on 64-bit platforms (and increased
|
|
* closer to maximum support on 32-bit platforms).
|
|
*/
|
|
|
|
#if defined(DUK_USE_STRLEN16)
|
|
#define DUK_HSTRING_MAX_BYTELEN (0x0000ffffUL)
|
|
#else
|
|
#define DUK_HSTRING_MAX_BYTELEN (0x7fffffffUL)
|
|
#endif
|
|
|
|
/* XXX: could add flags for "is valid CESU-8" (Ecmascript compatible strings),
|
|
* "is valid UTF-8", "is valid extended UTF-8" (internal strings are not,
|
|
* regexp bytecode is), and "contains non-BMP characters". These are not
|
|
* needed right now.
|
|
*/
|
|
|
|
#define DUK_HSTRING_FLAG_ARRIDX DUK_HEAPHDR_USER_FLAG(0) /* string is a valid array index */
|
|
#define DUK_HSTRING_FLAG_INTERNAL DUK_HEAPHDR_USER_FLAG(1) /* string is internal */
|
|
#define DUK_HSTRING_FLAG_RESERVED_WORD DUK_HEAPHDR_USER_FLAG(2) /* string is a reserved word (non-strict) */
|
|
#define DUK_HSTRING_FLAG_STRICT_RESERVED_WORD DUK_HEAPHDR_USER_FLAG(3) /* string is a reserved word (strict) */
|
|
#define DUK_HSTRING_FLAG_EVAL_OR_ARGUMENTS DUK_HEAPHDR_USER_FLAG(4) /* string is 'eval' or 'arguments' */
|
|
#define DUK_HSTRING_FLAG_EXTDATA DUK_HEAPHDR_USER_FLAG(5) /* string data is external (duk_hstring_external) */
|
|
|
|
#define DUK_HSTRING_HAS_ARRIDX(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_ARRIDX)
|
|
#define DUK_HSTRING_HAS_INTERNAL(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_INTERNAL)
|
|
#define DUK_HSTRING_HAS_RESERVED_WORD(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_RESERVED_WORD)
|
|
#define DUK_HSTRING_HAS_STRICT_RESERVED_WORD(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_STRICT_RESERVED_WORD)
|
|
#define DUK_HSTRING_HAS_EVAL_OR_ARGUMENTS(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_EVAL_OR_ARGUMENTS)
|
|
#define DUK_HSTRING_HAS_EXTDATA(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_EXTDATA)
|
|
|
|
#define DUK_HSTRING_SET_ARRIDX(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_ARRIDX)
|
|
#define DUK_HSTRING_SET_INTERNAL(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_INTERNAL)
|
|
#define DUK_HSTRING_SET_RESERVED_WORD(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_RESERVED_WORD)
|
|
#define DUK_HSTRING_SET_STRICT_RESERVED_WORD(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_STRICT_RESERVED_WORD)
|
|
#define DUK_HSTRING_SET_EVAL_OR_ARGUMENTS(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_EVAL_OR_ARGUMENTS)
|
|
#define DUK_HSTRING_SET_EXTDATA(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_EXTDATA)
|
|
|
|
#define DUK_HSTRING_CLEAR_ARRIDX(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_ARRIDX)
|
|
#define DUK_HSTRING_CLEAR_INTERNAL(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_INTERNAL)
|
|
#define DUK_HSTRING_CLEAR_RESERVED_WORD(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_RESERVED_WORD)
|
|
#define DUK_HSTRING_CLEAR_STRICT_RESERVED_WORD(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_STRICT_RESERVED_WORD)
|
|
#define DUK_HSTRING_CLEAR_EVAL_OR_ARGUMENTS(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_EVAL_OR_ARGUMENTS)
|
|
#define DUK_HSTRING_CLEAR_EXTDATA(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HSTRING_FLAG_EXTDATA)
|
|
|
|
#define DUK_HSTRING_IS_ASCII(x) (DUK_HSTRING_GET_BYTELEN((x)) == DUK_HSTRING_GET_CHARLEN((x)))
|
|
#define DUK_HSTRING_IS_EMPTY(x) (DUK_HSTRING_GET_BYTELEN((x)) == 0)
|
|
|
|
#if defined(DUK_USE_STRHASH16)
|
|
#define DUK_HSTRING_GET_HASH(x) ((x)->hdr.h_flags >> 16)
|
|
#define DUK_HSTRING_SET_HASH(x,v) do { \
|
|
(x)->hdr.h_flags = ((x)->hdr.h_flags & 0x0000ffffUL) | ((v) << 16); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HSTRING_GET_HASH(x) ((x)->hash)
|
|
#define DUK_HSTRING_SET_HASH(x,v) do { \
|
|
(x)->hash = (v); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if defined(DUK_USE_STRLEN16)
|
|
#define DUK_HSTRING_GET_BYTELEN(x) ((x)->blen16)
|
|
#define DUK_HSTRING_SET_BYTELEN(x,v) do { \
|
|
(x)->blen16 = (v); \
|
|
} while (0)
|
|
#define DUK_HSTRING_GET_CHARLEN(x) ((x)->clen16)
|
|
#define DUK_HSTRING_SET_CHARLEN(x,v) do { \
|
|
(x)->clen16 = (v); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HSTRING_GET_BYTELEN(x) ((x)->blen)
|
|
#define DUK_HSTRING_SET_BYTELEN(x,v) do { \
|
|
(x)->blen = (v); \
|
|
} while (0)
|
|
#define DUK_HSTRING_GET_CHARLEN(x) ((x)->clen)
|
|
#define DUK_HSTRING_SET_CHARLEN(x,v) do { \
|
|
(x)->clen = (v); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HSTRING_EXTDATA)
|
|
#define DUK_HSTRING_GET_EXTDATA(x) \
|
|
((x)->extdata)
|
|
#define DUK_HSTRING_GET_DATA(x) \
|
|
(DUK_HSTRING_HAS_EXTDATA((x)) ? \
|
|
DUK_HSTRING_GET_EXTDATA((duk_hstring_external *) (x)) : ((const duk_uint8_t *) ((x) + 1)))
|
|
#else
|
|
#define DUK_HSTRING_GET_DATA(x) \
|
|
((const duk_uint8_t *) ((x) + 1))
|
|
#endif
|
|
|
|
#define DUK_HSTRING_GET_DATA_END(x) \
|
|
(DUK_HSTRING_GET_DATA((x)) + (x)->blen)
|
|
|
|
/* marker value; in E5 2^32-1 is not a valid array index (2^32-2 is highest valid) */
|
|
#define DUK_HSTRING_NO_ARRAY_INDEX (0xffffffffUL)
|
|
|
|
/* get array index related to string (or return DUK_HSTRING_NO_ARRAY_INDEX);
|
|
* avoids helper call if string has no array index value.
|
|
*/
|
|
#define DUK_HSTRING_GET_ARRIDX_FAST(h) \
|
|
(DUK_HSTRING_HAS_ARRIDX((h)) ? duk_js_to_arrayindex_string_helper((h)) : DUK_HSTRING_NO_ARRAY_INDEX)
|
|
|
|
/* slower but more compact variant */
|
|
#define DUK_HSTRING_GET_ARRIDX_SLOW(h) \
|
|
(duk_js_to_arrayindex_string_helper((h)))
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
|
|
struct duk_hstring {
|
|
/* Smaller heaphdr than for other objects, because strings are held
|
|
* in string intern table which requires no link pointers. Much of
|
|
* the 32-bit flags field is unused by flags, so we can stuff a 16-bit
|
|
* field in there.
|
|
*/
|
|
duk_heaphdr_string hdr;
|
|
|
|
/* Note: we could try to stuff a partial hash (e.g. 16 bits) into the
|
|
* shared heap header. Good hashing needs more hash bits though.
|
|
*/
|
|
|
|
/* string hash */
|
|
#if defined(DUK_USE_STRHASH16)
|
|
/* If 16-bit hash is in use, stuff it into duk_heaphdr_string flags. */
|
|
#else
|
|
duk_uint32_t hash;
|
|
#endif
|
|
|
|
/* length in bytes (not counting NUL term) */
|
|
#if defined(DUK_USE_STRLEN16)
|
|
duk_uint16_t blen16;
|
|
#else
|
|
duk_uint32_t blen;
|
|
#endif
|
|
|
|
/* length in codepoints (must be E5 compatible) */
|
|
#if defined(DUK_USE_STRLEN16)
|
|
duk_uint16_t clen16;
|
|
#else
|
|
duk_uint32_t clen;
|
|
#endif
|
|
|
|
/*
|
|
* String value of 'blen+1' bytes follows (+1 for NUL termination
|
|
* convenience for C API). No alignment needs to be guaranteed
|
|
* for strings, but fields above should guarantee alignment-by-4
|
|
* (but not alignment-by-8).
|
|
*/
|
|
};
|
|
|
|
/* The external string struct is defined even when the feature is inactive. */
|
|
struct duk_hstring_external {
|
|
duk_hstring str;
|
|
|
|
/*
|
|
* For an external string, the NUL-terminated string data is stored
|
|
* externally. The user must guarantee that data behind this pointer
|
|
* doesn't change while it's used.
|
|
*/
|
|
|
|
const duk_uint8_t *extdata;
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL duk_ucodepoint_t duk_hstring_char_code_at_raw(duk_hthread *thr, duk_hstring *h, duk_uint_t pos);
|
|
|
|
#endif /* DUK_HSTRING_H_INCLUDED */
|
|
#line 1 "duk_hobject.h"
|
|
/*
|
|
* Heap object representation.
|
|
*
|
|
* Heap objects are used for Ecmascript objects, arrays, and functions,
|
|
* but also for internal control like declarative and object environment
|
|
* records. Compiled functions, native functions, and threads are also
|
|
* objects but with an extended C struct.
|
|
*
|
|
* Objects provide the required Ecmascript semantics and exotic behaviors
|
|
* especially for property access.
|
|
*
|
|
* Properties are stored in three conceptual parts:
|
|
*
|
|
* 1. A linear 'entry part' contains ordered key-value-attributes triples
|
|
* and is the main method of string properties.
|
|
*
|
|
* 2. An optional linear 'array part' is used for array objects to store a
|
|
* (dense) range of [0,N[ array indexed entries with default attributes
|
|
* (writable, enumerable, configurable). If the array part would become
|
|
* sparse or non-default attributes are required, the array part is
|
|
* abandoned and moved to the 'entry part'.
|
|
*
|
|
* 3. An optional 'hash part' is used to optimize lookups of the entry
|
|
* part; it is used only for objects with sufficiently many properties
|
|
* and can be abandoned without loss of information.
|
|
*
|
|
* These three conceptual parts are stored in a single memory allocated area.
|
|
* This minimizes memory allocation overhead but also means that all three
|
|
* parts are resized together, and makes property access a bit complicated.
|
|
*/
|
|
|
|
#ifndef DUK_HOBJECT_H_INCLUDED
|
|
#define DUK_HOBJECT_H_INCLUDED
|
|
|
|
/* there are currently 26 flag bits available */
|
|
#define DUK_HOBJECT_FLAG_EXTENSIBLE DUK_HEAPHDR_USER_FLAG(0) /* object is extensible */
|
|
#define DUK_HOBJECT_FLAG_CONSTRUCTABLE DUK_HEAPHDR_USER_FLAG(1) /* object is constructable */
|
|
#define DUK_HOBJECT_FLAG_BOUND DUK_HEAPHDR_USER_FLAG(2) /* object established using Function.prototype.bind() */
|
|
#define DUK_HOBJECT_FLAG_COMPILEDFUNCTION DUK_HEAPHDR_USER_FLAG(4) /* object is a compiled function (duk_hcompiledfunction) */
|
|
#define DUK_HOBJECT_FLAG_NATIVEFUNCTION DUK_HEAPHDR_USER_FLAG(5) /* object is a native function (duk_hnativefunction) */
|
|
#define DUK_HOBJECT_FLAG_THREAD DUK_HEAPHDR_USER_FLAG(6) /* object is a thread (duk_hthread) */
|
|
#define DUK_HOBJECT_FLAG_ARRAY_PART DUK_HEAPHDR_USER_FLAG(7) /* object has an array part (a_size may still be 0) */
|
|
#define DUK_HOBJECT_FLAG_STRICT DUK_HEAPHDR_USER_FLAG(8) /* function: function object is strict */
|
|
#define DUK_HOBJECT_FLAG_NOTAIL DUK_HEAPHDR_USER_FLAG(9) /* function: function must not be tailcalled */
|
|
#define DUK_HOBJECT_FLAG_NEWENV DUK_HEAPHDR_USER_FLAG(10) /* function: create new environment when called (see duk_hcompiledfunction) */
|
|
#define DUK_HOBJECT_FLAG_NAMEBINDING DUK_HEAPHDR_USER_FLAG(11) /* function: create binding for func name (function templates only, used for named function expressions) */
|
|
#define DUK_HOBJECT_FLAG_CREATEARGS DUK_HEAPHDR_USER_FLAG(12) /* function: create an arguments object on function call */
|
|
#define DUK_HOBJECT_FLAG_ENVRECCLOSED DUK_HEAPHDR_USER_FLAG(13) /* envrec: (declarative) record is closed */
|
|
#define DUK_HOBJECT_FLAG_EXOTIC_ARRAY DUK_HEAPHDR_USER_FLAG(14) /* 'Array' object, array length and index exotic behavior */
|
|
#define DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ DUK_HEAPHDR_USER_FLAG(15) /* 'String' object, array index exotic behavior */
|
|
#define DUK_HOBJECT_FLAG_EXOTIC_ARGUMENTS DUK_HEAPHDR_USER_FLAG(16) /* 'Arguments' object and has arguments exotic behavior (non-strict callee) */
|
|
#define DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC DUK_HEAPHDR_USER_FLAG(17) /* Duktape/C (nativefunction) object, exotic 'length' */
|
|
#define DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ DUK_HEAPHDR_USER_FLAG(18) /* 'Buffer' object, array index exotic behavior, virtual 'length' */
|
|
#define DUK_HOBJECT_FLAG_EXOTIC_PROXYOBJ DUK_HEAPHDR_USER_FLAG(19) /* 'Proxy' object */
|
|
/* bit 20 unused */
|
|
|
|
#define DUK_HOBJECT_FLAG_CLASS_BASE DUK_HEAPHDR_USER_FLAG_NUMBER(21)
|
|
#define DUK_HOBJECT_FLAG_CLASS_BITS 5
|
|
|
|
#define DUK_HOBJECT_GET_CLASS_NUMBER(h) \
|
|
DUK_HEAPHDR_GET_FLAG_RANGE(&(h)->hdr, DUK_HOBJECT_FLAG_CLASS_BASE, DUK_HOBJECT_FLAG_CLASS_BITS)
|
|
#define DUK_HOBJECT_SET_CLASS_NUMBER(h,v) \
|
|
DUK_HEAPHDR_SET_FLAG_RANGE(&(h)->hdr, DUK_HOBJECT_FLAG_CLASS_BASE, DUK_HOBJECT_FLAG_CLASS_BITS, (v))
|
|
|
|
/* Macro for creating flag initializer from a class number.
|
|
* Unsigned type cast is needed to avoid warnings about coercing
|
|
* a signed integer to an unsigned one; the largest class values
|
|
* have the highest bit (bit 31) set which causes this.
|
|
*/
|
|
#define DUK_HOBJECT_CLASS_AS_FLAGS(v) (((duk_uint_t) (v)) << DUK_HOBJECT_FLAG_CLASS_BASE)
|
|
|
|
/* E5 Section 8.6.2 + custom classes */
|
|
#define DUK_HOBJECT_CLASS_UNUSED 0
|
|
#define DUK_HOBJECT_CLASS_ARGUMENTS 1
|
|
#define DUK_HOBJECT_CLASS_ARRAY 2
|
|
#define DUK_HOBJECT_CLASS_BOOLEAN 3
|
|
#define DUK_HOBJECT_CLASS_DATE 4
|
|
#define DUK_HOBJECT_CLASS_ERROR 5
|
|
#define DUK_HOBJECT_CLASS_FUNCTION 6
|
|
#define DUK_HOBJECT_CLASS_JSON 7
|
|
#define DUK_HOBJECT_CLASS_MATH 8
|
|
#define DUK_HOBJECT_CLASS_NUMBER 9
|
|
#define DUK_HOBJECT_CLASS_OBJECT 10
|
|
#define DUK_HOBJECT_CLASS_REGEXP 11
|
|
#define DUK_HOBJECT_CLASS_STRING 12
|
|
#define DUK_HOBJECT_CLASS_GLOBAL 13
|
|
#define DUK_HOBJECT_CLASS_OBJENV 14 /* custom */
|
|
#define DUK_HOBJECT_CLASS_DECENV 15 /* custom */
|
|
#define DUK_HOBJECT_CLASS_BUFFER 16 /* custom */
|
|
#define DUK_HOBJECT_CLASS_POINTER 17 /* custom */
|
|
#define DUK_HOBJECT_CLASS_THREAD 18 /* custom */
|
|
|
|
#define DUK_HOBJECT_IS_OBJENV(h) (DUK_HOBJECT_GET_CLASS_NUMBER((h)) == DUK_HOBJECT_CLASS_OBJENV)
|
|
#define DUK_HOBJECT_IS_DECENV(h) (DUK_HOBJECT_GET_CLASS_NUMBER((h)) == DUK_HOBJECT_CLASS_DECENV)
|
|
#define DUK_HOBJECT_IS_ENV(h) (DUK_HOBJECT_IS_OBJENV((h)) || DUK_HOBJECT_IS_DECENV((h)))
|
|
#define DUK_HOBJECT_IS_ARRAY(h) (DUK_HOBJECT_GET_CLASS_NUMBER((h)) == DUK_HOBJECT_CLASS_ARRAY)
|
|
#define DUK_HOBJECT_IS_COMPILEDFUNCTION(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_COMPILEDFUNCTION)
|
|
#define DUK_HOBJECT_IS_NATIVEFUNCTION(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
#define DUK_HOBJECT_IS_THREAD(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_THREAD)
|
|
|
|
#define DUK_HOBJECT_IS_NONBOUND_FUNCTION(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, \
|
|
DUK_HOBJECT_FLAG_COMPILEDFUNCTION | \
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
|
|
#define DUK_HOBJECT_IS_FUNCTION(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, \
|
|
DUK_HOBJECT_FLAG_BOUND | \
|
|
DUK_HOBJECT_FLAG_COMPILEDFUNCTION | \
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
|
|
#define DUK_HOBJECT_IS_CALLABLE(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, \
|
|
DUK_HOBJECT_FLAG_BOUND | \
|
|
DUK_HOBJECT_FLAG_COMPILEDFUNCTION | \
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
|
|
/* object has any exotic behavior(s) */
|
|
#define DUK_HOBJECT_EXOTIC_BEHAVIOR_FLAGS (DUK_HOBJECT_FLAG_EXOTIC_ARRAY | \
|
|
DUK_HOBJECT_FLAG_EXOTIC_ARGUMENTS | \
|
|
DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ | \
|
|
DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC | \
|
|
DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ | \
|
|
DUK_HOBJECT_FLAG_EXOTIC_PROXYOBJ)
|
|
|
|
#define DUK_HOBJECT_HAS_EXOTIC_BEHAVIOR(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_EXOTIC_BEHAVIOR_FLAGS)
|
|
|
|
#define DUK_HOBJECT_HAS_EXTENSIBLE(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXTENSIBLE)
|
|
#define DUK_HOBJECT_HAS_CONSTRUCTABLE(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_CONSTRUCTABLE)
|
|
#define DUK_HOBJECT_HAS_BOUND(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_BOUND)
|
|
#define DUK_HOBJECT_HAS_COMPILEDFUNCTION(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_COMPILEDFUNCTION)
|
|
#define DUK_HOBJECT_HAS_NATIVEFUNCTION(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
#define DUK_HOBJECT_HAS_THREAD(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_THREAD)
|
|
#define DUK_HOBJECT_HAS_ARRAY_PART(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_ARRAY_PART)
|
|
#define DUK_HOBJECT_HAS_STRICT(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_STRICT)
|
|
#define DUK_HOBJECT_HAS_NOTAIL(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NOTAIL)
|
|
#define DUK_HOBJECT_HAS_NEWENV(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NEWENV)
|
|
#define DUK_HOBJECT_HAS_NAMEBINDING(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NAMEBINDING)
|
|
#define DUK_HOBJECT_HAS_CREATEARGS(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_CREATEARGS)
|
|
#define DUK_HOBJECT_HAS_ENVRECCLOSED(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_ENVRECCLOSED)
|
|
#define DUK_HOBJECT_HAS_EXOTIC_ARRAY(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_ARRAY)
|
|
#define DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ)
|
|
#define DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_ARGUMENTS)
|
|
#define DUK_HOBJECT_HAS_EXOTIC_DUKFUNC(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC)
|
|
#define DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ)
|
|
#define DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(h) DUK_HEAPHDR_CHECK_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_PROXYOBJ)
|
|
|
|
#define DUK_HOBJECT_SET_EXTENSIBLE(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXTENSIBLE)
|
|
#define DUK_HOBJECT_SET_CONSTRUCTABLE(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_CONSTRUCTABLE)
|
|
#define DUK_HOBJECT_SET_BOUND(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_BOUND)
|
|
#define DUK_HOBJECT_SET_COMPILEDFUNCTION(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_COMPILEDFUNCTION)
|
|
#define DUK_HOBJECT_SET_NATIVEFUNCTION(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
#define DUK_HOBJECT_SET_THREAD(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_THREAD)
|
|
#define DUK_HOBJECT_SET_ARRAY_PART(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_ARRAY_PART)
|
|
#define DUK_HOBJECT_SET_STRICT(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_STRICT)
|
|
#define DUK_HOBJECT_SET_NOTAIL(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NOTAIL)
|
|
#define DUK_HOBJECT_SET_NEWENV(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NEWENV)
|
|
#define DUK_HOBJECT_SET_NAMEBINDING(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NAMEBINDING)
|
|
#define DUK_HOBJECT_SET_CREATEARGS(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_CREATEARGS)
|
|
#define DUK_HOBJECT_SET_ENVRECCLOSED(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_ENVRECCLOSED)
|
|
#define DUK_HOBJECT_SET_EXOTIC_ARRAY(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_ARRAY)
|
|
#define DUK_HOBJECT_SET_EXOTIC_STRINGOBJ(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ)
|
|
#define DUK_HOBJECT_SET_EXOTIC_ARGUMENTS(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_ARGUMENTS)
|
|
#define DUK_HOBJECT_SET_EXOTIC_DUKFUNC(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC)
|
|
#define DUK_HOBJECT_SET_EXOTIC_BUFFEROBJ(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ)
|
|
#define DUK_HOBJECT_SET_EXOTIC_PROXYOBJ(h) DUK_HEAPHDR_SET_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_PROXYOBJ)
|
|
|
|
#define DUK_HOBJECT_CLEAR_EXTENSIBLE(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXTENSIBLE)
|
|
#define DUK_HOBJECT_CLEAR_CONSTRUCTABLE(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_CONSTRUCTABLE)
|
|
#define DUK_HOBJECT_CLEAR_BOUND(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_BOUND)
|
|
#define DUK_HOBJECT_CLEAR_COMPILEDFUNCTION(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_COMPILEDFUNCTION)
|
|
#define DUK_HOBJECT_CLEAR_NATIVEFUNCTION(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NATIVEFUNCTION)
|
|
#define DUK_HOBJECT_CLEAR_THREAD(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_THREAD)
|
|
#define DUK_HOBJECT_CLEAR_ARRAY_PART(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_ARRAY_PART)
|
|
#define DUK_HOBJECT_CLEAR_STRICT(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_STRICT)
|
|
#define DUK_HOBJECT_CLEAR_NOTAIL(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NOTAIL)
|
|
#define DUK_HOBJECT_CLEAR_NEWENV(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NEWENV)
|
|
#define DUK_HOBJECT_CLEAR_NAMEBINDING(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_NAMEBINDING)
|
|
#define DUK_HOBJECT_CLEAR_CREATEARGS(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_CREATEARGS)
|
|
#define DUK_HOBJECT_CLEAR_ENVRECCLOSED(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_ENVRECCLOSED)
|
|
#define DUK_HOBJECT_CLEAR_EXOTIC_ARRAY(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_ARRAY)
|
|
#define DUK_HOBJECT_CLEAR_EXOTIC_STRINGOBJ(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ)
|
|
#define DUK_HOBJECT_CLEAR_EXOTIC_ARGUMENTS(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_ARGUMENTS)
|
|
#define DUK_HOBJECT_CLEAR_EXOTIC_DUKFUNC(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC)
|
|
#define DUK_HOBJECT_CLEAR_EXOTIC_BUFFEROBJ(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ)
|
|
#define DUK_HOBJECT_CLEAR_EXOTIC_PROXYOBJ(h) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(h)->hdr, DUK_HOBJECT_FLAG_EXOTIC_PROXYOBJ)
|
|
|
|
/* flags used for property attributes in duk_propdesc and packed flags */
|
|
#define DUK_PROPDESC_FLAG_WRITABLE (1 << 0) /* E5 Section 8.6.1 */
|
|
#define DUK_PROPDESC_FLAG_ENUMERABLE (1 << 1) /* E5 Section 8.6.1 */
|
|
#define DUK_PROPDESC_FLAG_CONFIGURABLE (1 << 2) /* E5 Section 8.6.1 */
|
|
#define DUK_PROPDESC_FLAG_ACCESSOR (1 << 3) /* accessor */
|
|
#define DUK_PROPDESC_FLAG_VIRTUAL (1 << 4) /* property is virtual: used in duk_propdesc, never stored
|
|
* (used by e.g. buffer virtual properties)
|
|
*/
|
|
#define DUK_PROPDESC_FLAGS_MASK (DUK_PROPDESC_FLAG_WRITABLE | \
|
|
DUK_PROPDESC_FLAG_ENUMERABLE | \
|
|
DUK_PROPDESC_FLAG_CONFIGURABLE | \
|
|
DUK_PROPDESC_FLAG_ACCESSOR)
|
|
|
|
/* additional flags which are passed in the same flags argument as property
|
|
* flags but are not stored in object properties.
|
|
*/
|
|
#define DUK_PROPDESC_FLAG_NO_OVERWRITE (1 << 4) /* internal define property: skip write silently if exists */
|
|
|
|
/* convenience */
|
|
#define DUK_PROPDESC_FLAGS_NONE 0
|
|
#define DUK_PROPDESC_FLAGS_W (DUK_PROPDESC_FLAG_WRITABLE)
|
|
#define DUK_PROPDESC_FLAGS_E (DUK_PROPDESC_FLAG_ENUMERABLE)
|
|
#define DUK_PROPDESC_FLAGS_C (DUK_PROPDESC_FLAG_CONFIGURABLE)
|
|
#define DUK_PROPDESC_FLAGS_WE (DUK_PROPDESC_FLAG_WRITABLE | DUK_PROPDESC_FLAG_ENUMERABLE)
|
|
#define DUK_PROPDESC_FLAGS_WC (DUK_PROPDESC_FLAG_WRITABLE | DUK_PROPDESC_FLAG_CONFIGURABLE)
|
|
#define DUK_PROPDESC_FLAGS_EC (DUK_PROPDESC_FLAG_ENUMERABLE | DUK_PROPDESC_FLAG_CONFIGURABLE)
|
|
#define DUK_PROPDESC_FLAGS_WEC (DUK_PROPDESC_FLAG_WRITABLE | \
|
|
DUK_PROPDESC_FLAG_ENUMERABLE | \
|
|
DUK_PROPDESC_FLAG_CONFIGURABLE)
|
|
|
|
/*
|
|
* Macros to access the 'props' allocation.
|
|
*/
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HOBJECT_GET_PROPS(heap,h) \
|
|
((duk_uint8_t *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, ((duk_heaphdr *) (h))->h_extra16))
|
|
#define DUK_HOBJECT_SET_PROPS(heap,h,x) do { \
|
|
((duk_heaphdr *) (h))->h_extra16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (x)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HOBJECT_GET_PROPS(heap,h) \
|
|
((h)->props)
|
|
#define DUK_HOBJECT_SET_PROPS(heap,h,x) do { \
|
|
(h)->props = (x); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HOBJECT_LAYOUT_1)
|
|
/* LAYOUT 1 */
|
|
#define DUK_HOBJECT_E_GET_KEY_BASE(heap,h) \
|
|
((duk_hstring **) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) \
|
|
))
|
|
#define DUK_HOBJECT_E_GET_VALUE_BASE(heap,h) \
|
|
((duk_propvalue *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * sizeof(duk_hstring *) \
|
|
))
|
|
#define DUK_HOBJECT_E_GET_FLAGS_BASE(heap,h) \
|
|
((duk_uint8_t *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_hstring *) + sizeof(duk_propvalue)) \
|
|
))
|
|
#define DUK_HOBJECT_A_GET_BASE(heap,h) \
|
|
((duk_tval *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_hstring *) + sizeof(duk_propvalue) + sizeof(duk_uint8_t)) \
|
|
))
|
|
#define DUK_HOBJECT_H_GET_BASE(heap,h) \
|
|
((duk_uint32_t *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_hstring *) + sizeof(duk_propvalue) + sizeof(duk_uint8_t)) + \
|
|
DUK_HOBJECT_GET_ASIZE((h)) * sizeof(duk_tval) \
|
|
))
|
|
#define DUK_HOBJECT_P_COMPUTE_SIZE(n_ent,n_arr,n_hash) \
|
|
( \
|
|
(n_ent) * (sizeof(duk_hstring *) + sizeof(duk_propvalue) + sizeof(duk_uint8_t)) + \
|
|
(n_arr) * sizeof(duk_tval) + \
|
|
(n_hash) * sizeof(duk_uint32_t) \
|
|
)
|
|
#define DUK_HOBJECT_P_SET_REALLOC_PTRS(p_base,set_e_k,set_e_pv,set_e_f,set_a,set_h,n_ent,n_arr,n_hash) do { \
|
|
(set_e_k) = (duk_hstring **) (p_base); \
|
|
(set_e_pv) = (duk_propvalue *) ((set_e_k) + (n_ent)); \
|
|
(set_e_f) = (duk_uint8_t *) ((set_e_pv) + (n_ent)); \
|
|
(set_a) = (duk_tval *) ((set_e_f) + (n_ent)); \
|
|
(set_h) = (duk_uint32_t *) ((set_a) + (n_arr)); \
|
|
} while (0)
|
|
#elif defined(DUK_USE_HOBJECT_LAYOUT_2)
|
|
/* LAYOUT 2 */
|
|
#if defined(DUK_USE_ALIGN_4)
|
|
#define DUK_HOBJECT_E_FLAG_PADDING(e_sz) ((4 - (e_sz)) & 0x03)
|
|
#elif defined(DUK_USE_ALIGN_8)
|
|
#define DUK_HOBJECT_E_FLAG_PADDING(e_sz) ((8 - (e_sz)) & 0x07)
|
|
#else
|
|
#define DUK_HOBJECT_E_FLAG_PADDING(e_sz) 0
|
|
#endif
|
|
#define DUK_HOBJECT_E_GET_KEY_BASE(heap,h) \
|
|
((duk_hstring **) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * sizeof(duk_propvalue) \
|
|
))
|
|
#define DUK_HOBJECT_E_GET_VALUE_BASE(heap,h) \
|
|
((duk_propvalue *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) \
|
|
))
|
|
#define DUK_HOBJECT_E_GET_FLAGS_BASE(heap,h) \
|
|
((duk_uint8_t *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_hstring *) + sizeof(duk_propvalue)) \
|
|
))
|
|
#define DUK_HOBJECT_A_GET_BASE(heap,h) \
|
|
((duk_tval *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_hstring *) + sizeof(duk_propvalue) + sizeof(duk_uint8_t)) + \
|
|
DUK_HOBJECT_E_FLAG_PADDING(DUK_HOBJECT_GET_ESIZE((h))) \
|
|
))
|
|
#define DUK_HOBJECT_H_GET_BASE(heap,h) \
|
|
((duk_uint32_t *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_hstring *) + sizeof(duk_propvalue) + sizeof(duk_uint8_t)) + \
|
|
DUK_HOBJECT_E_FLAG_PADDING(DUK_HOBJECT_GET_ESIZE((h))) + \
|
|
DUK_HOBJECT_GET_ASIZE((h)) * sizeof(duk_tval) \
|
|
))
|
|
#define DUK_HOBJECT_P_COMPUTE_SIZE(n_ent,n_arr,n_hash) \
|
|
( \
|
|
(n_ent) * (sizeof(duk_hstring *) + sizeof(duk_propvalue) + sizeof(duk_uint8_t)) + \
|
|
DUK_HOBJECT_E_FLAG_PADDING((n_ent)) + \
|
|
(n_arr) * sizeof(duk_tval) + \
|
|
(n_hash) * sizeof(duk_uint32_t) \
|
|
)
|
|
#define DUK_HOBJECT_P_SET_REALLOC_PTRS(p_base,set_e_k,set_e_pv,set_e_f,set_a,set_h,n_ent,n_arr,n_hash) do { \
|
|
(set_e_pv) = (duk_propvalue *) (p_base); \
|
|
(set_e_k) = (duk_hstring **) ((set_e_pv) + (n_ent)); \
|
|
(set_e_f) = (duk_uint8_t *) ((set_e_k) + (n_ent)); \
|
|
(set_a) = (duk_tval *) (((duk_uint8_t *) (set_e_f)) + \
|
|
sizeof(duk_uint8_t) * (n_ent) + \
|
|
DUK_HOBJECT_E_FLAG_PADDING((n_ent))); \
|
|
(set_h) = (duk_uint32_t *) ((set_a) + (n_arr)); \
|
|
} while (0)
|
|
#elif defined(DUK_USE_HOBJECT_LAYOUT_3)
|
|
/* LAYOUT 3 */
|
|
#define DUK_HOBJECT_E_GET_KEY_BASE(heap,h) \
|
|
((duk_hstring **) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * sizeof(duk_propvalue) + \
|
|
DUK_HOBJECT_GET_ASIZE((h)) * sizeof(duk_tval) \
|
|
))
|
|
#define DUK_HOBJECT_E_GET_VALUE_BASE(heap,h) \
|
|
((duk_propvalue *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) \
|
|
))
|
|
#define DUK_HOBJECT_E_GET_FLAGS_BASE(heap,h) \
|
|
((duk_uint8_t *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_propvalue) + sizeof(duk_hstring *)) + \
|
|
DUK_HOBJECT_GET_ASIZE((h)) * sizeof(duk_tval) + \
|
|
DUK_HOBJECT_GET_HSIZE((h)) * sizeof(duk_uint32_t) \
|
|
))
|
|
#define DUK_HOBJECT_A_GET_BASE(heap,h) \
|
|
((duk_tval *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * sizeof(duk_propvalue) \
|
|
))
|
|
#define DUK_HOBJECT_H_GET_BASE(heap,h) \
|
|
((duk_uint32_t *) ( \
|
|
DUK_HOBJECT_GET_PROPS((heap), (h)) + \
|
|
DUK_HOBJECT_GET_ESIZE((h)) * (sizeof(duk_propvalue) + sizeof(duk_hstring *)) + \
|
|
DUK_HOBJECT_GET_ASIZE((h)) * sizeof(duk_tval) \
|
|
))
|
|
#define DUK_HOBJECT_P_COMPUTE_SIZE(n_ent,n_arr,n_hash) \
|
|
( \
|
|
(n_ent) * (sizeof(duk_propvalue) + sizeof(duk_hstring *) + sizeof(duk_uint8_t)) + \
|
|
(n_arr) * sizeof(duk_tval) + \
|
|
(n_hash) * sizeof(duk_uint32_t) \
|
|
)
|
|
#define DUK_HOBJECT_P_SET_REALLOC_PTRS(p_base,set_e_k,set_e_pv,set_e_f,set_a,set_h,n_ent,n_arr,n_hash) do { \
|
|
(set_e_pv) = (duk_propvalue *) (p_base); \
|
|
(set_a) = (duk_tval *) ((set_e_pv) + (n_ent)); \
|
|
(set_e_k) = (duk_hstring **) ((set_a) + (n_arr)); \
|
|
(set_h) = (duk_uint32_t *) ((set_e_k) + (n_ent)); \
|
|
(set_e_f) = (duk_uint8_t *) ((set_h) + (n_hash)); \
|
|
} while (0)
|
|
#else
|
|
#error invalid hobject layout defines
|
|
#endif /* hobject property layout */
|
|
|
|
#define DUK_HOBJECT_E_ALLOC_SIZE(h) \
|
|
DUK_HOBJECT_P_COMPUTE_SIZE(DUK_HOBJECT_GET_ESIZE((h)), DUK_HOBJECT_GET_ASIZE((h)), DUK_HOBJECT_GET_HSIZE((h)))
|
|
|
|
#define DUK_HOBJECT_E_GET_KEY(heap,h,i) (DUK_HOBJECT_E_GET_KEY_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_E_GET_KEY_PTR(heap,h,i) (&DUK_HOBJECT_E_GET_KEY_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_E_GET_VALUE(heap,h,i) (DUK_HOBJECT_E_GET_VALUE_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_E_GET_VALUE_PTR(heap,h,i) (&DUK_HOBJECT_E_GET_VALUE_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_E_GET_VALUE_TVAL(heap,h,i) (DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).v)
|
|
#define DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(heap,h,i) (&DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).v)
|
|
#define DUK_HOBJECT_E_GET_VALUE_GETTER(heap,h,i) (DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).a.get)
|
|
#define DUK_HOBJECT_E_GET_VALUE_GETTER_PTR(heap,h,i) (&DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).a.get)
|
|
#define DUK_HOBJECT_E_GET_VALUE_SETTER(heap,h,i) (DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).a.set)
|
|
#define DUK_HOBJECT_E_GET_VALUE_SETTER_PTR(heap,h,i) (&DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).a.set)
|
|
#define DUK_HOBJECT_E_GET_FLAGS(heap,h,i) (DUK_HOBJECT_E_GET_FLAGS_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_E_GET_FLAGS_PTR(heap,h,i) (&DUK_HOBJECT_E_GET_FLAGS_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_A_GET_VALUE(heap,h,i) (DUK_HOBJECT_A_GET_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_A_GET_VALUE_PTR(heap,h,i) (&DUK_HOBJECT_A_GET_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_H_GET_INDEX(heap,h,i) (DUK_HOBJECT_H_GET_BASE((heap), (h))[(i)])
|
|
#define DUK_HOBJECT_H_GET_INDEX_PTR(heap,h,i) (&DUK_HOBJECT_H_GET_BASE((heap), (h))[(i)])
|
|
|
|
#define DUK_HOBJECT_E_SET_KEY(heap,h,i,k) do { \
|
|
DUK_HOBJECT_E_GET_KEY((heap), (h), (i)) = (k); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_E_SET_VALUE(heap,h,i,v) do { \
|
|
DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)) = (v); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_E_SET_VALUE_TVAL(heap,h,i,v) do { \
|
|
DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).v = (v); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_E_SET_VALUE_GETTER(heap,h,i,v) do { \
|
|
DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).a.get = (v); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_E_SET_VALUE_SETTER(heap,h,i,v) do { \
|
|
DUK_HOBJECT_E_GET_VALUE((heap), (h), (i)).a.set = (v); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_E_SET_FLAGS(heap,h,i,f) do { \
|
|
DUK_HOBJECT_E_GET_FLAGS((heap), (h), (i)) = (f); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_A_SET_VALUE(heap,h,i,v) do { \
|
|
DUK_HOBJECT_A_GET_VALUE((heap), (h), (i)) = (v); \
|
|
} while (0)
|
|
#define DUK_HOBJECT_A_SET_VALUE_TVAL(heap,h,i,v) \
|
|
DUK_HOBJECT_A_SET_VALUE((heap), (h), (i), (v)) /* alias for above */
|
|
#define DUK_HOBJECT_H_SET_INDEX(heap,h,i,v) do { \
|
|
DUK_HOBJECT_H_GET_INDEX((heap), (h), (i)) = (v); \
|
|
} while (0)
|
|
|
|
#define DUK_HOBJECT_E_SET_FLAG_BITS(heap,h,i,mask) do { \
|
|
DUK_HOBJECT_E_GET_FLAGS_BASE((heap), (h))[(i)] |= (mask); \
|
|
} while (0)
|
|
|
|
#define DUK_HOBJECT_E_CLEAR_FLAG_BITS(heap,h,i,mask) do { \
|
|
DUK_HOBJECT_E_GET_FLAGS_BASE((heap), (h))[(i)] &= ~(mask); \
|
|
} while (0)
|
|
|
|
#define DUK_HOBJECT_E_SLOT_IS_WRITABLE(heap,h,i) ((DUK_HOBJECT_E_GET_FLAGS((heap), (h), (i)) & DUK_PROPDESC_FLAG_WRITABLE) != 0)
|
|
#define DUK_HOBJECT_E_SLOT_IS_ENUMERABLE(heap,h,i) ((DUK_HOBJECT_E_GET_FLAGS((heap), (h), (i)) & DUK_PROPDESC_FLAG_ENUMERABLE) != 0)
|
|
#define DUK_HOBJECT_E_SLOT_IS_CONFIGURABLE(heap,h,i) ((DUK_HOBJECT_E_GET_FLAGS((heap), (h), (i)) & DUK_PROPDESC_FLAG_CONFIGURABLE) != 0)
|
|
#define DUK_HOBJECT_E_SLOT_IS_ACCESSOR(heap,h,i) ((DUK_HOBJECT_E_GET_FLAGS((heap), (h), (i)) & DUK_PROPDESC_FLAG_ACCESSOR) != 0)
|
|
|
|
#define DUK_HOBJECT_E_SLOT_SET_WRITABLE(heap,h,i) DUK_HOBJECT_E_SET_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_WRITABLE)
|
|
#define DUK_HOBJECT_E_SLOT_SET_ENUMERABLE(heap,h,i) DUK_HOBJECT_E_SET_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_ENUMERABLE)
|
|
#define DUK_HOBJECT_E_SLOT_SET_CONFIGURABLE(heap,h,i) DUK_HOBJECT_E_SET_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_CONFIGURABLE)
|
|
#define DUK_HOBJECT_E_SLOT_SET_ACCESSOR(heap,h,i) DUK_HOBJECT_E_SET_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_ACCESSOR)
|
|
|
|
#define DUK_HOBJECT_E_SLOT_CLEAR_WRITABLE(heap,h,i) DUK_HOBJECT_E_CLEAR_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_WRITABLE)
|
|
#define DUK_HOBJECT_E_SLOT_CLEAR_ENUMERABLE(heap,h,i) DUK_HOBJECT_E_CLEAR_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_ENUMERABLE)
|
|
#define DUK_HOBJECT_E_SLOT_CLEAR_CONFIGURABLE(heap,h,i) DUK_HOBJECT_E_CLEAR_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_CONFIGURABLE)
|
|
#define DUK_HOBJECT_E_SLOT_CLEAR_ACCESSOR(heap,h,i) DUK_HOBJECT_E_CLEAR_FLAG_BITS((heap), (h), (i),DUK_PROPDESC_FLAG_ACCESSOR)
|
|
|
|
#define DUK_PROPDESC_IS_WRITABLE(p) (((p)->flags & DUK_PROPDESC_FLAG_WRITABLE) != 0)
|
|
#define DUK_PROPDESC_IS_ENUMERABLE(p) (((p)->flags & DUK_PROPDESC_FLAG_ENUMERABLE) != 0)
|
|
#define DUK_PROPDESC_IS_CONFIGURABLE(p) (((p)->flags & DUK_PROPDESC_FLAG_CONFIGURABLE) != 0)
|
|
#define DUK_PROPDESC_IS_ACCESSOR(p) (((p)->flags & DUK_PROPDESC_FLAG_ACCESSOR) != 0)
|
|
|
|
#define DUK_HOBJECT_HASHIDX_UNUSED 0xffffffffUL
|
|
#define DUK_HOBJECT_HASHIDX_DELETED 0xfffffffeUL
|
|
|
|
/*
|
|
* Macros for accessing size fields
|
|
*/
|
|
|
|
#if defined(DUK_USE_OBJSIZES16)
|
|
#define DUK_HOBJECT_GET_ESIZE(h) ((h)->e_size16)
|
|
#define DUK_HOBJECT_SET_ESIZE(h,v) do { (h)->e_size16 = (v); } while (0)
|
|
#define DUK_HOBJECT_GET_ENEXT(h) ((h)->e_next16)
|
|
#define DUK_HOBJECT_SET_ENEXT(h,v) do { (h)->e_next16 = (v); } while (0)
|
|
#define DUK_HOBJECT_POSTINC_ENEXT(h) ((h)->e_next16++)
|
|
#define DUK_HOBJECT_GET_ASIZE(h) ((h)->a_size16)
|
|
#define DUK_HOBJECT_SET_ASIZE(h,v) do { (h)->a_size16 = (v); } while (0)
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
#define DUK_HOBJECT_GET_HSIZE(h) ((h)->h_size16)
|
|
#define DUK_HOBJECT_SET_HSIZE(h,v) do { (h)->h_size16 = (v); } while (0)
|
|
#else
|
|
#define DUK_HOBJECT_GET_HSIZE(h) 0
|
|
#define DUK_HOBJECT_SET_HSIZE(h,v) do { DUK_ASSERT((v) == 0); } while (0)
|
|
#endif
|
|
#else
|
|
#define DUK_HOBJECT_GET_ESIZE(h) ((h)->e_size)
|
|
#define DUK_HOBJECT_SET_ESIZE(h,v) do { (h)->e_size = (v); } while (0)
|
|
#define DUK_HOBJECT_GET_ENEXT(h) ((h)->e_next)
|
|
#define DUK_HOBJECT_SET_ENEXT(h,v) do { (h)->e_next = (v); } while (0)
|
|
#define DUK_HOBJECT_POSTINC_ENEXT(h) ((h)->e_next++)
|
|
#define DUK_HOBJECT_GET_ASIZE(h) ((h)->a_size)
|
|
#define DUK_HOBJECT_SET_ASIZE(h,v) do { (h)->a_size = (v); } while (0)
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
#define DUK_HOBJECT_GET_HSIZE(h) ((h)->h_size)
|
|
#define DUK_HOBJECT_SET_HSIZE(h,v) do { (h)->h_size = (v); } while (0)
|
|
#else
|
|
#define DUK_HOBJECT_GET_HSIZE(h) 0
|
|
#define DUK_HOBJECT_SET_HSIZE(h,v) do { DUK_ASSERT((v) == 0); } while (0)
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
|
|
/* Maximum prototype traversal depth. Sanity limit which handles e.g.
|
|
* prototype loops (even complex ones like 1->2->3->4->2->3->4->2->3->4).
|
|
*/
|
|
#define DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY 10000L
|
|
|
|
/* Maximum traversal depth for "bound function" chains. */
|
|
#define DUK_HOBJECT_BOUND_CHAIN_SANITY 10000L
|
|
|
|
/*
|
|
* Ecmascript [[Class]]
|
|
*/
|
|
|
|
/* range check not necessary because all 4-bit values are mapped */
|
|
#define DUK_HOBJECT_CLASS_NUMBER_TO_STRIDX(n) duk_class_number_to_stridx[(n)]
|
|
|
|
#define DUK_HOBJECT_GET_CLASS_STRING(heap,h) \
|
|
DUK_HEAP_GET_STRING( \
|
|
(heap), \
|
|
DUK_HOBJECT_CLASS_NUMBER_TO_STRIDX(DUK_HOBJECT_GET_CLASS_NUMBER((h))) \
|
|
)
|
|
|
|
/*
|
|
* Macros for property handling
|
|
*/
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HOBJECT_GET_PROTOTYPE(heap,h) \
|
|
((duk_hobject *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (h)->prototype16))
|
|
#define DUK_HOBJECT_SET_PROTOTYPE(heap,h,x) do { \
|
|
(h)->prototype16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (x)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HOBJECT_GET_PROTOTYPE(heap,h) \
|
|
((h)->prototype)
|
|
#define DUK_HOBJECT_SET_PROTOTYPE(heap,h,x) do { \
|
|
(h)->prototype = (x); \
|
|
} while (0)
|
|
#endif
|
|
|
|
/* note: this updates refcounts */
|
|
#define DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr,h,p) duk_hobject_set_prototype((thr), (h), (p))
|
|
|
|
/*
|
|
* Resizing and hash behavior
|
|
*/
|
|
|
|
/* Sanity limit on max number of properties (allocated, not necessarily used).
|
|
* This is somewhat arbitrary, but if we're close to 2**32 properties some
|
|
* algorithms will fail (e.g. hash size selection, next prime selection).
|
|
* Also, we use negative array/entry table indices to indicate 'not found',
|
|
* so anything above 0x80000000 will cause trouble now.
|
|
*/
|
|
#if defined(DUK_USE_OBJSIZES16)
|
|
#define DUK_HOBJECT_MAX_PROPERTIES 0x0000ffffUL
|
|
#else
|
|
#define DUK_HOBJECT_MAX_PROPERTIES 0x7fffffffUL /* 2**31-1 ~= 2G properties */
|
|
#endif
|
|
|
|
/* higher value conserves memory; also note that linear scan is cache friendly */
|
|
#define DUK_HOBJECT_E_USE_HASH_LIMIT 32
|
|
|
|
/* hash size relative to entries size: for value X, approx. hash_prime(e_size + e_size / X) */
|
|
#define DUK_HOBJECT_H_SIZE_DIVISOR 4 /* hash size approx. 1.25 times entries size */
|
|
|
|
/* if new_size < L * old_size, resize without abandon check; L = 3-bit fixed point, e.g. 9 -> 9/8 = 112.5% */
|
|
#define DUK_HOBJECT_A_FAST_RESIZE_LIMIT 9 /* 112.5%, i.e. new size less than 12.5% higher -> fast resize */
|
|
|
|
/* if density < L, abandon array part, L = 3-bit fixed point, e.g. 2 -> 2/8 = 25% */
|
|
/* limit is quite low: one array entry is 8 bytes, one normal entry is 4+1+8+4 = 17 bytes (with hash entry) */
|
|
#define DUK_HOBJECT_A_ABANDON_LIMIT 2 /* 25%, i.e. less than 25% used -> abandon */
|
|
|
|
/* internal align target for props allocation, must be 2*n for some n */
|
|
#if defined(DUK_USE_ALIGN_4)
|
|
#define DUK_HOBJECT_ALIGN_TARGET 4
|
|
#elif defined(DUK_USE_ALIGN_8)
|
|
#define DUK_HOBJECT_ALIGN_TARGET 8
|
|
#else
|
|
#define DUK_HOBJECT_ALIGN_TARGET 1
|
|
#endif
|
|
|
|
/* controls for minimum entry part growth */
|
|
#define DUK_HOBJECT_E_MIN_GROW_ADD 16
|
|
#define DUK_HOBJECT_E_MIN_GROW_DIVISOR 8 /* 2^3 -> 1/8 = 12.5% min growth */
|
|
|
|
/* controls for minimum array part growth */
|
|
#define DUK_HOBJECT_A_MIN_GROW_ADD 16
|
|
#define DUK_HOBJECT_A_MIN_GROW_DIVISOR 8 /* 2^3 -> 1/8 = 12.5% min growth */
|
|
|
|
/* probe sequence */
|
|
#define DUK_HOBJECT_HASH_INITIAL(hash,h_size) ((hash) % (h_size))
|
|
#define DUK_HOBJECT_HASH_PROBE_STEP(hash) DUK_UTIL_GET_HASH_PROBE_STEP((hash))
|
|
|
|
/*
|
|
* PC-to-line constants
|
|
*/
|
|
|
|
#define DUK_PC2LINE_SKIP 64
|
|
|
|
/* maximum length for a SKIP-1 diffstream: 35 bits per entry, rounded up to bytes */
|
|
#define DUK_PC2LINE_MAX_DIFF_LENGTH (((DUK_PC2LINE_SKIP - 1) * 35 + 7) / 8)
|
|
|
|
/*
|
|
* Struct defs
|
|
*/
|
|
|
|
struct duk_propaccessor {
|
|
duk_hobject *get;
|
|
duk_hobject *set;
|
|
};
|
|
|
|
union duk_propvalue {
|
|
/* The get/set pointers could be 16-bit pointer compressed but it
|
|
* would make no difference on 32-bit platforms because duk_tval is
|
|
* 8 bytes or more anyway.
|
|
*/
|
|
duk_tval v;
|
|
duk_propaccessor a;
|
|
};
|
|
|
|
struct duk_propdesc {
|
|
/* read-only values 'lifted' for ease of use */
|
|
duk_small_int_t flags;
|
|
duk_hobject *get;
|
|
duk_hobject *set;
|
|
|
|
/* for updating (all are set to < 0 for virtual properties) */
|
|
duk_int_t e_idx; /* prop index in 'entry part', < 0 if not there */
|
|
duk_int_t h_idx; /* prop index in 'hash part', < 0 if not there */
|
|
duk_int_t a_idx; /* prop index in 'array part', < 0 if not there */
|
|
};
|
|
|
|
struct duk_hobject {
|
|
duk_heaphdr hdr;
|
|
|
|
/*
|
|
* 'props' contains {key,value,flags} entries, optional array entries, and
|
|
* an optional hash lookup table for non-array entries in a single 'sliced'
|
|
* allocation. There are several layout options, which differ slightly in
|
|
* generated code size/speed and alignment/padding; duk_features.h selects
|
|
* the layout used.
|
|
*
|
|
* Layout 1 (DUK_USE_HOBJECT_LAYOUT_1):
|
|
*
|
|
* e_size * sizeof(duk_hstring *) bytes of entry keys (e_next gc reachable)
|
|
* e_size * sizeof(duk_propvalue) bytes of entry values (e_next gc reachable)
|
|
* e_size * sizeof(duk_uint8_t) bytes of entry flags (e_next gc reachable)
|
|
* a_size * sizeof(duk_tval) bytes of (opt) array values (plain only) (all gc reachable)
|
|
* h_size * sizeof(duk_uint32_t) bytes of (opt) hash indexes to entries (e_size),
|
|
* 0xffffffffUL = unused, 0xfffffffeUL = deleted
|
|
*
|
|
* Layout 2 (DUK_USE_HOBJECT_LAYOUT_2):
|
|
*
|
|
* e_size * sizeof(duk_propvalue) bytes of entry values (e_next gc reachable)
|
|
* e_size * sizeof(duk_hstring *) bytes of entry keys (e_next gc reachable)
|
|
* e_size * sizeof(duk_uint8_t) + pad bytes of entry flags (e_next gc reachable)
|
|
* a_size * sizeof(duk_tval) bytes of (opt) array values (plain only) (all gc reachable)
|
|
* h_size * sizeof(duk_uint32_t) bytes of (opt) hash indexes to entries (e_size),
|
|
* 0xffffffffUL = unused, 0xfffffffeUL = deleted
|
|
*
|
|
* Layout 3 (DUK_USE_HOBJECT_LAYOUT_3):
|
|
*
|
|
* e_size * sizeof(duk_propvalue) bytes of entry values (e_next gc reachable)
|
|
* a_size * sizeof(duk_tval) bytes of (opt) array values (plain only) (all gc reachable)
|
|
* e_size * sizeof(duk_hstring *) bytes of entry keys (e_next gc reachable)
|
|
* h_size * sizeof(duk_uint32_t) bytes of (opt) hash indexes to entries (e_size),
|
|
* 0xffffffffUL = unused, 0xfffffffeUL = deleted
|
|
* e_size * sizeof(duk_uint8_t) bytes of entry flags (e_next gc reachable)
|
|
*
|
|
* In layout 1, the 'e_next' count is rounded to 4 or 8 on platforms
|
|
* requiring 4 or 8 byte alignment. This ensures proper alignment
|
|
* for the entries, at the cost of memory footprint. However, it's
|
|
* probably preferable to use another layout on such platforms instead.
|
|
*
|
|
* In layout 2, the key and value parts are swapped to avoid padding
|
|
* the key array on platforms requiring alignment by 8. The flags part
|
|
* is padded to get alignment for array entries. The 'e_next' count does
|
|
* not need to be rounded as in layout 1.
|
|
*
|
|
* In layout 3, entry values and array values are always aligned properly,
|
|
* and assuming pointers are at most 8 bytes, so are the entry keys. Hash
|
|
* indices will be properly aligned (assuming pointers are at least 4 bytes).
|
|
* Finally, flags don't need additional alignment. This layout provides
|
|
* compact allocations without padding (even on platforms with alignment
|
|
* requirements) at the cost of a bit slower lookups.
|
|
*
|
|
* Objects with few keys don't have a hash index; keys are looked up linearly,
|
|
* which is cache efficient because the keys are consecutive. Larger objects
|
|
* have a hash index part which contains integer indexes to the entries part.
|
|
*
|
|
* A single allocation reduces memory allocation overhead but requires more
|
|
* work when any part needs to be resized. A sliced allocation for entries
|
|
* makes linear key matching faster on most platforms (more locality) and
|
|
* skimps on flags size (which would be followed by 3 bytes of padding in
|
|
* most architectures if entries were placed in a struct).
|
|
*
|
|
* 'props' also contains internal properties distinguished with a non-BMP
|
|
* prefix. Often used properties should be placed early in 'props' whenever
|
|
* possible to make accessing them as fast a possible.
|
|
*/
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* Located in duk_heaphdr h_extra16. Subclasses of duk_hobject (like
|
|
* duk_hcompiledfunction) are not free to use h_extra16 for this reason.
|
|
*/
|
|
#else
|
|
duk_uint8_t *props;
|
|
#endif
|
|
|
|
/* prototype: the only internal property lifted outside 'e' as it is so central */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t prototype16;
|
|
#else
|
|
duk_hobject *prototype;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_OBJSIZES16)
|
|
duk_uint16_t e_size16;
|
|
duk_uint16_t e_next16;
|
|
duk_uint16_t a_size16;
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
duk_uint16_t h_size16;
|
|
#endif
|
|
#else
|
|
duk_uint32_t e_size; /* entry part size */
|
|
duk_uint32_t e_next; /* index for next new key ([0,e_next[ are gc reachable) */
|
|
duk_uint32_t a_size; /* array part size (entirely gc reachable) */
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
duk_uint32_t h_size; /* hash part size or 0 if unused */
|
|
#endif
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Exposed data
|
|
*/
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL duk_uint8_t duk_class_number_to_stridx[32];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
/* alloc and init */
|
|
DUK_INTERNAL_DECL duk_hobject *duk_hobject_alloc(duk_heap *heap, duk_uint_t hobject_flags);
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL_DECL duk_hobject *duk_hobject_alloc_checked(duk_hthread *thr, duk_uint_t hobject_flags);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_hcompiledfunction *duk_hcompiledfunction_alloc(duk_heap *heap, duk_uint_t hobject_flags);
|
|
DUK_INTERNAL_DECL duk_hnativefunction *duk_hnativefunction_alloc(duk_heap *heap, duk_uint_t hobject_flags);
|
|
DUK_INTERNAL_DECL duk_hthread *duk_hthread_alloc(duk_heap *heap, duk_uint_t hobject_flags);
|
|
|
|
/* low-level property functions */
|
|
DUK_INTERNAL_DECL void duk_hobject_find_existing_entry(duk_heap *heap, duk_hobject *obj, duk_hstring *key, duk_int_t *e_idx, duk_int_t *h_idx);
|
|
DUK_INTERNAL_DECL duk_tval *duk_hobject_find_existing_entry_tval_ptr(duk_heap *heap, duk_hobject *obj, duk_hstring *key);
|
|
DUK_INTERNAL_DECL duk_tval *duk_hobject_find_existing_entry_tval_ptr_and_attrs(duk_heap *heap, duk_hobject *obj, duk_hstring *key, duk_int_t *out_attrs);
|
|
DUK_INTERNAL_DECL duk_tval *duk_hobject_find_existing_array_entry_tval_ptr(duk_heap *heap, duk_hobject *obj, duk_uarridx_t i);
|
|
|
|
/* core property functions */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_getprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_putprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key, duk_tval *tv_val, duk_bool_t throw_flag);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_delprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key, duk_bool_t throw_flag);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_hasprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key);
|
|
|
|
/* internal property functions */
|
|
#define DUK_DELPROP_FLAG_THROW (1 << 0)
|
|
#define DUK_DELPROP_FLAG_FORCE (1 << 1)
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_delprop_raw(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_hasprop_raw(duk_hthread *thr, duk_hobject *obj, duk_hstring *key);
|
|
DUK_INTERNAL_DECL void duk_hobject_define_property_internal(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL void duk_hobject_define_property_internal_arridx(duk_hthread *thr, duk_hobject *obj, duk_uarridx_t arr_idx, duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL void duk_hobject_define_accessor_internal(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_hobject *getter, duk_hobject *setter, duk_small_uint_t propflags);
|
|
DUK_INTERNAL_DECL void duk_hobject_set_length(duk_hthread *thr, duk_hobject *obj, duk_uint32_t length); /* XXX: duk_uarridx_t? */
|
|
DUK_INTERNAL_DECL void duk_hobject_set_length_zero(duk_hthread *thr, duk_hobject *obj);
|
|
DUK_INTERNAL_DECL duk_uint32_t duk_hobject_get_length(duk_hthread *thr, duk_hobject *obj); /* XXX: duk_uarridx_t? */
|
|
|
|
/* helpers for defineProperty() and defineProperties() */
|
|
DUK_INTERNAL_DECL
|
|
void duk_hobject_prepare_property_descriptor(duk_context *ctx,
|
|
duk_idx_t idx_in,
|
|
duk_uint_t *out_defprop_flags,
|
|
duk_idx_t *out_idx_value,
|
|
duk_hobject **out_getter,
|
|
duk_hobject **out_setter);
|
|
DUK_INTERNAL_DECL
|
|
void duk_hobject_define_property_helper(duk_context *ctx,
|
|
duk_uint_t defprop_flags,
|
|
duk_hobject *obj,
|
|
duk_hstring *key,
|
|
duk_idx_t idx_value,
|
|
duk_hobject *get,
|
|
duk_hobject *set);
|
|
|
|
/* Object built-in methods */
|
|
DUK_INTERNAL_DECL duk_ret_t duk_hobject_object_get_own_property_descriptor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL void duk_hobject_object_seal_freeze_helper(duk_hthread *thr, duk_hobject *obj, duk_bool_t is_freeze);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_object_is_sealed_frozen_helper(duk_hthread *thr, duk_hobject *obj, duk_bool_t is_frozen);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_object_ownprop_helper(duk_context *ctx, duk_small_uint_t required_desc_flags);
|
|
|
|
/* internal properties */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_get_internal_value(duk_heap *heap, duk_hobject *obj, duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_hstring *duk_hobject_get_internal_value_string(duk_heap *heap, duk_hobject *obj);
|
|
DUK_INTERNAL_DECL duk_hbuffer *duk_hobject_get_internal_value_buffer(duk_heap *heap, duk_hobject *obj);
|
|
|
|
/* hobject management functions */
|
|
DUK_INTERNAL_DECL void duk_hobject_compact_props(duk_hthread *thr, duk_hobject *obj);
|
|
|
|
/* ES6 proxy */
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_proxy_check(duk_hthread *thr, duk_hobject *obj, duk_hobject **out_target, duk_hobject **out_handler);
|
|
#endif
|
|
|
|
/* enumeration */
|
|
DUK_INTERNAL_DECL void duk_hobject_enumerator_create(duk_context *ctx, duk_small_uint_t enum_flags);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_hobject_get_enumerated_keys(duk_context *ctx, duk_small_uint_t enum_flags);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_enumerator_next(duk_context *ctx, duk_bool_t get_value);
|
|
|
|
/* macros */
|
|
DUK_INTERNAL_DECL void duk_hobject_set_prototype(duk_hthread *thr, duk_hobject *h, duk_hobject *p);
|
|
|
|
/* finalization */
|
|
DUK_INTERNAL_DECL void duk_hobject_run_finalizer(duk_hthread *thr, duk_hobject *obj);
|
|
|
|
/* pc2line */
|
|
#if defined(DUK_USE_PC2LINE)
|
|
DUK_INTERNAL_DECL void duk_hobject_pc2line_pack(duk_hthread *thr, duk_compiler_instr *instrs, duk_uint_fast32_t length);
|
|
DUK_INTERNAL_DECL duk_uint_fast32_t duk_hobject_pc2line_query(duk_context *ctx, duk_idx_t idx_func, duk_uint_fast32_t pc);
|
|
#endif
|
|
|
|
/* misc */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hobject_prototype_chain_contains(duk_hthread *thr, duk_hobject *h, duk_hobject *p, duk_bool_t ignore_loop);
|
|
|
|
#endif /* DUK_HOBJECT_H_INCLUDED */
|
|
#line 1 "duk_hcompiledfunction.h"
|
|
/*
|
|
* Heap compiled function (Ecmascript function) representation.
|
|
*
|
|
* There is a single data buffer containing the Ecmascript function's
|
|
* bytecode, constants, and inner functions.
|
|
*/
|
|
|
|
#ifndef DUK_HCOMPILEDFUNCTION_H_INCLUDED
|
|
#define DUK_HCOMPILEDFUNCTION_H_INCLUDED
|
|
|
|
/*
|
|
* Field accessor macros
|
|
*/
|
|
|
|
/* XXX: casts could be improved, especially for GET/SET DATA */
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HCOMPILEDFUNCTION_GET_DATA(heap,h) \
|
|
((duk_hbuffer_fixed *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (h)->data16))
|
|
#define DUK_HCOMPILEDFUNCTION_SET_DATA(heap,h,v) do { \
|
|
(h)->data16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (v)); \
|
|
} while (0)
|
|
#define DUK_HCOMPILEDFUNCTION_GET_FUNCS(heap,h) \
|
|
((duk_hobject **) (DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (h)->funcs16)))
|
|
#define DUK_HCOMPILEDFUNCTION_SET_FUNCS(heap,h,v) do { \
|
|
(h)->funcs16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (v)); \
|
|
} while (0)
|
|
#define DUK_HCOMPILEDFUNCTION_GET_BYTECODE(heap,h) \
|
|
((duk_instr_t *) (DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (h)->bytecode16)))
|
|
#define DUK_HCOMPILEDFUNCTION_SET_BYTECODE(heap,h,v) do { \
|
|
(h)->bytecode16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (v)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HCOMPILEDFUNCTION_GET_DATA(heap,h) \
|
|
((duk_hbuffer_fixed *) (h)->data)
|
|
#define DUK_HCOMPILEDFUNCTION_SET_DATA(heap,h,v) do { \
|
|
(h)->data = (duk_hbuffer *) (v); \
|
|
} while (0)
|
|
#define DUK_HCOMPILEDFUNCTION_GET_FUNCS(heap,h) \
|
|
((h)->funcs)
|
|
#define DUK_HCOMPILEDFUNCTION_SET_FUNCS(heap,h,v) do { \
|
|
(h)->funcs = (v); \
|
|
} while (0)
|
|
#define DUK_HCOMPILEDFUNCTION_GET_BYTECODE(heap,h) \
|
|
((h)->bytecode)
|
|
#define DUK_HCOMPILEDFUNCTION_SET_BYTECODE(heap,h,v) do { \
|
|
(h)->bytecode = (v); \
|
|
} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* Accessor macros for function specific data areas
|
|
*/
|
|
|
|
/* Note: assumes 'data' is always a fixed buffer */
|
|
#define DUK_HCOMPILEDFUNCTION_GET_BUFFER_BASE(heap,h) \
|
|
DUK_HBUFFER_FIXED_GET_DATA_PTR((heap), DUK_HCOMPILEDFUNCTION_GET_DATA((heap), (h)))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(heap,h) \
|
|
((duk_tval *) DUK_HCOMPILEDFUNCTION_GET_BUFFER_BASE((heap), (h)))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(heap,h) \
|
|
DUK_HCOMPILEDFUNCTION_GET_FUNCS((heap), (h))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CODE_BASE(heap,h) \
|
|
DUK_HCOMPILEDFUNCTION_GET_BYTECODE((heap), (h))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CONSTS_END(heap,h) \
|
|
((duk_tval *) DUK_HCOMPILEDFUNCTION_GET_FUNCS((heap), (h)))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_FUNCS_END(heap,h) \
|
|
((duk_hobject **) DUK_HCOMPILEDFUNCTION_GET_BYTECODE((heap), (h)))
|
|
|
|
/* XXX: double evaluation of DUK_HCOMPILEDFUNCTION_GET_DATA() */
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CODE_END(heap,h) \
|
|
((duk_instr_t *) (DUK_HBUFFER_FIXED_GET_DATA_PTR((heap), DUK_HCOMPILEDFUNCTION_GET_DATA((heap), (h))) + \
|
|
DUK_HBUFFER_GET_SIZE((duk_hbuffer *) DUK_HCOMPILEDFUNCTION_GET_DATA((heap), h))))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CONSTS_SIZE(heap,h) \
|
|
( \
|
|
(duk_size_t) \
|
|
( \
|
|
((const duk_uint8_t *) DUK_HCOMPILEDFUNCTION_GET_CONSTS_END((heap), (h))) - \
|
|
((const duk_uint8_t *) DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE((heap), (h))) \
|
|
) \
|
|
)
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_FUNCS_SIZE(heap,h) \
|
|
( \
|
|
(duk_size_t) \
|
|
( \
|
|
((const duk_uint8_t *) DUK_HCOMPILEDFUNCTION_GET_FUNCS_END((heap), (h))) - \
|
|
((const duk_uint8_t *) DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE((heap), (h))) \
|
|
) \
|
|
)
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CODE_SIZE(heap,h) \
|
|
( \
|
|
(duk_size_t) \
|
|
( \
|
|
((const duk_uint8_t *) DUK_HCOMPILEDFUNCTION_GET_CODE_END((heap),(h))) - \
|
|
((const duk_uint8_t *) DUK_HCOMPILEDFUNCTION_GET_CODE_BASE((heap),(h))) \
|
|
) \
|
|
)
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CONSTS_COUNT(heap,h) \
|
|
((duk_size_t) (DUK_HCOMPILEDFUNCTION_GET_CONSTS_SIZE((heap), (h)) / sizeof(duk_tval)))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_FUNCS_COUNT(heap,h) \
|
|
((duk_size_t) (DUK_HCOMPILEDFUNCTION_GET_FUNCS_SIZE((heap), (h)) / sizeof(duk_hobject *)))
|
|
|
|
#define DUK_HCOMPILEDFUNCTION_GET_CODE_COUNT(heap,h) \
|
|
((duk_size_t) (DUK_HCOMPILEDFUNCTION_GET_CODE_SIZE((heap), (h)) / sizeof(duk_instr_t)))
|
|
|
|
|
|
/*
|
|
* Main struct
|
|
*/
|
|
|
|
struct duk_hcompiledfunction {
|
|
/* shared object part */
|
|
duk_hobject obj;
|
|
|
|
/*
|
|
* Pointers to function data area for faster access. Function
|
|
* data is a buffer shared between all closures of the same
|
|
* "template" function. The data buffer is always fixed (non-
|
|
* dynamic, hence stable), with a layout as follows:
|
|
*
|
|
* constants (duk_tval)
|
|
* inner functions (duk_hobject *)
|
|
* bytecode (duk_instr_t)
|
|
*
|
|
* Note: bytecode end address can be computed from 'data' buffer
|
|
* size. It is not strictly necessary functionally, assuming
|
|
* bytecode never jumps outside its allocated area. However,
|
|
* it's a safety/robustness feature for avoiding the chance of
|
|
* executing random data as bytecode due to a compiler error.
|
|
*
|
|
* Note: values in the data buffer must be incref'd (they will
|
|
* be decref'd on release) for every compiledfunction referring
|
|
* to the 'data' element.
|
|
*/
|
|
|
|
/* Data area, fixed allocation, stable data ptrs. */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t data16;
|
|
#else
|
|
duk_hbuffer *data;
|
|
#endif
|
|
|
|
/* No need for constants pointer (= same as data).
|
|
*
|
|
* When using 16-bit packing alignment to 4 is nice. 'funcs' will be
|
|
* 4-byte aligned because 'constants' are duk_tvals. For now the
|
|
* inner function pointers are not compressed, so that 'bytecode' will
|
|
* also be 4-byte aligned.
|
|
*/
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t funcs16;
|
|
duk_uint16_t bytecode16;
|
|
#else
|
|
duk_hobject **funcs;
|
|
duk_instr_t *bytecode;
|
|
#endif
|
|
|
|
/*
|
|
* 'nregs' registers are allocated on function entry, at most 'nargs'
|
|
* are initialized to arguments, and the rest to undefined. Arguments
|
|
* above 'nregs' are not mapped to registers. All registers in the
|
|
* active stack range must be initialized because they are GC reachable.
|
|
* 'nargs' is needed so that if the function is given more than 'nargs'
|
|
* arguments, the additional arguments do not 'clobber' registers
|
|
* beyond 'nregs' which must be consistently initialized to undefined.
|
|
*
|
|
* Usually there is no need to know which registers are mapped to
|
|
* local variables. Registers may be allocated to variable in any
|
|
* way (even including gaps). However, a register-variable mapping
|
|
* must be the same for the duration of the function execution and
|
|
* the register cannot be used for anything else.
|
|
*
|
|
* When looking up variables by name, the '_Varmap' map is used.
|
|
* When an activation closes, registers mapped to arguments are
|
|
* copied into the environment record based on the same map. The
|
|
* reverse map (from register to variable) is not currently needed
|
|
* at run time, except for debugging, so it is not maintained.
|
|
*/
|
|
|
|
duk_uint16_t nregs; /* regs to allocate */
|
|
duk_uint16_t nargs; /* number of arguments allocated to regs */
|
|
|
|
/*
|
|
* Additional control information is placed into the object itself
|
|
* as internal properties to avoid unnecessary fields for the
|
|
* majority of functions. The compiler tries to omit internal
|
|
* control fields when possible.
|
|
*
|
|
* Function templates:
|
|
*
|
|
* {
|
|
* name: "func", // declaration, named function expressions
|
|
* fileName: <debug info for creating nice errors>
|
|
* _Varmap: { "arg1": 0, "arg2": 1, "varname": 2 },
|
|
* _Formals: [ "arg1", "arg2" ],
|
|
* _Source: "function func(arg1, arg2) { ... }",
|
|
* _Pc2line: <debug info for pc-to-line mapping>,
|
|
* }
|
|
*
|
|
* Function instances:
|
|
*
|
|
* {
|
|
* length: 2,
|
|
* prototype: { constructor: <func> },
|
|
* caller: <thrower>,
|
|
* arguments: <thrower>,
|
|
* name: "func", // declaration, named function expressions
|
|
* fileName: <debug info for creating nice errors>
|
|
* _Varmap: { "arg1": 0, "arg2": 1, "varname": 2 },
|
|
* _Formals: [ "arg1", "arg2" ],
|
|
* _Source: "function func(arg1, arg2) { ... }",
|
|
* _Pc2line: <debug info for pc-to-line mapping>,
|
|
* _Varenv: <variable environment of closure>,
|
|
* _Lexenv: <lexical environment of closure (if differs from _Varenv)>
|
|
* }
|
|
*
|
|
* More detailed description of these properties can be found
|
|
* in the documentation.
|
|
*/
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
/* Line number range for function. Needed during debugging to
|
|
* determine active breakpoints.
|
|
*/
|
|
duk_uint32_t start_line;
|
|
duk_uint32_t end_line;
|
|
#endif
|
|
};
|
|
|
|
#endif /* DUK_HCOMPILEDFUNCTION_H_INCLUDED */
|
|
#line 1 "duk_hnativefunction.h"
|
|
/*
|
|
* Heap native function representation.
|
|
*/
|
|
|
|
#ifndef DUK_HNATIVEFUNCTION_H_INCLUDED
|
|
#define DUK_HNATIVEFUNCTION_H_INCLUDED
|
|
|
|
#define DUK_HNATIVEFUNCTION_NARGS_VARARGS ((duk_int16_t) -1)
|
|
#define DUK_HNATIVEFUNCTION_NARGS_MAX ((duk_int16_t) 0x7fff)
|
|
|
|
struct duk_hnativefunction {
|
|
/* shared object part */
|
|
duk_hobject obj;
|
|
|
|
duk_c_function func;
|
|
duk_int16_t nargs;
|
|
duk_int16_t magic;
|
|
|
|
/* The 'magic' field allows an opaque 16-bit field to be accessed by the
|
|
* Duktape/C function. This allows, for instance, the same native function
|
|
* to be used for a set of very similar functions, with the 'magic' field
|
|
* providing the necessary non-argument flags / values to guide the behavior
|
|
* of the native function. The value is signed on purpose: it is easier to
|
|
* convert a signed value to unsigned (simply AND with 0xffff) than vice
|
|
* versa.
|
|
*
|
|
* Note: cannot place nargs/magic into the heaphdr flags, because
|
|
* duk_hobject takes almost all flags already (and needs the spare).
|
|
*/
|
|
};
|
|
|
|
#endif /* DUK_HNATIVEFUNCTION_H_INCLUDED */
|
|
#line 1 "duk_hthread.h"
|
|
/*
|
|
* Heap thread object representation.
|
|
*
|
|
* duk_hthread is also the 'context' (duk_context) for exposed APIs
|
|
* which mostly operate on the topmost frame of the value stack.
|
|
*/
|
|
|
|
#ifndef DUK_HTHREAD_H_INCLUDED
|
|
#define DUK_HTHREAD_H_INCLUDED
|
|
|
|
/*
|
|
* Stack constants
|
|
*/
|
|
|
|
#define DUK_VALSTACK_GROW_STEP 128 /* roughly 1 kiB */
|
|
#define DUK_VALSTACK_SHRINK_THRESHOLD 256 /* roughly 2 kiB */
|
|
#define DUK_VALSTACK_SHRINK_SPARE 64 /* roughly 0.5 kiB */
|
|
#define DUK_VALSTACK_INITIAL_SIZE 128 /* roughly 1.0 kiB -> but rounds up to DUK_VALSTACK_GROW_STEP in practice */
|
|
#define DUK_VALSTACK_INTERNAL_EXTRA 64 /* internal extra elements assumed on function entry,
|
|
* always added to user-defined 'extra' for e.g. the
|
|
* duk_check_stack() call.
|
|
*/
|
|
#define DUK_VALSTACK_API_ENTRY_MINIMUM DUK_API_ENTRY_STACK
|
|
/* number of elements guaranteed to be user accessible
|
|
* (in addition to call arguments) on Duktape/C function entry.
|
|
*/
|
|
|
|
/* Note: DUK_VALSTACK_INITIAL_SIZE must be >= DUK_VALSTACK_API_ENTRY_MINIMUM
|
|
* + DUK_VALSTACK_INTERNAL_EXTRA so that the initial stack conforms to spare
|
|
* requirements.
|
|
*/
|
|
|
|
#define DUK_VALSTACK_DEFAULT_MAX 1000000L
|
|
|
|
#define DUK_CALLSTACK_GROW_STEP 8 /* roughly 256 bytes */
|
|
#define DUK_CALLSTACK_SHRINK_THRESHOLD 16 /* roughly 512 bytes */
|
|
#define DUK_CALLSTACK_SHRINK_SPARE 8 /* roughly 256 bytes */
|
|
#define DUK_CALLSTACK_INITIAL_SIZE 8
|
|
#define DUK_CALLSTACK_DEFAULT_MAX 10000L
|
|
|
|
#define DUK_CATCHSTACK_GROW_STEP 4 /* roughly 64 bytes */
|
|
#define DUK_CATCHSTACK_SHRINK_THRESHOLD 8 /* roughly 128 bytes */
|
|
#define DUK_CATCHSTACK_SHRINK_SPARE 4 /* roughly 64 bytes */
|
|
#define DUK_CATCHSTACK_INITIAL_SIZE 4
|
|
#define DUK_CATCHSTACK_DEFAULT_MAX 10000L
|
|
|
|
/*
|
|
* Activation defines
|
|
*/
|
|
|
|
#define DUK_ACT_FLAG_STRICT (1 << 0) /* function executes in strict mode */
|
|
#define DUK_ACT_FLAG_TAILCALLED (1 << 1) /* activation has tailcalled one or more times */
|
|
#define DUK_ACT_FLAG_CONSTRUCT (1 << 2) /* function executes as a constructor (called via "new") */
|
|
#define DUK_ACT_FLAG_PREVENT_YIELD (1 << 3) /* activation prevents yield (native call or "new") */
|
|
#define DUK_ACT_FLAG_DIRECT_EVAL (1 << 4) /* activation is a direct eval call */
|
|
#define DUK_ACT_FLAG_BREAKPOINT_ACTIVE (1 << 5) /* activation has active breakpoint(s) */
|
|
|
|
#define DUK_ACT_GET_FUNC(act) ((act)->func)
|
|
|
|
/*
|
|
* Flags for __FILE__ / __LINE__ registered into tracedata
|
|
*/
|
|
|
|
#define DUK_TB_FLAG_NOBLAME_FILELINE (1 << 0) /* don't report __FILE__ / __LINE__ as fileName/lineNumber */
|
|
|
|
/*
|
|
* Catcher defines
|
|
*/
|
|
|
|
/* flags field: LLLLLLFT, L = label (24 bits), F = flags (4 bits), T = type (4 bits) */
|
|
#define DUK_CAT_TYPE_MASK 0x0000000fUL
|
|
#define DUK_CAT_TYPE_BITS 4
|
|
#define DUK_CAT_LABEL_MASK 0xffffff00UL
|
|
#define DUK_CAT_LABEL_BITS 24
|
|
#define DUK_CAT_LABEL_SHIFT 8
|
|
|
|
#define DUK_CAT_FLAG_CATCH_ENABLED (1 << 4) /* catch part will catch */
|
|
#define DUK_CAT_FLAG_FINALLY_ENABLED (1 << 5) /* finally part will catch */
|
|
#define DUK_CAT_FLAG_CATCH_BINDING_ENABLED (1 << 6) /* request to create catch binding */
|
|
#define DUK_CAT_FLAG_LEXENV_ACTIVE (1 << 7) /* catch or with binding is currently active */
|
|
|
|
#define DUK_CAT_TYPE_UNKNOWN 0
|
|
#define DUK_CAT_TYPE_TCF 1
|
|
#define DUK_CAT_TYPE_LABEL 2
|
|
|
|
#define DUK_CAT_GET_TYPE(c) ((c)->flags & DUK_CAT_TYPE_MASK)
|
|
#define DUK_CAT_GET_LABEL(c) (((c)->flags & DUK_CAT_LABEL_MASK) >> DUK_CAT_LABEL_SHIFT)
|
|
|
|
#define DUK_CAT_HAS_CATCH_ENABLED(c) ((c)->flags & DUK_CAT_FLAG_CATCH_ENABLED)
|
|
#define DUK_CAT_HAS_FINALLY_ENABLED(c) ((c)->flags & DUK_CAT_FLAG_FINALLY_ENABLED)
|
|
#define DUK_CAT_HAS_CATCH_BINDING_ENABLED(c) ((c)->flags & DUK_CAT_FLAG_CATCH_BINDING_ENABLED)
|
|
#define DUK_CAT_HAS_LEXENV_ACTIVE(c) ((c)->flags & DUK_CAT_FLAG_LEXENV_ACTIVE)
|
|
|
|
#define DUK_CAT_SET_CATCH_ENABLED(c) do { \
|
|
(c)->flags |= DUK_CAT_FLAG_CATCH_ENABLED; \
|
|
} while (0)
|
|
#define DUK_CAT_SET_FINALLY_ENABLED(c) do { \
|
|
(c)->flags |= DUK_CAT_FLAG_FINALLY_ENABLED; \
|
|
} while (0)
|
|
#define DUK_CAT_SET_CATCH_BINDING_ENABLED(c) do { \
|
|
(c)->flags |= DUK_CAT_FLAG_CATCH_BINDING_ENABLED; \
|
|
} while (0)
|
|
#define DUK_CAT_SET_LEXENV_ACTIVE(c) do { \
|
|
(c)->flags |= DUK_CAT_FLAG_LEXENV_ACTIVE; \
|
|
} while (0)
|
|
|
|
#define DUK_CAT_CLEAR_CATCH_ENABLED(c) do { \
|
|
(c)->flags &= ~DUK_CAT_FLAG_CATCH_ENABLED; \
|
|
} while (0)
|
|
#define DUK_CAT_CLEAR_FINALLY_ENABLED(c) do { \
|
|
(c)->flags &= ~DUK_CAT_FLAG_FINALLY_ENABLED; \
|
|
} while (0)
|
|
#define DUK_CAT_CLEAR_CATCH_BINDING_ENABLED(c) do { \
|
|
(c)->flags &= ~DUK_CAT_FLAG_CATCH_BINDING_ENABLED; \
|
|
} while (0)
|
|
#define DUK_CAT_CLEAR_LEXENV_ACTIVE(c) do { \
|
|
(c)->flags &= ~DUK_CAT_FLAG_LEXENV_ACTIVE; \
|
|
} while (0)
|
|
|
|
/*
|
|
* Thread defines
|
|
*/
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HTHREAD_GET_STRING(thr,idx) \
|
|
((duk_hstring *) DUK_USE_HEAPPTR_DEC16((thr)->heap->heap_udata, (thr)->strs16[(idx)]))
|
|
#else
|
|
#define DUK_HTHREAD_GET_STRING(thr,idx) \
|
|
((thr)->strs[(idx)])
|
|
#endif
|
|
|
|
#define DUK_HTHREAD_GET_CURRENT_ACTIVATION(thr) (&(thr)->callstack[(thr)->callstack_top - 1])
|
|
|
|
/* values for the state field */
|
|
#define DUK_HTHREAD_STATE_INACTIVE 1 /* thread not currently running */
|
|
#define DUK_HTHREAD_STATE_RUNNING 2 /* thread currently running (only one at a time) */
|
|
#define DUK_HTHREAD_STATE_RESUMED 3 /* thread resumed another thread (active but not running) */
|
|
#define DUK_HTHREAD_STATE_YIELDED 4 /* thread has yielded */
|
|
#define DUK_HTHREAD_STATE_TERMINATED 5 /* thread has terminated */
|
|
|
|
/*
|
|
* Struct defines
|
|
*/
|
|
|
|
/* XXX: for a memory-code tradeoff, remove 'func' and make it's access either a function
|
|
* or a macro. This would make the activation 32 bytes long on 32-bit platforms again.
|
|
*/
|
|
|
|
/* Note: it's nice if size is 2^N (at least for 32-bit platforms). */
|
|
struct duk_activation {
|
|
duk_tval tv_func; /* borrowed: full duk_tval for function being executed; for lightfuncs */
|
|
duk_hobject *func; /* borrowed: function being executed; for bound function calls, this is the final, real function, NULL for lightfuncs */
|
|
duk_hobject *var_env; /* current variable environment (may be NULL if delayed) */
|
|
duk_hobject *lex_env; /* current lexical environment (may be NULL if delayed) */
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
/* Previous value of 'func' caller, restored when unwound. Only in use
|
|
* when 'func' is non-strict.
|
|
*/
|
|
duk_hobject *prev_caller;
|
|
#endif
|
|
|
|
duk_small_uint_t flags;
|
|
duk_uint32_t pc; /* next instruction to execute */
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
duk_uint32_t prev_line; /* needed for stepping */
|
|
#endif
|
|
|
|
/* idx_bottom and idx_retval are only used for book-keeping of
|
|
* Ecmascript-initiated calls, to allow returning to an Ecmascript
|
|
* function properly. They are duk_size_t to match the convention
|
|
* that value stack sizes are duk_size_t and local frame indices
|
|
* are duk_idx_t.
|
|
*/
|
|
|
|
/* Bottom of valstack for this activation, used to reset
|
|
* valstack_bottom on return; index is absolute. Note:
|
|
* idx_top not needed because top is set to 'nregs' always
|
|
* when returning to an Ecmascript activation.
|
|
*/
|
|
duk_size_t idx_bottom;
|
|
|
|
/* Return value when returning to this activation (points to caller
|
|
* reg, not callee reg); index is absolute (only set if activation is
|
|
* not topmost).
|
|
*
|
|
* Note: idx_bottom is always set, while idx_retval is only applicable
|
|
* for activations below the topmost one. Currently idx_retval for
|
|
* the topmost activation is considered garbage (and it not initialized
|
|
* on entry or cleared on return; may contain previous or garbage
|
|
* values).
|
|
*/
|
|
duk_size_t idx_retval;
|
|
|
|
/* Current 'this' binding is the value just below idx_bottom.
|
|
* Previously, 'this' binding was handled with an index to the
|
|
* (calling) valstack. This works for everything except tail
|
|
* calls, which must not "cumulate" valstack temps.
|
|
*/
|
|
};
|
|
|
|
/* Note: it's nice if size is 2^N (not 4x4 = 16 bytes on 32 bit) */
|
|
struct duk_catcher {
|
|
duk_hstring *h_varname; /* borrowed reference to catch variable name (or NULL if none) */
|
|
/* (reference is valid as long activation exists) */
|
|
duk_size_t callstack_index; /* callstack index of related activation */
|
|
duk_size_t idx_base; /* idx_base and idx_base+1 get completion value and type */
|
|
duk_uint32_t pc_base; /* resume execution from pc_base or pc_base+1 */
|
|
duk_uint32_t flags; /* type and control flags, label number */
|
|
};
|
|
|
|
struct duk_hthread {
|
|
/* shared object part */
|
|
duk_hobject obj;
|
|
|
|
/* backpointers */
|
|
duk_heap *heap;
|
|
|
|
/* current strictness flag: affects API calls */
|
|
duk_uint8_t strict;
|
|
duk_uint8_t state;
|
|
duk_uint8_t unused1;
|
|
duk_uint8_t unused2;
|
|
|
|
/* sanity limits */
|
|
duk_size_t valstack_max;
|
|
duk_size_t callstack_max;
|
|
duk_size_t catchstack_max;
|
|
|
|
/* XXX: valstack, callstack, and catchstack are currently assumed
|
|
* to have non-NULL pointers. Relaxing this would not lead to big
|
|
* benefits (except perhaps for terminated threads).
|
|
*/
|
|
|
|
/* value stack: these are expressed as pointers for faster stack manipulation */
|
|
duk_tval *valstack; /* start of valstack allocation */
|
|
duk_tval *valstack_end; /* end of valstack allocation (exclusive) */
|
|
duk_tval *valstack_bottom; /* bottom of current frame */
|
|
duk_tval *valstack_top; /* top of current frame (exclusive) */
|
|
|
|
/* call stack */
|
|
duk_activation *callstack;
|
|
duk_size_t callstack_size; /* allocation size */
|
|
duk_size_t callstack_top; /* next to use, highest used is top - 1 */
|
|
duk_size_t callstack_preventcount; /* number of activation records in callstack preventing a yield */
|
|
|
|
/* catch stack */
|
|
duk_catcher *catchstack;
|
|
duk_size_t catchstack_size; /* allocation size */
|
|
duk_size_t catchstack_top; /* next to use, highest used is top - 1 */
|
|
|
|
/* yield/resume book-keeping */
|
|
duk_hthread *resumer; /* who resumed us (if any) */
|
|
|
|
/* current compiler state (if any), used for augmenting SyntaxErrors */
|
|
duk_compiler_ctx *compile_ctx;
|
|
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
/* Interrupt counter for triggering a slow path check for execution
|
|
* timeout, debugger interaction such as breakpoints, etc. This is
|
|
* actually a value copied from the heap structure into the current
|
|
* thread to be more convenient for the bytecode executor inner loop.
|
|
* The final value is copied back to the heap structure on a thread
|
|
* switch by DUK_HEAP_SWITCH_THREAD().
|
|
*/
|
|
duk_int_t interrupt_counter;
|
|
#endif
|
|
|
|
/* Builtin-objects; may or may not be shared with other threads,
|
|
* threads existing in different "compartments" will have different
|
|
* built-ins. Must be stored on a per-thread basis because there
|
|
* is no intermediate structure for a thread group / compartment.
|
|
* This takes quite a lot of space, currently 43x4 = 172 bytes on
|
|
* 32-bit platforms.
|
|
*/
|
|
duk_hobject *builtins[DUK_NUM_BUILTINS];
|
|
|
|
/* convenience copies from heap/vm for faster access */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *strs16;
|
|
#else
|
|
duk_hstring **strs;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL void duk_hthread_copy_builtin_objects(duk_hthread *thr_from, duk_hthread *thr_to);
|
|
DUK_INTERNAL_DECL void duk_hthread_create_builtin_objects(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_hthread_init_stacks(duk_heap *heap, duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_hthread_terminate(duk_hthread *thr);
|
|
|
|
DUK_INTERNAL_DECL void duk_hthread_callstack_grow(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_hthread_callstack_shrink_check(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_hthread_callstack_unwind(duk_hthread *thr, duk_size_t new_top);
|
|
DUK_INTERNAL_DECL void duk_hthread_catchstack_grow(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_hthread_catchstack_shrink_check(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_hthread_catchstack_unwind(duk_hthread *thr, duk_size_t new_top);
|
|
|
|
DUK_INTERNAL_DECL duk_activation *duk_hthread_get_current_activation(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void *duk_hthread_get_valstack_ptr(duk_heap *heap, void *ud); /* indirect allocs */
|
|
DUK_INTERNAL_DECL void *duk_hthread_get_callstack_ptr(duk_heap *heap, void *ud); /* indirect allocs */
|
|
DUK_INTERNAL_DECL void *duk_hthread_get_catchstack_ptr(duk_heap *heap, void *ud); /* indirect allocs */
|
|
|
|
#endif /* DUK_HTHREAD_H_INCLUDED */
|
|
#line 1 "duk_hbuffer.h"
|
|
/*
|
|
* Heap buffer representation.
|
|
*
|
|
* Heap allocated user data buffer which is either:
|
|
*
|
|
* 1. A fixed size buffer (data follows header statically)
|
|
* 2. A dynamic size buffer (data pointer follows header)
|
|
*
|
|
* The data pointer for a variable size buffer of zero size may be NULL.
|
|
*/
|
|
|
|
#ifndef DUK_HBUFFER_H_INCLUDED
|
|
#define DUK_HBUFFER_H_INCLUDED
|
|
|
|
/*
|
|
* Flags
|
|
*/
|
|
|
|
#define DUK_HBUFFER_FLAG_DYNAMIC DUK_HEAPHDR_USER_FLAG(0) /* buffer is resizable */
|
|
|
|
#define DUK_HBUFFER_HAS_DYNAMIC(x) DUK_HEAPHDR_CHECK_FLAG_BITS(&(x)->hdr, DUK_HBUFFER_FLAG_DYNAMIC)
|
|
|
|
#define DUK_HBUFFER_SET_DYNAMIC(x) DUK_HEAPHDR_SET_FLAG_BITS(&(x)->hdr, DUK_HBUFFER_FLAG_DYNAMIC)
|
|
|
|
#define DUK_HBUFFER_CLEAR_DYNAMIC(x) DUK_HEAPHDR_CLEAR_FLAG_BITS(&(x)->hdr, DUK_HBUFFER_FLAG_DYNAMIC)
|
|
|
|
#define DUK_HBUFFER_FIXED_GET_DATA_PTR(heap,x) ((duk_uint8_t *) (((duk_hbuffer_fixed *) (x)) + 1))
|
|
|
|
/*
|
|
* Misc defines
|
|
*/
|
|
|
|
/* Impose a maximum buffer length for now. Restricted artificially to
|
|
* ensure resize computations or adding a heap header length won't
|
|
* overflow size_t. The limit should be synchronized with
|
|
* DUK_HSTRING_MAX_BYTELEN.
|
|
*/
|
|
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
#define DUK_HBUFFER_MAX_BYTELEN (0x0000ffffUL)
|
|
#else
|
|
#define DUK_HBUFFER_MAX_BYTELEN (0x7fffffffUL)
|
|
#endif
|
|
|
|
/*
|
|
* Field access
|
|
*/
|
|
|
|
/* Get/set the current user visible size, without accounting for a dynamic
|
|
* buffer's "spare" (= usable size).
|
|
*/
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
/* size stored in duk_heaphdr unused flag bits */
|
|
#define DUK_HBUFFER_GET_SIZE(x) ((x)->hdr.h_flags >> 16)
|
|
#define DUK_HBUFFER_SET_SIZE(x,v) do { \
|
|
(x)->hdr.h_flags = ((x)->hdr.h_flags & 0x0000ffffUL) | ((v) << 16); \
|
|
} while (0)
|
|
#define DUK_HBUFFER_ADD_SIZE(x,dv) do { \
|
|
(x)->hdr.h_flags += ((dv) << 16); \
|
|
} while (0)
|
|
#define DUK_HBUFFER_SUB_SIZE(x,dv) do { \
|
|
(x)->hdr.h_flags -= ((dv) << 16); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HBUFFER_GET_SIZE(x) (((duk_hbuffer *) (x))->size)
|
|
#define DUK_HBUFFER_SET_SIZE(x,v) do { \
|
|
((duk_hbuffer *) (x))->size = (v); \
|
|
} while (0)
|
|
#define DUK_HBUFFER_ADD_SIZE(x,dv) do { \
|
|
(x)->size += (dv); \
|
|
} while (0)
|
|
#define DUK_HBUFFER_SUB_SIZE(x,dv) do { \
|
|
(x)->size -= (dv); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define DUK_HBUFFER_FIXED_GET_SIZE(x) DUK_HBUFFER_GET_SIZE((duk_hbuffer *) (x))
|
|
#define DUK_HBUFFER_FIXED_SET_SIZE(x,v) DUK_HBUFFER_SET_SIZE((duk_hbuffer *) (x))
|
|
|
|
#define DUK_HBUFFER_DYNAMIC_GET_SIZE(x) DUK_HBUFFER_GET_SIZE((duk_hbuffer *) (x))
|
|
#define DUK_HBUFFER_DYNAMIC_SET_SIZE(x,v) DUK_HBUFFER_SET_SIZE((duk_hbuffer *) (x), (v))
|
|
#define DUK_HBUFFER_DYNAMIC_ADD_SIZE(x,dv) DUK_HBUFFER_ADD_SIZE((duk_hbuffer *) (x), (dv))
|
|
#define DUK_HBUFFER_DYNAMIC_SUB_SIZE(x,dv) DUK_HBUFFER_SUB_SIZE((duk_hbuffer *) (x), (dv))
|
|
|
|
#if defined(DUK_USE_BUFLEN16) && defined(DUK_USE_HEAPPTR16)
|
|
/* alloc_size16 stored in duk_heaphdr h_extra16, available with pointer compression. */
|
|
#define DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(x) ((duk_size_t) ((x)->hdr.h_extra16))
|
|
#define DUK_HBUFFER_DYNAMIC_SET_ALLOC_SIZE(x,v) do { \
|
|
(x)->hdr.h_extra16 = (duk_uint16_t) (v); \
|
|
} while (0)
|
|
#elif defined(DUK_USE_BUFLEN16)
|
|
/* alloc_size16 stored in an explicit 16-bit fields. */
|
|
#define DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(x) ((duk_size_t) ((x)->alloc_size16))
|
|
#define DUK_HBUFFER_DYNAMIC_SET_ALLOC_SIZE(x,v) do { \
|
|
(x)->alloc_size16 = (duk_uint16_t) (v); \
|
|
} while (0)
|
|
#else
|
|
/* normal case */
|
|
#define DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(x) ((x)->alloc_size)
|
|
#define DUK_HBUFFER_DYNAMIC_SET_ALLOC_SIZE(x,v) do { \
|
|
(x)->alloc_size = (v); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#define DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(x) \
|
|
(duk_size_t) (DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE((x)) - DUK_HBUFFER_DYNAMIC_GET_SIZE((x)))
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap,x) \
|
|
((void *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (x)->curr_alloc16))
|
|
#define DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(heap,x,v) do { \
|
|
(x)->curr_alloc16 = DUK_USE_HEAPPTR_ENC16((heap)->heap_udata, (void *) (v)); \
|
|
} while (0)
|
|
#define DUK_HBUFFER_DYNAMIC_SET_DATA_PTR_NULL(heap,x) do { \
|
|
(x)->curr_alloc16 = 0; /* assume 0 <=> NULL */ \
|
|
} while (0)
|
|
#else
|
|
#define DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap,x) ((x)->curr_alloc)
|
|
#define DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(heap,x,v) do { \
|
|
(x)->curr_alloc = (void *) (v); \
|
|
} while (0)
|
|
#define DUK_HBUFFER_DYNAMIC_SET_DATA_PTR_NULL(heap,x) do { \
|
|
(x)->curr_alloc = (void *) NULL; \
|
|
} while (0)
|
|
#endif
|
|
|
|
/* Gets the actual buffer contents which matches the current allocation size
|
|
* (may be NULL for zero size dynamic buffer).
|
|
*/
|
|
#define DUK_HBUFFER_GET_DATA_PTR(heap,x) ( \
|
|
DUK_HBUFFER_HAS_DYNAMIC((x)) ? \
|
|
DUK_HBUFFER_DYNAMIC_GET_DATA_PTR((heap), (duk_hbuffer_dynamic *) (x)) : \
|
|
DUK_HBUFFER_FIXED_GET_DATA_PTR((heap), (duk_hbuffer_fixed *) (x)) \
|
|
)
|
|
|
|
/* Growth parameters for dynamic buffers. */
|
|
#define DUK_HBUFFER_SPARE_ADD 16
|
|
#define DUK_HBUFFER_SPARE_DIVISOR 16 /* 2^4 -> 1/16 = 6.25% spare */
|
|
|
|
/*
|
|
* Structs
|
|
*/
|
|
|
|
struct duk_hbuffer {
|
|
duk_heaphdr hdr;
|
|
|
|
/* It's not strictly necessary to track the current size, but
|
|
* it is useful for writing robust native code.
|
|
*/
|
|
|
|
/* Current size (not counting a dynamic buffer's "spare"). */
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
/* Stored in duk_heaphdr unused flags. */
|
|
#else
|
|
duk_size_t size;
|
|
#endif
|
|
|
|
/*
|
|
* Data following the header depends on the DUK_HBUFFER_FLAG_DYNAMIC
|
|
* flag.
|
|
*
|
|
* If the flag is clear (the buffer is a fixed size one), the buffer
|
|
* data follows the header directly, consisting of 'size' bytes.
|
|
*
|
|
* If the flag is set, the actual buffer is allocated separately, and
|
|
* a few control fields follow the header. Specifically:
|
|
*
|
|
* - a "void *" pointing to the current allocation
|
|
* - a duk_size_t indicating the full allocated size (always >= 'size')
|
|
*
|
|
* Unlike strings, no terminator byte (NUL) is guaranteed after the
|
|
* data. This would be convenient, but would pad aligned user buffers
|
|
* unnecessarily upwards in size. For instance, if user code requested
|
|
* a 64-byte dynamic buffer, 65 bytes would actually be allocated which
|
|
* would then potentially round upwards to perhaps 68 or 72 bytes.
|
|
*/
|
|
};
|
|
|
|
#if defined(DUK_USE_ALIGN_8) && defined(DUK_USE_PACK_MSVC_PRAGMA)
|
|
#pragma pack(push, 8)
|
|
#endif
|
|
struct duk_hbuffer_fixed {
|
|
/* A union is used here as a portable struct size / alignment trick:
|
|
* by adding a 32-bit or a 64-bit (unused) union member, the size of
|
|
* the struct is effectively forced to be a multiple of 4 or 8 bytes
|
|
* (respectively) without increasing the size of the struct unless
|
|
* necessary.
|
|
*/
|
|
union {
|
|
struct {
|
|
duk_heaphdr hdr;
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
/* Stored in duk_heaphdr unused flags. */
|
|
#else
|
|
duk_size_t size;
|
|
#endif
|
|
} s;
|
|
#if defined(DUK_USE_ALIGN_4)
|
|
duk_uint32_t dummy_for_align4;
|
|
#elif defined(DUK_USE_ALIGN_8)
|
|
duk_double_t dummy_for_align8;
|
|
#else
|
|
/* no extra padding */
|
|
#endif
|
|
} u;
|
|
|
|
/*
|
|
* Data follows the struct header. The struct size is padded by the
|
|
* compiler based on the struct members. This guarantees that the
|
|
* buffer data will be aligned-by-4 but not necessarily aligned-by-8.
|
|
*
|
|
* On platforms where alignment does not matter, the struct padding
|
|
* could be removed (if there is any). On platforms where alignment
|
|
* by 8 is required, the struct size must be forced to be a multiple
|
|
* of 8 by some means. Without it, some user code may break, and also
|
|
* Duktape itself breaks (e.g. the compiler stores duk_tvals in a
|
|
* dynamic buffer).
|
|
*/
|
|
}
|
|
#if defined(DUK_USE_ALIGN_8) && defined(DUK_USE_PACK_GCC_ATTR)
|
|
__attribute__ ((aligned (8)))
|
|
#elif defined(DUK_USE_ALIGN_8) && defined(DUK_USE_PACK_CLANG_ATTR)
|
|
__attribute__ ((aligned (8)))
|
|
#endif
|
|
;
|
|
#if defined(DUK_USE_ALIGN_8) && defined(DUK_USE_PACK_MSVC_PRAGMA)
|
|
#pragma pack(pop)
|
|
#endif
|
|
|
|
struct duk_hbuffer_dynamic {
|
|
duk_heaphdr hdr;
|
|
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
/* Stored in duk_heaphdr unused flags. */
|
|
#else
|
|
duk_size_t size;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_BUFLEN16) && defined(DUK_USE_HEAPPTR16)
|
|
/* Stored in duk_heaphdr h_extra16. */
|
|
#elif defined(DUK_USE_BUFLEN16)
|
|
duk_uint16_t alloc_size16;
|
|
#else
|
|
duk_size_t alloc_size;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t curr_alloc16;
|
|
#else
|
|
void *curr_alloc; /* may be NULL if alloc_size == 0 */
|
|
#endif
|
|
|
|
/*
|
|
* Allocation size for 'curr_alloc' is alloc_size. There is no
|
|
* automatic NUL terminator for buffers (see above for rationale).
|
|
*
|
|
* 'curr_alloc' is explicitly allocated with heap allocation
|
|
* primitives and will thus always have alignment suitable for
|
|
* e.g. duk_tval and an IEEE double.
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL duk_hbuffer *duk_hbuffer_alloc(duk_heap *heap, duk_size_t size, duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL void *duk_hbuffer_get_dynalloc_ptr(duk_heap *heap, void *ud); /* indirect allocs */
|
|
|
|
/* dynamic buffer ops */
|
|
DUK_INTERNAL_DECL void duk_hbuffer_resize(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t new_size, duk_size_t new_alloc_size);
|
|
DUK_INTERNAL_DECL void duk_hbuffer_reset(duk_hthread *thr, duk_hbuffer_dynamic *buf);
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL void duk_hbuffer_compact(duk_hthread *thr, duk_hbuffer_dynamic *buf);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_hbuffer_append_bytes(duk_hthread *thr, duk_hbuffer_dynamic *buf, const duk_uint8_t *data, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_hbuffer_append_byte(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_uint8_t byte);
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_append_cstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, const char *str);
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_append_hstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_hstring *str);
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_append_xutf8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_ucodepoint_t codepoint);
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_append_cesu8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_ucodepoint_t codepoint);
|
|
#if 0
|
|
DUK_INTERNAL_DECL void duk_hbuffer_append_native_u32(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_uint32_t val);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_hbuffer_insert_bytes(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, const duk_uint8_t *data, duk_size_t length);
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL void duk_hbuffer_insert_byte(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_uint8_t byte);
|
|
#endif
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_insert_cstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, const char *str);
|
|
#endif
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_insert_hstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_hstring *str);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_insert_xutf8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_ucodepoint_t codepoint);
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_size_t duk_hbuffer_insert_cesu8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_ucodepoint_t codepoint);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_hbuffer_remove_slice(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_hbuffer_insert_slice(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t dst_offset, duk_size_t src_offset, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_hbuffer_append_slice(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t src_offset, duk_size_t length);
|
|
|
|
#endif /* DUK_HBUFFER_H_INCLUDED */
|
|
#line 1 "duk_heap.h"
|
|
/*
|
|
* Heap structure.
|
|
*
|
|
* Heap contains allocated heap objects, interned strings, and built-in
|
|
* strings for one or more threads.
|
|
*/
|
|
|
|
#ifndef DUK_HEAP_H_INCLUDED
|
|
#define DUK_HEAP_H_INCLUDED
|
|
|
|
/* alloc function typedefs in duktape.h */
|
|
|
|
/*
|
|
* Heap flags
|
|
*/
|
|
|
|
#define DUK_HEAP_FLAG_MARKANDSWEEP_RUNNING (1 << 0) /* mark-and-sweep is currently running */
|
|
#define DUK_HEAP_FLAG_MARKANDSWEEP_RECLIMIT_REACHED (1 << 1) /* mark-and-sweep marking reached a recursion limit and must use multi-pass marking */
|
|
#define DUK_HEAP_FLAG_REFZERO_FREE_RUNNING (1 << 2) /* refcount code is processing refzero list */
|
|
#define DUK_HEAP_FLAG_ERRHANDLER_RUNNING (1 << 3) /* an error handler (user callback to augment/replace error) is running */
|
|
#define DUK_HEAP_FLAG_INTERRUPT_RUNNING (1 << 4) /* executor interrupt running (used to avoid nested interrupts) */
|
|
|
|
#define DUK__HEAP_HAS_FLAGS(heap,bits) ((heap)->flags & (bits))
|
|
#define DUK__HEAP_SET_FLAGS(heap,bits) do { \
|
|
(heap)->flags |= (bits); \
|
|
} while (0)
|
|
#define DUK__HEAP_CLEAR_FLAGS(heap,bits) do { \
|
|
(heap)->flags &= ~(bits); \
|
|
} while (0)
|
|
|
|
#define DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap) DUK__HEAP_HAS_FLAGS((heap), DUK_HEAP_FLAG_MARKANDSWEEP_RUNNING)
|
|
#define DUK_HEAP_HAS_MARKANDSWEEP_RECLIMIT_REACHED(heap) DUK__HEAP_HAS_FLAGS((heap), DUK_HEAP_FLAG_MARKANDSWEEP_RECLIMIT_REACHED)
|
|
#define DUK_HEAP_HAS_REFZERO_FREE_RUNNING(heap) DUK__HEAP_HAS_FLAGS((heap), DUK_HEAP_FLAG_REFZERO_FREE_RUNNING)
|
|
#define DUK_HEAP_HAS_ERRHANDLER_RUNNING(heap) DUK__HEAP_HAS_FLAGS((heap), DUK_HEAP_FLAG_ERRHANDLER_RUNNING)
|
|
#define DUK_HEAP_HAS_INTERRUPT_RUNNING(heap) DUK__HEAP_HAS_FLAGS((heap), DUK_HEAP_FLAG_INTERRUPT_RUNNING)
|
|
|
|
#define DUK_HEAP_SET_MARKANDSWEEP_RUNNING(heap) DUK__HEAP_SET_FLAGS((heap), DUK_HEAP_FLAG_MARKANDSWEEP_RUNNING)
|
|
#define DUK_HEAP_SET_MARKANDSWEEP_RECLIMIT_REACHED(heap) DUK__HEAP_SET_FLAGS((heap), DUK_HEAP_FLAG_MARKANDSWEEP_RECLIMIT_REACHED)
|
|
#define DUK_HEAP_SET_REFZERO_FREE_RUNNING(heap) DUK__HEAP_SET_FLAGS((heap), DUK_HEAP_FLAG_REFZERO_FREE_RUNNING)
|
|
#define DUK_HEAP_SET_ERRHANDLER_RUNNING(heap) DUK__HEAP_SET_FLAGS((heap), DUK_HEAP_FLAG_ERRHANDLER_RUNNING)
|
|
#define DUK_HEAP_SET_INTERRUPT_RUNNING(heap) DUK__HEAP_SET_FLAGS((heap), DUK_HEAP_FLAG_INTERRUPT_RUNNING)
|
|
|
|
#define DUK_HEAP_CLEAR_MARKANDSWEEP_RUNNING(heap) DUK__HEAP_CLEAR_FLAGS((heap), DUK_HEAP_FLAG_MARKANDSWEEP_RUNNING)
|
|
#define DUK_HEAP_CLEAR_MARKANDSWEEP_RECLIMIT_REACHED(heap) DUK__HEAP_CLEAR_FLAGS((heap), DUK_HEAP_FLAG_MARKANDSWEEP_RECLIMIT_REACHED)
|
|
#define DUK_HEAP_CLEAR_REFZERO_FREE_RUNNING(heap) DUK__HEAP_CLEAR_FLAGS((heap), DUK_HEAP_FLAG_REFZERO_FREE_RUNNING)
|
|
#define DUK_HEAP_CLEAR_ERRHANDLER_RUNNING(heap) DUK__HEAP_CLEAR_FLAGS((heap), DUK_HEAP_FLAG_ERRHANDLER_RUNNING)
|
|
#define DUK_HEAP_CLEAR_INTERRUPT_RUNNING(heap) DUK__HEAP_CLEAR_FLAGS((heap), DUK_HEAP_FLAG_INTERRUPT_RUNNING)
|
|
|
|
/*
|
|
* Longjmp types, also double as identifying continuation type for a rethrow (in 'finally')
|
|
*/
|
|
|
|
#define DUK_LJ_TYPE_UNKNOWN 0 /* unused */
|
|
#define DUK_LJ_TYPE_RETURN 1 /* value1 -> return value */
|
|
#define DUK_LJ_TYPE_THROW 2 /* value1 -> error object */
|
|
#define DUK_LJ_TYPE_BREAK 3 /* value1 -> label number */
|
|
#define DUK_LJ_TYPE_CONTINUE 4 /* value1 -> label number */
|
|
#define DUK_LJ_TYPE_YIELD 5 /* value1 -> yield value, iserror -> error / normal */
|
|
#define DUK_LJ_TYPE_RESUME 6 /* value1 -> resume value, value2 -> resumee thread, iserror -> error/normal */
|
|
#define DUK_LJ_TYPE_NORMAL 7 /* pseudo-type to indicate a normal continuation (for 'finally' rethrowing) */
|
|
|
|
/*
|
|
* Mark-and-sweep flags
|
|
*
|
|
* These are separate from heap level flags now but could be merged.
|
|
* The heap structure only contains a 'base mark-and-sweep flags'
|
|
* field and the GC caller can impose further flags.
|
|
*/
|
|
|
|
#define DUK_MS_FLAG_EMERGENCY (1 << 0) /* emergency mode: try extra hard */
|
|
#define DUK_MS_FLAG_NO_STRINGTABLE_RESIZE (1 << 1) /* don't resize stringtable (but may sweep it); needed during stringtable resize */
|
|
#define DUK_MS_FLAG_NO_FINALIZERS (1 << 2) /* don't run finalizers (which may have arbitrary side effects) */
|
|
#define DUK_MS_FLAG_NO_OBJECT_COMPACTION (1 << 3) /* don't compact objects; needed during object property allocation resize */
|
|
|
|
/*
|
|
* Thread switching
|
|
*
|
|
* To switch heap->curr_thread, use the macro below so that interrupt counters
|
|
* get updated correctly. The macro allows a NULL target thread because that
|
|
* happens e.g. in call handling.
|
|
*/
|
|
|
|
#if defined(DUK_USE_INTERRUPT_COUNTER)
|
|
#define DUK_HEAP_SWITCH_THREAD(heap,newthr) duk_heap_switch_thread((heap), (newthr))
|
|
#else
|
|
#define DUK_HEAP_SWITCH_THREAD(heap,newthr) do { \
|
|
(heap)->curr_thread = (newthr); \
|
|
} while (0)
|
|
#endif
|
|
|
|
/*
|
|
* Other heap related defines
|
|
*/
|
|
|
|
/* Maximum duk_handle_call / duk_handle_safe_call depth. Note that this
|
|
* does not limit bytecode executor internal call depth at all (e.g.
|
|
* for Ecmascript-to-Ecmascript calls, thread yields/resumes, etc).
|
|
* There is a separate callstack depth limit for threads.
|
|
*/
|
|
|
|
#if defined(DUK_USE_DEEP_C_STACK)
|
|
#define DUK_HEAP_DEFAULT_CALL_RECURSION_LIMIT 1000 /* assuming 0.5 kB between calls, about 500kB of stack */
|
|
#else
|
|
#define DUK_HEAP_DEFAULT_CALL_RECURSION_LIMIT 60 /* assuming 0.5 kB between calls, about 30kB of stack */
|
|
#endif
|
|
|
|
/* Mark-and-sweep C recursion depth for marking phase; if reached,
|
|
* mark object as a TEMPROOT and use multi-pass marking.
|
|
*/
|
|
#if defined(DUK_USE_MARK_AND_SWEEP)
|
|
#if defined(DUK_USE_GC_TORTURE)
|
|
#define DUK_HEAP_MARK_AND_SWEEP_RECURSION_LIMIT 3
|
|
#elif defined(DUK_USE_DEEP_C_STACK)
|
|
#define DUK_HEAP_MARK_AND_SWEEP_RECURSION_LIMIT 256
|
|
#else
|
|
#define DUK_HEAP_MARK_AND_SWEEP_RECURSION_LIMIT 32
|
|
#endif
|
|
#endif
|
|
|
|
/* Mark-and-sweep interval is relative to combined count of objects and
|
|
* strings kept in the heap during the latest mark-and-sweep pass.
|
|
* Fixed point .8 multiplier and .0 adder. Trigger count (interval) is
|
|
* decreased by each (re)allocation attempt (regardless of size), and each
|
|
* refzero processed object.
|
|
*
|
|
* 'SKIP' indicates how many (re)allocations to wait until a retry if
|
|
* GC is skipped because there is no thread do it with yet (happens
|
|
* only during init phases).
|
|
*/
|
|
#if defined(DUK_USE_MARK_AND_SWEEP)
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
#define DUK_HEAP_MARK_AND_SWEEP_TRIGGER_MULT 12800L /* 50x heap size */
|
|
#define DUK_HEAP_MARK_AND_SWEEP_TRIGGER_ADD 1024L
|
|
#define DUK_HEAP_MARK_AND_SWEEP_TRIGGER_SKIP 256L
|
|
#else
|
|
#define DUK_HEAP_MARK_AND_SWEEP_TRIGGER_MULT 256L /* 1x heap size */
|
|
#define DUK_HEAP_MARK_AND_SWEEP_TRIGGER_ADD 1024L
|
|
#define DUK_HEAP_MARK_AND_SWEEP_TRIGGER_SKIP 256L
|
|
#endif
|
|
#endif
|
|
|
|
/* Stringcache is used for speeding up char-offset-to-byte-offset
|
|
* translations for non-ASCII strings.
|
|
*/
|
|
#define DUK_HEAP_STRCACHE_SIZE 4
|
|
#define DUK_HEAP_STRINGCACHE_NOCACHE_LIMIT 16 /* strings up to the this length are not cached */
|
|
|
|
/* helper to insert a (non-string) heap object into heap allocated list */
|
|
#define DUK_HEAP_INSERT_INTO_HEAP_ALLOCATED(heap,hdr) duk_heap_insert_into_heap_allocated((heap),(hdr))
|
|
|
|
/* Executor interrupt default interval when nothing else requires a
|
|
* smaller value. The default interval must be small enough to allow
|
|
* for reasonable execution timeout checking.
|
|
*/
|
|
#if defined(DUK_USE_INTERRUPT_COUNTER)
|
|
#define DUK_HEAP_INTCTR_DEFAULT (256L * 1024L)
|
|
#endif
|
|
|
|
/*
|
|
* Stringtable
|
|
*/
|
|
|
|
/* initial stringtable size, must be prime and higher than DUK_UTIL_MIN_HASH_PRIME */
|
|
#define DUK_STRTAB_INITIAL_SIZE 17
|
|
|
|
/* indicates a deleted string; any fixed non-NULL, non-hstring pointer works */
|
|
#define DUK_STRTAB_DELETED_MARKER(heap) ((duk_hstring *) heap)
|
|
|
|
/* resizing parameters */
|
|
#define DUK_STRTAB_MIN_FREE_DIVISOR 4 /* load factor max 75% */
|
|
#define DUK_STRTAB_MIN_USED_DIVISOR 4 /* load factor min 25% */
|
|
#define DUK_STRTAB_GROW_ST_SIZE(n) ((n) + (n)) /* used entries + approx 100% -> reset load to 50% */
|
|
|
|
#define DUK_STRTAB_U32_MAX_STRLEN 10 /* 4'294'967'295 */
|
|
#define DUK_STRTAB_HIGHEST_32BIT_PRIME 0xfffffffbUL
|
|
|
|
/* probe sequence (open addressing) */
|
|
#define DUK_STRTAB_HASH_INITIAL(hash,h_size) ((hash) % (h_size))
|
|
#define DUK_STRTAB_HASH_PROBE_STEP(hash) DUK_UTIL_GET_HASH_PROBE_STEP((hash))
|
|
|
|
/* fixed top level hashtable size (separate chaining) */
|
|
#define DUK_STRTAB_CHAIN_SIZE DUK_USE_STRTAB_CHAIN_SIZE
|
|
|
|
/*
|
|
* Built-in strings
|
|
*/
|
|
|
|
/* heap string indices are autogenerated in duk_strings.h */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
#define DUK_HEAP_GET_STRING(heap,idx) \
|
|
((duk_hstring *) DUK_USE_HEAPPTR_DEC16((heap)->heap_udata, (heap)->strs16[(idx)]))
|
|
#else
|
|
#define DUK_HEAP_GET_STRING(heap,idx) \
|
|
((heap)->strs[(idx)])
|
|
#endif
|
|
|
|
/*
|
|
* Raw memory calls: relative to heap, but no GC interaction
|
|
*/
|
|
|
|
#define DUK_ALLOC_RAW(heap,size) \
|
|
((heap)->alloc_func((heap)->heap_udata, (size)))
|
|
|
|
#define DUK_REALLOC_RAW(heap,ptr,newsize) \
|
|
((heap)->realloc_func((heap)->heap_udata, (void *) (ptr), (newsize)))
|
|
|
|
#define DUK_FREE_RAW(heap,ptr) \
|
|
((heap)->free_func((heap)->heap_udata, (void *) (ptr)))
|
|
|
|
/*
|
|
* Memory calls: relative to heap, GC interaction, but no error throwing.
|
|
*
|
|
* XXX: Currently a mark-and-sweep triggered by memory allocation will run
|
|
* using the heap->heap_thread. This thread is also used for running
|
|
* mark-and-sweep finalization; this is not ideal because it breaks the
|
|
* isolation between multiple global environments.
|
|
*
|
|
* Notes:
|
|
*
|
|
* - DUK_FREE() is required to ignore NULL and any other possible return
|
|
* value of a zero-sized alloc/realloc (same as ANSI C free()).
|
|
*
|
|
* - There is no DUK_REALLOC_ZEROED because we don't assume to know the
|
|
* old size. Caller must zero the reallocated memory.
|
|
*
|
|
* - DUK_REALLOC_INDIRECT() must be used when a mark-and-sweep triggered
|
|
* by an allocation failure might invalidate the original 'ptr', thus
|
|
* causing a realloc retry to use an invalid pointer. Example: we're
|
|
* reallocating the value stack and a finalizer resizes the same value
|
|
* stack during mark-and-sweep. The indirect variant requests for the
|
|
* current location of the pointer being reallocated using a callback
|
|
* right before every realloc attempt; this circuitous approach is used
|
|
* to avoid strict aliasing issues in a more straightforward indirect
|
|
* pointer (void **) approach. Note: the pointer in the storage
|
|
* location is read but is NOT updated; the caller must do that.
|
|
*/
|
|
|
|
/* callback for indirect reallocs, request for current pointer */
|
|
typedef void *(*duk_mem_getptr)(duk_heap *heap, void *ud);
|
|
|
|
#define DUK_ALLOC(heap,size) duk_heap_mem_alloc((heap), (size))
|
|
#define DUK_ALLOC_ZEROED(heap,size) duk_heap_mem_alloc_zeroed((heap), (size))
|
|
#define DUK_REALLOC(heap,ptr,newsize) duk_heap_mem_realloc((heap), (ptr), (newsize))
|
|
#define DUK_REALLOC_INDIRECT(heap,cb,ud,newsize) duk_heap_mem_realloc_indirect((heap), (cb), (ud), (newsize))
|
|
#define DUK_FREE(heap,ptr) duk_heap_mem_free((heap), (ptr))
|
|
|
|
/*
|
|
* Memory constants
|
|
*/
|
|
|
|
#define DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_LIMIT 5 /* Retry allocation after mark-and-sweep for this
|
|
* many times. A single mark-and-sweep round is
|
|
* not guaranteed to free all unreferenced memory
|
|
* because of finalization (in fact, ANY number of
|
|
* rounds is strictly not enough).
|
|
*/
|
|
|
|
#define DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_EMERGENCY_LIMIT 3 /* Starting from this round, use emergency mode
|
|
* for mark-and-sweep.
|
|
*/
|
|
|
|
/*
|
|
* Debugger support
|
|
*/
|
|
|
|
/* Maximum number of breakpoints. Only breakpoints that are set are
|
|
* consulted so increasing this has no performance impact.
|
|
*/
|
|
#define DUK_HEAP_MAX_BREAKPOINTS 16
|
|
|
|
/* Opcode interval for a Date-based status/peek rate limit check. Only
|
|
* relevant when debugger is attached. Requesting a timestamp may be a
|
|
* slow operation on some platforms so this shouldn't be too low. On the
|
|
* other hand a high value makes Duktape react to a pause request slowly.
|
|
*/
|
|
#define DUK_HEAP_DBG_RATELIMIT_OPCODES 4000
|
|
|
|
/* Milliseconds between status notify and transport peeks. */
|
|
#define DUK_HEAP_DBG_RATELIMIT_MILLISECS 200
|
|
|
|
/* Step types */
|
|
#define DUK_STEP_TYPE_NONE 0
|
|
#define DUK_STEP_TYPE_INTO 1
|
|
#define DUK_STEP_TYPE_OVER 2
|
|
#define DUK_STEP_TYPE_OUT 3
|
|
|
|
struct duk_breakpoint {
|
|
duk_hstring *filename;
|
|
duk_uint32_t line;
|
|
};
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
#define DUK_HEAP_IS_DEBUGGER_ATTACHED(heap) ((heap)->dbg_read_cb != NULL)
|
|
#define DUK_HEAP_CLEAR_STEP_STATE(heap) do { \
|
|
(heap)->dbg_step_type = DUK_STEP_TYPE_NONE; \
|
|
(heap)->dbg_step_thread = NULL; \
|
|
(heap)->dbg_step_csindex = 0; \
|
|
(heap)->dbg_step_startline = 0; \
|
|
} while (0)
|
|
#define DUK_HEAP_SET_PAUSED(heap) do { \
|
|
(heap)->dbg_paused = 1; \
|
|
(heap)->dbg_state_dirty = 1; \
|
|
DUK_HEAP_CLEAR_STEP_STATE((heap)); \
|
|
} while (0)
|
|
#define DUK_HEAP_CLEAR_PAUSED(heap) do { \
|
|
(heap)->dbg_paused = 0; \
|
|
(heap)->dbg_state_dirty = 1; \
|
|
DUK_HEAP_CLEAR_STEP_STATE((heap)); \
|
|
} while (0)
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
/*
|
|
* String cache should ideally be at duk_hthread level, but that would
|
|
* cause string finalization to slow down relative to the number of
|
|
* threads; string finalization must check the string cache for "weak"
|
|
* references to the string being finalized to avoid dead pointers.
|
|
*
|
|
* Thus, string caches are now at the heap level now.
|
|
*/
|
|
|
|
struct duk_strcache {
|
|
duk_hstring *h;
|
|
duk_uint32_t bidx;
|
|
duk_uint32_t cidx;
|
|
};
|
|
|
|
/*
|
|
* Longjmp state, contains the information needed to perform a longjmp.
|
|
* Longjmp related values are written to value1, value2, and iserror.
|
|
*/
|
|
|
|
struct duk_ljstate {
|
|
duk_jmpbuf *jmpbuf_ptr; /* current setjmp() catchpoint */
|
|
duk_small_uint_t type; /* longjmp type */
|
|
duk_bool_t iserror; /* isError flag for yield */
|
|
duk_tval value1; /* 1st related value (type specific) */
|
|
duk_tval value2; /* 2nd related value (type specific) */
|
|
};
|
|
|
|
/*
|
|
* Stringtable entry for fixed size stringtable
|
|
*/
|
|
|
|
struct duk_strtab_entry {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* A 16-bit listlen makes sense with 16-bit heap pointers: there
|
|
* won't be space for 64k strings anyway.
|
|
*/
|
|
duk_uint16_t listlen; /* if 0, 'str16' used, if > 0, 'strlist16' used */
|
|
union {
|
|
duk_uint16_t strlist16;
|
|
duk_uint16_t str16;
|
|
} u;
|
|
#else
|
|
duk_size_t listlen; /* if 0, 'str' used, if > 0, 'strlist' used */
|
|
union {
|
|
duk_hstring **strlist;
|
|
duk_hstring *str;
|
|
} u;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Main heap structure
|
|
*/
|
|
|
|
struct duk_heap {
|
|
duk_small_uint_t flags;
|
|
|
|
/* Allocator functions. */
|
|
duk_alloc_function alloc_func;
|
|
duk_realloc_function realloc_func;
|
|
duk_free_function free_func;
|
|
|
|
/* Heap udata, used for allocator functions but also for other heap
|
|
* level callbacks like pointer compression, etc.
|
|
*/
|
|
void *heap_udata;
|
|
|
|
/* Precomputed pointers when using 16-bit heap pointer packing. */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t heapptr_null16;
|
|
duk_uint16_t heapptr_deleted16;
|
|
#endif
|
|
|
|
/* Fatal error handling, called e.g. when a longjmp() is needed but
|
|
* lj.jmpbuf_ptr is NULL. fatal_func must never return; it's not
|
|
* declared as "noreturn" because doing that for typedefs is a bit
|
|
* challenging portability-wise.
|
|
*/
|
|
duk_fatal_function fatal_func;
|
|
|
|
/* allocated heap objects */
|
|
duk_heaphdr *heap_allocated;
|
|
|
|
/* work list for objects whose refcounts are zero but which have not been
|
|
* "finalized"; avoids recursive C calls when refcounts go to zero in a
|
|
* chain of objects.
|
|
*/
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
duk_heaphdr *refzero_list;
|
|
duk_heaphdr *refzero_list_tail;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_MARK_AND_SWEEP)
|
|
/* mark-and-sweep control */
|
|
#if defined(DUK_USE_VOLUNTARY_GC)
|
|
duk_int_t mark_and_sweep_trigger_counter;
|
|
#endif
|
|
duk_int_t mark_and_sweep_recursion_depth;
|
|
|
|
/* mark-and-sweep flags automatically active (used for critical sections) */
|
|
duk_small_uint_t mark_and_sweep_base_flags;
|
|
|
|
/* work list for objects to be finalized (by mark-and-sweep) */
|
|
duk_heaphdr *finalize_list;
|
|
#endif
|
|
|
|
/* longjmp state */
|
|
duk_ljstate lj;
|
|
|
|
/* marker for detecting internal "double faults", see duk_error_throw.c */
|
|
duk_bool_t handling_error;
|
|
|
|
/* heap thread, used internally and for finalization */
|
|
duk_hthread *heap_thread;
|
|
|
|
/* current thread */
|
|
duk_hthread *curr_thread; /* currently running thread */
|
|
|
|
/* heap level "stash" object (e.g., various reachability roots) */
|
|
duk_hobject *heap_object;
|
|
|
|
/* heap level temporary log formatting buffer */
|
|
duk_hbuffer_dynamic *log_buffer;
|
|
|
|
/* duk_handle_call / duk_handle_safe_call recursion depth limiting */
|
|
duk_int_t call_recursion_depth;
|
|
duk_int_t call_recursion_limit;
|
|
|
|
/* mix-in value for computing string hashes; should be reasonably unpredictable */
|
|
duk_uint32_t hash_seed;
|
|
|
|
/* rnd_state for duk_util_tinyrandom.c */
|
|
duk_uint32_t rnd_state;
|
|
|
|
/* interrupt counter */
|
|
#if defined(DUK_USE_INTERRUPT_COUNTER)
|
|
duk_int_t interrupt_init; /* start value for current countdown */
|
|
duk_int_t interrupt_counter; /* countdown state (mirrored in current thread state) */
|
|
#endif
|
|
|
|
/* debugger */
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
/* callbacks and udata; dbg_read_cb != NULL is used to indicate attached state */
|
|
duk_debug_read_function dbg_read_cb; /* required, NULL implies detached */
|
|
duk_debug_write_function dbg_write_cb; /* required */
|
|
duk_debug_peek_function dbg_peek_cb;
|
|
duk_debug_read_flush_function dbg_read_flush_cb;
|
|
duk_debug_write_flush_function dbg_write_flush_cb;
|
|
duk_debug_detached_function dbg_detached_cb;
|
|
void *dbg_udata;
|
|
|
|
/* debugger state, only relevant when attached */
|
|
duk_bool_t dbg_processing; /* currently processing messages or breakpoints: don't enter message processing recursively (e.g. no breakpoints when processing debugger eval) */
|
|
duk_bool_t dbg_paused; /* currently paused: talk with debug client until step/resume */
|
|
duk_bool_t dbg_state_dirty; /* resend state next time executor is about to run */
|
|
duk_small_uint_t dbg_step_type; /* step type: none, step into, step over, step out */
|
|
duk_hthread *dbg_step_thread; /* borrowed; NULL if no step state (NULLed in unwind) */
|
|
duk_size_t dbg_step_csindex; /* callstack index */
|
|
duk_uint32_t dbg_step_startline; /* starting line number */
|
|
duk_breakpoint dbg_breakpoints[DUK_HEAP_MAX_BREAKPOINTS]; /* breakpoints: [0,breakpoint_count[ gc reachable */
|
|
duk_small_uint_t dbg_breakpoint_count;
|
|
duk_breakpoint *dbg_breakpoints_active[DUK_HEAP_MAX_BREAKPOINTS + 1]; /* currently active breakpoints: NULL term, borrowed pointers */
|
|
/* XXX: make active breakpoints actual copies instead of pointers? */
|
|
|
|
/* These are for rate limiting Status notifications and transport peeking. */
|
|
duk_uint32_t dbg_exec_counter; /* cumulative opcode execution count (overflows are OK) */
|
|
duk_uint32_t dbg_last_counter; /* value of dbg_exec_counter when we last did a Date-based check */
|
|
duk_double_t dbg_last_time; /* time when status/peek was last done (Date-based rate limit) */
|
|
#endif
|
|
|
|
/* string intern table (weak refs) */
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *strtable16;
|
|
#else
|
|
duk_hstring **strtable;
|
|
#endif
|
|
duk_uint32_t st_size; /* alloc size in elements */
|
|
duk_uint32_t st_used; /* used elements (includes DELETED) */
|
|
#endif
|
|
|
|
/* XXX: static alloc is OK until separate chaining stringtable
|
|
* resizing is implemented.
|
|
*/
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
duk_strtab_entry strtable[DUK_STRTAB_CHAIN_SIZE];
|
|
#endif
|
|
|
|
/* string access cache (codepoint offset -> byte offset) for fast string
|
|
* character looping; 'weak' reference which needs special handling in GC.
|
|
*/
|
|
duk_strcache strcache[DUK_HEAP_STRCACHE_SIZE];
|
|
|
|
/* built-in strings */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t strs16[DUK_HEAP_NUM_STRINGS];
|
|
#else
|
|
duk_hstring *strs[DUK_HEAP_NUM_STRINGS];
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL
|
|
duk_heap *duk_heap_alloc(duk_alloc_function alloc_func,
|
|
duk_realloc_function realloc_func,
|
|
duk_free_function free_func,
|
|
void *heap_udata,
|
|
duk_fatal_function fatal_func);
|
|
DUK_INTERNAL_DECL void duk_heap_free(duk_heap *heap);
|
|
DUK_INTERNAL_DECL void duk_free_hobject_inner(duk_heap *heap, duk_hobject *h);
|
|
DUK_INTERNAL_DECL void duk_free_hbuffer_inner(duk_heap *heap, duk_hbuffer *h);
|
|
DUK_INTERNAL_DECL void duk_free_hstring_inner(duk_heap *heap, duk_hstring *h);
|
|
DUK_INTERNAL_DECL void duk_heap_free_heaphdr_raw(duk_heap *heap, duk_heaphdr *hdr);
|
|
|
|
DUK_INTERNAL_DECL void duk_heap_insert_into_heap_allocated(duk_heap *heap, duk_heaphdr *hdr);
|
|
#if defined(DUK_USE_DOUBLE_LINKED_HEAP) && defined(DUK_USE_REFERENCE_COUNTING)
|
|
DUK_INTERNAL_DECL void duk_heap_remove_any_from_heap_allocated(duk_heap *heap, duk_heaphdr *hdr);
|
|
#endif
|
|
#if defined(DUK_USE_INTERRUPT_COUNTER)
|
|
DUK_INTERNAL_DECL void duk_heap_switch_thread(duk_heap *heap, duk_hthread *new_thr);
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_hstring *duk_heap_string_lookup(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_hstring *duk_heap_string_intern(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen);
|
|
DUK_INTERNAL_DECL duk_hstring *duk_heap_string_intern_checked(duk_hthread *thr, const duk_uint8_t *str, duk_uint32_t len);
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_hstring *duk_heap_string_lookup_u32(duk_heap *heap, duk_uint32_t val);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_hstring *duk_heap_string_intern_u32(duk_heap *heap, duk_uint32_t val);
|
|
DUK_INTERNAL_DECL duk_hstring *duk_heap_string_intern_u32_checked(duk_hthread *thr, duk_uint32_t val);
|
|
DUK_INTERNAL_DECL void duk_heap_string_remove(duk_heap *heap, duk_hstring *h);
|
|
#if defined(DUK_USE_MARK_AND_SWEEP) && defined(DUK_USE_MS_STRINGTABLE_RESIZE)
|
|
DUK_INTERNAL_DECL void duk_heap_force_strtab_resize(duk_heap *heap);
|
|
#endif
|
|
DUK_INTERNAL void duk_heap_free_strtab(duk_heap *heap);
|
|
#if defined(DUK_USE_DEBUG)
|
|
DUK_INTERNAL void duk_heap_dump_strtab(duk_heap *heap);
|
|
#endif
|
|
|
|
|
|
DUK_INTERNAL_DECL void duk_heap_strcache_string_remove(duk_heap *heap, duk_hstring *h);
|
|
DUK_INTERNAL_DECL duk_uint_fast32_t duk_heap_strcache_offset_char2byte(duk_hthread *thr, duk_hstring *h, duk_uint_fast32_t char_offset);
|
|
|
|
#if defined(DUK_USE_PROVIDE_DEFAULT_ALLOC_FUNCTIONS)
|
|
DUK_INTERNAL_DECL void *duk_default_alloc_function(void *udata, duk_size_t size);
|
|
DUK_INTERNAL_DECL void *duk_default_realloc_function(void *udata, void *ptr, duk_size_t newsize);
|
|
DUK_INTERNAL_DECL void duk_default_free_function(void *udata, void *ptr);
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL void *duk_heap_mem_alloc(duk_heap *heap, duk_size_t size);
|
|
DUK_INTERNAL_DECL void *duk_heap_mem_alloc_zeroed(duk_heap *heap, duk_size_t size);
|
|
DUK_INTERNAL_DECL void *duk_heap_mem_realloc(duk_heap *heap, void *ptr, duk_size_t newsize);
|
|
DUK_INTERNAL_DECL void *duk_heap_mem_realloc_indirect(duk_heap *heap, duk_mem_getptr cb, void *ud, duk_size_t newsize);
|
|
DUK_INTERNAL_DECL void duk_heap_mem_free(duk_heap *heap, void *ptr);
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
#if !defined(DUK_USE_FAST_REFCOUNT_DEFAULT)
|
|
DUK_INTERNAL_DECL void duk_tval_incref(duk_tval *tv);
|
|
#endif
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL_DECL void duk_tval_incref_allownull(duk_tval *tv);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_tval_decref(duk_hthread *thr, duk_tval *tv);
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL_DECL void duk_tval_decref_allownull(duk_hthread *thr, duk_tval *tv);
|
|
#endif
|
|
#if !defined(DUK_USE_FAST_REFCOUNT_DEFAULT)
|
|
DUK_INTERNAL_DECL void duk_heaphdr_incref(duk_heaphdr *h);
|
|
#endif
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL_DECL void duk_heaphdr_incref_allownull(duk_heaphdr *h);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_heaphdr_decref(duk_hthread *thr, duk_heaphdr *h);
|
|
DUK_INTERNAL_DECL void duk_heaphdr_decref_allownull(duk_hthread *thr, duk_heaphdr *h);
|
|
DUK_INTERNAL_DECL void duk_heaphdr_refzero(duk_hthread *thr, duk_heaphdr *h);
|
|
DUK_INTERNAL_DECL void duk_heaphdr_refcount_finalize(duk_hthread *thr, duk_heaphdr *hdr);
|
|
#else
|
|
/* no refcounting */
|
|
#endif
|
|
|
|
#if defined(DUK_USE_MARK_AND_SWEEP)
|
|
DUK_INTERNAL_DECL duk_bool_t duk_heap_mark_and_sweep(duk_heap *heap, duk_small_uint_t flags);
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL duk_uint32_t duk_heap_hashstring(duk_heap *heap, const duk_uint8_t *str, duk_size_t len);
|
|
|
|
#endif /* DUK_HEAP_H_INCLUDED */
|
|
#line 1 "duk_debugger.h"
|
|
#ifndef DUK_DEBUGGER_H_INCLUDED
|
|
#define DUK_DEBUGGER_H_INCLUDED
|
|
|
|
/* Debugger protocol version is defined in the public API header. */
|
|
|
|
#define DUK_DBG_MARKER_EOM 0x00
|
|
#define DUK_DBG_MARKER_REQUEST 0x01
|
|
#define DUK_DBG_MARKER_REPLY 0x02
|
|
#define DUK_DBG_MARKER_ERROR 0x03
|
|
#define DUK_DBG_MARKER_NOTIFY 0x04
|
|
|
|
#define DUK_DBG_ERR_UNKNOWN 0x00
|
|
#define DUK_DBG_ERR_UNSUPPORTED 0x01
|
|
#define DUK_DBG_ERR_TOOMANY 0x02
|
|
#define DUK_DBG_ERR_NOTFOUND 0x03
|
|
|
|
/* Initiated by Duktape */
|
|
#define DUK_DBG_CMD_STATUS 0x01
|
|
#define DUK_DBG_CMD_PRINT 0x02
|
|
#define DUK_DBG_CMD_ALERT 0x03
|
|
#define DUK_DBG_CMD_LOG 0x04
|
|
|
|
/* Initiated by debug client */
|
|
#define DUK_DBG_CMD_BASICINFO 0x10
|
|
#define DUK_DBG_CMD_TRIGGERSTATUS 0x11
|
|
#define DUK_DBG_CMD_PAUSE 0x12
|
|
#define DUK_DBG_CMD_RESUME 0x13
|
|
#define DUK_DBG_CMD_STEPINTO 0x14
|
|
#define DUK_DBG_CMD_STEPOVER 0x15
|
|
#define DUK_DBG_CMD_STEPOUT 0x16
|
|
#define DUK_DBG_CMD_LISTBREAK 0x17
|
|
#define DUK_DBG_CMD_ADDBREAK 0x18
|
|
#define DUK_DBG_CMD_DELBREAK 0x19
|
|
#define DUK_DBG_CMD_GETVAR 0x1a
|
|
#define DUK_DBG_CMD_PUTVAR 0x1b
|
|
#define DUK_DBG_CMD_GETCALLSTACK 0x1c
|
|
#define DUK_DBG_CMD_GETLOCALS 0x1d
|
|
#define DUK_DBG_CMD_EVAL 0x1e
|
|
#define DUK_DBG_CMD_DETACH 0x1f
|
|
#define DUK_DBG_CMD_DUMPHEAP 0x20
|
|
#define DUK_DBG_CMD_GETBYTECODE 0x21
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK_INTERNAL_DECL void duk_debug_do_detach(duk_heap *heap);
|
|
|
|
DUK_INTERNAL_DECL duk_bool_t duk_debug_read_peek(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_debug_write_flush(duk_hthread *thr);
|
|
|
|
DUK_INTERNAL_DECL void duk_debug_skip_bytes(duk_hthread *thr, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_debug_skip_byte(duk_hthread *thr);
|
|
|
|
DUK_INTERNAL_DECL void duk_debug_read_bytes(duk_hthread *thr, duk_uint8_t *data, duk_size_t length);
|
|
DUK_INTERNAL_DECL duk_uint8_t duk_debug_read_byte(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL duk_int32_t duk_debug_read_int(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL duk_hstring *duk_debug_read_hstring(duk_hthread *thr);
|
|
/* XXX: exposed duk_debug_read_pointer */
|
|
/* XXX: exposed duk_debug_read_buffer */
|
|
/* XXX: exposed duk_debug_read_hbuffer */
|
|
DUK_INTERNAL_DECL void duk_debug_read_tval(duk_hthread *thr);
|
|
|
|
DUK_INTERNAL_DECL void duk_debug_write_bytes(duk_hthread *thr, const duk_uint8_t *data, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_debug_write_byte(duk_hthread *thr, duk_uint8_t x);
|
|
DUK_INTERNAL_DECL void duk_debug_write_unused(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_debug_write_undefined(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_debug_write_int(duk_hthread *thr, duk_int32_t x);
|
|
DUK_INTERNAL_DECL void duk_debug_write_uint(duk_hthread *thr, duk_uint32_t x);
|
|
DUK_INTERNAL_DECL void duk_debug_write_string(duk_hthread *thr, const char *data, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_debug_write_cstring(duk_hthread *thr, const char *data);
|
|
DUK_INTERNAL_DECL void duk_debug_write_hstring(duk_hthread *thr, duk_hstring *h);
|
|
DUK_INTERNAL_DECL void duk_debug_write_buffer(duk_hthread *thr, const char *data, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_debug_write_hbuffer(duk_hthread *thr, duk_hbuffer *h);
|
|
DUK_INTERNAL_DECL void duk_debug_write_pointer(duk_hthread *thr, const void *ptr);
|
|
#if defined(DUK_USE_DEBUGGER_DUMPHEAP)
|
|
DUK_INTERNAL_DECL void duk_debug_write_heapptr(duk_hthread *thr, duk_heaphdr *h);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_debug_write_hobject(duk_hthread *thr, duk_hobject *obj);
|
|
DUK_INTERNAL_DECL void duk_debug_write_tval(duk_hthread *thr, duk_tval *tv);
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL_DECL void duk_debug_write_request(duk_hthread *thr, duk_small_uint_t command);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_debug_write_reply(duk_hthread *thr);
|
|
DUK_INTERNAL_DECL void duk_debug_write_error_eom(duk_hthread *thr, duk_small_uint_t err_code, const char *msg);
|
|
DUK_INTERNAL_DECL void duk_debug_write_notify(duk_hthread *thr, duk_small_uint_t command);
|
|
DUK_INTERNAL_DECL void duk_debug_write_eom(duk_hthread *thr);
|
|
|
|
DUK_INTERNAL duk_uint_fast32_t duk_debug_curr_line(duk_hthread *thr);
|
|
DUK_INTERNAL void duk_debug_send_status(duk_hthread *thr);
|
|
|
|
DUK_INTERNAL_DECL duk_bool_t duk_debug_process_messages(duk_hthread *thr, duk_bool_t no_block);
|
|
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_debug_add_breakpoint(duk_hthread *thr, duk_hstring *filename, duk_uint32_t line);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_debug_remove_breakpoint(duk_hthread *thr, duk_small_uint_t breakpoint_index);
|
|
#endif
|
|
|
|
#endif /* DUK_DEBUGGER_H_INCLUDED */
|
|
#line 1 "duk_debug.h"
|
|
/*
|
|
* Debugging macros, DUK_DPRINT() and its variants in particular.
|
|
*
|
|
* DUK_DPRINT() allows formatted debug prints, and supports standard
|
|
* and Duktape specific formatters. See duk_debug_vsnprintf.c for details.
|
|
*
|
|
* DUK_D(x), DUK_DD(x), and DUK_DDD(x) are used together with log macros
|
|
* for technical reasons. They are concretely used to hide 'x' from the
|
|
* compiler when the corresponding log level is disabled. This allows
|
|
* clean builds on non-C99 compilers, at the cost of more verbose code.
|
|
* Examples:
|
|
*
|
|
* DUK_D(DUK_DPRINT("foo"));
|
|
* DUK_DD(DUK_DDPRINT("foo"));
|
|
* DUK_DDD(DUK_DDDPRINT("foo"));
|
|
*
|
|
* This approach is preferable to the old "double parentheses" hack because
|
|
* double parentheses make the C99 solution worse: __FILE__ and __LINE__ can
|
|
* no longer be added transparently without going through globals, which
|
|
* works poorly with threading.
|
|
*/
|
|
|
|
#ifndef DUK_DEBUG_H_INCLUDED
|
|
#define DUK_DEBUG_H_INCLUDED
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
|
|
#if defined(DUK_USE_DPRINT)
|
|
#define DUK_D(x) x
|
|
#else
|
|
#define DUK_D(x) do { } while (0) /* omit */
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DDPRINT)
|
|
#define DUK_DD(x) x
|
|
#else
|
|
#define DUK_DD(x) do { } while (0) /* omit */
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DDDPRINT)
|
|
#define DUK_DDD(x) x
|
|
#else
|
|
#define DUK_DDD(x) do { } while (0) /* omit */
|
|
#endif
|
|
|
|
/*
|
|
* Exposed debug macros: debugging enabled
|
|
*/
|
|
|
|
#define DUK_LEVEL_DEBUG 1
|
|
#define DUK_LEVEL_DDEBUG 2
|
|
#define DUK_LEVEL_DDDEBUG 3
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
|
|
/* Note: combining __FILE__, __LINE__, and __func__ into fmt would be
|
|
* possible compile time, but waste some space with shared function names.
|
|
*/
|
|
#define DUK__DEBUG_LOG(lev,...) duk_debug_log((duk_small_int_t) (lev), DUK_FILE_MACRO, (duk_int_t) DUK_LINE_MACRO, DUK_FUNC_MACRO, __VA_ARGS__);
|
|
|
|
#define DUK_DPRINT(...) DUK__DEBUG_LOG(DUK_LEVEL_DEBUG, __VA_ARGS__)
|
|
|
|
#ifdef DUK_USE_DDPRINT
|
|
#define DUK_DDPRINT(...) DUK__DEBUG_LOG(DUK_LEVEL_DDEBUG, __VA_ARGS__)
|
|
#else
|
|
#define DUK_DDPRINT(...)
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
#define DUK_DDDPRINT(...) DUK__DEBUG_LOG(DUK_LEVEL_DDDEBUG, __VA_ARGS__)
|
|
#else
|
|
#define DUK_DDDPRINT(...)
|
|
#endif
|
|
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#define DUK__DEBUG_STASH(lev) \
|
|
(void) DUK_SNPRINTF(duk_debug_file_stash, DUK_DEBUG_STASH_SIZE, "%s", (const char *) DUK_FILE_MACRO), \
|
|
duk_debug_file_stash[DUK_DEBUG_STASH_SIZE - 1] = (char) 0; \
|
|
(void) DUK_SNPRINTF(duk_debug_line_stash, DUK_DEBUG_STASH_SIZE, "%ld", (long) DUK_LINE_MACRO), \
|
|
duk_debug_line_stash[DUK_DEBUG_STASH_SIZE - 1] = (char) 0; \
|
|
(void) DUK_SNPRINTF(duk_debug_func_stash, DUK_DEBUG_STASH_SIZE, "%s", (const char *) DUK_FUNC_MACRO), \
|
|
duk_debug_func_stash[DUK_DEBUG_STASH_SIZE - 1] = (char) 0; \
|
|
(void) (duk_debug_level_stash = (lev))
|
|
|
|
/* Without variadic macros resort to comma expression trickery to handle debug
|
|
* prints. This generates a lot of harmless warnings. These hacks are not
|
|
* needed normally because DUK_D() and friends will hide the entire debug log
|
|
* statement from the compiler.
|
|
*/
|
|
|
|
#ifdef DUK_USE_DPRINT
|
|
#define DUK_DPRINT DUK__DEBUG_STASH(DUK_LEVEL_DEBUG), (void) duk_debug_log /* args go here in parens */
|
|
#else
|
|
#define DUK_DPRINT 0 && /* args go here as a comma expression in parens */
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DDPRINT
|
|
#define DUK_DDPRINT DUK__DEBUG_STASH(DUK_LEVEL_DDEBUG), (void) duk_debug_log /* args go here in parens */
|
|
#else
|
|
#define DUK_DDPRINT 0 && /* args */
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
#define DUK_DDDPRINT DUK__DEBUG_STASH(DUK_LEVEL_DDDEBUG), (void) duk_debug_log /* args go here in parens */
|
|
#else
|
|
#define DUK_DDDPRINT 0 && /* args */
|
|
#endif
|
|
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#else /* DUK_USE_DEBUG */
|
|
|
|
/*
|
|
* Exposed debug macros: debugging disabled
|
|
*/
|
|
|
|
#define DUK_D(x) do { } while (0) /* omit */
|
|
#define DUK_DD(x) do { } while (0) /* omit */
|
|
#define DUK_DDD(x) do { } while (0) /* omit */
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
|
|
#define DUK_DPRINT(...)
|
|
#define DUK_DDPRINT(...)
|
|
#define DUK_DDDPRINT(...)
|
|
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#define DUK_DPRINT 0 && /* args go here as a comma expression in parens */
|
|
#define DUK_DDPRINT 0 && /* args */
|
|
#define DUK_DDDPRINT 0 && /* args */
|
|
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#endif /* DUK_USE_DEBUG */
|
|
|
|
/*
|
|
* Structs
|
|
*/
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
struct duk_fixedbuffer {
|
|
duk_uint8_t *buffer;
|
|
duk_size_t length;
|
|
duk_size_t offset;
|
|
duk_bool_t truncated;
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_INTERNAL_DECL duk_int_t duk_debug_vsnprintf(char *str, duk_size_t size, const char *format, va_list ap);
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_int_t duk_debug_snprintf(char *str, duk_size_t size, const char *format, ...);
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_debug_format_funcptr(char *buf, duk_size_t buf_size, duk_uint8_t *fptr, duk_size_t fptr_size);
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
DUK_INTERNAL_DECL void duk_debug_log(duk_small_int_t level, const char *file, duk_int_t line, const char *func, const char *fmt, ...);
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
/* parameter passing, not thread safe */
|
|
#define DUK_DEBUG_STASH_SIZE 128
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL char duk_debug_file_stash[DUK_DEBUG_STASH_SIZE];
|
|
DUK_INTERNAL_DECL char duk_debug_line_stash[DUK_DEBUG_STASH_SIZE];
|
|
DUK_INTERNAL_DECL char duk_debug_func_stash[DUK_DEBUG_STASH_SIZE];
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_debug_level_stash;
|
|
#endif
|
|
DUK_INTERNAL_DECL void duk_debug_log(const char *fmt, ...);
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
DUK_INTERNAL_DECL void duk_fb_put_bytes(duk_fixedbuffer *fb, duk_uint8_t *buffer, duk_size_t length);
|
|
DUK_INTERNAL_DECL void duk_fb_put_byte(duk_fixedbuffer *fb, duk_uint8_t x);
|
|
DUK_INTERNAL_DECL void duk_fb_put_cstring(duk_fixedbuffer *fb, const char *x);
|
|
DUK_INTERNAL_DECL void duk_fb_sprintf(duk_fixedbuffer *fb, const char *fmt, ...);
|
|
DUK_INTERNAL_DECL void duk_fb_put_funcptr(duk_fixedbuffer *fb, duk_uint8_t *fptr, duk_size_t fptr_size);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_fb_is_full(duk_fixedbuffer *fb);
|
|
|
|
#endif /* DUK_USE_DEBUG */
|
|
|
|
#endif /* DUK_DEBUG_H_INCLUDED */
|
|
#line 1 "duk_error.h"
|
|
/*
|
|
* Error handling macros, assertion macro, error codes.
|
|
*
|
|
* There are three level of 'errors':
|
|
*
|
|
* 1. Ordinary errors, relative to a thread, cause a longjmp, catchable.
|
|
* 2. Fatal errors, relative to a heap, cause fatal handler to be called.
|
|
* 3. Panic errors, unrelated to a heap and cause a process exit.
|
|
*
|
|
* Panics are used by the default fatal error handler and by debug code
|
|
* such as assertions. By providing a proper fatal error handler, user
|
|
* code can avoid panics in non-debug builds.
|
|
*/
|
|
|
|
#ifndef DUK_ERROR_H_INCLUDED
|
|
#define DUK_ERROR_H_INCLUDED
|
|
|
|
/*
|
|
* Error codes: defined in duktape.h
|
|
*
|
|
* Error codes are used as a shorthand to throw exceptions from inside
|
|
* the implementation. The appropriate Ecmascript object is constructed
|
|
* based on the code. Ecmascript code throws objects directly. The error
|
|
* codes are defined in the public API header because they are also used
|
|
* by calling code.
|
|
*/
|
|
|
|
/*
|
|
* Normal error
|
|
*
|
|
* Normal error is thrown with a longjmp() through the current setjmp()
|
|
* catchpoint record in the duk_heap. The 'curr_thread' of the duk_heap
|
|
* identifies the throwing thread.
|
|
*
|
|
* Error formatting is not always necessary but there are no separate calls
|
|
* (to minimize code size). Error object creation will consume a considerable
|
|
* amount of time, compared to which formatting is probably trivial. Note
|
|
* that special formatting (provided by DUK_DEBUG macros) is NOT available.
|
|
*
|
|
* The _RAW variants allow the caller to specify file and line. This makes
|
|
* it easier to write checked calls which want to use the call site of the
|
|
* checked function, not the error macro call inside the checked function.
|
|
*
|
|
* We prefer the standard variadic macros; if they are not available, we
|
|
* fall back to awkward hacks.
|
|
*/
|
|
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
|
|
/* __VA_ARGS__ has comma issues for empty lists, so we mandate at least 1 argument for '...' (format string) */
|
|
#define DUK_ERROR(thr,err,...) duk_err_handle_error(DUK_FILE_MACRO, (duk_int_t) DUK_LINE_MACRO, (thr), (err), __VA_ARGS__)
|
|
#define DUK_ERROR_RAW(file,line,thr,err,...) duk_err_handle_error((file), (line), (thr), (err), __VA_ARGS__)
|
|
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
/* Parameter passing here is not thread safe. We rely on the __FILE__
|
|
* pointer being a constant which can be passed through a global.
|
|
*/
|
|
|
|
#define DUK_ERROR \
|
|
(void) (duk_err_file_stash = (const char *) DUK_FILE_MACRO, \
|
|
duk_err_line_stash = (duk_int_t) DUK_LINE_MACRO, \
|
|
duk_err_handle_error_stash) /* arguments follow */
|
|
#define DUK_ERROR_RAW duk_err_handle_error
|
|
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#else /* DUK_USE_VERBOSE_ERRORS */
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
|
|
#define DUK_ERROR(thr,err,...) duk_err_handle_error((thr), (err))
|
|
#define DUK_ERROR_RAW(file,line,thr,err,...) duk_err_handle_error((thr), (err))
|
|
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
/* This is sub-optimal because arguments will be passed but ignored, and the strings
|
|
* will go into the object file. Can't think of how to do this portably and still
|
|
* relatively conveniently.
|
|
*/
|
|
#define DUK_ERROR duk_err_handle_error_nonverbose1
|
|
#define DUK_ERROR_RAW duk_err_handle_error_nonverbose2
|
|
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#endif /* DUK_USE_VERBOSE_ERRORS */
|
|
|
|
/*
|
|
* Fatal error
|
|
*
|
|
* There are no fatal error macros at the moment. There are so few call
|
|
* sites that the fatal error handler is called directly.
|
|
*/
|
|
|
|
/*
|
|
* Panic error
|
|
*
|
|
* Panic errors are not relative to either a heap or a thread, and cause
|
|
* DUK_PANIC() macro to be invoked. Unlesa a user provides DUK_OPT_PANIC_HANDLER,
|
|
* DUK_PANIC() calls a helper which prints out the error and causes a process
|
|
* exit.
|
|
*
|
|
* The user can override the macro to provide custom handling. A macro is
|
|
* used to allow the user to have inline panic handling if desired (without
|
|
* causing a potentially risky function call).
|
|
*
|
|
* Panics are only used in debug code such as assertions, and by the default
|
|
* fatal error handler.
|
|
*/
|
|
|
|
#if defined(DUK_USE_PANIC_HANDLER)
|
|
/* already defined, good */
|
|
#define DUK_PANIC(code,msg) DUK_USE_PANIC_HANDLER((code),(msg))
|
|
#else
|
|
#define DUK_PANIC(code,msg) duk_default_panic_handler((code),(msg))
|
|
#endif /* DUK_USE_PANIC_HANDLER */
|
|
|
|
/*
|
|
* Assert macro: failure causes panic.
|
|
*/
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
|
|
/* the message should be a compile time constant without formatting (less risk);
|
|
* we don't care about assertion text size because they're not used in production
|
|
* builds.
|
|
*/
|
|
#define DUK_ASSERT(x) do { \
|
|
if (!(x)) { \
|
|
DUK_PANIC(DUK_ERR_ASSERTION_ERROR, \
|
|
"assertion failed: " #x \
|
|
" (" DUK_FILE_MACRO ":" DUK_MACRO_STRINGIFY(DUK_LINE_MACRO) ")"); \
|
|
} \
|
|
} while (0)
|
|
|
|
#else /* DUK_USE_ASSERTIONS */
|
|
|
|
#define DUK_ASSERT(x) do { /* assertion omitted */ } while(0)
|
|
|
|
#endif /* DUK_USE_ASSERTIONS */
|
|
|
|
/* this variant is used when an assert would generate a compile warning by
|
|
* being always true (e.g. >= 0 comparison for an unsigned value
|
|
*/
|
|
#define DUK_ASSERT_DISABLE(x) do { /* assertion disabled */ } while(0)
|
|
|
|
/*
|
|
* Assertion helpers
|
|
*/
|
|
|
|
#if defined(DUK_USE_ASSERTIONS) && defined(DUK_USE_REFERENCE_COUNTING)
|
|
#define DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(h) do { \
|
|
DUK_ASSERT((h) == NULL || DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) (h)) > 0); \
|
|
} while (0)
|
|
#define DUK_ASSERT_REFCOUNT_NONZERO_TVAL(tv) do { \
|
|
if ((tv) != NULL && DUK_TVAL_IS_HEAP_ALLOCATED((tv))) { \
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(DUK_TVAL_GET_HEAPHDR((tv))) > 0); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(h) /* no refcount check */
|
|
#define DUK_ASSERT_REFCOUNT_NONZERO_TVAL(tv) /* no refcount check */
|
|
#endif
|
|
|
|
#define DUK_ASSERT_TOP(ctx,n) DUK_ASSERT((duk_idx_t) duk_get_top((ctx)) == (duk_idx_t) (n))
|
|
|
|
#if defined(DUK_USE_ASSERTIONS) && defined(DUK_USE_PACKED_TVAL)
|
|
#define DUK_ASSERT_DOUBLE_IS_NORMALIZED(dval) do { \
|
|
duk_double_union assert_tmp_du; \
|
|
assert_tmp_du.d = (dval); \
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&assert_tmp_du)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_ASSERT_DOUBLE_IS_NORMALIZED(dval) /* nop */
|
|
#endif
|
|
|
|
/*
|
|
* Helper for valstack space
|
|
*
|
|
* Caller of DUK_ASSERT_VALSTACK_SPACE() estimates the number of free stack entries
|
|
* required for its own use, and any child calls which are not (a) Duktape API calls
|
|
* or (b) Duktape calls which involve extending the valstack (e.g. getter call).
|
|
*/
|
|
|
|
#define DUK_VALSTACK_ASSERT_EXTRA 5 /* this is added to checks to allow for Duktape
|
|
* API calls in addition to function's own use
|
|
*/
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
#define DUK_ASSERT_VALSTACK_SPACE(thr,n) do { \
|
|
DUK_ASSERT((thr) != NULL); \
|
|
DUK_ASSERT((thr)->valstack_end - (thr)->valstack_top >= (n) + DUK_VALSTACK_ASSERT_EXTRA); \
|
|
} while (0)
|
|
#else
|
|
#define DUK_ASSERT_VALSTACK_SPACE(thr,n) /* no valstack space check */
|
|
#endif
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_handle_error(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, ...));
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL const char *duk_err_file_stash;
|
|
DUK_INTERNAL_DECL duk_int_t duk_err_line_stash;
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_handle_error(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, ...));
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_handle_error_stash(duk_hthread *thr, duk_errcode_t code, const char *fmt, ...));
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
#else /* DUK_USE_VERBOSE_ERRORS */
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_handle_error(duk_hthread *thr, duk_errcode_t code));
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_handle_error_nonverbose1(duk_hthread *thr, duk_errcode_t code, const char *fmt, ...));
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_handle_error_nonverbose2(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, ...));
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
#endif /* DUK_USE_VERBOSE_ERRORS */
|
|
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_create_and_throw(duk_hthread *thr, duk_errcode_t code, const char *msg, const char *filename, duk_int_t line));
|
|
#else
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_create_and_throw(duk_hthread *thr, duk_errcode_t code));
|
|
#endif
|
|
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_error_throw_from_negative_rc(duk_hthread *thr, duk_ret_t rc));
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_CREATE)
|
|
DUK_INTERNAL_DECL void duk_err_augment_error_create(duk_hthread *thr, duk_hthread *thr_callstack, const char *filename, duk_int_t line, duk_bool_t noblame_fileline);
|
|
#endif
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
DUK_INTERNAL_DECL void duk_err_augment_error_throw(duk_hthread *thr);
|
|
#endif
|
|
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_err_longjmp(duk_hthread *thr));
|
|
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_default_fatal_handler(duk_context *ctx, duk_errcode_t code, const char *msg));
|
|
|
|
#if !defined(DUK_USE_PANIC_HANDLER)
|
|
DUK_NORETURN(DUK_INTERNAL_DECL void duk_default_panic_handler(duk_errcode_t code, const char *msg));
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL void duk_err_setup_heap_ljstate(duk_hthread *thr, duk_small_int_t lj_type);
|
|
|
|
DUK_INTERNAL_DECL duk_hobject *duk_error_prototype_from_code(duk_hthread *thr, duk_errcode_t err_code);
|
|
|
|
#endif /* DUK_ERROR_H_INCLUDED */
|
|
#line 1 "duk_util.h"
|
|
/*
|
|
* Utilities
|
|
*/
|
|
|
|
#ifndef DUK_UTIL_H_INCLUDED
|
|
#define DUK_UTIL_H_INCLUDED
|
|
|
|
#define DUK_UTIL_MIN_HASH_PRIME 17 /* must match genhashsizes.py */
|
|
|
|
#define DUK_UTIL_GET_HASH_PROBE_STEP(hash) (duk_util_probe_steps[(hash) & 0x1f])
|
|
|
|
/*
|
|
* Bitstream decoder
|
|
*/
|
|
|
|
struct duk_bitdecoder_ctx {
|
|
const duk_uint8_t *data;
|
|
duk_size_t offset;
|
|
duk_size_t length;
|
|
duk_uint32_t currval;
|
|
duk_small_int_t currbits;
|
|
};
|
|
|
|
/*
|
|
* Bitstream encoder
|
|
*/
|
|
|
|
struct duk_bitencoder_ctx {
|
|
duk_uint8_t *data;
|
|
duk_size_t offset;
|
|
duk_size_t length;
|
|
duk_uint32_t currval;
|
|
duk_small_int_t currbits;
|
|
duk_small_int_t truncated;
|
|
};
|
|
|
|
/*
|
|
* Externs and prototypes
|
|
*/
|
|
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL duk_uint8_t duk_lc_digits[36];
|
|
DUK_INTERNAL_DECL duk_uint8_t duk_uc_nybbles[16];
|
|
DUK_INTERNAL_DECL duk_int8_t duk_hex_dectab[256];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
/* Note: assumes that duk_util_probe_steps size is 32 */
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART) || defined(DUK_USE_STRTAB_PROBE)
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL duk_uint8_t duk_util_probe_steps[32];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL duk_uint32_t duk_util_hashbytes(const duk_uint8_t *data, duk_size_t len, duk_uint32_t seed);
|
|
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART) || defined(DUK_USE_STRTAB_PROBE)
|
|
DUK_INTERNAL_DECL duk_uint32_t duk_util_get_hash_prime(duk_uint32_t size);
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL duk_int32_t duk_bd_decode(duk_bitdecoder_ctx *ctx, duk_small_int_t bits);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_bd_decode_flag(duk_bitdecoder_ctx *ctx);
|
|
DUK_INTERNAL_DECL duk_int32_t duk_bd_decode_flagged(duk_bitdecoder_ctx *ctx, duk_small_int_t bits, duk_int32_t def_value);
|
|
|
|
DUK_INTERNAL_DECL void duk_be_encode(duk_bitencoder_ctx *ctx, duk_uint32_t data, duk_small_int_t bits);
|
|
DUK_INTERNAL_DECL void duk_be_finish(duk_bitencoder_ctx *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_uint32_t duk_util_tinyrandom_get_bits(duk_hthread *thr, duk_small_int_t n);
|
|
DUK_INTERNAL_DECL duk_double_t duk_util_tinyrandom_get_double(duk_hthread *thr);
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT) /* For now only needed by the debugger. */
|
|
DUK_INTERNAL void duk_byteswap_bytes(duk_uint8_t *p, duk_small_uint_t len);
|
|
#endif
|
|
|
|
#endif /* DUK_UTIL_H_INCLUDED */
|
|
#line 1 "duk_unicode.h"
|
|
/*
|
|
* Unicode helpers
|
|
*/
|
|
|
|
#ifndef DUK_UNICODE_H_INCLUDED
|
|
#define DUK_UNICODE_H_INCLUDED
|
|
|
|
/*
|
|
* UTF-8 / XUTF-8 / CESU-8 constants
|
|
*/
|
|
|
|
#define DUK_UNICODE_MAX_XUTF8_LENGTH 7 /* up to 36 bit codepoints */
|
|
#define DUK_UNICODE_MAX_CESU8_LENGTH 6 /* all codepoints up to U+10FFFF */
|
|
|
|
/*
|
|
* Useful Unicode codepoints
|
|
*
|
|
* Integer constants must be signed to avoid unexpected coercions
|
|
* in comparisons.
|
|
*/
|
|
|
|
#define DUK_UNICODE_CP_ZWNJ 0x200cL /* zero-width non-joiner */
|
|
#define DUK_UNICODE_CP_ZWJ 0x200dL /* zero-width joiner */
|
|
#define DUK_UNICODE_CP_REPLACEMENT_CHARACTER 0xfffdL /* http://en.wikipedia.org/wiki/Replacement_character#Replacement_character */
|
|
|
|
/*
|
|
* ASCII character constants
|
|
*
|
|
* C character literals like 'x' have a platform specific value and do
|
|
* not match ASCII (UTF-8) values on e.g. EBCDIC platforms. So, use
|
|
* these (admittedly awkward) constants instead. These constants must
|
|
* also have signed values to avoid unexpected coercions in comparisons.
|
|
*
|
|
* http://en.wikipedia.org/wiki/ASCII
|
|
*/
|
|
|
|
#define DUK_ASC_NUL 0x00
|
|
#define DUK_ASC_SOH 0x01
|
|
#define DUK_ASC_STX 0x02
|
|
#define DUK_ASC_ETX 0x03
|
|
#define DUK_ASC_EOT 0x04
|
|
#define DUK_ASC_ENQ 0x05
|
|
#define DUK_ASC_ACK 0x06
|
|
#define DUK_ASC_BEL 0x07
|
|
#define DUK_ASC_BS 0x08
|
|
#define DUK_ASC_HT 0x09
|
|
#define DUK_ASC_LF 0x0a
|
|
#define DUK_ASC_VT 0x0b
|
|
#define DUK_ASC_FF 0x0c
|
|
#define DUK_ASC_CR 0x0d
|
|
#define DUK_ASC_SO 0x0e
|
|
#define DUK_ASC_SI 0x0f
|
|
#define DUK_ASC_DLE 0x10
|
|
#define DUK_ASC_DC1 0x11
|
|
#define DUK_ASC_DC2 0x12
|
|
#define DUK_ASC_DC3 0x13
|
|
#define DUK_ASC_DC4 0x14
|
|
#define DUK_ASC_NAK 0x15
|
|
#define DUK_ASC_SYN 0x16
|
|
#define DUK_ASC_ETB 0x17
|
|
#define DUK_ASC_CAN 0x18
|
|
#define DUK_ASC_EM 0x19
|
|
#define DUK_ASC_SUB 0x1a
|
|
#define DUK_ASC_ESC 0x1b
|
|
#define DUK_ASC_FS 0x1c
|
|
#define DUK_ASC_GS 0x1d
|
|
#define DUK_ASC_RS 0x1e
|
|
#define DUK_ASC_US 0x1f
|
|
#define DUK_ASC_SPACE 0x20
|
|
#define DUK_ASC_EXCLAMATION 0x21
|
|
#define DUK_ASC_DOUBLEQUOTE 0x22
|
|
#define DUK_ASC_HASH 0x23
|
|
#define DUK_ASC_DOLLAR 0x24
|
|
#define DUK_ASC_PERCENT 0x25
|
|
#define DUK_ASC_AMP 0x26
|
|
#define DUK_ASC_SINGLEQUOTE 0x27
|
|
#define DUK_ASC_LPAREN 0x28
|
|
#define DUK_ASC_RPAREN 0x29
|
|
#define DUK_ASC_STAR 0x2a
|
|
#define DUK_ASC_PLUS 0x2b
|
|
#define DUK_ASC_COMMA 0x2c
|
|
#define DUK_ASC_MINUS 0x2d
|
|
#define DUK_ASC_PERIOD 0x2e
|
|
#define DUK_ASC_SLASH 0x2f
|
|
#define DUK_ASC_0 0x30
|
|
#define DUK_ASC_1 0x31
|
|
#define DUK_ASC_2 0x32
|
|
#define DUK_ASC_3 0x33
|
|
#define DUK_ASC_4 0x34
|
|
#define DUK_ASC_5 0x35
|
|
#define DUK_ASC_6 0x36
|
|
#define DUK_ASC_7 0x37
|
|
#define DUK_ASC_8 0x38
|
|
#define DUK_ASC_9 0x39
|
|
#define DUK_ASC_COLON 0x3a
|
|
#define DUK_ASC_SEMICOLON 0x3b
|
|
#define DUK_ASC_LANGLE 0x3c
|
|
#define DUK_ASC_EQUALS 0x3d
|
|
#define DUK_ASC_RANGLE 0x3e
|
|
#define DUK_ASC_QUESTION 0x3f
|
|
#define DUK_ASC_ATSIGN 0x40
|
|
#define DUK_ASC_UC_A 0x41
|
|
#define DUK_ASC_UC_B 0x42
|
|
#define DUK_ASC_UC_C 0x43
|
|
#define DUK_ASC_UC_D 0x44
|
|
#define DUK_ASC_UC_E 0x45
|
|
#define DUK_ASC_UC_F 0x46
|
|
#define DUK_ASC_UC_G 0x47
|
|
#define DUK_ASC_UC_H 0x48
|
|
#define DUK_ASC_UC_I 0x49
|
|
#define DUK_ASC_UC_J 0x4a
|
|
#define DUK_ASC_UC_K 0x4b
|
|
#define DUK_ASC_UC_L 0x4c
|
|
#define DUK_ASC_UC_M 0x4d
|
|
#define DUK_ASC_UC_N 0x4e
|
|
#define DUK_ASC_UC_O 0x4f
|
|
#define DUK_ASC_UC_P 0x50
|
|
#define DUK_ASC_UC_Q 0x51
|
|
#define DUK_ASC_UC_R 0x52
|
|
#define DUK_ASC_UC_S 0x53
|
|
#define DUK_ASC_UC_T 0x54
|
|
#define DUK_ASC_UC_U 0x55
|
|
#define DUK_ASC_UC_V 0x56
|
|
#define DUK_ASC_UC_W 0x57
|
|
#define DUK_ASC_UC_X 0x58
|
|
#define DUK_ASC_UC_Y 0x59
|
|
#define DUK_ASC_UC_Z 0x5a
|
|
#define DUK_ASC_LBRACKET 0x5b
|
|
#define DUK_ASC_BACKSLASH 0x5c
|
|
#define DUK_ASC_RBRACKET 0x5d
|
|
#define DUK_ASC_CARET 0x5e
|
|
#define DUK_ASC_UNDERSCORE 0x5f
|
|
#define DUK_ASC_GRAVE 0x60
|
|
#define DUK_ASC_LC_A 0x61
|
|
#define DUK_ASC_LC_B 0x62
|
|
#define DUK_ASC_LC_C 0x63
|
|
#define DUK_ASC_LC_D 0x64
|
|
#define DUK_ASC_LC_E 0x65
|
|
#define DUK_ASC_LC_F 0x66
|
|
#define DUK_ASC_LC_G 0x67
|
|
#define DUK_ASC_LC_H 0x68
|
|
#define DUK_ASC_LC_I 0x69
|
|
#define DUK_ASC_LC_J 0x6a
|
|
#define DUK_ASC_LC_K 0x6b
|
|
#define DUK_ASC_LC_L 0x6c
|
|
#define DUK_ASC_LC_M 0x6d
|
|
#define DUK_ASC_LC_N 0x6e
|
|
#define DUK_ASC_LC_O 0x6f
|
|
#define DUK_ASC_LC_P 0x70
|
|
#define DUK_ASC_LC_Q 0x71
|
|
#define DUK_ASC_LC_R 0x72
|
|
#define DUK_ASC_LC_S 0x73
|
|
#define DUK_ASC_LC_T 0x74
|
|
#define DUK_ASC_LC_U 0x75
|
|
#define DUK_ASC_LC_V 0x76
|
|
#define DUK_ASC_LC_W 0x77
|
|
#define DUK_ASC_LC_X 0x78
|
|
#define DUK_ASC_LC_Y 0x79
|
|
#define DUK_ASC_LC_Z 0x7a
|
|
#define DUK_ASC_LCURLY 0x7b
|
|
#define DUK_ASC_PIPE 0x7c
|
|
#define DUK_ASC_RCURLY 0x7d
|
|
#define DUK_ASC_TILDE 0x7e
|
|
#define DUK_ASC_DEL 0x7f
|
|
|
|
/*
|
|
* Unicode tables
|
|
*/
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_ids_noa[791];
|
|
#else
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_ids_noabmp[611];
|
|
#endif
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_ids_m_let_noa[42];
|
|
#else
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_ids_m_let_noabmp[24];
|
|
#endif
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_idp_m_ids_noa[397];
|
|
#else
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_idp_m_ids_noabmp[348];
|
|
#endif
|
|
|
|
/*
|
|
* Automatically generated by extract_caseconv.py, do not edit!
|
|
*/
|
|
|
|
extern const duk_uint8_t duk_unicode_caseconv_uc[1288];
|
|
extern const duk_uint8_t duk_unicode_caseconv_lc[616];
|
|
|
|
/*
|
|
* Extern
|
|
*/
|
|
|
|
/* duk_unicode_support.c */
|
|
#if !defined(DUK_SINGLE_FILE)
|
|
DUK_INTERNAL_DECL duk_uint8_t duk_unicode_xutf8_markers[7];
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_unicode_re_ranges_digit[2];
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_unicode_re_ranges_white[22];
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_unicode_re_ranges_wordchar[8];
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_unicode_re_ranges_not_digit[4];
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_unicode_re_ranges_not_white[24];
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_unicode_re_ranges_not_wordchar[10];
|
|
#endif /* !DUK_SINGLE_FILE */
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_get_xutf8_length(duk_ucodepoint_t cp);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_encode_xutf8(duk_ucodepoint_t cp, duk_uint8_t *out);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_encode_cesu8(duk_ucodepoint_t cp, duk_uint8_t *out);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_decode_xutf8(duk_hthread *thr, const duk_uint8_t **ptr, const duk_uint8_t *ptr_start, const duk_uint8_t *ptr_end, duk_ucodepoint_t *out_cp);
|
|
DUK_INTERNAL_DECL duk_ucodepoint_t duk_unicode_decode_xutf8_checked(duk_hthread *thr, const duk_uint8_t **ptr, const duk_uint8_t *ptr_start, const duk_uint8_t *ptr_end);
|
|
DUK_INTERNAL_DECL duk_size_t duk_unicode_unvalidated_utf8_length(const duk_uint8_t *data, duk_size_t blen);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_is_whitespace(duk_codepoint_t cp);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_is_line_terminator(duk_codepoint_t cp);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_is_identifier_start(duk_codepoint_t cp);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_is_identifier_part(duk_codepoint_t cp);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_is_letter(duk_codepoint_t cp);
|
|
DUK_INTERNAL_DECL void duk_unicode_case_convert_string(duk_hthread *thr, duk_bool_t uppercase);
|
|
DUK_INTERNAL_DECL duk_codepoint_t duk_unicode_re_canonicalize_char(duk_hthread *thr, duk_codepoint_t cp);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_unicode_re_is_wordchar(duk_codepoint_t cp);
|
|
|
|
#endif /* DUK_UNICODE_H_INCLUDED */
|
|
#line 1 "duk_json.h"
|
|
/*
|
|
* Defines for JSON, especially duk_bi_json.c.
|
|
*/
|
|
|
|
#ifndef DUK_JSON_H_INCLUDED
|
|
#define DUK_JSON_H_INCLUDED
|
|
|
|
/* Object/array recursion limit (to protect C stack) */
|
|
#if defined(DUK_USE_DEEP_C_STACK)
|
|
#define DUK_JSON_ENC_RECURSION_LIMIT 1000
|
|
#define DUK_JSON_DEC_RECURSION_LIMIT 1000
|
|
#else
|
|
#define DUK_JSON_ENC_RECURSION_LIMIT 100
|
|
#define DUK_JSON_DEC_RECURSION_LIMIT 100
|
|
#endif
|
|
|
|
/* Encoding/decoding flags */
|
|
#define DUK_JSON_FLAG_ASCII_ONLY (1 << 0) /* escape any non-ASCII characters */
|
|
#define DUK_JSON_FLAG_AVOID_KEY_QUOTES (1 << 1) /* avoid key quotes when key is an ASCII Identifier */
|
|
#define DUK_JSON_FLAG_EXT_CUSTOM (1 << 2) /* extended types: custom encoding */
|
|
#define DUK_JSON_FLAG_EXT_COMPATIBLE (1 << 3) /* extended types: compatible encoding */
|
|
|
|
/* How much stack to require on entry to object/array encode */
|
|
#define DUK_JSON_ENC_REQSTACK 32
|
|
|
|
/* How much stack to require on entry to object/array decode */
|
|
#define DUK_JSON_DEC_REQSTACK 32
|
|
|
|
/* Encoding state. Heap object references are all borrowed. */
|
|
typedef struct {
|
|
duk_hthread *thr;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
duk_hobject *h_replacer; /* replacer function */
|
|
duk_hstring *h_gap; /* gap (if empty string, NULL) */
|
|
duk_hstring *h_indent; /* current indent (if gap is NULL, this is NULL) */
|
|
duk_idx_t idx_proplist; /* explicit PropertyList */
|
|
duk_idx_t idx_loop; /* valstack index of loop detection object */
|
|
duk_small_uint_t flags;
|
|
duk_small_uint_t flag_ascii_only;
|
|
duk_small_uint_t flag_avoid_key_quotes;
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
duk_small_uint_t flag_ext_custom;
|
|
duk_small_uint_t flag_ext_compatible;
|
|
#endif
|
|
duk_int_t recursion_depth;
|
|
duk_int_t recursion_limit;
|
|
duk_uint_t mask_for_undefined; /* type bit mask: types which certainly produce 'undefined' */
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
duk_small_uint_t stridx_custom_undefined;
|
|
duk_small_uint_t stridx_custom_nan;
|
|
duk_small_uint_t stridx_custom_neginf;
|
|
duk_small_uint_t stridx_custom_posinf;
|
|
duk_small_uint_t stridx_custom_function;
|
|
#endif
|
|
} duk_json_enc_ctx;
|
|
|
|
typedef struct {
|
|
duk_hthread *thr;
|
|
const duk_uint8_t *p;
|
|
const duk_uint8_t *p_start;
|
|
const duk_uint8_t *p_end;
|
|
duk_idx_t idx_reviver;
|
|
duk_small_uint_t flags;
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
duk_small_uint_t flag_ext_custom;
|
|
duk_small_uint_t flag_ext_compatible;
|
|
#endif
|
|
duk_int_t recursion_depth;
|
|
duk_int_t recursion_limit;
|
|
} duk_json_dec_ctx;
|
|
|
|
#endif /* DUK_JSON_H_INCLUDED */
|
|
#line 1 "duk_js.h"
|
|
/*
|
|
* Ecmascript execution, support primitives.
|
|
*/
|
|
|
|
#ifndef DUK_JS_H_INCLUDED
|
|
#define DUK_JS_H_INCLUDED
|
|
|
|
/* Flags for call handling. */
|
|
#define DUK_CALL_FLAG_PROTECTED (1 << 0) /* duk_handle_call: call is protected */
|
|
#define DUK_CALL_FLAG_IGNORE_RECLIMIT (1 << 1) /* duk_handle_call: call ignores C recursion limit (for errhandler calls) */
|
|
#define DUK_CALL_FLAG_CONSTRUCTOR_CALL (1 << 2) /* duk_handle_call: constructor call (i.e. called as 'new Foo()') */
|
|
#define DUK_CALL_FLAG_IS_RESUME (1 << 3) /* duk_handle_ecma_call_setup: setup for a resume() */
|
|
#define DUK_CALL_FLAG_IS_TAILCALL (1 << 4) /* duk_handle_ecma_call_setup: setup for a tailcall */
|
|
#define DUK_CALL_FLAG_DIRECT_EVAL (1 << 5) /* call is a direct eval call */
|
|
|
|
/* Flags for duk_js_equals_helper(). */
|
|
#define DUK_EQUALS_FLAG_SAMEVALUE (1 << 0) /* use SameValue instead of non-strict equality */
|
|
#define DUK_EQUALS_FLAG_STRICT (1 << 1) /* use strict equality instead of non-strict equality */
|
|
|
|
/* Flags for duk_js_compare_helper(). */
|
|
#define DUK_COMPARE_FLAG_EVAL_LEFT_FIRST (1 << 0) /* eval left argument first */
|
|
#define DUK_COMPARE_FLAG_NEGATE (1 << 1) /* negate result */
|
|
|
|
/* conversions, coercions, comparison, etc */
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_toboolean(duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_double_t duk_js_tonumber(duk_hthread *thr, duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_double_t duk_js_tointeger_number(duk_double_t x);
|
|
DUK_INTERNAL_DECL duk_double_t duk_js_tointeger(duk_hthread *thr, duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_uint32_t duk_js_touint32(duk_hthread *thr, duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_int32_t duk_js_toint32(duk_hthread *thr, duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_uint16_t duk_js_touint16(duk_hthread *thr, duk_tval *tv);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_js_to_arrayindex_raw_string(const duk_uint8_t *str, duk_uint32_t blen, duk_uarridx_t *out_idx);
|
|
DUK_INTERNAL_DECL duk_uarridx_t duk_js_to_arrayindex_string_helper(duk_hstring *h);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_equals_helper(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_int_t flags);
|
|
DUK_INTERNAL_DECL duk_small_int_t duk_js_string_compare(duk_hstring *h1, duk_hstring *h2);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_compare_helper(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_int_t flags);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_instanceof(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_in(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y);
|
|
DUK_INTERNAL_DECL duk_hstring *duk_js_typeof(duk_hthread *thr, duk_tval *tv_x);
|
|
|
|
#define duk_js_equals(thr,tv_x,tv_y) \
|
|
duk_js_equals_helper((thr), (tv_x), (tv_y), 0)
|
|
#define duk_js_strict_equals(tv_x,tv_y) \
|
|
duk_js_equals_helper(NULL, (tv_x), (tv_y), DUK_EQUALS_FLAG_STRICT)
|
|
#define duk_js_samevalue(tv_x,tv_y) \
|
|
duk_js_equals_helper(NULL, (tv_x), (tv_y), DUK_EQUALS_FLAG_SAMEVALUE)
|
|
|
|
/* E5 Sections 11.8.1, 11.8.5; x < y */
|
|
#define duk_js_lessthan(thr,tv_x,tv_y) \
|
|
duk_js_compare_helper((thr), (tv_x), (tv_Y), DUK_COMPARE_FLAG_EVAL_LEFT_FIRST)
|
|
|
|
/* E5 Sections 11.8.2, 11.8.5; x > y --> y < x */
|
|
#define duk_js_greaterthan(thr,tv_x,tv_y) \
|
|
duk_js_compare_helper((thr), (tv_y), (tv_x), 0)
|
|
|
|
/* E5 Sections 11.8.3, 11.8.5; x <= y --> not (x > y) --> not (y < x) */
|
|
#define duk_js_lessthanorequal(thr,tv_x,tv_y) \
|
|
duk_js_compare_helper((thr), (tv_y), (tv_x), DUK_COMPARE_FLAG_NEGATE)
|
|
|
|
/* E5 Sections 11.8.4, 11.8.5; x >= y --> not (x < y) */
|
|
#define duk_js_greaterthanorequal(thr,tv_x,tv_y) \
|
|
duk_js_compare_helper((thr), (tv_x), (tv_y), DUK_COMPARE_FLAG_EVAL_LEFT_FIRST | DUK_COMPARE_FLAG_NEGATE)
|
|
|
|
/* identifiers and environment handling */
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_bool_t duk_js_hasvar_envrec(duk_hthread *thr, duk_hobject *env, duk_hstring *name);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_getvar_envrec(duk_hthread *thr, duk_hobject *env, duk_hstring *name, duk_bool_t throw_flag);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_getvar_activation(duk_hthread *thr, duk_activation *act, duk_hstring *name, duk_bool_t throw_flag);
|
|
DUK_INTERNAL_DECL void duk_js_putvar_envrec(duk_hthread *thr, duk_hobject *env, duk_hstring *name, duk_tval *val, duk_bool_t strict);
|
|
DUK_INTERNAL_DECL void duk_js_putvar_activation(duk_hthread *thr, duk_activation *act, duk_hstring *name, duk_tval *val, duk_bool_t strict);
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_delvar_envrec(duk_hthread *thr, duk_hobject *env, duk_hstring *name);
|
|
#endif
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_delvar_activation(duk_hthread *thr, duk_activation *act, duk_hstring *name);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_js_declvar_activation(duk_hthread *thr, duk_activation *act, duk_hstring *name, duk_tval *val, duk_small_int_t prop_flags, duk_bool_t is_func_decl);
|
|
DUK_INTERNAL_DECL void duk_js_init_activation_environment_records_delayed(duk_hthread *thr, duk_activation *act);
|
|
DUK_INTERNAL_DECL void duk_js_close_environment_record(duk_hthread *thr, duk_hobject *env, duk_hobject *func, duk_size_t regbase);
|
|
DUK_INTERNAL_DECL duk_hobject *duk_create_activation_environment_record(duk_hthread *thr, duk_hobject *func, duk_size_t idx_bottom);
|
|
DUK_INTERNAL_DECL
|
|
void duk_js_push_closure(duk_hthread *thr,
|
|
duk_hcompiledfunction *fun_temp,
|
|
duk_hobject *outer_var_env,
|
|
duk_hobject *outer_lex_env);
|
|
|
|
/* call handling */
|
|
DUK_INTERNAL_DECL duk_int_t duk_handle_call(duk_hthread *thr, duk_idx_t num_stack_args, duk_small_uint_t call_flags);
|
|
DUK_INTERNAL_DECL duk_int_t duk_handle_safe_call(duk_hthread *thr, duk_safe_call_function func, duk_idx_t num_stack_args, duk_idx_t num_stack_res);
|
|
DUK_INTERNAL_DECL duk_bool_t duk_handle_ecma_call_setup(duk_hthread *thr, duk_idx_t num_stack_args, duk_small_uint_t call_flags);
|
|
|
|
/* bytecode execution */
|
|
DUK_INTERNAL_DECL void duk_js_execute_bytecode(duk_hthread *exec_thr);
|
|
|
|
#endif /* DUK_JS_H_INCLUDED */
|
|
#line 1 "duk_numconv.h"
|
|
#ifndef DUK_NUMCONV_H_INCLUDED
|
|
#define DUK_NUMCONV_H_INCLUDED
|
|
|
|
/*
|
|
* Number-to-string conversion. The semantics of these is very tightly
|
|
* bound with the Ecmascript semantics required for call sites.
|
|
*/
|
|
|
|
/* Output a specified number of digits instead of using the shortest
|
|
* form. Used for toPrecision() and toFixed().
|
|
*/
|
|
#define DUK_N2S_FLAG_FIXED_FORMAT (1 << 0)
|
|
|
|
/* Force exponential format. Used for toExponential(). */
|
|
#define DUK_N2S_FLAG_FORCE_EXP (1 << 1)
|
|
|
|
/* If number would need zero padding (for whole number part), use
|
|
* exponential format instead. E.g. if input number is 12300, 3
|
|
* digits are generated ("123"), output "1.23e+4" instead of "12300".
|
|
* Used for toPrecision().
|
|
*/
|
|
#define DUK_N2S_FLAG_NO_ZERO_PAD (1 << 2)
|
|
|
|
/* Digit count indicates number of fractions (i.e. an absolute
|
|
* digit index instead of a relative one). Used together with
|
|
* DUK_N2S_FLAG_FIXED_FORMAT for toFixed().
|
|
*/
|
|
#define DUK_N2S_FLAG_FRACTION_DIGITS (1 << 3)
|
|
|
|
/*
|
|
* String-to-number conversion
|
|
*/
|
|
|
|
/* Maximum exponent value when parsing numbers. This is not strictly
|
|
* compliant as there should be no upper limit, but as we parse the
|
|
* exponent without a bigint, impose some limit.
|
|
*/
|
|
#define DUK_S2N_MAX_EXPONENT 1000000000
|
|
|
|
/* Trim white space (= allow leading and trailing whitespace) */
|
|
#define DUK_S2N_FLAG_TRIM_WHITE (1 << 0)
|
|
|
|
/* Allow exponent */
|
|
#define DUK_S2N_FLAG_ALLOW_EXP (1 << 1)
|
|
|
|
/* Allow trailing garbage (e.g. treat "123foo" as "123) */
|
|
#define DUK_S2N_FLAG_ALLOW_GARBAGE (1 << 2)
|
|
|
|
/* Allow leading plus sign */
|
|
#define DUK_S2N_FLAG_ALLOW_PLUS (1 << 3)
|
|
|
|
/* Allow leading minus sign */
|
|
#define DUK_S2N_FLAG_ALLOW_MINUS (1 << 4)
|
|
|
|
/* Allow 'Infinity' */
|
|
#define DUK_S2N_FLAG_ALLOW_INF (1 << 5)
|
|
|
|
/* Allow fraction part */
|
|
#define DUK_S2N_FLAG_ALLOW_FRAC (1 << 6)
|
|
|
|
/* Allow naked fraction (e.g. ".123") */
|
|
#define DUK_S2N_FLAG_ALLOW_NAKED_FRAC (1 << 7)
|
|
|
|
/* Allow empty fraction (e.g. "123.") */
|
|
#define DUK_S2N_FLAG_ALLOW_EMPTY_FRAC (1 << 8)
|
|
|
|
/* Allow empty string to be interpreted as 0 */
|
|
#define DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO (1 << 9)
|
|
|
|
/* Allow leading zeroes (e.g. "0123" -> "123") */
|
|
#define DUK_S2N_FLAG_ALLOW_LEADING_ZERO (1 << 10)
|
|
|
|
/* Allow automatic detection of hex base ("0x" or "0X" prefix),
|
|
* overrides radix argument and forces integer mode.
|
|
*/
|
|
#define DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT (1 << 11)
|
|
|
|
/* Allow automatic detection of octal base, overrides radix
|
|
* argument and forces integer mode.
|
|
*/
|
|
#define DUK_S2N_FLAG_ALLOW_AUTO_OCT_INT (1 << 12)
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
DUK_INTERNAL_DECL void duk_numconv_stringify(duk_context *ctx, duk_small_int_t radix, duk_small_int_t digits, duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL void duk_numconv_parse(duk_context *ctx, duk_small_int_t radix, duk_small_uint_t flags);
|
|
|
|
#endif /* DUK_NUMCONV_H_INCLUDED */
|
|
#line 1 "duk_bi_protos.h"
|
|
/*
|
|
* Prototypes for all built-in functions.
|
|
*/
|
|
|
|
#ifndef DUK_BUILTIN_PROTOS_H_INCLUDED
|
|
#define DUK_BUILTIN_PROTOS_H_INCLUDED
|
|
|
|
/* Buffer size needed for duk_bi_date_format_timeval().
|
|
* Accurate value is 32 + 1 for NUL termination:
|
|
* >>> len('+123456-01-23T12:34:56.123+12:34')
|
|
* 32
|
|
* Include additional space to be safe.
|
|
*/
|
|
#define DUK_BI_DATE_ISO8601_BUFSIZE 48
|
|
|
|
/* Buffer size for "short log message" which use a heap-level pre-allocated
|
|
* dynamic buffer to reduce memory churn.
|
|
*/
|
|
#define DUK_BI_LOGGER_SHORT_MSG_LIMIT 256
|
|
|
|
/* Maximum length of CommonJS module identifier to resolve. Length includes
|
|
* both current module ID, requested (possibly relative) module ID, and a
|
|
* slash in between.
|
|
*/
|
|
#define DUK_BI_COMMONJS_MODULE_ID_LIMIT 256
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_constructor_is_array(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_to_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_concat(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_join_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_pop(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_push(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_reverse(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_shift(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_slice(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_sort(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_splice(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_unshift(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_indexof_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_iter_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_array_prototype_reduce_shared(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_boolean_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_boolean_prototype_tostring_shared(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_buffer_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_buffer_prototype_tostring_shared(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_constructor_parse(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_constructor_utc(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_constructor_now(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_tostring_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_value_of(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_to_json(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_get_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_get_timezone_offset(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_set_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_date_prototype_set_time(duk_context *ctx);
|
|
/* Helpers exposed for internal use */
|
|
DUK_INTERNAL_DECL duk_double_t duk_bi_date_get_now(duk_context *ctx);
|
|
DUK_INTERNAL_DECL void duk_bi_date_format_timeval(duk_double_t timeval, duk_uint8_t *out_buf);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_info(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_act(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_gc(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_fin(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_enc(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_dec(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_duktape_object_compact(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_error_constructor_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_error_prototype_to_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_error_prototype_stack_getter(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_error_prototype_filename_getter(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_error_prototype_linenumber_getter(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_error_prototype_nop_setter(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_function_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_function_prototype(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_function_prototype_to_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_function_prototype_apply(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_function_prototype_call(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_function_prototype_bind(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_eval(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_parse_int(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_parse_float(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_is_nan(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_is_finite(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_decode_uri(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_decode_uri_component(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_encode_uri(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_encode_uri_component(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_escape(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_unescape(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_print_helper(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_global_object_require(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL
|
|
void duk_bi_json_parse_helper(duk_context *ctx,
|
|
duk_idx_t idx_value,
|
|
duk_idx_t idx_reviver,
|
|
duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL
|
|
void duk_bi_json_stringify_helper(duk_context *ctx,
|
|
duk_idx_t idx_value,
|
|
duk_idx_t idx_replacer,
|
|
duk_idx_t idx_space,
|
|
duk_small_uint_t flags);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_json_object_parse(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_json_object_stringify(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_math_object_onearg_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_math_object_twoarg_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_math_object_max(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_math_object_min(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_math_object_random(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_prototype_to_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_prototype_to_locale_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_prototype_value_of(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_prototype_to_fixed(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_prototype_to_exponential(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_number_prototype_to_precision(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_getprototype_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_setprototype_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_get_own_property_descriptor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_create(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_define_property(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_define_properties(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_seal_freeze_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_prevent_extensions(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_is_sealed_frozen_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_is_extensible(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_constructor_keys_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_prototype_to_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_prototype_to_locale_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_prototype_value_of(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_prototype_has_own_property(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_prototype_is_prototype_of(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_object_prototype_property_is_enumerable(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_pointer_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_pointer_prototype_tostring_shared(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_regexp_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_regexp_prototype_exec(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_regexp_prototype_test(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_regexp_prototype_to_string(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_constructor_from_char_code(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_to_string(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_char_at(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_char_code_at(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_concat(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_indexof_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_locale_compare(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_match(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_replace(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_search(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_slice(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_split(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_substring(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_caseconv_shared(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_trim(duk_context *ctx);
|
|
/* Note: present even if DUK_OPT_NO_SECTION_B given because genbuiltins.py
|
|
* will point to it.
|
|
*/
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_string_prototype_substr(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_proxy_constructor(duk_context *ctx);
|
|
#if 0 /* unimplemented now */
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_proxy_constructor_revocable(duk_context *ctx);
|
|
#endif
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_thread_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_thread_resume(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_thread_yield(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_thread_current(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_logger_constructor(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_logger_prototype_fmt(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_logger_prototype_raw(duk_context *ctx);
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_logger_prototype_log_shared(duk_context *ctx);
|
|
|
|
DUK_INTERNAL_DECL duk_ret_t duk_bi_type_error_thrower(duk_context *ctx);
|
|
|
|
#endif /* DUK_BUILTIN_PROTOS_H_INCLUDED */
|
|
#line 1 "duk_selftest.h"
|
|
/*
|
|
* Selftest code
|
|
*/
|
|
|
|
#ifndef DUK_SELFTEST_H_INCLUDED
|
|
#define DUK_SELFTEST_H_INCLUDED
|
|
|
|
#if defined(DUK_USE_SELF_TESTS)
|
|
DUK_INTERNAL_DECL void duk_selftest_run_tests(void);
|
|
#endif
|
|
|
|
#endif /* DUK_SELFTEST_H_INCLUDED */
|
|
#line 76 "duk_internal.h"
|
|
|
|
#endif /* DUK_INTERNAL_H_INCLUDED */
|
|
#line 1 "duk_strings.c"
|
|
/*
|
|
* Shared error message strings
|
|
*
|
|
* To minimize code footprint, try to share error messages inside Duktape
|
|
* code.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Mostly API and built-in method related */
|
|
DUK_INTERNAL const char *duk_str_internal_error = "internal error";
|
|
DUK_INTERNAL const char *duk_str_invalid_count = "invalid count";
|
|
DUK_INTERNAL const char *duk_str_invalid_call_args = "invalid call args";
|
|
DUK_INTERNAL const char *duk_str_not_constructable = "not constructable";
|
|
DUK_INTERNAL const char *duk_str_not_callable = "not callable";
|
|
DUK_INTERNAL const char *duk_str_not_extensible = "not extensible";
|
|
DUK_INTERNAL const char *duk_str_not_writable = "not writable";
|
|
DUK_INTERNAL const char *duk_str_not_configurable = "not configurable";
|
|
|
|
DUK_INTERNAL const char *duk_str_invalid_context = "invalid context";
|
|
DUK_INTERNAL const char *duk_str_invalid_index = "invalid index";
|
|
DUK_INTERNAL const char *duk_str_push_beyond_alloc_stack = "attempt to push beyond currently allocated stack";
|
|
DUK_INTERNAL const char *duk_str_not_undefined = "not undefined";
|
|
DUK_INTERNAL const char *duk_str_not_null = "not null";
|
|
DUK_INTERNAL const char *duk_str_not_boolean = "not boolean";
|
|
DUK_INTERNAL const char *duk_str_not_number = "not number";
|
|
DUK_INTERNAL const char *duk_str_not_string = "not string";
|
|
DUK_INTERNAL const char *duk_str_not_pointer = "not pointer";
|
|
DUK_INTERNAL const char *duk_str_not_buffer = "not buffer";
|
|
DUK_INTERNAL const char *duk_str_unexpected_type = "unexpected type";
|
|
DUK_INTERNAL const char *duk_str_not_thread = "not thread";
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL const char *duk_str_not_compiledfunction = "not compiledfunction";
|
|
#endif
|
|
DUK_INTERNAL const char *duk_str_not_nativefunction = "not nativefunction";
|
|
DUK_INTERNAL const char *duk_str_not_c_function = "not c function";
|
|
DUK_INTERNAL const char *duk_str_defaultvalue_coerce_failed = "[[DefaultValue]] coerce failed";
|
|
DUK_INTERNAL const char *duk_str_number_outside_range = "number outside range";
|
|
DUK_INTERNAL const char *duk_str_not_object_coercible = "not object coercible";
|
|
DUK_INTERNAL const char *duk_str_string_too_long = "string too long";
|
|
DUK_INTERNAL const char *duk_str_buffer_too_long = "buffer too long";
|
|
DUK_INTERNAL const char *duk_str_sprintf_too_long = "sprintf message too long";
|
|
DUK_INTERNAL const char *duk_str_object_alloc_failed = "object alloc failed";
|
|
DUK_INTERNAL const char *duk_str_thread_alloc_failed = "thread alloc failed";
|
|
DUK_INTERNAL const char *duk_str_func_alloc_failed = "func alloc failed";
|
|
DUK_INTERNAL const char *duk_str_buffer_alloc_failed = "buffer alloc failed";
|
|
DUK_INTERNAL const char *duk_str_pop_too_many = "attempt to pop too many entries";
|
|
DUK_INTERNAL const char *duk_str_buffer_not_dynamic = "buffer is not dynamic";
|
|
DUK_INTERNAL const char *duk_str_failed_to_extend_valstack = "failed to extend valstack";
|
|
DUK_INTERNAL const char *duk_str_base64_encode_failed = "base64 encode failed";
|
|
DUK_INTERNAL const char *duk_str_base64_decode_failed = "base64 decode failed";
|
|
DUK_INTERNAL const char *duk_str_hex_decode_failed = "hex decode failed";
|
|
DUK_INTERNAL const char *duk_str_no_sourcecode = "no sourcecode";
|
|
DUK_INTERNAL const char *duk_str_concat_result_too_long = "concat result too long";
|
|
DUK_INTERNAL const char *duk_str_unimplemented = "unimplemented";
|
|
DUK_INTERNAL const char *duk_str_array_length_over_2g = "array length over 2G";
|
|
|
|
/* JSON */
|
|
DUK_INTERNAL const char *duk_str_fmt_ptr = "%p";
|
|
DUK_INTERNAL const char *duk_str_fmt_invalid_json = "invalid json (at offset %ld)";
|
|
DUK_INTERNAL const char *duk_str_jsondec_reclimit = "json decode recursion limit";
|
|
DUK_INTERNAL const char *duk_str_jsonenc_reclimit = "json encode recursion limit";
|
|
DUK_INTERNAL const char *duk_str_cyclic_input = "cyclic input";
|
|
|
|
/* Object property access */
|
|
DUK_INTERNAL const char *duk_str_proxy_revoked = "proxy revoked";
|
|
DUK_INTERNAL const char *duk_str_object_resize_failed = "object resize failed";
|
|
DUK_INTERNAL const char *duk_str_invalid_base = "invalid base value";
|
|
DUK_INTERNAL const char *duk_str_strict_caller_read = "attempt to read strict 'caller'";
|
|
DUK_INTERNAL const char *duk_str_proxy_rejected = "proxy rejected";
|
|
DUK_INTERNAL const char *duk_str_invalid_array_length = "invalid array length";
|
|
DUK_INTERNAL const char *duk_str_array_length_write_failed = "array length write failed";
|
|
DUK_INTERNAL const char *duk_str_array_length_not_writable = "array length non-writable";
|
|
DUK_INTERNAL const char *duk_str_setter_undefined = "setter undefined";
|
|
DUK_INTERNAL const char *duk_str_redefine_virt_prop = "attempt to redefine virtual property";
|
|
DUK_INTERNAL const char *duk_str_invalid_descriptor = "invalid descriptor";
|
|
DUK_INTERNAL const char *duk_str_property_is_virtual = "property is virtual";
|
|
|
|
/* Compiler */
|
|
DUK_INTERNAL const char *duk_str_parse_error = "parse error";
|
|
DUK_INTERNAL const char *duk_str_duplicate_label = "duplicate label";
|
|
DUK_INTERNAL const char *duk_str_invalid_label = "invalid label";
|
|
DUK_INTERNAL const char *duk_str_invalid_array_literal = "invalid array literal";
|
|
DUK_INTERNAL const char *duk_str_invalid_object_literal = "invalid object literal";
|
|
DUK_INTERNAL const char *duk_str_invalid_var_declaration = "invalid variable declaration";
|
|
DUK_INTERNAL const char *duk_str_cannot_delete_identifier = "cannot delete identifier";
|
|
DUK_INTERNAL const char *duk_str_invalid_expression = "invalid expression";
|
|
DUK_INTERNAL const char *duk_str_invalid_lvalue = "invalid lvalue";
|
|
DUK_INTERNAL const char *duk_str_expected_identifier = "expected identifier";
|
|
DUK_INTERNAL const char *duk_str_empty_expr_not_allowed = "empty expression not allowed";
|
|
DUK_INTERNAL const char *duk_str_invalid_for = "invalid for statement";
|
|
DUK_INTERNAL const char *duk_str_invalid_switch = "invalid switch statement";
|
|
DUK_INTERNAL const char *duk_str_invalid_break_cont_label = "invalid break/continue label";
|
|
DUK_INTERNAL const char *duk_str_invalid_return = "invalid return";
|
|
DUK_INTERNAL const char *duk_str_invalid_try = "invalid try";
|
|
DUK_INTERNAL const char *duk_str_invalid_throw = "invalid throw";
|
|
DUK_INTERNAL const char *duk_str_with_in_strict_mode = "with in strict mode";
|
|
DUK_INTERNAL const char *duk_str_func_stmt_not_allowed = "function statement not allowed";
|
|
DUK_INTERNAL const char *duk_str_unterminated_stmt = "unterminated statement";
|
|
DUK_INTERNAL const char *duk_str_invalid_arg_name = "invalid argument name";
|
|
DUK_INTERNAL const char *duk_str_invalid_func_name = "invalid function name";
|
|
DUK_INTERNAL const char *duk_str_invalid_getset_name = "invalid getter/setter name";
|
|
DUK_INTERNAL const char *duk_str_func_name_required = "function name required";
|
|
|
|
/* Executor */
|
|
DUK_INTERNAL const char *duk_str_internal_error_exec_longjmp = "internal error in bytecode executor longjmp handler";
|
|
|
|
/* Regexp */
|
|
DUK_INTERNAL const char *duk_str_invalid_quantifier_no_atom = "quantifier without preceding atom";
|
|
DUK_INTERNAL const char *duk_str_invalid_quantifier_values = "quantifier values invalid (qmin > qmax)";
|
|
DUK_INTERNAL const char *duk_str_quantifier_too_many_copies = "quantifier expansion requires too many atom copies";
|
|
DUK_INTERNAL const char *duk_str_unexpected_closing_paren = "unexpected closing parenthesis";
|
|
DUK_INTERNAL const char *duk_str_unexpected_end_of_pattern = "unexpected end of pattern";
|
|
DUK_INTERNAL const char *duk_str_unexpected_regexp_token = "unexpected token in regexp";
|
|
DUK_INTERNAL const char *duk_str_invalid_regexp_flags = "invalid regexp flags";
|
|
DUK_INTERNAL const char *duk_str_invalid_backrefs = "invalid backreference(s)";
|
|
DUK_INTERNAL const char *duk_str_regexp_backtrack_failed = "regexp backtrack failed";
|
|
DUK_INTERNAL const char *duk_str_regexp_advance_failed = "regexp advance failed";
|
|
DUK_INTERNAL const char *duk_str_regexp_internal_error = "regexp internal error";
|
|
|
|
/* Limits */
|
|
DUK_INTERNAL const char *duk_str_valstack_limit = "valstack limit";
|
|
DUK_INTERNAL const char *duk_str_callstack_limit = "callstack limit";
|
|
DUK_INTERNAL const char *duk_str_catchstack_limit = "catchstack limit";
|
|
DUK_INTERNAL const char *duk_str_object_property_limit = "object property limit";
|
|
DUK_INTERNAL const char *duk_str_prototype_chain_limit = "prototype chain limit";
|
|
DUK_INTERNAL const char *duk_str_bound_chain_limit = "function call bound chain limit";
|
|
DUK_INTERNAL const char *duk_str_c_callstack_limit = "C call stack depth limit";
|
|
DUK_INTERNAL const char *duk_str_compiler_recursion_limit = "compiler recursion limit";
|
|
DUK_INTERNAL const char *duk_str_bytecode_limit = "bytecode limit";
|
|
DUK_INTERNAL const char *duk_str_reg_limit = "register limit";
|
|
DUK_INTERNAL const char *duk_str_temp_limit = "temp limit";
|
|
DUK_INTERNAL const char *duk_str_const_limit = "const limit";
|
|
DUK_INTERNAL const char *duk_str_func_limit = "function limit";
|
|
DUK_INTERNAL const char *duk_str_regexp_compiler_recursion_limit = "regexp compiler recursion limit";
|
|
DUK_INTERNAL const char *duk_str_regexp_executor_recursion_limit = "regexp executor recursion limit";
|
|
DUK_INTERNAL const char *duk_str_regexp_executor_step_limit = "regexp step limit";
|
|
|
|
/* Misc */
|
|
DUK_INTERNAL const char *duk_str_anon = "anon";
|
|
DUK_INTERNAL const char *duk_str_realloc_failed = "realloc failed";
|
|
#line 1 "duk_debug_macros.c"
|
|
/*
|
|
* Debugging macro calls.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
|
|
/*
|
|
* Debugging enabled
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <stdarg.h>
|
|
|
|
#define DUK__DEBUG_BUFSIZE DUK_USE_DEBUG_BUFSIZE
|
|
DUK_LOCAL char duk__debug_buf[DUK__DEBUG_BUFSIZE];
|
|
|
|
DUK_LOCAL const char *duk__get_level_string(duk_small_int_t level) {
|
|
switch ((int) level) {
|
|
case DUK_LEVEL_DEBUG:
|
|
return "D";
|
|
case DUK_LEVEL_DDEBUG:
|
|
return "DD";
|
|
case DUK_LEVEL_DDDEBUG:
|
|
return "DDD";
|
|
}
|
|
return "???";
|
|
}
|
|
|
|
#ifdef DUK_USE_DPRINT_COLORS
|
|
|
|
/* http://en.wikipedia.org/wiki/ANSI_escape_code */
|
|
#define DUK__TERM_REVERSE "\x1b[7m"
|
|
#define DUK__TERM_BRIGHT "\x1b[1m"
|
|
#define DUK__TERM_RESET "\x1b[0m"
|
|
#define DUK__TERM_BLUE "\x1b[34m"
|
|
#define DUK__TERM_RED "\x1b[31m"
|
|
|
|
DUK_LOCAL const char *duk__get_term_1(duk_small_int_t level) {
|
|
DUK_UNREF(level);
|
|
return (const char *) DUK__TERM_RED;
|
|
}
|
|
|
|
DUK_LOCAL const char *duk__get_term_2(duk_small_int_t level) {
|
|
switch ((int) level) {
|
|
case DUK_LEVEL_DEBUG:
|
|
return (const char *) (DUK__TERM_RESET DUK__TERM_BRIGHT);
|
|
case DUK_LEVEL_DDEBUG:
|
|
return (const char *) (DUK__TERM_RESET);
|
|
case DUK_LEVEL_DDDEBUG:
|
|
return (const char *) (DUK__TERM_RESET DUK__TERM_BLUE);
|
|
}
|
|
return (const char *) DUK__TERM_RESET;
|
|
}
|
|
|
|
DUK_LOCAL const char *duk__get_term_3(duk_small_int_t level) {
|
|
DUK_UNREF(level);
|
|
return (const char *) DUK__TERM_RESET;
|
|
}
|
|
|
|
#else
|
|
|
|
DUK_LOCAL const char *duk__get_term_1(duk_small_int_t level) {
|
|
DUK_UNREF(level);
|
|
return (const char *) "";
|
|
}
|
|
|
|
DUK_LOCAL const char *duk__get_term_2(duk_small_int_t level) {
|
|
DUK_UNREF(level);
|
|
return (const char *) "";
|
|
}
|
|
|
|
DUK_LOCAL const char *duk__get_term_3(duk_small_int_t level) {
|
|
DUK_UNREF(level);
|
|
return (const char *) "";
|
|
}
|
|
|
|
#endif /* DUK_USE_DPRINT_COLORS */
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
|
|
DUK_INTERNAL void duk_debug_log(duk_small_int_t level, const char *file, duk_int_t line, const char *func, const char *fmt, ...) {
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
|
|
DUK_MEMZERO((void *) duk__debug_buf, (size_t) DUK__DEBUG_BUFSIZE);
|
|
duk_debug_vsnprintf(duk__debug_buf, DUK__DEBUG_BUFSIZE - 1, fmt, ap);
|
|
|
|
#ifdef DUK_USE_DPRINT_RDTSC
|
|
DUK_FPRINTF(DUK_STDERR, "%s[%s] <%llu> %s:%ld (%s):%s %s%s\n",
|
|
(const char *) duk__get_term_1(level),
|
|
(const char *) duk__get_level_string(level),
|
|
(unsigned long long) duk_rdtsc(), /* match the inline asm in duk_features.h */
|
|
(const char *) file,
|
|
(long) line,
|
|
(const char *) func,
|
|
(const char *) duk__get_term_2(level),
|
|
(const char *) duk__debug_buf,
|
|
(const char *) duk__get_term_3(level));
|
|
#else
|
|
DUK_FPRINTF(DUK_STDERR, "%s[%s] %s:%ld (%s):%s %s%s\n",
|
|
(const char *) duk__get_term_1(level),
|
|
(const char *) duk__get_level_string(level),
|
|
(const char *) file,
|
|
(long) line,
|
|
(const char *) func,
|
|
(const char *) duk__get_term_2(level),
|
|
(const char *) duk__debug_buf,
|
|
(const char *) duk__get_term_3(level));
|
|
#endif
|
|
DUK_FFLUSH(DUK_STDERR);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
DUK_INTERNAL char duk_debug_file_stash[DUK_DEBUG_STASH_SIZE];
|
|
DUK_INTERNAL char duk_debug_line_stash[DUK_DEBUG_STASH_SIZE];
|
|
DUK_INTERNAL char duk_debug_func_stash[DUK_DEBUG_STASH_SIZE];
|
|
DUK_INTERNAL duk_small_int_t duk_debug_level_stash;
|
|
|
|
DUK_INTERNAL void duk_debug_log(const char *fmt, ...) {
|
|
va_list ap;
|
|
duk_small_int_t level = duk_debug_level_stash;
|
|
|
|
va_start(ap, fmt);
|
|
|
|
DUK_MEMZERO((void *) duk__debug_buf, (size_t) DUK__DEBUG_BUFSIZE);
|
|
duk_debug_vsnprintf(duk__debug_buf, DUK__DEBUG_BUFSIZE - 1, fmt, ap);
|
|
|
|
#ifdef DUK_USE_DPRINT_RDTSC
|
|
DUK_FPRINTF(DUK_STDERR, "%s[%s] <%llu> %s:%s (%s):%s %s%s\n",
|
|
(const char *) duk__get_term_1(level),
|
|
(const char *) duk__get_level_string(duk_debug_level_stash),
|
|
(unsigned long long) duk_rdtsc(), /* match duk_features.h */
|
|
(const char *) duk_debug_file_stash,
|
|
(const char *) duk_debug_line_stash,
|
|
(const char *) duk_debug_func_stash,
|
|
(const char *) duk__get_term_2(level),
|
|
(const char *) duk__debug_buf,
|
|
(const char *) duk__get_term_3(level));
|
|
#else
|
|
DUK_FPRINTF(DUK_STDERR, "%s[%s] %s:%s (%s):%s %s%s\n",
|
|
(const char *) duk__get_term_1(level),
|
|
(const char *) duk__get_level_string(duk_debug_level_stash),
|
|
(const char *) duk_debug_file_stash,
|
|
(const char *) duk_debug_line_stash,
|
|
(const char *) duk_debug_func_stash,
|
|
(const char *) duk__get_term_2(level),
|
|
(const char *) duk__debug_buf,
|
|
(const char *) duk__get_term_3(level));
|
|
#endif
|
|
DUK_FFLUSH(DUK_STDERR);
|
|
|
|
va_end(ap);
|
|
}
|
|
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#else /* DUK_USE_DEBUG */
|
|
|
|
/*
|
|
* Debugging disabled
|
|
*/
|
|
|
|
#endif /* DUK_USE_DEBUG */
|
|
#line 1 "duk_builtins.c"
|
|
/*
|
|
* Automatically generated by genbuiltins.py, do not edit!
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_DOUBLE_LE)
|
|
DUK_INTERNAL const duk_uint8_t duk_strings_data[1943] = {
|
|
55,86,227,24,145,55,102,120,144,3,63,94,228,54,100,137,186,26,20,164,137,
|
|
186,50,11,164,109,77,215,5,61,35,106,3,25,110,8,22,158,130,38,163,8,217,
|
|
200,158,76,156,210,117,128,153,203,210,70,46,137,187,18,27,164,187,201,209,
|
|
130,100,55,91,70,4,145,63,66,231,44,128,105,187,41,197,13,49,122,8,196,24,
|
|
71,75,70,138,104,115,77,215,5,36,20,201,214,209,107,79,104,209,144,168,105,
|
|
6,207,251,209,104,209,125,212,227,66,127,235,191,239,232,180,90,52,95,69,
|
|
247,83,141,9,255,174,255,191,162,211,80,210,253,23,221,78,52,39,254,183,
|
|
254,254,139,72,105,126,139,238,167,26,19,255,91,255,127,69,166,129,191,69,
|
|
247,83,141,9,255,175,255,191,162,213,26,50,23,232,190,234,113,161,63,245,
|
|
115,119,86,227,118,83,138,26,98,9,110,48,86,22,148,160,152,22,82,70,46,137,
|
|
44,8,180,163,32,104,98,206,32,17,7,16,88,101,100,206,42,70,36,108,205,18,
|
|
74,140,33,196,230,60,2,152,146,33,38,230,8,36,79,182,251,65,156,151,24,200,
|
|
33,145,162,25,80,209,24,67,0,166,68,52,174,61,73,25,33,205,25,27,84,177,
|
|
195,234,220,1,144,105,99,135,217,16,17,17,208,72,199,179,60,93,100,146,49,
|
|
232,162,64,76,135,19,152,244,44,136,223,98,67,4,18,33,247,217,158,36,0,209,
|
|
190,156,13,26,201,21,111,165,67,64,180,100,145,62,250,32,45,100,33,55,214,
|
|
1,229,223,65,19,72,187,236,206,137,35,125,120,190,201,104,105,15,190,201,
|
|
212,136,136,125,246,160,137,27,83,239,171,37,200,218,159,125,168,34,192,61,
|
|
27,233,93,22,1,114,78,250,28,76,130,112,200,93,245,164,188,207,190,204,17,
|
|
49,38,109,246,160,93,8,119,185,13,153,34,96,208,165,36,85,190,206,32,17,6,
|
|
9,129,75,67,73,214,209,129,36,80,84,44,157,104,24,65,60,69,148,192,37,59,
|
|
179,60,93,110,207,15,39,73,24,186,39,232,232,169,129,228,18,6,120,146,20,
|
|
68,72,157,105,241,116,221,173,58,68,159,95,23,77,211,195,201,215,20,238,
|
|
179,122,162,98,73,35,104,194,68,19,35,134,69,146,100,235,226,231,146,51,
|
|
192,206,9,23,175,139,175,131,8,11,89,8,206,161,181,2,208,63,160,232,193,50,
|
|
23,246,254,187,235,190,187,247,69,241,95,18,31,160,15,214,11,235,126,192,
|
|
95,87,246,1,251,4,253,111,80,210,161,168,158,19,245,125,67,74,134,162,120,
|
|
71,80,210,161,168,158,12,224,164,130,153,165,56,161,166,51,104,192,146,39,
|
|
11,156,178,1,169,163,70,66,161,164,26,101,56,161,166,65,112,57,129,164,148,
|
|
35,49,201,13,44,93,70,140,209,3,70,230,13,238,176,216,134,141,128,184,214,
|
|
227,20,171,115,162,50,93,227,19,164,65,17,11,40,38,6,253,145,1,48,52,128,
|
|
146,26,64,9,210,24,3,34,250,80,140,254,200,254,148,35,63,177,215,217,11,
|
|
207,65,188,183,27,236,126,192,133,242,220,111,178,32,252,182,253,145,60,
|
|
182,253,143,216,7,164,59,9,41,0,196,35,64,194,21,13,125,38,84,52,100,185,
|
|
62,163,239,254,235,234,82,176,74,125,67,70,75,165,148,92,208,180,52,138,65,
|
|
154,232,147,162,4,136,105,58,145,17,9,50,74,100,37,200,37,205,222,51,39,47,
|
|
78,40,105,143,34,79,184,32,34,115,18,125,193,1,19,77,222,76,156,213,205,
|
|
222,68,157,47,78,40,105,151,55,122,147,20,189,56,161,166,116,137,63,82,98,
|
|
47,168,181,247,4,4,87,34,79,165,162,215,220,16,17,92,137,63,82,98,103,156,
|
|
217,157,18,36,250,199,54,103,84,137,63,82,98,31,129,50,30,68,159,70,9,145,
|
|
114,36,253,73,136,254,117,35,36,72,147,233,221,72,201,178,36,253,73,137,
|
|
158,67,105,50,73,82,36,250,196,54,147,36,155,34,79,212,152,165,226,9,205,
|
|
28,149,34,79,178,32,156,209,202,82,36,253,73,137,158,66,214,137,16,78,104,
|
|
228,249,18,125,98,22,180,72,130,115,71,35,200,147,236,208,194,68,196,159,
|
|
102,134,19,46,105,58,226,150,68,156,140,73,250,147,19,60,133,173,18,32,156,
|
|
209,201,230,36,250,196,45,104,145,4,230,142,77,49,39,234,76,82,241,4,230,
|
|
142,74,49,39,217,16,78,104,228,211,18,126,164,196,207,33,180,153,36,163,18,
|
|
125,98,27,73,146,75,49,39,234,76,71,243,169,25,32,196,159,78,234,70,73,49,
|
|
39,234,76,67,240,48,99,18,125,24,48,163,18,126,164,196,63,2,100,57,137,62,
|
|
140,19,34,204,73,250,147,19,60,230,204,232,49,39,214,57,179,59,140,73,250,
|
|
147,17,125,69,175,184,32,34,179,18,125,45,22,190,224,128,137,204,73,246,
|
|
104,97,37,55,117,110,16,22,78,205,12,39,101,56,161,166,148,221,213,184,64,
|
|
89,58,48,76,157,148,226,134,153,147,119,102,134,19,178,156,80,211,50,110,
|
|
232,193,50,118,83,138,26,97,181,214,31,169,49,21,224,140,136,185,187,175,
|
|
137,4,137,33,205,108,221,210,93,238,105,27,52,1,103,155,186,84,92,131,143,
|
|
158,233,34,104,169,52,134,149,13,68,241,31,52,134,4,209,82,105,13,42,26,
|
|
137,224,125,104,58,212,249,136,110,170,5,208,137,243,1,125,84,11,161,13,42,
|
|
6,83,137,39,20,50,51,119,86,225,1,100,237,30,242,71,162,4,136,185,187,180,
|
|
123,201,30,136,18,36,102,238,173,194,2,201,213,186,196,143,68,9,17,115,119,
|
|
86,235,18,61,16,36,68,202,129,148,226,134,152,178,122,209,51,72,128,136,
|
|
142,120,145,235,0,136,86,2,98,59,86,225,1,100,232,156,199,130,36,80,142,8,
|
|
244,78,25,58,9,152,71,4,122,9,176,177,115,58,35,130,61,19,134,69,196,131,
|
|
160,137,216,160,199,153,162,65,208,68,49,80,185,146,35,96,30,114,186,61,32,
|
|
4,114,73,204,33,73,82,71,11,88,37,62,161,163,37,250,226,157,13,25,47,215,
|
|
20,244,108,142,130,204,210,122,208,34,18,78,140,203,37,160,68,44,142,130,
|
|
204,241,37,73,25,16,143,164,142,55,185,228,75,144,211,9,205,16,38,116,75,
|
|
160,140,65,132,130,38,163,8,217,200,194,2,214,72,144,40,104,200,32,45,101,
|
|
3,222,188,81,241,115,201,25,227,168,151,72,218,48,145,0,86,70,162,93,124,
|
|
93,55,79,15,39,92,87,28,18,235,172,222,190,46,121,35,60,30,160,93,9,215,21,
|
|
211,119,86,225,1,100,236,167,20,52,200,155,187,41,197,13,50,196,230,202,
|
|
113,160,166,232,142,68,152,204,73,168,141,163,9,16,5,100,96,156,210,160,
|
|
212,136,2,178,34,209,68,192,21,144,181,2,232,66,40,152,147,17,46,146,243,
|
|
35,100,128,172,136,68,186,88,187,36,106,17,46,200,128,89,7,23,196,149,35,
|
|
103,210,94,100,108,144,230,200,197,137,9,146,18,68,2,224,50,21,13,39,95,23,
|
|
60,145,154,9,39,12,133,67,73,215,197,207,36,103,131,10,36,4,201,51,18,125,
|
|
117,155,215,197,207,36,103,142,180,12,36,176,98,79,174,179,122,248,185,228,
|
|
140,241,209,146,66,138,31,55,69,198,36,250,248,186,110,158,30,78,184,169,
|
|
124,93,55,79,15,33,150,70,154,103,40,22,72,204,175,138,27,52,81,164,144,
|
|
128,242,24,146,16,30,73,17,162,112,201,234,69,2,243,152,247,52,141,154,72,
|
|
209,56,100,245,34,137,12,130,112,201,234,69,2,243,152,247,52,141,154,70,65,
|
|
56,100,245,34,132,34,93,42,26,137,144,168,151,90,14,181,79,4,100,78,149,
|
|
110,4,208,240,70,68,234,27,50,18,160,90,61,72,160,158,140,93,20,246,120,
|
|
121,58,72,197,209,95,101,134,204,23,233,35,23,69,221,137,10,72,145,162,39,
|
|
73,24,186,42,236,64,211,19,164,140,93,20,244,149,2,250,72,197,209,40,98,64,
|
|
40,130,4,136,81,2,98,58,4,230,205,13,161,16,50,6,134,49,34,113,144,160,162,
|
|
230,97,145,100,153,4,55,16,139,145,14,84,52,11,94,6,87,69,5,163,69,52,57,
|
|
162,65,68,134,169,13,148,192,209,17,197,27,73,99,68,147,164,90,105,89,19,
|
|
17,201,51,162,69,153,226,235,14,113,193,167,135,145,197,29,65,18,85,200,25,
|
|
108,116,44,132,178,38,114,137,96,148,138,39,54,83,33,27,70,24,151,123,163,
|
|
51,146,243,35,71,35,33,143,116,102,89,81,228,137,27,69,172,147,141,8,82,
|
|
129,114,34,144,199,172,140,35,103,36,161,179,36,74,1,16,107,36,206,240,9,
|
|
64,49,14,248,162,160,153,18,248,186,100,20,200,51,62,129,90,4,105,76,19,64,
|
|
139,132,17,99,
|
|
};
|
|
|
|
/* to convert a heap stridx to a token number, subtract
|
|
* DUK_STRIDX_START_RESERVED and add DUK_TOK_START_RESERVED.
|
|
*/
|
|
|
|
/* native functions: 128 */
|
|
DUK_INTERNAL const duk_c_function duk_bi_native_functions[128] = {
|
|
duk_bi_array_constructor,
|
|
duk_bi_array_constructor_is_array,
|
|
duk_bi_array_prototype_concat,
|
|
duk_bi_array_prototype_indexof_shared,
|
|
duk_bi_array_prototype_iter_shared,
|
|
duk_bi_array_prototype_join_shared,
|
|
duk_bi_array_prototype_pop,
|
|
duk_bi_array_prototype_push,
|
|
duk_bi_array_prototype_reduce_shared,
|
|
duk_bi_array_prototype_reverse,
|
|
duk_bi_array_prototype_shift,
|
|
duk_bi_array_prototype_slice,
|
|
duk_bi_array_prototype_sort,
|
|
duk_bi_array_prototype_splice,
|
|
duk_bi_array_prototype_to_string,
|
|
duk_bi_array_prototype_unshift,
|
|
duk_bi_boolean_constructor,
|
|
duk_bi_boolean_prototype_tostring_shared,
|
|
duk_bi_buffer_constructor,
|
|
duk_bi_buffer_prototype_tostring_shared,
|
|
duk_bi_date_constructor,
|
|
duk_bi_date_constructor_now,
|
|
duk_bi_date_constructor_parse,
|
|
duk_bi_date_constructor_utc,
|
|
duk_bi_date_prototype_get_shared,
|
|
duk_bi_date_prototype_get_timezone_offset,
|
|
duk_bi_date_prototype_set_shared,
|
|
duk_bi_date_prototype_set_time,
|
|
duk_bi_date_prototype_to_json,
|
|
duk_bi_date_prototype_tostring_shared,
|
|
duk_bi_date_prototype_value_of,
|
|
duk_bi_duktape_object_act,
|
|
duk_bi_duktape_object_compact,
|
|
duk_bi_duktape_object_dec,
|
|
duk_bi_duktape_object_enc,
|
|
duk_bi_duktape_object_fin,
|
|
duk_bi_duktape_object_gc,
|
|
duk_bi_duktape_object_info,
|
|
duk_bi_error_constructor_shared,
|
|
duk_bi_error_prototype_filename_getter,
|
|
duk_bi_error_prototype_linenumber_getter,
|
|
duk_bi_error_prototype_nop_setter,
|
|
duk_bi_error_prototype_stack_getter,
|
|
duk_bi_error_prototype_to_string,
|
|
duk_bi_function_constructor,
|
|
duk_bi_function_prototype,
|
|
duk_bi_function_prototype_apply,
|
|
duk_bi_function_prototype_bind,
|
|
duk_bi_function_prototype_call,
|
|
duk_bi_function_prototype_to_string,
|
|
duk_bi_global_object_decode_uri,
|
|
duk_bi_global_object_decode_uri_component,
|
|
duk_bi_global_object_encode_uri,
|
|
duk_bi_global_object_encode_uri_component,
|
|
duk_bi_global_object_escape,
|
|
duk_bi_global_object_eval,
|
|
duk_bi_global_object_is_finite,
|
|
duk_bi_global_object_is_nan,
|
|
duk_bi_global_object_parse_float,
|
|
duk_bi_global_object_parse_int,
|
|
duk_bi_global_object_print_helper,
|
|
duk_bi_global_object_require,
|
|
duk_bi_global_object_unescape,
|
|
duk_bi_json_object_parse,
|
|
duk_bi_json_object_stringify,
|
|
duk_bi_logger_constructor,
|
|
duk_bi_logger_prototype_fmt,
|
|
duk_bi_logger_prototype_log_shared,
|
|
duk_bi_logger_prototype_raw,
|
|
duk_bi_math_object_max,
|
|
duk_bi_math_object_min,
|
|
duk_bi_math_object_onearg_shared,
|
|
duk_bi_math_object_random,
|
|
duk_bi_math_object_twoarg_shared,
|
|
duk_bi_number_constructor,
|
|
duk_bi_number_prototype_to_exponential,
|
|
duk_bi_number_prototype_to_fixed,
|
|
duk_bi_number_prototype_to_locale_string,
|
|
duk_bi_number_prototype_to_precision,
|
|
duk_bi_number_prototype_to_string,
|
|
duk_bi_number_prototype_value_of,
|
|
duk_bi_object_constructor,
|
|
duk_bi_object_constructor_create,
|
|
duk_bi_object_constructor_define_properties,
|
|
duk_bi_object_constructor_define_property,
|
|
duk_bi_object_constructor_get_own_property_descriptor,
|
|
duk_bi_object_constructor_is_extensible,
|
|
duk_bi_object_constructor_is_sealed_frozen_shared,
|
|
duk_bi_object_constructor_keys_shared,
|
|
duk_bi_object_constructor_prevent_extensions,
|
|
duk_bi_object_constructor_seal_freeze_shared,
|
|
duk_bi_object_getprototype_shared,
|
|
duk_bi_object_prototype_has_own_property,
|
|
duk_bi_object_prototype_is_prototype_of,
|
|
duk_bi_object_prototype_property_is_enumerable,
|
|
duk_bi_object_prototype_to_locale_string,
|
|
duk_bi_object_prototype_to_string,
|
|
duk_bi_object_prototype_value_of,
|
|
duk_bi_object_setprototype_shared,
|
|
duk_bi_pointer_constructor,
|
|
duk_bi_pointer_prototype_tostring_shared,
|
|
duk_bi_proxy_constructor,
|
|
duk_bi_regexp_constructor,
|
|
duk_bi_regexp_prototype_exec,
|
|
duk_bi_regexp_prototype_test,
|
|
duk_bi_regexp_prototype_to_string,
|
|
duk_bi_string_constructor,
|
|
duk_bi_string_constructor_from_char_code,
|
|
duk_bi_string_prototype_caseconv_shared,
|
|
duk_bi_string_prototype_char_at,
|
|
duk_bi_string_prototype_char_code_at,
|
|
duk_bi_string_prototype_concat,
|
|
duk_bi_string_prototype_indexof_shared,
|
|
duk_bi_string_prototype_locale_compare,
|
|
duk_bi_string_prototype_match,
|
|
duk_bi_string_prototype_replace,
|
|
duk_bi_string_prototype_search,
|
|
duk_bi_string_prototype_slice,
|
|
duk_bi_string_prototype_split,
|
|
duk_bi_string_prototype_substr,
|
|
duk_bi_string_prototype_substring,
|
|
duk_bi_string_prototype_to_string,
|
|
duk_bi_string_prototype_trim,
|
|
duk_bi_thread_constructor,
|
|
duk_bi_thread_current,
|
|
duk_bi_thread_resume,
|
|
duk_bi_thread_yield,
|
|
duk_bi_type_error_thrower,
|
|
};
|
|
|
|
DUK_INTERNAL const duk_uint8_t duk_builtins_data[1341] = {
|
|
105,195,74,136,77,40,105,44,9,124,104,45,3,3,72,0,71,225,65,165,168,33,243,
|
|
6,145,0,122,24,210,148,14,249,35,120,160,55,226,13,76,192,196,177,164,152,
|
|
22,192,4,202,52,147,72,152,0,169,70,146,105,11,0,23,40,210,77,32,96,3,37,
|
|
26,73,163,236,0,108,163,73,52,121,128,14,148,105,38,142,176,1,242,144,56,
|
|
208,254,84,6,166,82,242,80,210,246,1,250,67,72,144,15,232,13,44,96,47,162,
|
|
52,160,128,62,80,160,255,253,102,76,0,0,0,0,0,0,15,135,243,84,0,0,0,0,0,0,
|
|
15,7,243,124,64,153,132,18,49,2,38,48,64,200,7,153,64,227,48,26,103,3,13,0,
|
|
89,165,34,53,36,38,180,128,216,143,155,81,227,114,58,111,2,142,0,73,194,94,
|
|
56,202,167,33,209,195,114,70,206,209,26,58,36,100,228,145,131,130,69,204,
|
|
137,22,51,36,84,208,145,67,82,68,205,137,18,62,36,68,240,122,32,120,62,0,2,
|
|
87,61,39,255,254,9,46,24,0,10,31,224,29,13,91,40,0,9,101,137,32,0,48,197,
|
|
84,66,214,9,10,82,68,37,81,144,133,52,65,214,137,6,90,40,0,12,21,100,144,
|
|
69,114,64,213,202,0,3,2,86,36,5,96,160,0,63,254,16,37,135,91,98,25,242,192,
|
|
7,194,248,30,236,32,123,46,17,234,186,71,162,241,5,23,240,0,15,241,1,70,74,
|
|
3,8,249,49,3,204,185,15,35,3,231,137,121,240,163,254,0,46,224,18,7,248,192,
|
|
42,249,14,3,224,20,32,0,46,208,35,231,96,41,29,96,192,117,3,159,58,66,64,
|
|
232,10,3,156,45,14,96,194,57,67,87,156,129,231,206,48,51,240,0,23,16,25,
|
|
255,255,251,132,16,209,192,8,106,0,2,223,4,53,0,2,111,2,26,128,1,183,65,13,
|
|
64,1,27,129,7,224,0,45,176,131,255,255,241,73,252,0,91,77,103,193,254,64,
|
|
36,200,64,101,31,47,32,123,188,129,178,218,70,195,113,29,173,231,206,55,3,
|
|
71,19,129,168,0,11,93,196,141,103,34,53,92,208,212,116,35,157,213,13,55,
|
|
100,52,158,16,209,108,3,65,176,12,246,192,128,0,179,155,2,0,2,205,122,3,49,
|
|
221,2,151,248,0,7,249,64,147,35,4,249,17,8,0,11,220,68,2,155,248,172,184,
|
|
31,255,255,255,255,255,253,239,236,168,0,32,0,0,0,0,0,0,12,152,0,0,0,0,0,0,
|
|
31,15,236,120,0,0,0,0,0,0,30,15,236,136,0,0,0,0,0,0,30,31,224,7,249,128,
|
|
147,32,0,0,0,0,0,0,0,0,12,249,79,35,225,52,143,117,0,49,147,8,197,75,35,17,
|
|
56,130,159,248,1,176,197,136,194,23,254,96,138,128,63,206,4,153,32,0,0,0,0,
|
|
0,3,225,254,215,200,232,24,3,161,0,1,95,142,132,0,9,240,58,16,0,53,240,232,
|
|
64,1,23,163,161,0,5,77,142,132,0,25,52,58,16,0,116,200,225,30,227,192,94,
|
|
15,1,118,48,16,0,133,208,192,64,2,87,35,1,0,10,92,12,4,0,45,110,48,16,0,
|
|
197,176,192,64,3,86,163,1,0,14,90,12,4,0,61,102,48,16,1,5,144,192,64,4,86,
|
|
35,1,0,18,88,12,4,0,77,94,48,16,1,69,112,192,64,5,85,163,1,0,22,86,12,4,0,
|
|
93,86,50,5,80,217,21,35,69,0,24,84,13,20,0,101,78,52,190,0,52,166,26,95,0,
|
|
27,82,141,63,128,14,41,6,159,192,7,84,99,83,224,3,202,33,169,240,1,245,8,
|
|
209,64,8,20,3,69,0,33,79,141,47,128,17,39,134,151,192,8,211,163,79,224,4,
|
|
137,193,167,240,2,84,192,192,64,9,146,227,69,0,39,21,31,192,0,63,208,24,
|
|
147,4,12,0,32,41,56,72,240,60,100,148,100,140,100,132,128,0,0,0,0,0,0,0,0,
|
|
210,172,228,74,52,17,242,210,1,83,252,0,3,253,33,81,132,11,69,144,24,166,
|
|
229,69,37,23,39,41,40,57,65,72,47,146,176,10,175,224,0,159,234,4,140,41,18,
|
|
44,128,192,10,191,224,0,159,235,4,140,41,10,44,128,192,10,207,224,0,159,
|
|
236,4,140,41,2,44,128,192,10,223,224,0,159,237,4,140,40,250,44,128,192,10,
|
|
239,224,0,159,238,4,140,40,242,44,128,192,10,255,224,0,159,239,4,140,40,
|
|
234,44,128,192,7,255,228,34,160,52,171,138,69,133,95,130,160,34,96,11,42,
|
|
218,221,216,181,129,32,34,32,119,156,253,127,33,23,115,31,161,224,127,65,
|
|
21,178,163,138,251,159,161,160,7,114,147,10,189,229,237,159,161,96,12,22,
|
|
162,42,125,144,132,160,33,32,102,157,191,179,79,80,115,31,160,224,102,157,
|
|
191,179,79,80,123,31,164,130,71,34,5,28,160,0,40,4,114,128,1,31,209,202,0,
|
|
6,126,73,65,245,28,160,0,135,196,114,128,2,158,209,202,0,12,122,71,40,0,57,
|
|
229,28,160,1,7,132,85,227,186,50,241,217,37,32,0,39,84,128,29,17,202,0,18,
|
|
115,71,40,0,81,201,28,160,1,103,20,114,128,6,7,255,224,4,195,63,65,193,1,
|
|
130,255,248,0,11,255,224,0,31,255,138,52,128,0,0,0,1,1,219,134,128,3,57,
|
|
192,71,72,4,229,0,29,99,140,201,72,50,31,32,196,144,131,2,49,225,121,16,
|
|
240,184,132,120,82,64,65,102,252,0,233,239,200,20,62,176,78,248,0,255,148,
|
|
0,5,163,240,0,15,249,192,9,242,38,16,0,23,184,152,5,171,240,0,15,250,64,9,
|
|
242,200,16,0,23,187,32,5,179,240,0,15,250,194,15,72,0,0,0,0,0,0,0,64,15,
|
|
201,4,195,187,126,226,4,200,68,18,162,16,72,134,60,35,67,31,0,1,25,161,143,
|
|
128,1,8,144,199,192,0,196,40,99,224,0,130,4,49,240,0,84,255,252,36,100,16,
|
|
184,155,250,226,217,150,47,46,91,249,34,224,139,229,229,203,127,36,26,119,
|
|
32,203,203,150,254,72,52,97,221,147,102,157,217,192,
|
|
};
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
DUK_INTERNAL const duk_uint8_t duk_initjs_data[187] = {
|
|
40,102,117,110,99,116,105,111,110,40,100,44,97,41,123,102,117,110,99,116,
|
|
105,111,110,32,98,40,97,44,98,44,99,41,123,79,98,106,101,99,116,46,100,101,
|
|
102,105,110,101,80,114,111,112,101,114,116,121,40,97,44,98,44,123,118,97,
|
|
108,117,101,58,99,44,119,114,105,116,97,98,108,101,58,33,48,44,101,110,117,
|
|
109,101,114,97,98,108,101,58,33,49,44,99,111,110,102,105,103,117,114,97,98,
|
|
108,101,58,33,48,125,41,125,98,40,97,46,76,111,103,103,101,114,44,34,99,
|
|
108,111,103,34,44,110,101,119,32,97,46,76,111,103,103,101,114,40,34,67,34,
|
|
41,41,59,98,40,97,44,34,109,111,100,76,111,97,100,101,100,34,44,123,125,41,
|
|
125,41,40,116,104,105,115,44,68,117,107,116,97,112,101,41,59,10,0,
|
|
};
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
#elif defined(DUK_USE_DOUBLE_BE)
|
|
DUK_INTERNAL const duk_uint8_t duk_strings_data[1943] = {
|
|
55,86,227,24,145,55,102,120,144,3,63,94,228,54,100,137,186,26,20,164,137,
|
|
186,50,11,164,109,77,215,5,61,35,106,3,25,110,8,22,158,130,38,163,8,217,
|
|
200,158,76,156,210,117,128,153,203,210,70,46,137,187,18,27,164,187,201,209,
|
|
130,100,55,91,70,4,145,63,66,231,44,128,105,187,41,197,13,49,122,8,196,24,
|
|
71,75,70,138,104,115,77,215,5,36,20,201,214,209,107,79,104,209,144,168,105,
|
|
6,207,251,209,104,209,125,212,227,66,127,235,191,239,232,180,90,52,95,69,
|
|
247,83,141,9,255,174,255,191,162,211,80,210,253,23,221,78,52,39,254,183,
|
|
254,254,139,72,105,126,139,238,167,26,19,255,91,255,127,69,166,129,191,69,
|
|
247,83,141,9,255,175,255,191,162,213,26,50,23,232,190,234,113,161,63,245,
|
|
115,119,86,227,118,83,138,26,98,9,110,48,86,22,148,160,152,22,82,70,46,137,
|
|
44,8,180,163,32,104,98,206,32,17,7,16,88,101,100,206,42,70,36,108,205,18,
|
|
74,140,33,196,230,60,2,152,146,33,38,230,8,36,79,182,251,65,156,151,24,200,
|
|
33,145,162,25,80,209,24,67,0,166,68,52,174,61,73,25,33,205,25,27,84,177,
|
|
195,234,220,1,144,105,99,135,217,16,17,17,208,72,199,179,60,93,100,146,49,
|
|
232,162,64,76,135,19,152,244,44,136,223,98,67,4,18,33,247,217,158,36,0,209,
|
|
190,156,13,26,201,21,111,165,67,64,180,100,145,62,250,32,45,100,33,55,214,
|
|
1,229,223,65,19,72,187,236,206,137,35,125,120,190,201,104,105,15,190,201,
|
|
212,136,136,125,246,160,137,27,83,239,171,37,200,218,159,125,168,34,192,61,
|
|
27,233,93,22,1,114,78,250,28,76,130,112,200,93,245,164,188,207,190,204,17,
|
|
49,38,109,246,160,93,8,119,185,13,153,34,96,208,165,36,85,190,206,32,17,6,
|
|
9,129,75,67,73,214,209,129,36,80,84,44,157,104,24,65,60,69,148,192,37,59,
|
|
179,60,93,110,207,15,39,73,24,186,39,232,232,169,129,228,18,6,120,146,20,
|
|
68,72,157,105,241,116,221,173,58,68,159,95,23,77,211,195,201,215,20,238,
|
|
179,122,162,98,73,35,104,194,68,19,35,134,69,146,100,235,226,231,146,51,
|
|
192,206,9,23,175,139,175,131,8,11,89,8,206,161,181,2,208,63,160,232,193,50,
|
|
23,246,254,187,235,190,187,247,69,241,95,18,31,160,15,214,11,235,126,192,
|
|
95,87,246,1,251,4,253,111,80,210,161,168,158,19,245,125,67,74,134,162,120,
|
|
71,80,210,161,168,158,12,224,164,130,153,165,56,161,166,51,104,192,146,39,
|
|
11,156,178,1,169,163,70,66,161,164,26,101,56,161,166,65,112,57,129,164,148,
|
|
35,49,201,13,44,93,70,140,209,3,70,230,13,238,176,216,134,141,128,184,214,
|
|
227,20,171,115,162,50,93,227,19,164,65,17,11,40,38,6,253,145,1,48,52,128,
|
|
146,26,64,9,210,24,3,34,250,80,140,254,200,254,148,35,63,177,215,217,11,
|
|
207,65,188,183,27,236,126,192,133,242,220,111,178,32,252,182,253,145,60,
|
|
182,253,143,216,7,164,59,9,41,0,196,35,64,194,21,13,125,38,84,52,100,185,
|
|
62,163,239,254,235,234,82,176,74,125,67,70,75,165,148,92,208,180,52,138,65,
|
|
154,232,147,162,4,136,105,58,145,17,9,50,74,100,37,200,37,205,222,51,39,47,
|
|
78,40,105,143,34,79,184,32,34,115,18,125,193,1,19,77,222,76,156,213,205,
|
|
222,68,157,47,78,40,105,151,55,122,147,20,189,56,161,166,116,137,63,82,98,
|
|
47,168,181,247,4,4,87,34,79,165,162,215,220,16,17,92,137,63,82,98,103,156,
|
|
217,157,18,36,250,199,54,103,84,137,63,82,98,31,129,50,30,68,159,70,9,145,
|
|
114,36,253,73,136,254,117,35,36,72,147,233,221,72,201,178,36,253,73,137,
|
|
158,67,105,50,73,82,36,250,196,54,147,36,155,34,79,212,152,165,226,9,205,
|
|
28,149,34,79,178,32,156,209,202,82,36,253,73,137,158,66,214,137,16,78,104,
|
|
228,249,18,125,98,22,180,72,130,115,71,35,200,147,236,208,194,68,196,159,
|
|
102,134,19,46,105,58,226,150,68,156,140,73,250,147,19,60,133,173,18,32,156,
|
|
209,201,230,36,250,196,45,104,145,4,230,142,77,49,39,234,76,82,241,4,230,
|
|
142,74,49,39,217,16,78,104,228,211,18,126,164,196,207,33,180,153,36,163,18,
|
|
125,98,27,73,146,75,49,39,234,76,71,243,169,25,32,196,159,78,234,70,73,49,
|
|
39,234,76,67,240,48,99,18,125,24,48,163,18,126,164,196,63,2,100,57,137,62,
|
|
140,19,34,204,73,250,147,19,60,230,204,232,49,39,214,57,179,59,140,73,250,
|
|
147,17,125,69,175,184,32,34,179,18,125,45,22,190,224,128,137,204,73,246,
|
|
104,97,37,55,117,110,16,22,78,205,12,39,101,56,161,166,148,221,213,184,64,
|
|
89,58,48,76,157,148,226,134,153,147,119,102,134,19,178,156,80,211,50,110,
|
|
232,193,50,118,83,138,26,97,181,214,31,169,49,21,224,140,136,185,187,175,
|
|
137,4,137,33,205,108,221,210,93,238,105,27,52,1,103,155,186,84,92,131,143,
|
|
158,233,34,104,169,52,134,149,13,68,241,31,52,134,4,209,82,105,13,42,26,
|
|
137,224,125,104,58,212,249,136,110,170,5,208,137,243,1,125,84,11,161,13,42,
|
|
6,83,137,39,20,50,51,119,86,225,1,100,237,30,242,71,162,4,136,185,187,180,
|
|
123,201,30,136,18,36,102,238,173,194,2,201,213,186,196,143,68,9,17,115,119,
|
|
86,235,18,61,16,36,68,202,129,148,226,134,152,178,122,209,51,72,128,136,
|
|
142,120,145,235,0,136,86,2,98,59,86,225,1,100,232,156,199,130,36,80,142,8,
|
|
244,78,25,58,9,152,71,4,122,9,176,177,115,58,35,130,61,19,134,69,196,131,
|
|
160,137,216,160,199,153,162,65,208,68,49,80,185,146,35,96,30,114,186,61,32,
|
|
4,114,73,204,33,73,82,71,11,88,37,62,161,163,37,250,226,157,13,25,47,215,
|
|
20,244,108,142,130,204,210,122,208,34,18,78,140,203,37,160,68,44,142,130,
|
|
204,241,37,73,25,16,143,164,142,55,185,228,75,144,211,9,205,16,38,116,75,
|
|
160,140,65,132,130,38,163,8,217,200,194,2,214,72,144,40,104,200,32,45,101,
|
|
3,222,188,81,241,115,201,25,227,168,151,72,218,48,145,0,86,70,162,93,124,
|
|
93,55,79,15,39,92,87,28,18,235,172,222,190,46,121,35,60,30,160,93,9,215,21,
|
|
211,119,86,225,1,100,236,167,20,52,200,155,187,41,197,13,50,196,230,202,
|
|
113,160,166,232,142,68,152,204,73,168,141,163,9,16,5,100,96,156,210,160,
|
|
212,136,2,178,34,209,68,192,21,144,181,2,232,66,40,152,147,17,46,146,243,
|
|
35,100,128,172,136,68,186,88,187,36,106,17,46,200,128,89,7,23,196,149,35,
|
|
103,210,94,100,108,144,230,200,197,137,9,146,18,68,2,224,50,21,13,39,95,23,
|
|
60,145,154,9,39,12,133,67,73,215,197,207,36,103,131,10,36,4,201,51,18,125,
|
|
117,155,215,197,207,36,103,142,180,12,36,176,98,79,174,179,122,248,185,228,
|
|
140,241,209,146,66,138,31,55,69,198,36,250,248,186,110,158,30,78,184,169,
|
|
124,93,55,79,15,33,150,70,154,103,40,22,72,204,175,138,27,52,81,164,144,
|
|
128,242,24,146,16,30,73,17,162,112,201,234,69,2,243,152,247,52,141,154,72,
|
|
209,56,100,245,34,137,12,130,112,201,234,69,2,243,152,247,52,141,154,70,65,
|
|
56,100,245,34,132,34,93,42,26,137,144,168,151,90,14,181,79,4,100,78,149,
|
|
110,4,208,240,70,68,234,27,50,18,160,90,61,72,160,158,140,93,20,246,120,
|
|
121,58,72,197,209,95,101,134,204,23,233,35,23,69,221,137,10,72,145,162,39,
|
|
73,24,186,42,236,64,211,19,164,140,93,20,244,149,2,250,72,197,209,40,98,64,
|
|
40,130,4,136,81,2,98,58,4,230,205,13,161,16,50,6,134,49,34,113,144,160,162,
|
|
230,97,145,100,153,4,55,16,139,145,14,84,52,11,94,6,87,69,5,163,69,52,57,
|
|
162,65,68,134,169,13,148,192,209,17,197,27,73,99,68,147,164,90,105,89,19,
|
|
17,201,51,162,69,153,226,235,14,113,193,167,135,145,197,29,65,18,85,200,25,
|
|
108,116,44,132,178,38,114,137,96,148,138,39,54,83,33,27,70,24,151,123,163,
|
|
51,146,243,35,71,35,33,143,116,102,89,81,228,137,27,69,172,147,141,8,82,
|
|
129,114,34,144,199,172,140,35,103,36,161,179,36,74,1,16,107,36,206,240,9,
|
|
64,49,14,248,162,160,153,18,248,186,100,20,200,51,62,129,90,4,105,76,19,64,
|
|
139,132,17,99,
|
|
};
|
|
|
|
/* to convert a heap stridx to a token number, subtract
|
|
* DUK_STRIDX_START_RESERVED and add DUK_TOK_START_RESERVED.
|
|
*/
|
|
|
|
/* native functions: 128 */
|
|
DUK_INTERNAL const duk_c_function duk_bi_native_functions[128] = {
|
|
duk_bi_array_constructor,
|
|
duk_bi_array_constructor_is_array,
|
|
duk_bi_array_prototype_concat,
|
|
duk_bi_array_prototype_indexof_shared,
|
|
duk_bi_array_prototype_iter_shared,
|
|
duk_bi_array_prototype_join_shared,
|
|
duk_bi_array_prototype_pop,
|
|
duk_bi_array_prototype_push,
|
|
duk_bi_array_prototype_reduce_shared,
|
|
duk_bi_array_prototype_reverse,
|
|
duk_bi_array_prototype_shift,
|
|
duk_bi_array_prototype_slice,
|
|
duk_bi_array_prototype_sort,
|
|
duk_bi_array_prototype_splice,
|
|
duk_bi_array_prototype_to_string,
|
|
duk_bi_array_prototype_unshift,
|
|
duk_bi_boolean_constructor,
|
|
duk_bi_boolean_prototype_tostring_shared,
|
|
duk_bi_buffer_constructor,
|
|
duk_bi_buffer_prototype_tostring_shared,
|
|
duk_bi_date_constructor,
|
|
duk_bi_date_constructor_now,
|
|
duk_bi_date_constructor_parse,
|
|
duk_bi_date_constructor_utc,
|
|
duk_bi_date_prototype_get_shared,
|
|
duk_bi_date_prototype_get_timezone_offset,
|
|
duk_bi_date_prototype_set_shared,
|
|
duk_bi_date_prototype_set_time,
|
|
duk_bi_date_prototype_to_json,
|
|
duk_bi_date_prototype_tostring_shared,
|
|
duk_bi_date_prototype_value_of,
|
|
duk_bi_duktape_object_act,
|
|
duk_bi_duktape_object_compact,
|
|
duk_bi_duktape_object_dec,
|
|
duk_bi_duktape_object_enc,
|
|
duk_bi_duktape_object_fin,
|
|
duk_bi_duktape_object_gc,
|
|
duk_bi_duktape_object_info,
|
|
duk_bi_error_constructor_shared,
|
|
duk_bi_error_prototype_filename_getter,
|
|
duk_bi_error_prototype_linenumber_getter,
|
|
duk_bi_error_prototype_nop_setter,
|
|
duk_bi_error_prototype_stack_getter,
|
|
duk_bi_error_prototype_to_string,
|
|
duk_bi_function_constructor,
|
|
duk_bi_function_prototype,
|
|
duk_bi_function_prototype_apply,
|
|
duk_bi_function_prototype_bind,
|
|
duk_bi_function_prototype_call,
|
|
duk_bi_function_prototype_to_string,
|
|
duk_bi_global_object_decode_uri,
|
|
duk_bi_global_object_decode_uri_component,
|
|
duk_bi_global_object_encode_uri,
|
|
duk_bi_global_object_encode_uri_component,
|
|
duk_bi_global_object_escape,
|
|
duk_bi_global_object_eval,
|
|
duk_bi_global_object_is_finite,
|
|
duk_bi_global_object_is_nan,
|
|
duk_bi_global_object_parse_float,
|
|
duk_bi_global_object_parse_int,
|
|
duk_bi_global_object_print_helper,
|
|
duk_bi_global_object_require,
|
|
duk_bi_global_object_unescape,
|
|
duk_bi_json_object_parse,
|
|
duk_bi_json_object_stringify,
|
|
duk_bi_logger_constructor,
|
|
duk_bi_logger_prototype_fmt,
|
|
duk_bi_logger_prototype_log_shared,
|
|
duk_bi_logger_prototype_raw,
|
|
duk_bi_math_object_max,
|
|
duk_bi_math_object_min,
|
|
duk_bi_math_object_onearg_shared,
|
|
duk_bi_math_object_random,
|
|
duk_bi_math_object_twoarg_shared,
|
|
duk_bi_number_constructor,
|
|
duk_bi_number_prototype_to_exponential,
|
|
duk_bi_number_prototype_to_fixed,
|
|
duk_bi_number_prototype_to_locale_string,
|
|
duk_bi_number_prototype_to_precision,
|
|
duk_bi_number_prototype_to_string,
|
|
duk_bi_number_prototype_value_of,
|
|
duk_bi_object_constructor,
|
|
duk_bi_object_constructor_create,
|
|
duk_bi_object_constructor_define_properties,
|
|
duk_bi_object_constructor_define_property,
|
|
duk_bi_object_constructor_get_own_property_descriptor,
|
|
duk_bi_object_constructor_is_extensible,
|
|
duk_bi_object_constructor_is_sealed_frozen_shared,
|
|
duk_bi_object_constructor_keys_shared,
|
|
duk_bi_object_constructor_prevent_extensions,
|
|
duk_bi_object_constructor_seal_freeze_shared,
|
|
duk_bi_object_getprototype_shared,
|
|
duk_bi_object_prototype_has_own_property,
|
|
duk_bi_object_prototype_is_prototype_of,
|
|
duk_bi_object_prototype_property_is_enumerable,
|
|
duk_bi_object_prototype_to_locale_string,
|
|
duk_bi_object_prototype_to_string,
|
|
duk_bi_object_prototype_value_of,
|
|
duk_bi_object_setprototype_shared,
|
|
duk_bi_pointer_constructor,
|
|
duk_bi_pointer_prototype_tostring_shared,
|
|
duk_bi_proxy_constructor,
|
|
duk_bi_regexp_constructor,
|
|
duk_bi_regexp_prototype_exec,
|
|
duk_bi_regexp_prototype_test,
|
|
duk_bi_regexp_prototype_to_string,
|
|
duk_bi_string_constructor,
|
|
duk_bi_string_constructor_from_char_code,
|
|
duk_bi_string_prototype_caseconv_shared,
|
|
duk_bi_string_prototype_char_at,
|
|
duk_bi_string_prototype_char_code_at,
|
|
duk_bi_string_prototype_concat,
|
|
duk_bi_string_prototype_indexof_shared,
|
|
duk_bi_string_prototype_locale_compare,
|
|
duk_bi_string_prototype_match,
|
|
duk_bi_string_prototype_replace,
|
|
duk_bi_string_prototype_search,
|
|
duk_bi_string_prototype_slice,
|
|
duk_bi_string_prototype_split,
|
|
duk_bi_string_prototype_substr,
|
|
duk_bi_string_prototype_substring,
|
|
duk_bi_string_prototype_to_string,
|
|
duk_bi_string_prototype_trim,
|
|
duk_bi_thread_constructor,
|
|
duk_bi_thread_current,
|
|
duk_bi_thread_resume,
|
|
duk_bi_thread_yield,
|
|
duk_bi_type_error_thrower,
|
|
};
|
|
|
|
DUK_INTERNAL const duk_uint8_t duk_builtins_data[1341] = {
|
|
105,195,74,136,77,40,105,44,9,124,104,45,3,3,72,0,71,225,65,165,168,33,243,
|
|
6,145,0,122,24,210,148,14,249,35,120,160,55,226,13,76,192,196,177,164,152,
|
|
22,192,4,202,52,147,72,152,0,169,70,146,105,11,0,23,40,210,77,32,96,3,37,
|
|
26,73,163,236,0,108,163,73,52,121,128,14,148,105,38,142,176,1,242,144,56,
|
|
208,254,84,6,166,82,242,80,210,246,1,250,67,72,144,15,232,13,44,96,47,162,
|
|
52,160,128,62,80,160,255,253,102,76,7,255,128,0,0,0,0,0,3,84,7,255,0,0,0,0,
|
|
0,0,3,124,64,153,132,18,49,2,38,48,64,200,7,153,64,227,48,26,103,3,13,0,89,
|
|
165,34,53,36,38,180,128,216,143,155,81,227,114,58,111,2,142,0,73,194,94,56,
|
|
202,167,33,209,195,114,70,206,209,26,58,36,100,228,145,131,130,69,204,137,
|
|
22,51,36,84,208,145,67,82,68,205,137,18,62,36,68,240,122,32,120,62,0,2,87,
|
|
61,39,255,254,9,46,24,0,10,31,224,29,13,91,40,0,9,101,137,32,0,48,197,84,
|
|
66,214,9,10,82,68,37,81,144,133,52,65,214,137,6,90,40,0,12,21,100,144,69,
|
|
114,64,213,202,0,3,2,86,36,5,96,160,0,63,254,16,37,135,91,98,25,242,192,7,
|
|
194,248,30,236,32,123,46,17,234,186,71,162,241,5,23,240,0,15,241,1,70,74,3,
|
|
8,249,49,3,204,185,15,35,3,231,137,121,240,163,254,0,46,224,18,7,248,192,
|
|
42,249,14,3,224,20,32,0,46,208,35,231,96,41,29,96,192,117,3,159,58,66,64,
|
|
232,10,3,156,45,14,96,194,57,67,87,156,129,231,206,48,51,240,0,23,16,25,
|
|
255,255,251,132,16,209,192,8,106,0,2,223,4,53,0,2,111,2,26,128,1,183,65,13,
|
|
64,1,27,129,7,224,0,45,176,131,255,255,241,73,252,0,91,77,103,193,254,64,
|
|
36,200,64,101,31,47,32,123,188,129,178,218,70,195,113,29,173,231,206,55,3,
|
|
71,19,129,168,0,11,93,196,141,103,34,53,92,208,212,116,35,157,213,13,55,
|
|
100,52,158,16,209,108,3,65,176,12,246,192,128,0,179,155,2,0,2,205,122,3,49,
|
|
221,2,151,248,0,7,249,64,147,35,4,249,17,8,0,11,220,68,2,155,248,172,184,
|
|
15,253,255,255,255,255,255,255,236,168,0,0,0,0,0,0,0,0,44,152,15,255,0,0,0,
|
|
0,0,0,12,120,15,254,0,0,0,0,0,0,12,136,31,254,0,0,0,0,0,0,0,7,249,128,147,
|
|
32,0,0,0,0,0,0,0,0,12,249,79,35,225,52,143,117,0,49,147,8,197,75,35,17,56,
|
|
130,159,248,1,176,197,136,194,23,254,96,138,128,63,206,4,153,33,255,224,0,
|
|
0,0,0,0,2,215,200,232,24,3,161,0,1,95,142,132,0,9,240,58,16,0,53,240,232,
|
|
64,1,23,163,161,0,5,77,142,132,0,25,52,58,16,0,116,200,225,30,227,192,94,
|
|
15,1,118,48,16,0,133,208,192,64,2,87,35,1,0,10,92,12,4,0,45,110,48,16,0,
|
|
197,176,192,64,3,86,163,1,0,14,90,12,4,0,61,102,48,16,1,5,144,192,64,4,86,
|
|
35,1,0,18,88,12,4,0,77,94,48,16,1,69,112,192,64,5,85,163,1,0,22,86,12,4,0,
|
|
93,86,50,5,80,217,21,35,69,0,24,84,13,20,0,101,78,52,190,0,52,166,26,95,0,
|
|
27,82,141,63,128,14,41,6,159,192,7,84,99,83,224,3,202,33,169,240,1,245,8,
|
|
209,64,8,20,3,69,0,33,79,141,47,128,17,39,134,151,192,8,211,163,79,224,4,
|
|
137,193,167,240,2,84,192,192,64,9,146,227,69,0,39,21,31,192,0,63,208,24,
|
|
147,4,12,0,32,41,56,72,240,60,100,148,100,140,100,132,128,0,0,0,0,0,0,0,0,
|
|
210,172,228,74,52,17,242,210,1,83,252,0,3,253,33,81,132,11,69,144,24,166,
|
|
229,69,37,23,39,41,40,57,65,72,47,146,176,10,175,224,0,159,234,4,140,41,18,
|
|
44,128,192,10,191,224,0,159,235,4,140,41,10,44,128,192,10,207,224,0,159,
|
|
236,4,140,41,2,44,128,192,10,223,224,0,159,237,4,140,40,250,44,128,192,10,
|
|
239,224,0,159,238,4,140,40,242,44,128,192,10,255,224,0,159,239,4,140,40,
|
|
234,44,128,192,7,255,228,34,160,32,2,223,133,69,138,43,180,162,96,32,1,53,
|
|
216,221,218,170,139,34,32,31,243,23,33,127,125,28,247,161,224,31,251,138,
|
|
163,178,149,193,127,33,160,31,237,229,189,138,147,114,135,33,96,32,4,144,
|
|
253,170,34,22,140,33,32,31,243,80,79,51,63,157,230,160,224,31,251,80,79,51,
|
|
63,157,230,164,130,71,34,5,28,160,0,40,4,114,128,1,31,209,202,0,6,126,73,
|
|
65,245,28,160,0,135,196,114,128,2,158,209,202,0,12,122,71,40,0,57,229,28,
|
|
160,1,7,132,85,227,186,50,241,217,37,32,0,39,84,128,29,17,202,0,18,115,71,
|
|
40,0,81,201,28,160,1,103,20,114,128,6,7,255,224,4,195,63,65,193,1,130,255,
|
|
248,0,11,255,224,0,31,255,138,52,128,129,135,219,0,0,0,0,0,3,57,192,71,72,
|
|
4,229,0,29,99,140,201,72,50,31,32,196,144,131,2,49,225,121,16,240,184,132,
|
|
120,82,64,65,102,252,0,233,239,200,20,62,176,78,248,0,255,148,0,5,163,240,
|
|
0,15,249,192,9,242,38,16,0,23,184,152,5,171,240,0,15,250,64,9,242,200,16,0,
|
|
23,187,32,5,179,240,0,15,250,194,15,72,64,0,0,0,0,0,0,0,15,201,4,195,187,
|
|
126,226,4,200,68,18,162,16,72,134,60,35,67,31,0,1,25,161,143,128,1,8,144,
|
|
199,192,0,196,40,99,224,0,130,4,49,240,0,84,255,252,36,100,16,184,155,250,
|
|
226,217,150,47,46,91,249,34,224,139,229,229,203,127,36,26,119,32,203,203,
|
|
150,254,72,52,97,221,147,102,157,217,192,
|
|
};
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
DUK_INTERNAL const duk_uint8_t duk_initjs_data[187] = {
|
|
40,102,117,110,99,116,105,111,110,40,100,44,97,41,123,102,117,110,99,116,
|
|
105,111,110,32,98,40,97,44,98,44,99,41,123,79,98,106,101,99,116,46,100,101,
|
|
102,105,110,101,80,114,111,112,101,114,116,121,40,97,44,98,44,123,118,97,
|
|
108,117,101,58,99,44,119,114,105,116,97,98,108,101,58,33,48,44,101,110,117,
|
|
109,101,114,97,98,108,101,58,33,49,44,99,111,110,102,105,103,117,114,97,98,
|
|
108,101,58,33,48,125,41,125,98,40,97,46,76,111,103,103,101,114,44,34,99,
|
|
108,111,103,34,44,110,101,119,32,97,46,76,111,103,103,101,114,40,34,67,34,
|
|
41,41,59,98,40,97,44,34,109,111,100,76,111,97,100,101,100,34,44,123,125,41,
|
|
125,41,40,116,104,105,115,44,68,117,107,116,97,112,101,41,59,10,0,
|
|
};
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
#elif defined(DUK_USE_DOUBLE_ME)
|
|
DUK_INTERNAL const duk_uint8_t duk_strings_data[1943] = {
|
|
55,86,227,24,145,55,102,120,144,3,63,94,228,54,100,137,186,26,20,164,137,
|
|
186,50,11,164,109,77,215,5,61,35,106,3,25,110,8,22,158,130,38,163,8,217,
|
|
200,158,76,156,210,117,128,153,203,210,70,46,137,187,18,27,164,187,201,209,
|
|
130,100,55,91,70,4,145,63,66,231,44,128,105,187,41,197,13,49,122,8,196,24,
|
|
71,75,70,138,104,115,77,215,5,36,20,201,214,209,107,79,104,209,144,168,105,
|
|
6,207,251,209,104,209,125,212,227,66,127,235,191,239,232,180,90,52,95,69,
|
|
247,83,141,9,255,174,255,191,162,211,80,210,253,23,221,78,52,39,254,183,
|
|
254,254,139,72,105,126,139,238,167,26,19,255,91,255,127,69,166,129,191,69,
|
|
247,83,141,9,255,175,255,191,162,213,26,50,23,232,190,234,113,161,63,245,
|
|
115,119,86,227,118,83,138,26,98,9,110,48,86,22,148,160,152,22,82,70,46,137,
|
|
44,8,180,163,32,104,98,206,32,17,7,16,88,101,100,206,42,70,36,108,205,18,
|
|
74,140,33,196,230,60,2,152,146,33,38,230,8,36,79,182,251,65,156,151,24,200,
|
|
33,145,162,25,80,209,24,67,0,166,68,52,174,61,73,25,33,205,25,27,84,177,
|
|
195,234,220,1,144,105,99,135,217,16,17,17,208,72,199,179,60,93,100,146,49,
|
|
232,162,64,76,135,19,152,244,44,136,223,98,67,4,18,33,247,217,158,36,0,209,
|
|
190,156,13,26,201,21,111,165,67,64,180,100,145,62,250,32,45,100,33,55,214,
|
|
1,229,223,65,19,72,187,236,206,137,35,125,120,190,201,104,105,15,190,201,
|
|
212,136,136,125,246,160,137,27,83,239,171,37,200,218,159,125,168,34,192,61,
|
|
27,233,93,22,1,114,78,250,28,76,130,112,200,93,245,164,188,207,190,204,17,
|
|
49,38,109,246,160,93,8,119,185,13,153,34,96,208,165,36,85,190,206,32,17,6,
|
|
9,129,75,67,73,214,209,129,36,80,84,44,157,104,24,65,60,69,148,192,37,59,
|
|
179,60,93,110,207,15,39,73,24,186,39,232,232,169,129,228,18,6,120,146,20,
|
|
68,72,157,105,241,116,221,173,58,68,159,95,23,77,211,195,201,215,20,238,
|
|
179,122,162,98,73,35,104,194,68,19,35,134,69,146,100,235,226,231,146,51,
|
|
192,206,9,23,175,139,175,131,8,11,89,8,206,161,181,2,208,63,160,232,193,50,
|
|
23,246,254,187,235,190,187,247,69,241,95,18,31,160,15,214,11,235,126,192,
|
|
95,87,246,1,251,4,253,111,80,210,161,168,158,19,245,125,67,74,134,162,120,
|
|
71,80,210,161,168,158,12,224,164,130,153,165,56,161,166,51,104,192,146,39,
|
|
11,156,178,1,169,163,70,66,161,164,26,101,56,161,166,65,112,57,129,164,148,
|
|
35,49,201,13,44,93,70,140,209,3,70,230,13,238,176,216,134,141,128,184,214,
|
|
227,20,171,115,162,50,93,227,19,164,65,17,11,40,38,6,253,145,1,48,52,128,
|
|
146,26,64,9,210,24,3,34,250,80,140,254,200,254,148,35,63,177,215,217,11,
|
|
207,65,188,183,27,236,126,192,133,242,220,111,178,32,252,182,253,145,60,
|
|
182,253,143,216,7,164,59,9,41,0,196,35,64,194,21,13,125,38,84,52,100,185,
|
|
62,163,239,254,235,234,82,176,74,125,67,70,75,165,148,92,208,180,52,138,65,
|
|
154,232,147,162,4,136,105,58,145,17,9,50,74,100,37,200,37,205,222,51,39,47,
|
|
78,40,105,143,34,79,184,32,34,115,18,125,193,1,19,77,222,76,156,213,205,
|
|
222,68,157,47,78,40,105,151,55,122,147,20,189,56,161,166,116,137,63,82,98,
|
|
47,168,181,247,4,4,87,34,79,165,162,215,220,16,17,92,137,63,82,98,103,156,
|
|
217,157,18,36,250,199,54,103,84,137,63,82,98,31,129,50,30,68,159,70,9,145,
|
|
114,36,253,73,136,254,117,35,36,72,147,233,221,72,201,178,36,253,73,137,
|
|
158,67,105,50,73,82,36,250,196,54,147,36,155,34,79,212,152,165,226,9,205,
|
|
28,149,34,79,178,32,156,209,202,82,36,253,73,137,158,66,214,137,16,78,104,
|
|
228,249,18,125,98,22,180,72,130,115,71,35,200,147,236,208,194,68,196,159,
|
|
102,134,19,46,105,58,226,150,68,156,140,73,250,147,19,60,133,173,18,32,156,
|
|
209,201,230,36,250,196,45,104,145,4,230,142,77,49,39,234,76,82,241,4,230,
|
|
142,74,49,39,217,16,78,104,228,211,18,126,164,196,207,33,180,153,36,163,18,
|
|
125,98,27,73,146,75,49,39,234,76,71,243,169,25,32,196,159,78,234,70,73,49,
|
|
39,234,76,67,240,48,99,18,125,24,48,163,18,126,164,196,63,2,100,57,137,62,
|
|
140,19,34,204,73,250,147,19,60,230,204,232,49,39,214,57,179,59,140,73,250,
|
|
147,17,125,69,175,184,32,34,179,18,125,45,22,190,224,128,137,204,73,246,
|
|
104,97,37,55,117,110,16,22,78,205,12,39,101,56,161,166,148,221,213,184,64,
|
|
89,58,48,76,157,148,226,134,153,147,119,102,134,19,178,156,80,211,50,110,
|
|
232,193,50,118,83,138,26,97,181,214,31,169,49,21,224,140,136,185,187,175,
|
|
137,4,137,33,205,108,221,210,93,238,105,27,52,1,103,155,186,84,92,131,143,
|
|
158,233,34,104,169,52,134,149,13,68,241,31,52,134,4,209,82,105,13,42,26,
|
|
137,224,125,104,58,212,249,136,110,170,5,208,137,243,1,125,84,11,161,13,42,
|
|
6,83,137,39,20,50,51,119,86,225,1,100,237,30,242,71,162,4,136,185,187,180,
|
|
123,201,30,136,18,36,102,238,173,194,2,201,213,186,196,143,68,9,17,115,119,
|
|
86,235,18,61,16,36,68,202,129,148,226,134,152,178,122,209,51,72,128,136,
|
|
142,120,145,235,0,136,86,2,98,59,86,225,1,100,232,156,199,130,36,80,142,8,
|
|
244,78,25,58,9,152,71,4,122,9,176,177,115,58,35,130,61,19,134,69,196,131,
|
|
160,137,216,160,199,153,162,65,208,68,49,80,185,146,35,96,30,114,186,61,32,
|
|
4,114,73,204,33,73,82,71,11,88,37,62,161,163,37,250,226,157,13,25,47,215,
|
|
20,244,108,142,130,204,210,122,208,34,18,78,140,203,37,160,68,44,142,130,
|
|
204,241,37,73,25,16,143,164,142,55,185,228,75,144,211,9,205,16,38,116,75,
|
|
160,140,65,132,130,38,163,8,217,200,194,2,214,72,144,40,104,200,32,45,101,
|
|
3,222,188,81,241,115,201,25,227,168,151,72,218,48,145,0,86,70,162,93,124,
|
|
93,55,79,15,39,92,87,28,18,235,172,222,190,46,121,35,60,30,160,93,9,215,21,
|
|
211,119,86,225,1,100,236,167,20,52,200,155,187,41,197,13,50,196,230,202,
|
|
113,160,166,232,142,68,152,204,73,168,141,163,9,16,5,100,96,156,210,160,
|
|
212,136,2,178,34,209,68,192,21,144,181,2,232,66,40,152,147,17,46,146,243,
|
|
35,100,128,172,136,68,186,88,187,36,106,17,46,200,128,89,7,23,196,149,35,
|
|
103,210,94,100,108,144,230,200,197,137,9,146,18,68,2,224,50,21,13,39,95,23,
|
|
60,145,154,9,39,12,133,67,73,215,197,207,36,103,131,10,36,4,201,51,18,125,
|
|
117,155,215,197,207,36,103,142,180,12,36,176,98,79,174,179,122,248,185,228,
|
|
140,241,209,146,66,138,31,55,69,198,36,250,248,186,110,158,30,78,184,169,
|
|
124,93,55,79,15,33,150,70,154,103,40,22,72,204,175,138,27,52,81,164,144,
|
|
128,242,24,146,16,30,73,17,162,112,201,234,69,2,243,152,247,52,141,154,72,
|
|
209,56,100,245,34,137,12,130,112,201,234,69,2,243,152,247,52,141,154,70,65,
|
|
56,100,245,34,132,34,93,42,26,137,144,168,151,90,14,181,79,4,100,78,149,
|
|
110,4,208,240,70,68,234,27,50,18,160,90,61,72,160,158,140,93,20,246,120,
|
|
121,58,72,197,209,95,101,134,204,23,233,35,23,69,221,137,10,72,145,162,39,
|
|
73,24,186,42,236,64,211,19,164,140,93,20,244,149,2,250,72,197,209,40,98,64,
|
|
40,130,4,136,81,2,98,58,4,230,205,13,161,16,50,6,134,49,34,113,144,160,162,
|
|
230,97,145,100,153,4,55,16,139,145,14,84,52,11,94,6,87,69,5,163,69,52,57,
|
|
162,65,68,134,169,13,148,192,209,17,197,27,73,99,68,147,164,90,105,89,19,
|
|
17,201,51,162,69,153,226,235,14,113,193,167,135,145,197,29,65,18,85,200,25,
|
|
108,116,44,132,178,38,114,137,96,148,138,39,54,83,33,27,70,24,151,123,163,
|
|
51,146,243,35,71,35,33,143,116,102,89,81,228,137,27,69,172,147,141,8,82,
|
|
129,114,34,144,199,172,140,35,103,36,161,179,36,74,1,16,107,36,206,240,9,
|
|
64,49,14,248,162,160,153,18,248,186,100,20,200,51,62,129,90,4,105,76,19,64,
|
|
139,132,17,99,
|
|
};
|
|
|
|
/* to convert a heap stridx to a token number, subtract
|
|
* DUK_STRIDX_START_RESERVED and add DUK_TOK_START_RESERVED.
|
|
*/
|
|
|
|
/* native functions: 128 */
|
|
DUK_INTERNAL const duk_c_function duk_bi_native_functions[128] = {
|
|
duk_bi_array_constructor,
|
|
duk_bi_array_constructor_is_array,
|
|
duk_bi_array_prototype_concat,
|
|
duk_bi_array_prototype_indexof_shared,
|
|
duk_bi_array_prototype_iter_shared,
|
|
duk_bi_array_prototype_join_shared,
|
|
duk_bi_array_prototype_pop,
|
|
duk_bi_array_prototype_push,
|
|
duk_bi_array_prototype_reduce_shared,
|
|
duk_bi_array_prototype_reverse,
|
|
duk_bi_array_prototype_shift,
|
|
duk_bi_array_prototype_slice,
|
|
duk_bi_array_prototype_sort,
|
|
duk_bi_array_prototype_splice,
|
|
duk_bi_array_prototype_to_string,
|
|
duk_bi_array_prototype_unshift,
|
|
duk_bi_boolean_constructor,
|
|
duk_bi_boolean_prototype_tostring_shared,
|
|
duk_bi_buffer_constructor,
|
|
duk_bi_buffer_prototype_tostring_shared,
|
|
duk_bi_date_constructor,
|
|
duk_bi_date_constructor_now,
|
|
duk_bi_date_constructor_parse,
|
|
duk_bi_date_constructor_utc,
|
|
duk_bi_date_prototype_get_shared,
|
|
duk_bi_date_prototype_get_timezone_offset,
|
|
duk_bi_date_prototype_set_shared,
|
|
duk_bi_date_prototype_set_time,
|
|
duk_bi_date_prototype_to_json,
|
|
duk_bi_date_prototype_tostring_shared,
|
|
duk_bi_date_prototype_value_of,
|
|
duk_bi_duktape_object_act,
|
|
duk_bi_duktape_object_compact,
|
|
duk_bi_duktape_object_dec,
|
|
duk_bi_duktape_object_enc,
|
|
duk_bi_duktape_object_fin,
|
|
duk_bi_duktape_object_gc,
|
|
duk_bi_duktape_object_info,
|
|
duk_bi_error_constructor_shared,
|
|
duk_bi_error_prototype_filename_getter,
|
|
duk_bi_error_prototype_linenumber_getter,
|
|
duk_bi_error_prototype_nop_setter,
|
|
duk_bi_error_prototype_stack_getter,
|
|
duk_bi_error_prototype_to_string,
|
|
duk_bi_function_constructor,
|
|
duk_bi_function_prototype,
|
|
duk_bi_function_prototype_apply,
|
|
duk_bi_function_prototype_bind,
|
|
duk_bi_function_prototype_call,
|
|
duk_bi_function_prototype_to_string,
|
|
duk_bi_global_object_decode_uri,
|
|
duk_bi_global_object_decode_uri_component,
|
|
duk_bi_global_object_encode_uri,
|
|
duk_bi_global_object_encode_uri_component,
|
|
duk_bi_global_object_escape,
|
|
duk_bi_global_object_eval,
|
|
duk_bi_global_object_is_finite,
|
|
duk_bi_global_object_is_nan,
|
|
duk_bi_global_object_parse_float,
|
|
duk_bi_global_object_parse_int,
|
|
duk_bi_global_object_print_helper,
|
|
duk_bi_global_object_require,
|
|
duk_bi_global_object_unescape,
|
|
duk_bi_json_object_parse,
|
|
duk_bi_json_object_stringify,
|
|
duk_bi_logger_constructor,
|
|
duk_bi_logger_prototype_fmt,
|
|
duk_bi_logger_prototype_log_shared,
|
|
duk_bi_logger_prototype_raw,
|
|
duk_bi_math_object_max,
|
|
duk_bi_math_object_min,
|
|
duk_bi_math_object_onearg_shared,
|
|
duk_bi_math_object_random,
|
|
duk_bi_math_object_twoarg_shared,
|
|
duk_bi_number_constructor,
|
|
duk_bi_number_prototype_to_exponential,
|
|
duk_bi_number_prototype_to_fixed,
|
|
duk_bi_number_prototype_to_locale_string,
|
|
duk_bi_number_prototype_to_precision,
|
|
duk_bi_number_prototype_to_string,
|
|
duk_bi_number_prototype_value_of,
|
|
duk_bi_object_constructor,
|
|
duk_bi_object_constructor_create,
|
|
duk_bi_object_constructor_define_properties,
|
|
duk_bi_object_constructor_define_property,
|
|
duk_bi_object_constructor_get_own_property_descriptor,
|
|
duk_bi_object_constructor_is_extensible,
|
|
duk_bi_object_constructor_is_sealed_frozen_shared,
|
|
duk_bi_object_constructor_keys_shared,
|
|
duk_bi_object_constructor_prevent_extensions,
|
|
duk_bi_object_constructor_seal_freeze_shared,
|
|
duk_bi_object_getprototype_shared,
|
|
duk_bi_object_prototype_has_own_property,
|
|
duk_bi_object_prototype_is_prototype_of,
|
|
duk_bi_object_prototype_property_is_enumerable,
|
|
duk_bi_object_prototype_to_locale_string,
|
|
duk_bi_object_prototype_to_string,
|
|
duk_bi_object_prototype_value_of,
|
|
duk_bi_object_setprototype_shared,
|
|
duk_bi_pointer_constructor,
|
|
duk_bi_pointer_prototype_tostring_shared,
|
|
duk_bi_proxy_constructor,
|
|
duk_bi_regexp_constructor,
|
|
duk_bi_regexp_prototype_exec,
|
|
duk_bi_regexp_prototype_test,
|
|
duk_bi_regexp_prototype_to_string,
|
|
duk_bi_string_constructor,
|
|
duk_bi_string_constructor_from_char_code,
|
|
duk_bi_string_prototype_caseconv_shared,
|
|
duk_bi_string_prototype_char_at,
|
|
duk_bi_string_prototype_char_code_at,
|
|
duk_bi_string_prototype_concat,
|
|
duk_bi_string_prototype_indexof_shared,
|
|
duk_bi_string_prototype_locale_compare,
|
|
duk_bi_string_prototype_match,
|
|
duk_bi_string_prototype_replace,
|
|
duk_bi_string_prototype_search,
|
|
duk_bi_string_prototype_slice,
|
|
duk_bi_string_prototype_split,
|
|
duk_bi_string_prototype_substr,
|
|
duk_bi_string_prototype_substring,
|
|
duk_bi_string_prototype_to_string,
|
|
duk_bi_string_prototype_trim,
|
|
duk_bi_thread_constructor,
|
|
duk_bi_thread_current,
|
|
duk_bi_thread_resume,
|
|
duk_bi_thread_yield,
|
|
duk_bi_type_error_thrower,
|
|
};
|
|
|
|
DUK_INTERNAL const duk_uint8_t duk_builtins_data[1341] = {
|
|
105,195,74,136,77,40,105,44,9,124,104,45,3,3,72,0,71,225,65,165,168,33,243,
|
|
6,145,0,122,24,210,148,14,249,35,120,160,55,226,13,76,192,196,177,164,152,
|
|
22,192,4,202,52,147,72,152,0,169,70,146,105,11,0,23,40,210,77,32,96,3,37,
|
|
26,73,163,236,0,108,163,73,52,121,128,14,148,105,38,142,176,1,242,144,56,
|
|
208,254,84,6,166,82,242,80,210,246,1,250,67,72,144,15,232,13,44,96,47,162,
|
|
52,160,128,62,80,160,255,253,102,76,0,0,15,135,240,0,0,0,3,84,0,0,15,7,240,
|
|
0,0,0,3,124,64,153,132,18,49,2,38,48,64,200,7,153,64,227,48,26,103,3,13,0,
|
|
89,165,34,53,36,38,180,128,216,143,155,81,227,114,58,111,2,142,0,73,194,94,
|
|
56,202,167,33,209,195,114,70,206,209,26,58,36,100,228,145,131,130,69,204,
|
|
137,22,51,36,84,208,145,67,82,68,205,137,18,62,36,68,240,122,32,120,62,0,2,
|
|
87,61,39,255,254,9,46,24,0,10,31,224,29,13,91,40,0,9,101,137,32,0,48,197,
|
|
84,66,214,9,10,82,68,37,81,144,133,52,65,214,137,6,90,40,0,12,21,100,144,
|
|
69,114,64,213,202,0,3,2,86,36,5,96,160,0,63,254,16,37,135,91,98,25,242,192,
|
|
7,194,248,30,236,32,123,46,17,234,186,71,162,241,5,23,240,0,15,241,1,70,74,
|
|
3,8,249,49,3,204,185,15,35,3,231,137,121,240,163,254,0,46,224,18,7,248,192,
|
|
42,249,14,3,224,20,32,0,46,208,35,231,96,41,29,96,192,117,3,159,58,66,64,
|
|
232,10,3,156,45,14,96,194,57,67,87,156,129,231,206,48,51,240,0,23,16,25,
|
|
255,255,251,132,16,209,192,8,106,0,2,223,4,53,0,2,111,2,26,128,1,183,65,13,
|
|
64,1,27,129,7,224,0,45,176,131,255,255,241,73,252,0,91,77,103,193,254,64,
|
|
36,200,64,101,31,47,32,123,188,129,178,218,70,195,113,29,173,231,206,55,3,
|
|
71,19,129,168,0,11,93,196,141,103,34,53,92,208,212,116,35,157,213,13,55,
|
|
100,52,158,16,209,108,3,65,176,12,246,192,128,0,179,155,2,0,2,205,122,3,49,
|
|
221,2,151,248,0,7,249,64,147,35,4,249,17,8,0,11,220,68,2,155,248,172,184,
|
|
31,255,253,239,255,255,255,255,236,168,0,0,0,0,0,32,0,0,12,152,0,0,31,15,
|
|
224,0,0,0,12,120,0,0,30,15,224,0,0,0,12,136,0,0,30,31,224,0,0,0,0,7,249,
|
|
128,147,32,0,0,0,0,0,0,0,0,12,249,79,35,225,52,143,117,0,49,147,8,197,75,
|
|
35,17,56,130,159,248,1,176,197,136,194,23,254,96,138,128,63,206,4,153,32,0,
|
|
3,225,252,0,0,0,2,215,200,232,24,3,161,0,1,95,142,132,0,9,240,58,16,0,53,
|
|
240,232,64,1,23,163,161,0,5,77,142,132,0,25,52,58,16,0,116,200,225,30,227,
|
|
192,94,15,1,118,48,16,0,133,208,192,64,2,87,35,1,0,10,92,12,4,0,45,110,48,
|
|
16,0,197,176,192,64,3,86,163,1,0,14,90,12,4,0,61,102,48,16,1,5,144,192,64,
|
|
4,86,35,1,0,18,88,12,4,0,77,94,48,16,1,69,112,192,64,5,85,163,1,0,22,86,12,
|
|
4,0,93,86,50,5,80,217,21,35,69,0,24,84,13,20,0,101,78,52,190,0,52,166,26,
|
|
95,0,27,82,141,63,128,14,41,6,159,192,7,84,99,83,224,3,202,33,169,240,1,
|
|
245,8,209,64,8,20,3,69,0,33,79,141,47,128,17,39,134,151,192,8,211,163,79,
|
|
224,4,137,193,167,240,2,84,192,192,64,9,146,227,69,0,39,21,31,192,0,63,208,
|
|
24,147,4,12,0,32,41,56,72,240,60,100,148,100,140,100,132,128,0,0,0,0,0,0,0,
|
|
0,210,172,228,74,52,17,242,210,1,83,252,0,3,253,33,81,132,11,69,144,24,166,
|
|
229,69,37,23,39,41,40,57,65,72,47,146,176,10,175,224,0,159,234,4,140,41,18,
|
|
44,128,192,10,191,224,0,159,235,4,140,41,10,44,128,192,10,207,224,0,159,
|
|
236,4,140,41,2,44,128,192,10,223,224,0,159,237,4,140,40,250,44,128,192,10,
|
|
239,224,0,159,238,4,140,40,242,44,128,192,10,255,224,0,159,239,4,140,40,
|
|
234,44,128,192,7,255,228,34,160,5,95,130,160,52,171,138,69,162,96,88,181,
|
|
129,32,11,42,218,221,162,32,33,23,115,31,247,156,253,127,33,224,35,138,251,
|
|
159,255,65,21,178,161,160,61,229,237,159,135,114,147,10,161,96,125,144,132,
|
|
160,12,22,162,42,33,32,79,80,115,31,230,157,191,179,32,224,79,80,123,31,
|
|
230,157,191,179,36,130,71,34,5,28,160,0,40,4,114,128,1,31,209,202,0,6,126,
|
|
73,65,245,28,160,0,135,196,114,128,2,158,209,202,0,12,122,71,40,0,57,229,
|
|
28,160,1,7,132,85,227,186,50,241,217,37,32,0,39,84,128,29,17,202,0,18,115,
|
|
71,40,0,81,201,28,160,1,103,20,114,128,6,7,255,224,4,195,63,65,193,1,130,
|
|
255,248,0,11,255,224,0,31,255,138,52,129,1,219,134,128,0,0,0,0,3,57,192,71,
|
|
72,4,229,0,29,99,140,201,72,50,31,32,196,144,131,2,49,225,121,16,240,184,
|
|
132,120,82,64,65,102,252,0,233,239,200,20,62,176,78,248,0,255,148,0,5,163,
|
|
240,0,15,249,192,9,242,38,16,0,23,184,152,5,171,240,0,15,250,64,9,242,200,
|
|
16,0,23,187,32,5,179,240,0,15,250,194,15,72,0,0,0,64,0,0,0,0,15,201,4,195,
|
|
187,126,226,4,200,68,18,162,16,72,134,60,35,67,31,0,1,25,161,143,128,1,8,
|
|
144,199,192,0,196,40,99,224,0,130,4,49,240,0,84,255,252,36,100,16,184,155,
|
|
250,226,217,150,47,46,91,249,34,224,139,229,229,203,127,36,26,119,32,203,
|
|
203,150,254,72,52,97,221,147,102,157,217,192,
|
|
};
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
DUK_INTERNAL const duk_uint8_t duk_initjs_data[187] = {
|
|
40,102,117,110,99,116,105,111,110,40,100,44,97,41,123,102,117,110,99,116,
|
|
105,111,110,32,98,40,97,44,98,44,99,41,123,79,98,106,101,99,116,46,100,101,
|
|
102,105,110,101,80,114,111,112,101,114,116,121,40,97,44,98,44,123,118,97,
|
|
108,117,101,58,99,44,119,114,105,116,97,98,108,101,58,33,48,44,101,110,117,
|
|
109,101,114,97,98,108,101,58,33,49,44,99,111,110,102,105,103,117,114,97,98,
|
|
108,101,58,33,48,125,41,125,98,40,97,46,76,111,103,103,101,114,44,34,99,
|
|
108,111,103,34,44,110,101,119,32,97,46,76,111,103,103,101,114,40,34,67,34,
|
|
41,41,59,98,40,97,44,34,109,111,100,76,111,97,100,101,100,34,44,123,125,41,
|
|
125,41,40,116,104,105,115,44,68,117,107,116,97,112,101,41,59,10,0,
|
|
};
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
#else
|
|
#error invalid endianness defines
|
|
#endif
|
|
#line 1 "duk_error_macros.c"
|
|
/*
|
|
* Error, fatal, and panic handling.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#define DUK__ERRFMT_BUFSIZE 256 /* size for formatting buffers */
|
|
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
DUK_INTERNAL void duk_err_handle_error(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, ...) {
|
|
va_list ap;
|
|
char msg[DUK__ERRFMT_BUFSIZE];
|
|
va_start(ap, fmt);
|
|
(void) DUK_VSNPRINTF(msg, sizeof(msg), fmt, ap);
|
|
msg[sizeof(msg) - 1] = (char) 0;
|
|
duk_err_create_and_throw(thr, code, msg, filename, line);
|
|
va_end(ap); /* dead code, but ensures portability (see Linux man page notes) */
|
|
}
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
DUK_INTERNAL const char *duk_err_file_stash = NULL;
|
|
DUK_INTERNAL duk_int_t duk_err_line_stash = 0;
|
|
|
|
DUK_NORETURN(DUK_LOCAL_DECL void duk__handle_error(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, va_list ap));
|
|
|
|
DUK_LOCAL void duk__handle_error(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, va_list ap) {
|
|
char msg[DUK__ERRFMT_BUFSIZE];
|
|
(void) DUK_VSNPRINTF(msg, sizeof(msg), fmt, ap);
|
|
msg[sizeof(msg) - 1] = (char) 0;
|
|
duk_err_create_and_throw(thr, code, msg, filename, line);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_err_handle_error(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
duk__handle_error(filename, line, thr, code, fmt, ap);
|
|
va_end(ap); /* dead code */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_err_handle_error_stash(duk_hthread *thr, duk_errcode_t code, const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
duk__handle_error(duk_err_file_stash, duk_err_line_stash, thr, code, fmt, ap);
|
|
va_end(ap); /* dead code */
|
|
}
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#else /* DUK_USE_VERBOSE_ERRORS */
|
|
|
|
#ifdef DUK_USE_VARIADIC_MACROS
|
|
DUK_INTERNAL void duk_err_handle_error(duk_hthread *thr, duk_errcode_t code) {
|
|
duk_err_create_and_throw(thr, code);
|
|
}
|
|
|
|
#else /* DUK_USE_VARIADIC_MACROS */
|
|
DUK_INTERNAL void duk_err_handle_error_nonverbose1(duk_hthread *thr, duk_errcode_t code, const char *fmt, ...) {
|
|
DUK_UNREF(fmt);
|
|
duk_err_create_and_throw(thr, code);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_err_handle_error_nonverbose2(const char *filename, duk_int_t line, duk_hthread *thr, duk_errcode_t code, const char *fmt, ...) {
|
|
DUK_UNREF(filename);
|
|
DUK_UNREF(line);
|
|
DUK_UNREF(fmt);
|
|
duk_err_create_and_throw(thr, code);
|
|
}
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
#endif /* DUK_USE_VERBOSE_ERRORS */
|
|
|
|
/*
|
|
* Default fatal error handler
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_default_fatal_handler(duk_context *ctx, duk_errcode_t code, const char *msg) {
|
|
DUK_UNREF(ctx);
|
|
#ifdef DUK_USE_FILE_IO
|
|
DUK_FPRINTF(DUK_STDERR, "FATAL %ld: %s\n", (long) code, (const char *) (msg ? msg : "null"));
|
|
DUK_FFLUSH(DUK_STDERR);
|
|
#else
|
|
/* omit print */
|
|
#endif
|
|
DUK_D(DUK_DPRINT("default fatal handler called, code %ld -> calling DUK_PANIC()", (long) code));
|
|
DUK_PANIC(code, msg);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/*
|
|
* Default panic handler
|
|
*/
|
|
|
|
#if !defined(DUK_USE_PANIC_HANDLER)
|
|
DUK_INTERNAL void duk_default_panic_handler(duk_errcode_t code, const char *msg) {
|
|
#ifdef DUK_USE_FILE_IO
|
|
DUK_FPRINTF(DUK_STDERR, "PANIC %ld: %s ("
|
|
#if defined(DUK_USE_PANIC_ABORT)
|
|
"calling abort"
|
|
#elif defined(DUK_USE_PANIC_EXIT)
|
|
"calling exit"
|
|
#elif defined(DUK_USE_PANIC_SEGFAULT)
|
|
"segfaulting on purpose"
|
|
#else
|
|
#error no DUK_USE_PANIC_xxx macro defined
|
|
#endif
|
|
")\n", (long) code, (const char *) (msg ? msg : "null"));
|
|
DUK_FFLUSH(DUK_STDERR);
|
|
#else
|
|
/* omit print */
|
|
DUK_UNREF(code);
|
|
DUK_UNREF(msg);
|
|
#endif
|
|
|
|
#if defined(DUK_USE_PANIC_ABORT)
|
|
DUK_ABORT();
|
|
#elif defined(DUK_USE_PANIC_EXIT)
|
|
DUK_EXIT(-1);
|
|
#elif defined(DUK_USE_PANIC_SEGFAULT)
|
|
/* exit() afterwards to satisfy "noreturn" */
|
|
DUK_CAUSE_SEGFAULT(); /* SCANBUILD: "Dereference of null pointer", normal */
|
|
DUK_EXIT(-1);
|
|
#else
|
|
#error no DUK_USE_PANIC_xxx macro defined
|
|
#endif
|
|
|
|
DUK_UNREACHABLE();
|
|
}
|
|
#endif /* !DUK_USE_PANIC_HANDLER */
|
|
|
|
#undef DUK__ERRFMT_BUFSIZE
|
|
#line 1 "duk_unicode_support.c"
|
|
/*
|
|
* Various Unicode help functions for character classification predicates,
|
|
* case conversion, decoding, etc.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* XUTF-8 and CESU-8 encoding/decoding
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_get_xutf8_length(duk_ucodepoint_t cp) {
|
|
duk_uint_fast32_t x = (duk_uint_fast32_t) cp;
|
|
if (x < 0x80UL) {
|
|
/* 7 bits */
|
|
return 1;
|
|
} else if (x < 0x800UL) {
|
|
/* 11 bits */
|
|
return 2;
|
|
} else if (x < 0x10000UL) {
|
|
/* 16 bits */
|
|
return 3;
|
|
} else if (x < 0x200000UL) {
|
|
/* 21 bits */
|
|
return 4;
|
|
} else if (x < 0x4000000UL) {
|
|
/* 26 bits */
|
|
return 5;
|
|
} else if (x < (duk_ucodepoint_t) 0x80000000UL) {
|
|
/* 31 bits */
|
|
return 6;
|
|
} else {
|
|
/* 36 bits */
|
|
return 7;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL duk_uint8_t duk_unicode_xutf8_markers[7] = {
|
|
0x00, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe
|
|
};
|
|
|
|
/* Encode to extended UTF-8; 'out' must have space for at least
|
|
* DUK_UNICODE_MAX_XUTF8_LENGTH bytes. Allows encoding of any
|
|
* 32-bit (unsigned) codepoint.
|
|
*/
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_encode_xutf8(duk_ucodepoint_t cp, duk_uint8_t *out) {
|
|
duk_uint_fast32_t x = (duk_uint_fast32_t) cp;
|
|
duk_small_int_t len;
|
|
duk_uint8_t marker;
|
|
duk_small_int_t i;
|
|
|
|
len = duk_unicode_get_xutf8_length(cp);
|
|
DUK_ASSERT(len > 0);
|
|
|
|
marker = duk_unicode_xutf8_markers[len - 1]; /* 64-bit OK because always >= 0 */
|
|
|
|
i = len;
|
|
DUK_ASSERT(i > 0);
|
|
do {
|
|
i--;
|
|
if (i > 0) {
|
|
out[i] = (duk_uint8_t) (0x80 + (x & 0x3f));
|
|
x >>= 6;
|
|
} else {
|
|
/* Note: masking of 'x' is not necessary because of
|
|
* range check and shifting -> no bits overlapping
|
|
* the marker should be set.
|
|
*/
|
|
out[0] = (duk_uint8_t) (marker + x);
|
|
}
|
|
} while (i > 0);
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Encode to CESU-8; 'out' must have space for at least
|
|
* DUK_UNICODE_MAX_CESU8_LENGTH bytes; codepoints above U+10FFFF
|
|
* will encode to garbage but won't overwrite the output buffer.
|
|
*/
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_encode_cesu8(duk_ucodepoint_t cp, duk_uint8_t *out) {
|
|
duk_uint_fast32_t x = (duk_uint_fast32_t) cp;
|
|
duk_small_int_t len;
|
|
|
|
if (x < 0x80UL) {
|
|
out[0] = (duk_uint8_t) x;
|
|
len = 1;
|
|
} else if (x < 0x800UL) {
|
|
out[0] = (duk_uint8_t) (0xc0 + ((x >> 6) & 0x1f));
|
|
out[1] = (duk_uint8_t) (0x80 + (x & 0x3f));
|
|
len = 2;
|
|
} else if (x < 0x10000UL) {
|
|
/* surrogate pairs get encoded here */
|
|
out[0] = (duk_uint8_t) (0xe0 + ((x >> 12) & 0x0f));
|
|
out[1] = (duk_uint8_t) (0x80 + ((x >> 6) & 0x3f));
|
|
out[2] = (duk_uint8_t) (0x80 + (x & 0x3f));
|
|
len = 3;
|
|
} else {
|
|
/*
|
|
* Unicode codepoints above U+FFFF are encoded as surrogate
|
|
* pairs here. This ensures that all CESU-8 codepoints are
|
|
* 16-bit values as expected in Ecmascript. The surrogate
|
|
* pairs always get a 3-byte encoding (each) in CESU-8.
|
|
* See: http://en.wikipedia.org/wiki/Surrogate_pair
|
|
*
|
|
* 20-bit codepoint, 10 bits (A and B) per surrogate pair:
|
|
*
|
|
* x = 0b00000000 0000AAAA AAAAAABB BBBBBBBB
|
|
* sp1 = 0b110110AA AAAAAAAA (0xd800 + ((x >> 10) & 0x3ff))
|
|
* sp2 = 0b110111BB BBBBBBBB (0xdc00 + (x & 0x3ff))
|
|
*
|
|
* Encoded into CESU-8:
|
|
*
|
|
* sp1 -> 0b11101101 (0xe0 + ((sp1 >> 12) & 0x0f))
|
|
* -> 0b1010AAAA (0x80 + ((sp1 >> 6) & 0x3f))
|
|
* -> 0b10AAAAAA (0x80 + (sp1 & 0x3f))
|
|
* sp2 -> 0b11101101 (0xe0 + ((sp2 >> 12) & 0x0f))
|
|
* -> 0b1011BBBB (0x80 + ((sp2 >> 6) & 0x3f))
|
|
* -> 0b10BBBBBB (0x80 + (sp2 & 0x3f))
|
|
*
|
|
* Note that 0x10000 must be subtracted first. The code below
|
|
* avoids the sp1, sp2 temporaries which saves around 20 bytes
|
|
* of code.
|
|
*/
|
|
|
|
x -= 0x10000UL;
|
|
|
|
out[0] = (duk_uint8_t) (0xed);
|
|
out[1] = (duk_uint8_t) (0xa0 + ((x >> 16) & 0x0f));
|
|
out[2] = (duk_uint8_t) (0x80 + ((x >> 10) & 0x3f));
|
|
out[3] = (duk_uint8_t) (0xed);
|
|
out[4] = (duk_uint8_t) (0xb0 + ((x >> 6) & 0x0f));
|
|
out[5] = (duk_uint8_t) (0x80 + (x & 0x3f));
|
|
len = 6;
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Decode helper. Return zero on error. */
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_decode_xutf8(duk_hthread *thr, const duk_uint8_t **ptr, const duk_uint8_t *ptr_start, const duk_uint8_t *ptr_end, duk_ucodepoint_t *out_cp) {
|
|
const duk_uint8_t *p;
|
|
duk_uint32_t res;
|
|
duk_uint_fast8_t ch;
|
|
duk_small_int_t n;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
p = *ptr;
|
|
if (p < ptr_start || p >= ptr_end) {
|
|
goto fail;
|
|
}
|
|
|
|
/*
|
|
* UTF-8 decoder which accepts longer than standard byte sequences.
|
|
* This allows full 32-bit code points to be used.
|
|
*/
|
|
|
|
ch = (duk_uint_fast8_t) (*p++);
|
|
if (ch < 0x80) {
|
|
/* 0xxx xxxx [7 bits] */
|
|
res = (duk_uint32_t) (ch & 0x7f);
|
|
n = 0;
|
|
} else if (ch < 0xc0) {
|
|
/* 10xx xxxx -> invalid */
|
|
goto fail;
|
|
} else if (ch < 0xe0) {
|
|
/* 110x xxxx 10xx xxxx [11 bits] */
|
|
res = (duk_uint32_t) (ch & 0x1f);
|
|
n = 1;
|
|
} else if (ch < 0xf0) {
|
|
/* 1110 xxxx 10xx xxxx 10xx xxxx [16 bits] */
|
|
res = (duk_uint32_t) (ch & 0x0f);
|
|
n = 2;
|
|
} else if (ch < 0xf8) {
|
|
/* 1111 0xxx 10xx xxxx 10xx xxxx 10xx xxxx [21 bits] */
|
|
res = (duk_uint32_t) (ch & 0x07);
|
|
n = 3;
|
|
} else if (ch < 0xfc) {
|
|
/* 1111 10xx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx [26 bits] */
|
|
res = (duk_uint32_t) (ch & 0x03);
|
|
n = 4;
|
|
} else if (ch < 0xfe) {
|
|
/* 1111 110x 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx [31 bits] */
|
|
res = (duk_uint32_t) (ch & 0x01);
|
|
n = 5;
|
|
} else if (ch < 0xff) {
|
|
/* 1111 1110 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx [36 bits] */
|
|
res = (duk_uint32_t) (0);
|
|
n = 6;
|
|
} else {
|
|
/* 8-byte format could be:
|
|
* 1111 1111 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx 10xx xxxx [41 bits]
|
|
*
|
|
* However, this format would not have a zero bit following the
|
|
* leading one bits and would not allow 0xFF to be used as an
|
|
* "invalid xutf-8" marker for internal keys. Further, 8-byte
|
|
* encodings (up to 41 bit code points) are not currently needed.
|
|
*/
|
|
goto fail;
|
|
}
|
|
|
|
DUK_ASSERT(p >= ptr_start); /* verified at beginning */
|
|
if (p + n > ptr_end) {
|
|
/* check pointer at end */
|
|
goto fail;
|
|
}
|
|
|
|
while (n > 0) {
|
|
DUK_ASSERT(p >= ptr_start && p < ptr_end);
|
|
res = res << 6;
|
|
res += (duk_uint32_t) ((*p++) & 0x3f);
|
|
n--;
|
|
}
|
|
|
|
*ptr = p;
|
|
*out_cp = res;
|
|
return 1;
|
|
|
|
fail:
|
|
return 0;
|
|
}
|
|
|
|
/* used by e.g. duk_regexp_executor.c, string built-ins */
|
|
DUK_INTERNAL duk_ucodepoint_t duk_unicode_decode_xutf8_checked(duk_hthread *thr, const duk_uint8_t **ptr, const duk_uint8_t *ptr_start, const duk_uint8_t *ptr_end) {
|
|
duk_ucodepoint_t cp;
|
|
|
|
if (duk_unicode_decode_xutf8(thr, ptr, ptr_start, ptr_end, &cp)) {
|
|
return cp;
|
|
}
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "utf-8 decode failed");
|
|
DUK_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
/* (extended) utf-8 length without codepoint encoding validation, used
|
|
* for string interning (should probably be inlined).
|
|
*/
|
|
DUK_INTERNAL duk_size_t duk_unicode_unvalidated_utf8_length(const duk_uint8_t *data, duk_size_t blen) {
|
|
const duk_uint8_t *p = data;
|
|
const duk_uint8_t *p_end = data + blen;
|
|
duk_size_t clen = 0;
|
|
|
|
while (p < p_end) {
|
|
duk_uint8_t x = *p++;
|
|
if (x < 0x80 || x >= 0xc0) {
|
|
/* 10xxxxxx = continuation chars (0x80...0xbf), above
|
|
* and below that initial bytes.
|
|
*/
|
|
clen++;
|
|
}
|
|
}
|
|
|
|
return clen;
|
|
}
|
|
|
|
/*
|
|
* Unicode range matcher
|
|
*
|
|
* Matches a codepoint against a packed bitstream of character ranges.
|
|
* Used for slow path Unicode matching.
|
|
*/
|
|
|
|
/* Must match src/extract_chars.py, generate_match_table3(). */
|
|
DUK_LOCAL duk_uint32_t duk__uni_decode_value(duk_bitdecoder_ctx *bd_ctx) {
|
|
duk_uint32_t t;
|
|
|
|
t = (duk_uint32_t) duk_bd_decode(bd_ctx, 4);
|
|
if (t <= 0x0eU) {
|
|
return t;
|
|
}
|
|
t = (duk_uint32_t) duk_bd_decode(bd_ctx, 8);
|
|
if (t <= 0xfdU) {
|
|
return t + 0x0f;
|
|
}
|
|
if (t == 0xfeU) {
|
|
t = (duk_uint32_t) duk_bd_decode(bd_ctx, 12);
|
|
return t + 0x0fU + 0xfeU;
|
|
} else {
|
|
t = (duk_uint32_t) duk_bd_decode(bd_ctx, 24);
|
|
return t + 0x0fU + 0xfeU + 0x1000UL;
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_small_int_t duk__uni_range_match(const duk_uint8_t *unitab, duk_size_t unilen, duk_codepoint_t cp) {
|
|
duk_bitdecoder_ctx bd_ctx;
|
|
duk_codepoint_t prev_re;
|
|
|
|
DUK_MEMZERO(&bd_ctx, sizeof(bd_ctx));
|
|
bd_ctx.data = (duk_uint8_t *) unitab;
|
|
bd_ctx.length = (duk_size_t) unilen;
|
|
|
|
prev_re = 0;
|
|
for (;;) {
|
|
duk_codepoint_t r1, r2;
|
|
r1 = (duk_codepoint_t) duk__uni_decode_value(&bd_ctx);
|
|
if (r1 == 0) {
|
|
break;
|
|
}
|
|
r2 = (duk_codepoint_t) duk__uni_decode_value(&bd_ctx);
|
|
|
|
r1 = prev_re + r1;
|
|
r2 = r1 + r2;
|
|
prev_re = r2;
|
|
|
|
/* [r1,r2] is the range */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__uni_range_match: cp=%06lx range=[0x%06lx,0x%06lx]",
|
|
(unsigned long) cp, (unsigned long) r1, (unsigned long) r2));
|
|
if (cp >= r1 && cp <= r2) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* "WhiteSpace" production check.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_is_whitespace(duk_codepoint_t cp) {
|
|
/*
|
|
* E5 Section 7.2 specifies six characters specifically as
|
|
* white space:
|
|
*
|
|
* 0009;<control>;Cc;0;S;;;;;N;CHARACTER TABULATION;;;;
|
|
* 000B;<control>;Cc;0;S;;;;;N;LINE TABULATION;;;;
|
|
* 000C;<control>;Cc;0;WS;;;;;N;FORM FEED (FF);;;;
|
|
* 0020;SPACE;Zs;0;WS;;;;;N;;;;;
|
|
* 00A0;NO-BREAK SPACE;Zs;0;CS;<noBreak> 0020;;;;N;NON-BREAKING SPACE;;;;
|
|
* FEFF;ZERO WIDTH NO-BREAK SPACE;Cf;0;BN;;;;;N;BYTE ORDER MARK;;;;
|
|
*
|
|
* It also specifies any Unicode category 'Zs' characters as white
|
|
* space. These can be extracted with the "src/extract_chars.py" script.
|
|
* Current result:
|
|
*
|
|
* RAW OUTPUT:
|
|
* ===========
|
|
* 0020;SPACE;Zs;0;WS;;;;;N;;;;;
|
|
* 00A0;NO-BREAK SPACE;Zs;0;CS;<noBreak> 0020;;;;N;NON-BREAKING SPACE;;;;
|
|
* 1680;OGHAM SPACE MARK;Zs;0;WS;;;;;N;;;;;
|
|
* 180E;MONGOLIAN VOWEL SEPARATOR;Zs;0;WS;;;;;N;;;;;
|
|
* 2000;EN QUAD;Zs;0;WS;2002;;;;N;;;;;
|
|
* 2001;EM QUAD;Zs;0;WS;2003;;;;N;;;;;
|
|
* 2002;EN SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 2003;EM SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 2004;THREE-PER-EM SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 2005;FOUR-PER-EM SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 2006;SIX-PER-EM SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 2007;FIGURE SPACE;Zs;0;WS;<noBreak> 0020;;;;N;;;;;
|
|
* 2008;PUNCTUATION SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 2009;THIN SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 200A;HAIR SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 202F;NARROW NO-BREAK SPACE;Zs;0;CS;<noBreak> 0020;;;;N;;;;;
|
|
* 205F;MEDIUM MATHEMATICAL SPACE;Zs;0;WS;<compat> 0020;;;;N;;;;;
|
|
* 3000;IDEOGRAPHIC SPACE;Zs;0;WS;<wide> 0020;;;;N;;;;;
|
|
*
|
|
* RANGES:
|
|
* =======
|
|
* 0x0020
|
|
* 0x00a0
|
|
* 0x1680
|
|
* 0x180e
|
|
* 0x2000 ... 0x200a
|
|
* 0x202f
|
|
* 0x205f
|
|
* 0x3000
|
|
*
|
|
* A manual decoder (below) is probably most compact for this.
|
|
*/
|
|
|
|
duk_uint_fast8_t lo;
|
|
duk_uint_fast32_t hi;
|
|
|
|
/* cp == -1 (EOF) never matches and causes return value 0 */
|
|
|
|
lo = (duk_uint_fast8_t) (cp & 0xff);
|
|
hi = (duk_uint_fast32_t) (cp >> 8); /* does not fit into an uchar */
|
|
|
|
if (hi == 0x0000UL) {
|
|
if (lo == 0x09U || lo == 0x0bU || lo == 0x0cU ||
|
|
lo == 0x20U || lo == 0xa0U) {
|
|
return 1;
|
|
}
|
|
} else if (hi == 0x0020UL) {
|
|
if (lo <= 0x0aU || lo == 0x2fU || lo == 0x5fU) {
|
|
return 1;
|
|
}
|
|
} else if (cp == 0x1680L || cp == 0x180eL || cp == 0x3000L ||
|
|
cp == 0xfeffL) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* "LineTerminator" production check.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_is_line_terminator(duk_codepoint_t cp) {
|
|
/*
|
|
* E5 Section 7.3
|
|
*
|
|
* A LineTerminatorSequence essentially merges <CR> <LF> sequences
|
|
* into a single line terminator. This must be handled by the caller.
|
|
*/
|
|
|
|
if (cp == 0x000aL || cp == 0x000dL || cp == 0x2028L ||
|
|
cp == 0x2029L) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* "IdentifierStart" production check.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_is_identifier_start(duk_codepoint_t cp) {
|
|
/*
|
|
* E5 Section 7.6:
|
|
*
|
|
* IdentifierStart:
|
|
* UnicodeLetter
|
|
* $
|
|
* _
|
|
* \ UnicodeEscapeSequence
|
|
*
|
|
* IdentifierStart production has one multi-character production:
|
|
*
|
|
* \ UnicodeEscapeSequence
|
|
*
|
|
* The '\' character is -not- matched by this function. Rather, the caller
|
|
* should decode the escape and then call this function to check whether the
|
|
* decoded character is acceptable (see discussion in E5 Section 7.6).
|
|
*
|
|
* The "UnicodeLetter" alternative of the production allows letters
|
|
* from various Unicode categories. These can be extracted with the
|
|
* "src/extract_chars.py" script.
|
|
*
|
|
* Because the result has hundreds of Unicode codepoint ranges, matching
|
|
* for any values >= 0x80 are done using a very slow range-by-range scan
|
|
* and a packed range format.
|
|
*
|
|
* The ASCII portion (codepoints 0x00 ... 0x7f) is fast-pathed below because
|
|
* it matters the most. The ASCII related ranges of IdentifierStart are:
|
|
*
|
|
* 0x0041 ... 0x005a ['A' ... 'Z']
|
|
* 0x0061 ... 0x007a ['a' ... 'z']
|
|
* 0x0024 ['$']
|
|
* 0x005f ['_']
|
|
*/
|
|
|
|
/* ASCII (and EOF) fast path -- quick accept and reject */
|
|
if (cp <= 0x7fL) {
|
|
if ((cp >= 'a' && cp <= 'z') ||
|
|
(cp >= 'A' && cp <= 'Z') ||
|
|
cp == '_' || cp == '$') {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Non-ASCII slow path (range-by-range linear comparison), very slow */
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
if (duk__uni_range_match(duk_unicode_ids_noa,
|
|
(duk_size_t) sizeof(duk_unicode_ids_noa),
|
|
(duk_codepoint_t) cp)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
#else
|
|
if (cp < 0x10000L) {
|
|
if (duk__uni_range_match(duk_unicode_ids_noabmp,
|
|
sizeof(duk_unicode_ids_noabmp),
|
|
(duk_codepoint_t) cp)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
} else {
|
|
/* without explicit non-BMP support, assume non-BMP characters
|
|
* are always accepted as identifier characters.
|
|
*/
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* "IdentifierPart" production check.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_is_identifier_part(duk_codepoint_t cp) {
|
|
/*
|
|
* E5 Section 7.6:
|
|
*
|
|
* IdentifierPart:
|
|
* IdentifierStart
|
|
* UnicodeCombiningMark
|
|
* UnicodeDigit
|
|
* UnicodeConnectorPunctuation
|
|
* <ZWNJ> [U+200C]
|
|
* <ZWJ> [U+200D]
|
|
*
|
|
* IdentifierPart production has one multi-character production
|
|
* as part of its IdentifierStart alternative. The '\' character
|
|
* of an escape sequence is not matched here, see discussion in
|
|
* duk_unicode_is_identifier_start().
|
|
*
|
|
* To match non-ASCII characters (codepoints >= 0x80), a very slow
|
|
* linear range-by-range scan is used. The codepoint is first compared
|
|
* to the IdentifierStart ranges, and if it doesn't match, then to a
|
|
* set consisting of code points in IdentifierPart but not in
|
|
* IdentifierStart. This is done to keep the unicode range data small,
|
|
* at the expense of speed.
|
|
*
|
|
* The ASCII fast path consists of:
|
|
*
|
|
* 0x0030 ... 0x0039 ['0' ... '9', UnicodeDigit]
|
|
* 0x0041 ... 0x005a ['A' ... 'Z', IdentifierStart]
|
|
* 0x0061 ... 0x007a ['a' ... 'z', IdentifierStart]
|
|
* 0x0024 ['$', IdentifierStart]
|
|
* 0x005f ['_', IdentifierStart and
|
|
* UnicodeConnectorPunctuation]
|
|
*
|
|
* UnicodeCombiningMark has no code points <= 0x7f.
|
|
*
|
|
* The matching code reuses the "identifier start" tables, and then
|
|
* consults a separate range set for characters in "identifier part"
|
|
* but not in "identifier start". These can be extracted with the
|
|
* "src/extract_chars.py" script.
|
|
*
|
|
* UnicodeCombiningMark -> categories Mn, Mc
|
|
* UnicodeDigit -> categories Nd
|
|
* UnicodeConnectorPunctuation -> categories Pc
|
|
*/
|
|
|
|
/* ASCII (and EOF) fast path -- quick accept and reject */
|
|
if (cp <= 0x7fL) {
|
|
if ((cp >= 'a' && cp <= 'z') ||
|
|
(cp >= 'A' && cp <= 'Z') ||
|
|
(cp >= '0' && cp <= '9') ||
|
|
cp == '_' || cp == '$') {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Non-ASCII slow path (range-by-range linear comparison), very slow */
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
if (duk__uni_range_match(duk_unicode_ids_noa,
|
|
sizeof(duk_unicode_ids_noa),
|
|
(duk_codepoint_t) cp) ||
|
|
duk__uni_range_match(duk_unicode_idp_m_ids_noa,
|
|
sizeof(duk_unicode_idp_m_ids_noa),
|
|
(duk_codepoint_t) cp)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
#else
|
|
if (cp < 0x10000L) {
|
|
if (duk__uni_range_match(duk_unicode_ids_noabmp,
|
|
sizeof(duk_unicode_ids_noabmp),
|
|
(duk_codepoint_t) cp) ||
|
|
duk__uni_range_match(duk_unicode_idp_m_ids_noabmp,
|
|
sizeof(duk_unicode_idp_m_ids_noabmp),
|
|
(duk_codepoint_t) cp)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
} else {
|
|
/* without explicit non-BMP support, assume non-BMP characters
|
|
* are always accepted as identifier characters.
|
|
*/
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Unicode letter check.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_is_letter(duk_codepoint_t cp) {
|
|
/*
|
|
* Unicode letter is now taken to be the categories:
|
|
*
|
|
* Lu, Ll, Lt, Lm, Lo
|
|
*
|
|
* (Not sure if this is exactly correct.)
|
|
*
|
|
* The ASCII fast path consists of:
|
|
*
|
|
* 0x0041 ... 0x005a ['A' ... 'Z']
|
|
* 0x0061 ... 0x007a ['a' ... 'z']
|
|
*/
|
|
|
|
/* ASCII (and EOF) fast path -- quick accept and reject */
|
|
if (cp <= 0x7fL) {
|
|
if ((cp >= 'a' && cp <= 'z') ||
|
|
(cp >= 'A' && cp <= 'Z')) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Non-ASCII slow path (range-by-range linear comparison), very slow */
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
if (duk__uni_range_match(duk_unicode_ids_noa,
|
|
sizeof(duk_unicode_ids_noa),
|
|
(duk_codepoint_t) cp) &&
|
|
!duk__uni_range_match(duk_unicode_ids_m_let_noa,
|
|
sizeof(duk_unicode_ids_m_let_noa),
|
|
(duk_codepoint_t) cp)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
#else
|
|
if (cp < 0x10000L) {
|
|
if (duk__uni_range_match(duk_unicode_ids_noabmp,
|
|
sizeof(duk_unicode_ids_noabmp),
|
|
(duk_codepoint_t) cp) &&
|
|
!duk__uni_range_match(duk_unicode_ids_m_let_noabmp,
|
|
sizeof(duk_unicode_ids_m_let_noabmp),
|
|
(duk_codepoint_t) cp)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
} else {
|
|
/* without explicit non-BMP support, assume non-BMP characters
|
|
* are always accepted as letters.
|
|
*/
|
|
return 1;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Complex case conversion helper which decodes a bit-packed conversion
|
|
* control stream generated by unicode/extract_caseconv.py. The conversion
|
|
* is very slow because it runs through the conversion data in a linear
|
|
* fashion to save space (which is why ASCII characters have a special
|
|
* fast path before arriving here).
|
|
*
|
|
* The particular bit counts etc have been determined experimentally to
|
|
* be small but still sufficient, and must match the Python script
|
|
* (src/extract_caseconv.py).
|
|
*
|
|
* The return value is the case converted codepoint or -1 if the conversion
|
|
* results in multiple characters (this is useful for regexp Canonicalization
|
|
* operation). If 'buf' is not NULL, the result codepoint(s) are also
|
|
* appended to the hbuffer.
|
|
*
|
|
* Context and locale specific rules must be checked before consulting
|
|
* this function.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_codepoint_t duk__slow_case_conversion(duk_hthread *thr,
|
|
duk_hbuffer_dynamic *buf,
|
|
duk_codepoint_t cp,
|
|
duk_bitdecoder_ctx *bd_ctx) {
|
|
duk_small_int_t skip = 0;
|
|
duk_small_int_t n;
|
|
duk_small_int_t t;
|
|
duk_small_int_t count;
|
|
duk_codepoint_t tmp_cp;
|
|
duk_codepoint_t start_i;
|
|
duk_codepoint_t start_o;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("slow case conversion for codepoint: %ld", (long) cp));
|
|
|
|
/* range conversion with a "skip" */
|
|
DUK_DDD(DUK_DDDPRINT("checking ranges"));
|
|
for (;;) {
|
|
skip++;
|
|
n = (duk_small_int_t) duk_bd_decode(bd_ctx, 6);
|
|
if (n == 0x3f) {
|
|
/* end marker */
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("skip=%ld, n=%ld", (long) skip, (long) n));
|
|
|
|
while (n--) {
|
|
start_i = (duk_codepoint_t) duk_bd_decode(bd_ctx, 16);
|
|
start_o = (duk_codepoint_t) duk_bd_decode(bd_ctx, 16);
|
|
count = (duk_small_int_t) duk_bd_decode(bd_ctx, 7);
|
|
DUK_DDD(DUK_DDDPRINT("range: start_i=%ld, start_o=%ld, count=%ld, skip=%ld",
|
|
(long) start_i, (long) start_o, (long) count, (long) skip));
|
|
|
|
if (cp >= start_i) {
|
|
tmp_cp = cp - start_i; /* always >= 0 */
|
|
if (tmp_cp < (duk_codepoint_t) count * (duk_codepoint_t) skip &&
|
|
(tmp_cp % (duk_codepoint_t) skip) == 0) {
|
|
DUK_DDD(DUK_DDDPRINT("range matches input codepoint"));
|
|
cp = start_o + tmp_cp;
|
|
goto single;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* 1:1 conversion */
|
|
n = (duk_small_int_t) duk_bd_decode(bd_ctx, 6);
|
|
DUK_DDD(DUK_DDDPRINT("checking 1:1 conversions (count %ld)", (long) n));
|
|
while (n--) {
|
|
start_i = (duk_codepoint_t) duk_bd_decode(bd_ctx, 16);
|
|
start_o = (duk_codepoint_t) duk_bd_decode(bd_ctx, 16);
|
|
DUK_DDD(DUK_DDDPRINT("1:1 conversion %ld -> %ld", (long) start_i, (long) start_o));
|
|
if (cp == start_i) {
|
|
DUK_DDD(DUK_DDDPRINT("1:1 matches input codepoint"));
|
|
cp = start_o;
|
|
goto single;
|
|
}
|
|
}
|
|
|
|
/* complex, multicharacter conversion */
|
|
n = (duk_small_int_t) duk_bd_decode(bd_ctx, 7);
|
|
DUK_DDD(DUK_DDDPRINT("checking 1:n conversions (count %ld)", (long) n));
|
|
while (n--) {
|
|
start_i = (duk_codepoint_t) duk_bd_decode(bd_ctx, 16);
|
|
t = (duk_small_int_t) duk_bd_decode(bd_ctx, 2);
|
|
DUK_DDD(DUK_DDDPRINT("1:n conversion %ld -> %ld chars", (long) start_i, (long) t));
|
|
if (cp == start_i) {
|
|
DUK_DDD(DUK_DDDPRINT("1:n matches input codepoint"));
|
|
if (buf) {
|
|
while (t--) {
|
|
tmp_cp = (duk_codepoint_t) duk_bd_decode(bd_ctx, 16);
|
|
DUK_ASSERT(buf != NULL);
|
|
duk_hbuffer_append_xutf8(thr, buf, (duk_ucodepoint_t) tmp_cp);
|
|
}
|
|
}
|
|
return -1;
|
|
} else {
|
|
while (t--) {
|
|
(void) duk_bd_decode(bd_ctx, 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* default: no change */
|
|
DUK_DDD(DUK_DDDPRINT("no rule matches, output is same as input"));
|
|
/* fall through */
|
|
|
|
single:
|
|
if (buf) {
|
|
duk_hbuffer_append_xutf8(thr, buf, cp);
|
|
}
|
|
return cp;
|
|
}
|
|
|
|
/*
|
|
* Case conversion helper, with context/local sensitivity.
|
|
* For proper case conversion, one needs to know the character
|
|
* and the preceding and following characters, as well as
|
|
* locale/language.
|
|
*/
|
|
|
|
/* XXX: add 'language' argument when locale/language sensitive rule
|
|
* support added.
|
|
*/
|
|
DUK_LOCAL
|
|
duk_codepoint_t duk__case_transform_helper(duk_hthread *thr,
|
|
duk_hbuffer_dynamic *buf,
|
|
duk_codepoint_t cp,
|
|
duk_codepoint_t prev,
|
|
duk_codepoint_t next,
|
|
duk_bool_t uppercase) {
|
|
duk_bitdecoder_ctx bd_ctx;
|
|
|
|
/* fast path for ASCII */
|
|
if (cp < 0x80L) {
|
|
/* XXX: there are language sensitive rules for the ASCII range.
|
|
* If/when language/locale support is implemented, they need to
|
|
* be implemented here for the fast path. There are no context
|
|
* sensitive rules for ASCII range.
|
|
*/
|
|
|
|
if (uppercase) {
|
|
if (cp >= 'a' && cp <= 'z') {
|
|
cp = cp - 'a' + 'A';
|
|
}
|
|
} else {
|
|
if (cp >= 'A' && cp <= 'Z') {
|
|
cp = cp - 'A' + 'a';
|
|
}
|
|
}
|
|
goto singlechar;
|
|
}
|
|
|
|
/* context and locale specific rules which cannot currently be represented
|
|
* in the caseconv bitstream: hardcoded rules in C
|
|
*/
|
|
if (uppercase) {
|
|
/* XXX: turkish / azeri */
|
|
} else {
|
|
/*
|
|
* Final sigma context specific rule. This is a rather tricky
|
|
* rule and this handling is probably not 100% correct now.
|
|
* The rule is not locale/language specific so it is supported.
|
|
*/
|
|
|
|
if (cp == 0x03a3L && /* U+03A3 = GREEK CAPITAL LETTER SIGMA */
|
|
duk_unicode_is_letter(prev) && /* prev exists and is not a letter */
|
|
!duk_unicode_is_letter(next)) { /* next does not exist or next is not a letter */
|
|
/* Capital sigma occurred at "end of word", lowercase to
|
|
* U+03C2 = GREEK SMALL LETTER FINAL SIGMA. Otherwise
|
|
* fall through and let the normal rules lowercase it to
|
|
* U+03C3 = GREEK SMALL LETTER SIGMA.
|
|
*/
|
|
cp = 0x03c2L;
|
|
goto singlechar;
|
|
}
|
|
|
|
/* XXX: lithuanian not implemented */
|
|
/* XXX: lithuanian, explicit dot rules */
|
|
/* XXX: turkish / azeri, lowercase rules */
|
|
}
|
|
|
|
/* 1:1 or special conversions, but not locale/context specific: script generated rules */
|
|
DUK_MEMZERO(&bd_ctx, sizeof(bd_ctx));
|
|
if (uppercase) {
|
|
bd_ctx.data = (duk_uint8_t *) duk_unicode_caseconv_uc;
|
|
bd_ctx.length = (duk_size_t) sizeof(duk_unicode_caseconv_uc);
|
|
} else {
|
|
bd_ctx.data = (duk_uint8_t *) duk_unicode_caseconv_lc;
|
|
bd_ctx.length = (duk_size_t) sizeof(duk_unicode_caseconv_lc);
|
|
}
|
|
return duk__slow_case_conversion(thr, buf, cp, &bd_ctx);
|
|
|
|
singlechar:
|
|
if (buf) {
|
|
duk_hbuffer_append_xutf8(thr, buf, cp);
|
|
}
|
|
return cp;
|
|
|
|
/* unused now, not needed until Turkish/Azeri */
|
|
#if 0
|
|
nochar:
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Replace valstack top with case converted version.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_unicode_case_convert_string(duk_hthread *thr, duk_small_int_t uppercase) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *h_input;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
const duk_uint8_t *p, *p_start, *p_end;
|
|
duk_codepoint_t prev, curr, next;
|
|
|
|
h_input = duk_require_hstring(ctx, -1);
|
|
DUK_ASSERT(h_input != NULL);
|
|
|
|
/* XXX: should init the buffer with a spare of at least h_input->blen
|
|
* to avoid unnecessary growth steps.
|
|
*/
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h_buf));
|
|
|
|
/* [ ... input buffer ] */
|
|
|
|
p_start = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h_input);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_input);
|
|
p = p_start;
|
|
|
|
prev = -1; DUK_UNREF(prev);
|
|
curr = -1;
|
|
next = -1;
|
|
for (;;) {
|
|
prev = curr;
|
|
curr = next;
|
|
next = -1;
|
|
if (p < p_end) {
|
|
next = (int) duk_unicode_decode_xutf8_checked(thr, &p, p_start, p_end);
|
|
} else {
|
|
/* end of input and last char has been processed */
|
|
if (curr < 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* on first round, skip */
|
|
if (curr >= 0) {
|
|
/* may generate any number of output codepoints */
|
|
duk__case_transform_helper(thr,
|
|
h_buf,
|
|
(duk_codepoint_t) curr,
|
|
prev,
|
|
next,
|
|
uppercase);
|
|
}
|
|
}
|
|
|
|
duk_to_string(ctx, -1); /* invalidates h_buf pointer */
|
|
duk_remove(ctx, -2);
|
|
}
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
|
|
/*
|
|
* Canonicalize() abstract operation needed for canonicalization of individual
|
|
* codepoints during regexp compilation and execution, see E5 Section 15.10.2.8.
|
|
* Note that codepoints are canonicalized one character at a time, so no context
|
|
* specific rules can apply. Locale specific rules can apply, though.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_codepoint_t duk_unicode_re_canonicalize_char(duk_hthread *thr, duk_codepoint_t cp) {
|
|
duk_codepoint_t y;
|
|
|
|
y = duk__case_transform_helper(thr,
|
|
NULL, /* buf */
|
|
cp, /* curr char */
|
|
-1, /* prev char */
|
|
-1, /* next char */
|
|
1); /* uppercase */
|
|
|
|
if ((y < 0) || (cp >= 0x80 && y < 0x80)) {
|
|
/* multiple codepoint conversion or non-ASCII mapped to ASCII
|
|
* --> leave as is.
|
|
*/
|
|
return cp;
|
|
}
|
|
|
|
return y;
|
|
}
|
|
|
|
/*
|
|
* E5 Section 15.10.2.6 "IsWordChar" abstract operation. Assume
|
|
* x < 0 for characters read outside the string.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_unicode_re_is_wordchar(duk_codepoint_t x) {
|
|
/*
|
|
* Note: the description in E5 Section 15.10.2.6 has a typo, it
|
|
* contains 'A' twice and lacks 'a'; the intent is [0-9a-zA-Z_].
|
|
*/
|
|
if ((x >= '0' && x <= '9') ||
|
|
(x >= 'a' && x <= 'z') ||
|
|
(x >= 'A' && x <= 'Z') ||
|
|
(x == '_')) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Regexp range tables
|
|
*/
|
|
|
|
/* exposed because lexer needs these too */
|
|
DUK_INTERNAL duk_uint16_t duk_unicode_re_ranges_digit[2] = {
|
|
(duk_uint16_t) 0x0030UL, (duk_uint16_t) 0x0039UL,
|
|
};
|
|
DUK_INTERNAL duk_uint16_t duk_unicode_re_ranges_white[22] = {
|
|
(duk_uint16_t) 0x0009UL, (duk_uint16_t) 0x000DUL,
|
|
(duk_uint16_t) 0x0020UL, (duk_uint16_t) 0x0020UL,
|
|
(duk_uint16_t) 0x00A0UL, (duk_uint16_t) 0x00A0UL,
|
|
(duk_uint16_t) 0x1680UL, (duk_uint16_t) 0x1680UL,
|
|
(duk_uint16_t) 0x180EUL, (duk_uint16_t) 0x180EUL,
|
|
(duk_uint16_t) 0x2000UL, (duk_uint16_t) 0x200AUL,
|
|
(duk_uint16_t) 0x2028UL, (duk_uint16_t) 0x2029UL,
|
|
(duk_uint16_t) 0x202FUL, (duk_uint16_t) 0x202FUL,
|
|
(duk_uint16_t) 0x205FUL, (duk_uint16_t) 0x205FUL,
|
|
(duk_uint16_t) 0x3000UL, (duk_uint16_t) 0x3000UL,
|
|
(duk_uint16_t) 0xFEFFUL, (duk_uint16_t) 0xFEFFUL,
|
|
};
|
|
DUK_INTERNAL duk_uint16_t duk_unicode_re_ranges_wordchar[8] = {
|
|
(duk_uint16_t) 0x0030UL, (duk_uint16_t) 0x0039UL,
|
|
(duk_uint16_t) 0x0041UL, (duk_uint16_t) 0x005AUL,
|
|
(duk_uint16_t) 0x005FUL, (duk_uint16_t) 0x005FUL,
|
|
(duk_uint16_t) 0x0061UL, (duk_uint16_t) 0x007AUL,
|
|
};
|
|
DUK_INTERNAL duk_uint16_t duk_unicode_re_ranges_not_digit[4] = {
|
|
(duk_uint16_t) 0x0000UL, (duk_uint16_t) 0x002FUL,
|
|
(duk_uint16_t) 0x003AUL, (duk_uint16_t) 0xFFFFUL,
|
|
};
|
|
DUK_INTERNAL duk_uint16_t duk_unicode_re_ranges_not_white[24] = {
|
|
(duk_uint16_t) 0x0000UL, (duk_uint16_t) 0x0008UL,
|
|
(duk_uint16_t) 0x000EUL, (duk_uint16_t) 0x001FUL,
|
|
(duk_uint16_t) 0x0021UL, (duk_uint16_t) 0x009FUL,
|
|
(duk_uint16_t) 0x00A1UL, (duk_uint16_t) 0x167FUL,
|
|
(duk_uint16_t) 0x1681UL, (duk_uint16_t) 0x180DUL,
|
|
(duk_uint16_t) 0x180FUL, (duk_uint16_t) 0x1FFFUL,
|
|
(duk_uint16_t) 0x200BUL, (duk_uint16_t) 0x2027UL,
|
|
(duk_uint16_t) 0x202AUL, (duk_uint16_t) 0x202EUL,
|
|
(duk_uint16_t) 0x2030UL, (duk_uint16_t) 0x205EUL,
|
|
(duk_uint16_t) 0x2060UL, (duk_uint16_t) 0x2FFFUL,
|
|
(duk_uint16_t) 0x3001UL, (duk_uint16_t) 0xFEFEUL,
|
|
(duk_uint16_t) 0xFF00UL, (duk_uint16_t) 0xFFFFUL,
|
|
};
|
|
DUK_INTERNAL duk_uint16_t duk_unicode_re_ranges_not_wordchar[10] = {
|
|
(duk_uint16_t) 0x0000UL, (duk_uint16_t) 0x002FUL,
|
|
(duk_uint16_t) 0x003AUL, (duk_uint16_t) 0x0040UL,
|
|
(duk_uint16_t) 0x005BUL, (duk_uint16_t) 0x005EUL,
|
|
(duk_uint16_t) 0x0060UL, (duk_uint16_t) 0x0060UL,
|
|
(duk_uint16_t) 0x007BUL, (duk_uint16_t) 0xFFFFUL,
|
|
};
|
|
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
#line 1 "duk_util_misc.c"
|
|
/*
|
|
* Misc util stuff
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Lowercase digits for radix values 2 to 36. Also doubles as lowercase
|
|
* hex nybble table.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_uint8_t duk_lc_digits[36] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f',
|
|
'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
|
|
'o', 'p', 'q', 'r', 's', 't', 'u', 'v',
|
|
'w', 'x', 'y', 'z'
|
|
};
|
|
|
|
DUK_INTERNAL duk_uint8_t duk_uc_nybbles[16] = {
|
|
'0', '1', '2', '3', '4', '5', '6', '7',
|
|
'8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
|
|
};
|
|
|
|
/*
|
|
* Table for decoding ASCII hex digits, -1 if invalid.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_int8_t duk_hex_dectab[256] = {
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x00-0x0f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x10-0x1f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x20-0x2f */
|
|
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, -1, -1, -1, -1, -1, -1, /* 0x30-0x3f */
|
|
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x40-0x4f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x50-0x5f */
|
|
-1, 10, 11, 12, 13, 14, 15, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x60-0x6f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x70-0x7f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x80-0x8f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0x90-0x9f */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0xa0-0xaf */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0xb0-0xbf */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0xc0-0xcf */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0xd0-0xdf */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /* 0xe0-0xef */
|
|
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 /* 0xf0-0xff */
|
|
};
|
|
|
|
/*
|
|
* Arbitrary byteswap for potentially unaligned values
|
|
*
|
|
* Used to byteswap pointers e.g. in debugger code.
|
|
*/
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT) /* For now only needed by the debugger. */
|
|
DUK_INTERNAL void duk_byteswap_bytes(duk_uint8_t *p, duk_small_uint_t len) {
|
|
duk_uint8_t tmp;
|
|
duk_uint8_t *q = p + len - 1;
|
|
|
|
while (p - q < 0) {
|
|
tmp = *p;
|
|
*p = *q;
|
|
*q = tmp;
|
|
p++;
|
|
q--;
|
|
}
|
|
}
|
|
#endif
|
|
#line 1 "duk_util_hashprime.c"
|
|
/*
|
|
* Round a number upwards to a prime (not usually the nearest one).
|
|
*
|
|
* Uses a table of successive 32-bit primes whose ratio is roughly
|
|
* constant. This keeps the relative upwards 'rounding error' bounded
|
|
* and the data size small. A simple 'predict-correct' compression is
|
|
* used to compress primes to one byte per prime. See genhashsizes.py
|
|
* for details.
|
|
*
|
|
* The minimum prime returned here must be coordinated with the possible
|
|
* probe sequence steps in duk_hobject and duk_heap stringtable.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Awkward inclusion condition: drop out of compilation if not needed by any
|
|
* call site: object hash part or probing stringtable.
|
|
*/
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART) || defined(DUK_USE_STRTAB_PROBE)
|
|
|
|
/* hash size ratio goal, must match genhashsizes.py */
|
|
#define DUK__HASH_SIZE_RATIO 1177 /* floor(1.15 * (1 << 10)) */
|
|
|
|
/* prediction corrections for prime list (see genhashsizes.py) */
|
|
DUK_LOCAL const duk_int8_t duk__hash_size_corrections[] = {
|
|
17, /* minimum prime */
|
|
4, 3, 4, 1, 4, 1, 1, 2, 2, 2, 2, 1, 6, 6, 9, 5, 1, 2, 2, 5, 1, 3, 3, 3,
|
|
5, 4, 4, 2, 4, 8, 3, 4, 23, 2, 4, 7, 8, 11, 2, 12, 15, 10, 1, 1, 5, 1, 5,
|
|
8, 9, 17, 14, 10, 7, 5, 2, 46, 21, 1, 9, 9, 4, 4, 10, 23, 36, 6, 20, 29,
|
|
18, 6, 19, 21, 16, 11, 5, 5, 48, 9, 1, 39, 14, 8, 4, 29, 9, 1, 15, 48, 12,
|
|
22, 6, 15, 27, 4, 2, 17, 28, 8, 9, 4, 5, 8, 3, 3, 8, 37, 11, 15, 8, 30,
|
|
43, 6, 33, 41, 5, 20, 32, 41, 38, 24, 77, 14, 19, 11, 4, 35, 18, 19, 41,
|
|
10, 23, 16, 9, 2,
|
|
-1
|
|
};
|
|
|
|
/* probe steps (see genhashsizes.py), currently assumed to be 32 entries long
|
|
* (DUK_UTIL_GET_HASH_PROBE_STEP macro).
|
|
*/
|
|
DUK_INTERNAL duk_uint8_t duk_util_probe_steps[32] = {
|
|
2, 3, 5, 7, 11, 13, 19, 31, 41, 47, 59, 67, 73, 79, 89, 101, 103, 107,
|
|
109, 127, 137, 139, 149, 157, 163, 167, 173, 181, 191, 193, 197, 199
|
|
};
|
|
|
|
DUK_INTERNAL duk_uint32_t duk_util_get_hash_prime(duk_uint32_t size) {
|
|
const duk_int8_t *p = duk__hash_size_corrections;
|
|
duk_uint32_t curr;
|
|
|
|
curr = (duk_uint32_t) *p++;
|
|
for (;;) {
|
|
duk_small_int_t t = (duk_small_int_t) *p++;
|
|
if (t < 0) {
|
|
/* may happen if size is very close to 2^32-1 */
|
|
break;
|
|
}
|
|
|
|
/* prediction: portable variant using doubles if 64-bit values not available */
|
|
#ifdef DUK_USE_64BIT_OPS
|
|
curr = (duk_uint32_t) ((((duk_uint64_t) curr) * ((duk_uint64_t) DUK__HASH_SIZE_RATIO)) >> 10);
|
|
#else
|
|
/* 32-bit x 11-bit = 43-bit, fits accurately into a double */
|
|
curr = (duk_uint32_t) DUK_FLOOR(((double) curr) * ((double) DUK__HASH_SIZE_RATIO) / 1024.0);
|
|
#endif
|
|
|
|
/* correction */
|
|
curr += t;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("size=%ld, curr=%ld", (long) size, (long) curr));
|
|
|
|
if (curr >= size) {
|
|
return curr;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#endif /* DUK_USE_HOBJECT_HASH_PART || DUK_USE_STRTAB_PROBE */
|
|
#line 1 "duk_hobject_class.c"
|
|
/*
|
|
* Hobject Ecmascript [[Class]].
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Maybe better to check these elsewhere */
|
|
#if (DUK_STRIDX_UC_ARGUMENTS > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_ARRAY > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_UC_BOOLEAN > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_DATE > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_UC_ERROR > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_UC_FUNCTION > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_JSON > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_MATH > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_UC_NUMBER > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_UC_OBJECT > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_REG_EXP > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_UC_STRING > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_GLOBAL > 255)
|
|
#error constant too large
|
|
#endif
|
|
#if (DUK_STRIDX_EMPTY_STRING > 255)
|
|
#error constant too large
|
|
#endif
|
|
|
|
/* Note: assumes that these string indexes are 8-bit, genstrings.py must ensure that */
|
|
DUK_INTERNAL duk_uint8_t duk_class_number_to_stridx[32] = {
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_UC_ARGUMENTS,
|
|
DUK_STRIDX_ARRAY,
|
|
DUK_STRIDX_UC_BOOLEAN,
|
|
DUK_STRIDX_DATE,
|
|
DUK_STRIDX_UC_ERROR,
|
|
DUK_STRIDX_UC_FUNCTION,
|
|
DUK_STRIDX_JSON,
|
|
DUK_STRIDX_MATH,
|
|
DUK_STRIDX_UC_NUMBER,
|
|
DUK_STRIDX_UC_OBJECT,
|
|
DUK_STRIDX_REG_EXP,
|
|
DUK_STRIDX_UC_STRING,
|
|
DUK_STRIDX_GLOBAL,
|
|
DUK_STRIDX_OBJ_ENV,
|
|
DUK_STRIDX_DEC_ENV,
|
|
DUK_STRIDX_UC_BUFFER,
|
|
DUK_STRIDX_UC_POINTER,
|
|
DUK_STRIDX_UC_THREAD, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
DUK_STRIDX_EMPTY_STRING, /* UNUSED, intentionally empty */
|
|
};
|
|
#line 1 "duk_alloc_default.c"
|
|
/*
|
|
* Default allocation functions.
|
|
*
|
|
* Assumes behavior such as malloc allowing zero size, yielding
|
|
* a NULL or a unique pointer which is a no-op for free.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL void *duk_default_alloc_function(void *udata, duk_size_t size) {
|
|
void *res;
|
|
DUK_UNREF(udata);
|
|
res = DUK_ANSI_MALLOC(size);
|
|
DUK_DDD(DUK_DDDPRINT("default alloc function: %lu -> %p",
|
|
(unsigned long) size, (void *) res));
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL void *duk_default_realloc_function(void *udata, void *ptr, duk_size_t newsize) {
|
|
void *res;
|
|
DUK_UNREF(udata);
|
|
res = DUK_ANSI_REALLOC(ptr, newsize);
|
|
DUK_DDD(DUK_DDDPRINT("default realloc function: %p %lu -> %p",
|
|
(void *) ptr, (unsigned long) newsize, (void *) res));
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_default_free_function(void *udata, void *ptr) {
|
|
DUK_DDD(DUK_DDDPRINT("default free function: %p", (void *) ptr));
|
|
DUK_UNREF(udata);
|
|
DUK_ANSI_FREE(ptr);
|
|
}
|
|
#line 1 "duk_api_buffer.c"
|
|
/*
|
|
* Buffer
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_EXTERNAL void *duk_resize_buffer(duk_context *ctx, duk_idx_t index, duk_size_t new_size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hbuffer_dynamic *h;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
h = (duk_hbuffer_dynamic *) duk_require_hbuffer(ctx, index);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (!DUK_HBUFFER_HAS_DYNAMIC(h)) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_BUFFER_NOT_DYNAMIC);
|
|
}
|
|
|
|
/* maximum size check is handled by callee */
|
|
duk_hbuffer_resize(thr, h, new_size, new_size); /* snug */
|
|
|
|
return DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, h);
|
|
}
|
|
#line 1 "duk_api_call.c"
|
|
/*
|
|
* Calls.
|
|
*
|
|
* Protected variants should avoid ever throwing an error.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Prepare value stack for a method call through an object property.
|
|
* May currently throw an error e.g. when getting the property.
|
|
*/
|
|
DUK_LOCAL void duk__call_prop_prep_stack(duk_context *ctx, duk_idx_t normalized_obj_index, duk_idx_t nargs) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__call_prop_prep_stack, normalized_obj_index=%ld, nargs=%ld, stacktop=%ld",
|
|
(long) normalized_obj_index, (long) nargs, (long) duk_get_top(ctx)));
|
|
|
|
/* [... key arg1 ... argN] */
|
|
|
|
/* duplicate key */
|
|
duk_dup(ctx, -nargs - 1); /* Note: -nargs alone would fail for nargs == 0, this is OK */
|
|
duk_get_prop(ctx, normalized_obj_index);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("func: %!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [... key arg1 ... argN func] */
|
|
|
|
duk_replace(ctx, -nargs - 2);
|
|
|
|
/* [... func arg1 ... argN] */
|
|
|
|
duk_dup(ctx, normalized_obj_index);
|
|
duk_insert(ctx, -nargs - 1);
|
|
|
|
/* [... func this arg1 ... argN] */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_call(duk_context *ctx, duk_idx_t nargs) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_uint_t call_flags;
|
|
duk_idx_t idx_func;
|
|
duk_int_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
idx_func = duk_get_top(ctx) - nargs - 1;
|
|
if (idx_func < 0 || nargs < 0) {
|
|
/* note that we can't reliably pop anything here */
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
}
|
|
|
|
/* XXX: awkward; we assume there is space for this, overwrite
|
|
* directly instead?
|
|
*/
|
|
duk_push_undefined(ctx);
|
|
duk_insert(ctx, idx_func + 1);
|
|
|
|
call_flags = 0; /* not protected, respect reclimit, not constructor */
|
|
|
|
rc = duk_handle_call(thr, /* thread */
|
|
nargs, /* num_stack_args */
|
|
call_flags); /* call_flags */
|
|
DUK_UNREF(rc);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_call_method(duk_context *ctx, duk_idx_t nargs) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_uint_t call_flags;
|
|
duk_idx_t idx_func;
|
|
duk_int_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
idx_func = duk_get_top(ctx) - nargs - 2; /* must work for nargs <= 0 */
|
|
if (idx_func < 0 || nargs < 0) {
|
|
/* note that we can't reliably pop anything here */
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
}
|
|
|
|
call_flags = 0; /* not protected, respect reclimit, not constructor */
|
|
|
|
rc = duk_handle_call(thr, /* thread */
|
|
nargs, /* num_stack_args */
|
|
call_flags); /* call_flags */
|
|
DUK_UNREF(rc);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_call_prop(duk_context *ctx, duk_idx_t obj_index, duk_idx_t nargs) {
|
|
/*
|
|
* XXX: if duk_handle_call() took values through indices, this could be
|
|
* made much more sensible. However, duk_handle_call() needs to fudge
|
|
* the 'this' and 'func' values to handle bound function chains, which
|
|
* is now done "in-place", so this is not a trivial change.
|
|
*/
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index); /* make absolute */
|
|
|
|
duk__call_prop_prep_stack(ctx, obj_index, nargs);
|
|
|
|
duk_call_method(ctx, nargs);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_pcall(duk_context *ctx, duk_idx_t nargs) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_uint_t call_flags;
|
|
duk_idx_t idx_func;
|
|
duk_int_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
idx_func = duk_get_top(ctx) - nargs - 1; /* must work for nargs <= 0 */
|
|
if (idx_func < 0 || nargs < 0) {
|
|
/* We can't reliably pop anything here because the stack input
|
|
* shape is incorrect. So we throw an error; if the caller has
|
|
* no catch point for this, a fatal error will occur. Another
|
|
* alternative would be to just return an error. But then the
|
|
* stack would be in an unknown state which might cause some
|
|
* very hard to diagnose problems later on. Also note that even
|
|
* if we did not throw an error here, the underlying call handler
|
|
* might STILL throw an out-of-memory error or some other internal
|
|
* fatal error.
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
return DUK_EXEC_ERROR; /* unreachable */
|
|
}
|
|
|
|
/* awkward; we assume there is space for this */
|
|
duk_push_undefined(ctx);
|
|
duk_insert(ctx, idx_func + 1);
|
|
|
|
call_flags = DUK_CALL_FLAG_PROTECTED; /* protected, respect reclimit, not constructor */
|
|
|
|
rc = duk_handle_call(thr, /* thread */
|
|
nargs, /* num_stack_args */
|
|
call_flags); /* call_flags */
|
|
|
|
return rc;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_pcall_method(duk_context *ctx, duk_idx_t nargs) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_uint_t call_flags;
|
|
duk_idx_t idx_func;
|
|
duk_int_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
idx_func = duk_get_top(ctx) - nargs - 2; /* must work for nargs <= 0 */
|
|
if (idx_func < 0 || nargs < 0) {
|
|
/* See comments in duk_pcall(). */
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
return DUK_EXEC_ERROR; /* unreachable */
|
|
}
|
|
|
|
call_flags = DUK_CALL_FLAG_PROTECTED; /* protected, respect reclimit, not constructor */
|
|
|
|
rc = duk_handle_call(thr, /* thread */
|
|
nargs, /* num_stack_args */
|
|
call_flags); /* call_flags */
|
|
|
|
return rc;
|
|
}
|
|
|
|
DUK_LOCAL duk_ret_t duk__pcall_prop_raw(duk_context *ctx) {
|
|
duk_idx_t obj_index;
|
|
duk_idx_t nargs;
|
|
|
|
/* Get the original arguments. Note that obj_index may be a relative
|
|
* index so the stack must have the same top when we use it.
|
|
*/
|
|
|
|
obj_index = (duk_idx_t) duk_get_int(ctx, -2);
|
|
nargs = (duk_idx_t) duk_get_int(ctx, -1);
|
|
duk_pop_2(ctx);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index); /* make absolute */
|
|
duk__call_prop_prep_stack(ctx, obj_index, nargs);
|
|
duk_call_method(ctx, nargs);
|
|
return 1;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_pcall_prop(duk_context *ctx, duk_idx_t obj_index, duk_idx_t nargs) {
|
|
/*
|
|
* Must be careful to catch errors related to value stack manipulation
|
|
* and property lookup, not just the call itself.
|
|
*/
|
|
|
|
duk_push_idx(ctx, obj_index);
|
|
duk_push_idx(ctx, nargs);
|
|
|
|
/* Inputs: explicit arguments (nargs), +1 for key, +2 for obj_index/nargs passing.
|
|
* If the value stack does not contain enough args, an error is thrown; this matches
|
|
* behavior of the other protected call API functions.
|
|
*/
|
|
return duk_safe_call(ctx, duk__pcall_prop_raw, nargs + 1 + 2 /*nargs*/, 1 /*nrets*/);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_safe_call(duk_context *ctx, duk_safe_call_function func, duk_idx_t nargs, duk_idx_t nrets) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_int_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (duk_get_top(ctx) < nargs || nrets < 0) {
|
|
/* See comments in duk_pcall(). */
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
return DUK_EXEC_ERROR; /* unreachable */
|
|
}
|
|
|
|
rc = duk_handle_safe_call(thr, /* thread */
|
|
func, /* func */
|
|
nargs, /* num_stack_args */
|
|
nrets); /* num_stack_res */
|
|
|
|
return rc;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_new(duk_context *ctx, duk_idx_t nargs) {
|
|
/*
|
|
* There are two [[Construct]] operations in the specification:
|
|
*
|
|
* - E5 Section 13.2.2: for Function objects
|
|
* - E5 Section 15.3.4.5.2: for "bound" Function objects
|
|
*
|
|
* The chain of bound functions is resolved in Section 15.3.4.5.2,
|
|
* with arguments "piling up" until the [[Construct]] internal
|
|
* method is called on the final, actual Function object. Note
|
|
* that the "prototype" property is looked up *only* from the
|
|
* final object, *before* calling the constructor.
|
|
*
|
|
* Currently we follow the bound function chain here to get the
|
|
* "prototype" property value from the final, non-bound function.
|
|
* However, we let duk_handle_call() handle the argument "piling"
|
|
* when the constructor is called. The bound function chain is
|
|
* thus now processed twice.
|
|
*
|
|
* When constructing new Array instances, an unnecessary object is
|
|
* created and discarded now: the standard [[Construct]] creates an
|
|
* object, and calls the Array constructor. The Array constructor
|
|
* returns an Array instance, which is used as the result value for
|
|
* the "new" operation; the object created before the Array constructor
|
|
* call is discarded.
|
|
*
|
|
* This would be easy to fix, e.g. by knowing that the Array constructor
|
|
* will always create a replacement object and skip creating the fallback
|
|
* object in that case.
|
|
*
|
|
* Note: functions called via "new" need to know they are called as a
|
|
* constructor. For instance, built-in constructors behave differently
|
|
* depending on how they are called.
|
|
*/
|
|
|
|
/* XXX: merge this with duk_js_call.c, as this function implements
|
|
* core semantics (or perhaps merge the two files altogether).
|
|
*/
|
|
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *proto;
|
|
duk_hobject *cons;
|
|
duk_hobject *fallback;
|
|
duk_idx_t idx_cons;
|
|
duk_small_uint_t call_flags;
|
|
duk_int_t rc;
|
|
|
|
/* [... constructor arg1 ... argN] */
|
|
|
|
idx_cons = duk_require_normalize_index(ctx, -nargs - 1);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("top=%ld, nargs=%ld, idx_cons=%ld",
|
|
(long) duk_get_top(ctx), (long) nargs, (long) idx_cons));
|
|
|
|
/* XXX: code duplication */
|
|
|
|
/*
|
|
* Figure out the final, non-bound constructor, to get "prototype"
|
|
* property.
|
|
*/
|
|
|
|
duk_dup(ctx, idx_cons);
|
|
for (;;) {
|
|
cons = duk_get_hobject(ctx, -1);
|
|
if (cons == NULL || !DUK_HOBJECT_HAS_CONSTRUCTABLE(cons)) {
|
|
/* Checking constructability from anything else than the
|
|
* initial constructor is not strictly necessary, but a
|
|
* nice sanity check.
|
|
*/
|
|
goto not_constructable;
|
|
}
|
|
if (!DUK_HOBJECT_HAS_BOUND(cons)) {
|
|
break;
|
|
}
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_TARGET); /* -> [... cons target] */
|
|
duk_remove(ctx, -2); /* -> [... target] */
|
|
}
|
|
DUK_ASSERT(cons != NULL && !DUK_HOBJECT_HAS_BOUND(cons));
|
|
|
|
/* [... constructor arg1 ... argN final_cons] */
|
|
|
|
/*
|
|
* Create "fallback" object to be used as the object instance,
|
|
* unless the constructor returns a replacement value.
|
|
* Its internal prototype needs to be set based on "prototype"
|
|
* property of the constructor.
|
|
*/
|
|
|
|
duk_push_object(ctx); /* class Object, extensible */
|
|
|
|
/* [... constructor arg1 ... argN final_cons fallback] */
|
|
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_PROTOTYPE);
|
|
proto = duk_get_hobject(ctx, -1);
|
|
if (!proto) {
|
|
DUK_DDD(DUK_DDDPRINT("constructor has no 'prototype' property, or value not an object "
|
|
"-> leave standard Object prototype as fallback prototype"));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("constructor has 'prototype' property with object value "
|
|
"-> set fallback prototype to that value: %!iO", (duk_heaphdr *) proto));
|
|
fallback = duk_get_hobject(ctx, -2);
|
|
DUK_ASSERT(fallback != NULL);
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, fallback, proto);
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
/* [... constructor arg1 ... argN final_cons fallback] */
|
|
|
|
/*
|
|
* Manipulate callstack for the call.
|
|
*/
|
|
|
|
duk_dup_top(ctx);
|
|
duk_insert(ctx, idx_cons + 1); /* use fallback as 'this' value */
|
|
duk_insert(ctx, idx_cons); /* also stash it before constructor,
|
|
* in case we need it (as the fallback value)
|
|
*/
|
|
duk_pop(ctx); /* pop final_cons */
|
|
|
|
|
|
/* [... fallback constructor fallback(this) arg1 ... argN];
|
|
* Note: idx_cons points to first 'fallback', not 'constructor'.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("before call, idx_cons+1 (constructor) -> %!T, idx_cons+2 (fallback/this) -> %!T, "
|
|
"nargs=%ld, top=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, idx_cons + 1),
|
|
(duk_tval *) duk_get_tval(ctx, idx_cons + 2),
|
|
(long) nargs,
|
|
(long) duk_get_top(ctx)));
|
|
|
|
/*
|
|
* Call the constructor function (called in "constructor mode").
|
|
*/
|
|
|
|
call_flags = DUK_CALL_FLAG_CONSTRUCTOR_CALL; /* not protected, respect reclimit, is a constructor call */
|
|
|
|
rc = duk_handle_call(thr, /* thread */
|
|
nargs, /* num_stack_args */
|
|
call_flags); /* call_flags */
|
|
DUK_UNREF(rc);
|
|
|
|
/* [... fallback retval] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("constructor call finished, rc=%ld, fallback=%!iT, retval=%!iT",
|
|
(long) rc,
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/*
|
|
* Determine whether to use the constructor return value as the created
|
|
* object instance or not.
|
|
*/
|
|
|
|
if (duk_is_object(ctx, -1)) {
|
|
duk_remove(ctx, -2);
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
/*
|
|
* Augment created errors upon creation (not when they are thrown or
|
|
* rethrown). __FILE__ and __LINE__ are not desirable here; the call
|
|
* stack reflects the caller which is correct.
|
|
*/
|
|
|
|
#ifdef DUK_USE_AUGMENT_ERROR_CREATE
|
|
duk_err_augment_error_create(thr, thr, NULL, 0, 1 /*noblame_fileline*/);
|
|
#endif
|
|
|
|
/* [... retval] */
|
|
|
|
return;
|
|
|
|
not_constructable:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CONSTRUCTABLE);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_constructor_call(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0);
|
|
|
|
act = duk_hthread_get_current_activation(thr);
|
|
DUK_ASSERT(act != NULL); /* because callstack_top > 0 */
|
|
return ((act->flags & DUK_ACT_FLAG_CONSTRUCT) != 0 ? 1 : 0);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_strict_call(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
|
|
/* For user code this could just return 1 (strict) always
|
|
* because all Duktape/C functions are considered strict,
|
|
* and strict is also the default when nothing is running.
|
|
* However, Duktape may call this function internally when
|
|
* the current activation is an Ecmascript function, so
|
|
* this cannot be replaced by a 'return 1' without fixing
|
|
* the internal call sites.
|
|
*/
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0);
|
|
|
|
act = duk_hthread_get_current_activation(thr);
|
|
if (act == NULL) {
|
|
/* Strict by default. */
|
|
return 1;
|
|
}
|
|
return ((act->flags & DUK_ACT_FLAG_STRICT) != 0 ? 1 : 0);
|
|
}
|
|
|
|
/*
|
|
* Duktape/C function magic
|
|
*/
|
|
|
|
DUK_EXTERNAL duk_int_t duk_get_current_magic(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
duk_hobject *func;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0);
|
|
|
|
act = duk_hthread_get_current_activation(thr);
|
|
if (act) {
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
if (!func) {
|
|
duk_tval *tv = &act->tv_func;
|
|
duk_small_uint_t lf_flags;
|
|
lf_flags = DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv);
|
|
return (duk_int_t) DUK_LFUNC_FLAGS_GET_MAGIC(lf_flags);
|
|
}
|
|
DUK_ASSERT(func != NULL);
|
|
|
|
if (DUK_HOBJECT_IS_NATIVEFUNCTION(func)) {
|
|
duk_hnativefunction *nf = (duk_hnativefunction *) func;
|
|
return (duk_int_t) nf->magic;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_get_magic(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_hobject *h;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
if (!DUK_HOBJECT_HAS_NATIVEFUNCTION(h)) {
|
|
goto type_error;
|
|
}
|
|
return (duk_int_t) ((duk_hnativefunction *) h)->magic;
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv)) {
|
|
duk_small_uint_t lf_flags = DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv);
|
|
return (duk_int_t) DUK_LFUNC_FLAGS_GET_MAGIC(lf_flags);
|
|
}
|
|
|
|
/* fall through */
|
|
type_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_UNEXPECTED_TYPE);
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_set_magic(duk_context *ctx, duk_idx_t index, duk_int_t magic) {
|
|
duk_hnativefunction *nf;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
nf = duk_require_hnativefunction(ctx, index);
|
|
DUK_ASSERT(nf != NULL);
|
|
nf->magic = (duk_int16_t) magic;
|
|
}
|
|
#line 1 "duk_api_codec.c"
|
|
/*
|
|
* Encoding and decoding basic formats: hex, base64.
|
|
*
|
|
* These are in-place operations which may allow an optimized implementation.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* dst length must be exactly ceil(len/3)*4 */
|
|
DUK_LOCAL void duk__base64_encode_helper(const duk_uint8_t *src, const duk_uint8_t *src_end,
|
|
duk_uint8_t *dst, duk_uint8_t *dst_end) {
|
|
duk_small_uint_t i, snip;
|
|
duk_uint_fast32_t t;
|
|
duk_uint_fast8_t x, y;
|
|
|
|
DUK_UNREF(dst_end);
|
|
|
|
while (src < src_end) {
|
|
/* read 3 bytes into 't', padded by zero */
|
|
snip = 4;
|
|
t = 0;
|
|
for (i = 0; i < 3; i++) {
|
|
t = t << 8;
|
|
if (src >= src_end) {
|
|
snip--;
|
|
} else {
|
|
t += (duk_uint_fast32_t) (*src++);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Missing bytes snip base64 example
|
|
* 0 4 XXXX
|
|
* 1 3 XXX=
|
|
* 2 2 XX==
|
|
*/
|
|
|
|
DUK_ASSERT(snip >= 2 && snip <= 4);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
x = (duk_uint_fast8_t) ((t >> 18) & 0x3f);
|
|
t = t << 6;
|
|
|
|
/* A straightforward 64-byte lookup would be faster
|
|
* and cleaner, but this is shorter.
|
|
*/
|
|
if (i >= snip) {
|
|
y = '=';
|
|
} else if (x <= 25) {
|
|
y = x + 'A';
|
|
} else if (x <= 51) {
|
|
y = x - 26 + 'a';
|
|
} else if (x <= 61) {
|
|
y = x - 52 + '0';
|
|
} else if (x == 62) {
|
|
y = '+';
|
|
} else {
|
|
y = '/';
|
|
}
|
|
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) y;
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__base64_decode_helper(const duk_uint8_t *src, const duk_uint8_t *src_end,
|
|
duk_uint8_t *dst, duk_uint8_t *dst_end, duk_uint8_t **out_dst_final) {
|
|
duk_uint_fast32_t t;
|
|
duk_uint_fast8_t x, y;
|
|
duk_small_uint_t group_idx;
|
|
|
|
DUK_UNREF(dst_end);
|
|
|
|
t = 0;
|
|
group_idx = 0;
|
|
|
|
while (src < src_end) {
|
|
x = *src++;
|
|
|
|
if (x >= 'A' && x <= 'Z') {
|
|
y = x - 'A' + 0;
|
|
} else if (x >= 'a' && x <= 'z') {
|
|
y = x - 'a' + 26;
|
|
} else if (x >= '0' && x <= '9') {
|
|
y = x - '0' + 52;
|
|
} else if (x == '+') {
|
|
y = 62;
|
|
} else if (x == '/') {
|
|
y = 63;
|
|
} else if (x == '=') {
|
|
/* We don't check the zero padding bytes here right now.
|
|
* This seems to be common behavior for base-64 decoders.
|
|
*/
|
|
|
|
if (group_idx == 2) {
|
|
/* xx== -> 1 byte, t contains 12 bits, 4 on right are zero */
|
|
t = t >> 4;
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) t;
|
|
|
|
if (src >= src_end) {
|
|
goto error;
|
|
}
|
|
x = *src++;
|
|
if (x != '=') {
|
|
goto error;
|
|
}
|
|
} else if (group_idx == 3) {
|
|
/* xxx= -> 2 bytes, t contains 18 bits, 2 on right are zero */
|
|
t = t >> 2;
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) ((t >> 8) & 0xff);
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) (t & 0xff);
|
|
} else {
|
|
goto error;
|
|
}
|
|
|
|
/* Here we can choose either to end parsing and ignore
|
|
* whatever follows, or to continue parsing in case
|
|
* multiple (possibly padded) base64 strings have been
|
|
* concatenated. Currently, keep on parsing.
|
|
*/
|
|
t = 0;
|
|
group_idx = 0;
|
|
continue;
|
|
} else if (x == 0x09 || x == 0x0a || x == 0x0d || x == 0x20) {
|
|
/* allow basic ASCII whitespace */
|
|
continue;
|
|
} else {
|
|
goto error;
|
|
}
|
|
|
|
t = (t << 6) + y;
|
|
|
|
if (group_idx == 3) {
|
|
/* output 3 bytes from 't' */
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) ((t >> 16) & 0xff);
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) ((t >> 8) & 0xff);
|
|
DUK_ASSERT(dst < dst_end);
|
|
*dst++ = (duk_uint8_t) (t & 0xff);
|
|
t = 0;
|
|
group_idx = 0;
|
|
} else {
|
|
group_idx++;
|
|
}
|
|
}
|
|
|
|
if (group_idx != 0) {
|
|
/* Here we'd have the option of decoding unpadded base64
|
|
* (e.g. "xxxxyy" instead of "xxxxyy==". Currently not
|
|
* accepted.
|
|
*/
|
|
goto error;
|
|
}
|
|
|
|
*out_dst_final = dst;
|
|
return 1;
|
|
|
|
error:
|
|
return 0;
|
|
}
|
|
|
|
/* Shared handling for encode/decode argument. Fast path handling for
|
|
* buffer and string values because they're the most common. In particular,
|
|
* avoid creating a temporary string or buffer when possible.
|
|
*/
|
|
DUK_LOCAL const duk_uint8_t *duk__prep_codec_arg(duk_context *ctx, duk_idx_t index, duk_size_t *out_len) {
|
|
DUK_ASSERT(duk_is_valid_index(ctx, index)); /* checked by caller */
|
|
if (duk_is_buffer(ctx, index)) {
|
|
return (const duk_uint8_t *) duk_get_buffer(ctx, index, out_len);
|
|
} else {
|
|
return (const duk_uint8_t *) duk_to_lstring(ctx, index, out_len);
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_base64_encode(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_uint8_t *src;
|
|
duk_size_t srclen;
|
|
duk_size_t dstlen;
|
|
duk_uint8_t *dst;
|
|
const char *ret;
|
|
|
|
/* XXX: optimize for string inputs: no need to coerce to a buffer
|
|
* which makes a copy of the input.
|
|
*/
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
src = (duk_uint8_t *) duk_to_buffer(ctx, index, &srclen);
|
|
/* Note: for srclen=0, src may be NULL */
|
|
|
|
/* Computation must not wrap; this limit works for 32-bit size_t:
|
|
* >>> srclen = 3221225469
|
|
* >>> '%x' % ((srclen + 2) / 3 * 4)
|
|
* 'fffffffc'
|
|
*/
|
|
if (srclen > 3221225469UL) {
|
|
goto type_error;
|
|
}
|
|
dstlen = (srclen + 2) / 3 * 4;
|
|
dst = (duk_uint8_t *) duk_push_fixed_buffer(ctx, dstlen);
|
|
|
|
duk__base64_encode_helper((const duk_uint8_t *) src, (const duk_uint8_t *) (src + srclen),
|
|
dst, (dst + dstlen));
|
|
|
|
ret = duk_to_string(ctx, -1);
|
|
duk_replace(ctx, index);
|
|
return ret;
|
|
|
|
type_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_BASE64_ENCODE_FAILED);
|
|
return NULL; /* never here */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_base64_decode(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
const duk_uint8_t *src;
|
|
duk_size_t srclen;
|
|
duk_size_t dstlen;
|
|
duk_uint8_t *dst;
|
|
duk_uint8_t *dst_final;
|
|
duk_bool_t retval;
|
|
|
|
/* XXX: optimize for buffer inputs: no need to coerce to a string
|
|
* which causes an unnecessary interning.
|
|
*/
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
src = (const duk_uint8_t *) duk_to_lstring(ctx, index, &srclen);
|
|
|
|
/* Computation must not wrap, only srclen + 3 is at risk of
|
|
* wrapping because after that the number gets smaller.
|
|
* This limit works for 32-bit size_t:
|
|
* 0x100000000 - 3 - 1 = 4294967292
|
|
*/
|
|
if (srclen > 4294967292UL) {
|
|
goto type_error;
|
|
}
|
|
dstlen = (srclen + 3) / 4 * 3; /* upper limit */
|
|
dst = (duk_uint8_t *) duk_push_dynamic_buffer(ctx, dstlen);
|
|
/* Note: for dstlen=0, dst may be NULL */
|
|
|
|
retval = duk__base64_decode_helper((const duk_uint8_t *) src, (const duk_uint8_t *) (src + srclen),
|
|
dst, dst + dstlen, &dst_final);
|
|
if (!retval) {
|
|
goto type_error;
|
|
}
|
|
|
|
/* XXX: convert to fixed buffer? */
|
|
(void) duk_resize_buffer(ctx, -1, (duk_size_t) (dst_final - dst));
|
|
duk_replace(ctx, index);
|
|
return;
|
|
|
|
type_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_BASE64_DECODE_FAILED);
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_hex_encode(duk_context *ctx, duk_idx_t index) {
|
|
const duk_uint8_t *inp;
|
|
duk_size_t len;
|
|
duk_size_t i;
|
|
duk_small_uint_t t;
|
|
duk_uint8_t *buf;
|
|
const char *ret;
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
inp = duk__prep_codec_arg(ctx, index, &len);
|
|
DUK_ASSERT(inp != NULL || len == 0);
|
|
|
|
/* Fixed buffer, no zeroing because we'll fill all the data. */
|
|
buf = (duk_uint8_t *) duk_push_buffer_raw(ctx, len * 2, DUK_BUF_FLAG_NOZERO /*flags*/);
|
|
DUK_ASSERT(buf != NULL);
|
|
|
|
for (i = 0; i < len; i++) {
|
|
/* XXX: by using two 256-entry tables could avoid shifting and masking. */
|
|
t = (duk_small_uint_t) inp[i];
|
|
buf[i*2 + 0] = duk_lc_digits[t >> 4];
|
|
buf[i*2 + 1] = duk_lc_digits[t & 0x0f];
|
|
}
|
|
|
|
/* XXX: Using a string return value forces a string intern which is
|
|
* not always necessary. As a rough performance measure, hex encode
|
|
* time for perf-testcases/test-hex-encode.js dropped from ~35s to
|
|
* ~15s without string coercion. Change to returning a buffer and
|
|
* let the caller coerce to string if necessary?
|
|
*/
|
|
|
|
ret = duk_to_string(ctx, -1);
|
|
duk_replace(ctx, index);
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_hex_decode(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
const duk_uint8_t *inp;
|
|
duk_size_t len;
|
|
duk_size_t i;
|
|
duk_small_int_t t;
|
|
duk_uint8_t *buf;
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
inp = duk__prep_codec_arg(ctx, index, &len);
|
|
DUK_ASSERT(inp != NULL || len == 0);
|
|
|
|
if (len & 0x01) {
|
|
goto type_error;
|
|
}
|
|
|
|
/* Fixed buffer, no zeroing because we'll fill all the data. */
|
|
buf = (duk_uint8_t *) duk_push_buffer_raw(ctx, len / 2, DUK_BUF_FLAG_NOZERO /*flags*/);
|
|
DUK_ASSERT(buf != NULL);
|
|
|
|
for (i = 0; i < len; i += 2) {
|
|
/* For invalid characters the value -1 gets extended to
|
|
* at least 16 bits. If either nybble is invalid, the
|
|
* resulting 't' will be < 0.
|
|
*/
|
|
t = (((duk_small_int_t) duk_hex_dectab[inp[i]]) << 4) |
|
|
((duk_small_int_t) duk_hex_dectab[inp[i + 1]]);
|
|
if (DUK_UNLIKELY(t < 0)) {
|
|
goto type_error;
|
|
}
|
|
buf[i >> 1] = (duk_uint8_t) t;
|
|
}
|
|
|
|
duk_replace(ctx, index);
|
|
return;
|
|
|
|
type_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_HEX_DECODE_FAILED);
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_json_encode(duk_context *ctx, duk_idx_t index) {
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_idx_t top_at_entry = duk_get_top(ctx);
|
|
#endif
|
|
const char *ret;
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
duk_bi_json_stringify_helper(ctx,
|
|
index /*idx_value*/,
|
|
DUK_INVALID_INDEX /*idx_replacer*/,
|
|
DUK_INVALID_INDEX /*idx_space*/,
|
|
0 /*flags*/);
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
duk_replace(ctx, index);
|
|
ret = duk_get_string(ctx, index);
|
|
|
|
DUK_ASSERT(duk_get_top(ctx) == top_at_entry);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_json_decode(duk_context *ctx, duk_idx_t index) {
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_idx_t top_at_entry = duk_get_top(ctx);
|
|
#endif
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
duk_bi_json_parse_helper(ctx,
|
|
index /*idx_value*/,
|
|
DUK_INVALID_INDEX /*idx_reviver*/,
|
|
0 /*flags*/);
|
|
duk_replace(ctx, index);
|
|
|
|
DUK_ASSERT(duk_get_top(ctx) == top_at_entry);
|
|
}
|
|
#line 1 "duk_api_compile.c"
|
|
/*
|
|
* Compilation and evaluation
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
typedef struct duk__compile_raw_args duk__compile_raw_args;
|
|
struct duk__compile_raw_args {
|
|
duk_size_t src_length; /* should be first on 64-bit platforms */
|
|
const duk_uint8_t *src_buffer;
|
|
duk_uint_t flags;
|
|
};
|
|
|
|
/* Eval is just a wrapper now. */
|
|
DUK_EXTERNAL duk_int_t duk_eval_raw(duk_context *ctx, const char *src_buffer, duk_size_t src_length, duk_uint_t flags) {
|
|
duk_uint_t comp_flags;
|
|
duk_int_t rc;
|
|
|
|
/* Note: strictness is *not* inherited from the current Duktape/C.
|
|
* This would be confusing because the current strictness state
|
|
* depends on whether we're running inside a Duktape/C activation
|
|
* (= strict mode) or outside of any activation (= non-strict mode).
|
|
* See api-testcases/test-eval-strictness.c for more discussion.
|
|
*/
|
|
|
|
/* [ ... source? filename ] (depends on flags) */
|
|
|
|
comp_flags = flags;
|
|
comp_flags |= DUK_COMPILE_EVAL;
|
|
rc = duk_compile_raw(ctx, src_buffer, src_length, comp_flags); /* may be safe, or non-safe depending on flags */
|
|
|
|
/* [ ... closure/error ] */
|
|
|
|
if (rc != DUK_EXEC_SUCCESS) {
|
|
rc = DUK_EXEC_ERROR;
|
|
goto got_rc;
|
|
}
|
|
|
|
if (flags & DUK_COMPILE_SAFE) {
|
|
rc = duk_pcall(ctx, 0);
|
|
} else {
|
|
duk_call(ctx, 0);
|
|
rc = DUK_EXEC_SUCCESS;
|
|
}
|
|
|
|
/* [ ... result/error ] */
|
|
|
|
got_rc:
|
|
if (flags & DUK_COMPILE_NORESULT) {
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/* Helper which can be called both directly and with duk_safe_call(). */
|
|
DUK_LOCAL duk_ret_t duk__do_compile(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk__compile_raw_args *comp_args;
|
|
duk_uint_t flags;
|
|
duk_small_uint_t comp_flags;
|
|
duk_hcompiledfunction *h_templ;
|
|
|
|
/* Note: strictness is not inherited from the current Duktape/C
|
|
* context. Otherwise it would not be possible to compile
|
|
* non-strict code inside a Duktape/C activation (which is
|
|
* always strict now). See api-testcases/test-eval-strictness.c
|
|
* for discussion.
|
|
*/
|
|
|
|
/* [ ... source? filename &comp_args ] (depends on flags) */
|
|
|
|
comp_args = (duk__compile_raw_args *) duk_require_pointer(ctx, -1);
|
|
flags = comp_args->flags;
|
|
duk_pop(ctx);
|
|
|
|
/* [ ... source? filename ] */
|
|
|
|
if (!comp_args->src_buffer) {
|
|
duk_hstring *h_sourcecode;
|
|
|
|
h_sourcecode = duk_get_hstring(ctx, -2);
|
|
if ((flags & DUK_COMPILE_NOSOURCE) || /* args incorrect */
|
|
(h_sourcecode == NULL)) { /* e.g. duk_push_file_string_raw() pushed undefined */
|
|
/* XXX: when this error is caused by a nonexistent
|
|
* file given to duk_peval_file() or similar, the
|
|
* error message is not the best possible.
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_NO_SOURCECODE);
|
|
}
|
|
DUK_ASSERT(h_sourcecode != NULL);
|
|
comp_args->src_buffer = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h_sourcecode);
|
|
comp_args->src_length = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h_sourcecode);
|
|
}
|
|
DUK_ASSERT(comp_args->src_buffer != NULL);
|
|
|
|
/* XXX: unnecessary translation of flags */
|
|
comp_flags = 0;
|
|
if (flags & DUK_COMPILE_EVAL) {
|
|
comp_flags |= DUK_JS_COMPILE_FLAG_EVAL;
|
|
}
|
|
if (flags & DUK_COMPILE_FUNCTION) {
|
|
comp_flags |= DUK_JS_COMPILE_FLAG_EVAL |
|
|
DUK_JS_COMPILE_FLAG_FUNCEXPR;
|
|
}
|
|
if (flags & DUK_COMPILE_STRICT) {
|
|
comp_flags |= DUK_JS_COMPILE_FLAG_STRICT;
|
|
}
|
|
|
|
/* [ ... source? filename ] */
|
|
|
|
duk_js_compile(thr, comp_args->src_buffer, comp_args->src_length, comp_flags);
|
|
|
|
/* [ ... source? func_template ] */
|
|
|
|
if (flags & DUK_COMPILE_NOSOURCE) {
|
|
;
|
|
} else {
|
|
duk_remove(ctx, -2);
|
|
}
|
|
|
|
/* [ ... func_template ] */
|
|
|
|
h_templ = (duk_hcompiledfunction *) duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h_templ != NULL);
|
|
duk_js_push_closure(thr,
|
|
h_templ,
|
|
thr->builtins[DUK_BIDX_GLOBAL_ENV],
|
|
thr->builtins[DUK_BIDX_GLOBAL_ENV]);
|
|
duk_remove(ctx, -2); /* -> [ ... closure ] */
|
|
|
|
/* [ ... closure ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_compile_raw(duk_context *ctx, const char *src_buffer, duk_size_t src_length, duk_uint_t flags) {
|
|
duk__compile_raw_args comp_args_alloc;
|
|
duk__compile_raw_args *comp_args = &comp_args_alloc;
|
|
|
|
if ((flags & DUK_COMPILE_STRLEN) && (src_buffer != NULL)) {
|
|
/* String length is computed here to avoid multiple evaluation
|
|
* of a macro argument in the calling side.
|
|
*/
|
|
src_length = DUK_STRLEN(src_buffer);
|
|
}
|
|
|
|
comp_args->src_buffer = (const duk_uint8_t *) src_buffer;
|
|
comp_args->src_length = src_length;
|
|
comp_args->flags = flags;
|
|
duk_push_pointer(ctx, (void *) comp_args);
|
|
|
|
/* [ ... source? filename &comp_args ] (depends on flags) */
|
|
|
|
if (flags & DUK_COMPILE_SAFE) {
|
|
duk_int_t rc;
|
|
duk_int_t nargs;
|
|
duk_int_t nrets = 1;
|
|
|
|
/* Arguments are either: [ filename &comp_args ] or [ source filename &comp_args ] */
|
|
nargs = (flags & DUK_COMPILE_NOSOURCE) ? 2 : 3;
|
|
rc = duk_safe_call(ctx, duk__do_compile, nargs, nrets);
|
|
|
|
/* [ ... closure ] */
|
|
return rc;
|
|
}
|
|
|
|
(void) duk__do_compile(ctx);
|
|
|
|
/* [ ... closure ] */
|
|
return DUK_EXEC_SUCCESS;
|
|
}
|
|
#line 1 "duk_api_debug.c"
|
|
/*
|
|
* Debugging related API calls
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_EXTERNAL void duk_push_context_dump(duk_context *ctx) {
|
|
duk_idx_t idx;
|
|
duk_idx_t top;
|
|
|
|
/* We don't duk_require_stack() here now, but rely on the caller having
|
|
* enough space.
|
|
*/
|
|
|
|
top = duk_get_top(ctx);
|
|
duk_push_array(ctx);
|
|
for (idx = 0; idx < top; idx++) {
|
|
duk_dup(ctx, idx);
|
|
duk_put_prop_index(ctx, -2, idx);
|
|
}
|
|
|
|
/* XXX: conversion errors should not propagate outwards.
|
|
* Perhaps values need to be coerced individually?
|
|
*/
|
|
duk_bi_json_stringify_helper(ctx,
|
|
duk_get_top_index(ctx), /*idx_value*/
|
|
DUK_INVALID_INDEX, /*idx_replacer*/
|
|
DUK_INVALID_INDEX, /*idx_space*/
|
|
DUK_JSON_FLAG_EXT_CUSTOM |
|
|
DUK_JSON_FLAG_ASCII_ONLY |
|
|
DUK_JSON_FLAG_AVOID_KEY_QUOTES /*flags*/);
|
|
|
|
duk_push_sprintf(ctx, "ctx: top=%ld, stack=%s", (long) top, (const char *) duk_safe_to_string(ctx, -1));
|
|
duk_replace(ctx, -3); /* [ ... arr jsonx(arr) res ] -> [ ... res jsonx(arr) ] */
|
|
duk_pop(ctx);
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
|
|
DUK_EXTERNAL void duk_debugger_attach(duk_context *ctx,
|
|
duk_debug_read_function read_cb,
|
|
duk_debug_write_function write_cb,
|
|
duk_debug_peek_function peek_cb,
|
|
duk_debug_read_flush_function read_flush_cb,
|
|
duk_debug_write_flush_function write_flush_cb,
|
|
duk_debug_detached_function detached_cb,
|
|
void *udata) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_heap *heap;
|
|
const char *str;
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(read_cb != NULL);
|
|
DUK_ASSERT(write_cb != NULL);
|
|
/* Other callbacks are optional. */
|
|
|
|
heap = thr->heap;
|
|
heap->dbg_read_cb = read_cb;
|
|
heap->dbg_write_cb = write_cb;
|
|
heap->dbg_peek_cb = peek_cb;
|
|
heap->dbg_read_flush_cb = read_flush_cb;
|
|
heap->dbg_write_flush_cb = write_flush_cb;
|
|
heap->dbg_detached_cb = detached_cb;
|
|
heap->dbg_udata = udata;
|
|
|
|
/* Start in paused state. */
|
|
heap->dbg_processing = 0;
|
|
heap->dbg_paused = 1;
|
|
heap->dbg_state_dirty = 1;
|
|
heap->dbg_step_type = 0;
|
|
heap->dbg_step_thread = NULL;
|
|
heap->dbg_step_csindex = 0;
|
|
heap->dbg_step_startline = 0;
|
|
heap->dbg_exec_counter = 0;
|
|
heap->dbg_last_counter = 0;
|
|
heap->dbg_last_time = 0.0;
|
|
|
|
/* Send version identification and flush right afterwards. Note that
|
|
* we must write raw, unframed bytes here.
|
|
*/
|
|
duk_push_sprintf(ctx, "%ld %ld %s %s\n",
|
|
(long) DUK_DEBUG_PROTOCOL_VERSION,
|
|
(long) DUK_VERSION,
|
|
(const char *) DUK_GIT_DESCRIBE,
|
|
(const char *) DUK_USE_TARGET_INFO);
|
|
str = duk_get_lstring(ctx, -1, &len);
|
|
DUK_ASSERT(str != NULL);
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) str, len);
|
|
duk_debug_write_flush(thr);
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_debugger_detach(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
|
|
thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
|
|
/* Can be called muliple times with no harm. */
|
|
duk_debug_do_detach(thr->heap);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_debugger_cooperate(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_bool_t processed_messages;
|
|
|
|
thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
|
|
if (!DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap)) {
|
|
return;
|
|
}
|
|
if (thr->callstack_top > 0 || thr->heap->dbg_processing) {
|
|
/* Calling duk_debugger_cooperate() while Duktape is being
|
|
* called into is not supported. This is not a 100% check
|
|
* but prevents any damage in most cases.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
thr->heap->dbg_processing = 1;
|
|
processed_messages = duk_debug_process_messages(thr, 1 /*no_block*/);
|
|
thr->heap->dbg_processing = 0;
|
|
DUK_UNREF(processed_messages);
|
|
}
|
|
|
|
#else /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
DUK_EXTERNAL void duk_debugger_attach(duk_context *ctx,
|
|
duk_debug_read_function read_cb,
|
|
duk_debug_write_function write_cb,
|
|
duk_debug_peek_function peek_cb,
|
|
duk_debug_read_flush_function read_flush_cb,
|
|
duk_debug_write_flush_function write_flush_cb,
|
|
duk_debug_detached_function detached_cb,
|
|
void *udata) {
|
|
DUK_UNREF(read_cb);
|
|
DUK_UNREF(write_cb);
|
|
DUK_UNREF(peek_cb);
|
|
DUK_UNREF(read_flush_cb);
|
|
DUK_UNREF(write_flush_cb);
|
|
DUK_UNREF(detached_cb);
|
|
DUK_UNREF(udata);
|
|
duk_error(ctx, DUK_ERR_API_ERROR, "no debugger support");
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_debugger_detach(duk_context *ctx) {
|
|
duk_error(ctx, DUK_ERR_API_ERROR, "no debugger support");
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_debugger_cooperate(duk_context *ctx) {
|
|
/* nop */
|
|
DUK_UNREF(ctx);
|
|
}
|
|
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
#line 1 "duk_api_heap.c"
|
|
/*
|
|
* Heap creation and destruction
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_EXTERNAL
|
|
duk_context *duk_create_heap(duk_alloc_function alloc_func,
|
|
duk_realloc_function realloc_func,
|
|
duk_free_function free_func,
|
|
void *heap_udata,
|
|
duk_fatal_function fatal_handler) {
|
|
duk_heap *heap = NULL;
|
|
duk_context *ctx;
|
|
|
|
/* Assume that either all memory funcs are NULL or non-NULL, mixed
|
|
* cases will now be unsafe.
|
|
*/
|
|
|
|
/* XXX: just assert non-NULL values here and make caller arguments
|
|
* do the defaulting to the default implementations (smaller code)?
|
|
*/
|
|
|
|
if (!alloc_func) {
|
|
DUK_ASSERT(realloc_func == NULL);
|
|
DUK_ASSERT(free_func == NULL);
|
|
alloc_func = duk_default_alloc_function;
|
|
realloc_func = duk_default_realloc_function;
|
|
free_func = duk_default_free_function;
|
|
} else {
|
|
DUK_ASSERT(realloc_func != NULL);
|
|
DUK_ASSERT(free_func != NULL);
|
|
}
|
|
|
|
if (!fatal_handler) {
|
|
fatal_handler = duk_default_fatal_handler;
|
|
}
|
|
|
|
DUK_ASSERT(alloc_func != NULL);
|
|
DUK_ASSERT(realloc_func != NULL);
|
|
DUK_ASSERT(free_func != NULL);
|
|
DUK_ASSERT(fatal_handler != NULL);
|
|
|
|
heap = duk_heap_alloc(alloc_func, realloc_func, free_func, heap_udata, fatal_handler);
|
|
if (!heap) {
|
|
return NULL;
|
|
}
|
|
ctx = (duk_context *) heap->heap_thread;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(((duk_hthread *) ctx)->heap != NULL);
|
|
return ctx;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_destroy_heap(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_heap *heap;
|
|
|
|
if (!ctx) {
|
|
return;
|
|
}
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
duk_heap_free(heap);
|
|
}
|
|
|
|
/* XXX: better place for this */
|
|
DUK_EXTERNAL void duk_set_global_object(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h_glob;
|
|
duk_hobject *h_prev_glob;
|
|
duk_hobject *h_env;
|
|
duk_hobject *h_prev_env;
|
|
|
|
DUK_D(DUK_DPRINT("replace global object with: %!T", duk_get_tval(ctx, -1)));
|
|
|
|
h_glob = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(h_glob != NULL);
|
|
|
|
/*
|
|
* Replace global object.
|
|
*/
|
|
|
|
h_prev_glob = thr->builtins[DUK_BIDX_GLOBAL];
|
|
thr->builtins[DUK_BIDX_GLOBAL] = h_glob;
|
|
DUK_HOBJECT_INCREF(thr, h_glob);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, h_prev_glob); /* side effects, in theory (referenced by global env) */
|
|
|
|
/*
|
|
* Replace lexical environment for global scope
|
|
*
|
|
* Create a new object environment for the global lexical scope.
|
|
* We can't just reset the _Target property of the current one,
|
|
* because the lexical scope is shared by other threads with the
|
|
* same (initial) built-ins.
|
|
*/
|
|
|
|
(void) duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJENV),
|
|
-1); /* no prototype, updated below */
|
|
|
|
duk_dup(ctx, -2);
|
|
duk_dup(ctx, -3);
|
|
|
|
/* [ ... new_glob new_env new_glob new_glob ] */
|
|
|
|
duk_xdef_prop_stridx(thr, -3, DUK_STRIDX_INT_TARGET, DUK_PROPDESC_FLAGS_NONE);
|
|
duk_xdef_prop_stridx(thr, -2, DUK_STRIDX_INT_THIS, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* [ ... new_glob new_env ] */
|
|
|
|
h_env = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h_env != NULL);
|
|
|
|
h_prev_env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
thr->builtins[DUK_BIDX_GLOBAL_ENV] = h_env;
|
|
DUK_HOBJECT_INCREF(thr, h_env);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, h_prev_env); /* side effects */
|
|
DUK_UNREF(h_env); /* without refcounts */
|
|
DUK_UNREF(h_prev_env);
|
|
|
|
/* [ ... new_glob new_env ] */
|
|
|
|
duk_pop_2(ctx);
|
|
|
|
/* [ ... ] */
|
|
}
|
|
#line 1 "duk_api_logging.c"
|
|
/*
|
|
* Logging
|
|
*
|
|
* Current logging primitive is a sprintf-style log which is convenient
|
|
* for most C code. Another useful primitive would be to log N arguments
|
|
* from value stack (like the Ecmascript binding does).
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_EXTERNAL void duk_log_va(duk_context *ctx, duk_int_t level, const char *fmt, va_list ap) {
|
|
/* stridx_logfunc[] must be static to allow initializer with old compilers like BCC */
|
|
static const duk_uint16_t stridx_logfunc[6] = {
|
|
DUK_STRIDX_LC_TRACE, DUK_STRIDX_LC_DEBUG, DUK_STRIDX_LC_INFO,
|
|
DUK_STRIDX_LC_WARN, DUK_STRIDX_LC_ERROR, DUK_STRIDX_LC_FATAL
|
|
};
|
|
|
|
if (level < 0) {
|
|
level = 0;
|
|
} else if (level > (int) (sizeof(stridx_logfunc) / sizeof(duk_uint16_t)) - 1) {
|
|
level = (int) (sizeof(stridx_logfunc) / sizeof(duk_uint16_t)) - 1;
|
|
}
|
|
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_LOGGER_CONSTRUCTOR);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_CLOG);
|
|
duk_get_prop_stridx(ctx, -1, stridx_logfunc[level]);
|
|
duk_dup(ctx, -2);
|
|
|
|
/* [ ... Logger clog logfunc clog ] */
|
|
|
|
duk_push_vsprintf(ctx, fmt, ap);
|
|
|
|
/* [ ... Logger clog logfunc clog(=this) msg ] */
|
|
|
|
duk_call_method(ctx, 1 /*nargs*/);
|
|
|
|
/* [ ... Logger clog res ] */
|
|
|
|
duk_pop_3(ctx);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_log(duk_context *ctx, duk_int_t level, const char *fmt, ...) {
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
duk_log_va(ctx, level, fmt, ap);
|
|
va_end(ap);
|
|
}
|
|
#line 1 "duk_api_memory.c"
|
|
/*
|
|
* Memory calls.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_EXTERNAL void *duk_alloc_raw(duk_context *ctx, duk_size_t size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
return DUK_ALLOC_RAW(thr->heap, size);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_free_raw(duk_context *ctx, void *ptr) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
DUK_FREE_RAW(thr->heap, ptr);
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_realloc_raw(duk_context *ctx, void *ptr, duk_size_t size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
return DUK_REALLOC_RAW(thr->heap, ptr, size);
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_alloc(duk_context *ctx, duk_size_t size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
return DUK_ALLOC(thr->heap, size);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_free(duk_context *ctx, void *ptr) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
DUK_FREE(thr->heap, ptr);
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_realloc(duk_context *ctx, void *ptr, duk_size_t size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/*
|
|
* Note: since this is an exposed API call, there should be
|
|
* no way a mark-and-sweep could have a side effect on the
|
|
* memory allocation behind 'ptr'; the pointer should never
|
|
* be something that Duktape wants to change.
|
|
*
|
|
* Thus, no need to use DUK_REALLOC_INDIRECT (and we don't
|
|
* have the storage location here anyway).
|
|
*/
|
|
|
|
return DUK_REALLOC(thr->heap, ptr, size);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_get_memory_functions(duk_context *ctx, duk_memory_functions *out_funcs) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_heap *heap;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(out_funcs != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
|
|
heap = thr->heap;
|
|
out_funcs->alloc_func = heap->alloc_func;
|
|
out_funcs->realloc_func = heap->realloc_func;
|
|
out_funcs->free_func = heap->free_func;
|
|
out_funcs->udata = heap->heap_udata;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_gc(duk_context *ctx, duk_uint_t flags) {
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_heap *heap;
|
|
|
|
DUK_UNREF(flags);
|
|
|
|
if (!ctx) {
|
|
return;
|
|
}
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
DUK_D(DUK_DPRINT("mark-and-sweep requested by application"));
|
|
duk_heap_mark_and_sweep(heap, 0);
|
|
#else
|
|
DUK_D(DUK_DPRINT("mark-and-sweep requested by application but mark-and-sweep not enabled, ignoring"));
|
|
DUK_UNREF(ctx);
|
|
DUK_UNREF(flags);
|
|
#endif
|
|
}
|
|
#line 1 "duk_api_object.c"
|
|
/*
|
|
* Object handling: property access and other support functions.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Property handling
|
|
*
|
|
* The API exposes only the most common property handling functions.
|
|
* The caller can invoke Ecmascript built-ins for full control (e.g.
|
|
* defineProperty, getOwnPropertyDescriptor).
|
|
*/
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_get_prop(duk_context *ctx, duk_idx_t obj_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: copying tv_obj and tv_key to locals to shield against a valstack
|
|
* resize is not necessary for a property get right now.
|
|
*/
|
|
|
|
tv_obj = duk_require_tval(ctx, obj_index);
|
|
tv_key = duk_require_tval(ctx, -1);
|
|
|
|
rc = duk_hobject_getprop(thr, tv_obj, tv_key);
|
|
DUK_ASSERT(rc == 0 || rc == 1);
|
|
/* a value is left on stack regardless of rc */
|
|
|
|
duk_remove(ctx, -2); /* remove key */
|
|
return rc; /* 1 if property found, 0 otherwise */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_get_prop_string(duk_context *ctx, duk_idx_t obj_index, const char *key) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_string(ctx, key);
|
|
return duk_get_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_get_prop_index(duk_context *ctx, duk_idx_t obj_index, duk_uarridx_t arr_index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_uarridx(ctx, arr_index);
|
|
return duk_get_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_get_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_hstring(ctx, DUK_HTHREAD_GET_STRING(thr, stridx));
|
|
return duk_get_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_get_prop_stridx_boolean(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_bool_t *out_has_prop) {
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
|
|
rc = duk_get_prop_stridx(ctx, obj_index, stridx);
|
|
if (out_has_prop) {
|
|
*out_has_prop = rc;
|
|
}
|
|
rc = duk_to_boolean(ctx, -1);
|
|
DUK_ASSERT(rc == 0 || rc == 1);
|
|
duk_pop(ctx);
|
|
return rc;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_put_prop(duk_context *ctx, duk_idx_t obj_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_tval *tv_val;
|
|
duk_small_int_t throw_flag;
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: copying tv_obj and tv_key to locals to shield against a valstack
|
|
* resize is not necessary for a property put right now (putprop protects
|
|
* against it internally).
|
|
*/
|
|
|
|
tv_obj = duk_require_tval(ctx, obj_index);
|
|
tv_key = duk_require_tval(ctx, -2);
|
|
tv_val = duk_require_tval(ctx, -1);
|
|
throw_flag = duk_is_strict_call(ctx);
|
|
|
|
rc = duk_hobject_putprop(thr, tv_obj, tv_key, tv_val, throw_flag);
|
|
DUK_ASSERT(rc == 0 || rc == 1);
|
|
|
|
duk_pop_2(ctx); /* remove key and value */
|
|
return rc; /* 1 if property found, 0 otherwise */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_put_prop_string(duk_context *ctx, duk_idx_t obj_index, const char *key) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_string(ctx, key);
|
|
duk_swap_top(ctx, -2); /* [val key] -> [key val] */
|
|
return duk_put_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_put_prop_index(duk_context *ctx, duk_idx_t obj_index, duk_uarridx_t arr_index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_uarridx(ctx, arr_index);
|
|
duk_swap_top(ctx, -2); /* [val key] -> [key val] */
|
|
return duk_put_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_put_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_hstring(ctx, DUK_HTHREAD_GET_STRING(thr, stridx));
|
|
duk_swap_top(ctx, -2); /* [val key] -> [key val] */
|
|
return duk_put_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_del_prop(duk_context *ctx, duk_idx_t obj_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_small_int_t throw_flag;
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: copying tv_obj and tv_key to locals to shield against a valstack
|
|
* resize is not necessary for a property delete right now.
|
|
*/
|
|
|
|
tv_obj = duk_require_tval(ctx, obj_index);
|
|
tv_key = duk_require_tval(ctx, -1);
|
|
throw_flag = duk_is_strict_call(ctx);
|
|
|
|
rc = duk_hobject_delprop(thr, tv_obj, tv_key, throw_flag);
|
|
DUK_ASSERT(rc == 0 || rc == 1);
|
|
|
|
duk_pop(ctx); /* remove key */
|
|
return rc;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_del_prop_string(duk_context *ctx, duk_idx_t obj_index, const char *key) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_string(ctx, key);
|
|
return duk_del_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_del_prop_index(duk_context *ctx, duk_idx_t obj_index, duk_uarridx_t arr_index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_uarridx(ctx, arr_index);
|
|
return duk_del_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_del_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_hstring(ctx, DUK_HTHREAD_GET_STRING(thr, stridx));
|
|
return duk_del_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_has_prop(duk_context *ctx, duk_idx_t obj_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: copying tv_obj and tv_key to locals to shield against a valstack
|
|
* resize is not necessary for a property existence check right now.
|
|
*/
|
|
|
|
tv_obj = duk_require_tval(ctx, obj_index);
|
|
tv_key = duk_require_tval(ctx, -1);
|
|
|
|
rc = duk_hobject_hasprop(thr, tv_obj, tv_key);
|
|
DUK_ASSERT(rc == 0 || rc == 1);
|
|
|
|
duk_pop(ctx); /* remove key */
|
|
return rc; /* 1 if property found, 0 otherwise */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_has_prop_string(duk_context *ctx, duk_idx_t obj_index, const char *key) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_string(ctx, key);
|
|
return duk_has_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_has_prop_index(duk_context *ctx, duk_idx_t obj_index, duk_uarridx_t arr_index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_uarridx(ctx, arr_index);
|
|
return duk_has_prop(ctx, obj_index);
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_has_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
duk_push_hstring(ctx, DUK_HTHREAD_GET_STRING(thr, stridx));
|
|
return duk_has_prop(ctx, obj_index);
|
|
}
|
|
|
|
/* Define own property without inheritance looks and such. This differs from
|
|
* [[DefineOwnProperty]] because special behaviors (like Array 'length') are
|
|
* not invoked by this method. The caller must be careful to invoke any such
|
|
* behaviors if necessary.
|
|
*/
|
|
DUK_INTERNAL void duk_xdef_prop(duk_context *ctx, duk_idx_t obj_index, duk_small_uint_t desc_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj = duk_require_hobject(ctx, obj_index);
|
|
DUK_ASSERT(obj != NULL);
|
|
key = duk_to_hstring(ctx, -2);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(duk_require_tval(ctx, -1) != NULL);
|
|
|
|
duk_hobject_define_property_internal(thr, obj, key, desc_flags);
|
|
|
|
duk_pop(ctx); /* pop key */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_xdef_prop_index(duk_context *ctx, duk_idx_t obj_index, duk_uarridx_t arr_index, duk_small_uint_t desc_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj = duk_require_hobject(ctx, obj_index);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
duk_hobject_define_property_internal_arridx(thr, obj, arr_index, desc_flags);
|
|
/* value popped by call */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_xdef_prop_stridx(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_small_uint_t desc_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
|
|
obj = duk_require_hobject(ctx, obj_index);
|
|
DUK_ASSERT(obj != NULL);
|
|
key = DUK_HTHREAD_GET_STRING(thr, stridx);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(duk_require_tval(ctx, -1) != NULL);
|
|
|
|
duk_hobject_define_property_internal(thr, obj, key, desc_flags);
|
|
/* value popped by call */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_xdef_prop_stridx_builtin(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_small_int_t builtin_idx, duk_small_uint_t desc_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(stridx >= 0);
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
DUK_ASSERT_DISABLE(builtin_idx >= 0);
|
|
DUK_ASSERT(builtin_idx < DUK_NUM_BUILTINS);
|
|
|
|
obj = duk_require_hobject(ctx, obj_index);
|
|
DUK_ASSERT(obj != NULL);
|
|
key = DUK_HTHREAD_GET_STRING(thr, stridx);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
duk_push_hobject(ctx, thr->builtins[builtin_idx]);
|
|
duk_hobject_define_property_internal(thr, obj, key, desc_flags);
|
|
/* value popped by call */
|
|
}
|
|
|
|
/* This is a rare property helper; it sets the global thrower (E5 Section 13.2.3)
|
|
* setter/getter into an object property. This is needed by the 'arguments'
|
|
* object creation code, function instance creation code, and Function.prototype.bind().
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_xdef_prop_stridx_thrower(duk_context *ctx, duk_idx_t obj_index, duk_small_int_t stridx, duk_small_uint_t desc_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj = duk_require_hobject(ctx, obj_index);
|
|
duk_hobject *thrower = thr->builtins[DUK_BIDX_TYPE_ERROR_THROWER];
|
|
duk_hobject_define_accessor_internal(thr, obj, DUK_HTHREAD_GET_STRING(thr, stridx), thrower, thrower, desc_flags);
|
|
}
|
|
|
|
/* Object.defineProperty() equivalent C binding. */
|
|
DUK_EXTERNAL void duk_def_prop(duk_context *ctx, duk_idx_t obj_index, duk_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t idx_base;
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
duk_idx_t idx_value;
|
|
duk_hobject *get;
|
|
duk_hobject *set;
|
|
duk_uint_t is_data_desc;
|
|
duk_uint_t is_acc_desc;
|
|
|
|
obj = duk_require_hobject(ctx, obj_index);
|
|
|
|
is_data_desc = flags & (DUK_DEFPROP_HAVE_VALUE | DUK_DEFPROP_HAVE_WRITABLE);
|
|
is_acc_desc = flags & (DUK_DEFPROP_HAVE_GETTER | DUK_DEFPROP_HAVE_SETTER);
|
|
if (is_data_desc && is_acc_desc) {
|
|
/* "Have" flags must not be conflicting so that they would
|
|
* apply to both a plain property and an accessor at the same
|
|
* time.
|
|
*/
|
|
goto fail_invalid_desc;
|
|
}
|
|
|
|
idx_base = duk_get_top_index(ctx);
|
|
if (flags & DUK_DEFPROP_HAVE_SETTER) {
|
|
duk_require_type_mask(ctx, idx_base, DUK_TYPE_MASK_UNDEFINED |
|
|
DUK_TYPE_MASK_OBJECT |
|
|
DUK_TYPE_MASK_LIGHTFUNC);
|
|
set = duk_get_hobject_or_lfunc_coerce(ctx, idx_base);
|
|
if (set != NULL && !DUK_HOBJECT_IS_CALLABLE(set)) {
|
|
goto fail_not_callable;
|
|
}
|
|
idx_base--;
|
|
} else {
|
|
set = NULL;
|
|
}
|
|
if (flags & DUK_DEFPROP_HAVE_GETTER) {
|
|
duk_require_type_mask(ctx, idx_base, DUK_TYPE_MASK_UNDEFINED |
|
|
DUK_TYPE_MASK_OBJECT |
|
|
DUK_TYPE_MASK_LIGHTFUNC);
|
|
get = duk_get_hobject_or_lfunc_coerce(ctx, idx_base);
|
|
if (get != NULL && !DUK_HOBJECT_IS_CALLABLE(get)) {
|
|
goto fail_not_callable;
|
|
}
|
|
idx_base--;
|
|
} else {
|
|
get = NULL;
|
|
}
|
|
if (flags & DUK_DEFPROP_HAVE_VALUE) {
|
|
idx_value = idx_base;
|
|
idx_base--;
|
|
} else {
|
|
idx_value = (duk_idx_t) -1;
|
|
}
|
|
key = duk_require_hstring(ctx, idx_base);
|
|
|
|
duk_require_valid_index(ctx, idx_base);
|
|
|
|
duk_hobject_define_property_helper(ctx,
|
|
flags /*defprop_flags*/,
|
|
obj,
|
|
key,
|
|
idx_value,
|
|
get,
|
|
set);
|
|
|
|
/* Clean up stack */
|
|
|
|
duk_set_top(ctx, idx_base);
|
|
|
|
/* [ ... obj ... ] */
|
|
|
|
return;
|
|
|
|
fail_invalid_desc:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_DESCRIPTOR);
|
|
return;
|
|
|
|
fail_not_callable:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CALLABLE);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Object related
|
|
*
|
|
* Note: seal() and freeze() are accessible through Ecmascript bindings,
|
|
* and are not exposed through the API.
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_compact(duk_context *ctx, duk_idx_t obj_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj = duk_get_hobject(ctx, obj_index);
|
|
if (obj) {
|
|
/* Note: this may fail, caller should protect the call if necessary */
|
|
duk_hobject_compact_props(thr, obj);
|
|
}
|
|
}
|
|
|
|
/* XXX: the duk_hobject_enum.c stack APIs should be reworked */
|
|
|
|
DUK_EXTERNAL void duk_enum(duk_context *ctx, duk_idx_t obj_index, duk_uint_t enum_flags) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
duk_dup(ctx, obj_index);
|
|
duk_require_hobject_or_lfunc_coerce(ctx, -1);
|
|
duk_hobject_enumerator_create(ctx, enum_flags); /* [target] -> [enum] */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_next(duk_context *ctx, duk_idx_t enum_index, duk_bool_t get_value) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
duk_require_hobject(ctx, enum_index);
|
|
duk_dup(ctx, enum_index);
|
|
return duk_hobject_enumerator_next(ctx, get_value);
|
|
}
|
|
|
|
/*
|
|
* Helpers for writing multiple properties
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_put_function_list(duk_context *ctx, duk_idx_t obj_index, const duk_function_list_entry *funcs) {
|
|
const duk_function_list_entry *ent = funcs;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
if (ent != NULL) {
|
|
while (ent->key != NULL) {
|
|
duk_push_c_function(ctx, ent->value, ent->nargs);
|
|
duk_put_prop_string(ctx, obj_index, ent->key);
|
|
ent++;
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_put_number_list(duk_context *ctx, duk_idx_t obj_index, const duk_number_list_entry *numbers) {
|
|
const duk_number_list_entry *ent = numbers;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj_index = duk_require_normalize_index(ctx, obj_index);
|
|
if (ent != NULL) {
|
|
while (ent->key != NULL) {
|
|
duk_push_number(ctx, ent->value);
|
|
duk_put_prop_string(ctx, obj_index, ent->key);
|
|
ent++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shortcut for accessing global object properties
|
|
*/
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_get_global_string(duk_context *ctx, const char *key) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_bool_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr->builtins[DUK_BIDX_GLOBAL] != NULL);
|
|
|
|
/* XXX: direct implementation */
|
|
|
|
duk_push_hobject(ctx, thr->builtins[DUK_BIDX_GLOBAL]);
|
|
ret = duk_get_prop_string(ctx, -1, key);
|
|
duk_remove(ctx, -2);
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_put_global_string(duk_context *ctx, const char *key) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_bool_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr->builtins[DUK_BIDX_GLOBAL] != NULL);
|
|
|
|
/* XXX: direct implementation */
|
|
|
|
duk_push_hobject(ctx, thr->builtins[DUK_BIDX_GLOBAL]);
|
|
duk_insert(ctx, -2);
|
|
ret = duk_put_prop_string(ctx, -2, key); /* [ ... global val ] -> [ ... global ] */
|
|
duk_pop(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Object prototype
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_get_prototype(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_hobject *proto;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
obj = duk_require_hobject(ctx, index);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
/* XXX: shared helper for duk_push_hobject_or_undefined()? */
|
|
proto = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, obj);
|
|
if (proto) {
|
|
duk_push_hobject(ctx, proto);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_set_prototype(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_hobject *proto;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj = duk_require_hobject(ctx, index);
|
|
DUK_ASSERT(obj != NULL);
|
|
duk_require_type_mask(ctx, -1, DUK_TYPE_MASK_UNDEFINED |
|
|
DUK_TYPE_MASK_OBJECT);
|
|
proto = duk_get_hobject(ctx, -1);
|
|
/* proto can also be NULL here (allowed explicitly) */
|
|
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, obj, proto);
|
|
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
/*
|
|
* Object finalizer
|
|
*/
|
|
|
|
/* XXX: these could be implemented as macros calling an internal function
|
|
* directly.
|
|
* XXX: same issue as with Duktape.fin: there's no way to delete the property
|
|
* now (just set it to undefined).
|
|
*/
|
|
DUK_EXTERNAL void duk_get_finalizer(duk_context *ctx, duk_idx_t index) {
|
|
duk_get_prop_stridx(ctx, index, DUK_STRIDX_INT_FINALIZER);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_set_finalizer(duk_context *ctx, duk_idx_t index) {
|
|
duk_put_prop_stridx(ctx, index, DUK_STRIDX_INT_FINALIZER);
|
|
}
|
|
#line 1 "duk_api_stack.c"
|
|
/*
|
|
* API calls related to general value stack manipulation: resizing the value
|
|
* stack, pushing and popping values, type checking and reading values,
|
|
* coercing values, etc.
|
|
*
|
|
* Also contains internal functions (such as duk_get_tval()), defined
|
|
* in duk_api_internal.h, with semantics similar to the public API.
|
|
*/
|
|
|
|
/* XXX: repetition of stack pre-checks -> helper or macro or inline */
|
|
/* XXX: shared api error strings, and perhaps even throw code for rare cases? */
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Forward declarations
|
|
*/
|
|
|
|
DUK_LOCAL_DECL duk_idx_t duk__push_c_function_raw(duk_context *ctx, duk_c_function func, duk_idx_t nargs, duk_uint_t flags);
|
|
|
|
/*
|
|
* Global state for working around missing variadic macros
|
|
*/
|
|
|
|
#ifndef DUK_USE_VARIADIC_MACROS
|
|
DUK_EXTERNAL const char *duk_api_global_filename = NULL;
|
|
DUK_EXTERNAL duk_int_t duk_api_global_line = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Helpers
|
|
*/
|
|
|
|
#if defined(DUK_USE_VALSTACK_UNSAFE)
|
|
/* Faster but value stack overruns are memory unsafe. */
|
|
#define DUK__CHECK_SPACE() do { \
|
|
DUK_ASSERT(!(thr->valstack_top >= thr->valstack_end)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK__CHECK_SPACE() do { \
|
|
if (thr->valstack_top >= thr->valstack_end) { \
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK); \
|
|
} \
|
|
} while (0)
|
|
#endif
|
|
|
|
DUK_LOCAL duk_int_t duk__api_coerce_d2i(duk_context *ctx, duk_idx_t index, duk_bool_t require) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv;
|
|
duk_small_int_t c;
|
|
duk_double_t d;
|
|
|
|
thr = (duk_hthread *) ctx;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv == NULL) {
|
|
goto error_notnumber;
|
|
}
|
|
|
|
/*
|
|
* Special cases like NaN and +/- Infinity are handled explicitly
|
|
* because a plain C coercion from double to int handles these cases
|
|
* in undesirable ways. For instance, NaN may coerce to INT_MIN
|
|
* (not zero), and INT_MAX + 1 may coerce to INT_MIN (not INT_MAX).
|
|
*
|
|
* This double-to-int coercion differs from ToInteger() because it
|
|
* has a finite range (ToInteger() allows e.g. +/- Infinity). It
|
|
* also differs from ToInt32() because the INT_MIN/INT_MAX clamping
|
|
* depends on the size of the int type on the platform. In particular,
|
|
* on platforms with a 64-bit int type, the full range is allowed.
|
|
*/
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv)) {
|
|
duk_int64_t t = DUK_TVAL_GET_FASTINT(tv);
|
|
#if (DUK_INT_MAX <= 0x7fffffffL)
|
|
/* Clamping only necessary for 32-bit ints. */
|
|
if (t < DUK_INT_MIN) {
|
|
t = DUK_INT_MIN;
|
|
} else if (t > DUK_INT_MAX) {
|
|
t = DUK_INT_MAX;
|
|
}
|
|
#endif
|
|
return (duk_int_t) t;
|
|
}
|
|
#endif
|
|
|
|
if (DUK_TVAL_IS_NUMBER(tv)) {
|
|
d = DUK_TVAL_GET_NUMBER(tv);
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(d);
|
|
if (c == DUK_FP_NAN) {
|
|
return 0;
|
|
} else if (d < (duk_double_t) DUK_INT_MIN) {
|
|
/* covers -Infinity */
|
|
return DUK_INT_MIN;
|
|
} else if (d > (duk_double_t) DUK_INT_MAX) {
|
|
/* covers +Infinity */
|
|
return DUK_INT_MAX;
|
|
} else {
|
|
/* coerce towards zero */
|
|
return (duk_int_t) d;
|
|
}
|
|
}
|
|
|
|
error_notnumber:
|
|
|
|
if (require) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_NUMBER);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_uint_t duk__api_coerce_d2ui(duk_context *ctx, duk_idx_t index, duk_bool_t require) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv;
|
|
duk_small_int_t c;
|
|
duk_double_t d;
|
|
|
|
/* Same as above but for unsigned int range. */
|
|
|
|
thr = (duk_hthread *) ctx;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv == NULL) {
|
|
goto error_notnumber;
|
|
}
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv)) {
|
|
duk_int64_t t = DUK_TVAL_GET_FASTINT(tv);
|
|
if (t < 0) {
|
|
t = 0;
|
|
}
|
|
#if (DUK_UINT_MAX <= 0xffffffffUL)
|
|
/* Clamping only necessary for 32-bit ints. */
|
|
else if (t > DUK_UINT_MAX) {
|
|
t = DUK_UINT_MAX;
|
|
}
|
|
#endif
|
|
return (duk_uint_t) t;
|
|
}
|
|
#endif
|
|
|
|
if (DUK_TVAL_IS_NUMBER(tv)) {
|
|
d = DUK_TVAL_GET_NUMBER(tv);
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(d);
|
|
if (c == DUK_FP_NAN) {
|
|
return 0;
|
|
} else if (d < 0.0) {
|
|
/* covers -Infinity */
|
|
return (duk_uint_t) 0;
|
|
} else if (d > (duk_double_t) DUK_UINT_MAX) {
|
|
/* covers +Infinity */
|
|
return (duk_uint_t) DUK_UINT_MAX;
|
|
} else {
|
|
/* coerce towards zero */
|
|
return (duk_uint_t) d;
|
|
}
|
|
}
|
|
|
|
error_notnumber:
|
|
|
|
if (require) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_NUMBER);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stack index validation/normalization and getting a stack duk_tval ptr.
|
|
*
|
|
* These are called by many API entrypoints so the implementations must be
|
|
* fast and "inlined".
|
|
*
|
|
* There's some repetition because of this; keep the functions in sync.
|
|
*/
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_normalize_index(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t vs_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
|
|
/* Care must be taken to avoid pointer wrapping in the index
|
|
* validation. For instance, on a 32-bit platform with 8-byte
|
|
* duk_tval the index 0x20000000UL would wrap the memory space
|
|
* once.
|
|
*/
|
|
|
|
/* Assume value stack sizes (in elements) fits into duk_idx_t. */
|
|
vs_size = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
DUK_ASSERT(vs_size >= 0);
|
|
|
|
if (index < 0) {
|
|
index = vs_size + index;
|
|
if (DUK_UNLIKELY(index < 0)) {
|
|
/* Also catches index == DUK_INVALID_INDEX: vs_size >= 0
|
|
* so that vs_size + DUK_INVALID_INDEX cannot underflow
|
|
* and will always be negative.
|
|
*/
|
|
return DUK_INVALID_INDEX;
|
|
}
|
|
} else {
|
|
/* since index non-negative */
|
|
DUK_ASSERT(index != DUK_INVALID_INDEX);
|
|
|
|
if (DUK_UNLIKELY(index >= vs_size)) {
|
|
return DUK_INVALID_INDEX;
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(index >= 0);
|
|
DUK_ASSERT(index < vs_size);
|
|
return index;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_require_normalize_index(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t vs_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
|
|
vs_size = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
DUK_ASSERT(vs_size >= 0);
|
|
|
|
if (index < 0) {
|
|
index = vs_size + index;
|
|
if (DUK_UNLIKELY(index < 0)) {
|
|
goto invalid_index;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(index != DUK_INVALID_INDEX);
|
|
if (DUK_UNLIKELY(index >= vs_size)) {
|
|
goto invalid_index;
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(index >= 0);
|
|
DUK_ASSERT(index < vs_size);
|
|
return index;
|
|
|
|
invalid_index:
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_INDEX);
|
|
return 0; /* unreachable */
|
|
}
|
|
|
|
DUK_INTERNAL duk_tval *duk_get_tval(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t vs_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
|
|
vs_size = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
DUK_ASSERT(vs_size >= 0);
|
|
|
|
if (index < 0) {
|
|
index = vs_size + index;
|
|
if (DUK_UNLIKELY(index < 0)) {
|
|
return NULL;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(index != DUK_INVALID_INDEX);
|
|
if (DUK_UNLIKELY(index >= vs_size)) {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(index >= 0);
|
|
DUK_ASSERT(index < vs_size);
|
|
return thr->valstack_bottom + index;
|
|
}
|
|
|
|
DUK_INTERNAL duk_tval *duk_require_tval(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t vs_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
|
|
vs_size = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
DUK_ASSERT(vs_size >= 0);
|
|
|
|
if (index < 0) {
|
|
index = vs_size + index;
|
|
if (DUK_UNLIKELY(index < 0)) {
|
|
goto invalid_index;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(index != DUK_INVALID_INDEX);
|
|
if (DUK_UNLIKELY(index >= vs_size)) {
|
|
goto invalid_index;
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(index >= 0);
|
|
DUK_ASSERT(index < vs_size);
|
|
return thr->valstack_bottom + index;
|
|
|
|
invalid_index:
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_INDEX);
|
|
return NULL;
|
|
}
|
|
|
|
/* Non-critical. */
|
|
DUK_EXTERNAL duk_bool_t duk_is_valid_index(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
return (duk_normalize_index(ctx, index) >= 0);
|
|
}
|
|
|
|
/* Non-critical. */
|
|
DUK_EXTERNAL void duk_require_valid_index(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
|
|
if (duk_normalize_index(ctx, index) < 0) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_INDEX);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Value stack top handling
|
|
*/
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_get_top(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
return (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
}
|
|
|
|
/* set stack top within currently allocated range, but don't reallocate */
|
|
DUK_EXTERNAL void duk_set_top(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t vs_size;
|
|
duk_idx_t vs_limit;
|
|
duk_idx_t count;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(DUK_INVALID_INDEX < 0);
|
|
|
|
vs_size = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
vs_limit = (duk_idx_t) (thr->valstack_end - thr->valstack_bottom);
|
|
|
|
if (index < 0) {
|
|
/* Negative indices are always within allocated stack but
|
|
* must not go below zero index.
|
|
*/
|
|
index = vs_size + index;
|
|
if (index < 0) {
|
|
/* Also catches index == DUK_INVALID_INDEX. */
|
|
goto invalid_index;
|
|
}
|
|
} else {
|
|
/* Positive index can be higher than valstack top but must
|
|
* not go above allocated stack (equality is OK).
|
|
*/
|
|
if (index > vs_limit) {
|
|
goto invalid_index;
|
|
}
|
|
}
|
|
DUK_ASSERT(index >= 0);
|
|
DUK_ASSERT(index <= vs_limit);
|
|
|
|
if (index >= vs_size) {
|
|
/* Stack size increases or stays the same. Fill the new
|
|
* entries (if any) with undefined. No pointer stability
|
|
* issues here so we can use a running pointer.
|
|
*/
|
|
|
|
tv = thr->valstack_top;
|
|
count = index - vs_size;
|
|
DUK_ASSERT(count >= 0);
|
|
while (count > 0) {
|
|
/* no need to decref previous or new value */
|
|
count--;
|
|
DUK_ASSERT(DUK_TVAL_IS_UNDEFINED_UNUSED(tv));
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv);
|
|
tv++;
|
|
}
|
|
thr->valstack_top = tv;
|
|
} else {
|
|
/* Stack size decreases, DECREF entries which are above the
|
|
* new top. Each DECREF potentially invalidates valstack
|
|
* pointers, so don't hold on to pointers. The valstack top
|
|
* must also be updated on every loop in case a GC is triggered.
|
|
*/
|
|
|
|
/* XXX: Here it would be useful to have a DECREF macro which
|
|
* doesn't need a NULL check, and does refzero queueing without
|
|
* running the refzero algorithm. There would be no pointer
|
|
* instability in this case, and code could be inlined. After
|
|
* the loop, one call to refzero would be needed.
|
|
*/
|
|
|
|
count = vs_size - index;
|
|
DUK_ASSERT(count > 0);
|
|
|
|
while (count > 0) {
|
|
count--;
|
|
tv = --thr->valstack_top; /* tv -> value just before prev top value */
|
|
DUK_ASSERT(tv >= thr->valstack_bottom);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
/* XXX: fast primitive to set a bunch of values to UNDEFINED_UNUSED */
|
|
|
|
}
|
|
}
|
|
return;
|
|
|
|
invalid_index:
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_INDEX);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_get_top_index(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
ret = ((duk_idx_t) (thr->valstack_top - thr->valstack_bottom)) - 1;
|
|
if (DUK_UNLIKELY(ret < 0)) {
|
|
/* Return invalid index; if caller uses this without checking
|
|
* in another API call, the index won't map to a valid stack
|
|
* entry.
|
|
*/
|
|
return DUK_INVALID_INDEX;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_require_top_index(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
ret = ((duk_idx_t) (thr->valstack_top - thr->valstack_bottom)) - 1;
|
|
if (DUK_UNLIKELY(ret < 0)) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_INDEX);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Value stack resizing.
|
|
*
|
|
* This resizing happens above the current "top": the value stack can be
|
|
* grown or shrunk, but the "top" is not affected. The value stack cannot
|
|
* be resized to a size below the current "top".
|
|
*
|
|
* The low level reallocation primitive must carefully recompute all value
|
|
* stack pointers, and must also work if ALL pointers are NULL. The resize
|
|
* is quite tricky because the valstack realloc may cause a mark-and-sweep,
|
|
* which may run finalizers. Running finalizers may resize the valstack
|
|
* recursively (the same value stack we're working on). So, after realloc
|
|
* returns, we know that the valstack "top" should still be the same (there
|
|
* should not be live values above the "top"), but its underlying size and
|
|
* pointer may have changed.
|
|
*/
|
|
|
|
/* XXX: perhaps refactor this to allow caller to specify some parameters, or
|
|
* at least a 'compact' flag which skips any spare or round-up .. useful for
|
|
* emergency gc.
|
|
*/
|
|
|
|
DUK_LOCAL duk_bool_t duk__resize_valstack(duk_context *ctx, duk_size_t new_size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_ptrdiff_t old_bottom_offset;
|
|
duk_ptrdiff_t old_top_offset;
|
|
duk_ptrdiff_t old_end_offset_post;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_ptrdiff_t old_end_offset_pre;
|
|
duk_tval *old_valstack_pre;
|
|
duk_tval *old_valstack_post;
|
|
#endif
|
|
duk_tval *new_valstack;
|
|
duk_tval *p;
|
|
duk_size_t new_alloc_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
DUK_ASSERT((duk_size_t) (thr->valstack_top - thr->valstack) <= new_size); /* can't resize below 'top' */
|
|
DUK_ASSERT(new_size <= thr->valstack_max); /* valstack limit caller has check, prevents wrapping */
|
|
DUK_ASSERT(new_size <= DUK_SIZE_MAX / sizeof(duk_tval)); /* specific assert for wrapping */
|
|
|
|
/* get pointer offsets for tweaking below */
|
|
old_bottom_offset = (((duk_uint8_t *) thr->valstack_bottom) - ((duk_uint8_t *) thr->valstack));
|
|
old_top_offset = (((duk_uint8_t *) thr->valstack_top) - ((duk_uint8_t *) thr->valstack));
|
|
#ifdef DUK_USE_DEBUG
|
|
old_end_offset_pre = (((duk_uint8_t *) thr->valstack_end) - ((duk_uint8_t *) thr->valstack)); /* not very useful, used for debugging */
|
|
old_valstack_pre = thr->valstack;
|
|
#endif
|
|
|
|
/* Allocate a new valstack.
|
|
*
|
|
* Note: cannot use a plain DUK_REALLOC() because a mark-and-sweep may
|
|
* invalidate the original thr->valstack base pointer inside the realloc
|
|
* process. See doc/memory-management.txt.
|
|
*/
|
|
|
|
new_alloc_size = sizeof(duk_tval) * new_size;
|
|
new_valstack = (duk_tval *) DUK_REALLOC_INDIRECT(thr->heap, duk_hthread_get_valstack_ptr, (void *) thr, new_alloc_size);
|
|
if (!new_valstack) {
|
|
/* Because new_size != 0, if condition doesn't need to be
|
|
* (new_valstack != NULL || new_size == 0).
|
|
*/
|
|
DUK_ASSERT(new_size != 0);
|
|
DUK_D(DUK_DPRINT("failed to resize valstack to %lu entries (%lu bytes)",
|
|
(unsigned long) new_size, (unsigned long) new_alloc_size));
|
|
return 0;
|
|
}
|
|
|
|
/* Note: the realloc may have triggered a mark-and-sweep which may
|
|
* have resized our valstack internally. However, the mark-and-sweep
|
|
* MUST NOT leave the stack bottom/top in a different state. Particular
|
|
* assumptions and facts:
|
|
*
|
|
* - The thr->valstack pointer may be different after realloc,
|
|
* and the offset between thr->valstack_end <-> thr->valstack
|
|
* may have changed.
|
|
* - The offset between thr->valstack_bottom <-> thr->valstack
|
|
* and thr->valstack_top <-> thr->valstack MUST NOT have changed,
|
|
* because mark-and-sweep must adhere to a strict stack policy.
|
|
* In other words, logical bottom and top MUST NOT have changed.
|
|
* - All values above the top are unreachable but are initialized
|
|
* to UNDEFINED_UNUSED, up to the post-realloc valstack_end.
|
|
* - 'old_end_offset' must be computed after realloc to be correct.
|
|
*/
|
|
|
|
DUK_ASSERT((((duk_uint8_t *) thr->valstack_bottom) - ((duk_uint8_t *) thr->valstack)) == old_bottom_offset);
|
|
DUK_ASSERT((((duk_uint8_t *) thr->valstack_top) - ((duk_uint8_t *) thr->valstack)) == old_top_offset);
|
|
|
|
/* success, fixup pointers */
|
|
old_end_offset_post = (((duk_uint8_t *) thr->valstack_end) - ((duk_uint8_t *) thr->valstack)); /* must be computed after realloc */
|
|
#ifdef DUK_USE_DEBUG
|
|
old_valstack_post = thr->valstack;
|
|
#endif
|
|
thr->valstack = new_valstack;
|
|
thr->valstack_end = new_valstack + new_size;
|
|
thr->valstack_bottom = (duk_tval *) ((duk_uint8_t *) new_valstack + old_bottom_offset);
|
|
thr->valstack_top = (duk_tval *) ((duk_uint8_t *) new_valstack + old_top_offset);
|
|
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
|
|
/* useful for debugging */
|
|
#ifdef DUK_USE_DEBUG
|
|
if (old_end_offset_pre != old_end_offset_post) {
|
|
DUK_D(DUK_DPRINT("valstack was resized during valstack_resize(), probably by mark-and-sweep; "
|
|
"end offset changed: %lu -> %lu",
|
|
(unsigned long) old_end_offset_pre,
|
|
(unsigned long) old_end_offset_post));
|
|
}
|
|
if (old_valstack_pre != old_valstack_post) {
|
|
DUK_D(DUK_DPRINT("valstack pointer changed during valstack_resize(), probably by mark-and-sweep: %p -> %p",
|
|
(void *) old_valstack_pre,
|
|
(void *) old_valstack_post));
|
|
}
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("resized valstack to %lu elements (%lu bytes), bottom=%ld, top=%ld, "
|
|
"new pointers: start=%p end=%p bottom=%p top=%p",
|
|
(unsigned long) new_size, (unsigned long) new_alloc_size,
|
|
(long) (thr->valstack_bottom - thr->valstack),
|
|
(long) (thr->valstack_top - thr->valstack),
|
|
(void *) thr->valstack, (void *) thr->valstack_end,
|
|
(void *) thr->valstack_bottom, (void *) thr->valstack_top));
|
|
|
|
/* init newly allocated slots (only) */
|
|
p = (duk_tval *) ((duk_uint8_t *) thr->valstack + old_end_offset_post);
|
|
while (p < thr->valstack_end) {
|
|
/* never executed if new size is smaller */
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(p);
|
|
p++;
|
|
}
|
|
|
|
/* assertion check: we maintain elements above top in known state */
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
p = thr->valstack_top;
|
|
while (p < thr->valstack_end) {
|
|
/* everything above old valstack top should be preinitialized now */
|
|
DUK_ASSERT(DUK_TVAL_IS_UNDEFINED_UNUSED(p));
|
|
p++;
|
|
}
|
|
#endif
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_valstack_resize_raw(duk_context *ctx,
|
|
duk_size_t min_new_size,
|
|
duk_small_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_size_t old_size;
|
|
duk_size_t new_size;
|
|
duk_bool_t is_shrink = 0;
|
|
duk_small_uint_t shrink_flag = (flags & DUK_VSRESIZE_FLAG_SHRINK);
|
|
duk_small_uint_t compact_flag = (flags & DUK_VSRESIZE_FLAG_COMPACT);
|
|
duk_small_uint_t throw_flag = (flags & DUK_VSRESIZE_FLAG_THROW);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("check valstack resize: min_new_size=%lu, curr_size=%ld, curr_top=%ld, "
|
|
"curr_bottom=%ld, shrink=%d, compact=%d, throw=%d",
|
|
(unsigned long) min_new_size,
|
|
(long) (thr->valstack_end - thr->valstack),
|
|
(long) (thr->valstack_top - thr->valstack),
|
|
(long) (thr->valstack_bottom - thr->valstack),
|
|
(int) shrink_flag, (int) compact_flag, (int) throw_flag));
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
|
|
old_size = (duk_size_t) (thr->valstack_end - thr->valstack);
|
|
|
|
if (min_new_size <= old_size) {
|
|
is_shrink = 1;
|
|
if (!shrink_flag ||
|
|
old_size - min_new_size < DUK_VALSTACK_SHRINK_THRESHOLD) {
|
|
DUK_DDD(DUK_DDDPRINT("no need to grow or shrink valstack"));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
new_size = min_new_size;
|
|
if (!compact_flag) {
|
|
if (is_shrink) {
|
|
/* shrink case; leave some spare */
|
|
new_size += DUK_VALSTACK_SHRINK_SPARE;
|
|
}
|
|
|
|
/* round up roughly to next 'grow step' */
|
|
new_size = (new_size / DUK_VALSTACK_GROW_STEP + 1) * DUK_VALSTACK_GROW_STEP;
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("want to %s valstack: %lu -> %lu elements (min_new_size %lu)",
|
|
(const char *) (new_size > old_size ? "grow" : "shrink"),
|
|
(unsigned long) old_size, (unsigned long) new_size,
|
|
(unsigned long) min_new_size));
|
|
|
|
if (new_size > thr->valstack_max) {
|
|
/* Note: may be triggered even if minimal new_size would not reach the limit,
|
|
* plan limit accordingly (taking DUK_VALSTACK_GROW_STEP into account).
|
|
*/
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_VALSTACK_LIMIT);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When resizing the valstack, a mark-and-sweep may be triggered for
|
|
* the allocation of the new valstack. If the mark-and-sweep needs
|
|
* to use our thread for something, it may cause *the same valstack*
|
|
* to be resized recursively. This happens e.g. when mark-and-sweep
|
|
* finalizers are called. This is taken into account carefully in
|
|
* duk__resize_valstack().
|
|
*
|
|
* 'new_size' is known to be <= valstack_max, which ensures that
|
|
* size_t and pointer arithmetic won't wrap in duk__resize_valstack().
|
|
*/
|
|
|
|
if (!duk__resize_valstack(ctx, new_size)) {
|
|
if (is_shrink) {
|
|
DUK_DD(DUK_DDPRINT("valstack resize failed, but is a shrink, ignore"));
|
|
return 1;
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("valstack resize failed"));
|
|
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_FAILED_TO_EXTEND_VALSTACK);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("valstack resize successful"));
|
|
return 1;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_check_stack(duk_context *ctx, duk_idx_t extra) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_size_t min_new_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (DUK_UNLIKELY(extra < 0)) {
|
|
/* Clamping to zero makes the API more robust to calling code
|
|
* calculation errors.
|
|
*/
|
|
extra = 0;
|
|
}
|
|
|
|
min_new_size = (thr->valstack_top - thr->valstack) + extra + DUK_VALSTACK_INTERNAL_EXTRA;
|
|
return duk_valstack_resize_raw(ctx,
|
|
min_new_size, /* min_new_size */
|
|
0 /* no shrink */ | /* flags */
|
|
0 /* no compact */ |
|
|
0 /* no throw */);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_require_stack(duk_context *ctx, duk_idx_t extra) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_size_t min_new_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (DUK_UNLIKELY(extra < 0)) {
|
|
/* Clamping to zero makes the API more robust to calling code
|
|
* calculation errors.
|
|
*/
|
|
extra = 0;
|
|
}
|
|
|
|
min_new_size = (thr->valstack_top - thr->valstack) + extra + DUK_VALSTACK_INTERNAL_EXTRA;
|
|
(void) duk_valstack_resize_raw(ctx,
|
|
min_new_size, /* min_new_size */
|
|
0 /* no shrink */ | /* flags */
|
|
0 /* no compact */ |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_check_stack_top(duk_context *ctx, duk_idx_t top) {
|
|
duk_size_t min_new_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (DUK_UNLIKELY(top < 0)) {
|
|
/* Clamping to zero makes the API more robust to calling code
|
|
* calculation errors.
|
|
*/
|
|
top = 0;
|
|
}
|
|
|
|
min_new_size = top + DUK_VALSTACK_INTERNAL_EXTRA;
|
|
return duk_valstack_resize_raw(ctx,
|
|
min_new_size, /* min_new_size */
|
|
0 /* no shrink */ | /* flags */
|
|
0 /* no compact */ |
|
|
0 /* no throw */);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_require_stack_top(duk_context *ctx, duk_idx_t top) {
|
|
duk_size_t min_new_size;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (DUK_UNLIKELY(top < 0)) {
|
|
/* Clamping to zero makes the API more robust to calling code
|
|
* calculation errors.
|
|
*/
|
|
top = 0;
|
|
}
|
|
|
|
min_new_size = top + DUK_VALSTACK_INTERNAL_EXTRA;
|
|
(void) duk_valstack_resize_raw(ctx,
|
|
min_new_size, /* min_new_size */
|
|
0 /* no shrink */ | /* flags */
|
|
0 /* no compact */ |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
}
|
|
|
|
/*
|
|
* Basic stack manipulation: swap, dup, insert, replace, etc
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_swap(duk_context *ctx, duk_idx_t index1, duk_idx_t index2) {
|
|
duk_tval *tv1;
|
|
duk_tval *tv2;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv1 = duk_require_tval(ctx, index1);
|
|
DUK_ASSERT(tv1 != NULL);
|
|
tv2 = duk_require_tval(ctx, index2);
|
|
DUK_ASSERT(tv2 != NULL);
|
|
|
|
/* If tv1==tv2 this is a NOP, no check is needed */
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_SET_TVAL(tv2, &tv_tmp);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_swap_top(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
duk_swap(ctx, index, -1);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_dup(duk_context *ctx, duk_idx_t from_index) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_from;
|
|
duk_tval *tv_to;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
|
|
tv_from = duk_require_tval(ctx, from_index);
|
|
tv_to = thr->valstack_top++;
|
|
DUK_ASSERT(tv_from != NULL);
|
|
DUK_ASSERT(tv_to != NULL);
|
|
DUK_TVAL_SET_TVAL(tv_to, tv_from);
|
|
DUK_TVAL_INCREF(thr, tv_to); /* no side effects */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_dup_top(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_from;
|
|
duk_tval *tv_to;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
|
|
if (thr->valstack_top - thr->valstack_bottom <= 0) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_INDEX);
|
|
}
|
|
tv_from = thr->valstack_top - 1;
|
|
tv_to = thr->valstack_top++;
|
|
DUK_ASSERT(tv_from != NULL);
|
|
DUK_ASSERT(tv_to != NULL);
|
|
DUK_TVAL_SET_TVAL(tv_to, tv_from);
|
|
DUK_TVAL_INCREF(thr, tv_to); /* no side effects */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_insert(duk_context *ctx, duk_idx_t to_index) {
|
|
duk_tval *p;
|
|
duk_tval *q;
|
|
duk_tval tv_tmp;
|
|
duk_size_t nbytes;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
p = duk_require_tval(ctx, to_index);
|
|
DUK_ASSERT(p != NULL);
|
|
q = duk_require_tval(ctx, -1);
|
|
DUK_ASSERT(q != NULL);
|
|
|
|
DUK_ASSERT(q >= p);
|
|
|
|
/* nbytes
|
|
* <--------->
|
|
* [ ... | p | x | x | q ]
|
|
* => [ ... | q | p | x | x ]
|
|
*/
|
|
|
|
nbytes = (duk_size_t) (((duk_uint8_t *) q) - ((duk_uint8_t *) p)); /* Note: 'q' is top-1 */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk_insert: to_index=%ld, p=%p, q=%p, nbytes=%lu",
|
|
(long) to_index, (void *) p, (void *) q, (unsigned long) nbytes));
|
|
|
|
/* No net refcount changes. */
|
|
|
|
if (nbytes > 0) {
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, q);
|
|
DUK_ASSERT(nbytes > 0);
|
|
DUK_MEMMOVE((void *) (p + 1), (void *) p, nbytes);
|
|
DUK_TVAL_SET_TVAL(p, &tv_tmp);
|
|
} else {
|
|
/* nop: insert top to top */
|
|
DUK_ASSERT(nbytes == 0);
|
|
DUK_ASSERT(p == q);
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_replace(duk_context *ctx, duk_idx_t to_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv1;
|
|
duk_tval *tv2;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv1 = duk_require_tval(ctx, -1);
|
|
DUK_ASSERT(tv1 != NULL);
|
|
tv2 = duk_require_tval(ctx, to_index);
|
|
DUK_ASSERT(tv2 != NULL);
|
|
|
|
/* For tv1 == tv2, both pointing to stack top, the end result
|
|
* is same as duk_pop(ctx).
|
|
*/
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv2);
|
|
DUK_TVAL_SET_TVAL(tv2, tv1);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv1);
|
|
thr->valstack_top--;
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_copy(duk_context *ctx, duk_idx_t from_index, duk_idx_t to_index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv1;
|
|
duk_tval *tv2;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_UNREF(thr); /* w/o refcounting */
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv1 = duk_require_tval(ctx, from_index);
|
|
DUK_ASSERT(tv1 != NULL);
|
|
tv2 = duk_require_tval(ctx, to_index);
|
|
DUK_ASSERT(tv2 != NULL);
|
|
|
|
/* For tv1 == tv2, this is a no-op (no explicit check needed). */
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv2);
|
|
DUK_TVAL_SET_TVAL(tv2, tv1);
|
|
DUK_TVAL_INCREF(thr, tv2); /* no side effects */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_remove(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *p;
|
|
duk_tval *q;
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk_tval tv_tmp;
|
|
#endif
|
|
duk_size_t nbytes;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
p = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(p != NULL);
|
|
q = duk_require_tval(ctx, -1);
|
|
DUK_ASSERT(q != NULL);
|
|
|
|
DUK_ASSERT(q >= p);
|
|
|
|
/* nbytes zero size case
|
|
* <--------->
|
|
* [ ... | p | x | x | q ] [ ... | p==q ]
|
|
* => [ ... | x | x | q ] [ ... ]
|
|
*/
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
/* use a temp: decref only when valstack reachable values are correct */
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, p);
|
|
#endif
|
|
|
|
nbytes = (duk_size_t) (((duk_uint8_t *) q) - ((duk_uint8_t *) p)); /* Note: 'q' is top-1 */
|
|
DUK_MEMMOVE(p, p + 1, nbytes); /* zero size not an issue: pointers are valid */
|
|
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(q);
|
|
thr->valstack_top--;
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Stack slice primitives
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_xcopymove_raw(duk_context *to_ctx, duk_context *from_ctx, duk_idx_t count, duk_bool_t is_copy) {
|
|
duk_hthread *to_thr = (duk_hthread *) to_ctx;
|
|
duk_hthread *from_thr = (duk_hthread *) from_ctx;
|
|
void *src;
|
|
duk_size_t nbytes;
|
|
duk_tval *p;
|
|
duk_tval *q;
|
|
|
|
/* XXX: several pointer comparison issues here */
|
|
|
|
DUK_ASSERT(to_ctx != NULL);
|
|
DUK_ASSERT(from_ctx != NULL);
|
|
|
|
if (to_ctx == from_ctx) {
|
|
DUK_ERROR(to_thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CONTEXT);
|
|
return;
|
|
}
|
|
if ((count < 0) ||
|
|
(count > (duk_idx_t) to_thr->valstack_max)) {
|
|
/* Maximum value check ensures 'nbytes' won't wrap below. */
|
|
DUK_ERROR(to_thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_COUNT);
|
|
return;
|
|
}
|
|
|
|
nbytes = sizeof(duk_tval) * count;
|
|
if (nbytes == 0) {
|
|
return;
|
|
}
|
|
DUK_ASSERT(to_thr->valstack_top <= to_thr->valstack_end);
|
|
if ((duk_size_t) ((duk_uint8_t *) to_thr->valstack_end - (duk_uint8_t *) to_thr->valstack_top) < nbytes) {
|
|
DUK_ERROR(to_thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
src = (void *) ((duk_uint8_t *) from_thr->valstack_top - nbytes);
|
|
if (src < (void *) from_thr->valstack_bottom) {
|
|
DUK_ERROR(to_thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_COUNT);
|
|
}
|
|
|
|
/* copy values (no overlap even if to_ctx == from_ctx; that's not
|
|
* allowed now anyway)
|
|
*/
|
|
DUK_ASSERT(nbytes > 0);
|
|
DUK_MEMCPY((void *) to_thr->valstack_top, src, nbytes);
|
|
|
|
p = to_thr->valstack_top;
|
|
to_thr->valstack_top = (duk_tval *) (((duk_uint8_t *) p) + nbytes);
|
|
|
|
if (is_copy) {
|
|
/* incref copies, keep originals */
|
|
q = to_thr->valstack_top;
|
|
while (p < q) {
|
|
DUK_TVAL_INCREF(to_thr, p); /* no side effects */
|
|
p++;
|
|
}
|
|
} else {
|
|
/* no net refcount change */
|
|
p = from_thr->valstack_top;
|
|
q = (duk_tval *) (((duk_uint8_t *) p) - nbytes);
|
|
from_thr->valstack_top = q;
|
|
|
|
/* elements above stack top are kept UNUSED */
|
|
while (p > q) {
|
|
p--;
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(p);
|
|
|
|
/* XXX: fast primitive to set a bunch of values to UNDEFINED_UNUSED */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get/require
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_require_undefined(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_UNDEFINED(tv)) {
|
|
/* Note: accept both 'actual' and 'unused' undefined */
|
|
return;
|
|
}
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_UNDEFINED);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_require_null(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_NULL(tv)) {
|
|
return;
|
|
}
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_NULL);
|
|
return; /* not reachable */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_get_boolean(duk_context *ctx, duk_idx_t index) {
|
|
duk_bool_t ret = 0; /* default: false */
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_BOOLEAN(tv)) {
|
|
ret = DUK_TVAL_GET_BOOLEAN(tv);
|
|
}
|
|
|
|
DUK_ASSERT(ret == 0 || ret == 1);
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_require_boolean(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_BOOLEAN(tv)) {
|
|
duk_bool_t ret = DUK_TVAL_GET_BOOLEAN(tv);
|
|
DUK_ASSERT(ret == 0 || ret == 1);
|
|
return ret;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_BOOLEAN);
|
|
return 0; /* not reachable */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_double_t duk_get_number(duk_context *ctx, duk_idx_t index) {
|
|
duk_double_union ret;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
ret.d = DUK_DOUBLE_NAN; /* default: NaN */
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_NUMBER(tv)) {
|
|
ret.d = DUK_TVAL_GET_NUMBER(tv);
|
|
}
|
|
|
|
/*
|
|
* Number should already be in NaN-normalized form, but let's
|
|
* normalize anyway.
|
|
*/
|
|
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&ret);
|
|
return ret.d;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_double_t duk_require_number(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_NUMBER(tv)) {
|
|
duk_double_union ret;
|
|
ret.d = DUK_TVAL_GET_NUMBER(tv);
|
|
|
|
/*
|
|
* Number should already be in NaN-normalized form,
|
|
* but let's normalize anyway.
|
|
*/
|
|
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&ret);
|
|
return ret.d;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_NUMBER);
|
|
return DUK_DOUBLE_NAN; /* not reachable */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_get_int(duk_context *ctx, duk_idx_t index) {
|
|
/* Custom coercion for API */
|
|
return (duk_int_t) duk__api_coerce_d2i(ctx, index, 0 /*require*/);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_uint_t duk_get_uint(duk_context *ctx, duk_idx_t index) {
|
|
/* Custom coercion for API */
|
|
return (duk_uint_t) duk__api_coerce_d2ui(ctx, index, 0 /*require*/);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_require_int(duk_context *ctx, duk_idx_t index) {
|
|
/* Custom coercion for API */
|
|
return (duk_int_t) duk__api_coerce_d2i(ctx, index, 1 /*require*/);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_uint_t duk_require_uint(duk_context *ctx, duk_idx_t index) {
|
|
/* Custom coercion for API */
|
|
return (duk_uint_t) duk__api_coerce_d2ui(ctx, index, 1 /*require*/);
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_get_lstring(duk_context *ctx, duk_idx_t index, duk_size_t *out_len) {
|
|
const char *ret;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* default: NULL, length 0 */
|
|
ret = NULL;
|
|
if (out_len) {
|
|
*out_len = 0;
|
|
}
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_STRING(tv)) {
|
|
/* Here we rely on duk_hstring instances always being zero
|
|
* terminated even if the actual string is not.
|
|
*/
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
ret = (const char *) DUK_HSTRING_GET_DATA(h);
|
|
if (out_len) {
|
|
*out_len = DUK_HSTRING_GET_BYTELEN(h);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_require_lstring(duk_context *ctx, duk_idx_t index, duk_size_t *out_len) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
const char *ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: this check relies on the fact that even a zero-size string
|
|
* has a non-NULL pointer.
|
|
*/
|
|
ret = duk_get_lstring(ctx, index, out_len);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_STRING);
|
|
return NULL; /* not reachable */
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_get_string(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
return duk_get_lstring(ctx, index, NULL);
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_require_string(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
return duk_require_lstring(ctx, index, NULL);
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_get_pointer(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_POINTER(tv)) {
|
|
void *p = DUK_TVAL_GET_POINTER(tv); /* may be NULL */
|
|
return (void *) p;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_require_pointer(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: here we must be wary of the fact that a pointer may be
|
|
* valid and be a NULL.
|
|
*/
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_POINTER(tv)) {
|
|
void *p = DUK_TVAL_GET_POINTER(tv); /* may be NULL */
|
|
return (void *) p;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_POINTER);
|
|
return NULL; /* not reachable */
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL void *duk_get_voidptr(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk_heaphdr *h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (void *) h;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
DUK_EXTERNAL void *duk_get_buffer(duk_context *ctx, duk_idx_t index, duk_size_t *out_size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
if (out_size != NULL) {
|
|
*out_size = 0;
|
|
}
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_BUFFER(tv)) {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
if (out_size) {
|
|
*out_size = DUK_HBUFFER_GET_SIZE(h);
|
|
}
|
|
return (void *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h); /* may be NULL (but only if size is 0) */
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_require_buffer(duk_context *ctx, duk_idx_t index, duk_size_t *out_size) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (out_size != NULL) {
|
|
*out_size = 0;
|
|
}
|
|
|
|
/* Note: here we must be wary of the fact that a data pointer may
|
|
* be a NULL for a zero-size buffer.
|
|
*/
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_BUFFER(tv)) {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
if (out_size) {
|
|
*out_size = DUK_HBUFFER_GET_SIZE(h);
|
|
}
|
|
return (void *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h); /* may be NULL (but only if size is 0) */
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_BUFFER);
|
|
return NULL; /* not reachable */
|
|
}
|
|
|
|
/* Raw helper for getting a value from the stack, checking its tag, and possible its object class.
|
|
* The tag cannot be a number because numbers don't have an internal tag in the packed representation.
|
|
*/
|
|
DUK_INTERNAL duk_heaphdr *duk_get_tagged_heaphdr_raw(duk_context *ctx, duk_idx_t index, duk_uint_t flags_and_tag) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_small_uint_t tag = flags_and_tag & 0xffffU; /* tags can be up to 16 bits */
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && (DUK_TVAL_GET_TAG(tv) == tag)) {
|
|
duk_heaphdr *ret;
|
|
|
|
/* Note: tag comparison in general doesn't work for numbers,
|
|
* but it does work for everything else (heap objects here).
|
|
*/
|
|
ret = DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(ret != NULL); /* tagged null pointers should never occur */
|
|
|
|
/* If class check has been requested, tag must also be DUK_TAG_OBJECT.
|
|
* This allows us to just check the class check flag without checking
|
|
* the tag also.
|
|
*/
|
|
DUK_ASSERT((flags_and_tag & DUK_GETTAGGED_FLAG_CHECK_CLASS) == 0 ||
|
|
tag == DUK_TAG_OBJECT);
|
|
|
|
if ((flags_and_tag & DUK_GETTAGGED_FLAG_CHECK_CLASS) == 0 || /* no class check */
|
|
(duk_int_t) DUK_HOBJECT_GET_CLASS_NUMBER((duk_hobject *) ret) == /* or class check matches */
|
|
(duk_int_t) ((flags_and_tag >> DUK_GETTAGGED_CLASS_SHIFT) & 0xff)) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (flags_and_tag & DUK_GETTAGGED_FLAG_ALLOW_NULL) {
|
|
return (duk_heaphdr *) NULL;
|
|
}
|
|
|
|
/* Formatting the tag number here is not very useful: the tag value
|
|
* is Duktape internal (not the same as DUK_TYPE_xxx) and even depends
|
|
* on the duk_tval layout. If anything, add a human readable type here.
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_UNEXPECTED_TYPE);
|
|
return NULL; /* not reachable */
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_get_hstring(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_hstring *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_STRING | DUK_GETTAGGED_FLAG_ALLOW_NULL);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_require_hstring(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_hstring *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_STRING);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hobject *duk_get_hobject(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT | DUK_GETTAGGED_FLAG_ALLOW_NULL);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hobject *duk_require_hobject(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hbuffer *duk_get_hbuffer(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_hbuffer *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_BUFFER | DUK_GETTAGGED_FLAG_ALLOW_NULL);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hbuffer *duk_require_hbuffer(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_hbuffer *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_BUFFER);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hthread *duk_get_hthread(duk_context *ctx, duk_idx_t index) {
|
|
duk_hobject *h = (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT | DUK_GETTAGGED_FLAG_ALLOW_NULL);
|
|
if (h != NULL && !DUK_HOBJECT_IS_THREAD(h)) {
|
|
h = NULL;
|
|
}
|
|
return (duk_hthread *) h;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hthread *duk_require_hthread(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h = (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT);
|
|
DUK_ASSERT(h != NULL);
|
|
if (!DUK_HOBJECT_IS_THREAD(h)) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_THREAD);
|
|
}
|
|
return (duk_hthread *) h;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hcompiledfunction *duk_get_hcompiledfunction(duk_context *ctx, duk_idx_t index) {
|
|
duk_hobject *h = (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT | DUK_GETTAGGED_FLAG_ALLOW_NULL);
|
|
if (h != NULL && !DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
h = NULL;
|
|
}
|
|
return (duk_hcompiledfunction *) h;
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_hcompiledfunction *duk_require_hcompiledfunction(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h = (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT);
|
|
DUK_ASSERT(h != NULL);
|
|
if (!DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_COMPILEDFUNCTION);
|
|
}
|
|
return (duk_hcompiledfunction *) h;
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL duk_hnativefunction *duk_get_hnativefunction(duk_context *ctx, duk_idx_t index) {
|
|
duk_hobject *h = (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT | DUK_GETTAGGED_FLAG_ALLOW_NULL);
|
|
if (h != NULL && !DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
h = NULL;
|
|
}
|
|
return (duk_hnativefunction *) h;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hnativefunction *duk_require_hnativefunction(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h = (duk_hobject *) duk_get_tagged_heaphdr_raw(ctx, index, DUK_TAG_OBJECT);
|
|
DUK_ASSERT(h != NULL);
|
|
if (!DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_NATIVEFUNCTION);
|
|
}
|
|
return (duk_hnativefunction *) h;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_c_function duk_get_c_function(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
duk_hobject *h;
|
|
duk_hnativefunction *f;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return NULL;
|
|
}
|
|
if (!DUK_TVAL_IS_OBJECT(tv)) {
|
|
return NULL;
|
|
}
|
|
h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (!DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
return NULL;
|
|
}
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_NATIVEFUNCTION(h));
|
|
f = (duk_hnativefunction *) h;
|
|
|
|
return f->func;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_c_function duk_require_c_function(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_c_function ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
ret = duk_get_c_function(ctx, index);
|
|
if (!ret) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_C_FUNCTION);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_context *duk_get_context(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_context *) duk_get_hthread(ctx, index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_context *duk_require_context(duk_context *ctx, duk_idx_t index) {
|
|
return (duk_context *) duk_require_hthread(ctx, index);
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_get_heapptr(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
void *ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
ret = (void *) DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(ret != NULL);
|
|
return ret;
|
|
}
|
|
|
|
return (void *) NULL;
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_require_heapptr(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
void *ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
ret = (void *) DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(ret != NULL);
|
|
return ret;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_UNEXPECTED_TYPE);
|
|
return (void *) NULL; /* not reachable */
|
|
}
|
|
|
|
#if 0
|
|
/* This would be pointless: we'd return NULL for both lightfuncs and
|
|
* unexpected types.
|
|
*/
|
|
duk_hobject *duk_get_hobject_or_lfunc(duk_context *ctx, duk_idx_t index) {
|
|
}
|
|
#endif
|
|
|
|
/* Useful for internal call sites where we either expect an object (function)
|
|
* or a lightfunc. Accepts an object (returned as is) or a lightfunc (coerced
|
|
* to an object). Return value is NULL if value is neither an object nor a
|
|
* lightfunc.
|
|
*/
|
|
duk_hobject *duk_get_hobject_or_lfunc_coerce(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
return DUK_TVAL_GET_OBJECT(tv);
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv)) {
|
|
duk_to_object(ctx, index);
|
|
return duk_require_hobject(ctx, index);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Useful for internal call sites where we either expect an object (function)
|
|
* or a lightfunc. Returns NULL for a lightfunc.
|
|
*/
|
|
DUK_INTERNAL duk_hobject *duk_require_hobject_or_lfunc(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
return DUK_TVAL_GET_OBJECT(tv);
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv)) {
|
|
return NULL;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_UNEXPECTED_TYPE);
|
|
return NULL; /* not reachable */
|
|
}
|
|
|
|
/* Useful for internal call sites where we either expect an object (function)
|
|
* or a lightfunc. Accepts an object (returned as is) or a lightfunc (coerced
|
|
* to an object). Return value is never NULL.
|
|
*/
|
|
DUK_INTERNAL duk_hobject *duk_require_hobject_or_lfunc_coerce(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
return DUK_TVAL_GET_OBJECT(tv);
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv)) {
|
|
duk_to_object(ctx, index);
|
|
return duk_require_hobject(ctx, index);
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_UNEXPECTED_TYPE);
|
|
return NULL; /* not reachable */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_size_t duk_get_length(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL:
|
|
case DUK_TAG_BOOLEAN:
|
|
case DUK_TAG_POINTER:
|
|
return 0;
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (duk_size_t) DUK_HSTRING_GET_CHARLEN(h);
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
duk_hobject *h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (duk_size_t) duk_hobject_get_length((duk_hthread *) ctx, h);
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (duk_size_t) DUK_HBUFFER_GET_SIZE(h);
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
duk_small_uint_t lf_flags;
|
|
lf_flags = DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv);
|
|
return (duk_size_t) DUK_LFUNC_FLAGS_GET_LENGTH(lf_flags);
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default:
|
|
/* number */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
return 0;
|
|
}
|
|
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_INTERNAL void duk_set_length(duk_context *ctx, duk_idx_t index, duk_size_t length) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
h = duk_get_hobject(ctx, index);
|
|
if (!h) {
|
|
return;
|
|
}
|
|
|
|
duk_hobject_set_length(thr, h, (duk_uint32_t) length); /* XXX: typing */
|
|
}
|
|
|
|
/*
|
|
* Conversions and coercions
|
|
*
|
|
* The conversion/coercions are in-place operations on the value stack.
|
|
* Some operations are implemented here directly, while others call a
|
|
* helper in duk_js_ops.c after validating arguments.
|
|
*/
|
|
|
|
/* E5 Section 8.12.8 */
|
|
|
|
DUK_LOCAL duk_bool_t duk__defaultvalue_coerce_attempt(duk_context *ctx, duk_idx_t index, duk_small_int_t func_stridx) {
|
|
if (duk_get_prop_stridx(ctx, index, func_stridx)) {
|
|
/* [ ... func ] */
|
|
if (duk_is_callable(ctx, -1)) {
|
|
duk_dup(ctx, index); /* -> [ ... func this ] */
|
|
duk_call_method(ctx, 0); /* -> [ ... retval ] */
|
|
if (duk_is_primitive(ctx, -1)) {
|
|
duk_replace(ctx, index);
|
|
return 1;
|
|
}
|
|
/* [ ... retval ]; popped below */
|
|
}
|
|
}
|
|
duk_pop(ctx); /* [ ... func/retval ] -> [ ... ] */
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_to_defaultvalue(duk_context *ctx, duk_idx_t index, duk_int_t hint) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
/* inline initializer for coercers[] is not allowed by old compilers like BCC */
|
|
duk_small_int_t coercers[2];
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
coercers[0] = DUK_STRIDX_VALUE_OF;
|
|
coercers[1] = DUK_STRIDX_TO_STRING;
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
obj = duk_require_hobject_or_lfunc(ctx, index);
|
|
|
|
if (hint == DUK_HINT_NONE) {
|
|
if (obj != NULL && DUK_HOBJECT_GET_CLASS_NUMBER(obj) == DUK_HOBJECT_CLASS_DATE) {
|
|
hint = DUK_HINT_STRING;
|
|
} else {
|
|
hint = DUK_HINT_NUMBER;
|
|
}
|
|
}
|
|
|
|
if (hint == DUK_HINT_STRING) {
|
|
coercers[0] = DUK_STRIDX_TO_STRING;
|
|
coercers[1] = DUK_STRIDX_VALUE_OF;
|
|
}
|
|
|
|
if (duk__defaultvalue_coerce_attempt(ctx, index, coercers[0])) {
|
|
return;
|
|
}
|
|
|
|
if (duk__defaultvalue_coerce_attempt(ctx, index, coercers[1])) {
|
|
return;
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_DEFAULTVALUE_COERCE_FAILED);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_to_undefined(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_to_null(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_NULL(tv); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
}
|
|
|
|
/* E5 Section 9.1 */
|
|
DUK_EXTERNAL void duk_to_primitive(duk_context *ctx, duk_idx_t index, duk_int_t hint) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(hint == DUK_HINT_NONE || hint == DUK_HINT_NUMBER || hint == DUK_HINT_STRING);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
if (!duk_check_type_mask(ctx, index, DUK_TYPE_MASK_OBJECT |
|
|
DUK_TYPE_MASK_LIGHTFUNC)) {
|
|
/* everything except object stay as is */
|
|
return;
|
|
}
|
|
duk_to_defaultvalue(ctx, index, hint);
|
|
}
|
|
|
|
/* E5 Section 9.2 */
|
|
DUK_EXTERNAL duk_bool_t duk_to_boolean(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_bool_t val;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
val = duk_js_toboolean(tv);
|
|
DUK_ASSERT(val == 0 || val == 1);
|
|
|
|
/* Note: no need to re-lookup tv, conversion is side effect free */
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_BOOLEAN(tv, val); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return val;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_double_t duk_to_number(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_double_t d;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
/* XXX: fastint? */
|
|
d = duk_js_tonumber(thr, tv);
|
|
|
|
/* Note: need to re-lookup because ToNumber() may have side effects */
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_NUMBER(tv, d); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return d;
|
|
}
|
|
|
|
/* XXX: combine all the integer conversions: they share everything
|
|
* but the helper function for coercion.
|
|
*/
|
|
|
|
typedef duk_double_t (*duk__toint_coercer)(duk_hthread *thr, duk_tval *tv);
|
|
|
|
DUK_LOCAL duk_double_t duk__to_int_uint_helper(duk_context *ctx, duk_idx_t index, duk__toint_coercer coerce_func) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_double_t d;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
d = coerce_func(thr, tv);
|
|
|
|
/* XXX: fastint? */
|
|
|
|
/* Relookup in case coerce_func() has side effects, e.g. ends up coercing an object */
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_NUMBER(tv, d); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return d;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_to_int(duk_context *ctx, duk_idx_t index) {
|
|
/* Value coercion (in stack): ToInteger(), E5 Section 9.4
|
|
* API return value coercion: custom
|
|
*/
|
|
(void) duk__to_int_uint_helper(ctx, index, duk_js_tointeger);
|
|
return (duk_int_t) duk__api_coerce_d2i(ctx, index, 0 /*require*/);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_uint_t duk_to_uint(duk_context *ctx, duk_idx_t index) {
|
|
/* Value coercion (in stack): ToInteger(), E5 Section 9.4
|
|
* API return value coercion: custom
|
|
*/
|
|
(void) duk__to_int_uint_helper(ctx, index, duk_js_tointeger);
|
|
return (duk_uint_t) duk__api_coerce_d2ui(ctx, index, 0 /*require*/);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int32_t duk_to_int32(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_int32_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
ret = duk_js_toint32(thr, tv);
|
|
|
|
/* Relookup in case coerce_func() has side effects, e.g. ends up coercing an object */
|
|
tv = duk_require_tval(ctx, index);
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_FASTINT_I32(tv, ret); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return ret;
|
|
#else
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) ret); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return ret;
|
|
#endif
|
|
}
|
|
|
|
DUK_EXTERNAL duk_uint32_t duk_to_uint32(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_uint32_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
ret = duk_js_touint32(thr, tv);
|
|
|
|
/* Relookup in case coerce_func() has side effects, e.g. ends up coercing an object */
|
|
tv = duk_require_tval(ctx, index);
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_FASTINT_U32(tv, ret); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return ret;
|
|
#else
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) ret); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_uint16_t duk_to_uint16(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_uint16_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
ret = duk_js_touint16(thr, tv);
|
|
|
|
/* Relookup in case coerce_func() has side effects, e.g. ends up coercing an object */
|
|
tv = duk_require_tval(ctx, index);
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_FASTINT_U32(tv, ret); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return ret;
|
|
#else
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) ret); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_to_lstring(duk_context *ctx, duk_idx_t index, duk_size_t *out_len) {
|
|
(void) duk_to_string(ctx, index);
|
|
return duk_require_lstring(ctx, index, out_len);
|
|
}
|
|
|
|
DUK_LOCAL duk_ret_t duk__safe_to_string_raw(duk_context *ctx) {
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_safe_to_lstring(duk_context *ctx, duk_idx_t index, duk_size_t *out_len) {
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
/* We intentionally ignore the duk_safe_call() return value and only
|
|
* check the output type. This way we don't also need to check that
|
|
* the returned value is indeed a string in the success case.
|
|
*/
|
|
|
|
duk_dup(ctx, index);
|
|
(void) duk_safe_call(ctx, duk__safe_to_string_raw, 1 /*nargs*/, 1 /*nrets*/);
|
|
if (!duk_is_string(ctx, -1)) {
|
|
/* Error: try coercing error to string once. */
|
|
(void) duk_safe_call(ctx, duk__safe_to_string_raw, 1 /*nargs*/, 1 /*nrets*/);
|
|
if (!duk_is_string(ctx, -1)) {
|
|
/* Double error */
|
|
duk_pop(ctx);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_UC_ERROR);
|
|
} else {
|
|
;
|
|
}
|
|
} else {
|
|
;
|
|
}
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
|
|
duk_replace(ctx, index);
|
|
return duk_require_lstring(ctx, index, out_len);
|
|
}
|
|
|
|
/* XXX: other variants like uint, u32 etc */
|
|
DUK_INTERNAL duk_int_t duk_to_int_clamped_raw(duk_context *ctx, duk_idx_t index, duk_int_t minval, duk_int_t maxval, duk_bool_t *out_clamped) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_double_t d, dmin, dmax;
|
|
duk_int_t res;
|
|
duk_bool_t clamped = 0;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
d = duk_js_tointeger(thr, tv); /* E5 Section 9.4, ToInteger() */
|
|
|
|
dmin = (duk_double_t) minval;
|
|
dmax = (duk_double_t) maxval;
|
|
|
|
if (d < dmin) {
|
|
clamped = 1;
|
|
res = minval;
|
|
d = dmin;
|
|
} else if (d > dmax) {
|
|
clamped = 1;
|
|
res = maxval;
|
|
d = dmax;
|
|
} else {
|
|
res = (duk_int_t) d;
|
|
}
|
|
/* 'd' and 'res' agree here */
|
|
|
|
/* Relookup in case duk_js_tointeger() ends up e.g. coercing an object. */
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
#if defined(DUK_USE_FASTINT)
|
|
#if (DUK_INT_MAX <= 0x7fffffffL)
|
|
DUK_TVAL_SET_FASTINT_I32(tv, res);
|
|
#else
|
|
/* Clamping needed if duk_int_t is 64 bits. */
|
|
if (res >= DUK_FASTINT_MIN && res <= DUK_FASTINT_MAX) {
|
|
DUK_TVAL_SET_FASTINT(tv, res);
|
|
} else {
|
|
DUK_TVAL_SET_NUMBER(tv, d);
|
|
}
|
|
#endif
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv, d); /* no need to incref */
|
|
#endif
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
if (out_clamped) {
|
|
*out_clamped = clamped;
|
|
} else {
|
|
/* coerced value is updated to value stack even when RangeError thrown */
|
|
if (clamped) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_NUMBER_OUTSIDE_RANGE);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL duk_int_t duk_to_int_clamped(duk_context *ctx, duk_idx_t index, duk_idx_t minval, duk_idx_t maxval) {
|
|
duk_bool_t dummy;
|
|
return duk_to_int_clamped_raw(ctx, index, minval, maxval, &dummy);
|
|
}
|
|
|
|
DUK_INTERNAL duk_int_t duk_to_int_check_range(duk_context *ctx, duk_idx_t index, duk_int_t minval, duk_int_t maxval) {
|
|
return duk_to_int_clamped_raw(ctx, index, minval, maxval, NULL); /* out_clamped==NULL -> RangeError if outside range */
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_to_string(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED: {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LC_UNDEFINED);
|
|
break;
|
|
}
|
|
case DUK_TAG_NULL: {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LC_NULL);
|
|
break;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
if (DUK_TVAL_GET_BOOLEAN(tv)) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_TRUE);
|
|
} else {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_FALSE);
|
|
}
|
|
break;
|
|
}
|
|
case DUK_TAG_STRING: {
|
|
/* nop */
|
|
goto skip_replace;
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
duk_to_primitive(ctx, index, DUK_HINT_STRING);
|
|
return duk_to_string(ctx, index); /* Note: recursive call */
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
|
|
/* Note: this allows creation of internal strings. */
|
|
|
|
DUK_ASSERT(h != NULL);
|
|
duk_push_lstring(ctx,
|
|
(const char *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h),
|
|
(duk_size_t) DUK_HBUFFER_GET_SIZE(h));
|
|
break;
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
void *ptr = DUK_TVAL_GET_POINTER(tv);
|
|
if (ptr != NULL) {
|
|
duk_push_sprintf(ctx, DUK_STR_FMT_PTR, (void *) ptr);
|
|
} else {
|
|
/* Represent a null pointer as 'null' to be consistent with
|
|
* the JX format variant. Native '%p' format for a NULL
|
|
* pointer may be e.g. '(nil)'.
|
|
*/
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LC_NULL);
|
|
}
|
|
break;
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
/* Should match Function.prototype.toString() */
|
|
duk_push_lightfunc_tostring(ctx, tv);
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
duk_push_tval(ctx, tv);
|
|
duk_numconv_stringify(ctx,
|
|
10 /*radix*/,
|
|
0 /*precision:shortest*/,
|
|
0 /*force_exponential*/);
|
|
break;
|
|
}
|
|
}
|
|
|
|
duk_replace(ctx, index);
|
|
|
|
skip_replace:
|
|
return duk_require_string(ctx, index);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_to_hstring(duk_context *ctx, duk_idx_t index) {
|
|
duk_hstring *ret;
|
|
DUK_ASSERT(ctx != NULL);
|
|
duk_to_string(ctx, index);
|
|
ret = duk_get_hstring(ctx, index);
|
|
DUK_ASSERT(ret != NULL);
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_to_buffer_raw(duk_context *ctx, duk_idx_t index, duk_size_t *out_size, duk_uint_t mode) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hbuffer *h_buf;
|
|
const duk_uint8_t *src_data;
|
|
duk_size_t src_size;
|
|
duk_uint8_t *dst_data;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
h_buf = duk_get_hbuffer(ctx, index);
|
|
if (h_buf != NULL) {
|
|
/* Buffer is kept as is, with the fixed/dynamic nature of the
|
|
* buffer only changed if requested.
|
|
*/
|
|
duk_uint_t tmp;
|
|
|
|
src_data = (const duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h_buf);
|
|
src_size = DUK_HBUFFER_GET_SIZE(h_buf);
|
|
|
|
tmp = (DUK_HBUFFER_HAS_DYNAMIC(h_buf) ? DUK_BUF_MODE_DYNAMIC : DUK_BUF_MODE_FIXED);
|
|
if (tmp == mode || mode == DUK_BUF_MODE_DONTCARE) {
|
|
/* Note: src_data may be NULL if input is a zero-size
|
|
* dynamic buffer.
|
|
*/
|
|
dst_data = (duk_uint8_t *) src_data;
|
|
goto skip_copy;
|
|
}
|
|
} else {
|
|
/* Non-buffer value is first ToString() coerced, then converted
|
|
* to a buffer (fixed buffer is used unless a dynamic buffer is
|
|
* explicitly requested).
|
|
*/
|
|
|
|
src_data = (const duk_uint8_t *) duk_to_lstring(ctx, index, &src_size);
|
|
}
|
|
|
|
dst_data = (duk_uint8_t *) duk_push_buffer(ctx, src_size, (mode == DUK_BUF_MODE_DYNAMIC) /*dynamic*/);
|
|
if (DUK_LIKELY(src_size > 0)) {
|
|
/* When src_size == 0, src_data may be NULL (if source
|
|
* buffer is dynamic), and dst_data may be NULL (if
|
|
* target buffer is dynamic). Avoid zero-size memcpy()
|
|
* with an invalid pointer.
|
|
*/
|
|
DUK_MEMCPY(dst_data, src_data, src_size);
|
|
}
|
|
duk_replace(ctx, index);
|
|
skip_copy:
|
|
|
|
if (out_size) {
|
|
*out_size = src_size;
|
|
}
|
|
return dst_data;
|
|
}
|
|
|
|
DUK_EXTERNAL void *duk_to_pointer(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
void *res;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL:
|
|
case DUK_TAG_BOOLEAN:
|
|
res = NULL;
|
|
break;
|
|
case DUK_TAG_POINTER:
|
|
res = DUK_TVAL_GET_POINTER(tv);
|
|
break;
|
|
case DUK_TAG_STRING:
|
|
case DUK_TAG_OBJECT:
|
|
case DUK_TAG_BUFFER:
|
|
/* Heap allocated: return heap pointer which is NOT useful
|
|
* for the caller, except for debugging.
|
|
*/
|
|
res = (void *) DUK_TVAL_GET_HEAPHDR(tv);
|
|
break;
|
|
case DUK_TAG_LIGHTFUNC:
|
|
/* Function pointers do not always cast correctly to void *
|
|
* (depends on memory and segmentation model for instance),
|
|
* so they coerce to NULL.
|
|
*/
|
|
res = NULL;
|
|
break;
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default:
|
|
/* number */
|
|
res = NULL;
|
|
break;
|
|
}
|
|
|
|
duk_push_pointer(ctx, res);
|
|
duk_replace(ctx, index);
|
|
return res;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_to_object(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_uint_t flags = 0; /* shared flags for a subset of types */
|
|
duk_small_int_t proto = 0;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
|
|
tv = duk_require_tval(ctx, index);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL: {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_OBJECT_COERCIBLE);
|
|
break;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_BOOLEAN);
|
|
proto = DUK_BIDX_BOOLEAN_PROTOTYPE;
|
|
goto create_object;
|
|
}
|
|
case DUK_TAG_STRING: {
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_STRING);
|
|
proto = DUK_BIDX_STRING_PROTOTYPE;
|
|
goto create_object;
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
/* nop */
|
|
break;
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_BUFFER);
|
|
proto = DUK_BIDX_BUFFER_PROTOTYPE;
|
|
goto create_object;
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_POINTER);
|
|
proto = DUK_BIDX_POINTER_PROTOTYPE;
|
|
goto create_object;
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
/* Lightfunc coerces to a Function instance with concrete
|
|
* properties. Since 'length' is virtual for Duktape/C
|
|
* functions, don't need to define that.
|
|
*
|
|
* The result is made extensible to mimic what happens to
|
|
* strings:
|
|
* > Object.isExtensible(Object('foo'))
|
|
* true
|
|
*/
|
|
duk_small_uint_t lf_flags;
|
|
duk_small_uint_t nargs;
|
|
duk_small_uint_t lf_len;
|
|
duk_c_function func;
|
|
duk_hnativefunction *nf;
|
|
|
|
DUK_TVAL_GET_LIGHTFUNC(tv, func, lf_flags);
|
|
|
|
nargs = DUK_LFUNC_FLAGS_GET_NARGS(lf_flags);
|
|
if (nargs == DUK_LFUNC_NARGS_VARARGS) {
|
|
nargs = DUK_VARARGS;
|
|
}
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_CONSTRUCTABLE |
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION |
|
|
DUK_HOBJECT_FLAG_NEWENV |
|
|
DUK_HOBJECT_FLAG_STRICT |
|
|
DUK_HOBJECT_FLAG_NOTAIL |
|
|
/* DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC: omitted here intentionally */
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_FUNCTION);
|
|
(void) duk__push_c_function_raw(ctx, func, (duk_idx_t) nargs, flags);
|
|
|
|
lf_len = DUK_LFUNC_FLAGS_GET_LENGTH(lf_flags);
|
|
if (lf_len != nargs) {
|
|
/* Explicit length is only needed if it differs from 'nargs'. */
|
|
duk_push_int(ctx, (duk_int_t) lf_len);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
duk_push_lightfunc_name(ctx, tv);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_NAME, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
nf = duk_get_hnativefunction(ctx, -1);
|
|
DUK_ASSERT(nf != NULL);
|
|
nf->magic = (duk_int16_t) DUK_LFUNC_FLAGS_GET_MAGIC(lf_flags);
|
|
|
|
/* Enable DUKFUNC exotic behavior once properties are set up. */
|
|
DUK_HOBJECT_SET_EXOTIC_DUKFUNC((duk_hobject *) nf);
|
|
goto replace_value;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_NUMBER);
|
|
proto = DUK_BIDX_NUMBER_PROTOTYPE;
|
|
goto create_object;
|
|
}
|
|
}
|
|
return;
|
|
|
|
create_object:
|
|
(void) duk_push_object_helper(ctx, flags, proto);
|
|
|
|
/* Note: Boolean prototype's internal value property is not writable,
|
|
* but duk_xdef_prop_stridx() disregards the write protection. Boolean
|
|
* instances are immutable.
|
|
*
|
|
* String and buffer special behaviors are already enabled which is not
|
|
* ideal, but a write to the internal value is not affected by them.
|
|
*/
|
|
duk_dup(ctx, index);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
replace_value:
|
|
duk_replace(ctx, index);
|
|
}
|
|
|
|
/*
|
|
* Type checking
|
|
*/
|
|
|
|
DUK_LOCAL duk_bool_t duk__tag_check(duk_context *ctx, duk_idx_t index, duk_small_uint_t tag) {
|
|
duk_tval *tv;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
return (DUK_TVAL_GET_TAG(tv) == tag);
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__obj_flag_any_default_false(duk_context *ctx, duk_idx_t index, duk_uint_t flag_mask) {
|
|
duk_hobject *obj;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj = duk_get_hobject(ctx, index);
|
|
if (obj) {
|
|
return (DUK_HEAPHDR_CHECK_FLAG_BITS((duk_heaphdr *) obj, flag_mask) ? 1 : 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_int_t duk_get_type(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return DUK_TYPE_NONE;
|
|
}
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
return DUK_TYPE_UNDEFINED;
|
|
case DUK_TAG_NULL:
|
|
return DUK_TYPE_NULL;
|
|
case DUK_TAG_BOOLEAN:
|
|
return DUK_TYPE_BOOLEAN;
|
|
case DUK_TAG_STRING:
|
|
return DUK_TYPE_STRING;
|
|
case DUK_TAG_OBJECT:
|
|
return DUK_TYPE_OBJECT;
|
|
case DUK_TAG_BUFFER:
|
|
return DUK_TYPE_BUFFER;
|
|
case DUK_TAG_POINTER:
|
|
return DUK_TYPE_POINTER;
|
|
case DUK_TAG_LIGHTFUNC:
|
|
return DUK_TYPE_LIGHTFUNC;
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default:
|
|
/* Note: number has no explicit tag (in 8-byte representation) */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
return DUK_TYPE_NUMBER;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_check_type(duk_context *ctx, duk_idx_t index, duk_int_t type) {
|
|
return (duk_get_type(ctx, index) == type) ? 1 : 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_uint_t duk_get_type_mask(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return DUK_TYPE_MASK_NONE;
|
|
}
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
return DUK_TYPE_MASK_UNDEFINED;
|
|
case DUK_TAG_NULL:
|
|
return DUK_TYPE_MASK_NULL;
|
|
case DUK_TAG_BOOLEAN:
|
|
return DUK_TYPE_MASK_BOOLEAN;
|
|
case DUK_TAG_STRING:
|
|
return DUK_TYPE_MASK_STRING;
|
|
case DUK_TAG_OBJECT:
|
|
return DUK_TYPE_MASK_OBJECT;
|
|
case DUK_TAG_BUFFER:
|
|
return DUK_TYPE_MASK_BUFFER;
|
|
case DUK_TAG_POINTER:
|
|
return DUK_TYPE_MASK_POINTER;
|
|
case DUK_TAG_LIGHTFUNC:
|
|
return DUK_TYPE_MASK_LIGHTFUNC;
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default:
|
|
/* Note: number has no explicit tag (in 8-byte representation) */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
return DUK_TYPE_MASK_NUMBER;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_check_type_mask(duk_context *ctx, duk_idx_t index, duk_uint_t mask) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
if (duk_get_type_mask(ctx, index) & mask) {
|
|
return 1;
|
|
}
|
|
if (mask & DUK_TYPE_MASK_THROW) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_UNEXPECTED_TYPE);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_undefined(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_UNDEFINED);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_null(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_NULL);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_null_or_undefined(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
duk_small_uint_t tag;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
tag = DUK_TVAL_GET_TAG(tv);
|
|
return (tag == DUK_TAG_UNDEFINED) || (tag == DUK_TAG_NULL);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_boolean(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_BOOLEAN);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_number(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/*
|
|
* Number is special because it doesn't have a specific
|
|
* tag in the 8-byte representation.
|
|
*/
|
|
|
|
/* XXX: shorter version for 12-byte representation? */
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
return DUK_TVAL_IS_NUMBER(tv);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_nan(duk_context *ctx, duk_idx_t index) {
|
|
/* XXX: This will now return false for non-numbers, even though they would
|
|
* coerce to NaN (as a general rule). In particular, duk_get_number()
|
|
* returns a NaN for non-numbers, so should this function also return
|
|
* true for non-numbers?
|
|
*/
|
|
|
|
duk_tval *tv;
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (!tv || !DUK_TVAL_IS_NUMBER(tv)) {
|
|
return 0;
|
|
}
|
|
return DUK_ISNAN(DUK_TVAL_GET_NUMBER(tv));
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_string(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_STRING);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_object(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_OBJECT);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_buffer(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_BUFFER);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_pointer(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_POINTER);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_lightfunc(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return duk__tag_check(ctx, index, DUK_TAG_LIGHTFUNC);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_array(duk_context *ctx, duk_idx_t index) {
|
|
duk_hobject *obj;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
obj = duk_get_hobject(ctx, index);
|
|
if (obj) {
|
|
return (DUK_HOBJECT_GET_CLASS_NUMBER(obj) == DUK_HOBJECT_CLASS_ARRAY ? 1 : 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_function(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_LIGHTFUNC(tv)) {
|
|
return 1;
|
|
}
|
|
return duk__obj_flag_any_default_false(ctx,
|
|
index,
|
|
DUK_HOBJECT_FLAG_COMPILEDFUNCTION |
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION |
|
|
DUK_HOBJECT_FLAG_BOUND);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_c_function(duk_context *ctx, duk_idx_t index) {
|
|
return duk__obj_flag_any_default_false(ctx,
|
|
index,
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_ecmascript_function(duk_context *ctx, duk_idx_t index) {
|
|
return duk__obj_flag_any_default_false(ctx,
|
|
index,
|
|
DUK_HOBJECT_FLAG_COMPILEDFUNCTION);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_bound_function(duk_context *ctx, duk_idx_t index) {
|
|
return duk__obj_flag_any_default_false(ctx,
|
|
index,
|
|
DUK_HOBJECT_FLAG_BOUND);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_thread(duk_context *ctx, duk_idx_t index) {
|
|
return duk__obj_flag_any_default_false(ctx,
|
|
index,
|
|
DUK_HOBJECT_FLAG_THREAD);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_callable(duk_context *ctx, duk_idx_t index) {
|
|
/* XXX: currently same as duk_is_function() */
|
|
return duk_is_function(ctx, index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_dynamic_buffer(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_BUFFER(tv)) {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (DUK_HBUFFER_HAS_DYNAMIC(h) ? 1 : 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_is_fixed_buffer(duk_context *ctx, duk_idx_t index) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
tv = duk_get_tval(ctx, index);
|
|
if (tv && DUK_TVAL_IS_BUFFER(tv)) {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (DUK_HBUFFER_HAS_DYNAMIC(h) ? 0 : 1);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: make macro in API */
|
|
DUK_EXTERNAL duk_bool_t duk_is_primitive(duk_context *ctx, duk_idx_t index) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
return !duk_is_object(ctx, index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_errcode_t duk_get_error_code(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h;
|
|
duk_uint_t sanity;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
h = duk_get_hobject(ctx, index);
|
|
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
do {
|
|
if (!h) {
|
|
return DUK_ERR_NONE;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_EVAL_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_EVAL_ERROR;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_RANGE_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_RANGE_ERROR;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_REFERENCE_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_REFERENCE_ERROR;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_SYNTAX_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_SYNTAX_ERROR;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_TYPE_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_TYPE_ERROR;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_URI_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_URI_ERROR;
|
|
}
|
|
if (h == thr->builtins[DUK_BIDX_ERROR_PROTOTYPE]) {
|
|
return DUK_ERR_ERROR;
|
|
}
|
|
|
|
h = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h);
|
|
} while (--sanity > 0);
|
|
|
|
return DUK_ERR_NONE;
|
|
}
|
|
|
|
/*
|
|
* Pushers
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_push_tval(duk_context *ctx, duk_tval *tv) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_TVAL(tv_slot, tv);
|
|
DUK_TVAL_INCREF(thr, tv); /* no side effects */
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
/* Right now only needed by the debugger. */
|
|
DUK_INTERNAL void duk_push_unused(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv_slot);
|
|
}
|
|
#endif
|
|
|
|
DUK_EXTERNAL void duk_push_undefined(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv_slot);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_null(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_NULL(tv_slot);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_boolean(duk_context *ctx, duk_bool_t val) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
duk_small_int_t b;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
b = (val ? 1 : 0); /* ensure value is 1 or 0 (not other non-zero) */
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_BOOLEAN(tv_slot, b);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_true(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_BOOLEAN_TRUE(tv_slot);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_false(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_BOOLEAN_FALSE(tv_slot);
|
|
}
|
|
|
|
/* normalize NaN which may not match our canonical internal NaN */
|
|
DUK_EXTERNAL void duk_push_number(duk_context *ctx, duk_double_t val) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
du.d = val;
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du);
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_NUMBER(tv_slot, du.d);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_int(duk_context *ctx, duk_int_t val) {
|
|
#if defined(DUK_USE_FASTINT)
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
#if DUK_INT_MAX <= 0x7fffffffL
|
|
DUK_TVAL_SET_FASTINT_I32(tv_slot, (duk_int32_t) val);
|
|
#else
|
|
if (val >= DUK_FASTINT_MIN && val <= DUK_FASTINT_MAX) {
|
|
DUK_TVAL_SET_FASTINT(tv_slot, (duk_int64_t) val);
|
|
} else {
|
|
duk_double_t = (duk_double_t) val;
|
|
DUK_TVAL_SET_NUMBER(tv_slot, d);
|
|
}
|
|
#endif
|
|
#else /* DUK_USE_FASTINT */
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
duk_double_t d;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
d = (duk_double_t) val;
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_NUMBER(tv_slot, d);
|
|
#endif /* DUK_USE_FASTINT */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_uint(duk_context *ctx, duk_uint_t val) {
|
|
#if defined(DUK_USE_FASTINT)
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
#if DUK_UINT_MAX <= 0xffffffffUL
|
|
DUK_TVAL_SET_FASTINT_U32(tv_slot, (duk_uint32_t) val);
|
|
#else
|
|
if (val <= DUK_FASTINT_MAX) { /* val is unsigned so >= 0 */
|
|
/* XXX: take advantage of val being unsigned, no need to mask */
|
|
DUK_TVAL_SET_FASTINT(tv_slot, (duk_int64_t) val);
|
|
} else {
|
|
duk_double_t = (duk_double_t) val;
|
|
DUK_TVAL_SET_NUMBER(tv_slot, d);
|
|
}
|
|
#endif
|
|
#else /* DUK_USE_FASTINT */
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
duk_double_t d;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
d = (duk_double_t) val;
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_NUMBER(tv_slot, d);
|
|
#endif /* DUK_USE_FASTINT */
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_nan(duk_context *ctx) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
DUK_DBLUNION_SET_NAN(&du);
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&du));
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_NUMBER(tv_slot, du.d);
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_push_lstring(duk_context *ctx, const char *str, duk_size_t len) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* check stack before interning (avoid hanging temp) */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
|
|
/* NULL with zero length represents an empty string; NULL with higher
|
|
* length is also now trated like an empty string although it is
|
|
* a bit dubious. This is unlike duk_push_string() which pushes a
|
|
* 'null' if the input string is a NULL.
|
|
*/
|
|
if (!str) {
|
|
len = 0;
|
|
}
|
|
|
|
/* Check for maximum string length */
|
|
if (len > DUK_HSTRING_MAX_BYTELEN) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_STRING_TOO_LONG);
|
|
}
|
|
|
|
h = duk_heap_string_intern_checked(thr, (duk_uint8_t *) str, (duk_uint32_t) len);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_STRING(tv_slot, h);
|
|
DUK_HSTRING_INCREF(thr, h); /* no side effects */
|
|
|
|
return (const char *) DUK_HSTRING_GET_DATA(h);
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_push_string(duk_context *ctx, const char *str) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (str) {
|
|
return duk_push_lstring(ctx, str, DUK_STRLEN(str));
|
|
} else {
|
|
duk_push_null(ctx);
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
#ifdef DUK_USE_FILE_IO
|
|
/* This is a bit clunky because it is ANSI C portable. Should perhaps
|
|
* relocate to another file because this is potentially platform
|
|
* dependent.
|
|
*/
|
|
DUK_EXTERNAL const char *duk_push_string_file_raw(duk_context *ctx, const char *path, duk_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_file *f = NULL;
|
|
char *buf;
|
|
long sz; /* ANSI C typing */
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
if (!path) {
|
|
goto fail;
|
|
}
|
|
f = DUK_FOPEN(path, "rb");
|
|
if (!f) {
|
|
goto fail;
|
|
}
|
|
if (DUK_FSEEK(f, 0, SEEK_END) < 0) {
|
|
goto fail;
|
|
}
|
|
sz = DUK_FTELL(f);
|
|
if (sz < 0) {
|
|
goto fail;
|
|
}
|
|
if (DUK_FSEEK(f, 0, SEEK_SET) < 0) {
|
|
goto fail;
|
|
}
|
|
buf = (char *) duk_push_fixed_buffer(ctx, (duk_size_t) sz);
|
|
DUK_ASSERT(buf != NULL);
|
|
if ((duk_size_t) DUK_FREAD(buf, 1, (size_t) sz, f) != (duk_size_t) sz) {
|
|
goto fail;
|
|
}
|
|
(void) DUK_FCLOSE(f); /* ignore fclose() error */
|
|
f = NULL;
|
|
return duk_to_string(ctx, -1);
|
|
|
|
fail:
|
|
if (f) {
|
|
DUK_FCLOSE(f);
|
|
}
|
|
|
|
if (flags != 0) {
|
|
DUK_ASSERT(flags == DUK_STRING_PUSH_SAFE); /* only flag now */
|
|
duk_push_undefined(ctx);
|
|
} else {
|
|
/* XXX: string not shared because it is conditional */
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "read file error");
|
|
}
|
|
return NULL;
|
|
}
|
|
#else
|
|
DUK_EXTERNAL const char *duk_push_string_file_raw(duk_context *ctx, const char *path, duk_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_UNREF(path);
|
|
|
|
if (flags != 0) {
|
|
DUK_ASSERT(flags == DUK_STRING_PUSH_SAFE); /* only flag now */
|
|
duk_push_undefined(ctx);
|
|
} else {
|
|
/* XXX: string not shared because it is conditional */
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "file I/O disabled");
|
|
}
|
|
return NULL;
|
|
}
|
|
#endif /* DUK_USE_FILE_IO */
|
|
|
|
DUK_EXTERNAL void duk_push_pointer(duk_context *ctx, void *val) {
|
|
duk_hthread *thr;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
thr = (duk_hthread *) ctx;
|
|
DUK__CHECK_SPACE();
|
|
tv_slot = thr->valstack_top++;
|
|
DUK_TVAL_SET_POINTER(tv_slot, val);
|
|
}
|
|
|
|
#define DUK__PUSH_THIS_FLAG_CHECK_COERC (1 << 0)
|
|
#define DUK__PUSH_THIS_FLAG_TO_OBJECT (1 << 1)
|
|
#define DUK__PUSH_THIS_FLAG_TO_STRING (1 << 2)
|
|
|
|
DUK_LOCAL void duk__push_this_helper(duk_context *ctx, duk_small_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0); /* avoid warning (unsigned) */
|
|
DUK_ASSERT(thr->callstack_top <= thr->callstack_size);
|
|
|
|
if (thr->callstack_top == 0) {
|
|
if (flags & DUK__PUSH_THIS_FLAG_CHECK_COERC) {
|
|
goto type_error;
|
|
}
|
|
duk_push_undefined(ctx);
|
|
} else {
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv;
|
|
|
|
/* 'this' binding is just before current activation's bottom */
|
|
DUK_ASSERT(thr->valstack_bottom > thr->valstack);
|
|
tv = thr->valstack_bottom - 1;
|
|
if (flags & DUK__PUSH_THIS_FLAG_CHECK_COERC) {
|
|
if (DUK_TVAL_IS_UNDEFINED(tv) || DUK_TVAL_IS_NULL(tv)) {
|
|
goto type_error;
|
|
}
|
|
}
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
duk_push_tval(ctx, &tv_tmp);
|
|
}
|
|
|
|
if (flags & DUK__PUSH_THIS_FLAG_TO_OBJECT) {
|
|
duk_to_object(ctx, -1);
|
|
} else if (flags & DUK__PUSH_THIS_FLAG_TO_STRING) {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
|
|
return;
|
|
|
|
type_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_OBJECT_COERCIBLE);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_this(duk_context *ctx) {
|
|
duk__push_this_helper(ctx, 0 /*flags*/);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_this_check_object_coercible(duk_context *ctx) {
|
|
duk__push_this_helper(ctx, DUK__PUSH_THIS_FLAG_CHECK_COERC /*flags*/);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hobject *duk_push_this_coercible_to_object(duk_context *ctx) {
|
|
duk_hobject *h;
|
|
duk__push_this_helper(ctx, DUK__PUSH_THIS_FLAG_CHECK_COERC |
|
|
DUK__PUSH_THIS_FLAG_TO_OBJECT /*flags*/);
|
|
h = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
return h;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_push_this_coercible_to_string(duk_context *ctx) {
|
|
duk_hstring *h;
|
|
duk__push_this_helper(ctx, DUK__PUSH_THIS_FLAG_CHECK_COERC |
|
|
DUK__PUSH_THIS_FLAG_TO_STRING /*flags*/);
|
|
h = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
return h;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_current_function(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0);
|
|
DUK_ASSERT(thr->callstack_top <= thr->callstack_size);
|
|
|
|
act = duk_hthread_get_current_activation(thr);
|
|
if (act) {
|
|
duk_push_tval(ctx, &act->tv_func);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_current_thread(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (thr->heap->curr_thread) {
|
|
duk_push_hobject(ctx, (duk_hobject *) thr->heap->curr_thread);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_global_object(duk_context *ctx) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_GLOBAL);
|
|
}
|
|
|
|
/* XXX: size optimize */
|
|
DUK_LOCAL void duk__push_stash(duk_context *ctx) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
if (!duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE)) {
|
|
DUK_DDD(DUK_DDDPRINT("creating heap/global/thread stash on first use"));
|
|
duk_pop(ctx);
|
|
duk_push_object_internal(ctx);
|
|
duk_dup_top(ctx);
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_C); /* [ ... parent stash stash ] -> [ ... parent stash ] */
|
|
}
|
|
duk_remove(ctx, -2);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_heap_stash(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_heap *heap;
|
|
DUK_ASSERT(ctx != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap->heap_object != NULL);
|
|
duk_push_hobject(ctx, heap->heap_object);
|
|
duk__push_stash(ctx);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_global_stash(duk_context *ctx) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
duk_push_global_object(ctx);
|
|
duk__push_stash(ctx);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_push_thread_stash(duk_context *ctx, duk_context *target_ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
if (!target_ctx) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
return; /* not reached */
|
|
}
|
|
duk_push_hobject(ctx, (duk_hobject *) target_ctx);
|
|
duk__push_stash(ctx);
|
|
}
|
|
|
|
/* XXX: duk_ssize_t would be useful here */
|
|
DUK_LOCAL duk_int_t duk__try_push_vsprintf(duk_context *ctx, void *buf, duk_size_t sz, const char *fmt, va_list ap) {
|
|
duk_int_t len;
|
|
|
|
DUK_UNREF(ctx);
|
|
|
|
/* NUL terminator handling doesn't matter here */
|
|
len = DUK_VSNPRINTF((char *) buf, sz, fmt, ap);
|
|
if (len < (duk_int_t) sz) {
|
|
/* Return value of 'sz' or more indicates output was (potentially)
|
|
* truncated.
|
|
*/
|
|
return (duk_int_t) len;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_push_vsprintf(duk_context *ctx, const char *fmt, va_list ap) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_uint8_t stack_buf[DUK_PUSH_SPRINTF_INITIAL_SIZE];
|
|
duk_size_t sz = DUK_PUSH_SPRINTF_INITIAL_SIZE;
|
|
duk_bool_t pushed_buf = 0;
|
|
void *buf;
|
|
duk_int_t len; /* XXX: duk_ssize_t */
|
|
const char *res;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* special handling of fmt==NULL */
|
|
if (!fmt) {
|
|
duk_hstring *h_str;
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
|
|
h_str = DUK_HTHREAD_STRING_EMPTY_STRING(thr); /* rely on interning, must be this string */
|
|
return (const char *) DUK_HSTRING_GET_DATA(h_str);
|
|
}
|
|
|
|
/* initial estimate based on format string */
|
|
sz = DUK_STRLEN(fmt) + 16; /* format plus something to avoid just missing */
|
|
if (sz < DUK_PUSH_SPRINTF_INITIAL_SIZE) {
|
|
sz = DUK_PUSH_SPRINTF_INITIAL_SIZE;
|
|
}
|
|
DUK_ASSERT(sz > 0);
|
|
|
|
/* Try to make do with a stack buffer to avoid allocating a temporary buffer.
|
|
* This works 99% of the time which is quite nice.
|
|
*/
|
|
for (;;) {
|
|
va_list ap_copy; /* copied so that 'ap' can be reused */
|
|
|
|
if (sz <= sizeof(stack_buf)) {
|
|
buf = stack_buf;
|
|
} else if (!pushed_buf) {
|
|
pushed_buf = 1;
|
|
buf = duk_push_dynamic_buffer(ctx, sz);
|
|
} else {
|
|
buf = duk_resize_buffer(ctx, -1, sz);
|
|
}
|
|
DUK_ASSERT(buf != NULL);
|
|
|
|
DUK_VA_COPY(ap_copy, ap);
|
|
len = duk__try_push_vsprintf(ctx, buf, sz, fmt, ap_copy);
|
|
va_end(ap_copy);
|
|
if (len >= 0) {
|
|
break;
|
|
}
|
|
|
|
/* failed, resize and try again */
|
|
sz = sz * 2;
|
|
if (sz >= DUK_PUSH_SPRINTF_SANITY_LIMIT) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_SPRINTF_TOO_LONG);
|
|
}
|
|
}
|
|
|
|
/* Cannot use duk_to_string() on the buffer because it is usually
|
|
* larger than 'len'. Also, 'buf' is usually a stack buffer.
|
|
*/
|
|
res = duk_push_lstring(ctx, (const char *) buf, (duk_size_t) len); /* [ buf? res ] */
|
|
if (pushed_buf) {
|
|
duk_remove(ctx, -2);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
DUK_EXTERNAL const char *duk_push_sprintf(duk_context *ctx, const char *fmt, ...) {
|
|
va_list ap;
|
|
const char *ret;
|
|
|
|
/* allow fmt==NULL */
|
|
va_start(ap, fmt);
|
|
ret = duk_push_vsprintf(ctx, fmt, ap);
|
|
va_end(ap);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_INTERNAL duk_idx_t duk_push_object_helper(duk_context *ctx, duk_uint_t hobject_flags_and_class, duk_small_int_t prototype_bidx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_slot;
|
|
duk_hobject *h;
|
|
duk_idx_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(prototype_bidx == -1 ||
|
|
(prototype_bidx >= 0 && prototype_bidx < DUK_NUM_BUILTINS));
|
|
|
|
/* check stack first */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
|
|
h = duk_hobject_alloc(thr->heap, hobject_flags_and_class);
|
|
if (!h) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_OBJECT_ALLOC_FAILED);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created object with flags: 0x%08lx", (unsigned long) h->hdr.h_flags));
|
|
|
|
tv_slot = thr->valstack_top;
|
|
DUK_TVAL_SET_OBJECT(tv_slot, h);
|
|
DUK_HOBJECT_INCREF(thr, h); /* no side effects */
|
|
ret = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
thr->valstack_top++;
|
|
|
|
/* object is now reachable */
|
|
|
|
if (prototype_bidx >= 0) {
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, h, thr->builtins[prototype_bidx]);
|
|
} else {
|
|
DUK_ASSERT(prototype_bidx == -1);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h) == NULL);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_INTERNAL duk_idx_t duk_push_object_helper_proto(duk_context *ctx, duk_uint_t hobject_flags_and_class, duk_hobject *proto) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t ret;
|
|
duk_hobject *h;
|
|
|
|
ret = duk_push_object_helper(ctx, hobject_flags_and_class, -1);
|
|
h = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h) == NULL);
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, h, proto);
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_object(duk_context *ctx) {
|
|
return duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
DUK_BIDX_OBJECT_PROTOTYPE);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_array(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_idx_t ret;
|
|
|
|
ret = duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_ARRAY_PART |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_ARRAY),
|
|
DUK_BIDX_ARRAY_PROTOTYPE);
|
|
|
|
obj = duk_require_hobject(ctx, ret);
|
|
|
|
/*
|
|
* An array must have a 'length' property (E5 Section 15.4.5.2).
|
|
* The special array behavior flag must only be enabled once the
|
|
* length property has been added.
|
|
*
|
|
* The internal property must be a number (and preferably a
|
|
* fastint if fastint support is enabled).
|
|
*/
|
|
|
|
duk_push_int(ctx, 0);
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_ASSERT(DUK_TVAL_IS_FASTINT(duk_require_tval(ctx, -1)));
|
|
#endif
|
|
|
|
duk_hobject_define_property_internal(thr,
|
|
obj,
|
|
DUK_HTHREAD_STRING_LENGTH(thr),
|
|
DUK_PROPDESC_FLAGS_W);
|
|
DUK_HOBJECT_SET_EXOTIC_ARRAY(obj);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_thread_raw(duk_context *ctx, duk_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hthread *obj;
|
|
duk_idx_t ret;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* check stack first */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
|
|
obj = duk_hthread_alloc(thr->heap,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_THREAD |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_THREAD));
|
|
if (!obj) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_THREAD_ALLOC_FAILED);
|
|
}
|
|
obj->state = DUK_HTHREAD_STATE_INACTIVE;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
obj->strs16 = thr->strs16;
|
|
#else
|
|
obj->strs = thr->strs;
|
|
#endif
|
|
DUK_DDD(DUK_DDDPRINT("created thread object with flags: 0x%08lx", (unsigned long) obj->obj.hdr.h_flags));
|
|
|
|
/* make the new thread reachable */
|
|
tv_slot = thr->valstack_top;
|
|
DUK_TVAL_SET_OBJECT(tv_slot, (duk_hobject *) obj);
|
|
DUK_HTHREAD_INCREF(thr, obj);
|
|
ret = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
thr->valstack_top++;
|
|
|
|
/* important to do this *after* pushing, to make the thread reachable for gc */
|
|
if (!duk_hthread_init_stacks(thr->heap, obj)) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_THREAD_ALLOC_FAILED);
|
|
}
|
|
|
|
/* initialize built-ins - either by copying or creating new ones */
|
|
if (flags & DUK_THREAD_NEW_GLOBAL_ENV) {
|
|
duk_hthread_create_builtin_objects(obj);
|
|
} else {
|
|
duk_hthread_copy_builtin_objects(thr, obj);
|
|
}
|
|
|
|
/* default prototype (Note: 'obj' must be reachable) */
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, (duk_hobject *) obj, obj->builtins[DUK_BIDX_THREAD_PROTOTYPE]);
|
|
|
|
/* Initial stack size satisfies the stack spare constraints so there
|
|
* is no need to require stack here.
|
|
*/
|
|
DUK_ASSERT(DUK_VALSTACK_INITIAL_SIZE >=
|
|
DUK_VALSTACK_API_ENTRY_MINIMUM + DUK_VALSTACK_INTERNAL_EXTRA);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_INTERNAL duk_idx_t duk_push_compiledfunction(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hcompiledfunction *obj;
|
|
duk_idx_t ret;
|
|
duk_tval *tv_slot;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* check stack first */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
|
|
/* Template functions are not strictly constructable (they don't
|
|
* have a "prototype" property for instance), so leave the
|
|
* DUK_HOBJECT_FLAG_CONSRUCTABLE flag cleared here.
|
|
*/
|
|
|
|
obj = duk_hcompiledfunction_alloc(thr->heap,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_COMPILEDFUNCTION |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_FUNCTION));
|
|
if (!obj) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_FUNC_ALLOC_FAILED);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created compiled function object with flags: 0x%08lx", (unsigned long) obj->obj.hdr.h_flags));
|
|
|
|
tv_slot = thr->valstack_top;
|
|
DUK_TVAL_SET_OBJECT(tv_slot, (duk_hobject *) obj);
|
|
DUK_HOBJECT_INCREF(thr, obj);
|
|
ret = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
thr->valstack_top++;
|
|
|
|
/* default prototype (Note: 'obj' must be reachable) */
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, (duk_hobject *) obj, thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE]);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_LOCAL duk_idx_t duk__push_c_function_raw(duk_context *ctx, duk_c_function func, duk_idx_t nargs, duk_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hnativefunction *obj;
|
|
duk_idx_t ret;
|
|
duk_tval *tv_slot;
|
|
duk_uint16_t func_nargs;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* check stack first */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
if (func == NULL) {
|
|
goto api_error;
|
|
}
|
|
if (nargs >= 0 && nargs < DUK_HNATIVEFUNCTION_NARGS_MAX) {
|
|
func_nargs = (duk_uint16_t) nargs;
|
|
} else if (nargs == DUK_VARARGS) {
|
|
func_nargs = DUK_HNATIVEFUNCTION_NARGS_VARARGS;
|
|
} else {
|
|
goto api_error;
|
|
}
|
|
|
|
obj = duk_hnativefunction_alloc(thr->heap, flags);
|
|
if (!obj) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_FUNC_ALLOC_FAILED);
|
|
}
|
|
|
|
obj->func = func;
|
|
obj->nargs = func_nargs;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created native function object with flags: 0x%08lx, nargs=%ld",
|
|
(unsigned long) obj->obj.hdr.h_flags, (long) obj->nargs));
|
|
|
|
tv_slot = thr->valstack_top;
|
|
DUK_TVAL_SET_OBJECT(tv_slot, (duk_hobject *) obj);
|
|
DUK_HOBJECT_INCREF(thr, obj);
|
|
ret = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
thr->valstack_top++;
|
|
|
|
/* default prototype (Note: 'obj' must be reachable) */
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, (duk_hobject *) obj, thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE]);
|
|
|
|
return ret;
|
|
|
|
api_error:
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
return 0; /* not reached */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_c_function(duk_context *ctx, duk_c_function func, duk_int_t nargs) {
|
|
duk_uint_t flags;
|
|
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_CONSTRUCTABLE |
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION |
|
|
DUK_HOBJECT_FLAG_NEWENV |
|
|
DUK_HOBJECT_FLAG_STRICT |
|
|
DUK_HOBJECT_FLAG_NOTAIL |
|
|
DUK_HOBJECT_FLAG_EXOTIC_DUKFUNC |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_FUNCTION);
|
|
|
|
return duk__push_c_function_raw(ctx, func, nargs, flags);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_c_function_noexotic(duk_context *ctx, duk_c_function func, duk_int_t nargs) {
|
|
duk_uint_t flags;
|
|
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_CONSTRUCTABLE |
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION |
|
|
DUK_HOBJECT_FLAG_NEWENV |
|
|
DUK_HOBJECT_FLAG_STRICT |
|
|
DUK_HOBJECT_FLAG_NOTAIL |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_FUNCTION);
|
|
|
|
(void) duk__push_c_function_raw(ctx, func, nargs, flags);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_c_function_noconstruct_noexotic(duk_context *ctx, duk_c_function func, duk_int_t nargs) {
|
|
duk_uint_t flags;
|
|
|
|
flags = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_NATIVEFUNCTION |
|
|
DUK_HOBJECT_FLAG_NEWENV |
|
|
DUK_HOBJECT_FLAG_STRICT |
|
|
DUK_HOBJECT_FLAG_NOTAIL |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_FUNCTION);
|
|
|
|
(void) duk__push_c_function_raw(ctx, func, nargs, flags);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_c_lightfunc(duk_context *ctx, duk_c_function func, duk_idx_t nargs, duk_idx_t length, duk_int_t magic) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval tv_tmp;
|
|
duk_small_uint_t lf_flags;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* check stack first */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
|
|
if (nargs >= DUK_LFUNC_NARGS_MIN && nargs <= DUK_LFUNC_NARGS_MAX) {
|
|
/* as is */
|
|
} else if (nargs == DUK_VARARGS) {
|
|
nargs = DUK_LFUNC_NARGS_VARARGS;
|
|
} else {
|
|
goto api_error;
|
|
}
|
|
if (!(length >= DUK_LFUNC_LENGTH_MIN && length <= DUK_LFUNC_LENGTH_MAX)) {
|
|
goto api_error;
|
|
}
|
|
if (!(magic >= DUK_LFUNC_MAGIC_MIN && magic <= DUK_LFUNC_MAGIC_MAX)) {
|
|
goto api_error;
|
|
}
|
|
|
|
lf_flags = DUK_LFUNC_FLAGS_PACK(magic, length, nargs);
|
|
DUK_TVAL_SET_LIGHTFUNC(&tv_tmp, func, lf_flags);
|
|
duk_push_tval(ctx, &tv_tmp); /* XXX: direct valstack write */
|
|
DUK_ASSERT(thr->valstack_top != thr->valstack_bottom);
|
|
return ((duk_idx_t) (thr->valstack_top - thr->valstack_bottom)) - 1;
|
|
|
|
api_error:
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
return 0; /* not reached */
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_error_object_va_raw(duk_context *ctx, duk_errcode_t err_code, const char *filename, duk_int_t line, const char *fmt, va_list ap) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t ret;
|
|
duk_hobject *proto;
|
|
#ifdef DUK_USE_AUGMENT_ERROR_CREATE
|
|
duk_bool_t noblame_fileline;
|
|
#endif
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_UNREF(filename);
|
|
DUK_UNREF(line);
|
|
|
|
/* Error code also packs a tracedata related flag. */
|
|
#ifdef DUK_USE_AUGMENT_ERROR_CREATE
|
|
noblame_fileline = err_code & DUK_ERRCODE_FLAG_NOBLAME_FILELINE;
|
|
#endif
|
|
err_code = err_code & (~DUK_ERRCODE_FLAG_NOBLAME_FILELINE);
|
|
|
|
/* error gets its 'name' from the prototype */
|
|
proto = duk_error_prototype_from_code(thr, err_code);
|
|
ret = duk_push_object_helper_proto(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_ERROR),
|
|
proto);
|
|
|
|
/* ... and its 'message' from an instance property */
|
|
if (fmt) {
|
|
duk_push_vsprintf(ctx, fmt, ap);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_MESSAGE, DUK_PROPDESC_FLAGS_WC);
|
|
} else {
|
|
/* If no explicit message given, put error code into message field
|
|
* (as a number). This is not fully in keeping with the Ecmascript
|
|
* error model because messages are supposed to be strings (Error
|
|
* constructors use ToString() on their argument). However, it's
|
|
* probably more useful than having a separate 'code' property.
|
|
*/
|
|
duk_push_int(ctx, err_code);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_MESSAGE, DUK_PROPDESC_FLAGS_WC);
|
|
}
|
|
|
|
#if 0
|
|
/* Disabled for now, not sure this is a useful property */
|
|
duk_push_int(ctx, err_code);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_CODE, DUK_PROPDESC_FLAGS_WC);
|
|
#endif
|
|
|
|
/* Creation time error augmentation */
|
|
#ifdef DUK_USE_AUGMENT_ERROR_CREATE
|
|
/* filename may be NULL in which case file/line is not recorded */
|
|
duk_err_augment_error_create(thr, thr, filename, line, noblame_fileline); /* may throw an error */
|
|
#endif
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_error_object_raw(duk_context *ctx, duk_errcode_t err_code, const char *filename, duk_int_t line, const char *fmt, ...) {
|
|
va_list ap;
|
|
duk_idx_t ret;
|
|
|
|
va_start(ap, fmt);
|
|
ret = duk_push_error_object_va_raw(ctx, err_code, filename, line, fmt, ap);
|
|
va_end(ap);
|
|
return ret;
|
|
}
|
|
|
|
#if !defined(DUK_USE_VARIADIC_MACROS)
|
|
DUK_EXTERNAL duk_idx_t duk_push_error_object_stash(duk_context *ctx, duk_errcode_t err_code, const char *fmt, ...) {
|
|
const char *filename = duk_api_global_filename;
|
|
duk_int_t line = duk_api_global_line;
|
|
va_list ap;
|
|
duk_idx_t ret;
|
|
|
|
duk_api_global_filename = NULL;
|
|
duk_api_global_line = 0;
|
|
va_start(ap, fmt);
|
|
ret = duk_push_error_object_va_raw(ctx, err_code, filename, line, fmt, ap);
|
|
va_end(ap);
|
|
return ret;
|
|
}
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
DUK_EXTERNAL void *duk_push_buffer_raw(duk_context *ctx, duk_size_t size, duk_small_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_slot;
|
|
duk_hbuffer *h;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* check stack first */
|
|
if (thr->valstack_top >= thr->valstack_end) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_PUSH_BEYOND_ALLOC_STACK);
|
|
}
|
|
|
|
/* Check for maximum buffer length. */
|
|
if (size > DUK_HBUFFER_MAX_BYTELEN) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_BUFFER_TOO_LONG);
|
|
}
|
|
|
|
h = duk_hbuffer_alloc(thr->heap, size, flags);
|
|
if (!h) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_BUFFER_ALLOC_FAILED);
|
|
}
|
|
|
|
tv_slot = thr->valstack_top;
|
|
DUK_TVAL_SET_BUFFER(tv_slot, h);
|
|
DUK_HBUFFER_INCREF(thr, h);
|
|
thr->valstack_top++;
|
|
|
|
return DUK_HBUFFER_GET_DATA_PTR(thr->heap, h);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_idx_t duk_push_heapptr(duk_context *ctx, void *ptr) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t ret;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
ret = (duk_idx_t) (thr->valstack_top - thr->valstack_bottom);
|
|
|
|
if (ptr == NULL) {
|
|
goto push_undefined;
|
|
}
|
|
|
|
switch (DUK_HEAPHDR_GET_TYPE((duk_heaphdr *) ptr)) {
|
|
case DUK_HTYPE_STRING:
|
|
duk_push_hstring(ctx, (duk_hstring *) ptr);
|
|
break;
|
|
case DUK_HTYPE_OBJECT:
|
|
duk_push_hobject(ctx, (duk_hobject *) ptr);
|
|
break;
|
|
case DUK_HTYPE_BUFFER:
|
|
duk_push_hbuffer(ctx, (duk_hbuffer *) ptr);
|
|
break;
|
|
default:
|
|
goto push_undefined;
|
|
}
|
|
return ret;
|
|
|
|
push_undefined:
|
|
duk_push_undefined(ctx);
|
|
return ret;
|
|
}
|
|
|
|
DUK_INTERNAL duk_idx_t duk_push_object_internal(duk_context *ctx) {
|
|
return duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
-1); /* no prototype */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_hstring(duk_context *ctx, duk_hstring *h) {
|
|
duk_tval tv;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_TVAL_SET_STRING(&tv, h);
|
|
duk_push_tval(ctx, &tv);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_hstring_stridx(duk_context *ctx, duk_small_int_t stridx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(stridx >= 0 && stridx < DUK_HEAP_NUM_STRINGS);
|
|
duk_push_hstring(ctx, DUK_HTHREAD_GET_STRING(thr, stridx));
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_hobject(duk_context *ctx, duk_hobject *h) {
|
|
duk_tval tv;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_TVAL_SET_OBJECT(&tv, h);
|
|
duk_push_tval(ctx, &tv);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_hbuffer(duk_context *ctx, duk_hbuffer *h) {
|
|
duk_tval tv;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_TVAL_SET_BUFFER(&tv, h);
|
|
duk_push_tval(ctx, &tv);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_hobject_bidx(duk_context *ctx, duk_small_int_t builtin_idx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(builtin_idx >= 0 && builtin_idx < DUK_NUM_BUILTINS);
|
|
DUK_ASSERT(thr->builtins[builtin_idx] != NULL);
|
|
duk_push_hobject(ctx, thr->builtins[builtin_idx]);
|
|
}
|
|
|
|
/*
|
|
* Poppers
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_pop_n(duk_context *ctx, duk_idx_t count) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (count < 0) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_COUNT);
|
|
return;
|
|
}
|
|
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
if ((duk_size_t) (thr->valstack_top - thr->valstack_bottom) < (duk_size_t) count) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_POP_TOO_MANY);
|
|
}
|
|
|
|
/*
|
|
* Must be very careful here, every DECREF may cause reallocation
|
|
* of our valstack.
|
|
*/
|
|
|
|
/* XXX: inlined DECREF macro would be nice here: no NULL check,
|
|
* refzero queueing but no refzero algorithm run (= no pointer
|
|
* instability), inline code.
|
|
*/
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
while (count > 0) {
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv;
|
|
|
|
tv = --thr->valstack_top; /* tv points to element just below prev top */
|
|
DUK_ASSERT(tv >= thr->valstack_bottom);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
count--;
|
|
}
|
|
#else
|
|
while (count > 0) {
|
|
duk_tval *tv;
|
|
|
|
tv = --thr->valstack_top;
|
|
DUK_ASSERT(tv >= thr->valstack_bottom);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
count--;
|
|
}
|
|
#endif
|
|
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_pop(duk_context *ctx) {
|
|
duk_pop_n(ctx, 1);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_pop_2(duk_context *ctx) {
|
|
duk_pop_n(ctx, 2);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_pop_3(duk_context *ctx) {
|
|
duk_pop_n(ctx, 3);
|
|
}
|
|
|
|
/*
|
|
* Error throwing
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_throw(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
|
|
if (thr->valstack_top == thr->valstack_bottom) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
}
|
|
|
|
/* Errors are augmented when they are created, not when they are
|
|
* thrown or re-thrown. The current error handler, however, runs
|
|
* just before an error is thrown.
|
|
*/
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
DUK_DDD(DUK_DDDPRINT("THROW ERROR (API): %!dT (before throw augment)", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_err_augment_error_throw(thr);
|
|
#endif
|
|
DUK_DDD(DUK_DDDPRINT("THROW ERROR (API): %!dT (after throw augment)", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk_err_setup_heap_ljstate(thr, DUK_LJ_TYPE_THROW);
|
|
|
|
/* thr->heap->lj.jmpbuf_ptr is checked by duk_err_longjmp() so we don't
|
|
* need to check that here. If the value is NULL, a panic occurs because
|
|
* we can't return.
|
|
*/
|
|
|
|
duk_err_longjmp(thr);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_fatal(duk_context *ctx, duk_errcode_t err_code, const char *err_msg) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(thr->heap->fatal_func != NULL);
|
|
|
|
DUK_D(DUK_DPRINT("fatal error occurred, code %ld, message %s",
|
|
(long) err_code, (const char *) err_msg));
|
|
|
|
/* fatal_func should be noreturn, but noreturn declarations on function
|
|
* pointers has a very spotty support apparently so it's not currently
|
|
* done.
|
|
*/
|
|
thr->heap->fatal_func(ctx, err_code, err_msg);
|
|
|
|
DUK_PANIC(DUK_ERR_API_ERROR, "fatal handler returned");
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_error_va_raw(duk_context *ctx, duk_errcode_t err_code, const char *filename, duk_int_t line, const char *fmt, va_list ap) {
|
|
duk_push_error_object_va_raw(ctx, err_code, filename, line, fmt, ap);
|
|
duk_throw(ctx);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_error_raw(duk_context *ctx, duk_errcode_t err_code, const char *filename, duk_int_t line, const char *fmt, ...) {
|
|
va_list ap;
|
|
va_start(ap, fmt);
|
|
duk_push_error_object_va_raw(ctx, err_code, filename, line, fmt, ap);
|
|
va_end(ap);
|
|
duk_throw(ctx);
|
|
}
|
|
|
|
#if !defined(DUK_USE_VARIADIC_MACROS)
|
|
DUK_EXTERNAL void duk_error_stash(duk_context *ctx, duk_errcode_t err_code, const char *fmt, ...) {
|
|
const char *filename;
|
|
duk_int_t line;
|
|
va_list ap;
|
|
|
|
filename = duk_api_global_filename;
|
|
line = duk_api_global_line;
|
|
duk_api_global_filename = NULL;
|
|
duk_api_global_line = 0;
|
|
|
|
va_start(ap, fmt);
|
|
duk_push_error_object_va_raw(ctx, err_code, filename, line, fmt, ap);
|
|
va_end(ap);
|
|
duk_throw(ctx);
|
|
}
|
|
#endif /* DUK_USE_VARIADIC_MACROS */
|
|
|
|
/*
|
|
* Comparison
|
|
*/
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_equals(duk_context *ctx, duk_idx_t index1, duk_idx_t index2) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv1, *tv2;
|
|
|
|
tv1 = duk_get_tval(ctx, index1);
|
|
if (!tv1) {
|
|
return 0;
|
|
}
|
|
tv2 = duk_get_tval(ctx, index2);
|
|
if (!tv2) {
|
|
return 0;
|
|
}
|
|
|
|
/* Coercion may be needed, the helper handles that by pushing the
|
|
* tagged values to the stack.
|
|
*/
|
|
return duk_js_equals(thr, tv1, tv2);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_strict_equals(duk_context *ctx, duk_idx_t index1, duk_idx_t index2) {
|
|
duk_tval *tv1, *tv2;
|
|
|
|
tv1 = duk_get_tval(ctx, index1);
|
|
if (!tv1) {
|
|
return 0;
|
|
}
|
|
tv2 = duk_get_tval(ctx, index2);
|
|
if (!tv2) {
|
|
return 0;
|
|
}
|
|
|
|
/* No coercions or other side effects, so safe */
|
|
return duk_js_strict_equals(tv1, tv2);
|
|
}
|
|
|
|
/*
|
|
* Lightfunc
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_push_lightfunc_name(duk_context *ctx, duk_tval *tv) {
|
|
duk_c_function func;
|
|
|
|
DUK_ASSERT(DUK_TVAL_IS_LIGHTFUNC(tv));
|
|
|
|
/* Lightfunc name, includes Duktape/C native function pointer, which
|
|
* can often be used to locate the function from a symbol table.
|
|
* The name also includes the 16-bit duk_tval flags field because it
|
|
* includes the magic value. Because a single native function often
|
|
* provides different functionality depending on the magic value, it
|
|
* seems reasonably to include it in the name.
|
|
*
|
|
* On the other hand, a complicated name increases string table
|
|
* pressure in low memory environments (but only when function name
|
|
* is accessed).
|
|
*/
|
|
|
|
func = DUK_TVAL_GET_LIGHTFUNC_FUNCPTR(tv);
|
|
duk_push_sprintf(ctx, "light_");
|
|
duk_push_string_funcptr(ctx, (duk_uint8_t *) &func, sizeof(func));
|
|
duk_push_sprintf(ctx, "_%04x", (unsigned int) DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv));
|
|
duk_concat(ctx, 3);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_push_lightfunc_tostring(duk_context *ctx, duk_tval *tv) {
|
|
DUK_ASSERT(DUK_TVAL_IS_LIGHTFUNC(tv));
|
|
|
|
duk_push_string(ctx, "function ");
|
|
duk_push_lightfunc_name(ctx, tv);
|
|
duk_push_string(ctx, "() {/* light */}");
|
|
duk_concat(ctx, 3);
|
|
}
|
|
|
|
/*
|
|
* Function pointers
|
|
*
|
|
* Printing function pointers is non-portable, so we do that by hex printing
|
|
* bytes from memory.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_push_string_funcptr(duk_context *ctx, duk_uint8_t *ptr, duk_size_t sz) {
|
|
duk_uint8_t buf[32 * 2];
|
|
duk_uint8_t *p, *q;
|
|
duk_small_uint_t i;
|
|
duk_small_uint_t t;
|
|
|
|
DUK_ASSERT(sz <= 32); /* sanity limit for function pointer size */
|
|
|
|
p = buf;
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
q = ptr + sz;
|
|
#else
|
|
q = ptr;
|
|
#endif
|
|
for (i = 0; i < sz; i++) {
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
t = *(--q);
|
|
#else
|
|
t = *(q++);
|
|
#endif
|
|
*p++ = duk_lc_digits[t >> 4];
|
|
*p++ = duk_lc_digits[t & 0x0f];
|
|
}
|
|
|
|
duk_push_lstring(ctx, (const char *) buf, sz * 2);
|
|
}
|
|
|
|
#undef DUK__CHECK_SPACE
|
|
#line 1 "duk_api_string.c"
|
|
/*
|
|
* String manipulation
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_LOCAL void duk__concat_and_join_helper(duk_context *ctx, duk_idx_t count_in, duk_bool_t is_join) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_uint_t count;
|
|
duk_uint_t i;
|
|
duk_size_t idx;
|
|
duk_size_t len;
|
|
duk_hstring *h;
|
|
duk_uint8_t *buf;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
if (DUK_UNLIKELY(count_in <= 0)) {
|
|
if (count_in < 0) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_COUNT);
|
|
return;
|
|
}
|
|
DUK_ASSERT(count_in == 0);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
|
|
return;
|
|
}
|
|
count = (duk_uint_t) count_in;
|
|
|
|
if (is_join) {
|
|
duk_size_t t1, t2, limit;
|
|
h = duk_to_hstring(ctx, -((duk_idx_t) count) - 1);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* A bit tricky overflow test, see doc/code-issues.txt. */
|
|
t1 = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h);
|
|
t2 = (duk_size_t) (count - 1);
|
|
limit = (duk_size_t) DUK_HSTRING_MAX_BYTELEN;
|
|
if (DUK_UNLIKELY(t2 != 0 && t1 > limit / t2)) {
|
|
/* Combined size of separators already overflows */
|
|
goto error_overflow;
|
|
}
|
|
len = (duk_size_t) (t1 * t2);
|
|
} else {
|
|
len = (duk_size_t) 0;
|
|
}
|
|
|
|
for (i = count; i >= 1; i--) {
|
|
duk_size_t new_len;
|
|
duk_to_string(ctx, -((duk_idx_t) i));
|
|
h = duk_require_hstring(ctx, -((duk_idx_t) i));
|
|
new_len = len + (duk_size_t) DUK_HSTRING_GET_BYTELEN(h);
|
|
|
|
/* Impose a string maximum length, need to handle overflow
|
|
* correctly.
|
|
*/
|
|
if (new_len < len || /* wrapped */
|
|
new_len > (duk_size_t) DUK_HSTRING_MAX_BYTELEN) {
|
|
goto error_overflow;
|
|
}
|
|
len = new_len;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("join/concat %lu strings, total length %lu bytes",
|
|
(unsigned long) count, (unsigned long) len));
|
|
|
|
/* use stack allocated buffer to ensure reachability in errors (e.g. intern error) */
|
|
buf = (duk_uint8_t *) duk_push_fixed_buffer(ctx, len);
|
|
DUK_ASSERT(buf != NULL);
|
|
|
|
/* [... (sep) str1 str2 ... strN buf] */
|
|
|
|
idx = 0;
|
|
for (i = count; i >= 1; i--) {
|
|
if (is_join && i != count) {
|
|
h = duk_require_hstring(ctx, -((duk_idx_t) count) - 2); /* extra -1 for buffer */
|
|
DUK_MEMCPY(buf + idx, DUK_HSTRING_GET_DATA(h), DUK_HSTRING_GET_BYTELEN(h));
|
|
idx += DUK_HSTRING_GET_BYTELEN(h);
|
|
}
|
|
h = duk_require_hstring(ctx, -((duk_idx_t) i) - 1); /* extra -1 for buffer */
|
|
DUK_MEMCPY(buf + idx, DUK_HSTRING_GET_DATA(h), DUK_HSTRING_GET_BYTELEN(h));
|
|
idx += DUK_HSTRING_GET_BYTELEN(h);
|
|
}
|
|
|
|
DUK_ASSERT(idx == len);
|
|
|
|
/* [... (sep) str1 str2 ... strN buf] */
|
|
|
|
/* get rid of the strings early to minimize memory use before intern */
|
|
|
|
if (is_join) {
|
|
duk_replace(ctx, -((duk_idx_t) count) - 2); /* overwrite sep */
|
|
duk_pop_n(ctx, count);
|
|
} else {
|
|
duk_replace(ctx, -((duk_idx_t) count) - 1); /* overwrite str1 */
|
|
duk_pop_n(ctx, count-1);
|
|
}
|
|
|
|
/* [... buf] */
|
|
|
|
(void) duk_to_string(ctx, -1);
|
|
|
|
/* [... res] */
|
|
return;
|
|
|
|
error_overflow:
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_CONCAT_RESULT_TOO_LONG);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_concat(duk_context *ctx, duk_idx_t count) {
|
|
duk__concat_and_join_helper(ctx, count, 0 /*is_join*/);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_join(duk_context *ctx, duk_idx_t count) {
|
|
duk__concat_and_join_helper(ctx, count, 1 /*is_join*/);
|
|
}
|
|
|
|
/* XXX: could map/decode be unified with duk_unicode_support.c code?
|
|
* Case conversion needs also the character surroundings though.
|
|
*/
|
|
|
|
DUK_EXTERNAL void duk_decode_string(duk_context *ctx, duk_idx_t index, duk_decode_char_function callback, void *udata) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_input;
|
|
const duk_uint8_t *p, *p_start, *p_end;
|
|
duk_codepoint_t cp;
|
|
|
|
h_input = duk_require_hstring(ctx, index);
|
|
DUK_ASSERT(h_input != NULL);
|
|
|
|
p_start = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h_input);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_input);
|
|
p = p_start;
|
|
|
|
for (;;) {
|
|
if (p >= p_end) {
|
|
break;
|
|
}
|
|
cp = (int) duk_unicode_decode_xutf8_checked(thr, &p, p_start, p_end);
|
|
callback(udata, cp);
|
|
}
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_map_string(duk_context *ctx, duk_idx_t index, duk_map_char_function callback, void *udata) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_input;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
const duk_uint8_t *p, *p_start, *p_end;
|
|
duk_codepoint_t cp;
|
|
|
|
index = duk_normalize_index(ctx, index);
|
|
|
|
h_input = duk_require_hstring(ctx, index);
|
|
DUK_ASSERT(h_input != NULL);
|
|
|
|
/* XXX: should init with a spare of at least h_input->blen? */
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h_buf));
|
|
|
|
p_start = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h_input);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_input);
|
|
p = p_start;
|
|
|
|
for (;;) {
|
|
if (p >= p_end) {
|
|
break;
|
|
}
|
|
cp = (int) duk_unicode_decode_xutf8_checked(thr, &p, p_start, p_end);
|
|
cp = callback(udata, cp);
|
|
duk_hbuffer_append_xutf8(thr, h_buf, cp);
|
|
}
|
|
|
|
duk_to_string(ctx, -1); /* invalidates h_buf pointer */
|
|
duk_replace(ctx, index);
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_substring(duk_context *ctx, duk_idx_t index, duk_size_t start_offset, duk_size_t end_offset) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h;
|
|
duk_hstring *res;
|
|
duk_size_t start_byte_offset;
|
|
duk_size_t end_byte_offset;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
h = duk_require_hstring(ctx, index);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (end_offset >= DUK_HSTRING_GET_CHARLEN(h)) {
|
|
end_offset = DUK_HSTRING_GET_CHARLEN(h);
|
|
}
|
|
if (start_offset > end_offset) {
|
|
start_offset = end_offset;
|
|
}
|
|
|
|
DUK_ASSERT_DISABLE(start_offset >= 0);
|
|
DUK_ASSERT(start_offset <= end_offset && start_offset <= DUK_HSTRING_GET_CHARLEN(h));
|
|
DUK_ASSERT_DISABLE(end_offset >= 0);
|
|
DUK_ASSERT(end_offset >= start_offset && end_offset <= DUK_HSTRING_GET_CHARLEN(h));
|
|
|
|
/* guaranteed by string limits */
|
|
DUK_ASSERT(start_offset <= DUK_UINT32_MAX);
|
|
DUK_ASSERT(end_offset <= DUK_UINT32_MAX);
|
|
|
|
start_byte_offset = (duk_size_t) duk_heap_strcache_offset_char2byte(thr, h, (duk_uint_fast32_t) start_offset);
|
|
end_byte_offset = (duk_size_t) duk_heap_strcache_offset_char2byte(thr, h, (duk_uint_fast32_t) end_offset);
|
|
|
|
DUK_ASSERT(end_byte_offset >= start_byte_offset);
|
|
DUK_ASSERT(end_byte_offset - start_byte_offset <= DUK_UINT32_MAX); /* guaranteed by string limits */
|
|
|
|
/* no size check is necessary */
|
|
res = duk_heap_string_intern_checked(thr,
|
|
DUK_HSTRING_GET_DATA(h) + start_byte_offset,
|
|
(duk_uint32_t) (end_byte_offset - start_byte_offset));
|
|
|
|
duk_push_hstring(ctx, res);
|
|
duk_replace(ctx, index);
|
|
}
|
|
|
|
/* XXX: this is quite clunky. Add Unicode helpers to scan backwards and
|
|
* forwards with a callback to process codepoints?
|
|
*/
|
|
DUK_EXTERNAL void duk_trim(duk_context *ctx, duk_idx_t index) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h;
|
|
const duk_uint8_t *p, *p_start, *p_end, *p_tmp1, *p_tmp2; /* pointers for scanning */
|
|
const duk_uint8_t *q_start, *q_end; /* start (incl) and end (excl) of trimmed part */
|
|
duk_codepoint_t cp;
|
|
|
|
index = duk_require_normalize_index(ctx, index);
|
|
h = duk_require_hstring(ctx, index);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
p_start = DUK_HSTRING_GET_DATA(h);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h);
|
|
|
|
p = p_start;
|
|
while (p < p_end) {
|
|
p_tmp1 = p;
|
|
cp = (duk_codepoint_t) duk_unicode_decode_xutf8_checked(thr, &p_tmp1, p_start, p_end);
|
|
if (!(duk_unicode_is_whitespace(cp) || duk_unicode_is_line_terminator(cp))) {
|
|
break;
|
|
}
|
|
p = p_tmp1;
|
|
}
|
|
q_start = p;
|
|
if (p == p_end) {
|
|
/* entire string is whitespace */
|
|
q_end = p;
|
|
goto scan_done;
|
|
}
|
|
|
|
p = p_end;
|
|
while (p > p_start) {
|
|
p_tmp1 = p;
|
|
while (p > p_start) {
|
|
p--;
|
|
if (((*p) & 0xc0) != 0x80) {
|
|
break;
|
|
}
|
|
}
|
|
p_tmp2 = p;
|
|
|
|
cp = (duk_codepoint_t) duk_unicode_decode_xutf8_checked(thr, &p_tmp2, p_start, p_end);
|
|
if (!(duk_unicode_is_whitespace(cp) || duk_unicode_is_line_terminator(cp))) {
|
|
p = p_tmp1;
|
|
break;
|
|
}
|
|
}
|
|
q_end = p;
|
|
|
|
scan_done:
|
|
/* This may happen when forward and backward scanning disagree
|
|
* (possible for non-extended-UTF-8 strings).
|
|
*/
|
|
if (q_end < q_start) {
|
|
q_end = q_start;
|
|
}
|
|
|
|
DUK_ASSERT(q_start >= p_start && q_start <= p_end);
|
|
DUK_ASSERT(q_end >= p_start && q_end <= p_end);
|
|
DUK_ASSERT(q_end >= q_start);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("trim: p_start=%p, p_end=%p, q_start=%p, q_end=%p",
|
|
(void *) p_start, (void *) p_end, (void *) q_start, (void *) q_end));
|
|
|
|
if (q_start == p_start && q_end == p_end) {
|
|
DUK_DDD(DUK_DDDPRINT("nothing was trimmed: avoid interning (hashing etc)"));
|
|
return;
|
|
}
|
|
|
|
duk_push_lstring(ctx, (const char *) q_start, (duk_size_t) (q_end - q_start));
|
|
duk_replace(ctx, index);
|
|
}
|
|
|
|
DUK_EXTERNAL duk_codepoint_t duk_char_code_at(duk_context *ctx, duk_idx_t index, duk_size_t char_offset) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h;
|
|
duk_ucodepoint_t cp;
|
|
|
|
h = duk_require_hstring(ctx, index);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
DUK_ASSERT_DISABLE(char_offset >= 0); /* always true, arg is unsigned */
|
|
if (char_offset >= DUK_HSTRING_GET_CHARLEN(h)) {
|
|
return 0;
|
|
}
|
|
|
|
DUK_ASSERT(char_offset <= DUK_UINT_MAX); /* guaranteed by string limits */
|
|
cp = duk_hstring_char_code_at_raw(thr, h, (duk_uint_t) char_offset);
|
|
return (duk_codepoint_t) cp;
|
|
}
|
|
#line 1 "duk_api_var.c"
|
|
/*
|
|
* Variable access
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_EXTERNAL void duk_get_var(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
duk_hstring *h_varname;
|
|
duk_small_int_t throw_flag = 1; /* always throw ReferenceError for unresolvable */
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
h_varname = duk_require_hstring(ctx, -1); /* XXX: tostring? */
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
act = duk_hthread_get_current_activation(thr);
|
|
if (act) {
|
|
(void) duk_js_getvar_activation(thr, act, h_varname, throw_flag); /* -> [ ... varname val this ] */
|
|
} else {
|
|
/* Outside any activation -> look up from global. */
|
|
DUK_ASSERT(thr->builtins[DUK_BIDX_GLOBAL_ENV] != NULL);
|
|
(void) duk_js_getvar_envrec(thr, thr->builtins[DUK_BIDX_GLOBAL_ENV], h_varname, throw_flag);
|
|
}
|
|
|
|
/* [ ... varname val this ] (because throw_flag == 1, always resolved) */
|
|
|
|
duk_pop(ctx);
|
|
duk_remove(ctx, -2);
|
|
|
|
/* [ ... val ] */
|
|
|
|
/* Return value would be pointless: because throw_flag==1, we always
|
|
* throw if the identifier doesn't resolve.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
DUK_EXTERNAL void duk_put_var(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
duk_hstring *h_varname;
|
|
duk_tval *tv_val;
|
|
duk_small_int_t throw_flag;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
h_varname = duk_require_hstring(ctx, -2); /* XXX: tostring? */
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
tv_val = duk_require_tval(ctx, -1);
|
|
|
|
throw_flag = duk_is_strict_call(ctx);
|
|
|
|
act = duk_hthread_get_current_activation(thr);
|
|
if (act) {
|
|
duk_js_putvar_activation(thr, act, h_varname, tv_val, throw_flag); /* -> [ ... varname val this ] */
|
|
} else {
|
|
/* Outside any activation -> put to global. */
|
|
DUK_ASSERT(thr->builtins[DUK_BIDX_GLOBAL_ENV] != NULL);
|
|
duk_js_putvar_envrec(thr, thr->builtins[DUK_BIDX_GLOBAL_ENV], h_varname, tv_val, throw_flag);
|
|
}
|
|
|
|
/* [ ... varname val ] */
|
|
|
|
duk_pop_2(ctx);
|
|
|
|
/* [ ... ] */
|
|
|
|
return;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_del_var(duk_context *ctx) {
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_UNIMPLEMENTED_ERROR, DUK_STR_UNIMPLEMENTED);
|
|
return 0;
|
|
}
|
|
|
|
DUK_EXTERNAL duk_bool_t duk_has_var(duk_context *ctx) {
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_UNIMPLEMENTED_ERROR, DUK_STR_UNIMPLEMENTED);
|
|
return 0;
|
|
}
|
|
#line 1 "duk_bi_array.c"
|
|
/*
|
|
* Array built-ins
|
|
*
|
|
* Note that most Array built-ins are intentionally generic and work even
|
|
* when the 'this' binding is not an Array instance. To ensure this,
|
|
* Array algorithms do not assume "magical" Array behavior for the "length"
|
|
* property, for instance.
|
|
*
|
|
* XXX: the "Throw" flag should be set for (almost?) all [[Put]] and
|
|
* [[Delete]] operations, but it's currently false throughout. Go through
|
|
* all put/delete cases and check throw flag use. Need a new API primitive
|
|
* which allows throws flag to be specified.
|
|
*
|
|
* XXX: array lengths above 2G won't work reliably. There are many places
|
|
* where one needs a full signed 32-bit range ([-0xffffffff, 0xffffffff],
|
|
* i.e. -33- bits). Although array 'length' cannot be written to be outside
|
|
* the unsigned 32-bit range (E5.1 Section 15.4.5.1 throws a RangeError if so)
|
|
* some intermediate values may be above 0xffffffff and this may not be always
|
|
* correctly handled now (duk_uint32_t is not enough for all algorithms).
|
|
*
|
|
* For instance, push() can legitimately write entries beyond length 0xffffffff
|
|
* and cause a RangeError only at the end. To do this properly, the current
|
|
* push() implementation tracks the array index using a 'double' instead of a
|
|
* duk_uint32_t (which is somewhat awkward). See test-bi-array-push-maxlen.js.
|
|
*
|
|
* On using "put" vs. "def" prop
|
|
* =============================
|
|
*
|
|
* Code below must be careful to use the appropriate primitive as it matters
|
|
* for compliance. When using "put" there may be inherited properties in
|
|
* Array.prototype which cause side effects when values are written. When
|
|
* using "define" there are no such side effects, and many test262 test cases
|
|
* check for this (for real world code, such side effects are very rare).
|
|
* Both "put" and "define" are used in the E5.1 specification; as a rule,
|
|
* "put" is used when modifying an existing array (or a non-array 'this'
|
|
* binding) and "define" for setting values into a fresh result array.
|
|
*
|
|
* Also note that Array instance 'length' should be writable, but not
|
|
* enumerable and definitely not configurable: even Duktape code internally
|
|
* assumes that an Array instance will always have a 'length' property.
|
|
* Preventing deletion of the property is critical.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Perform an intermediate join when this many elements have been pushed
|
|
* on the value stack.
|
|
*/
|
|
#define DUK__ARRAY_MID_JOIN_LIMIT 4096
|
|
|
|
/* Shared entry code for many Array built-ins. Note that length is left
|
|
* on stack (it could be popped, but that's not necessary).
|
|
*/
|
|
DUK_LOCAL duk_uint32_t duk__push_this_obj_len_u32(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
|
|
(void) duk_push_this_coercible_to_object(ctx);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_LENGTH);
|
|
len = duk_to_uint32(ctx, -1);
|
|
|
|
/* -> [ ... ToObject(this) ToUint32(length) ] */
|
|
return len;
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__push_this_obj_len_u32_limited(duk_context *ctx) {
|
|
/* Range limited to [0, 0x7fffffff] range, i.e. range that can be
|
|
* represented with duk_int32_t. Use this when the method doesn't
|
|
* handle the full 32-bit unsigned range correctly.
|
|
*/
|
|
duk_uint32_t ret = duk__push_this_obj_len_u32(ctx);
|
|
if (DUK_UNLIKELY(ret >= 0x80000000UL)) {
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_INTERNAL_ERROR, DUK_STR_ARRAY_LENGTH_OVER_2G);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Constructor
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_constructor(duk_context *ctx) {
|
|
duk_idx_t nargs;
|
|
duk_double_t d;
|
|
duk_uint32_t len;
|
|
duk_idx_t i;
|
|
|
|
nargs = duk_get_top(ctx);
|
|
duk_push_array(ctx);
|
|
|
|
if (nargs == 1 && duk_is_number(ctx, 0)) {
|
|
/* XXX: expensive check (also shared elsewhere - so add a shared internal API call?) */
|
|
d = duk_get_number(ctx, 0);
|
|
len = duk_to_uint32(ctx, 0);
|
|
if (((duk_double_t) len) != d) {
|
|
return DUK_RET_RANGE_ERROR;
|
|
}
|
|
|
|
/* XXX: if 'len' is low, may want to ensure array part is kept:
|
|
* the caller is likely to want a dense array.
|
|
*/
|
|
duk_push_u32(ctx, len);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W); /* [ ToUint32(len) array ToUint32(len) ] -> [ ToUint32(len) array ] */
|
|
return 1;
|
|
}
|
|
|
|
/* XXX: optimize by creating array into correct size directly, and
|
|
* operating on the array part directly; values can be memcpy()'d from
|
|
* value stack directly as long as refcounts are increased.
|
|
*/
|
|
for (i = 0; i < nargs; i++) {
|
|
duk_dup(ctx, i);
|
|
duk_xdef_prop_index_wec(ctx, -2, (duk_uarridx_t) i);
|
|
}
|
|
|
|
duk_push_u32(ctx, (duk_uint32_t) nargs);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* isArray()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_constructor_is_array(duk_context *ctx) {
|
|
duk_hobject *h;
|
|
|
|
h = duk_get_hobject_with_class(ctx, 0, DUK_HOBJECT_CLASS_ARRAY);
|
|
duk_push_boolean(ctx, (h != NULL));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* toString()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_to_string(duk_context *ctx) {
|
|
(void) duk_push_this_coercible_to_object(ctx);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_JOIN);
|
|
|
|
/* [ ... this func ] */
|
|
if (!duk_is_callable(ctx, -1)) {
|
|
/* Fall back to the initial (original) Object.toString(). We don't
|
|
* currently have pointers to the built-in functions, only the top
|
|
* level global objects (like "Array") so this is now done in a bit
|
|
* of a hacky manner. It would be cleaner to push the (original)
|
|
* function and use duk_call_method().
|
|
*/
|
|
|
|
/* XXX: 'this' will be ToObject() coerced twice, which is incorrect
|
|
* but should have no visible side effects.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("this.join is not callable, fall back to (original) Object.toString"));
|
|
duk_set_top(ctx, 0);
|
|
return duk_bi_object_prototype_to_string(ctx); /* has access to 'this' binding */
|
|
}
|
|
|
|
/* [ ... this func ] */
|
|
|
|
duk_insert(ctx, -2);
|
|
|
|
/* [ ... func this ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("calling: func=%!iT, this=%!iT",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_call_method(ctx, 0);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* concat()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_concat(duk_context *ctx) {
|
|
duk_idx_t i, n;
|
|
duk_uarridx_t idx, idx_last;
|
|
duk_uarridx_t j, len;
|
|
duk_hobject *h;
|
|
|
|
/* XXX: the insert here is a bit expensive if there are a lot of items.
|
|
* It could also be special cased in the outermost for loop quite easily
|
|
* (as the element is dup()'d anyway).
|
|
*/
|
|
|
|
(void) duk_push_this_coercible_to_object(ctx);
|
|
duk_insert(ctx, 0);
|
|
n = duk_get_top(ctx);
|
|
duk_push_array(ctx); /* -> [ ToObject(this) item1 ... itemN arr ] */
|
|
|
|
/* NOTE: The Array special behaviors are NOT invoked by duk_xdef_prop_index()
|
|
* (which differs from the official algorithm). If no error is thrown, this
|
|
* doesn't matter as the length is updated at the end. However, if an error
|
|
* is thrown, the length will be unset. That shouldn't matter because the
|
|
* caller won't get a reference to the intermediate value.
|
|
*/
|
|
|
|
idx = 0;
|
|
idx_last = 0;
|
|
for (i = 0; i < n; i++) {
|
|
DUK_ASSERT_TOP(ctx, n + 1);
|
|
|
|
/* [ ToObject(this) item1 ... itemN arr ] */
|
|
|
|
duk_dup(ctx, i);
|
|
h = duk_get_hobject_with_class(ctx, -1, DUK_HOBJECT_CLASS_ARRAY);
|
|
if (!h) {
|
|
duk_xdef_prop_index_wec(ctx, -2, idx++);
|
|
idx_last = idx;
|
|
continue;
|
|
}
|
|
|
|
/* [ ToObject(this) item1 ... itemN arr item(i) ] */
|
|
|
|
/* XXX: an array can have length higher than 32 bits; this is not handled
|
|
* correctly now.
|
|
*/
|
|
len = (duk_uarridx_t) duk_get_length(ctx, -1);
|
|
for (j = 0; j < len; j++) {
|
|
if (duk_get_prop_index(ctx, -1, j)) {
|
|
/* [ ToObject(this) item1 ... itemN arr item(i) item(i)[j] ] */
|
|
duk_xdef_prop_index_wec(ctx, -3, idx++);
|
|
idx_last = idx;
|
|
} else {
|
|
idx++;
|
|
duk_pop(ctx);
|
|
#if defined(DUK_USE_NONSTD_ARRAY_CONCAT_TRAILER)
|
|
/* According to E5.1 Section 15.4.4.4 nonexistent trailing
|
|
* elements do not affect 'length' of the result. Test262
|
|
* and other engines disagree, so update idx_last here too.
|
|
*/
|
|
idx_last = idx;
|
|
#else
|
|
/* Strict standard behavior, ignore trailing elements for
|
|
* result 'length'.
|
|
*/
|
|
#endif
|
|
}
|
|
}
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
/* The E5.1 Section 15.4.4.4 algorithm doesn't set the length explicitly
|
|
* in the end, but because we're operating with an internal value which
|
|
* is known to be an array, this should be equivalent.
|
|
*/
|
|
duk_push_uarridx(ctx, idx_last);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
|
|
|
|
DUK_ASSERT_TOP(ctx, n + 1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* join(), toLocaleString()
|
|
*
|
|
* Note: checking valstack is necessary, but only in the per-element loop.
|
|
*
|
|
* Note: the trivial approach of pushing all the elements on the value stack
|
|
* and then calling duk_join() fails when the array contains a large number
|
|
* of elements. This problem can't be offloaded to duk_join() because the
|
|
* elements to join must be handled here and have special handling. Current
|
|
* approach is to do intermediate joins with very large number of elements.
|
|
* There is no fancy handling; the prefix gets re-joined multiple times.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_join_shared(duk_context *ctx) {
|
|
duk_uint32_t len, count;
|
|
duk_uint32_t idx;
|
|
duk_small_int_t to_locale_string = duk_get_current_magic(ctx);
|
|
duk_idx_t valstack_required;
|
|
|
|
/* For join(), nargs is 1. For toLocaleString(), nargs is 0 and
|
|
* setting the top essentially pushes an undefined to the stack,
|
|
* thus defaulting to a comma separator.
|
|
*/
|
|
duk_set_top(ctx, 1);
|
|
if (duk_is_undefined(ctx, 0)) {
|
|
duk_pop(ctx);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_COMMA);
|
|
} else {
|
|
duk_to_string(ctx, 0);
|
|
}
|
|
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
|
|
/* [ sep ToObject(this) len ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("sep=%!T, this=%!T, len=%lu",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1),
|
|
(unsigned long) len));
|
|
|
|
/* The extra (+4) is tight. */
|
|
valstack_required = (len >= DUK__ARRAY_MID_JOIN_LIMIT ?
|
|
DUK__ARRAY_MID_JOIN_LIMIT : len) + 4;
|
|
duk_require_stack(ctx, valstack_required);
|
|
|
|
duk_dup(ctx, 0);
|
|
|
|
/* [ sep ToObject(this) len sep ] */
|
|
|
|
count = 0;
|
|
idx = 0;
|
|
for (;;) {
|
|
if (count >= DUK__ARRAY_MID_JOIN_LIMIT || /* intermediate join to avoid valstack overflow */
|
|
idx >= len) { /* end of loop (careful with len==0) */
|
|
/* [ sep ToObject(this) len sep str0 ... str(count-1) ] */
|
|
DUK_DDD(DUK_DDDPRINT("mid/final join, count=%ld, idx=%ld, len=%ld",
|
|
(long) count, (long) idx, (long) len));
|
|
duk_join(ctx, (duk_idx_t) count); /* -> [ sep ToObject(this) len str ] */
|
|
duk_dup(ctx, 0); /* -> [ sep ToObject(this) len str sep ] */
|
|
duk_insert(ctx, -2); /* -> [ sep ToObject(this) len sep str ] */
|
|
count = 1;
|
|
}
|
|
if (idx >= len) {
|
|
/* if true, the stack already contains the final result */
|
|
break;
|
|
}
|
|
|
|
duk_get_prop_index(ctx, 1, (duk_uarridx_t) idx);
|
|
if (duk_is_null_or_undefined(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
|
|
} else {
|
|
if (to_locale_string) {
|
|
duk_to_object(ctx, -1);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_TO_LOCALE_STRING);
|
|
duk_insert(ctx, -2); /* -> [ ... toLocaleString ToObject(val) ] */
|
|
duk_call_method(ctx, 0);
|
|
duk_to_string(ctx, -1);
|
|
} else {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
}
|
|
|
|
count++;
|
|
idx++;
|
|
}
|
|
|
|
/* [ sep ToObject(this) len sep result ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* pop(), push()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_pop(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
duk_uint32_t idx;
|
|
|
|
DUK_ASSERT_TOP(ctx, 0);
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
if (len == 0) {
|
|
duk_push_int(ctx, 0);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
|
|
return 0;
|
|
}
|
|
idx = len - 1;
|
|
|
|
duk_get_prop_index(ctx, 0, (duk_uarridx_t) idx);
|
|
duk_del_prop_index(ctx, 0, (duk_uarridx_t) idx);
|
|
duk_push_u32(ctx, idx);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_push(duk_context *ctx) {
|
|
/* Note: 'this' is not necessarily an Array object. The push()
|
|
* algorithm is supposed to work for other kinds of objects too,
|
|
* so the algorithm has e.g. an explicit update for the 'length'
|
|
* property which is normally "magical" in arrays.
|
|
*/
|
|
|
|
duk_uint32_t len;
|
|
duk_idx_t i, n;
|
|
|
|
n = duk_get_top(ctx);
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
|
|
/* [ arg1 ... argN obj length ] */
|
|
|
|
/* Technically Array.prototype.push() can create an Array with length
|
|
* longer than 2^32-1, i.e. outside the 32-bit range. The final length
|
|
* is *not* wrapped to 32 bits in the specification.
|
|
*
|
|
* This implementation tracks length with a uint32 because it's much
|
|
* more practical.
|
|
*
|
|
* See: test-bi-array-push-maxlen.js.
|
|
*/
|
|
|
|
if (len + (duk_uint32_t) n < len) {
|
|
DUK_D(DUK_DPRINT("Array.prototype.push() would go beyond 32-bit length, throw"));
|
|
return DUK_RET_RANGE_ERROR;
|
|
}
|
|
|
|
for (i = 0; i < n; i++) {
|
|
duk_dup(ctx, i);
|
|
duk_put_prop_index(ctx, -3, len + i);
|
|
}
|
|
len += n;
|
|
|
|
duk_push_u32(ctx, len);
|
|
duk_dup_top(ctx);
|
|
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_LENGTH);
|
|
|
|
/* [ arg1 ... argN obj length new_length ] */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* sort()
|
|
*
|
|
* Currently qsort with random pivot. This is now really, really slow,
|
|
* because there is no fast path for array parts.
|
|
*
|
|
* Signed indices are used because qsort() leaves and degenerate cases
|
|
* may use a negative offset.
|
|
*/
|
|
|
|
DUK_LOCAL duk_small_int_t duk__array_sort_compare(duk_context *ctx, duk_int_t idx1, duk_int_t idx2) {
|
|
duk_bool_t have1, have2;
|
|
duk_bool_t undef1, undef2;
|
|
duk_small_int_t ret;
|
|
duk_idx_t idx_obj = 1; /* fixed offsets in valstack */
|
|
duk_idx_t idx_fn = 0;
|
|
duk_hstring *h1, *h2;
|
|
|
|
/* Fast exit if indices are identical. This is valid for a non-existent property,
|
|
* for an undefined value, and almost always for ToString() coerced comparison of
|
|
* arbitrary values (corner cases where this is not the case include e.g. a an
|
|
* object with varying ToString() coercion).
|
|
*
|
|
* The specification does not prohibit "caching" of values read from the array, so
|
|
* assuming equality for comparing an index with itself falls into the category of
|
|
* "caching".
|
|
*
|
|
* Also, compareFn may be inconsistent, so skipping a call to compareFn here may
|
|
* have an effect on the final result. The specification does not require any
|
|
* specific behavior for inconsistent compare functions, so again, this fast path
|
|
* is OK.
|
|
*/
|
|
|
|
if (idx1 == idx2) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__array_sort_compare: idx1=%ld, idx2=%ld -> indices identical, quick exit",
|
|
(long) idx1, (long) idx2));
|
|
return 0;
|
|
}
|
|
|
|
have1 = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) idx1);
|
|
have2 = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) idx2);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__array_sort_compare: idx1=%ld, idx2=%ld, have1=%ld, have2=%ld, val1=%!T, val2=%!T",
|
|
(long) idx1, (long) idx2, (long) have1, (long) have2,
|
|
(duk_tval *) duk_get_tval(ctx, -2), (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
if (have1) {
|
|
if (have2) {
|
|
;
|
|
} else {
|
|
ret = -1;
|
|
goto pop_ret;
|
|
}
|
|
} else {
|
|
if (have2) {
|
|
ret = 1;
|
|
goto pop_ret;
|
|
} else {
|
|
ret = 0;
|
|
goto pop_ret;
|
|
}
|
|
}
|
|
|
|
undef1 = duk_is_undefined(ctx, -2);
|
|
undef2 = duk_is_undefined(ctx, -1);
|
|
if (undef1) {
|
|
if (undef2) {
|
|
ret = 0;
|
|
goto pop_ret;
|
|
} else {
|
|
ret = 1;
|
|
goto pop_ret;
|
|
}
|
|
} else {
|
|
if (undef2) {
|
|
ret = -1;
|
|
goto pop_ret;
|
|
} else {
|
|
;
|
|
}
|
|
}
|
|
|
|
if (!duk_is_undefined(ctx, idx_fn)) {
|
|
duk_double_t d;
|
|
|
|
/* no need to check callable; duk_call() will do that */
|
|
duk_dup(ctx, idx_fn); /* -> [ ... x y fn ] */
|
|
duk_insert(ctx, -3); /* -> [ ... fn x y ] */
|
|
duk_call(ctx, 2); /* -> [ ... res ] */
|
|
|
|
/* The specification is a bit vague what to do if the return
|
|
* value is not a number. Other implementations seem to
|
|
* tolerate non-numbers but e.g. V8 won't apparently do a
|
|
* ToNumber().
|
|
*/
|
|
|
|
/* XXX: best behavior for real world compatibility? */
|
|
|
|
d = duk_to_number(ctx, -1);
|
|
if (d < 0.0) {
|
|
ret = -1;
|
|
} else if (d > 0.0) {
|
|
ret = 1;
|
|
} else {
|
|
ret = 0;
|
|
}
|
|
|
|
duk_pop(ctx);
|
|
DUK_DDD(DUK_DDDPRINT("-> result %ld (from comparefn, after coercion)", (long) ret));
|
|
return ret;
|
|
}
|
|
|
|
/* string compare is the default (a bit oddly) */
|
|
|
|
h1 = duk_to_hstring(ctx, -2);
|
|
h2 = duk_to_hstring(ctx, -1);
|
|
DUK_ASSERT(h1 != NULL);
|
|
DUK_ASSERT(h2 != NULL);
|
|
|
|
ret = duk_js_string_compare(h1, h2); /* retval is directly usable */
|
|
goto pop_ret;
|
|
|
|
pop_ret:
|
|
duk_pop_2(ctx);
|
|
DUK_DDD(DUK_DDDPRINT("-> result %ld", (long) ret));
|
|
return ret;
|
|
}
|
|
|
|
DUK_LOCAL void duk__array_sort_swap(duk_context *ctx, duk_int_t l, duk_int_t r) {
|
|
duk_bool_t have_l, have_r;
|
|
duk_idx_t idx_obj = 1; /* fixed offset in valstack */
|
|
|
|
if (l == r) {
|
|
return;
|
|
}
|
|
|
|
/* swap elements; deal with non-existent elements correctly */
|
|
have_l = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) l);
|
|
have_r = duk_get_prop_index(ctx, idx_obj, (duk_uarridx_t) r);
|
|
|
|
if (have_r) {
|
|
/* right exists, [[Put]] regardless whether or not left exists */
|
|
duk_put_prop_index(ctx, idx_obj, (duk_uarridx_t) l);
|
|
} else {
|
|
duk_del_prop_index(ctx, idx_obj, (duk_uarridx_t) l);
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
if (have_l) {
|
|
duk_put_prop_index(ctx, idx_obj, (duk_uarridx_t) r);
|
|
} else {
|
|
duk_del_prop_index(ctx, idx_obj, (duk_uarridx_t) r);
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_DDDPRINT)
|
|
/* Debug print which visualizes the qsort partitioning process. */
|
|
DUK_LOCAL void duk__debuglog_qsort_state(duk_context *ctx, duk_int_t lo, duk_int_t hi, duk_int_t pivot) {
|
|
char buf[4096];
|
|
char *ptr = buf;
|
|
duk_int_t i, n;
|
|
n = (duk_int_t) duk_get_length(ctx, 1);
|
|
if (n > 4000) {
|
|
n = 4000;
|
|
}
|
|
*ptr++ = '[';
|
|
for (i = 0; i < n; i++) {
|
|
if (i == pivot) {
|
|
*ptr++ = '|';
|
|
} else if (i == lo) {
|
|
*ptr++ = '<';
|
|
} else if (i == hi) {
|
|
*ptr++ = '>';
|
|
} else if (i >= lo && i <= hi) {
|
|
*ptr++ = '-';
|
|
} else {
|
|
*ptr++ = ' ';
|
|
}
|
|
}
|
|
*ptr++ = ']';
|
|
*ptr++ = '\0';
|
|
|
|
DUK_DDD(DUK_DDDPRINT("%s (lo=%ld, hi=%ld, pivot=%ld)",
|
|
(const char *) buf, (long) lo, (long) hi, (long) pivot));
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__array_qsort(duk_context *ctx, duk_int_t lo, duk_int_t hi) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_int_t p, l, r;
|
|
|
|
/* The lo/hi indices may be crossed and hi < 0 is possible at entry. */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__array_qsort: lo=%ld, hi=%ld, obj=%!T",
|
|
(long) lo, (long) hi, (duk_tval *) duk_get_tval(ctx, 1)));
|
|
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
|
|
/* In some cases it may be that lo > hi, or hi < 0; these
|
|
* degenerate cases happen e.g. for empty arrays, and in
|
|
* recursion leaves.
|
|
*/
|
|
|
|
/* trivial cases */
|
|
if (hi - lo < 1) {
|
|
DUK_DDD(DUK_DDDPRINT("degenerate case, return immediately"));
|
|
return;
|
|
}
|
|
DUK_ASSERT(hi > lo);
|
|
DUK_ASSERT(hi - lo + 1 >= 2);
|
|
|
|
/* randomized pivot selection */
|
|
p = lo + (duk_util_tinyrandom_get_bits(thr, 30) % (hi - lo + 1)); /* rnd in [lo,hi] */
|
|
DUK_ASSERT(p >= lo && p <= hi);
|
|
DUK_DDD(DUK_DDDPRINT("lo=%ld, hi=%ld, chose pivot p=%ld",
|
|
(long) lo, (long) hi, (long) p));
|
|
|
|
/* move pivot out of the way */
|
|
duk__array_sort_swap(ctx, p, lo);
|
|
p = lo;
|
|
DUK_DDD(DUK_DDDPRINT("pivot moved out of the way: %!T", (duk_tval *) duk_get_tval(ctx, 1)));
|
|
|
|
l = lo + 1;
|
|
r = hi;
|
|
for (;;) {
|
|
/* find elements to swap */
|
|
for (;;) {
|
|
DUK_DDD(DUK_DDDPRINT("left scan: l=%ld, r=%ld, p=%ld",
|
|
(long) l, (long) r, (long) p));
|
|
if (l >= hi) {
|
|
break;
|
|
}
|
|
if (duk__array_sort_compare(ctx, l, p) >= 0) { /* !(l < p) */
|
|
break;
|
|
}
|
|
l++;
|
|
}
|
|
for (;;) {
|
|
DUK_DDD(DUK_DDDPRINT("right scan: l=%ld, r=%ld, p=%ld",
|
|
(long) l, (long) r, (long) p));
|
|
if (r <= lo) {
|
|
break;
|
|
}
|
|
if (duk__array_sort_compare(ctx, p, r) >= 0) { /* !(p < r) */
|
|
break;
|
|
}
|
|
r--;
|
|
}
|
|
if (l >= r) {
|
|
goto done;
|
|
}
|
|
DUK_ASSERT(l < r);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("swap %ld and %ld", (long) l, (long) r));
|
|
|
|
duk__array_sort_swap(ctx, l, r);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("after swap: %!T", (duk_tval *) duk_get_tval(ctx, 1)));
|
|
l++;
|
|
r--;
|
|
}
|
|
done:
|
|
/* Note that 'l' and 'r' may cross, i.e. r < l */
|
|
DUK_ASSERT(l >= lo && l <= hi);
|
|
DUK_ASSERT(r >= lo && r <= hi);
|
|
|
|
/* XXX: there's no explicit recursion bound here now. For the average
|
|
* qsort recursion depth O(log n) that's not really necessary: e.g. for
|
|
* 2**32 recursion depth would be about 32 which is OK. However, qsort
|
|
* worst case recursion depth is O(n) which may be a problem.
|
|
*/
|
|
|
|
/* move pivot to its final place */
|
|
DUK_DDD(DUK_DDDPRINT("before final pivot swap: %!T", (duk_tval *) duk_get_tval(ctx, 1)));
|
|
duk__array_sort_swap(ctx, lo, r);
|
|
|
|
#if defined(DUK_USE_DDDPRINT)
|
|
duk__debuglog_qsort_state(ctx, lo, hi, r);
|
|
#endif
|
|
|
|
DUK_DDD(DUK_DDDPRINT("recurse: pivot=%ld, obj=%!T", (long) r, (duk_tval *) duk_get_tval(ctx, 1)));
|
|
duk__array_qsort(ctx, lo, r - 1);
|
|
duk__array_qsort(ctx, r + 1, hi);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_sort(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
|
|
/* XXX: len >= 0x80000000 won't work below because a signed type
|
|
* is needed by qsort.
|
|
*/
|
|
len = duk__push_this_obj_len_u32_limited(ctx);
|
|
|
|
/* stack[0] = compareFn
|
|
* stack[1] = ToObject(this)
|
|
* stack[2] = ToUint32(length)
|
|
*/
|
|
|
|
if (len > 0) {
|
|
/* avoid degenerate cases, so that (len - 1) won't underflow */
|
|
duk__array_qsort(ctx, (duk_int_t) 0, (duk_int_t) (len - 1));
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
duk_pop(ctx);
|
|
return 1; /* return ToObject(this) */
|
|
}
|
|
|
|
/*
|
|
* splice()
|
|
*/
|
|
|
|
/* XXX: this compiles to over 500 bytes now, even without special handling
|
|
* for an array part. Uses signed ints so does not handle full array range correctly.
|
|
*/
|
|
|
|
/* XXX: can shift() / unshift() use the same helper?
|
|
* shift() is (close to?) <--> splice(0, 1)
|
|
* unshift is (close to?) <--> splice(0, 0, [items])?
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_splice(duk_context *ctx) {
|
|
duk_idx_t nargs;
|
|
duk_uint32_t len;
|
|
duk_bool_t have_delcount;
|
|
duk_int_t item_count;
|
|
duk_int_t act_start;
|
|
duk_int_t del_count;
|
|
duk_int_t i, n;
|
|
|
|
DUK_UNREF(have_delcount);
|
|
|
|
nargs = duk_get_top(ctx);
|
|
if (nargs < 2) {
|
|
duk_set_top(ctx, 2);
|
|
nargs = 2;
|
|
have_delcount = 0;
|
|
} else {
|
|
have_delcount = 1;
|
|
}
|
|
|
|
/* XXX: len >= 0x80000000 won't work below because we need to be
|
|
* able to represent -len.
|
|
*/
|
|
len = duk__push_this_obj_len_u32_limited(ctx);
|
|
|
|
act_start = duk_to_int_clamped(ctx, 0, -((duk_int_t) len), (duk_int_t) len);
|
|
if (act_start < 0) {
|
|
act_start = len + act_start;
|
|
}
|
|
DUK_ASSERT(act_start >= 0 && act_start <= (duk_int_t) len);
|
|
|
|
#ifdef DUK_USE_NONSTD_ARRAY_SPLICE_DELCOUNT
|
|
if (have_delcount) {
|
|
#endif
|
|
del_count = duk_to_int_clamped(ctx, 1, 0, len - act_start);
|
|
#ifdef DUK_USE_NONSTD_ARRAY_SPLICE_DELCOUNT
|
|
} else {
|
|
/* E5.1 standard behavior when deleteCount is not given would be
|
|
* to treat it just like if 'undefined' was given, which coerces
|
|
* ultimately to 0. Real world behavior is to splice to the end
|
|
* of array, see test-bi-array-proto-splice-no-delcount.js.
|
|
*/
|
|
del_count = len - act_start;
|
|
}
|
|
#endif
|
|
|
|
DUK_ASSERT(nargs >= 2);
|
|
item_count = (duk_int_t) (nargs - 2);
|
|
|
|
DUK_ASSERT(del_count >= 0 && del_count <= (duk_int_t) len - act_start);
|
|
DUK_ASSERT(del_count + act_start <= (duk_int_t) len);
|
|
|
|
/* For now, restrict result array into 32-bit length range. */
|
|
if (((duk_double_t) len) - ((duk_double_t) del_count) + ((duk_double_t) item_count) > (duk_double_t) DUK_UINT32_MAX) {
|
|
DUK_D(DUK_DPRINT("Array.prototype.splice() would go beyond 32-bit length, throw"));
|
|
return DUK_RET_RANGE_ERROR;
|
|
}
|
|
|
|
duk_push_array(ctx);
|
|
|
|
/* stack[0] = start
|
|
* stack[1] = deleteCount
|
|
* stack[2...nargs-1] = items
|
|
* stack[nargs] = ToObject(this) -3
|
|
* stack[nargs+1] = ToUint32(length) -2
|
|
* stack[nargs+2] = result array -1
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
|
|
/* Step 9: copy elements-to-be-deleted into the result array */
|
|
|
|
for (i = 0; i < del_count; i++) {
|
|
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) (act_start + i))) {
|
|
duk_xdef_prop_index_wec(ctx, -2, i); /* throw flag irrelevant (false in std alg) */
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
duk_push_u32(ctx, (duk_uint32_t) del_count);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
|
|
|
|
/* Steps 12 and 13: reorganize elements to make room for itemCount elements */
|
|
|
|
if (item_count < del_count) {
|
|
/* [ A B C D E F G H ] rel_index = 2, del_count 3, item count 1
|
|
* -> [ A B F G H ] (conceptual intermediate step)
|
|
* -> [ A B . F G H ] (placeholder marked)
|
|
* [ A B C F G H ] (actual result at this point, C will be replaced)
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
|
|
n = len - del_count;
|
|
for (i = act_start; i < n; i++) {
|
|
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) (i + del_count))) {
|
|
duk_put_prop_index(ctx, -4, (duk_uarridx_t) (i + item_count));
|
|
} else {
|
|
duk_pop(ctx);
|
|
duk_del_prop_index(ctx, -3, (duk_uarridx_t) (i + item_count));
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
|
|
/* loop iterator init and limit changed from standard algorithm */
|
|
n = len - del_count + item_count;
|
|
for (i = len - 1; i >= n; i--) {
|
|
duk_del_prop_index(ctx, -3, (duk_uarridx_t) i);
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
} else if (item_count > del_count) {
|
|
/* [ A B C D E F G H ] rel_index = 2, del_count 3, item count 4
|
|
* -> [ A B F G H ] (conceptual intermediate step)
|
|
* -> [ A B . . . . F G H ] (placeholder marked)
|
|
* [ A B C D E F F G H ] (actual result at this point)
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
|
|
/* loop iterator init and limit changed from standard algorithm */
|
|
for (i = len - del_count - 1; i >= act_start; i--) {
|
|
if (duk_get_prop_index(ctx, -3, (duk_uarridx_t) (i + del_count))) {
|
|
duk_put_prop_index(ctx, -4, (duk_uarridx_t) (i + item_count));
|
|
} else {
|
|
duk_pop(ctx);
|
|
duk_del_prop_index(ctx, -3, (duk_uarridx_t) (i + item_count));
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
} else {
|
|
/* [ A B C D E F G H ] rel_index = 2, del_count 3, item count 3
|
|
* -> [ A B F G H ] (conceptual intermediate step)
|
|
* -> [ A B . . . F G H ] (placeholder marked)
|
|
* [ A B C D E F G H ] (actual result at this point)
|
|
*/
|
|
}
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
|
|
/* Step 15: insert itemCount elements into the hole made above */
|
|
|
|
for (i = 0; i < item_count; i++) {
|
|
duk_dup(ctx, i + 2); /* args start at index 2 */
|
|
duk_put_prop_index(ctx, -4, (duk_uarridx_t) (act_start + i));
|
|
}
|
|
|
|
/* Step 16: update length; note that the final length may be above 32 bit range
|
|
* (but we checked above that this isn't the case here)
|
|
*/
|
|
|
|
duk_push_u32(ctx, len - del_count + item_count);
|
|
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_LENGTH);
|
|
|
|
/* result array is already at the top of stack */
|
|
DUK_ASSERT_TOP(ctx, nargs + 3);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* reverse()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_reverse(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
duk_uint32_t middle;
|
|
duk_uint32_t lower, upper;
|
|
duk_bool_t have_lower, have_upper;
|
|
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
middle = len / 2;
|
|
|
|
/* If len <= 1, middle will be 0 and for-loop bails out
|
|
* immediately (0 < 0 -> false).
|
|
*/
|
|
|
|
for (lower = 0; lower < middle; lower++) {
|
|
DUK_ASSERT(len >= 2);
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
|
|
DUK_ASSERT(len >= lower + 1);
|
|
upper = len - lower - 1;
|
|
|
|
have_lower = duk_get_prop_index(ctx, -2, (duk_uarridx_t) lower);
|
|
have_upper = duk_get_prop_index(ctx, -3, (duk_uarridx_t) upper);
|
|
|
|
/* [ ToObject(this) ToUint32(length) lowerValue upperValue ] */
|
|
|
|
if (have_upper) {
|
|
duk_put_prop_index(ctx, -4, (duk_uarridx_t) lower);
|
|
} else {
|
|
duk_del_prop_index(ctx, -4, (duk_uarridx_t) lower);
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
if (have_lower) {
|
|
duk_put_prop_index(ctx, -3, (duk_uarridx_t) upper);
|
|
} else {
|
|
duk_del_prop_index(ctx, -3, (duk_uarridx_t) upper);
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
duk_pop(ctx); /* -> [ ToObject(this) ] */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* slice()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_slice(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
duk_int_t start, end;
|
|
duk_int_t i;
|
|
duk_uarridx_t idx;
|
|
duk_uint32_t res_length = 0;
|
|
|
|
/* XXX: len >= 0x80000000 won't work below because we need to be
|
|
* able to represent -len.
|
|
*/
|
|
len = duk__push_this_obj_len_u32_limited(ctx);
|
|
duk_push_array(ctx);
|
|
|
|
/* stack[0] = start
|
|
* stack[1] = end
|
|
* stack[2] = ToObject(this)
|
|
* stack[3] = ToUint32(length)
|
|
* stack[4] = result array
|
|
*/
|
|
|
|
start = duk_to_int_clamped(ctx, 0, -((duk_int_t) len), (duk_int_t) len);
|
|
if (start < 0) {
|
|
start = len + start;
|
|
}
|
|
/* XXX: could duk_is_undefined() provide defaulting undefined to 'len'
|
|
* (the upper limit)?
|
|
*/
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
end = len;
|
|
} else {
|
|
end = duk_to_int_clamped(ctx, 1, -((duk_int_t) len), (duk_int_t) len);
|
|
if (end < 0) {
|
|
end = len + end;
|
|
}
|
|
}
|
|
DUK_ASSERT(start >= 0 && (duk_uint32_t) start <= len);
|
|
DUK_ASSERT(end >= 0 && (duk_uint32_t) end <= len);
|
|
|
|
idx = 0;
|
|
for (i = start; i < end; i++) {
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
if (duk_get_prop_index(ctx, 2, (duk_uarridx_t) i)) {
|
|
duk_xdef_prop_index_wec(ctx, 4, idx);
|
|
res_length = idx + 1;
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
idx++;
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
}
|
|
|
|
duk_push_u32(ctx, res_length);
|
|
duk_xdef_prop_stridx(ctx, 4, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
|
|
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* shift()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_shift(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
duk_uint32_t i;
|
|
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
if (len == 0) {
|
|
duk_push_int(ctx, 0);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
|
|
return 0;
|
|
}
|
|
|
|
duk_get_prop_index(ctx, 0, 0);
|
|
|
|
/* stack[0] = object (this)
|
|
* stack[1] = ToUint32(length)
|
|
* stack[2] = elem at index 0 (retval)
|
|
*/
|
|
|
|
for (i = 1; i < len; i++) {
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
if (duk_get_prop_index(ctx, 0, (duk_uarridx_t) i)) {
|
|
/* fromPresent = true */
|
|
duk_put_prop_index(ctx, 0, (duk_uarridx_t) (i - 1));
|
|
} else {
|
|
/* fromPresent = false */
|
|
duk_del_prop_index(ctx, 0, (duk_uarridx_t) (i - 1));
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
duk_del_prop_index(ctx, 0, (duk_uarridx_t) (len - 1));
|
|
|
|
duk_push_u32(ctx, (duk_uint32_t) (len - 1));
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LENGTH);
|
|
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* unshift()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_unshift(duk_context *ctx) {
|
|
duk_idx_t nargs;
|
|
duk_uint32_t len;
|
|
duk_uint32_t i;
|
|
|
|
nargs = duk_get_top(ctx);
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
|
|
/* stack[0...nargs-1] = unshift args (vararg)
|
|
* stack[nargs] = ToObject(this)
|
|
* stack[nargs+1] = ToUint32(length)
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 2);
|
|
|
|
/* Note: unshift() may operate on indices above unsigned 32-bit range
|
|
* and the final length may be >= 2**32. However, we restrict the
|
|
* final result to 32-bit range for practicality.
|
|
*/
|
|
|
|
if (len + (duk_uint32_t) nargs < len) {
|
|
DUK_D(DUK_DPRINT("Array.prototype.unshift() would go beyond 32-bit length, throw"));
|
|
return DUK_RET_RANGE_ERROR;
|
|
}
|
|
|
|
i = len;
|
|
while (i > 0) {
|
|
DUK_ASSERT_TOP(ctx, nargs + 2);
|
|
i--;
|
|
/* k+argCount-1; note that may be above 32-bit range */
|
|
|
|
if (duk_get_prop_index(ctx, -2, (duk_uarridx_t) i)) {
|
|
/* fromPresent = true */
|
|
/* [ ... ToObject(this) ToUint32(length) val ] */
|
|
duk_put_prop_index(ctx, -3, (duk_uarridx_t) (i + nargs)); /* -> [ ... ToObject(this) ToUint32(length) ] */
|
|
} else {
|
|
/* fromPresent = false */
|
|
/* [ ... ToObject(this) ToUint32(length) val ] */
|
|
duk_pop(ctx);
|
|
duk_del_prop_index(ctx, -2, (duk_uarridx_t) (i + nargs)); /* -> [ ... ToObject(this) ToUint32(length) ] */
|
|
}
|
|
DUK_ASSERT_TOP(ctx, nargs + 2);
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint32_t) nargs; i++) {
|
|
DUK_ASSERT_TOP(ctx, nargs + 2);
|
|
duk_dup(ctx, i); /* -> [ ... ToObject(this) ToUint32(length) arg[i] ] */
|
|
duk_put_prop_index(ctx, -3, (duk_uarridx_t) i);
|
|
DUK_ASSERT_TOP(ctx, nargs + 2);
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, nargs + 2);
|
|
duk_push_u32(ctx, len + nargs);
|
|
duk_dup_top(ctx); /* -> [ ... ToObject(this) ToUint32(length) final_len final_len ] */
|
|
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_LENGTH);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* indexOf(), lastIndexOf()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_indexof_shared(duk_context *ctx) {
|
|
duk_idx_t nargs;
|
|
duk_int_t i, len;
|
|
duk_int_t from_index;
|
|
duk_small_int_t idx_step = duk_get_current_magic(ctx); /* idx_step is +1 for indexOf, -1 for lastIndexOf */
|
|
|
|
/* lastIndexOf() needs to be a vararg function because we must distinguish
|
|
* between an undefined fromIndex and a "not given" fromIndex; indexOf() is
|
|
* made vararg for symmetry although it doesn't strictly need to be.
|
|
*/
|
|
|
|
nargs = duk_get_top(ctx);
|
|
duk_set_top(ctx, 2);
|
|
|
|
/* XXX: must be able to represent -len */
|
|
len = (duk_int_t) duk__push_this_obj_len_u32_limited(ctx);
|
|
if (len == 0) {
|
|
goto not_found;
|
|
}
|
|
|
|
/* Index clamping is a bit tricky, we must ensure that we'll only iterate
|
|
* through elements that exist and that the specific requirements from E5.1
|
|
* Sections 15.4.4.14 and 15.4.4.15 are fulfilled; especially:
|
|
*
|
|
* - indexOf: clamp to [-len,len], negative handling -> [0,len],
|
|
* if clamped result is len, for-loop bails out immediately
|
|
*
|
|
* - lastIndexOf: clamp to [-len-1, len-1], negative handling -> [-1, len-1],
|
|
* if clamped result is -1, for-loop bails out immediately
|
|
*
|
|
* If fromIndex is not given, ToInteger(undefined) = 0, which is correct
|
|
* for indexOf() but incorrect for lastIndexOf(). Hence special handling,
|
|
* and why lastIndexOf() needs to be a vararg function.
|
|
*/
|
|
|
|
if (nargs >= 2) {
|
|
/* indexOf: clamp fromIndex to [-len, len]
|
|
* (if fromIndex == len, for-loop terminates directly)
|
|
*
|
|
* lastIndexOf: clamp fromIndex to [-len - 1, len - 1]
|
|
* (if clamped to -len-1 -> fromIndex becomes -1, terminates for-loop directly)
|
|
*/
|
|
from_index = duk_to_int_clamped(ctx,
|
|
1,
|
|
(idx_step > 0 ? -len : -len - 1),
|
|
(idx_step > 0 ? len : len - 1));
|
|
if (from_index < 0) {
|
|
/* for lastIndexOf, result may be -1 (mark immediate termination) */
|
|
from_index = len + from_index;
|
|
}
|
|
} else {
|
|
/* for indexOf, ToInteger(undefined) would be 0, i.e. correct, but
|
|
* handle both indexOf and lastIndexOf specially here.
|
|
*/
|
|
if (idx_step > 0) {
|
|
from_index = 0;
|
|
} else {
|
|
from_index = len - 1;
|
|
}
|
|
}
|
|
|
|
/* stack[0] = searchElement
|
|
* stack[1] = fromIndex
|
|
* stack[2] = object
|
|
* stack[3] = length (not needed, but not popped above)
|
|
*/
|
|
|
|
for (i = from_index; i >= 0 && i < len; i += idx_step) {
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
|
|
if (duk_get_prop_index(ctx, 2, (duk_uarridx_t) i)) {
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
if (duk_strict_equals(ctx, 0, 4)) {
|
|
duk_push_int(ctx, i);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
not_found:
|
|
duk_push_int(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* every(), some(), forEach(), map(), filter()
|
|
*/
|
|
|
|
#define DUK__ITER_EVERY 0
|
|
#define DUK__ITER_SOME 1
|
|
#define DUK__ITER_FOREACH 2
|
|
#define DUK__ITER_MAP 3
|
|
#define DUK__ITER_FILTER 4
|
|
|
|
/* XXX: This helper is a bit awkward because the handling for the different iteration
|
|
* callers is quite different. This now compiles to a bit less than 500 bytes, so with
|
|
* 5 callers the net result is about 100 bytes / caller.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_iter_shared(duk_context *ctx) {
|
|
duk_uint32_t len;
|
|
duk_uint32_t i;
|
|
duk_uarridx_t k;
|
|
duk_bool_t bval;
|
|
duk_small_int_t iter_type = duk_get_current_magic(ctx);
|
|
duk_uint32_t res_length = 0;
|
|
|
|
/* each call this helper serves has nargs==2 */
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
if (!duk_is_callable(ctx, 0)) {
|
|
goto type_error;
|
|
}
|
|
/* if thisArg not supplied, behave as if undefined was supplied */
|
|
|
|
if (iter_type == DUK__ITER_MAP || iter_type == DUK__ITER_FILTER) {
|
|
duk_push_array(ctx);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
|
|
/* stack[0] = callback
|
|
* stack[1] = thisArg
|
|
* stack[2] = object
|
|
* stack[3] = ToUint32(length) (unused, but avoid unnecessary pop)
|
|
* stack[4] = result array (or undefined)
|
|
*/
|
|
|
|
k = 0; /* result index for filter() */
|
|
for (i = 0; i < len; i++) {
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
|
|
if (!duk_get_prop_index(ctx, 2, (duk_uarridx_t) i)) {
|
|
#if defined(DUK_USE_NONSTD_ARRAY_MAP_TRAILER)
|
|
/* Real world behavior for map(): trailing non-existent
|
|
* elements don't invoke the user callback, but are still
|
|
* counted towards result 'length'.
|
|
*/
|
|
if (iter_type == DUK__ITER_MAP) {
|
|
res_length = i + 1;
|
|
}
|
|
#else
|
|
/* Standard behavior for map(): trailing non-existent
|
|
* elements don't invoke the user callback and are not
|
|
* counted towards result 'length'.
|
|
*/
|
|
#endif
|
|
duk_pop(ctx);
|
|
continue;
|
|
}
|
|
|
|
/* The original value needs to be preserved for filter(), hence
|
|
* this funny order. We can't re-get the value because of side
|
|
* effects.
|
|
*/
|
|
|
|
duk_dup(ctx, 0);
|
|
duk_dup(ctx, 1);
|
|
duk_dup(ctx, -3);
|
|
duk_push_u32(ctx, i);
|
|
duk_dup(ctx, 2); /* [ ... val callback thisArg val i obj ] */
|
|
duk_call_method(ctx, 3); /* -> [ ... val retval ] */
|
|
|
|
switch (iter_type) {
|
|
case DUK__ITER_EVERY:
|
|
bval = duk_to_boolean(ctx, -1);
|
|
if (!bval) {
|
|
/* stack top contains 'false' */
|
|
return 1;
|
|
}
|
|
break;
|
|
case DUK__ITER_SOME:
|
|
bval = duk_to_boolean(ctx, -1);
|
|
if (bval) {
|
|
/* stack top contains 'true' */
|
|
return 1;
|
|
}
|
|
break;
|
|
case DUK__ITER_FOREACH:
|
|
/* nop */
|
|
break;
|
|
case DUK__ITER_MAP:
|
|
duk_dup(ctx, -1);
|
|
duk_xdef_prop_index_wec(ctx, 4, (duk_uarridx_t) i); /* retval to result[i] */
|
|
res_length = i + 1;
|
|
break;
|
|
case DUK__ITER_FILTER:
|
|
bval = duk_to_boolean(ctx, -1);
|
|
if (bval) {
|
|
duk_dup(ctx, -2); /* orig value */
|
|
duk_xdef_prop_index_wec(ctx, 4, (duk_uarridx_t) k);
|
|
k++;
|
|
res_length = k;
|
|
}
|
|
break;
|
|
default:
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
duk_pop_2(ctx);
|
|
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
}
|
|
|
|
switch (iter_type) {
|
|
case DUK__ITER_EVERY:
|
|
duk_push_true(ctx);
|
|
break;
|
|
case DUK__ITER_SOME:
|
|
duk_push_false(ctx);
|
|
break;
|
|
case DUK__ITER_FOREACH:
|
|
duk_push_undefined(ctx);
|
|
break;
|
|
case DUK__ITER_MAP:
|
|
case DUK__ITER_FILTER:
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
DUK_ASSERT(duk_is_array(ctx, -1)); /* topmost element is the result array already */
|
|
duk_push_u32(ctx, res_length);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_W);
|
|
break;
|
|
default:
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
/*
|
|
* reduce(), reduceRight()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_array_prototype_reduce_shared(duk_context *ctx) {
|
|
duk_idx_t nargs;
|
|
duk_bool_t have_acc;
|
|
duk_uint32_t i, len;
|
|
duk_small_int_t idx_step = duk_get_current_magic(ctx); /* idx_step is +1 for reduce, -1 for reduceRight */
|
|
|
|
/* We're a varargs function because we need to detect whether
|
|
* initialValue was given or not.
|
|
*/
|
|
nargs = duk_get_top(ctx);
|
|
DUK_DDD(DUK_DDDPRINT("nargs=%ld", (long) nargs));
|
|
|
|
duk_set_top(ctx, 2);
|
|
len = duk__push_this_obj_len_u32(ctx);
|
|
if (!duk_is_callable(ctx, 0)) {
|
|
goto type_error;
|
|
}
|
|
|
|
/* stack[0] = callback fn
|
|
* stack[1] = initialValue
|
|
* stack[2] = object (coerced this)
|
|
* stack[3] = length (not needed, but not popped above)
|
|
* stack[4] = accumulator
|
|
*/
|
|
|
|
have_acc = 0;
|
|
if (nargs >= 2) {
|
|
duk_dup(ctx, 1);
|
|
have_acc = 1;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("have_acc=%ld, acc=%!T",
|
|
(long) have_acc, (duk_tval *) duk_get_tval(ctx, 3)));
|
|
|
|
/* For len == 0, i is initialized to len - 1 which underflows.
|
|
* The condition (i < len) will then exit the for-loop on the
|
|
* first round which is correct. Similarly, loop termination
|
|
* happens by i underflowing.
|
|
*/
|
|
|
|
for (i = (idx_step >= 0 ? 0 : len - 1);
|
|
i < len; /* i >= 0 would always be true */
|
|
i += idx_step) {
|
|
DUK_DDD(DUK_DDDPRINT("i=%ld, len=%ld, have_acc=%ld, top=%ld, acc=%!T",
|
|
(long) i, (long) len, (long) have_acc,
|
|
(long) duk_get_top(ctx),
|
|
(duk_tval *) duk_get_tval(ctx, 4)));
|
|
|
|
DUK_ASSERT((have_acc && duk_get_top(ctx) == 5) ||
|
|
(!have_acc && duk_get_top(ctx) == 4));
|
|
|
|
if (!duk_has_prop_index(ctx, 2, (duk_uarridx_t) i)) {
|
|
continue;
|
|
}
|
|
|
|
if (!have_acc) {
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
duk_get_prop_index(ctx, 2, (duk_uarridx_t) i);
|
|
have_acc = 1;
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
} else {
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
duk_dup(ctx, 0);
|
|
duk_dup(ctx, 4);
|
|
duk_get_prop_index(ctx, 2, (duk_uarridx_t) i);
|
|
duk_push_u32(ctx, i);
|
|
duk_dup(ctx, 2);
|
|
DUK_DDD(DUK_DDDPRINT("calling reduce function: func=%!T, prev=%!T, curr=%!T, idx=%!T, obj=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -5), (duk_tval *) duk_get_tval(ctx, -4),
|
|
(duk_tval *) duk_get_tval(ctx, -3), (duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_call(ctx, 4);
|
|
DUK_DDD(DUK_DDDPRINT("-> result: %!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_replace(ctx, 4);
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
}
|
|
}
|
|
|
|
if (!have_acc) {
|
|
goto type_error;
|
|
}
|
|
|
|
DUK_ASSERT_TOP(ctx, 5);
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
#line 1 "duk_bi_boolean.c"
|
|
/*
|
|
* Boolean built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Shared helper to provide toString() and valueOf(). Checks 'this', gets
|
|
* the primitive value to stack top, and optionally coerces with ToString().
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_boolean_prototype_tostring_shared(duk_context *ctx) {
|
|
duk_tval *tv;
|
|
duk_hobject *h;
|
|
duk_small_int_t coerce_tostring = duk_get_current_magic(ctx);
|
|
|
|
/* XXX: there is room to use a shared helper here, many built-ins
|
|
* check the 'this' type, and if it's an object, check its class,
|
|
* then get its internal value, etc.
|
|
*/
|
|
|
|
duk_push_this(ctx);
|
|
tv = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_BOOLEAN(tv)) {
|
|
goto type_ok;
|
|
} else if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h) == DUK_HOBJECT_CLASS_BOOLEAN) {
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
DUK_ASSERT(duk_is_boolean(ctx, -1));
|
|
goto type_ok;
|
|
}
|
|
}
|
|
|
|
return DUK_RET_TYPE_ERROR;
|
|
|
|
type_ok:
|
|
if (coerce_tostring) {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_boolean_constructor(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h_this;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
duk_to_boolean(ctx, 0);
|
|
|
|
if (duk_is_constructor_call(ctx)) {
|
|
/* XXX: helper; rely on Boolean.prototype as being non-writable, non-configurable */
|
|
duk_push_this(ctx);
|
|
h_this = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h_this != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h_this) == thr->builtins[DUK_BIDX_BOOLEAN_PROTOTYPE]);
|
|
|
|
DUK_HOBJECT_SET_CLASS_NUMBER(h_this, DUK_HOBJECT_CLASS_BOOLEAN);
|
|
|
|
duk_dup(ctx, 0); /* -> [ val obj val ] */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_NONE); /* XXX: proper flags? */
|
|
} /* unbalanced stack */
|
|
|
|
return 1;
|
|
}
|
|
#line 1 "duk_bi_buffer.c"
|
|
/*
|
|
* Buffer built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Constructor
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_buffer_constructor(duk_context *ctx) {
|
|
duk_size_t buf_size;
|
|
duk_small_int_t buf_dynamic;
|
|
duk_uint8_t *buf_data;
|
|
const duk_uint8_t *src_data;
|
|
duk_hobject *h_obj;
|
|
|
|
/*
|
|
* Constructor arguments are currently somewhat compatible with
|
|
* (keep it that way if possible):
|
|
*
|
|
* http://nodejs.org/api/buffer.html
|
|
*
|
|
* Note that the ToBuffer() coercion (duk_to_buffer()) does NOT match
|
|
* the constructor behavior.
|
|
*/
|
|
|
|
buf_dynamic = duk_get_boolean(ctx, 1); /* default to false */
|
|
|
|
switch (duk_get_type(ctx, 0)) {
|
|
case DUK_TYPE_NUMBER:
|
|
/* new buffer of specified size */
|
|
buf_size = (duk_size_t) duk_to_int(ctx, 0);
|
|
(void) duk_push_buffer(ctx, buf_size, buf_dynamic);
|
|
break;
|
|
case DUK_TYPE_BUFFER:
|
|
/* return input buffer, converted to a Buffer object if called as a
|
|
* constructor (no change if called as a function).
|
|
*/
|
|
duk_set_top(ctx, 1);
|
|
break;
|
|
case DUK_TYPE_STRING:
|
|
/* new buffer with string contents */
|
|
src_data = (const duk_uint8_t *) duk_get_lstring(ctx, 0, &buf_size);
|
|
DUK_ASSERT(src_data != NULL); /* even for zero-length string */
|
|
buf_data = (duk_uint8_t *) duk_push_buffer(ctx, buf_size, buf_dynamic);
|
|
DUK_MEMCPY((void *) buf_data, (const void *) src_data, (size_t) buf_size);
|
|
break;
|
|
case DUK_TYPE_OBJECT:
|
|
/* Buffer object: get the plain buffer inside. If called as as
|
|
* constructor, a new Buffer object pointing to the same plain
|
|
* buffer is created below.
|
|
*/
|
|
h_obj = duk_get_hobject(ctx, 0);
|
|
DUK_ASSERT(h_obj != NULL);
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h_obj) != DUK_HOBJECT_CLASS_BUFFER) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_INT_VALUE);
|
|
DUK_ASSERT(duk_is_buffer(ctx, -1));
|
|
break;
|
|
case DUK_TYPE_NONE:
|
|
default:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
/* stack is unbalanced, but: [ <something> buf ] */
|
|
|
|
if (duk_is_constructor_call(ctx)) {
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_EXOTIC_BUFFEROBJ |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_BUFFER),
|
|
DUK_BIDX_BUFFER_PROTOTYPE);
|
|
|
|
/* Buffer object internal value is immutable */
|
|
duk_dup(ctx, -2);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
/* Note: unbalanced stack on purpose */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* toString(), valueOf()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_buffer_prototype_tostring_shared(duk_context *ctx) {
|
|
duk_tval *tv;
|
|
duk_small_int_t to_string = duk_get_current_magic(ctx);
|
|
|
|
duk_push_this(ctx);
|
|
tv = duk_require_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_BUFFER(tv)) {
|
|
/* nop */
|
|
} else if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
duk_hobject *h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* Must be a "buffer object", i.e. class "Buffer" */
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h) != DUK_HOBJECT_CLASS_BUFFER) {
|
|
goto type_error;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
} else {
|
|
goto type_error;
|
|
}
|
|
|
|
if (to_string) {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
#line 1 "duk_bi_date.c"
|
|
/*
|
|
* Date built-ins
|
|
*
|
|
* Unlike most built-ins, Date has a lot of platform dependencies for
|
|
* getting UTC time, converting between UTC and local time, and parsing
|
|
* and formatting time values.
|
|
*
|
|
* See doc/datetime.txt.
|
|
*
|
|
* Platform specific links:
|
|
*
|
|
* - http://msdn.microsoft.com/en-us/library/windows/desktop/ms725473(v=vs.85).aspx
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Platform specific includes and defines
|
|
*
|
|
* Note that necessary system headers (like <sys/time.h>) are included
|
|
* by duk_internal.h (or duk_features.h, which is included by duk_internal.h)
|
|
* because the header locations vary between systems and we don't want
|
|
* that clutter here.
|
|
*/
|
|
|
|
#define DUK__GET_NOW_TIMEVAL duk_bi_date_get_now
|
|
#define DUK__GET_LOCAL_TZOFFSET duk__get_local_tzoffset
|
|
|
|
/* Buffer sizes for some UNIX calls. Larger than strictly necessary
|
|
* to avoid Valgrind errors.
|
|
*/
|
|
#define DUK__STRPTIME_BUF_SIZE 64
|
|
#define DUK__STRFTIME_BUF_SIZE 64
|
|
|
|
/*
|
|
* Other file level defines
|
|
*/
|
|
|
|
/* Forward declarations. */
|
|
DUK_LOCAL_DECL duk_double_t duk__push_this_get_timeval_tzoffset(duk_context *ctx, duk_small_uint_t flags, duk_int_t *out_tzoffset);
|
|
DUK_LOCAL_DECL duk_double_t duk__push_this_get_timeval(duk_context *ctx, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL void duk__timeval_to_parts(duk_double_t d, duk_int_t *parts, duk_double_t *dparts, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL duk_double_t duk__get_timeval_from_dparts(duk_double_t *dparts, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL void duk__twodigit_year_fixup(duk_context *ctx, duk_idx_t idx_val);
|
|
DUK_LOCAL_DECL duk_bool_t duk__is_leap_year(duk_int_t year);
|
|
DUK_LOCAL_DECL duk_bool_t duk__timeval_in_valid_range(duk_double_t x);
|
|
DUK_LOCAL_DECL duk_bool_t duk__timeval_in_leeway_range(duk_double_t x);
|
|
DUK_LOCAL_DECL duk_bool_t duk__year_in_valid_range(duk_double_t year);
|
|
|
|
/* Millisecond count constants. */
|
|
#define DUK__MS_SECOND 1000L
|
|
#define DUK__MS_MINUTE (60L * 1000L)
|
|
#define DUK__MS_HOUR (60L * 60L * 1000L)
|
|
#define DUK__MS_DAY (24L * 60L * 60L * 1000L)
|
|
|
|
/* Ecmascript date range is 100 million days from Epoch:
|
|
* > 100e6 * 24 * 60 * 60 * 1000 // 100M days in millisecs
|
|
* 8640000000000000
|
|
* (= 8.64e15)
|
|
*/
|
|
#define DUK__MS_100M_DAYS (8.64e15)
|
|
#define DUK__MS_100M_DAYS_LEEWAY (8.64e15 + 24 * 3600e3)
|
|
|
|
/* Ecmascript year range:
|
|
* > new Date(100e6 * 24 * 3600e3).toISOString()
|
|
* '+275760-09-13T00:00:00.000Z'
|
|
* > new Date(-100e6 * 24 * 3600e3).toISOString()
|
|
* '-271821-04-20T00:00:00.000Z'
|
|
*/
|
|
#define DUK__MIN_ECMA_YEAR (-271821)
|
|
#define DUK__MAX_ECMA_YEAR 275760
|
|
|
|
/* Part indices for internal breakdowns. Part order from DUK__IDX_YEAR to
|
|
* DUK__IDX_MILLISECOND matches argument ordering of Ecmascript API calls
|
|
* (like Date constructor call). A few functions in this file depend
|
|
* on the specific ordering, so change with care. 16 bits are not enough
|
|
* for all parts (year, specifically).
|
|
*
|
|
* (Must be in-sync with genbuiltins.py.)
|
|
*/
|
|
#define DUK__IDX_YEAR 0 /* year */
|
|
#define DUK__IDX_MONTH 1 /* month: 0 to 11 */
|
|
#define DUK__IDX_DAY 2 /* day within month: 0 to 30 */
|
|
#define DUK__IDX_HOUR 3
|
|
#define DUK__IDX_MINUTE 4
|
|
#define DUK__IDX_SECOND 5
|
|
#define DUK__IDX_MILLISECOND 6
|
|
#define DUK__IDX_WEEKDAY 7 /* weekday: 0 to 6, 0=sunday, 1=monday, etc */
|
|
#define DUK__NUM_PARTS 8
|
|
|
|
/* Internal API call flags, used for various functions in this file.
|
|
* Certain flags are used by only certain functions, but since the flags
|
|
* don't overlap, a single flags value can be passed around to multiple
|
|
* functions.
|
|
*
|
|
* The unused top bits of the flags field are also used to pass values
|
|
* to helpers (duk__get_part_helper() and duk__set_part_helper()).
|
|
*
|
|
* (Must be in-sync with genbuiltins.py.)
|
|
*/
|
|
#define DUK__FLAG_NAN_TO_ZERO (1 << 0) /* timeval breakdown: internal time value NaN -> zero */
|
|
#define DUK__FLAG_NAN_TO_RANGE_ERROR (1 << 1) /* timeval breakdown: internal time value NaN -> RangeError (toISOString) */
|
|
#define DUK__FLAG_ONEBASED (1 << 2) /* timeval breakdown: convert month and day-of-month parts to one-based (default is zero-based) */
|
|
#define DUK__FLAG_EQUIVYEAR (1 << 3) /* timeval breakdown: replace year with equivalent year in the [1971,2037] range for DST calculations */
|
|
#define DUK__FLAG_LOCALTIME (1 << 4) /* convert time value to local time */
|
|
#define DUK__FLAG_SUB1900 (1 << 5) /* getter: subtract 1900 from year when getting year part */
|
|
#define DUK__FLAG_TOSTRING_DATE (1 << 6) /* include date part in string conversion result */
|
|
#define DUK__FLAG_TOSTRING_TIME (1 << 7) /* include time part in string conversion result */
|
|
#define DUK__FLAG_TOSTRING_LOCALE (1 << 8) /* use locale specific formatting if available */
|
|
#define DUK__FLAG_TIMESETTER (1 << 9) /* setter: call is a time setter (affects hour, min, sec, ms); otherwise date setter (affects year, month, day-in-month) */
|
|
#define DUK__FLAG_YEAR_FIXUP (1 << 10) /* setter: perform 2-digit year fixup (00...99 -> 1900...1999) */
|
|
#define DUK__FLAG_SEP_T (1 << 11) /* string conversion: use 'T' instead of ' ' as a separator */
|
|
#define DUK__FLAG_VALUE_SHIFT 12 /* additional values begin at bit 12 */
|
|
|
|
/* Debug macro to print all parts and dparts (used manually because of debug level). */
|
|
#define DUK__DPRINT_PARTS_AND_DPARTS(parts,dparts) do { \
|
|
DUK_D(DUK_DPRINT("parts: %ld %ld %ld %ld %ld %ld %ld %ld, dparts: %lf %lf %lf %lf %lf %lf %lf %lf", \
|
|
(long) (parts)[0], (long) (parts)[1], \
|
|
(long) (parts)[2], (long) (parts)[3], \
|
|
(long) (parts)[4], (long) (parts)[5], \
|
|
(long) (parts)[6], (long) (parts)[7], \
|
|
(double) (dparts)[0], (double) (dparts)[1], \
|
|
(double) (dparts)[2], (double) (dparts)[3], \
|
|
(double) (dparts)[4], (double) (dparts)[5], \
|
|
(double) (dparts)[6], (double) (dparts)[7])); \
|
|
} while (0)
|
|
#define DUK__DPRINT_PARTS(parts) do { \
|
|
DUK_D(DUK_DPRINT("parts: %ld %ld %ld %ld %ld %ld %ld %ld", \
|
|
(long) (parts)[0], (long) (parts)[1], \
|
|
(long) (parts)[2], (long) (parts)[3], \
|
|
(long) (parts)[4], (long) (parts)[5], \
|
|
(long) (parts)[6], (long) (parts)[7])); \
|
|
} while (0)
|
|
#define DUK__DPRINT_DPARTS(dparts) do { \
|
|
DUK_D(DUK_DPRINT("dparts: %lf %lf %lf %lf %lf %lf %lf %lf", \
|
|
(double) (dparts)[0], (double) (dparts)[1], \
|
|
(double) (dparts)[2], (double) (dparts)[3], \
|
|
(double) (dparts)[4], (double) (dparts)[5], \
|
|
(double) (dparts)[6], (double) (dparts)[7])); \
|
|
} while (0)
|
|
|
|
/* Equivalent year for DST calculations outside [1970,2038[ range, see
|
|
* E5 Section 15.9.1.8. Equivalent year has the same leap-year-ness and
|
|
* starts with the same weekday on Jan 1.
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=351066
|
|
*/
|
|
#define DUK__YEAR(x) ((duk_uint8_t) ((x) - 1970))
|
|
DUK_LOCAL duk_uint8_t duk__date_equivyear[14] = {
|
|
#if 1
|
|
/* This is based on V8 EquivalentYear() algorithm (see src/genequivyear.py):
|
|
* http://code.google.com/p/v8/source/browse/trunk/src/date.h#146
|
|
*/
|
|
|
|
/* non-leap year: sunday, monday, ... */
|
|
DUK__YEAR(2023), DUK__YEAR(2035), DUK__YEAR(2019), DUK__YEAR(2031),
|
|
DUK__YEAR(2015), DUK__YEAR(2027), DUK__YEAR(2011),
|
|
|
|
/* leap year: sunday, monday, ... */
|
|
DUK__YEAR(2012), DUK__YEAR(2024), DUK__YEAR(2008), DUK__YEAR(2020),
|
|
DUK__YEAR(2032), DUK__YEAR(2016), DUK__YEAR(2028)
|
|
#endif
|
|
|
|
#if 0
|
|
/* This is based on Rhino EquivalentYear() algorithm:
|
|
* https://github.com/mozilla/rhino/blob/f99cc11d616f0cdda2c42bde72b3484df6182947/src/org/mozilla/javascript/NativeDate.java
|
|
*/
|
|
|
|
/* non-leap year: sunday, monday, ... */
|
|
DUK__YEAR(1978), DUK__YEAR(1973), DUK__YEAR(1985), DUK__YEAR(1986),
|
|
DUK__YEAR(1981), DUK__YEAR(1971), DUK__YEAR(1977),
|
|
|
|
/* leap year: sunday, monday, ... */
|
|
DUK__YEAR(1984), DUK__YEAR(1996), DUK__YEAR(1980), DUK__YEAR(1992),
|
|
DUK__YEAR(1976), DUK__YEAR(1988), DUK__YEAR(1972)
|
|
#endif
|
|
};
|
|
#undef DUK__YEAR
|
|
|
|
/*
|
|
* Platform specific helpers
|
|
*/
|
|
|
|
#ifdef DUK_USE_DATE_NOW_GETTIMEOFDAY
|
|
/* Get current Ecmascript time (= UNIX/Posix time, but in milliseconds). */
|
|
DUK_INTERNAL duk_double_t duk_bi_date_get_now(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
struct timeval tv;
|
|
duk_double_t d;
|
|
|
|
if (gettimeofday(&tv, NULL) != 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "gettimeofday failed");
|
|
}
|
|
|
|
d = ((duk_double_t) tv.tv_sec) * 1000.0 +
|
|
((duk_double_t) (tv.tv_usec / 1000));
|
|
DUK_ASSERT(DUK_FLOOR(d) == d); /* no fractions */
|
|
|
|
return d;
|
|
}
|
|
#endif /* DUK_USE_DATE_NOW_GETTIMEOFDAY */
|
|
|
|
#ifdef DUK_USE_DATE_NOW_TIME
|
|
/* Not a very good provider: only full seconds are available. */
|
|
DUK_INTERNAL duk_double_t duk_bi_date_get_now(duk_context *ctx) {
|
|
time_t t = time(NULL);
|
|
return ((duk_double_t) t) * 1000.0;
|
|
}
|
|
#endif /* DUK_USE_DATE_NOW_TIME */
|
|
|
|
#if defined(DUK_USE_DATE_NOW_WINDOWS) || defined(DUK_USE_DATE_TZO_WINDOWS)
|
|
/* Shared Windows helpers. */
|
|
DUK_LOCAL void duk__convert_systime_to_ularge(const SYSTEMTIME *st, ULARGE_INTEGER *res) {
|
|
FILETIME ft;
|
|
if (SystemTimeToFileTime(st, &ft) == 0) {
|
|
DUK_D(DUK_DPRINT("SystemTimeToFileTime() failed, returning 0"));
|
|
res->QuadPart = 0;
|
|
} else {
|
|
res->LowPart = ft.dwLowDateTime;
|
|
res->HighPart = ft.dwHighDateTime;
|
|
}
|
|
}
|
|
DUK_LOCAL void duk__set_systime_jan1970(SYSTEMTIME *st) {
|
|
DUK_MEMZERO((void *) st, sizeof(*st));
|
|
st->wYear = 1970;
|
|
st->wMonth = 1;
|
|
st->wDayOfWeek = 4; /* not sure whether or not needed; Thursday */
|
|
st->wDay = 1;
|
|
DUK_ASSERT(st->wHour == 0);
|
|
DUK_ASSERT(st->wMinute == 0);
|
|
DUK_ASSERT(st->wSecond == 0);
|
|
DUK_ASSERT(st->wMilliseconds == 0);
|
|
}
|
|
#endif /* defined(DUK_USE_DATE_NOW_WINDOWS) || defined(DUK_USE_DATE_TZO_WINDOWS) */
|
|
|
|
#ifdef DUK_USE_DATE_NOW_WINDOWS
|
|
DUK_INTERNAL duk_double_t duk_bi_date_get_now(duk_context *ctx) {
|
|
/* Suggested step-by-step method from documentation of RtlTimeToSecondsSince1970:
|
|
* http://msdn.microsoft.com/en-us/library/windows/desktop/ms724928(v=vs.85).aspx
|
|
*/
|
|
SYSTEMTIME st1, st2;
|
|
ULARGE_INTEGER tmp1, tmp2;
|
|
|
|
DUK_UNREF(ctx);
|
|
|
|
GetSystemTime(&st1);
|
|
duk__convert_systime_to_ularge((const SYSTEMTIME *) &st1, &tmp1);
|
|
|
|
duk__set_systime_jan1970(&st2);
|
|
duk__convert_systime_to_ularge((const SYSTEMTIME *) &st2, &tmp2);
|
|
|
|
/* Difference is in 100ns units, convert to milliseconds w/o fractions */
|
|
return (duk_double_t) ((tmp1.QuadPart - tmp2.QuadPart) / 10000LL);
|
|
}
|
|
#endif /* DUK_USE_DATE_NOW_WINDOWS */
|
|
|
|
#if defined(DUK_USE_DATE_TZO_GMTIME) || defined(DUK_USE_DATE_TZO_GMTIME_R)
|
|
/* Get local time offset (in seconds) for a certain (UTC) instant 'd'. */
|
|
DUK_LOCAL duk_int_t duk__get_local_tzoffset(duk_double_t d) {
|
|
time_t t, t1, t2;
|
|
duk_int_t parts[DUK__NUM_PARTS];
|
|
duk_double_t dparts[DUK__NUM_PARTS];
|
|
struct tm tms[2];
|
|
#ifdef DUK_USE_DATE_TZO_GMTIME
|
|
struct tm *tm_ptr;
|
|
#endif
|
|
|
|
/* For NaN/inf, the return value doesn't matter. */
|
|
if (!DUK_ISFINITE(d)) {
|
|
return 0;
|
|
}
|
|
|
|
/* If not within Ecmascript range, some integer time calculations
|
|
* won't work correctly (and some asserts will fail), so bail out
|
|
* if so. This fixes test-bug-date-insane-setyear.js. There is
|
|
* a +/- 24h leeway in this range check to avoid a test262 corner
|
|
* case documented in test-bug-date-timeval-edges.js.
|
|
*/
|
|
if (!duk__timeval_in_leeway_range(d)) {
|
|
DUK_DD(DUK_DDPRINT("timeval not within valid range, skip tzoffset computation to avoid integer overflows"));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is a bit tricky to implement portably. The result depends
|
|
* on the timestamp (specifically, DST depends on the timestamp).
|
|
* If e.g. UNIX APIs are used, they'll have portability issues with
|
|
* very small and very large years.
|
|
*
|
|
* Current approach:
|
|
*
|
|
* - Stay within portable UNIX limits by using equivalent year mapping.
|
|
* Avoid year 1970 and 2038 as some conversions start to fail, at
|
|
* least on some platforms. Avoiding 1970 means that there are
|
|
* currently DST discrepancies for 1970.
|
|
*
|
|
* - Create a UTC and local time breakdowns from 't'. Then create
|
|
* a time_t using gmtime() and localtime() and compute the time
|
|
* difference between the two.
|
|
*
|
|
* Equivalent year mapping (E5 Section 15.9.1.8):
|
|
*
|
|
* If the host environment provides functionality for determining
|
|
* daylight saving time, the implementation of ECMAScript is free
|
|
* to map the year in question to an equivalent year (same
|
|
* leap-year-ness and same starting week day for the year) for which
|
|
* the host environment provides daylight saving time information.
|
|
* The only restriction is that all equivalent years should produce
|
|
* the same result.
|
|
*
|
|
* This approach is quite reasonable but not entirely correct, e.g.
|
|
* the specification also states (E5 Section 15.9.1.8):
|
|
*
|
|
* The implementation of ECMAScript should not try to determine
|
|
* whether the exact time was subject to daylight saving time, but
|
|
* just whether daylight saving time would have been in effect if
|
|
* the _current daylight saving time algorithm_ had been used at the
|
|
* time. This avoids complications such as taking into account the
|
|
* years that the locale observed daylight saving time year round.
|
|
*
|
|
* Since we rely on the platform APIs for conversions between local
|
|
* time and UTC, we can't guarantee the above. Rather, if the platform
|
|
* has historical DST rules they will be applied. This seems to be the
|
|
* general preferred direction in Ecmascript standardization (or at least
|
|
* implementations) anyway, and even the equivalent year mapping should
|
|
* be disabled if the platform is known to handle DST properly for the
|
|
* full Ecmascript range.
|
|
*
|
|
* The following has useful discussion and links:
|
|
*
|
|
* https://bugzilla.mozilla.org/show_bug.cgi?id=351066
|
|
*/
|
|
|
|
duk__timeval_to_parts(d, parts, dparts, DUK__FLAG_EQUIVYEAR /*flags*/);
|
|
DUK_ASSERT(parts[DUK__IDX_YEAR] >= 1970 && parts[DUK__IDX_YEAR] <= 2038);
|
|
|
|
d = duk__get_timeval_from_dparts(dparts, 0 /*flags*/);
|
|
DUK_ASSERT(d >= 0 && d < 2147483648.0 * 1000.0); /* unsigned 31-bit range */
|
|
t = (time_t) (d / 1000.0);
|
|
DUK_DDD(DUK_DDDPRINT("timeval: %lf -> time_t %ld", (double) d, (long) t));
|
|
|
|
t1 = t;
|
|
|
|
DUK_MEMZERO((void *) tms, sizeof(struct tm) * 2);
|
|
|
|
#if defined(DUK_USE_DATE_TZO_GMTIME_R)
|
|
(void) gmtime_r(&t, &tms[0]);
|
|
(void) localtime_r(&t, &tms[1]);
|
|
#elif defined(DUK_USE_DATE_TZO_GMTIME)
|
|
tm_ptr = gmtime(&t);
|
|
DUK_MEMCPY((void *) &tms[0], tm_ptr, sizeof(struct tm));
|
|
tm_ptr = localtime(&t);
|
|
DUK_MEMCPY((void *) &tms[1], tm_ptr, sizeof(struct tm));
|
|
#else
|
|
#error internal error
|
|
#endif
|
|
DUK_DDD(DUK_DDDPRINT("gmtime result: tm={sec:%ld,min:%ld,hour:%ld,mday:%ld,mon:%ld,year:%ld,"
|
|
"wday:%ld,yday:%ld,isdst:%ld}",
|
|
(long) tms[0].tm_sec, (long) tms[0].tm_min, (long) tms[0].tm_hour,
|
|
(long) tms[0].tm_mday, (long) tms[0].tm_mon, (long) tms[0].tm_year,
|
|
(long) tms[0].tm_wday, (long) tms[0].tm_yday, (long) tms[0].tm_isdst));
|
|
DUK_DDD(DUK_DDDPRINT("localtime result: tm={sec:%ld,min:%ld,hour:%ld,mday:%ld,mon:%ld,year:%ld,"
|
|
"wday:%ld,yday:%ld,isdst:%ld}",
|
|
(long) tms[1].tm_sec, (long) tms[1].tm_min, (long) tms[1].tm_hour,
|
|
(long) tms[1].tm_mday, (long) tms[1].tm_mon, (long) tms[1].tm_year,
|
|
(long) tms[1].tm_wday, (long) tms[1].tm_yday, (long) tms[1].tm_isdst));
|
|
|
|
t1 = mktime(&tms[0]); /* UTC */
|
|
t2 = mktime(&tms[1]); /* local */
|
|
if (t1 == (time_t) -1 || t2 == (time_t) -1) {
|
|
/* This check used to be for (t < 0) but on some platforms
|
|
* time_t is unsigned and apparently the proper way to detect
|
|
* an mktime() error return is the cast above. See e.g.:
|
|
* http://pubs.opengroup.org/onlinepubs/009695299/functions/mktime.html
|
|
*/
|
|
goto error;
|
|
}
|
|
if (tms[1].tm_isdst > 0) {
|
|
t2 += 3600;
|
|
} else if (tms[1].tm_isdst < 0) {
|
|
DUK_D(DUK_DPRINT("tm_isdst is negative: %d", (int) tms[1].tm_isdst));
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("t1=%ld (utc), t2=%ld (local)", (long) t1, (long) t2));
|
|
|
|
/* Compute final offset in seconds, positive if local time ahead of
|
|
* UTC (returned value is UTC-to-local offset).
|
|
*
|
|
* difftime() returns a double, so coercion to int generates quite
|
|
* a lot of code. Direct subtraction is not portable, however.
|
|
* XXX: allow direct subtraction on known platforms.
|
|
*/
|
|
#if 0
|
|
return (duk_int_t) (t2 - t1);
|
|
#endif
|
|
return (duk_int_t) difftime(t2, t1);
|
|
|
|
error:
|
|
/* XXX: return something more useful, so that caller can throw? */
|
|
DUK_D(DUK_DPRINT("mktime() failed, d=%lf", (double) d));
|
|
return 0;
|
|
}
|
|
#endif /* DUK_USE_DATE_TZO_GMTIME */
|
|
|
|
#if defined(DUK_USE_DATE_TZO_WINDOWS)
|
|
DUK_LOCAL duk_int_t duk__get_local_tzoffset(duk_double_t d) {
|
|
SYSTEMTIME st1;
|
|
SYSTEMTIME st2;
|
|
SYSTEMTIME st3;
|
|
ULARGE_INTEGER tmp1;
|
|
ULARGE_INTEGER tmp2;
|
|
ULARGE_INTEGER tmp3;
|
|
FILETIME ft1;
|
|
|
|
/* XXX: handling of timestamps outside Windows supported range.
|
|
* How does Windows deal with dates before 1600? Does windows
|
|
* support all Ecmascript years (like -200000 and +200000)?
|
|
* Should equivalent year mapping be used here too? If so, use
|
|
* a shared helper (currently integrated into timeval-to-parts).
|
|
*/
|
|
|
|
/* Use the approach described in "Remarks" of FileTimeToLocalFileTime:
|
|
* http://msdn.microsoft.com/en-us/library/windows/desktop/ms724277(v=vs.85).aspx
|
|
*/
|
|
|
|
duk__set_systime_jan1970(&st1);
|
|
duk__convert_systime_to_ularge((const SYSTEMTIME *) &st1, &tmp1);
|
|
tmp2.QuadPart = (ULONGLONG) (d * 10000.0); /* millisec -> 100ns units since jan 1, 1970 */
|
|
tmp2.QuadPart += tmp1.QuadPart; /* input 'd' in Windows UTC, 100ns units */
|
|
|
|
ft1.dwLowDateTime = tmp2.LowPart;
|
|
ft1.dwHighDateTime = tmp2.HighPart;
|
|
FileTimeToSystemTime((const FILETIME *) &ft1, &st2);
|
|
if (SystemTimeToTzSpecificLocalTime((LPTIME_ZONE_INFORMATION) NULL, &st2, &st3) == 0) {
|
|
DUK_D(DUK_DPRINT("SystemTimeToTzSpecificLocalTime() failed, return tzoffset 0"));
|
|
return 0;
|
|
}
|
|
duk__convert_systime_to_ularge((const SYSTEMTIME *) &st3, &tmp3);
|
|
|
|
/* Positive if local time ahead of UTC. */
|
|
return (duk_int_t) (((LONGLONG) tmp3.QuadPart - (LONGLONG) tmp2.QuadPart) / 10000000LL); /* seconds */
|
|
}
|
|
#endif /* DUK_USE_DATE_TZO_WINDOWS */
|
|
|
|
#ifdef DUK_USE_DATE_PRS_STRPTIME
|
|
#ifdef HAVE_STRPTIME
|
|
DUK_LOCAL duk_bool_t duk__parse_string_strptime(duk_context *ctx, const char *str) {
|
|
struct tm tm;
|
|
time_t t;
|
|
char buf[DUK__STRPTIME_BUF_SIZE];
|
|
|
|
/* copy to buffer with spare to avoid Valgrind gripes from strptime */
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_MEMZERO(buf, sizeof(buf)); /* valgrind whine without this */
|
|
DUK_SNPRINTF(buf, sizeof(buf), "%s", (const char *) str);
|
|
buf[sizeof(buf) - 1] = (char) 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parsing: '%s'", (const char *) buf));
|
|
|
|
DUK_MEMZERO(&tm, sizeof(tm));
|
|
if (strptime((const char *) buf, "%c", &tm) != NULL) {
|
|
DUK_DDD(DUK_DDDPRINT("before mktime: tm={sec:%ld,min:%ld,hour:%ld,mday:%ld,mon:%ld,year:%ld,"
|
|
"wday:%ld,yday:%ld,isdst:%ld}",
|
|
(long) tm.tm_sec, (long) tm.tm_min, (long) tm.tm_hour,
|
|
(long) tm.tm_mday, (long) tm.tm_mon, (long) tm.tm_year,
|
|
(long) tm.tm_wday, (long) tm.tm_yday, (long) tm.tm_isdst));
|
|
tm.tm_isdst = -1; /* negative: dst info not available */
|
|
|
|
t = mktime(&tm);
|
|
DUK_DDD(DUK_DDDPRINT("mktime() -> %ld", (long) t));
|
|
if (t >= 0) {
|
|
duk_push_number(ctx, ((duk_double_t) t) * 1000.0);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#else
|
|
#include "utils/config.h"
|
|
#include "utils/errors.h"
|
|
#include "utils/time.h"
|
|
DUK_LOCAL duk_bool_t duk__parse_string_strptime(duk_context *ctx, const char *str) {
|
|
time_t t;
|
|
char buf[DUK__STRPTIME_BUF_SIZE];
|
|
|
|
/* copy to buffer with spare to avoid Valgrind gripes from strptime */
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_MEMZERO(buf, sizeof(buf)); /* valgrind whine without this */
|
|
DUK_SNPRINTF(buf, sizeof(buf), "%s", (const char *) str);
|
|
buf[sizeof(buf) - 1] = (char) 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parsing: '%s'", (const char *) buf));
|
|
|
|
if (nsc_snptimet(buf, strlen(buf), &t) == NSERROR_OK) {
|
|
duk_push_number(ctx, ((duk_double_t) t) * 1000.0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* HAVE_STRPTIME */
|
|
#endif /* DUK_USE_DATE_PRS_STRPTIME */
|
|
|
|
#ifdef DUK_USE_DATE_PRS_GETDATE
|
|
DUK_LOCAL duk_bool_t duk__parse_string_getdate(duk_context *ctx, const char *str) {
|
|
struct tm tm;
|
|
duk_small_int_t rc;
|
|
time_t t;
|
|
|
|
/* For this to work, DATEMSK must be set, so this is not very
|
|
* convenient for an embeddable interpreter.
|
|
*/
|
|
|
|
DUK_MEMZERO(&tm, sizeof(struct tm));
|
|
rc = (duk_small_int_t) getdate_r(str, &tm);
|
|
DUK_DDD(DUK_DDDPRINT("getdate_r() -> %ld", (long) rc));
|
|
|
|
if (rc == 0) {
|
|
t = mktime(&tm);
|
|
DUK_DDD(DUK_DDDPRINT("mktime() -> %ld", (long) t));
|
|
if (t >= 0) {
|
|
duk_push_number(ctx, (duk_double_t) t);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#endif /* DUK_USE_DATE_PRS_GETDATE */
|
|
|
|
#ifdef DUK_USE_DATE_FMT_STRFTIME
|
|
DUK_LOCAL duk_bool_t duk__format_parts_strftime(duk_context *ctx, duk_int_t *parts, duk_int_t tzoffset, duk_small_uint_t flags) {
|
|
char buf[DUK__STRFTIME_BUF_SIZE];
|
|
struct tm tm;
|
|
const char *fmt;
|
|
|
|
DUK_UNREF(tzoffset);
|
|
|
|
/* If the platform doesn't support the entire Ecmascript range, we need
|
|
* to return 0 so that the caller can fall back to the default formatter.
|
|
*
|
|
* For now, assume that if time_t is 8 bytes or more, the whole Ecmascript
|
|
* range is supported. For smaller time_t values (4 bytes in practice),
|
|
* assumes that the signed 32-bit range is supported.
|
|
*
|
|
* XXX: detect this more correctly per platform. The size of time_t is
|
|
* probably not an accurate guarantee of strftime() supporting or not
|
|
* supporting a large time range (the full Ecmascript range).
|
|
*/
|
|
if (sizeof(time_t) < 8 &&
|
|
(parts[DUK__IDX_YEAR] < 1970 || parts[DUK__IDX_YEAR] > 2037)) {
|
|
/* be paranoid for 32-bit time values (even avoiding negative ones) */
|
|
return 0;
|
|
}
|
|
|
|
DUK_MEMZERO(&tm, sizeof(tm));
|
|
tm.tm_sec = parts[DUK__IDX_SECOND];
|
|
tm.tm_min = parts[DUK__IDX_MINUTE];
|
|
tm.tm_hour = parts[DUK__IDX_HOUR];
|
|
tm.tm_mday = parts[DUK__IDX_DAY]; /* already one-based */
|
|
tm.tm_mon = parts[DUK__IDX_MONTH] - 1; /* one-based -> zero-based */
|
|
tm.tm_year = parts[DUK__IDX_YEAR] - 1900;
|
|
tm.tm_wday = parts[DUK__IDX_WEEKDAY];
|
|
tm.tm_isdst = 0;
|
|
|
|
DUK_MEMZERO(buf, sizeof(buf));
|
|
if ((flags & DUK__FLAG_TOSTRING_DATE) && (flags & DUK__FLAG_TOSTRING_TIME)) {
|
|
fmt = "%c";
|
|
} else if (flags & DUK__FLAG_TOSTRING_DATE) {
|
|
fmt = "%x";
|
|
} else {
|
|
DUK_ASSERT(flags & DUK__FLAG_TOSTRING_TIME);
|
|
fmt = "%X";
|
|
}
|
|
(void) strftime(buf, sizeof(buf) - 1, fmt, &tm);
|
|
DUK_ASSERT(buf[sizeof(buf) - 1] == 0);
|
|
|
|
duk_push_string(ctx, buf);
|
|
return 1;
|
|
}
|
|
#endif /* DUK_USE_DATE_FMT_STRFTIME */
|
|
|
|
/*
|
|
* ISO 8601 subset parser.
|
|
*/
|
|
|
|
/* Parser part count. */
|
|
#define DUK__NUM_ISO8601_PARSER_PARTS 9
|
|
|
|
/* Parser part indices. */
|
|
#define DUK__PI_YEAR 0
|
|
#define DUK__PI_MONTH 1
|
|
#define DUK__PI_DAY 2
|
|
#define DUK__PI_HOUR 3
|
|
#define DUK__PI_MINUTE 4
|
|
#define DUK__PI_SECOND 5
|
|
#define DUK__PI_MILLISECOND 6
|
|
#define DUK__PI_TZHOUR 7
|
|
#define DUK__PI_TZMINUTE 8
|
|
|
|
/* Parser part masks. */
|
|
#define DUK__PM_YEAR (1 << DUK__PI_YEAR)
|
|
#define DUK__PM_MONTH (1 << DUK__PI_MONTH)
|
|
#define DUK__PM_DAY (1 << DUK__PI_DAY)
|
|
#define DUK__PM_HOUR (1 << DUK__PI_HOUR)
|
|
#define DUK__PM_MINUTE (1 << DUK__PI_MINUTE)
|
|
#define DUK__PM_SECOND (1 << DUK__PI_SECOND)
|
|
#define DUK__PM_MILLISECOND (1 << DUK__PI_MILLISECOND)
|
|
#define DUK__PM_TZHOUR (1 << DUK__PI_TZHOUR)
|
|
#define DUK__PM_TZMINUTE (1 << DUK__PI_TZMINUTE)
|
|
|
|
/* Parser separator indices. */
|
|
#define DUK__SI_PLUS 0
|
|
#define DUK__SI_MINUS 1
|
|
#define DUK__SI_T 2
|
|
#define DUK__SI_SPACE 3
|
|
#define DUK__SI_COLON 4
|
|
#define DUK__SI_PERIOD 5
|
|
#define DUK__SI_Z 6
|
|
#define DUK__SI_NUL 7
|
|
|
|
/* Parser separator masks. */
|
|
#define DUK__SM_PLUS (1 << DUK__SI_PLUS)
|
|
#define DUK__SM_MINUS (1 << DUK__SI_MINUS)
|
|
#define DUK__SM_T (1 << DUK__SI_T)
|
|
#define DUK__SM_SPACE (1 << DUK__SI_SPACE)
|
|
#define DUK__SM_COLON (1 << DUK__SI_COLON)
|
|
#define DUK__SM_PERIOD (1 << DUK__SI_PERIOD)
|
|
#define DUK__SM_Z (1 << DUK__SI_Z)
|
|
#define DUK__SM_NUL (1 << DUK__SI_NUL)
|
|
|
|
/* Rule control flags. */
|
|
#define DUK__CF_NEG (1 << 0) /* continue matching, set neg_tzoffset flag */
|
|
#define DUK__CF_ACCEPT (1 << 1) /* accept string */
|
|
#define DUK__CF_ACCEPT_NUL (1 << 2) /* accept string if next char is NUL (otherwise reject) */
|
|
|
|
#define DUK__PACK_RULE(partmask,sepmask,nextpart,flags) \
|
|
((duk_uint32_t) (partmask) + \
|
|
(((duk_uint32_t) (sepmask)) << 9) + \
|
|
(((duk_uint32_t) (nextpart)) << 17) + \
|
|
(((duk_uint32_t) (flags)) << 21))
|
|
|
|
#define DUK__UNPACK_RULE(rule,var_nextidx,var_flags) do { \
|
|
(var_nextidx) = (duk_small_uint_t) (((rule) >> 17) & 0x0f); \
|
|
(var_flags) = (duk_small_uint_t) ((rule) >> 21); \
|
|
} while (0)
|
|
|
|
#define DUK__RULE_MASK_PART_SEP 0x1ffffUL
|
|
|
|
/* Matching separator index is used in the control table */
|
|
DUK_LOCAL const duk_uint8_t duk__parse_iso8601_seps[] = {
|
|
DUK_ASC_PLUS /*0*/, DUK_ASC_MINUS /*1*/, DUK_ASC_UC_T /*2*/, DUK_ASC_SPACE /*3*/,
|
|
DUK_ASC_COLON /*4*/, DUK_ASC_PERIOD /*5*/, DUK_ASC_UC_Z /*6*/, DUK_ASC_NUL /*7*/
|
|
};
|
|
|
|
/* Rule table: first matching rule is used to determine what to do next. */
|
|
DUK_LOCAL const duk_uint32_t duk__parse_iso8601_control[] = {
|
|
DUK__PACK_RULE(DUK__PM_YEAR, DUK__SM_MINUS, DUK__PI_MONTH, 0),
|
|
DUK__PACK_RULE(DUK__PM_MONTH, DUK__SM_MINUS, DUK__PI_DAY, 0),
|
|
DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY, DUK__SM_T | DUK__SM_SPACE, DUK__PI_HOUR, 0),
|
|
DUK__PACK_RULE(DUK__PM_HOUR, DUK__SM_COLON, DUK__PI_MINUTE, 0),
|
|
DUK__PACK_RULE(DUK__PM_MINUTE, DUK__SM_COLON, DUK__PI_SECOND, 0),
|
|
DUK__PACK_RULE(DUK__PM_SECOND, DUK__SM_PERIOD, DUK__PI_MILLISECOND, 0),
|
|
DUK__PACK_RULE(DUK__PM_TZHOUR, DUK__SM_COLON, DUK__PI_TZMINUTE, 0),
|
|
DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND, DUK__SM_PLUS, DUK__PI_TZHOUR, 0),
|
|
DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND, DUK__SM_MINUS, DUK__PI_TZHOUR, DUK__CF_NEG),
|
|
DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND, DUK__SM_Z, 0, DUK__CF_ACCEPT_NUL),
|
|
DUK__PACK_RULE(DUK__PM_YEAR | DUK__PM_MONTH | DUK__PM_DAY | DUK__PM_HOUR /*Note1*/ | DUK__PM_MINUTE | DUK__PM_SECOND | DUK__PM_MILLISECOND | DUK__PM_TZHOUR /*Note2*/ | DUK__PM_TZMINUTE, DUK__SM_NUL, 0, DUK__CF_ACCEPT)
|
|
|
|
/* Note1: the specification doesn't require matching a time form with
|
|
* just hours ("HH"), but we accept it here, e.g. "2012-01-02T12Z".
|
|
*
|
|
* Note2: the specification doesn't require matching a timezone offset
|
|
* with just hours ("HH"), but accept it here, e.g. "2012-01-02T03:04:05+02"
|
|
*/
|
|
};
|
|
|
|
DUK_LOCAL duk_bool_t duk__parse_string_iso8601_subset(duk_context *ctx, const char *str) {
|
|
duk_int_t parts[DUK__NUM_ISO8601_PARSER_PARTS];
|
|
duk_double_t dparts[DUK__NUM_PARTS];
|
|
duk_double_t d;
|
|
const duk_uint8_t *p;
|
|
duk_small_uint_t part_idx = 0;
|
|
duk_int_t accum = 0;
|
|
duk_small_uint_t ndigits = 0;
|
|
duk_bool_t neg_year = 0;
|
|
duk_bool_t neg_tzoffset = 0;
|
|
duk_uint_fast8_t ch;
|
|
duk_small_uint_t i;
|
|
|
|
/* During parsing, month and day are one-based; set defaults here. */
|
|
DUK_MEMZERO(parts, sizeof(parts));
|
|
DUK_ASSERT(parts[DUK__IDX_YEAR] == 0); /* don't care value, year is mandatory */
|
|
parts[DUK__IDX_MONTH] = 1;
|
|
parts[DUK__IDX_DAY] = 1;
|
|
|
|
/* Special handling for year sign. */
|
|
p = (const duk_uint8_t *) str;
|
|
ch = p[0];
|
|
if (ch == DUK_ASC_PLUS) {
|
|
p++;
|
|
} else if (ch == DUK_ASC_MINUS) {
|
|
neg_year = 1;
|
|
p++;
|
|
}
|
|
|
|
for (;;) {
|
|
ch = *p++;
|
|
DUK_DDD(DUK_DDDPRINT("parsing, part_idx=%ld, char=%ld ('%c')",
|
|
(long) part_idx, (long) ch,
|
|
(int) ((ch >= 0x20 && ch <= 0x7e) ? ch : DUK_ASC_QUESTION)));
|
|
|
|
if (ch >= DUK_ASC_0 && ch <= DUK_ASC_9) {
|
|
if (ndigits >= 9) {
|
|
DUK_DDD(DUK_DDDPRINT("too many digits -> reject"));
|
|
goto reject;
|
|
}
|
|
if (part_idx == DUK__PI_MILLISECOND /*msec*/ && ndigits >= 3) {
|
|
/* ignore millisecond fractions after 3 */
|
|
} else {
|
|
accum = accum * 10 + ((duk_int_t) ch) - ((duk_int_t) DUK_ASC_0) + 0x00;
|
|
ndigits++;
|
|
}
|
|
} else {
|
|
duk_uint_fast32_t match_val;
|
|
duk_small_int_t sep_idx;
|
|
|
|
if (ndigits <= 0) {
|
|
goto reject;
|
|
}
|
|
if (part_idx == DUK__PI_MILLISECOND) {
|
|
/* complete the millisecond field */
|
|
while (ndigits < 3) {
|
|
accum *= 10;
|
|
ndigits++;
|
|
}
|
|
}
|
|
parts[part_idx] = accum;
|
|
DUK_DDD(DUK_DDDPRINT("wrote part %ld -> value %ld", (long) part_idx, (long) accum));
|
|
|
|
accum = 0;
|
|
ndigits = 0;
|
|
|
|
for (i = 0; i < (duk_small_uint_t) (sizeof(duk__parse_iso8601_seps) / sizeof(duk_uint8_t)); i++) {
|
|
if (duk__parse_iso8601_seps[i] == ch) {
|
|
break;
|
|
}
|
|
}
|
|
if (i == (duk_small_uint_t) (sizeof(duk__parse_iso8601_seps) / sizeof(duk_uint8_t))) {
|
|
DUK_DDD(DUK_DDDPRINT("separator character doesn't match -> reject"));
|
|
goto reject;
|
|
}
|
|
|
|
sep_idx = i;
|
|
match_val = (1UL << part_idx) + (1UL << (sep_idx + 9)); /* match against rule part/sep bits */
|
|
|
|
for (i = 0; i < (duk_small_uint_t) (sizeof(duk__parse_iso8601_control) / sizeof(duk_uint32_t)); i++) {
|
|
duk_uint_fast32_t rule = duk__parse_iso8601_control[i];
|
|
duk_small_uint_t nextpart;
|
|
duk_small_uint_t cflags;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("part_idx=%ld, sep_idx=%ld, match_val=0x%08lx, considering rule=0x%08lx",
|
|
(long) part_idx, (long) sep_idx,
|
|
(unsigned long) match_val, (unsigned long) rule));
|
|
|
|
if ((rule & match_val) != match_val) {
|
|
continue;
|
|
}
|
|
|
|
DUK__UNPACK_RULE(rule, nextpart, cflags);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("rule match -> part_idx=%ld, sep_idx=%ld, match_val=0x%08lx, "
|
|
"rule=0x%08lx -> nextpart=%ld, cflags=0x%02lx",
|
|
(long) part_idx, (long) sep_idx,
|
|
(unsigned long) match_val, (unsigned long) rule,
|
|
(long) nextpart, (unsigned long) cflags));
|
|
|
|
if (cflags & DUK__CF_NEG) {
|
|
neg_tzoffset = 1;
|
|
}
|
|
|
|
if (cflags & DUK__CF_ACCEPT) {
|
|
goto accept;
|
|
}
|
|
|
|
if (cflags & DUK__CF_ACCEPT_NUL) {
|
|
DUK_ASSERT(*(p - 1) != (char) 0);
|
|
if (*p == DUK_ASC_NUL) {
|
|
goto accept;
|
|
}
|
|
goto reject;
|
|
}
|
|
|
|
part_idx = nextpart;
|
|
break;
|
|
} /* rule match */
|
|
|
|
if (i == (duk_small_uint_t) (sizeof(duk__parse_iso8601_control) / sizeof(duk_uint32_t))) {
|
|
DUK_DDD(DUK_DDDPRINT("no rule matches -> reject"));
|
|
goto reject;
|
|
}
|
|
|
|
if (ch == 0) {
|
|
/* This shouldn't be necessary, but check just in case
|
|
* to avoid any chance of overruns.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("NUL after rule matching (should not happen) -> reject"));
|
|
goto reject;
|
|
}
|
|
} /* if-digit-else-ctrl */
|
|
} /* char loop */
|
|
|
|
/* We should never exit the loop above, but if we do, reject
|
|
* by falling through.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("fell out of char loop without explicit accept/reject -> reject"));
|
|
|
|
reject:
|
|
DUK_DDD(DUK_DDDPRINT("reject"));
|
|
return 0;
|
|
|
|
accept:
|
|
DUK_DDD(DUK_DDDPRINT("accept"));
|
|
|
|
/* Apply timezone offset to get the main parts in UTC */
|
|
if (neg_year) {
|
|
parts[DUK__PI_YEAR] = -parts[DUK__PI_YEAR];
|
|
}
|
|
if (neg_tzoffset) {
|
|
parts[DUK__PI_HOUR] += parts[DUK__PI_TZHOUR];
|
|
parts[DUK__PI_MINUTE] += parts[DUK__PI_TZMINUTE];
|
|
} else {
|
|
parts[DUK__PI_HOUR] -= parts[DUK__PI_TZHOUR];
|
|
parts[DUK__PI_MINUTE] -= parts[DUK__PI_TZMINUTE];
|
|
}
|
|
parts[DUK__PI_MONTH] -= 1; /* zero-based month */
|
|
parts[DUK__PI_DAY] -= 1; /* zero-based day */
|
|
|
|
/* Use double parts, they tolerate unnormalized time.
|
|
*
|
|
* Note: DUK__IDX_WEEKDAY is initialized with a bogus value (DUK__PI_TZHOUR)
|
|
* on purpose. It won't be actually used by duk__get_timeval_from_dparts(),
|
|
* but will make the value initialized just in case, and avoid any
|
|
* potential for Valgrind issues.
|
|
*/
|
|
for (i = 0; i < DUK__NUM_PARTS; i++) {
|
|
DUK_DDD(DUK_DDDPRINT("part[%ld] = %ld", (long) i, (long) parts[i]));
|
|
dparts[i] = parts[i];
|
|
}
|
|
|
|
d = duk__get_timeval_from_dparts(dparts, 0 /*flags*/);
|
|
duk_push_number(ctx, d);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Date/time parsing helper.
|
|
*
|
|
* Parse a datetime string into a time value. We must first try to parse
|
|
* the input according to the standard format in E5.1 Section 15.9.1.15.
|
|
* If that fails, we can try to parse using custom parsing, which can
|
|
* either be platform neutral (custom code) or platform specific (using
|
|
* existing platform API calls).
|
|
*
|
|
* Note in particular that we must parse whatever toString(), toUTCString(),
|
|
* and toISOString() can produce; see E5.1 Section 15.9.4.2.
|
|
*
|
|
* Returns 1 to allow tailcalling.
|
|
*
|
|
* There is much room for improvement here with respect to supporting
|
|
* alternative datetime formats. For instance, V8 parses '2012-01-01' as
|
|
* UTC and '2012/01/01' as local time.
|
|
*/
|
|
|
|
DUK_LOCAL duk_ret_t duk__parse_string(duk_context *ctx, const char *str) {
|
|
/* XXX: there is a small risk here: because the ISO 8601 parser is
|
|
* very loose, it may end up parsing some datetime values which
|
|
* would be better parsed with a platform specific parser.
|
|
*/
|
|
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("parse datetime from string '%s'", (const char *) str));
|
|
|
|
if (duk__parse_string_iso8601_subset(ctx, str) != 0) {
|
|
return 1;
|
|
}
|
|
|
|
#if defined(DUK_USE_DATE_PRS_STRPTIME)
|
|
if (duk__parse_string_strptime(ctx, str) != 0) {
|
|
return 1;
|
|
}
|
|
#elif defined(DUK_USE_DATE_PRS_GETDATE)
|
|
if (duk__parse_string_getdate(ctx, str) != 0) {
|
|
return 1;
|
|
}
|
|
#else
|
|
/* No platform-specific parsing, this is not an error. */
|
|
#endif
|
|
|
|
duk_push_nan(ctx);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Calendar helpers
|
|
*
|
|
* Some helpers are used for getters and can operate on normalized values
|
|
* which can be represented with 32-bit signed integers. Other helpers are
|
|
* needed by setters and operate on un-normalized double values, must watch
|
|
* out for non-finite numbers etc.
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint8_t duk__days_in_month[12] = {
|
|
(duk_uint8_t) 31, (duk_uint8_t) 28, (duk_uint8_t) 31, (duk_uint8_t) 30,
|
|
(duk_uint8_t) 31, (duk_uint8_t) 30, (duk_uint8_t) 31, (duk_uint8_t) 31,
|
|
(duk_uint8_t) 30, (duk_uint8_t) 31, (duk_uint8_t) 30, (duk_uint8_t) 31
|
|
};
|
|
|
|
/* Maximum iteration count for computing UTC-to-local time offset when
|
|
* creating an Ecmascript time value from local parts.
|
|
*/
|
|
#define DUK__LOCAL_TZOFFSET_MAXITER 4
|
|
|
|
/* Because 'day since epoch' can be negative and is used to compute weekday
|
|
* using a modulo operation, add this multiple of 7 to avoid negative values
|
|
* when year is below 1970 epoch. Ecmascript time values are restricted to
|
|
* +/- 100 million days from epoch, so this adder fits nicely into 32 bits.
|
|
* Round to a multiple of 7 (= floor(100000000 / 7) * 7) and add margin.
|
|
*/
|
|
#define DUK__WEEKDAY_MOD_ADDER (20000000 * 7) /* 0x08583b00 */
|
|
|
|
DUK_LOCAL duk_bool_t duk__is_leap_year(duk_int_t year) {
|
|
if ((year % 4) != 0) {
|
|
return 0;
|
|
}
|
|
if ((year % 100) != 0) {
|
|
return 1;
|
|
}
|
|
if ((year % 400) != 0) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__timeval_in_valid_range(duk_double_t x) {
|
|
return (x >= -DUK__MS_100M_DAYS && x <= DUK__MS_100M_DAYS);
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__timeval_in_leeway_range(duk_double_t x) {
|
|
return (x >= -DUK__MS_100M_DAYS_LEEWAY && x <= DUK__MS_100M_DAYS_LEEWAY);
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__year_in_valid_range(duk_double_t x) {
|
|
return (x >= DUK__MIN_ECMA_YEAR && x <= DUK__MAX_ECMA_YEAR);
|
|
}
|
|
|
|
DUK_LOCAL duk_double_t duk__timeclip(duk_double_t x) {
|
|
if (!DUK_ISFINITE(x)) {
|
|
return DUK_DOUBLE_NAN;
|
|
}
|
|
|
|
if (!duk__timeval_in_valid_range(x)) {
|
|
return DUK_DOUBLE_NAN;
|
|
}
|
|
|
|
x = duk_js_tointeger_number(x);
|
|
|
|
/* Here we'd have the option to normalize -0 to +0. */
|
|
return x;
|
|
}
|
|
|
|
/* Integer division which floors also negative values correctly. */
|
|
DUK_LOCAL duk_int_t duk__div_floor(duk_int_t a, duk_int_t b) {
|
|
DUK_ASSERT(b > 0);
|
|
if (a >= 0) {
|
|
return a / b;
|
|
} else {
|
|
/* e.g. a = -4, b = 5 --> -4 - 5 + 1 / 5 --> -8 / 5 --> -1
|
|
* a = -5, b = 5 --> -5 - 5 + 1 / 5 --> -9 / 5 --> -1
|
|
* a = -6, b = 5 --> -6 - 5 + 1 / 5 --> -10 / 5 --> -2
|
|
*/
|
|
return (a - b + 1) / b;
|
|
}
|
|
}
|
|
|
|
/* Compute day number of the first day of a given year. */
|
|
DUK_LOCAL duk_int_t duk__day_from_year(duk_int_t year) {
|
|
/* Note: in integer arithmetic, (x / 4) is same as floor(x / 4) for non-negative
|
|
* values, but is incorrect for negative ones.
|
|
*/
|
|
return 365 * (year - 1970)
|
|
+ duk__div_floor(year - 1969, 4)
|
|
- duk__div_floor(year - 1901, 100)
|
|
+ duk__div_floor(year - 1601, 400);
|
|
}
|
|
|
|
/* Given a day number, determine year and day-within-year. */
|
|
DUK_LOCAL duk_int_t duk__year_from_day(duk_int_t day, duk_small_int_t *out_day_within_year) {
|
|
duk_int_t year;
|
|
duk_int_t diff_days;
|
|
|
|
/* estimate year upwards (towards positive infinity), then back down;
|
|
* two iterations should be enough
|
|
*/
|
|
|
|
if (day >= 0) {
|
|
year = 1970 + day / 365;
|
|
} else {
|
|
year = 1970 + day / 366;
|
|
}
|
|
|
|
for (;;) {
|
|
diff_days = duk__day_from_year(year) - day;
|
|
DUK_DDD(DUK_DDDPRINT("year=%ld day=%ld, diff_days=%ld", (long) year, (long) day, (long) diff_days));
|
|
if (diff_days <= 0) {
|
|
DUK_ASSERT(-diff_days < 366); /* fits into duk_small_int_t */
|
|
*out_day_within_year = -diff_days;
|
|
DUK_DDD(DUK_DDDPRINT("--> year=%ld, day-within-year=%ld",
|
|
(long) year, (long) *out_day_within_year));
|
|
DUK_ASSERT(*out_day_within_year >= 0);
|
|
DUK_ASSERT(*out_day_within_year < (duk__is_leap_year(year) ? 366 : 365));
|
|
return year;
|
|
}
|
|
|
|
/* Note: this is very tricky; we must never 'overshoot' the
|
|
* correction downwards.
|
|
*/
|
|
year -= 1 + (diff_days - 1) / 366; /* conservative */
|
|
}
|
|
}
|
|
|
|
/* Given a (year, month, day-within-month) triple, compute day number.
|
|
* The input triple is un-normalized and may contain non-finite values.
|
|
*/
|
|
DUK_LOCAL duk_double_t duk__make_day(duk_double_t year, duk_double_t month, duk_double_t day) {
|
|
duk_int_t day_num;
|
|
duk_bool_t is_leap;
|
|
duk_small_int_t i, n;
|
|
|
|
/* Assume that year, month, day are all coerced to whole numbers.
|
|
* They may also be NaN or infinity, in which case this function
|
|
* must return NaN or infinity to ensure time value becomes NaN.
|
|
* If 'day' is NaN, the final return will end up returning a NaN,
|
|
* so it doesn't need to be checked here.
|
|
*/
|
|
|
|
if (!DUK_ISFINITE(year) || !DUK_ISFINITE(month)) {
|
|
return DUK_DOUBLE_NAN;
|
|
}
|
|
|
|
year += DUK_FLOOR(month / 12.0);
|
|
|
|
month = DUK_FMOD(month, 12.0);
|
|
if (month < 0.0) {
|
|
/* handle negative values */
|
|
month += 12.0;
|
|
}
|
|
|
|
/* The algorithm in E5.1 Section 15.9.1.12 normalizes month, but
|
|
* does not normalize the day-of-month (nor check whether or not
|
|
* it is finite) because it's not necessary for finding the day
|
|
* number which matches the (year,month) pair.
|
|
*
|
|
* We assume that duk__day_from_year() is exact here.
|
|
*
|
|
* Without an explicit infinity / NaN check in the beginning,
|
|
* day_num would be a bogus integer here.
|
|
*
|
|
* It's possible for 'year' to be out of integer range here.
|
|
* If so, we need to return NaN without integer overflow.
|
|
* This fixes test-bug-setyear-overflow.js.
|
|
*/
|
|
|
|
if (!duk__year_in_valid_range(year)) {
|
|
DUK_DD(DUK_DDPRINT("year not in ecmascript valid range, avoid integer overflow: %lf", (double) year));
|
|
return DUK_DOUBLE_NAN;
|
|
}
|
|
day_num = duk__day_from_year((duk_int_t) year);
|
|
is_leap = duk__is_leap_year((duk_int_t) year);
|
|
|
|
n = (duk_small_int_t) month;
|
|
for (i = 0; i < n; i++) {
|
|
day_num += duk__days_in_month[i];
|
|
if (i == 1 && is_leap) {
|
|
day_num++;
|
|
}
|
|
}
|
|
|
|
/* If 'day' is NaN, returns NaN. */
|
|
return (duk_double_t) day_num + day;
|
|
}
|
|
|
|
/* Split time value into parts. The time value is assumed to be an internal
|
|
* one, i.e. finite, no fractions. Possible local time adjustment has already
|
|
* been applied when reading the time value.
|
|
*/
|
|
DUK_LOCAL void duk__timeval_to_parts(duk_double_t d, duk_int_t *parts, duk_double_t *dparts, duk_small_uint_t flags) {
|
|
duk_double_t d1, d2;
|
|
duk_int_t t1, t2;
|
|
duk_int_t day_since_epoch;
|
|
duk_int_t year; /* does not fit into 16 bits */
|
|
duk_small_int_t day_in_year;
|
|
duk_small_int_t month;
|
|
duk_small_int_t day;
|
|
duk_small_int_t dim;
|
|
duk_int_t jan1_since_epoch;
|
|
duk_small_int_t jan1_weekday;
|
|
duk_int_t equiv_year;
|
|
duk_small_uint_t i;
|
|
duk_bool_t is_leap;
|
|
duk_small_int_t arridx;
|
|
|
|
DUK_ASSERT(DUK_ISFINITE(d)); /* caller checks */
|
|
DUK_ASSERT(DUK_FLOOR(d) == d); /* no fractions in internal time */
|
|
|
|
/* The timevalue must be in valid Ecmascript range, but since a local
|
|
* time offset can be applied, we need to allow a +/- 24h leeway to
|
|
* the value. In other words, although the UTC time is within the
|
|
* Ecmascript range, the local part values can be just outside of it.
|
|
*/
|
|
DUK_UNREF(duk__timeval_in_leeway_range);
|
|
DUK_ASSERT(duk__timeval_in_leeway_range(d));
|
|
|
|
/* these computations are guaranteed to be exact for the valid
|
|
* E5 time value range, assuming milliseconds without fractions.
|
|
*/
|
|
d1 = (duk_double_t) DUK_FMOD(d, (double) DUK__MS_DAY);
|
|
if (d1 < 0.0) {
|
|
/* deal with negative values */
|
|
d1 += (duk_double_t) DUK__MS_DAY;
|
|
}
|
|
d2 = DUK_FLOOR((double) (d / (duk_double_t) DUK__MS_DAY));
|
|
DUK_ASSERT(d2 * ((duk_double_t) DUK__MS_DAY) + d1 == d);
|
|
/* now expected to fit into a 32-bit integer */
|
|
t1 = (duk_int_t) d1;
|
|
t2 = (duk_int_t) d2;
|
|
day_since_epoch = t2;
|
|
DUK_ASSERT((duk_double_t) t1 == d1);
|
|
DUK_ASSERT((duk_double_t) t2 == d2);
|
|
|
|
/* t1 = milliseconds within day (fits 32 bit)
|
|
* t2 = day number from epoch (fits 32 bit, may be negative)
|
|
*/
|
|
|
|
parts[DUK__IDX_MILLISECOND] = t1 % 1000; t1 /= 1000;
|
|
parts[DUK__IDX_SECOND] = t1 % 60; t1 /= 60;
|
|
parts[DUK__IDX_MINUTE] = t1 % 60; t1 /= 60;
|
|
parts[DUK__IDX_HOUR] = t1;
|
|
DUK_ASSERT(parts[DUK__IDX_MILLISECOND] >= 0 && parts[DUK__IDX_MILLISECOND] <= 999);
|
|
DUK_ASSERT(parts[DUK__IDX_SECOND] >= 0 && parts[DUK__IDX_SECOND] <= 59);
|
|
DUK_ASSERT(parts[DUK__IDX_MINUTE] >= 0 && parts[DUK__IDX_MINUTE] <= 59);
|
|
DUK_ASSERT(parts[DUK__IDX_HOUR] >= 0 && parts[DUK__IDX_HOUR] <= 23);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("d=%lf, d1=%lf, d2=%lf, t1=%ld, t2=%ld, parts: hour=%ld min=%ld sec=%ld msec=%ld",
|
|
(double) d, (double) d1, (double) d2, (long) t1, (long) t2,
|
|
(long) parts[DUK__IDX_HOUR],
|
|
(long) parts[DUK__IDX_MINUTE],
|
|
(long) parts[DUK__IDX_SECOND],
|
|
(long) parts[DUK__IDX_MILLISECOND]));
|
|
|
|
/* This assert depends on the input parts representing time inside
|
|
* the Ecmascript range.
|
|
*/
|
|
DUK_ASSERT(t2 + DUK__WEEKDAY_MOD_ADDER >= 0);
|
|
parts[DUK__IDX_WEEKDAY] = (t2 + 4 + DUK__WEEKDAY_MOD_ADDER) % 7; /* E5.1 Section 15.9.1.6 */
|
|
DUK_ASSERT(parts[DUK__IDX_WEEKDAY] >= 0 && parts[DUK__IDX_WEEKDAY] <= 6);
|
|
|
|
year = duk__year_from_day(t2, &day_in_year);
|
|
day = day_in_year;
|
|
is_leap = duk__is_leap_year(year);
|
|
for (month = 0; month < 12; month++) {
|
|
dim = duk__days_in_month[month];
|
|
if (month == 1 && is_leap) {
|
|
dim++;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("month=%ld, dim=%ld, day=%ld",
|
|
(long) month, (long) dim, (long) day));
|
|
if (day < dim) {
|
|
break;
|
|
}
|
|
day -= dim;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("final month=%ld", (long) month));
|
|
DUK_ASSERT(month >= 0 && month <= 11);
|
|
DUK_ASSERT(day >= 0 && day <= 31);
|
|
|
|
/* Equivalent year mapping, used to avoid DST trouble when platform
|
|
* may fail to provide reasonable DST answers for dates outside the
|
|
* ordinary range (e.g. 1970-2038). An equivalent year has the same
|
|
* leap-year-ness as the original year and begins on the same weekday
|
|
* (Jan 1).
|
|
*
|
|
* The year 2038 is avoided because there seem to be problems with it
|
|
* on some platforms. The year 1970 is also avoided as there were
|
|
* practical problems with it; an equivalent year is used for it too,
|
|
* which breaks some DST computations for 1970 right now, see e.g.
|
|
* test-bi-date-tzoffset-brute-fi.js.
|
|
*/
|
|
if ((flags & DUK__FLAG_EQUIVYEAR) && (year < 1971 || year > 2037)) {
|
|
DUK_ASSERT(is_leap == 0 || is_leap == 1);
|
|
|
|
jan1_since_epoch = day_since_epoch - day_in_year; /* day number for Jan 1 since epoch */
|
|
DUK_ASSERT(jan1_since_epoch + DUK__WEEKDAY_MOD_ADDER >= 0);
|
|
jan1_weekday = (jan1_since_epoch + 4 + DUK__WEEKDAY_MOD_ADDER) % 7; /* E5.1 Section 15.9.1.6 */
|
|
DUK_ASSERT(jan1_weekday >= 0 && jan1_weekday <= 6);
|
|
arridx = jan1_weekday;
|
|
if (is_leap) {
|
|
arridx += 7;
|
|
}
|
|
DUK_ASSERT(arridx >= 0 && arridx < (duk_small_int_t) (sizeof(duk__date_equivyear) / sizeof(duk_uint8_t)));
|
|
|
|
equiv_year = (duk_int_t) duk__date_equivyear[arridx] + 1970;
|
|
year = equiv_year;
|
|
DUK_DDD(DUK_DDDPRINT("equiv year mapping, year=%ld, day_in_year=%ld, day_since_epoch=%ld, "
|
|
"jan1_since_epoch=%ld, jan1_weekday=%ld -> equiv year %ld",
|
|
(long) year, (long) day_in_year, (long) day_since_epoch,
|
|
(long) jan1_since_epoch, (long) jan1_weekday, (long) equiv_year));
|
|
}
|
|
|
|
parts[DUK__IDX_YEAR] = year;
|
|
parts[DUK__IDX_MONTH] = month;
|
|
parts[DUK__IDX_DAY] = day;
|
|
|
|
if (flags & DUK__FLAG_ONEBASED) {
|
|
parts[DUK__IDX_MONTH]++; /* zero-based -> one-based */
|
|
parts[DUK__IDX_DAY]++; /* -""- */
|
|
}
|
|
|
|
if (dparts != NULL) {
|
|
for (i = 0; i < DUK__NUM_PARTS; i++) {
|
|
dparts[i] = (duk_double_t) parts[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute time value from (double) parts. The parts can be either UTC
|
|
* or local time; if local, they need to be (conceptually) converted into
|
|
* UTC time. The parts may represent valid or invalid time, and may be
|
|
* wildly out of range (but may cancel each other and still come out in
|
|
* the valid Date range).
|
|
*/
|
|
DUK_LOCAL duk_double_t duk__get_timeval_from_dparts(duk_double_t *dparts, duk_small_uint_t flags) {
|
|
#if defined(DUK_USE_PARANOID_DATE_COMPUTATION)
|
|
/* See comments below on MakeTime why these are volatile. */
|
|
volatile duk_double_t tmp_time;
|
|
volatile duk_double_t tmp_day;
|
|
volatile duk_double_t d;
|
|
#else
|
|
duk_double_t tmp_time;
|
|
duk_double_t tmp_day;
|
|
duk_double_t d;
|
|
#endif
|
|
duk_small_uint_t i;
|
|
duk_int_t tzoff, tzoffprev1, tzoffprev2;
|
|
|
|
/* Expects 'this' at top of stack on entry. */
|
|
|
|
/* Coerce all finite parts with ToInteger(). ToInteger() must not
|
|
* be called for NaN/Infinity because it will convert e.g. NaN to
|
|
* zero. If ToInteger() has already been called, this has no side
|
|
* effects and is idempotent.
|
|
*
|
|
* Don't read dparts[DUK__IDX_WEEKDAY]; it will cause Valgrind issues
|
|
* if the value is uninitialized.
|
|
*/
|
|
for (i = 0; i <= DUK__IDX_MILLISECOND; i++) {
|
|
/* SCANBUILD: scan-build complains here about assigned value
|
|
* being garbage or undefined. This is correct but operating
|
|
* on undefined values has no ill effect and is ignored by the
|
|
* caller in the case where this happens.
|
|
*/
|
|
d = dparts[i];
|
|
if (DUK_ISFINITE(d)) {
|
|
dparts[i] = duk_js_tointeger_number(d);
|
|
}
|
|
}
|
|
|
|
/* Use explicit steps in computation to try to ensure that
|
|
* computation happens with intermediate results coerced to
|
|
* double values (instead of using something more accurate).
|
|
* E.g. E5.1 Section 15.9.1.11 requires use of IEEE 754
|
|
* rules (= Ecmascript '+' and '*' operators).
|
|
*
|
|
* Without 'volatile' even this approach fails on some platform
|
|
* and compiler combinations. For instance, gcc 4.8.1 on Ubuntu
|
|
* 64-bit, with -m32 and without -std=c99, test-bi-date-canceling.js
|
|
* would fail because of some optimizations when computing tmp_time
|
|
* (MakeTime below). Adding 'volatile' to tmp_time solved this
|
|
* particular problem (annoyingly, also adding debug prints or
|
|
* running the executable under valgrind hides it).
|
|
*/
|
|
|
|
/* MakeTime */
|
|
tmp_time = 0.0;
|
|
tmp_time += dparts[DUK__IDX_HOUR] * ((duk_double_t) DUK__MS_HOUR);
|
|
tmp_time += dparts[DUK__IDX_MINUTE] * ((duk_double_t) DUK__MS_MINUTE);
|
|
tmp_time += dparts[DUK__IDX_SECOND] * ((duk_double_t) DUK__MS_SECOND);
|
|
tmp_time += dparts[DUK__IDX_MILLISECOND];
|
|
|
|
/* MakeDay */
|
|
tmp_day = duk__make_day(dparts[DUK__IDX_YEAR], dparts[DUK__IDX_MONTH], dparts[DUK__IDX_DAY]);
|
|
|
|
/* MakeDate */
|
|
d = tmp_day * ((duk_double_t) DUK__MS_DAY) + tmp_time;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("time=%lf day=%lf --> timeval=%lf",
|
|
(double) tmp_time, (double) tmp_day, (double) d));
|
|
|
|
/* Optional UTC conversion. */
|
|
if (flags & DUK__FLAG_LOCALTIME) {
|
|
/* DUK__GET_LOCAL_TZOFFSET() needs to be called with a time
|
|
* value computed from UTC parts. At this point we only have
|
|
* 'd' which is a time value computed from local parts, so it
|
|
* is off by the UTC-to-local time offset which we don't know
|
|
* yet. The current solution for computing the UTC-to-local
|
|
* time offset is to iterate a few times and detect a fixed
|
|
* point or a two-cycle loop (or a sanity iteration limit),
|
|
* see test-bi-date-local-parts.js and test-bi-date-tzoffset-basic-fi.js.
|
|
*
|
|
* E5.1 Section 15.9.1.9:
|
|
* UTC(t) = t - LocalTZA - DaylightSavingTA(t - LocalTZA)
|
|
*
|
|
* For NaN/inf, DUK__GET_LOCAL_TZOFFSET() returns 0.
|
|
*/
|
|
|
|
#if 0
|
|
/* Old solution: don't iterate, incorrect */
|
|
tzoff = DUK__GET_LOCAL_TZOFFSET(d);
|
|
DUK_DDD(DUK_DDDPRINT("tzoffset w/o iteration, tzoff=%ld", (long) tzoff));
|
|
d -= tzoff * 1000L;
|
|
DUK_UNREF(tzoffprev1);
|
|
DUK_UNREF(tzoffprev2);
|
|
#endif
|
|
|
|
/* Iteration solution */
|
|
tzoff = 0;
|
|
tzoffprev1 = 999999999L; /* invalid value which never matches */
|
|
for (i = 0; i < DUK__LOCAL_TZOFFSET_MAXITER; i++) {
|
|
tzoffprev2 = tzoffprev1;
|
|
tzoffprev1 = tzoff;
|
|
tzoff = DUK__GET_LOCAL_TZOFFSET(d - tzoff * 1000L);
|
|
DUK_DDD(DUK_DDDPRINT("tzoffset iteration, i=%d, tzoff=%ld, tzoffprev1=%ld tzoffprev2=%ld",
|
|
(int) i, (long) tzoff, (long) tzoffprev1, (long) tzoffprev2));
|
|
if (tzoff == tzoffprev1) {
|
|
DUK_DDD(DUK_DDDPRINT("tzoffset iteration finished, i=%d, tzoff=%ld, tzoffprev1=%ld, tzoffprev2=%ld",
|
|
(int) i, (long) tzoff, (long) tzoffprev1, (long) tzoffprev2));
|
|
break;
|
|
} else if (tzoff == tzoffprev2) {
|
|
/* Two value cycle, see e.g. test-bi-date-tzoffset-basic-fi.js.
|
|
* In these cases, favor a higher tzoffset to get a consistent
|
|
* result which is independent of iteration count. Not sure if
|
|
* this is a generically correct solution.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("tzoffset iteration two-value cycle, i=%d, tzoff=%ld, tzoffprev1=%ld, tzoffprev2=%ld",
|
|
(int) i, (long) tzoff, (long) tzoffprev1, (long) tzoffprev2));
|
|
if (tzoffprev1 > tzoff) {
|
|
tzoff = tzoffprev1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("tzoffset iteration, tzoff=%ld", (long) tzoff));
|
|
d -= tzoff * 1000L;
|
|
}
|
|
|
|
/* TimeClip(), which also handles Infinity -> NaN conversion */
|
|
d = duk__timeclip(d);
|
|
|
|
return d;
|
|
}
|
|
|
|
/*
|
|
* API oriented helpers
|
|
*/
|
|
|
|
/* Push 'this' binding, check that it is a Date object; then push the
|
|
* internal time value. At the end, stack is: [ ... this timeval ].
|
|
* Returns the time value. Local time adjustment is done if requested.
|
|
*/
|
|
DUK_LOCAL duk_double_t duk__push_this_get_timeval_tzoffset(duk_context *ctx, duk_small_uint_t flags, duk_int_t *out_tzoffset) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h;
|
|
duk_double_t d;
|
|
duk_int_t tzoffset = 0;
|
|
|
|
duk_push_this(ctx);
|
|
h = duk_get_hobject(ctx, -1); /* XXX: getter with class check, useful in built-ins */
|
|
if (h == NULL || DUK_HOBJECT_GET_CLASS_NUMBER(h) != DUK_HOBJECT_CLASS_DATE) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "expected Date");
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
d = duk_to_number(ctx, -1);
|
|
duk_pop(ctx);
|
|
|
|
if (DUK_ISNAN(d)) {
|
|
if (flags & DUK__FLAG_NAN_TO_ZERO) {
|
|
d = 0.0;
|
|
}
|
|
if (flags & DUK__FLAG_NAN_TO_RANGE_ERROR) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, "Invalid Date");
|
|
}
|
|
}
|
|
/* if no NaN handling flag, may still be NaN here, but not Inf */
|
|
DUK_ASSERT(!DUK_ISINF(d));
|
|
|
|
if (flags & DUK__FLAG_LOCALTIME) {
|
|
/* Note: DST adjustment is determined using UTC time.
|
|
* If 'd' is NaN, tzoffset will be 0.
|
|
*/
|
|
tzoffset = DUK__GET_LOCAL_TZOFFSET(d); /* seconds */
|
|
d += tzoffset * 1000L;
|
|
}
|
|
if (out_tzoffset) {
|
|
*out_tzoffset = tzoffset;
|
|
}
|
|
|
|
/* [ ... this ] */
|
|
return d;
|
|
}
|
|
|
|
DUK_LOCAL duk_double_t duk__push_this_get_timeval(duk_context *ctx, duk_small_uint_t flags) {
|
|
return duk__push_this_get_timeval_tzoffset(ctx, flags, NULL);
|
|
}
|
|
|
|
/* Set timeval to 'this' from dparts, push the new time value onto the
|
|
* value stack and return 1 (caller can then tailcall us). Expects
|
|
* the value stack to contain 'this' on the stack top.
|
|
*/
|
|
DUK_LOCAL duk_ret_t duk__set_this_timeval_from_dparts(duk_context *ctx, duk_double_t *dparts, duk_small_uint_t flags) {
|
|
duk_double_t d;
|
|
|
|
/* [ ... this ] */
|
|
|
|
d = duk__get_timeval_from_dparts(dparts, flags);
|
|
duk_push_number(ctx, d); /* -> [ ... this timeval_new ] */
|
|
duk_dup_top(ctx); /* -> [ ... this timeval_new timeval_new ] */
|
|
duk_put_prop_stridx(ctx, -3, DUK_STRIDX_INT_VALUE);
|
|
|
|
/* stack top: new time value, return 1 to allow tailcalls */
|
|
return 1;
|
|
}
|
|
|
|
/* 'out_buf' must be at least DUK_BI_DATE_ISO8601_BUFSIZE long. */
|
|
DUK_LOCAL void duk__format_parts_iso8601(duk_int_t *parts, duk_int_t tzoffset, duk_small_uint_t flags, duk_uint8_t *out_buf) {
|
|
char yearstr[8]; /* "-123456\0" */
|
|
char tzstr[8]; /* "+11:22\0" */
|
|
char sep = (flags & DUK__FLAG_SEP_T) ? DUK_ASC_UC_T : DUK_ASC_SPACE;
|
|
|
|
DUK_ASSERT(parts[DUK__IDX_MONTH] >= 1 && parts[DUK__IDX_MONTH] <= 12);
|
|
DUK_ASSERT(parts[DUK__IDX_DAY] >= 1 && parts[DUK__IDX_DAY] <= 31);
|
|
DUK_ASSERT(parts[DUK__IDX_YEAR] >= -999999 && parts[DUK__IDX_YEAR] <= 999999);
|
|
|
|
/* Note: %06d for positive value, %07d for negative value to include
|
|
* sign and 6 digits.
|
|
*/
|
|
DUK_SNPRINTF(yearstr,
|
|
sizeof(yearstr),
|
|
(parts[DUK__IDX_YEAR] >= 0 && parts[DUK__IDX_YEAR] <= 9999) ? "%04ld" :
|
|
((parts[DUK__IDX_YEAR] >= 0) ? "+%06ld" : "%07ld"),
|
|
(long) parts[DUK__IDX_YEAR]);
|
|
yearstr[sizeof(yearstr) - 1] = (char) 0;
|
|
|
|
if (flags & DUK__FLAG_LOCALTIME) {
|
|
/* tzoffset seconds are dropped; 16 bits suffice for
|
|
* time offset in minutes
|
|
*/
|
|
if (tzoffset >= 0) {
|
|
duk_small_int_t tmp = tzoffset / 60;
|
|
DUK_SNPRINTF(tzstr, sizeof(tzstr), "+%02d:%02d", (int) (tmp / 60), (int) (tmp % 60));
|
|
} else {
|
|
duk_small_int_t tmp = -tzoffset / 60;
|
|
DUK_SNPRINTF(tzstr, sizeof(tzstr), "-%02d:%02d", (int) (tmp / 60), (int) (tmp % 60));
|
|
}
|
|
tzstr[sizeof(tzstr) - 1] = (char) 0;
|
|
} else {
|
|
tzstr[0] = DUK_ASC_UC_Z;
|
|
tzstr[1] = (char) 0;
|
|
}
|
|
|
|
/* Unlike year, the other parts fit into 16 bits so %d format
|
|
* is portable.
|
|
*/
|
|
if ((flags & DUK__FLAG_TOSTRING_DATE) && (flags & DUK__FLAG_TOSTRING_TIME)) {
|
|
DUK_SPRINTF((char *) out_buf, "%s-%02d-%02d%c%02d:%02d:%02d.%03d%s",
|
|
(const char *) yearstr, (int) parts[DUK__IDX_MONTH], (int) parts[DUK__IDX_DAY], (int) sep,
|
|
(int) parts[DUK__IDX_HOUR], (int) parts[DUK__IDX_MINUTE],
|
|
(int) parts[DUK__IDX_SECOND], (int) parts[DUK__IDX_MILLISECOND], (const char *) tzstr);
|
|
} else if (flags & DUK__FLAG_TOSTRING_DATE) {
|
|
DUK_SPRINTF((char *) out_buf, "%s-%02d-%02d",
|
|
(const char *) yearstr, (int) parts[DUK__IDX_MONTH], (int) parts[DUK__IDX_DAY]);
|
|
} else {
|
|
DUK_ASSERT(flags & DUK__FLAG_TOSTRING_TIME);
|
|
DUK_SPRINTF((char *) out_buf, "%02d:%02d:%02d.%03d%s",
|
|
(int) parts[DUK__IDX_HOUR], (int) parts[DUK__IDX_MINUTE],
|
|
(int) parts[DUK__IDX_SECOND], (int) parts[DUK__IDX_MILLISECOND],
|
|
(const char *) tzstr);
|
|
}
|
|
}
|
|
|
|
/* Helper for string conversion calls: check 'this' binding, get the
|
|
* internal time value, and format date and/or time in a few formats.
|
|
* Return value allows tail calls.
|
|
*/
|
|
DUK_LOCAL duk_ret_t duk__to_string_helper(duk_context *ctx, duk_small_uint_t flags) {
|
|
duk_double_t d;
|
|
duk_int_t parts[DUK__NUM_PARTS];
|
|
duk_int_t tzoffset; /* seconds, doesn't fit into 16 bits */
|
|
duk_bool_t rc;
|
|
duk_uint8_t buf[DUK_BI_DATE_ISO8601_BUFSIZE];
|
|
|
|
DUK_UNREF(rc); /* unreferenced with some options */
|
|
|
|
d = duk__push_this_get_timeval_tzoffset(ctx, flags, &tzoffset);
|
|
if (DUK_ISNAN(d)) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_INVALID_DATE);
|
|
return 1;
|
|
}
|
|
DUK_ASSERT(DUK_ISFINITE(d));
|
|
|
|
/* formatters always get one-based month/day-of-month */
|
|
duk__timeval_to_parts(d, parts, NULL, DUK__FLAG_ONEBASED);
|
|
DUK_ASSERT(parts[DUK__IDX_MONTH] >= 1 && parts[DUK__IDX_MONTH] <= 12);
|
|
DUK_ASSERT(parts[DUK__IDX_DAY] >= 1 && parts[DUK__IDX_DAY] <= 31);
|
|
|
|
if (flags & DUK__FLAG_TOSTRING_LOCALE) {
|
|
/* try locale specific formatter; if it refuses to format the
|
|
* string, fall back to an ISO 8601 formatted value in local
|
|
* time.
|
|
*/
|
|
#ifdef DUK_USE_DATE_FMT_STRFTIME
|
|
rc = duk__format_parts_strftime(ctx, parts, tzoffset, flags);
|
|
if (rc != 0) {
|
|
return 1;
|
|
}
|
|
#else
|
|
/* No locale specific formatter; this is OK, we fall back
|
|
* to ISO 8601.
|
|
*/
|
|
#endif
|
|
}
|
|
|
|
/* Different calling convention than above used because the helper
|
|
* is shared.
|
|
*/
|
|
duk__format_parts_iso8601(parts, tzoffset, flags, buf);
|
|
duk_push_string(ctx, (const char *) buf);
|
|
return 1;
|
|
}
|
|
|
|
/* Helper for component getter calls: check 'this' binding, get the
|
|
* internal time value, split it into parts (either as UTC time or
|
|
* local time), push a specified component as a return value to the
|
|
* value stack and return 1 (caller can then tailcall us).
|
|
*/
|
|
DUK_LOCAL duk_ret_t duk__get_part_helper(duk_context *ctx, duk_small_uint_t flags_and_idx) {
|
|
duk_double_t d;
|
|
duk_int_t parts[DUK__NUM_PARTS];
|
|
duk_small_uint_t idx_part = (duk_small_uint_t) (flags_and_idx >> DUK__FLAG_VALUE_SHIFT); /* unpack args */
|
|
|
|
DUK_ASSERT_DISABLE(idx_part >= 0); /* unsigned */
|
|
DUK_ASSERT(idx_part < DUK__NUM_PARTS);
|
|
|
|
d = duk__push_this_get_timeval(ctx, flags_and_idx);
|
|
if (DUK_ISNAN(d)) {
|
|
duk_push_nan(ctx);
|
|
return 1;
|
|
}
|
|
DUK_ASSERT(DUK_ISFINITE(d));
|
|
|
|
duk__timeval_to_parts(d, parts, NULL, flags_and_idx); /* no need to mask idx portion */
|
|
|
|
/* Setter APIs detect special year numbers (0...99) and apply a +1900
|
|
* only in certain cases. The legacy getYear() getter applies -1900
|
|
* unconditionally.
|
|
*/
|
|
duk_push_int(ctx, (flags_and_idx & DUK__FLAG_SUB1900) ? parts[idx_part] - 1900 : parts[idx_part]);
|
|
return 1;
|
|
}
|
|
|
|
/* Helper for component setter calls: check 'this' binding, get the
|
|
* internal time value, split it into parts (either as UTC time or
|
|
* local time), modify one or more components as specified, recompute
|
|
* the time value, set it as the internal value. Finally, push the
|
|
* new time value as a return value to the value stack and return 1
|
|
* (caller can then tailcall us).
|
|
*/
|
|
DUK_LOCAL duk_ret_t duk__set_part_helper(duk_context *ctx, duk_small_uint_t flags_and_maxnargs) {
|
|
duk_double_t d;
|
|
duk_int_t parts[DUK__NUM_PARTS];
|
|
duk_double_t dparts[DUK__NUM_PARTS];
|
|
duk_idx_t nargs;
|
|
duk_small_uint_t maxnargs = (duk_small_uint_t) (flags_and_maxnargs >> DUK__FLAG_VALUE_SHIFT); /* unpack args */
|
|
duk_small_uint_t idx_first, idx;
|
|
duk_small_uint_t i;
|
|
|
|
nargs = duk_get_top(ctx);
|
|
d = duk__push_this_get_timeval(ctx, flags_and_maxnargs);
|
|
DUK_ASSERT(DUK_ISFINITE(d) || DUK_ISNAN(d));
|
|
|
|
if (DUK_ISFINITE(d)) {
|
|
duk__timeval_to_parts(d, parts, dparts, flags_and_maxnargs);
|
|
} else {
|
|
/* NaN timevalue: we need to coerce the arguments, but
|
|
* the resulting internal timestamp needs to remain NaN.
|
|
* This works but is not pretty: parts and dparts will
|
|
* be partially uninitialized, but we only write to them.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Determining which datetime components to overwrite based on
|
|
* stack arguments is a bit complicated, but important to factor
|
|
* out from setters themselves for compactness.
|
|
*
|
|
* If DUK__FLAG_TIMESETTER, maxnargs indicates setter type:
|
|
*
|
|
* 1 -> millisecond
|
|
* 2 -> second, [millisecond]
|
|
* 3 -> minute, [second], [millisecond]
|
|
* 4 -> hour, [minute], [second], [millisecond]
|
|
*
|
|
* Else:
|
|
*
|
|
* 1 -> date
|
|
* 2 -> month, [date]
|
|
* 3 -> year, [month], [date]
|
|
*
|
|
* By comparing nargs and maxnargs (and flags) we know which
|
|
* components to override. We rely on part index ordering.
|
|
*/
|
|
|
|
if (flags_and_maxnargs & DUK__FLAG_TIMESETTER) {
|
|
DUK_ASSERT(maxnargs >= 1 && maxnargs <= 4);
|
|
idx_first = DUK__IDX_MILLISECOND - (maxnargs - 1);
|
|
} else {
|
|
DUK_ASSERT(maxnargs >= 1 && maxnargs <= 3);
|
|
idx_first = DUK__IDX_DAY - (maxnargs - 1);
|
|
}
|
|
DUK_ASSERT_DISABLE(idx_first >= 0); /* unsigned */
|
|
DUK_ASSERT(idx_first < DUK__NUM_PARTS);
|
|
|
|
for (i = 0; i < maxnargs; i++) {
|
|
if ((duk_idx_t) i >= nargs) {
|
|
/* no argument given -> leave components untouched */
|
|
break;
|
|
}
|
|
idx = idx_first + i;
|
|
DUK_ASSERT_DISABLE(idx >= 0); /* unsigned */
|
|
DUK_ASSERT(idx < DUK__NUM_PARTS);
|
|
|
|
if (idx == DUK__IDX_YEAR && (flags_and_maxnargs & DUK__FLAG_YEAR_FIXUP)) {
|
|
duk__twodigit_year_fixup(ctx, (duk_idx_t) i);
|
|
}
|
|
|
|
dparts[idx] = duk_to_number(ctx, i);
|
|
|
|
if (idx == DUK__IDX_DAY) {
|
|
/* Day-of-month is one-based in the API, but zero-based
|
|
* internally, so fix here. Note that month is zero-based
|
|
* both in the API and internally.
|
|
*/
|
|
/* SCANBUILD: complains about use of uninitialized values.
|
|
* The complaint is correct, but operating in undefined
|
|
* values here is intentional in some cases and the caller
|
|
* ignores the results.
|
|
*/
|
|
dparts[idx] -= 1.0;
|
|
}
|
|
}
|
|
|
|
/* Leaves new timevalue on stack top and returns 1, which is correct
|
|
* for part setters.
|
|
*/
|
|
if (DUK_ISFINITE(d)) {
|
|
return duk__set_this_timeval_from_dparts(ctx, dparts, flags_and_maxnargs);
|
|
} else {
|
|
/* Internal timevalue is already NaN, so don't touch it. */
|
|
duk_push_nan(ctx);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* Apply ToNumber() to specified index; if ToInteger(val) in [0,99], add
|
|
* 1900 and replace value at idx_val.
|
|
*/
|
|
DUK_LOCAL void duk__twodigit_year_fixup(duk_context *ctx, duk_idx_t idx_val) {
|
|
duk_double_t d;
|
|
|
|
/* XXX: idx_val would fit into 16 bits, but using duk_small_uint_t
|
|
* might not generate better code due to casting.
|
|
*/
|
|
|
|
/* E5 Sections 15.9.3.1, B.2.4, B.2.5 */
|
|
duk_to_number(ctx, idx_val);
|
|
if (duk_is_nan(ctx, idx_val)) {
|
|
return;
|
|
}
|
|
duk_dup(ctx, idx_val);
|
|
duk_to_int(ctx, -1);
|
|
d = duk_get_number(ctx, -1); /* get as double to handle huge numbers correctly */
|
|
if (d >= 0.0 && d <= 99.0) {
|
|
d += 1900.0;
|
|
duk_push_number(ctx, d);
|
|
duk_replace(ctx, idx_val);
|
|
}
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
/* Set datetime parts from stack arguments, defaulting any missing values.
|
|
* Day-of-week is not set; it is not required when setting the time value.
|
|
*/
|
|
DUK_LOCAL void duk__set_parts_from_args(duk_context *ctx, duk_double_t *dparts, duk_idx_t nargs) {
|
|
duk_double_t d;
|
|
duk_small_uint_t i;
|
|
duk_small_uint_t idx;
|
|
|
|
/* Causes a ToNumber() coercion, but doesn't break coercion order since
|
|
* year is coerced first anyway.
|
|
*/
|
|
duk__twodigit_year_fixup(ctx, 0);
|
|
|
|
/* There are at most 7 args, but we use 8 here so that also
|
|
* DUK__IDX_WEEKDAY gets initialized (to zero) to avoid the potential
|
|
* for any Valgrind gripes later.
|
|
*/
|
|
for (i = 0; i < 8; i++) {
|
|
/* Note: rely on index ordering */
|
|
idx = DUK__IDX_YEAR + i;
|
|
if ((duk_idx_t) i < nargs) {
|
|
d = duk_to_number(ctx, (duk_idx_t) i);
|
|
if (idx == DUK__IDX_DAY) {
|
|
/* Convert day from one-based to zero-based (internal). This may
|
|
* cause the day part to be negative, which is OK.
|
|
*/
|
|
d -= 1.0;
|
|
}
|
|
} else {
|
|
/* All components default to 0 except day-of-month which defaults
|
|
* to 1. However, because our internal day-of-month is zero-based,
|
|
* it also defaults to zero here.
|
|
*/
|
|
d = 0.0;
|
|
}
|
|
dparts[idx] = d;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parts from args -> %lf %lf %lf %lf %lf %lf %lf %lf",
|
|
(double) dparts[0], (double) dparts[1],
|
|
(double) dparts[2], (double) dparts[3],
|
|
(double) dparts[4], (double) dparts[5],
|
|
(double) dparts[6], (double) dparts[7]));
|
|
}
|
|
|
|
/*
|
|
* Helper to format a time value into caller buffer, used by logging.
|
|
* 'out_buf' must be at least DUK_BI_DATE_ISO8601_BUFSIZE long.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_bi_date_format_timeval(duk_double_t timeval, duk_uint8_t *out_buf) {
|
|
duk_int_t parts[DUK__NUM_PARTS];
|
|
|
|
duk__timeval_to_parts(timeval,
|
|
parts,
|
|
NULL,
|
|
DUK__FLAG_ONEBASED);
|
|
|
|
duk__format_parts_iso8601(parts,
|
|
0 /*tzoffset*/,
|
|
DUK__FLAG_TOSTRING_DATE |
|
|
DUK__FLAG_TOSTRING_TIME |
|
|
DUK__FLAG_SEP_T /*flags*/,
|
|
out_buf);
|
|
}
|
|
|
|
/*
|
|
* Indirect magic value lookup for Date methods.
|
|
*
|
|
* Date methods don't put their control flags into the function magic value
|
|
* because they wouldn't fit into a LIGHTFUNC's magic field. Instead, the
|
|
* magic value is set to an index pointing to the array of control flags
|
|
* below.
|
|
*
|
|
* This must be kept in strict sync with genbuiltins.py!
|
|
*/
|
|
|
|
static duk_uint16_t duk__date_magics[] = {
|
|
/* 0: toString */
|
|
DUK__FLAG_TOSTRING_DATE + DUK__FLAG_TOSTRING_TIME + DUK__FLAG_LOCALTIME,
|
|
|
|
/* 1: toDateString */
|
|
DUK__FLAG_TOSTRING_DATE + DUK__FLAG_LOCALTIME,
|
|
|
|
/* 2: toTimeString */
|
|
DUK__FLAG_TOSTRING_TIME + DUK__FLAG_LOCALTIME,
|
|
|
|
/* 3: toLocaleString */
|
|
DUK__FLAG_TOSTRING_DATE + DUK__FLAG_TOSTRING_TIME + DUK__FLAG_TOSTRING_LOCALE + DUK__FLAG_LOCALTIME,
|
|
|
|
/* 4: toLocaleDateString */
|
|
DUK__FLAG_TOSTRING_DATE + DUK__FLAG_TOSTRING_LOCALE + DUK__FLAG_LOCALTIME,
|
|
|
|
/* 5: toLocaleTimeString */
|
|
DUK__FLAG_TOSTRING_TIME + DUK__FLAG_TOSTRING_LOCALE + DUK__FLAG_LOCALTIME,
|
|
|
|
/* 6: toUTCString */
|
|
DUK__FLAG_TOSTRING_DATE + DUK__FLAG_TOSTRING_TIME,
|
|
|
|
/* 7: toISOString */
|
|
DUK__FLAG_TOSTRING_DATE + DUK__FLAG_TOSTRING_TIME + DUK__FLAG_NAN_TO_RANGE_ERROR + DUK__FLAG_SEP_T,
|
|
|
|
/* 8: getFullYear */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_YEAR << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 9: getUTCFullYear */
|
|
0 + (DUK__IDX_YEAR << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 10: getMonth */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_MONTH << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 11: getUTCMonth */
|
|
0 + (DUK__IDX_MONTH << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 12: getDate */
|
|
DUK__FLAG_ONEBASED + DUK__FLAG_LOCALTIME + (DUK__IDX_DAY << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 13: getUTCDate */
|
|
DUK__FLAG_ONEBASED + (DUK__IDX_DAY << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 14: getDay */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_WEEKDAY << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 15: getUTCDay */
|
|
0 + (DUK__IDX_WEEKDAY << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 16: getHours */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_HOUR << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 17: getUTCHours */
|
|
0 + (DUK__IDX_HOUR << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 18: getMinutes */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_MINUTE << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 19: getUTCMinutes */
|
|
0 + (DUK__IDX_MINUTE << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 20: getSeconds */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_SECOND << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 21: getUTCSeconds */
|
|
0 + (DUK__IDX_SECOND << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 22: getMilliseconds */
|
|
DUK__FLAG_LOCALTIME + (DUK__IDX_MILLISECOND << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 23: getUTCMilliseconds */
|
|
0 + (DUK__IDX_MILLISECOND << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 24: setMilliseconds */
|
|
DUK__FLAG_TIMESETTER + DUK__FLAG_LOCALTIME + (1 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 25: setUTCMilliseconds */
|
|
DUK__FLAG_TIMESETTER + (1 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 26: setSeconds */
|
|
DUK__FLAG_TIMESETTER + DUK__FLAG_LOCALTIME + (2 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 27: setUTCSeconds */
|
|
DUK__FLAG_TIMESETTER + (2 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 28: setMinutes */
|
|
DUK__FLAG_TIMESETTER + DUK__FLAG_LOCALTIME + (3 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 29: setUTCMinutes */
|
|
DUK__FLAG_TIMESETTER + (3 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 30: setHours */
|
|
DUK__FLAG_TIMESETTER + DUK__FLAG_LOCALTIME + (4 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 31: setUTCHours */
|
|
DUK__FLAG_TIMESETTER + (4 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 32: setDate */
|
|
DUK__FLAG_LOCALTIME + (1 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 33: setUTCDate */
|
|
0 + (1 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 34: setMonth */
|
|
DUK__FLAG_LOCALTIME + (2 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 35: setUTCMonth */
|
|
0 + (2 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 36: setFullYear */
|
|
DUK__FLAG_NAN_TO_ZERO + DUK__FLAG_LOCALTIME + (3 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 37: setUTCFullYear */
|
|
DUK__FLAG_NAN_TO_ZERO + (3 << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 38: getYear */
|
|
DUK__FLAG_LOCALTIME + DUK__FLAG_SUB1900 + (DUK__IDX_YEAR << DUK__FLAG_VALUE_SHIFT),
|
|
|
|
/* 39: setYear */
|
|
DUK__FLAG_NAN_TO_ZERO + DUK__FLAG_YEAR_FIXUP + (3 << DUK__FLAG_VALUE_SHIFT),
|
|
};
|
|
|
|
DUK_LOCAL duk_small_uint_t duk__date_get_indirect_magic(duk_context *ctx) {
|
|
duk_small_int_t magicidx = (duk_small_uint_t) duk_get_current_magic(ctx);
|
|
DUK_ASSERT(magicidx >= 0 && magicidx < (duk_small_int_t) (sizeof(duk__date_magics) / sizeof(duk_uint16_t)));
|
|
return (duk_small_uint_t) duk__date_magics[magicidx];
|
|
}
|
|
|
|
/*
|
|
* Constructor calls
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_constructor(duk_context *ctx) {
|
|
duk_idx_t nargs = duk_get_top(ctx);
|
|
duk_bool_t is_cons = duk_is_constructor_call(ctx);
|
|
duk_double_t dparts[DUK__NUM_PARTS];
|
|
duk_double_t d;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("Date constructor, nargs=%ld, is_cons=%ld", (long) nargs, (long) is_cons));
|
|
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_DATE),
|
|
DUK_BIDX_DATE_PROTOTYPE);
|
|
|
|
/* Unlike most built-ins, the internal [[PrimitiveValue]] of a Date
|
|
* is mutable.
|
|
*/
|
|
|
|
if (nargs == 0 || !is_cons) {
|
|
d = duk__timeclip(DUK__GET_NOW_TIMEVAL(ctx));
|
|
duk_push_number(ctx, d);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_W);
|
|
if (!is_cons) {
|
|
/* called as a normal function: return new Date().toString() */
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
return 1;
|
|
} else if (nargs == 1) {
|
|
duk_to_primitive(ctx, 0, DUK_HINT_NONE);
|
|
if (duk_is_string(ctx, 0)) {
|
|
duk__parse_string(ctx, duk_to_string(ctx, 0));
|
|
duk_replace(ctx, 0); /* may be NaN */
|
|
}
|
|
d = duk__timeclip(duk_to_number(ctx, 0));
|
|
duk_push_number(ctx, d);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_W);
|
|
return 1;
|
|
}
|
|
|
|
duk__set_parts_from_args(ctx, dparts, nargs);
|
|
|
|
/* Parts are in local time, convert when setting. */
|
|
|
|
(void) duk__set_this_timeval_from_dparts(ctx, dparts, DUK__FLAG_LOCALTIME /*flags*/); /* -> [ ... this timeval ] */
|
|
duk_pop(ctx); /* -> [ ... this ] */
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_constructor_parse(duk_context *ctx) {
|
|
return duk__parse_string(ctx, duk_to_string(ctx, 0));
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_constructor_utc(duk_context *ctx) {
|
|
duk_idx_t nargs = duk_get_top(ctx);
|
|
duk_double_t dparts[DUK__NUM_PARTS];
|
|
duk_double_t d;
|
|
|
|
/* Behavior for nargs < 2 is implementation dependent: currently we'll
|
|
* set a NaN time value (matching V8 behavior) in this case.
|
|
*/
|
|
|
|
if (nargs < 2) {
|
|
duk_push_nan(ctx);
|
|
} else {
|
|
duk__set_parts_from_args(ctx, dparts, nargs);
|
|
d = duk__get_timeval_from_dparts(dparts, 0 /*flags*/);
|
|
duk_push_number(ctx, d);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_constructor_now(duk_context *ctx) {
|
|
duk_double_t d;
|
|
|
|
d = DUK__GET_NOW_TIMEVAL(ctx);
|
|
DUK_ASSERT(duk__timeclip(d) == d); /* TimeClip() should never be necessary */
|
|
duk_push_number(ctx, d);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* String/JSON conversions
|
|
*
|
|
* Human readable conversions are now basically ISO 8601 with a space
|
|
* (instead of 'T') as the date/time separator. This is a good baseline
|
|
* and is platform independent.
|
|
*
|
|
* A shared native helper to provide many conversions. Magic value contains
|
|
* a set of flags. The helper provides:
|
|
*
|
|
* toString()
|
|
* toDateString()
|
|
* toTimeString()
|
|
* toLocaleString()
|
|
* toLocaleDateString()
|
|
* toLocaleTimeString()
|
|
* toUTCString()
|
|
* toISOString()
|
|
*
|
|
* Notes:
|
|
*
|
|
* - Date.prototype.toGMTString() and Date.prototype.toUTCString() are
|
|
* required to be the same Ecmascript function object (!), so it is
|
|
* omitted from here.
|
|
*
|
|
* - Date.prototype.toUTCString(): E5.1 specification does not require a
|
|
* specific format, but result should be human readable. The
|
|
* specification suggests using ISO 8601 format with a space (instead
|
|
* of 'T') separator if a more human readable format is not available.
|
|
*
|
|
* - Date.prototype.toISOString(): unlike other conversion functions,
|
|
* toISOString() requires a RangeError for invalid date values.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_tostring_shared(duk_context *ctx) {
|
|
duk_small_uint_t flags = duk__date_get_indirect_magic(ctx);
|
|
return duk__to_string_helper(ctx, flags);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_value_of(duk_context *ctx) {
|
|
/* This native function is also used for Date.prototype.getTime()
|
|
* as their behavior is identical.
|
|
*/
|
|
|
|
duk_double_t d = duk__push_this_get_timeval(ctx, 0 /*flags*/); /* -> [ this ] */
|
|
DUK_ASSERT(DUK_ISFINITE(d) || DUK_ISNAN(d));
|
|
duk_push_number(ctx, d);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_to_json(duk_context *ctx) {
|
|
/* Note: toJSON() is a generic function which works even if 'this'
|
|
* is not a Date. The sole argument is ignored.
|
|
*/
|
|
|
|
duk_push_this(ctx);
|
|
duk_to_object(ctx, -1);
|
|
|
|
duk_dup_top(ctx);
|
|
duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
|
|
if (duk_is_number(ctx, -1)) {
|
|
duk_double_t d = duk_get_number(ctx, -1);
|
|
if (!DUK_ISFINITE(d)) {
|
|
duk_push_null(ctx);
|
|
return 1;
|
|
}
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_TO_ISO_STRING);
|
|
duk_dup(ctx, -2); /* -> [ O toIsoString O ] */
|
|
duk_call_method(ctx, 0);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Getters.
|
|
*
|
|
* Implementing getters is quite easy. The internal time value is either
|
|
* NaN, or represents milliseconds (without fractions) from Jan 1, 1970.
|
|
* The internal time value can be converted to integer parts, and each
|
|
* part will be normalized and will fit into a 32-bit signed integer.
|
|
*
|
|
* A shared native helper to provide all getters. Magic value contains
|
|
* a set of flags and also packs the date component index argument. The
|
|
* helper provides:
|
|
*
|
|
* getFullYear()
|
|
* getUTCFullYear()
|
|
* getMonth()
|
|
* getUTCMonth()
|
|
* getDate()
|
|
* getUTCDate()
|
|
* getDay()
|
|
* getUTCDay()
|
|
* getHours()
|
|
* getUTCHours()
|
|
* getMinutes()
|
|
* getUTCMinutes()
|
|
* getSeconds()
|
|
* getUTCSeconds()
|
|
* getMilliseconds()
|
|
* getUTCMilliseconds()
|
|
* getYear()
|
|
*
|
|
* Notes:
|
|
*
|
|
* - Date.prototype.getDate(): 'date' means day-of-month, and is
|
|
* zero-based in internal calculations but public API expects it to
|
|
* be one-based.
|
|
*
|
|
* - Date.prototype.getTime() and Date.prototype.valueOf() have identical
|
|
* behavior. They have separate function objects, but share the same C
|
|
* function (duk_bi_date_prototype_value_of).
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_get_shared(duk_context *ctx) {
|
|
duk_small_uint_t flags_and_idx = duk__date_get_indirect_magic(ctx);
|
|
return duk__get_part_helper(ctx, flags_and_idx);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_get_timezone_offset(duk_context *ctx) {
|
|
/*
|
|
* Return (t - LocalTime(t)) in minutes:
|
|
*
|
|
* t - LocalTime(t) = t - (t + LocalTZA + DaylightSavingTA(t))
|
|
* = -(LocalTZA + DaylightSavingTA(t))
|
|
*
|
|
* where DaylightSavingTA() is checked for time 't'.
|
|
*
|
|
* Note that the sign of the result is opposite to common usage,
|
|
* e.g. for EE(S)T which normally is +2h or +3h from UTC, this
|
|
* function returns -120 or -180.
|
|
*
|
|
*/
|
|
|
|
duk_double_t d;
|
|
duk_int_t tzoffset;
|
|
|
|
/* Note: DST adjustment is determined using UTC time. */
|
|
d = duk__push_this_get_timeval(ctx, 0 /*flags*/);
|
|
DUK_ASSERT(DUK_ISFINITE(d) || DUK_ISNAN(d));
|
|
if (DUK_ISNAN(d)) {
|
|
duk_push_nan(ctx);
|
|
} else {
|
|
DUK_ASSERT(DUK_ISFINITE(d));
|
|
tzoffset = DUK__GET_LOCAL_TZOFFSET(d);
|
|
duk_push_int(ctx, -tzoffset / 60);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Setters.
|
|
*
|
|
* Setters are a bit more complicated than getters. Component setters
|
|
* break down the current time value into its (normalized) component
|
|
* parts, replace one or more components with -unnormalized- new values,
|
|
* and the components are then converted back into a time value. As an
|
|
* example of using unnormalized values:
|
|
*
|
|
* var d = new Date(1234567890);
|
|
*
|
|
* is equivalent to:
|
|
*
|
|
* var d = new Date(0);
|
|
* d.setUTCMilliseconds(1234567890);
|
|
*
|
|
* A shared native helper to provide almost all setters. Magic value
|
|
* contains a set of flags and also packs the "maxnargs" argument. The
|
|
* helper provides:
|
|
*
|
|
* setMilliseconds()
|
|
* setUTCMilliseconds()
|
|
* setSeconds()
|
|
* setUTCSeconds()
|
|
* setMinutes()
|
|
* setUTCMinutes()
|
|
* setHours()
|
|
* setUTCHours()
|
|
* setDate()
|
|
* setUTCDate()
|
|
* setMonth()
|
|
* setUTCMonth()
|
|
* setFullYear()
|
|
* setUTCFullYear()
|
|
* setYear()
|
|
*
|
|
* Notes:
|
|
*
|
|
* - Date.prototype.setYear() (Section B addition): special year check
|
|
* is omitted. NaN / Infinity will just flow through and ultimately
|
|
* result in a NaN internal time value.
|
|
*
|
|
* - Date.prototype.setYear() does not have optional arguments for
|
|
* setting month and day-in-month (like setFullYear()), but we indicate
|
|
* 'maxnargs' to be 3 to get the year written to the correct component
|
|
* index in duk__set_part_helper(). The function has nargs == 1, so only
|
|
* the year will be set regardless of actual argument count.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_set_shared(duk_context *ctx) {
|
|
duk_small_uint_t flags_and_maxnargs = duk__date_get_indirect_magic(ctx);
|
|
return duk__set_part_helper(ctx, flags_and_maxnargs);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_date_prototype_set_time(duk_context *ctx) {
|
|
duk_double_t d;
|
|
|
|
(void) duk__push_this_get_timeval(ctx, 0 /*flags*/); /* -> [ timeval this ] */
|
|
d = duk__timeclip(duk_to_number(ctx, 0));
|
|
duk_push_number(ctx, d);
|
|
duk_dup_top(ctx);
|
|
duk_put_prop_stridx(ctx, -3, DUK_STRIDX_INT_VALUE); /* -> [ timeval this timeval ] */
|
|
|
|
return 1;
|
|
}
|
|
#line 1 "duk_bi_duktape.c"
|
|
/*
|
|
* Duktape built-ins
|
|
*
|
|
* Size optimization note: it might seem that vararg multipurpose functions
|
|
* like fin(), enc(), and dec() are not very size optimal, but using a single
|
|
* user-visible Ecmascript function saves a lot of run-time footprint; each
|
|
* Function instance takes >100 bytes. Using a shared native helper and a
|
|
* 'magic' value won't save much if there are multiple Function instances
|
|
* anyway.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Raw helper to extract internal information / statistics about a value.
|
|
* The return values are version specific and must not expose anything
|
|
* that would lead to security issues (e.g. exposing compiled function
|
|
* 'data' buffer might be an issue). Currently only counts and sizes and
|
|
* such are given so there should not be a security impact.
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_info(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
duk_heaphdr *h;
|
|
duk_int_t i, n;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
/* result array */
|
|
duk_push_array(ctx); /* -> [ val arr ] */
|
|
|
|
/* type tag (public) */
|
|
duk_push_int(ctx, duk_get_type(ctx, 0));
|
|
|
|
/* address */
|
|
tv = duk_get_tval(ctx, 0);
|
|
DUK_ASSERT(tv != NULL); /* because arg count is 1 */
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
duk_push_pointer(ctx, (void *) h);
|
|
} else {
|
|
/* internal type tag */
|
|
duk_push_int(ctx, (duk_int_t) DUK_TVAL_GET_TAG(tv));
|
|
goto done;
|
|
}
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* refcount */
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk_push_size_t(ctx, DUK_HEAPHDR_GET_REFCOUNT(h));
|
|
#else
|
|
duk_push_undefined(ctx);
|
|
#endif
|
|
|
|
/* heaphdr size and additional allocation size, followed by
|
|
* type specific stuff (with varying value count)
|
|
*/
|
|
switch ((duk_small_int_t) DUK_HEAPHDR_GET_TYPE(h)) {
|
|
case DUK_HTYPE_STRING: {
|
|
duk_hstring *h_str = (duk_hstring *) h;
|
|
duk_push_uint(ctx, (duk_uint_t) (sizeof(duk_hstring) + DUK_HSTRING_GET_BYTELEN(h_str) + 1));
|
|
break;
|
|
}
|
|
case DUK_HTYPE_OBJECT: {
|
|
duk_hobject *h_obj = (duk_hobject *) h;
|
|
duk_small_uint_t hdr_size;
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h_obj)) {
|
|
hdr_size = (duk_small_uint_t) sizeof(duk_hcompiledfunction);
|
|
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(h_obj)) {
|
|
hdr_size = (duk_small_uint_t) sizeof(duk_hnativefunction);
|
|
} else if (DUK_HOBJECT_IS_THREAD(h_obj)) {
|
|
hdr_size = (duk_small_uint_t) sizeof(duk_hthread);
|
|
} else {
|
|
hdr_size = (duk_small_uint_t) sizeof(duk_hobject);
|
|
}
|
|
duk_push_uint(ctx, (duk_uint_t) hdr_size);
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HOBJECT_E_ALLOC_SIZE(h_obj));
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HOBJECT_GET_ESIZE(h_obj));
|
|
/* Note: e_next indicates the number of gc-reachable entries
|
|
* in the entry part, and also indicates the index where the
|
|
* next new property would be inserted. It does *not* indicate
|
|
* the number of non-NULL keys present in the object. That
|
|
* value could be counted separately but requires a pass through
|
|
* the key list.
|
|
*/
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HOBJECT_GET_ENEXT(h_obj));
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HOBJECT_GET_ASIZE(h_obj));
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HOBJECT_GET_HSIZE(h_obj));
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h_obj)) {
|
|
duk_hbuffer *h_data = (duk_hbuffer *) DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, (duk_hcompiledfunction *) h_obj);
|
|
if (h_data) {
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HBUFFER_GET_SIZE(h_data));
|
|
} else {
|
|
duk_push_uint(ctx, 0);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DUK_HTYPE_BUFFER: {
|
|
duk_hbuffer *h_buf = (duk_hbuffer *) h;
|
|
if (DUK_HBUFFER_HAS_DYNAMIC(h_buf)) {
|
|
/* XXX: when alloc_size == 0, dynamic buf ptr may now be NULL, in which case
|
|
* the second allocation does not exist.
|
|
*/
|
|
duk_hbuffer_dynamic *h_dyn = (duk_hbuffer_dynamic *) h;
|
|
duk_push_uint(ctx, (duk_uint_t) (sizeof(duk_hbuffer_dynamic)));
|
|
duk_push_uint(ctx, (duk_uint_t) (DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(h_dyn)));
|
|
} else {
|
|
duk_push_uint(ctx, (duk_uint_t) (sizeof(duk_hbuffer_fixed) + DUK_HBUFFER_GET_SIZE(h_buf) + 1));
|
|
}
|
|
break;
|
|
|
|
}
|
|
}
|
|
|
|
done:
|
|
/* set values into ret array */
|
|
/* XXX: primitive to make array from valstack slice */
|
|
n = duk_get_top(ctx);
|
|
for (i = 2; i < n; i++) {
|
|
duk_dup(ctx, i);
|
|
duk_put_prop_index(ctx, 1, i - 2);
|
|
}
|
|
duk_dup(ctx, 1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_act(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_activation *act;
|
|
duk_uint_fast32_t pc;
|
|
duk_uint_fast32_t line;
|
|
duk_int_t level;
|
|
|
|
/* -1 = top callstack entry, callstack[callstack_top - 1]
|
|
* -callstack_top = bottom callstack entry, callstack[0]
|
|
*/
|
|
level = duk_to_int(ctx, 0);
|
|
if (level >= 0 || -level > (duk_int_t) thr->callstack_top) {
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(level >= -((duk_int_t) thr->callstack_top) && level <= -1);
|
|
act = thr->callstack + thr->callstack_top + level;
|
|
|
|
duk_push_object(ctx);
|
|
|
|
duk_push_tval(ctx, &act->tv_func);
|
|
|
|
pc = (duk_uint_fast32_t) act->pc;
|
|
if (pc > 0) {
|
|
/* Relevant PC is just before current one because PC is
|
|
* post-incremented. This should match what error augment
|
|
* code does.
|
|
*/
|
|
pc--;
|
|
}
|
|
duk_push_uint(ctx, (duk_uint_t) pc);
|
|
|
|
#if defined(DUK_USE_PC2LINE)
|
|
line = duk_hobject_pc2line_query(ctx, -2, pc);
|
|
#else
|
|
line = 0;
|
|
#endif
|
|
duk_push_uint(ctx, (duk_uint_t) line);
|
|
|
|
/* Providing access to e.g. act->lex_env would be dangerous: these
|
|
* internal structures must never be accessible to the application.
|
|
* Duktape relies on them having consistent data, and this consistency
|
|
* is only asserted for, not checked for.
|
|
*/
|
|
|
|
/* [ level obj func pc line ] */
|
|
|
|
/* XXX: version specific array format instead? */
|
|
duk_xdef_prop_stridx_wec(ctx, -4, DUK_STRIDX_LINE_NUMBER);
|
|
duk_xdef_prop_stridx_wec(ctx, -3, DUK_STRIDX_PC);
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_LC_FUNCTION);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_gc(duk_context *ctx) {
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_uint_t flags;
|
|
duk_bool_t rc;
|
|
|
|
flags = (duk_small_uint_t) duk_get_uint(ctx, 0);
|
|
rc = duk_heap_mark_and_sweep(thr->heap, flags);
|
|
|
|
/* XXX: Not sure what the best return value would be in the API.
|
|
* Return a boolean for now. Note that rc == 0 is success (true).
|
|
*/
|
|
duk_push_boolean(ctx, !rc);
|
|
return 1;
|
|
#else
|
|
DUK_UNREF(ctx);
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_fin(duk_context *ctx) {
|
|
(void) duk_require_hobject(ctx, 0);
|
|
if (duk_get_top(ctx) >= 2) {
|
|
/* Set: currently a finalizer is disabled by setting it to
|
|
* undefined; this does not remove the property at the moment.
|
|
* The value could be type checked to be either a function
|
|
* or something else; if something else, the property could
|
|
* be deleted.
|
|
*/
|
|
duk_set_top(ctx, 2);
|
|
(void) duk_put_prop_stridx(ctx, 0, DUK_STRIDX_INT_FINALIZER);
|
|
return 0;
|
|
} else {
|
|
/* Get. */
|
|
DUK_ASSERT(duk_get_top(ctx) == 1);
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_INT_FINALIZER);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_enc(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_str;
|
|
|
|
/* Vararg function: must be careful to check/require arguments.
|
|
* The JSON helpers accept invalid indices and treat them like
|
|
* non-existent optional parameters.
|
|
*/
|
|
|
|
h_str = duk_require_hstring(ctx, 0);
|
|
duk_require_valid_index(ctx, 1);
|
|
|
|
if (h_str == DUK_HTHREAD_STRING_HEX(thr)) {
|
|
duk_set_top(ctx, 2);
|
|
duk_hex_encode(ctx, 1);
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
} else if (h_str == DUK_HTHREAD_STRING_BASE64(thr)) {
|
|
duk_set_top(ctx, 2);
|
|
duk_base64_encode(ctx, 1);
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
#ifdef DUK_USE_JX
|
|
} else if (h_str == DUK_HTHREAD_STRING_JX(thr)) {
|
|
duk_bi_json_stringify_helper(ctx,
|
|
1 /*idx_value*/,
|
|
2 /*idx_replacer*/,
|
|
3 /*idx_space*/,
|
|
DUK_JSON_FLAG_EXT_CUSTOM |
|
|
DUK_JSON_FLAG_ASCII_ONLY |
|
|
DUK_JSON_FLAG_AVOID_KEY_QUOTES /*flags*/);
|
|
#endif
|
|
#ifdef DUK_USE_JC
|
|
} else if (h_str == DUK_HTHREAD_STRING_JC(thr)) {
|
|
duk_bi_json_stringify_helper(ctx,
|
|
1 /*idx_value*/,
|
|
2 /*idx_replacer*/,
|
|
3 /*idx_space*/,
|
|
DUK_JSON_FLAG_EXT_COMPATIBLE |
|
|
DUK_JSON_FLAG_ASCII_ONLY /*flags*/);
|
|
#endif
|
|
} else {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_dec(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_str;
|
|
|
|
/* Vararg function: must be careful to check/require arguments.
|
|
* The JSON helpers accept invalid indices and treat them like
|
|
* non-existent optional parameters.
|
|
*/
|
|
|
|
h_str = duk_require_hstring(ctx, 0);
|
|
duk_require_valid_index(ctx, 1);
|
|
|
|
if (h_str == DUK_HTHREAD_STRING_HEX(thr)) {
|
|
duk_set_top(ctx, 2);
|
|
duk_hex_decode(ctx, 1);
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
} else if (h_str == DUK_HTHREAD_STRING_BASE64(thr)) {
|
|
duk_set_top(ctx, 2);
|
|
duk_base64_decode(ctx, 1);
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
#ifdef DUK_USE_JX
|
|
} else if (h_str == DUK_HTHREAD_STRING_JX(thr)) {
|
|
duk_bi_json_parse_helper(ctx,
|
|
1 /*idx_value*/,
|
|
2 /*idx_replacer*/,
|
|
DUK_JSON_FLAG_EXT_CUSTOM /*flags*/);
|
|
#endif
|
|
#ifdef DUK_USE_JC
|
|
} else if (h_str == DUK_HTHREAD_STRING_JC(thr)) {
|
|
duk_bi_json_parse_helper(ctx,
|
|
1 /*idx_value*/,
|
|
2 /*idx_replacer*/,
|
|
DUK_JSON_FLAG_EXT_COMPATIBLE /*flags*/);
|
|
#endif
|
|
} else {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Compact an object
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_duktape_object_compact(duk_context *ctx) {
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
duk_compact(ctx, 0);
|
|
return 1; /* return the argument object */
|
|
}
|
|
#line 1 "duk_bi_error.c"
|
|
/*
|
|
* Error built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_constructor_shared(duk_context *ctx) {
|
|
/* Behavior for constructor and non-constructor call is
|
|
* the same except for augmenting the created error. When
|
|
* called as a constructor, the caller (duk_new()) will handle
|
|
* augmentation; when called as normal function, we need to do
|
|
* it here.
|
|
*/
|
|
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_int_t bidx_prototype = duk_get_current_magic(ctx);
|
|
|
|
/* same for both error and each subclass like TypeError */
|
|
duk_uint_t flags_and_class = DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_ERROR);
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
duk_push_object_helper(ctx, flags_and_class, bidx_prototype);
|
|
|
|
/* If message is undefined, the own property 'message' is not set at
|
|
* all to save property space. An empty message is inherited anyway.
|
|
*/
|
|
if (!duk_is_undefined(ctx, 0)) {
|
|
duk_to_string(ctx, 0);
|
|
duk_dup(ctx, 0); /* [ message error message ] */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_MESSAGE, DUK_PROPDESC_FLAGS_WC);
|
|
}
|
|
|
|
/* Augment the error if called as a normal function. __FILE__ and __LINE__
|
|
* are not desirable in this case.
|
|
*/
|
|
|
|
#ifdef DUK_USE_AUGMENT_ERROR_CREATE
|
|
if (!duk_is_constructor_call(ctx)) {
|
|
duk_err_augment_error_create(thr, thr, NULL, 0, 1 /*noblame_fileline*/);
|
|
}
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_to_string(duk_context *ctx) {
|
|
/* XXX: optimize with more direct internal access */
|
|
|
|
duk_push_this(ctx);
|
|
(void) duk_require_hobject_or_lfunc_coerce(ctx, -1);
|
|
|
|
/* [ ... this ] */
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_NAME);
|
|
if (duk_is_undefined(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
duk_push_string(ctx, "Error");
|
|
} else {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
|
|
/* [ ... this name ] */
|
|
|
|
/* XXX: Are steps 6 and 7 in E5 Section 15.11.4.4 duplicated by
|
|
* accident or are they actually needed? The first ToString()
|
|
* could conceivably return 'undefined'.
|
|
*/
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_MESSAGE);
|
|
if (duk_is_undefined(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
duk_push_string(ctx, "");
|
|
} else {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
|
|
/* [ ... this name message ] */
|
|
|
|
if (duk_get_length(ctx, -2) == 0) {
|
|
/* name is empty -> return message */
|
|
return 1;
|
|
}
|
|
if (duk_get_length(ctx, -1) == 0) {
|
|
/* message is empty -> return name */
|
|
duk_pop(ctx);
|
|
return 1;
|
|
}
|
|
duk_push_string(ctx, ": ");
|
|
duk_insert(ctx, -2); /* ... name ': ' message */
|
|
duk_concat(ctx, 3);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef DUK_USE_TRACEBACKS
|
|
|
|
/*
|
|
* Traceback handling
|
|
*
|
|
* The unified helper decodes the traceback and produces various requested
|
|
* outputs. It should be optimized for size, and may leave garbage on stack,
|
|
* only the topmost return value matters. For instance, traceback separator
|
|
* and decoded strings are pushed even when looking for filename only.
|
|
*
|
|
* NOTE: although _Tracedata is an internal property, user code can currently
|
|
* write to the array (or replace it with something other than an array).
|
|
* The code below must tolerate arbitrary _Tracedata. It can throw errors
|
|
* etc, but cannot cause a segfault or memory unsafe behavior.
|
|
*/
|
|
|
|
/* constants arbitrary, chosen for small loads */
|
|
#define DUK__OUTPUT_TYPE_TRACEBACK (-1)
|
|
#define DUK__OUTPUT_TYPE_FILENAME 0
|
|
#define DUK__OUTPUT_TYPE_LINENUMBER 1
|
|
|
|
DUK_LOCAL duk_ret_t duk__traceback_getter_helper(duk_context *ctx, duk_small_int_t output_type) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t idx_td;
|
|
duk_small_int_t i; /* traceback depth fits into 16 bits */
|
|
duk_small_int_t t; /* stack type fits into 16 bits */
|
|
const char *str_tailcalled = " tailcalled";
|
|
const char *str_strict = " strict";
|
|
const char *str_construct = " construct";
|
|
const char *str_prevyield = " preventsyield";
|
|
const char *str_directeval = " directeval";
|
|
const char *str_empty = "";
|
|
|
|
DUK_ASSERT_TOP(ctx, 0); /* fixed arg count */
|
|
|
|
duk_push_this(ctx);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_TRACEDATA);
|
|
idx_td = duk_get_top_index(ctx);
|
|
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_NEWLINE_TAB);
|
|
duk_push_this(ctx);
|
|
|
|
/* [ ... this tracedata sep this ] */
|
|
|
|
/* XXX: skip null filename? */
|
|
|
|
if (duk_check_type(ctx, idx_td, DUK_TYPE_OBJECT)) {
|
|
/* Current tracedata contains 2 entries per callstack entry. */
|
|
for (i = 0; ; i += 2) {
|
|
duk_int_t pc;
|
|
duk_int_t line;
|
|
duk_int_t flags;
|
|
duk_double_t d;
|
|
const char *funcname;
|
|
const char *filename;
|
|
duk_hobject *h_func;
|
|
duk_hstring *h_name;
|
|
|
|
duk_require_stack(ctx, 5);
|
|
duk_get_prop_index(ctx, idx_td, i);
|
|
duk_get_prop_index(ctx, idx_td, i + 1);
|
|
d = duk_to_number(ctx, -1);
|
|
pc = (duk_int_t) DUK_FMOD(d, DUK_DOUBLE_2TO32);
|
|
flags = (duk_int_t) DUK_FLOOR(d / DUK_DOUBLE_2TO32);
|
|
t = (duk_small_int_t) duk_get_type(ctx, -2);
|
|
|
|
if (t == DUK_TYPE_OBJECT || t == DUK_TYPE_LIGHTFUNC) {
|
|
/*
|
|
* Ecmascript/native function call or lightfunc call
|
|
*/
|
|
|
|
/* [ ... v1(func) v2(pc+flags) ] */
|
|
|
|
h_func = duk_get_hobject(ctx, -2); /* NULL for lightfunc */
|
|
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_NAME);
|
|
duk_get_prop_stridx(ctx, -3, DUK_STRIDX_FILE_NAME);
|
|
|
|
#if defined(DUK_USE_PC2LINE)
|
|
line = duk_hobject_pc2line_query(ctx, -4, (duk_uint_fast32_t) pc);
|
|
#else
|
|
line = 0;
|
|
#endif
|
|
|
|
/* [ ... v1 v2 name filename ] */
|
|
|
|
if (output_type == DUK__OUTPUT_TYPE_FILENAME) {
|
|
return 1;
|
|
} else if (output_type == DUK__OUTPUT_TYPE_LINENUMBER) {
|
|
duk_push_int(ctx, line);
|
|
return 1;
|
|
}
|
|
|
|
h_name = duk_get_hstring(ctx, -2); /* may be NULL */
|
|
funcname = (h_name == NULL || h_name == DUK_HTHREAD_STRING_EMPTY_STRING(thr)) ?
|
|
"anon" : (const char *) DUK_HSTRING_GET_DATA(h_name);
|
|
filename = duk_get_string(ctx, -1);
|
|
filename = filename ? filename : "";
|
|
DUK_ASSERT(funcname != NULL);
|
|
DUK_ASSERT(filename != NULL);
|
|
|
|
if (h_func == NULL) {
|
|
duk_push_sprintf(ctx, "%s light%s%s%s%s%s",
|
|
(const char *) funcname,
|
|
(const char *) ((flags & DUK_ACT_FLAG_STRICT) ? str_strict : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_TAILCALLED) ? str_tailcalled : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_CONSTRUCT) ? str_construct : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_DIRECT_EVAL) ? str_directeval : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_PREVENT_YIELD) ? str_prevyield : str_empty));
|
|
} else if (DUK_HOBJECT_HAS_NATIVEFUNCTION(h_func)) {
|
|
duk_push_sprintf(ctx, "%s %s native%s%s%s%s%s",
|
|
(const char *) funcname,
|
|
(const char *) filename,
|
|
(const char *) ((flags & DUK_ACT_FLAG_STRICT) ? str_strict : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_TAILCALLED) ? str_tailcalled : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_CONSTRUCT) ? str_construct : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_DIRECT_EVAL) ? str_directeval : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_PREVENT_YIELD) ? str_prevyield : str_empty));
|
|
} else {
|
|
duk_push_sprintf(ctx, "%s %s:%ld%s%s%s%s%s",
|
|
(const char *) funcname,
|
|
(const char *) filename,
|
|
(long) line,
|
|
(const char *) ((flags & DUK_ACT_FLAG_STRICT) ? str_strict : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_TAILCALLED) ? str_tailcalled : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_CONSTRUCT) ? str_construct : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_DIRECT_EVAL) ? str_directeval : str_empty),
|
|
(const char *) ((flags & DUK_ACT_FLAG_PREVENT_YIELD) ? str_prevyield : str_empty));
|
|
}
|
|
duk_replace(ctx, -5); /* [ ... v1 v2 name filename str ] -> [ ... str v2 name filename ] */
|
|
duk_pop_n(ctx, 3); /* -> [ ... str ] */
|
|
} else if (t == DUK_TYPE_STRING) {
|
|
/*
|
|
* __FILE__ / __LINE__ entry, here 'pc' is line number directly.
|
|
* Sometimes __FILE__ / __LINE__ is reported as the source for
|
|
* the error (fileName, lineNumber), sometimes not.
|
|
*/
|
|
|
|
/* [ ... v1(filename) v2(line+flags) ] */
|
|
|
|
if (!(flags & DUK_TB_FLAG_NOBLAME_FILELINE)) {
|
|
if (output_type == DUK__OUTPUT_TYPE_FILENAME) {
|
|
duk_pop(ctx);
|
|
return 1;
|
|
} else if (output_type == DUK__OUTPUT_TYPE_LINENUMBER) {
|
|
duk_push_int(ctx, pc);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
duk_push_sprintf(ctx, "%s:%ld",
|
|
(const char *) duk_get_string(ctx, -2), (long) pc);
|
|
duk_replace(ctx, -3); /* [ ... v1 v2 str ] -> [ ... str v2 ] */
|
|
duk_pop(ctx); /* -> [ ... str ] */
|
|
} else {
|
|
/* unknown, ignore */
|
|
duk_pop_2(ctx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i >= DUK_USE_TRACEBACK_DEPTH * 2) {
|
|
/* Possibly truncated; there is no explicit truncation
|
|
* marker so this is the best we can do.
|
|
*/
|
|
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_BRACKETED_ELLIPSIS);
|
|
}
|
|
}
|
|
|
|
/* [ ... this tracedata sep this str1 ... strN ] */
|
|
|
|
if (output_type != DUK__OUTPUT_TYPE_TRACEBACK) {
|
|
return 0;
|
|
} else {
|
|
/* The 'this' after 'sep' will get ToString() coerced by
|
|
* duk_join() automatically. We don't want to do that
|
|
* coercion when providing .fileName or .lineNumber (GH-254).
|
|
*/
|
|
duk_join(ctx, duk_get_top(ctx) - (idx_td + 2) /*count, not including sep*/);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* XXX: output type could be encoded into native function 'magic' value to
|
|
* save space.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_stack_getter(duk_context *ctx) {
|
|
return duk__traceback_getter_helper(ctx, DUK__OUTPUT_TYPE_TRACEBACK);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_filename_getter(duk_context *ctx) {
|
|
return duk__traceback_getter_helper(ctx, DUK__OUTPUT_TYPE_FILENAME);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_linenumber_getter(duk_context *ctx) {
|
|
return duk__traceback_getter_helper(ctx, DUK__OUTPUT_TYPE_LINENUMBER);
|
|
}
|
|
|
|
#undef DUK__OUTPUT_TYPE_TRACEBACK
|
|
#undef DUK__OUTPUT_TYPE_FILENAME
|
|
#undef DUK__OUTPUT_TYPE_LINENUMBER
|
|
|
|
#else /* DUK_USE_TRACEBACKS */
|
|
|
|
/*
|
|
* Traceback handling when tracebacks disabled.
|
|
*
|
|
* The fileName / lineNumber stubs are now necessary because built-in
|
|
* data will include the accessor properties in Error.prototype. If those
|
|
* are removed for builds without tracebacks, these can also be removed.
|
|
* 'stack' should still be present and produce a ToString() equivalent:
|
|
* this is useful for user code which prints a stacktrace and expects to
|
|
* see something useful. A normal stacktrace also begins with a ToString()
|
|
* of the error so this makes sense.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_stack_getter(duk_context *ctx) {
|
|
/* XXX: remove this native function and map 'stack' accessor
|
|
* to the toString() implementation directly.
|
|
*/
|
|
return duk_bi_error_prototype_to_string(ctx);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_filename_getter(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_linenumber_getter(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return 0;
|
|
}
|
|
|
|
#endif /* DUK_USE_TRACEBACKS */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_error_prototype_nop_setter(duk_context *ctx) {
|
|
/* Attempt to write 'stack', 'fileName', 'lineNumber' is a silent no-op.
|
|
* User can use Object.defineProperty() to override this behavior.
|
|
*/
|
|
DUK_ASSERT_TOP(ctx, 1); /* fixed arg count */
|
|
DUK_UNREF(ctx);
|
|
return 0;
|
|
}
|
|
#line 1 "duk_bi_function.c"
|
|
/*
|
|
* Function built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_function_constructor(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_sourcecode;
|
|
duk_idx_t nargs;
|
|
duk_idx_t i;
|
|
duk_small_uint_t comp_flags;
|
|
duk_hcompiledfunction *func;
|
|
duk_hobject *outer_lex_env;
|
|
duk_hobject *outer_var_env;
|
|
|
|
/* normal and constructor calls have identical semantics */
|
|
|
|
nargs = duk_get_top(ctx);
|
|
for (i = 0; i < nargs; i++) {
|
|
duk_to_string(ctx, i);
|
|
}
|
|
|
|
if (nargs == 0) {
|
|
duk_push_string(ctx, "");
|
|
duk_push_string(ctx, "");
|
|
} else if (nargs == 1) {
|
|
/* XXX: cover this with the generic >1 case? */
|
|
duk_push_string(ctx, "");
|
|
} else {
|
|
duk_insert(ctx, 0); /* [ arg1 ... argN-1 body] -> [body arg1 ... argN-1] */
|
|
duk_push_string(ctx, ",");
|
|
duk_insert(ctx, 1);
|
|
duk_join(ctx, nargs - 1);
|
|
}
|
|
|
|
/* [ body formals ], formals is comma separated list that needs to be parsed */
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
|
|
/* XXX: this placeholder is not always correct, but use for now.
|
|
* It will fail in corner cases; see test-dev-func-cons-args.js.
|
|
*/
|
|
duk_push_string(ctx, "function(");
|
|
duk_dup(ctx, 1);
|
|
duk_push_string(ctx, "){");
|
|
duk_dup(ctx, 0);
|
|
duk_push_string(ctx, "}");
|
|
duk_concat(ctx, 5);
|
|
|
|
/* [ body formals source ] */
|
|
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
|
|
/* strictness is not inherited, intentional */
|
|
comp_flags = DUK_JS_COMPILE_FLAG_FUNCEXPR;
|
|
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_COMPILE); /* XXX: copy from caller? */ /* XXX: ignored now */
|
|
h_sourcecode = duk_require_hstring(ctx, -2);
|
|
duk_js_compile(thr,
|
|
(const duk_uint8_t *) DUK_HSTRING_GET_DATA(h_sourcecode),
|
|
(duk_size_t) DUK_HSTRING_GET_BYTELEN(h_sourcecode),
|
|
comp_flags);
|
|
func = (duk_hcompiledfunction *) duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION((duk_hobject *) func));
|
|
|
|
/* [ body formals source template ] */
|
|
|
|
/* only outer_lex_env matters, as functions always get a new
|
|
* variable declaration environment.
|
|
*/
|
|
|
|
outer_lex_env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
outer_var_env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
|
|
duk_js_push_closure(thr, func, outer_var_env, outer_lex_env);
|
|
|
|
/* [ body formals source template closure ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_function_prototype(duk_context *ctx) {
|
|
/* ignore arguments, return undefined (E5 Section 15.3.4) */
|
|
DUK_UNREF(ctx);
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_function_prototype_to_string(duk_context *ctx) {
|
|
duk_tval *tv;
|
|
|
|
/*
|
|
* E5 Section 15.3.4.2 places few requirements on the output of
|
|
* this function:
|
|
*
|
|
* - The result is an implementation dependent representation
|
|
* of the function; in particular
|
|
*
|
|
* - The result must follow the syntax of a FunctionDeclaration.
|
|
* In particular, the function must have a name (even in the
|
|
* case of an anonymous function or a function with an empty
|
|
* name).
|
|
*
|
|
* - Note in particular that the output does NOT need to compile
|
|
* into anything useful.
|
|
*/
|
|
|
|
|
|
/* XXX: faster internal way to get this */
|
|
duk_push_this(ctx);
|
|
tv = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
duk_hobject *obj = DUK_TVAL_GET_OBJECT(tv);
|
|
const char *func_name = DUK_STR_ANON;
|
|
|
|
/* XXX: rework, it would be nice to avoid C formatting functions to
|
|
* ensure there are no Unicode issues.
|
|
*/
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_NAME);
|
|
if (!duk_is_undefined(ctx, -1)) {
|
|
func_name = duk_to_string(ctx, -1);
|
|
DUK_ASSERT(func_name != NULL);
|
|
|
|
if (func_name[0] == (char) 0) {
|
|
func_name = DUK_STR_ANON;
|
|
}
|
|
}
|
|
|
|
if (DUK_HOBJECT_HAS_COMPILEDFUNCTION(obj)) {
|
|
/* XXX: actual source, if available */
|
|
duk_push_sprintf(ctx, "function %s() {/* ecmascript */}", (const char *) func_name);
|
|
} else if (DUK_HOBJECT_HAS_NATIVEFUNCTION(obj)) {
|
|
duk_push_sprintf(ctx, "function %s() {/* native */}", (const char *) func_name);
|
|
} else if (DUK_HOBJECT_HAS_BOUND(obj)) {
|
|
duk_push_sprintf(ctx, "function %s() {/* bound */}", (const char *) func_name);
|
|
} else {
|
|
goto type_error;
|
|
}
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv)) {
|
|
duk_push_lightfunc_tostring(ctx, tv);
|
|
} else {
|
|
goto type_error;
|
|
}
|
|
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_function_prototype_apply(duk_context *ctx) {
|
|
duk_idx_t len;
|
|
duk_idx_t i;
|
|
|
|
DUK_ASSERT_TOP(ctx, 2); /* not a vararg function */
|
|
|
|
duk_push_this(ctx);
|
|
if (!duk_is_callable(ctx, -1)) {
|
|
DUK_DDD(DUK_DDDPRINT("func is not callable"));
|
|
goto type_error;
|
|
}
|
|
duk_insert(ctx, 0);
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("func=%!iT, thisArg=%!iT, argArray=%!iT",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1),
|
|
(duk_tval *) duk_get_tval(ctx, 2)));
|
|
|
|
/* [ func thisArg argArray ] */
|
|
|
|
if (duk_is_null_or_undefined(ctx, 2)) {
|
|
DUK_DDD(DUK_DDDPRINT("argArray is null/undefined, no args"));
|
|
len = 0;
|
|
} else if (!duk_is_object(ctx, 2)) {
|
|
goto type_error;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("argArray is an object"));
|
|
|
|
/* XXX: make this an internal helper */
|
|
duk_get_prop_stridx(ctx, 2, DUK_STRIDX_LENGTH);
|
|
len = (duk_idx_t) duk_to_uint32(ctx, -1); /* ToUint32() coercion required */
|
|
duk_pop(ctx);
|
|
|
|
duk_require_stack(ctx, len);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("argArray length is %ld", (long) len));
|
|
for (i = 0; i < len; i++) {
|
|
duk_get_prop_index(ctx, 2, i);
|
|
}
|
|
}
|
|
duk_remove(ctx, 2);
|
|
DUK_ASSERT_TOP(ctx, 2 + len);
|
|
|
|
/* [ func thisArg arg1 ... argN ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("apply, func=%!iT, thisArg=%!iT, len=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1),
|
|
(long) len));
|
|
duk_call_method(ctx, len);
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_function_prototype_call(duk_context *ctx) {
|
|
duk_idx_t nargs;
|
|
|
|
/* Step 1 is not necessary because duk_call_method() will take
|
|
* care of it.
|
|
*/
|
|
|
|
/* vararg function, thisArg needs special handling */
|
|
nargs = duk_get_top(ctx); /* = 1 + arg count */
|
|
if (nargs == 0) {
|
|
duk_push_undefined(ctx);
|
|
nargs++;
|
|
}
|
|
DUK_ASSERT(nargs >= 1);
|
|
|
|
/* [ thisArg arg1 ... argN ] */
|
|
|
|
duk_push_this(ctx); /* 'func' in the algorithm */
|
|
duk_insert(ctx, 0);
|
|
|
|
/* [ func thisArg arg1 ... argN ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("func=%!iT, thisArg=%!iT, argcount=%ld, top=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1),
|
|
(long) (nargs - 1),
|
|
(long) duk_get_top(ctx)));
|
|
duk_call_method(ctx, nargs - 1);
|
|
return 1;
|
|
}
|
|
|
|
/* XXX: the implementation now assumes "chained" bound functions,
|
|
* whereas "collapsed" bound functions (where there is ever only
|
|
* one bound function which directly points to a non-bound, final
|
|
* function) would require a "collapsing" implementation which
|
|
* merges argument lists etc here.
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_function_prototype_bind(duk_context *ctx) {
|
|
duk_hobject *h_bound;
|
|
duk_hobject *h_target;
|
|
duk_idx_t nargs;
|
|
duk_idx_t i;
|
|
|
|
/* vararg function, careful arg handling (e.g. thisArg may not be present) */
|
|
nargs = duk_get_top(ctx); /* = 1 + arg count */
|
|
if (nargs == 0) {
|
|
duk_push_undefined(ctx);
|
|
nargs++;
|
|
}
|
|
DUK_ASSERT(nargs >= 1);
|
|
|
|
duk_push_this(ctx);
|
|
if (!duk_is_callable(ctx, -1)) {
|
|
DUK_DDD(DUK_DDDPRINT("func is not callable"));
|
|
goto type_error;
|
|
}
|
|
|
|
/* [ thisArg arg1 ... argN func ] (thisArg+args == nargs total) */
|
|
DUK_ASSERT_TOP(ctx, nargs + 1);
|
|
|
|
/* create bound function object */
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_BOUND |
|
|
DUK_HOBJECT_FLAG_CONSTRUCTABLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_FUNCTION),
|
|
DUK_BIDX_FUNCTION_PROTOTYPE);
|
|
h_bound = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h_bound != NULL);
|
|
|
|
/* [ thisArg arg1 ... argN func boundFunc ] */
|
|
duk_dup(ctx, -2); /* func */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_TARGET, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
duk_dup(ctx, 0); /* thisArg */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_THIS, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
duk_push_array(ctx);
|
|
|
|
/* [ thisArg arg1 ... argN func boundFunc argArray ] */
|
|
|
|
for (i = 0; i < nargs - 1; i++) {
|
|
duk_dup(ctx, 1 + i);
|
|
duk_put_prop_index(ctx, -2, i);
|
|
}
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_ARGS, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* [ thisArg arg1 ... argN func boundFunc ] */
|
|
|
|
/* bound function 'length' property is interesting */
|
|
h_target = duk_get_hobject(ctx, -2);
|
|
if (h_target == NULL || /* lightfunc */
|
|
DUK_HOBJECT_GET_CLASS_NUMBER(h_target) == DUK_HOBJECT_CLASS_FUNCTION) {
|
|
/* For lightfuncs, simply read the virtual property. */
|
|
duk_int_t tmp;
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH);
|
|
tmp = duk_to_int(ctx, -1) - (nargs - 1); /* step 15.a */
|
|
duk_pop(ctx);
|
|
duk_push_int(ctx, (tmp < 0 ? 0 : tmp));
|
|
} else {
|
|
duk_push_int(ctx, 0);
|
|
}
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_NONE); /* attrs in E5 Section 15.3.5.1 */
|
|
|
|
/* caller and arguments must use the same thrower, [[ThrowTypeError]] */
|
|
duk_xdef_prop_stridx_thrower(ctx, -1, DUK_STRIDX_CALLER, DUK_PROPDESC_FLAGS_NONE);
|
|
duk_xdef_prop_stridx_thrower(ctx, -1, DUK_STRIDX_LC_ARGUMENTS, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* these non-standard properties are copied for convenience */
|
|
/* XXX: 'copy properties' API call? */
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_NAME);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_NAME, DUK_PROPDESC_FLAGS_WC);
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_FILE_NAME);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_FILE_NAME, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
/* The 'strict' flag is copied to get the special [[Get]] of E5.1
|
|
* Section 15.3.5.4 to apply when a 'caller' value is a strict bound
|
|
* function. Not sure if this is correct, because the specification
|
|
* is a bit ambiguous on this point but it would make sense.
|
|
*/
|
|
if (h_target == NULL) {
|
|
/* Lightfuncs are always strict. */
|
|
DUK_HOBJECT_SET_STRICT(h_bound);
|
|
} else if (DUK_HOBJECT_HAS_STRICT(h_target)) {
|
|
DUK_HOBJECT_SET_STRICT(h_bound);
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("created bound function: %!iT", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
#line 1 "duk_bi_global.c"
|
|
/*
|
|
* Global object built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Encoding/decoding helpers
|
|
*/
|
|
|
|
/* Macros for creating and checking bitmasks for character encoding.
|
|
* Bit number is a bit counterintuitive, but minimizes code size.
|
|
*/
|
|
#define DUK__MKBITS(a,b,c,d,e,f,g,h) ((duk_uint8_t) ( \
|
|
((a) << 0) | ((b) << 1) | ((c) << 2) | ((d) << 3) | \
|
|
((e) << 4) | ((f) << 5) | ((g) << 6) | ((h) << 7) \
|
|
))
|
|
#define DUK__CHECK_BITMASK(table,cp) ((table)[(cp) >> 3] & (1 << ((cp) & 0x07)))
|
|
|
|
/* E5.1 Section 15.1.3.3: uriReserved + uriUnescaped + '#' */
|
|
DUK_LOCAL const duk_uint8_t duk__encode_uriunescaped_table[16] = {
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x00-0x0f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x10-0x1f */
|
|
DUK__MKBITS(0, 1, 0, 1, 1, 0, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x20-0x2f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 0, 1, 0, 1), /* 0x30-0x3f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x40-0x4f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 0, 0, 0, 0, 1), /* 0x50-0x5f */
|
|
DUK__MKBITS(0, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x60-0x6f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 0, 0, 0, 1, 0), /* 0x70-0x7f */
|
|
};
|
|
|
|
/* E5.1 Section 15.1.3.4: uriUnescaped */
|
|
DUK_LOCAL const duk_uint8_t duk__encode_uricomponent_unescaped_table[16] = {
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x00-0x0f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x10-0x1f */
|
|
DUK__MKBITS(0, 1, 0, 0, 0, 0, 0, 1), DUK__MKBITS(1, 1, 1, 0, 0, 1, 1, 0), /* 0x20-0x2f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 0, 0, 0, 0, 0, 0), /* 0x30-0x3f */
|
|
DUK__MKBITS(0, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x40-0x4f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 0, 0, 0, 0, 1), /* 0x50-0x5f */
|
|
DUK__MKBITS(0, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x60-0x6f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 0, 0, 0, 1, 0), /* 0x70-0x7f */
|
|
};
|
|
|
|
/* E5.1 Section 15.1.3.1: uriReserved + '#' */
|
|
DUK_LOCAL const duk_uint8_t duk__decode_uri_reserved_table[16] = {
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x00-0x0f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x10-0x1f */
|
|
DUK__MKBITS(0, 0, 0, 1, 1, 0, 1, 0), DUK__MKBITS(0, 0, 0, 1, 1, 0, 0, 1), /* 0x20-0x2f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 1, 1, 0, 1, 0, 1), /* 0x30-0x3f */
|
|
DUK__MKBITS(1, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x40-0x4f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x50-0x5f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x60-0x6f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x70-0x7f */
|
|
};
|
|
|
|
/* E5.1 Section 15.1.3.2: empty */
|
|
DUK_LOCAL const duk_uint8_t duk__decode_uri_component_reserved_table[16] = {
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x00-0x0f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x10-0x1f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x20-0x2f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x30-0x3f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x40-0x4f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x50-0x5f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x60-0x6f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x70-0x7f */
|
|
};
|
|
|
|
#ifdef DUK_USE_SECTION_B
|
|
/* E5.1 Section B.2.2, step 7. */
|
|
DUK_LOCAL const duk_uint8_t duk__escape_unescaped_table[16] = {
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x00-0x0f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), /* 0x10-0x1f */
|
|
DUK__MKBITS(0, 0, 0, 0, 0, 0, 0, 0), DUK__MKBITS(0, 0, 1, 1, 0, 1, 1, 1), /* 0x20-0x2f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 0, 0, 0, 0, 0, 0), /* 0x30-0x3f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x40-0x4f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 0, 0, 0, 0, 1), /* 0x50-0x5f */
|
|
DUK__MKBITS(0, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), /* 0x60-0x6f */
|
|
DUK__MKBITS(1, 1, 1, 1, 1, 1, 1, 1), DUK__MKBITS(1, 1, 1, 0, 0, 0, 0, 0) /* 0x70-0x7f */
|
|
};
|
|
#endif /* DUK_USE_SECTION_B */
|
|
|
|
typedef struct {
|
|
duk_hthread *thr;
|
|
duk_hstring *h_str;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
const duk_uint8_t *p;
|
|
const duk_uint8_t *p_start;
|
|
const duk_uint8_t *p_end;
|
|
} duk__transform_context;
|
|
|
|
typedef void (*duk__transform_callback)(duk__transform_context *tfm_ctx, void *udata, duk_codepoint_t cp);
|
|
|
|
/* XXX: refactor and share with other code */
|
|
DUK_LOCAL duk_small_int_t duk__decode_hex_escape(const duk_uint8_t *p, duk_small_int_t n) {
|
|
duk_small_int_t ch;
|
|
duk_small_int_t t = 0;
|
|
|
|
while (n > 0) {
|
|
t = t * 16;
|
|
ch = (duk_small_int_t) duk_hex_dectab[*p++];
|
|
if (DUK_LIKELY(ch >= 0)) {
|
|
t += ch;
|
|
} else {
|
|
return -1;
|
|
}
|
|
n--;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
DUK_LOCAL int duk__transform_helper(duk_context *ctx, duk__transform_callback callback, void *udata) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk__transform_context tfm_ctx_alloc;
|
|
duk__transform_context *tfm_ctx = &tfm_ctx_alloc;
|
|
duk_codepoint_t cp;
|
|
|
|
tfm_ctx->thr = thr;
|
|
|
|
tfm_ctx->h_str = duk_to_hstring(ctx, 0);
|
|
DUK_ASSERT(tfm_ctx->h_str != NULL);
|
|
|
|
(void) duk_push_dynamic_buffer(ctx, 0);
|
|
tfm_ctx->h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(tfm_ctx->h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(tfm_ctx->h_buf));
|
|
|
|
tfm_ctx->p_start = DUK_HSTRING_GET_DATA(tfm_ctx->h_str);
|
|
tfm_ctx->p_end = tfm_ctx->p_start + DUK_HSTRING_GET_BYTELEN(tfm_ctx->h_str);
|
|
tfm_ctx->p = tfm_ctx->p_start;
|
|
|
|
while (tfm_ctx->p < tfm_ctx->p_end) {
|
|
cp = (duk_codepoint_t) duk_unicode_decode_xutf8_checked(thr, &tfm_ctx->p, tfm_ctx->p_start, tfm_ctx->p_end);
|
|
callback(tfm_ctx, udata, cp);
|
|
}
|
|
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_LOCAL void duk__transform_callback_encode_uri(duk__transform_context *tfm_ctx, void *udata, duk_codepoint_t cp) {
|
|
duk_uint8_t xutf8_buf[DUK_UNICODE_MAX_XUTF8_LENGTH];
|
|
duk_uint8_t buf[3];
|
|
duk_small_int_t len;
|
|
duk_codepoint_t cp1, cp2;
|
|
duk_small_int_t i, t;
|
|
const duk_uint8_t *unescaped_table = (duk_uint8_t *) udata;
|
|
|
|
if (cp < 0) {
|
|
goto uri_error;
|
|
} else if ((cp < 0x80L) && DUK__CHECK_BITMASK(unescaped_table, cp)) {
|
|
duk_hbuffer_append_byte(tfm_ctx->thr, tfm_ctx->h_buf, (duk_uint8_t) cp);
|
|
return;
|
|
} else if (cp >= 0xdc00L && cp <= 0xdfffL) {
|
|
goto uri_error;
|
|
} else if (cp >= 0xd800L && cp <= 0xdbffL) {
|
|
/* Needs lookahead */
|
|
if (duk_unicode_decode_xutf8(tfm_ctx->thr, &tfm_ctx->p, tfm_ctx->p_start, tfm_ctx->p_end, (duk_ucodepoint_t *) &cp2) == 0) {
|
|
goto uri_error;
|
|
}
|
|
if (!(cp2 >= 0xdc00L && cp2 <= 0xdfffL)) {
|
|
goto uri_error;
|
|
}
|
|
cp1 = cp;
|
|
cp = ((cp1 - 0xd800L) << 10) + (cp2 - 0xdc00L) + 0x10000L;
|
|
} else if (cp > 0x10ffffL) {
|
|
/* Although we can allow non-BMP characters (they'll decode
|
|
* back into surrogate pairs), we don't allow extended UTF-8
|
|
* characters; they would encode to URIs which won't decode
|
|
* back because of strict UTF-8 checks in URI decoding.
|
|
* (However, we could just as well allow them here.)
|
|
*/
|
|
goto uri_error;
|
|
} else {
|
|
/* Non-BMP characters within valid UTF-8 range: encode as is.
|
|
* They'll decode back into surrogate pairs.
|
|
*/
|
|
;
|
|
}
|
|
|
|
len = duk_unicode_encode_xutf8((duk_ucodepoint_t) cp, xutf8_buf);
|
|
buf[0] = (duk_uint8_t) '%';
|
|
for (i = 0; i < len; i++) {
|
|
t = (int) xutf8_buf[i];
|
|
buf[1] = (duk_uint8_t) duk_uc_nybbles[t >> 4];
|
|
buf[2] = (duk_uint8_t) duk_uc_nybbles[t & 0x0f];
|
|
duk_hbuffer_append_bytes(tfm_ctx->thr, tfm_ctx->h_buf, buf, 3);
|
|
}
|
|
return;
|
|
|
|
uri_error:
|
|
DUK_ERROR(tfm_ctx->thr, DUK_ERR_URI_ERROR, "invalid input");
|
|
}
|
|
|
|
DUK_LOCAL void duk__transform_callback_decode_uri(duk__transform_context *tfm_ctx, void *udata, duk_codepoint_t cp) {
|
|
const duk_uint8_t *reserved_table = (duk_uint8_t *) udata;
|
|
duk_small_uint_t utf8_blen;
|
|
duk_codepoint_t min_cp;
|
|
duk_small_int_t t; /* must be signed */
|
|
duk_small_uint_t i;
|
|
|
|
if (cp == (duk_codepoint_t) '%') {
|
|
const duk_uint8_t *p = tfm_ctx->p;
|
|
duk_size_t left = (duk_size_t) (tfm_ctx->p_end - p); /* bytes left */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("percent encoding, left=%ld", (long) left));
|
|
|
|
if (left < 2) {
|
|
goto uri_error;
|
|
}
|
|
|
|
t = duk__decode_hex_escape(p, 2);
|
|
DUK_DDD(DUK_DDDPRINT("first byte: %ld", (long) t));
|
|
if (t < 0) {
|
|
goto uri_error;
|
|
}
|
|
|
|
if (t < 0x80) {
|
|
if (DUK__CHECK_BITMASK(reserved_table, t)) {
|
|
/* decode '%xx' to '%xx' if decoded char in reserved set */
|
|
DUK_ASSERT(tfm_ctx->p - 1 >= tfm_ctx->p_start);
|
|
duk_hbuffer_append_bytes(tfm_ctx->thr, tfm_ctx->h_buf, (duk_uint8_t *) (p - 1), 3);
|
|
} else {
|
|
duk_hbuffer_append_byte(tfm_ctx->thr, tfm_ctx->h_buf, (duk_uint8_t) t);
|
|
}
|
|
tfm_ctx->p += 2;
|
|
return;
|
|
}
|
|
|
|
/* Decode UTF-8 codepoint from a sequence of hex escapes. The
|
|
* first byte of the sequence has been decoded to 't'.
|
|
*
|
|
* Note that UTF-8 validation must be strict according to the
|
|
* specification: E5.1 Section 15.1.3, decode algorithm step
|
|
* 4.d.vii.8. URIError from non-shortest encodings is also
|
|
* specifically noted in the spec.
|
|
*/
|
|
|
|
DUK_ASSERT(t >= 0x80);
|
|
if (t < 0xc0) {
|
|
/* continuation byte */
|
|
goto uri_error;
|
|
} else if (t < 0xe0) {
|
|
/* 110x xxxx; 2 bytes */
|
|
utf8_blen = 2;
|
|
min_cp = 0x80L;
|
|
cp = t & 0x1f;
|
|
} else if (t < 0xf0) {
|
|
/* 1110 xxxx; 3 bytes */
|
|
utf8_blen = 3;
|
|
min_cp = 0x800L;
|
|
cp = t & 0x0f;
|
|
} else if (t < 0xf8) {
|
|
/* 1111 0xxx; 4 bytes */
|
|
utf8_blen = 4;
|
|
min_cp = 0x10000L;
|
|
cp = t & 0x07;
|
|
} else {
|
|
/* extended utf-8 not allowed for URIs */
|
|
goto uri_error;
|
|
}
|
|
|
|
if (left < utf8_blen * 3 - 1) {
|
|
/* '%xx%xx...%xx', p points to char after first '%' */
|
|
goto uri_error;
|
|
}
|
|
|
|
p += 3;
|
|
for (i = 1; i < utf8_blen; i++) {
|
|
/* p points to digit part ('%xy', p points to 'x') */
|
|
t = duk__decode_hex_escape(p, 2);
|
|
DUK_DDD(DUK_DDDPRINT("i=%ld utf8_blen=%ld cp=%ld t=0x%02lx",
|
|
(long) i, (long) utf8_blen, (long) cp, (unsigned long) t));
|
|
if (t < 0) {
|
|
goto uri_error;
|
|
}
|
|
if ((t & 0xc0) != 0x80) {
|
|
goto uri_error;
|
|
}
|
|
cp = (cp << 6) + (t & 0x3f);
|
|
p += 3;
|
|
}
|
|
p--; /* p overshoots */
|
|
tfm_ctx->p = p;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final cp=%ld, min_cp=%ld", (long) cp, (long) min_cp));
|
|
|
|
if (cp < min_cp || cp > 0x10ffffL || (cp >= 0xd800L && cp <= 0xdfffL)) {
|
|
goto uri_error;
|
|
}
|
|
|
|
/* The E5.1 algorithm checks whether or not a decoded codepoint
|
|
* is below 0x80 and perhaps may be in the "reserved" set.
|
|
* This seems pointless because the single byte UTF-8 case is
|
|
* handled separately, and non-shortest encodings are rejected.
|
|
* So, 'cp' cannot be below 0x80 here, and thus cannot be in
|
|
* the reserved set.
|
|
*/
|
|
|
|
/* utf-8 validation ensures these */
|
|
DUK_ASSERT(cp >= 0x80L && cp <= 0x10ffffL);
|
|
|
|
if (cp >= 0x10000L) {
|
|
cp -= 0x10000L;
|
|
DUK_ASSERT(cp < 0x100000L);
|
|
duk_hbuffer_append_xutf8(tfm_ctx->thr, tfm_ctx->h_buf, (duk_ucodepoint_t) ((cp >> 10) + 0xd800L));
|
|
duk_hbuffer_append_xutf8(tfm_ctx->thr, tfm_ctx->h_buf, (duk_ucodepoint_t) ((cp & 0x03ffUL) + 0xdc00L));
|
|
} else {
|
|
duk_hbuffer_append_xutf8(tfm_ctx->thr, tfm_ctx->h_buf, (duk_ucodepoint_t) cp);
|
|
}
|
|
} else {
|
|
duk_hbuffer_append_xutf8(tfm_ctx->thr, tfm_ctx->h_buf, (duk_ucodepoint_t) cp);
|
|
}
|
|
return;
|
|
|
|
uri_error:
|
|
DUK_ERROR(tfm_ctx->thr, DUK_ERR_URI_ERROR, "invalid input");
|
|
}
|
|
|
|
#ifdef DUK_USE_SECTION_B
|
|
DUK_LOCAL void duk__transform_callback_escape(duk__transform_context *tfm_ctx, void *udata, duk_codepoint_t cp) {
|
|
duk_uint8_t buf[6];
|
|
duk_small_int_t len;
|
|
|
|
DUK_UNREF(udata);
|
|
|
|
if (cp < 0) {
|
|
goto esc_error;
|
|
} else if ((cp < 0x80L) && DUK__CHECK_BITMASK(duk__escape_unescaped_table, cp)) {
|
|
buf[0] = (duk_uint8_t) cp;
|
|
len = 1;
|
|
} else if (cp < 0x100L) {
|
|
buf[0] = (duk_uint8_t) '%';
|
|
buf[1] = (duk_uint8_t) duk_uc_nybbles[cp >> 4];
|
|
buf[2] = (duk_uint8_t) duk_uc_nybbles[cp & 0x0f];
|
|
len = 3;
|
|
} else if (cp < 0x10000L) {
|
|
buf[0] = (duk_uint8_t) '%';
|
|
buf[1] = (duk_uint8_t) 'u';
|
|
buf[2] = (duk_uint8_t) duk_uc_nybbles[cp >> 12];
|
|
buf[3] = (duk_uint8_t) duk_uc_nybbles[(cp >> 8) & 0x0f];
|
|
buf[4] = (duk_uint8_t) duk_uc_nybbles[(cp >> 4) & 0x0f];
|
|
buf[5] = (duk_uint8_t) duk_uc_nybbles[cp & 0x0f];
|
|
len = 6;
|
|
} else {
|
|
/* Characters outside BMP cannot be escape()'d. We could
|
|
* encode them as surrogate pairs (for codepoints inside
|
|
* valid UTF-8 range, but not extended UTF-8). Because
|
|
* escape() and unescape() are legacy functions, we don't.
|
|
*/
|
|
goto esc_error;
|
|
}
|
|
|
|
duk_hbuffer_append_bytes(tfm_ctx->thr, tfm_ctx->h_buf, buf, len);
|
|
return;
|
|
|
|
esc_error:
|
|
DUK_ERROR(tfm_ctx->thr, DUK_ERR_TYPE_ERROR, "invalid input");
|
|
}
|
|
|
|
DUK_LOCAL void duk__transform_callback_unescape(duk__transform_context *tfm_ctx, void *udata, duk_codepoint_t cp) {
|
|
duk_small_int_t t;
|
|
|
|
DUK_UNREF(udata);
|
|
|
|
if (cp == (duk_codepoint_t) '%') {
|
|
const duk_uint8_t *p = tfm_ctx->p;
|
|
duk_size_t left = (duk_size_t) (tfm_ctx->p_end - p); /* bytes left */
|
|
|
|
if (left >= 5 && p[0] == 'u' &&
|
|
((t = duk__decode_hex_escape(p + 1, 4)) >= 0)) {
|
|
cp = (duk_codepoint_t) t;
|
|
tfm_ctx->p += 5;
|
|
} else if (left >= 2 &&
|
|
((t = duk__decode_hex_escape(p, 2)) >= 0)) {
|
|
cp = (duk_codepoint_t) t;
|
|
tfm_ctx->p += 2;
|
|
}
|
|
}
|
|
|
|
duk_hbuffer_append_xutf8(tfm_ctx->thr, tfm_ctx->h_buf, cp);
|
|
}
|
|
#endif /* DUK_USE_SECTION_B */
|
|
|
|
/*
|
|
* Eval
|
|
*
|
|
* Eval needs to handle both a "direct eval" and an "indirect eval".
|
|
* Direct eval handling needs access to the caller's activation so that its
|
|
* lexical environment can be accessed. A direct eval is only possible from
|
|
* Ecmascript code; an indirect eval call is possible also from C code.
|
|
* When an indirect eval call is made from C code, there may not be a
|
|
* calling activation at all which needs careful handling.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_eval(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h;
|
|
duk_activation *act_caller;
|
|
duk_activation *act_eval;
|
|
duk_activation *act;
|
|
duk_hcompiledfunction *func;
|
|
duk_hobject *outer_lex_env;
|
|
duk_hobject *outer_var_env;
|
|
duk_bool_t this_to_global = 1;
|
|
duk_small_uint_t comp_flags;
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
DUK_ASSERT(thr->callstack_top >= 1); /* at least this function exists */
|
|
DUK_ASSERT(((thr->callstack + thr->callstack_top - 1)->flags & DUK_ACT_FLAG_DIRECT_EVAL) == 0 || /* indirect eval */
|
|
(thr->callstack_top >= 2)); /* if direct eval, calling activation must exist */
|
|
|
|
/*
|
|
* callstack_top - 1 --> this function
|
|
* callstack_top - 2 --> caller (may not exist)
|
|
*
|
|
* If called directly from C, callstack_top might be 1. If calling
|
|
* activation doesn't exist, call must be indirect.
|
|
*/
|
|
|
|
h = duk_get_hstring(ctx, 0);
|
|
if (!h) {
|
|
return 1; /* return arg as-is */
|
|
}
|
|
|
|
/* [ source ] */
|
|
|
|
comp_flags = DUK_JS_COMPILE_FLAG_EVAL;
|
|
act_eval = thr->callstack + thr->callstack_top - 1; /* this function */
|
|
if (thr->callstack_top >= 2) {
|
|
/* Have a calling activation, check for direct eval (otherwise
|
|
* assume indirect eval.
|
|
*/
|
|
act_caller = thr->callstack + thr->callstack_top - 2; /* caller */
|
|
if ((act_caller->flags & DUK_ACT_FLAG_STRICT) &&
|
|
(act_eval->flags & DUK_ACT_FLAG_DIRECT_EVAL)) {
|
|
/* Only direct eval inherits strictness from calling code
|
|
* (E5.1 Section 10.1.1).
|
|
*/
|
|
comp_flags |= DUK_JS_COMPILE_FLAG_STRICT;
|
|
}
|
|
} else {
|
|
DUK_ASSERT((act_eval->flags & DUK_ACT_FLAG_DIRECT_EVAL) == 0);
|
|
}
|
|
act_caller = NULL; /* avoid dereference after potential callstack realloc */
|
|
act_eval = NULL;
|
|
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_INPUT); /* XXX: copy from caller? */
|
|
duk_js_compile(thr,
|
|
(const duk_uint8_t *) DUK_HSTRING_GET_DATA(h),
|
|
(duk_size_t) DUK_HSTRING_GET_BYTELEN(h),
|
|
comp_flags);
|
|
func = (duk_hcompiledfunction *) duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION((duk_hobject *) func));
|
|
|
|
/* [ source template ] */
|
|
|
|
/* E5 Section 10.4.2 */
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
act = thr->callstack + thr->callstack_top - 1; /* this function */
|
|
if (act->flags & DUK_ACT_FLAG_DIRECT_EVAL) {
|
|
DUK_ASSERT(thr->callstack_top >= 2);
|
|
act = thr->callstack + thr->callstack_top - 2; /* caller */
|
|
if (act->lex_env == NULL) {
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
DUK_DDD(DUK_DDDPRINT("delayed environment initialization"));
|
|
|
|
/* this may have side effects, so re-lookup act */
|
|
duk_js_init_activation_environment_records_delayed(thr, act);
|
|
act = thr->callstack + thr->callstack_top - 2;
|
|
}
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
|
|
this_to_global = 0;
|
|
|
|
if (DUK_HOBJECT_HAS_STRICT((duk_hobject *) func)) {
|
|
duk_hobject *new_env;
|
|
duk_hobject *act_lex_env;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("direct eval call to a strict function -> "
|
|
"var_env and lex_env to a fresh env, "
|
|
"this_binding to caller's this_binding"));
|
|
|
|
act = thr->callstack + thr->callstack_top - 2; /* caller */
|
|
act_lex_env = act->lex_env;
|
|
act = NULL; /* invalidated */
|
|
|
|
(void) duk_push_object_helper_proto(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_DECENV),
|
|
act_lex_env);
|
|
new_env = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(new_env != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("new_env allocated: %!iO",
|
|
(duk_heaphdr *) new_env));
|
|
|
|
outer_lex_env = new_env;
|
|
outer_var_env = new_env;
|
|
|
|
duk_insert(ctx, 0); /* stash to bottom of value stack to keep new_env reachable */
|
|
|
|
/* compiler's responsibility */
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_NEWENV((duk_hobject *) func));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("direct eval call to a non-strict function -> "
|
|
"var_env and lex_env to caller's envs, "
|
|
"this_binding to caller's this_binding"));
|
|
|
|
outer_lex_env = act->lex_env;
|
|
outer_var_env = act->var_env;
|
|
|
|
/* compiler's responsibility */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NEWENV((duk_hobject *) func));
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("indirect eval call -> var_env and lex_env to "
|
|
"global object, this_binding to global object"));
|
|
|
|
this_to_global = 1;
|
|
outer_lex_env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
outer_var_env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
}
|
|
act = NULL;
|
|
|
|
duk_js_push_closure(thr, func, outer_var_env, outer_lex_env);
|
|
|
|
/* [ source template closure ] */
|
|
|
|
if (this_to_global) {
|
|
DUK_ASSERT(thr->builtins[DUK_BIDX_GLOBAL] != NULL);
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_GLOBAL);
|
|
} else {
|
|
duk_tval *tv;
|
|
DUK_ASSERT(thr->callstack_top >= 2);
|
|
act = thr->callstack + thr->callstack_top - 2; /* caller */
|
|
tv = thr->valstack + act->idx_bottom - 1; /* this is just beneath bottom */
|
|
DUK_ASSERT(tv >= thr->valstack);
|
|
duk_push_tval(ctx, tv);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("eval -> lex_env=%!iO, var_env=%!iO, this_binding=%!T",
|
|
(duk_heaphdr *) outer_lex_env,
|
|
(duk_heaphdr *) outer_var_env,
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ source template closure this ] */
|
|
|
|
duk_call_method(ctx, 0);
|
|
|
|
/* [ source template result ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Parsing of ints and floats
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_parse_int(duk_context *ctx) {
|
|
duk_bool_t strip_prefix;
|
|
duk_int32_t radix;
|
|
duk_small_uint_t s2n_flags;
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
duk_to_string(ctx, 0);
|
|
|
|
strip_prefix = 1;
|
|
radix = duk_to_int32(ctx, 1);
|
|
if (radix != 0) {
|
|
if (radix < 2 || radix > 36) {
|
|
goto ret_nan;
|
|
}
|
|
/* For octal, setting strip_prefix=0 is not necessary, as zero
|
|
* is tolerated anyway:
|
|
*
|
|
* parseInt('123', 8) === parseInt('0123', 8) with or without strip_prefix
|
|
* parseInt('123', 16) === parseInt('0x123', 16) requires strip_prefix = 1
|
|
*/
|
|
if (radix != 16) {
|
|
strip_prefix = 0;
|
|
}
|
|
} else {
|
|
radix = 10;
|
|
}
|
|
|
|
s2n_flags = DUK_S2N_FLAG_TRIM_WHITE |
|
|
DUK_S2N_FLAG_ALLOW_GARBAGE |
|
|
DUK_S2N_FLAG_ALLOW_PLUS |
|
|
DUK_S2N_FLAG_ALLOW_MINUS |
|
|
DUK_S2N_FLAG_ALLOW_LEADING_ZERO |
|
|
#ifdef DUK_USE_OCTAL_SUPPORT
|
|
(strip_prefix ? (DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT | DUK_S2N_FLAG_ALLOW_AUTO_OCT_INT) : 0)
|
|
#else
|
|
(strip_prefix ? DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT : 0)
|
|
#endif
|
|
;
|
|
|
|
duk_dup(ctx, 0);
|
|
duk_numconv_parse(ctx, radix, s2n_flags);
|
|
return 1;
|
|
|
|
ret_nan:
|
|
duk_push_nan(ctx);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_parse_float(duk_context *ctx) {
|
|
duk_small_uint_t s2n_flags;
|
|
duk_int32_t radix;
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
duk_to_string(ctx, 0);
|
|
|
|
radix = 10;
|
|
|
|
/* XXX: check flags */
|
|
s2n_flags = DUK_S2N_FLAG_TRIM_WHITE |
|
|
DUK_S2N_FLAG_ALLOW_EXP |
|
|
DUK_S2N_FLAG_ALLOW_GARBAGE |
|
|
DUK_S2N_FLAG_ALLOW_PLUS |
|
|
DUK_S2N_FLAG_ALLOW_MINUS |
|
|
DUK_S2N_FLAG_ALLOW_INF |
|
|
DUK_S2N_FLAG_ALLOW_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_NAKED_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_EMPTY_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_LEADING_ZERO;
|
|
|
|
duk_numconv_parse(ctx, radix, s2n_flags);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Number checkers
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_is_nan(duk_context *ctx) {
|
|
duk_double_t d = duk_to_number(ctx, 0);
|
|
duk_push_boolean(ctx, DUK_ISNAN(d));
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_is_finite(duk_context *ctx) {
|
|
duk_double_t d = duk_to_number(ctx, 0);
|
|
duk_push_boolean(ctx, DUK_ISFINITE(d));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* URI handling
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_decode_uri(duk_context *ctx) {
|
|
return duk__transform_helper(ctx, duk__transform_callback_decode_uri, (void *) duk__decode_uri_reserved_table);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_decode_uri_component(duk_context *ctx) {
|
|
return duk__transform_helper(ctx, duk__transform_callback_decode_uri, (void *) duk__decode_uri_component_reserved_table);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_encode_uri(duk_context *ctx) {
|
|
return duk__transform_helper(ctx, duk__transform_callback_encode_uri, (void *) duk__encode_uriunescaped_table);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_encode_uri_component(duk_context *ctx) {
|
|
return duk__transform_helper(ctx, duk__transform_callback_encode_uri, (void *) duk__encode_uricomponent_unescaped_table);
|
|
}
|
|
|
|
#ifdef DUK_USE_SECTION_B
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_escape(duk_context *ctx) {
|
|
return duk__transform_helper(ctx, duk__transform_callback_escape, (void *) NULL);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_unescape(duk_context *ctx) {
|
|
return duk__transform_helper(ctx, duk__transform_callback_unescape, (void *) NULL);
|
|
}
|
|
#else /* DUK_USE_SECTION_B */
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_escape(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_unescape(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* DUK_USE_SECTION_B */
|
|
|
|
#if defined(DUK_USE_BROWSER_LIKE) && (defined(DUK_USE_FILE_IO) || defined(DUK_USE_DEBUGGER_SUPPORT))
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_print_helper(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_int_t magic;
|
|
duk_idx_t nargs;
|
|
const duk_uint8_t *buf;
|
|
duk_size_t sz_buf;
|
|
const char nl = (const char) DUK_ASC_LF;
|
|
#ifndef DUK_USE_PREFER_SIZE
|
|
duk_uint8_t buf_stack[256];
|
|
#endif
|
|
#ifdef DUK_USE_FILE_IO
|
|
duk_file *f_out;
|
|
#endif
|
|
|
|
magic = duk_get_current_magic(ctx);
|
|
DUK_UNREF(magic);
|
|
|
|
nargs = duk_get_top(ctx);
|
|
|
|
/* If argument count is 1 and first argument is a buffer, write the buffer
|
|
* as raw data into the file without a newline; this allows exact control
|
|
* over stdout/stderr without an additional entrypoint (useful for now).
|
|
*
|
|
* Otherwise current print/alert semantics are to ToString() coerce
|
|
* arguments, join them with a single space, and append a newline.
|
|
*/
|
|
|
|
if (nargs == 1 && duk_is_buffer(ctx, 0)) {
|
|
buf = (const duk_uint8_t *) duk_get_buffer(ctx, 0, &sz_buf);
|
|
DUK_ASSERT(buf != NULL);
|
|
} else if (nargs > 0) {
|
|
#ifdef DUK_USE_PREFER_SIZE
|
|
/* Compact but lots of churn. */
|
|
duk_push_hstring_stridx(thr, DUK_STRIDX_SPACE);
|
|
duk_insert(ctx, 0);
|
|
duk_join(ctx, nargs);
|
|
duk_push_string(thr, "\n");
|
|
duk_concat(ctx, 2);
|
|
buf = (const duk_uint8_t *) duk_get_lstring(ctx, -1, &sz_buf);
|
|
DUK_ASSERT(buf != NULL);
|
|
#else /* DUK_USE_PREFER_SIZE */
|
|
/* Higher footprint, less churn. */
|
|
duk_idx_t i;
|
|
duk_size_t sz_str;
|
|
const duk_uint8_t *p_str;
|
|
duk_uint8_t *p;
|
|
|
|
sz_buf = (duk_size_t) nargs; /* spaces (nargs - 1) + newline */
|
|
for (i = 0; i < nargs; i++) {
|
|
(void) duk_to_lstring(ctx, i, &sz_str);
|
|
sz_buf += sz_str;
|
|
}
|
|
|
|
if (sz_buf <= sizeof(buf_stack)) {
|
|
buf = (const duk_uint8_t *) buf_stack;
|
|
} else {
|
|
buf = (const duk_uint8_t *) duk_push_fixed_buffer(ctx, sz_buf);
|
|
DUK_ASSERT(buf != NULL);
|
|
}
|
|
|
|
p = (duk_uint8_t *) buf;
|
|
for (i = 0; i < nargs; i++) {
|
|
p_str = (const duk_uint8_t *) duk_get_lstring(ctx, i, &sz_str);
|
|
DUK_ASSERT(p_str != NULL);
|
|
DUK_MEMCPY((void *) p, (const void *) p_str, sz_str);
|
|
p += sz_str;
|
|
*p++ = (duk_uint8_t) (i == nargs - 1 ? DUK_ASC_LF : DUK_ASC_SPACE);
|
|
}
|
|
DUK_ASSERT((const duk_uint8_t *) p == buf + sz_total);
|
|
#endif /* DUK_USE_PREFER_SIZE */
|
|
} else {
|
|
buf = (const duk_uint8_t *) &nl;
|
|
sz_buf = 1;
|
|
}
|
|
|
|
/* 'buf' contains the string to write, 'sz_buf' contains the length
|
|
* (which may be zero).
|
|
*/
|
|
DUK_ASSERT(buf != NULL);
|
|
|
|
if (sz_buf == 0) {
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DUK_USE_FILE_IO
|
|
f_out = (magic ? DUK_STDERR : DUK_STDOUT);
|
|
DUK_FWRITE((const void *) buf, 1, (size_t) sz_buf, f_out);
|
|
DUK_FFLUSH(f_out);
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT) && defined(DUK_USE_DEBUGGER_FWD_PRINTALERT)
|
|
if (DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap)) {
|
|
duk_debug_write_notify(thr, magic ? DUK_DBG_CMD_ALERT : DUK_DBG_CMD_PRINT);
|
|
duk_debug_write_string(thr, (const char *) buf, sz_buf);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
#elif defined(DUK_USE_BROWSER_LIKE) /* print provider */
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_print_helper(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return 0;
|
|
}
|
|
#else /* print provider */
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_print_helper(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* print provider */
|
|
|
|
/*
|
|
* CommonJS require() and modules support
|
|
*/
|
|
|
|
#if defined(DUK_USE_COMMONJS_MODULES)
|
|
DUK_LOCAL void duk__bi_global_resolve_module_id(duk_context *ctx, const char *req_id, const char *mod_id) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_size_t mod_id_len;
|
|
duk_size_t req_id_len;
|
|
duk_uint8_t buf_in[DUK_BI_COMMONJS_MODULE_ID_LIMIT];
|
|
duk_uint8_t buf_out[DUK_BI_COMMONJS_MODULE_ID_LIMIT];
|
|
duk_uint8_t *p;
|
|
duk_uint8_t *q;
|
|
|
|
DUK_ASSERT(req_id != NULL);
|
|
/* mod_id may be NULL */
|
|
DUK_ASSERT(sizeof(buf_out) >= sizeof(buf_in)); /* bound checking requires this */
|
|
|
|
/*
|
|
* A few notes on the algorithm:
|
|
*
|
|
* - Terms are not allowed to begin with a period unless the term
|
|
* is either '.' or '..'. This simplifies implementation (and
|
|
* is within CommonJS modules specification).
|
|
*
|
|
* - There are few output bound checks here. This is on purpose:
|
|
* we check the input length and rely on the output never being
|
|
* longer than the input, so we cannot run out of output space.
|
|
*
|
|
* - Non-ASCII characters are processed as individual bytes and
|
|
* need no special treatment. However, U+0000 terminates the
|
|
* algorithm; this is not an issue because U+0000 is not a
|
|
* desirable term character anyway.
|
|
*/
|
|
|
|
/*
|
|
* Set up the resolution input which is the requested ID directly
|
|
* (if absolute or no current module path) or with current module
|
|
* ID prepended (if relative and current module path exists).
|
|
*
|
|
* Suppose current module is 'foo/bar' and relative path is './quux'.
|
|
* The 'bar' component must be replaced so the initial input here is
|
|
* 'foo/bar/.././quux'.
|
|
*/
|
|
|
|
req_id_len = DUK_STRLEN(req_id);
|
|
if (mod_id != NULL && req_id[0] == '.') {
|
|
mod_id_len = DUK_STRLEN(mod_id);
|
|
if (mod_id_len + 4 + req_id_len + 1 >= sizeof(buf_in)) {
|
|
DUK_DD(DUK_DDPRINT("resolve error: current and requested module ID don't fit into resolve input buffer"));
|
|
goto resolve_error;
|
|
}
|
|
(void) DUK_SNPRINTF((char *) buf_in, sizeof(buf_in), "%s/../%s", (const char *) mod_id, (const char *) req_id);
|
|
} else {
|
|
if (req_id_len + 1 >= sizeof(buf_in)) {
|
|
DUK_DD(DUK_DDPRINT("resolve error: requested module ID doesn't fit into resolve input buffer"));
|
|
goto resolve_error;
|
|
}
|
|
(void) DUK_SNPRINTF((char *) buf_in, sizeof(buf_in), "%s", (const char *) req_id);
|
|
}
|
|
buf_in[sizeof(buf_in) - 1] = (duk_uint8_t) 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("input module id: '%s'", (const char *) buf_in));
|
|
|
|
/*
|
|
* Resolution loop. At the top of the loop we're expecting a valid
|
|
* term: '.', '..', or a non-empty identifier not starting with a period.
|
|
*/
|
|
|
|
p = buf_in;
|
|
q = buf_out;
|
|
for (;;) {
|
|
duk_uint_fast8_t c;
|
|
|
|
/* Here 'p' always points to the start of a term. */
|
|
DUK_DDD(DUK_DDDPRINT("resolve loop top: p -> '%s', q=%p, buf_out=%p",
|
|
(const char *) p, (void *) q, (void *) buf_out));
|
|
|
|
c = *p++;
|
|
if (DUK_UNLIKELY(c == 0)) {
|
|
DUK_DD(DUK_DDPRINT("resolve error: requested ID must end with a non-empty term"));
|
|
goto resolve_error;
|
|
} else if (DUK_UNLIKELY(c == '.')) {
|
|
c = *p++;
|
|
if (c == '/') {
|
|
/* Term was '.' and is eaten entirely (including dup slashes). */
|
|
goto eat_dup_slashes;
|
|
}
|
|
if (c == '.' && *p == '/') {
|
|
/* Term was '..', backtrack resolved name by one component.
|
|
* q[-1] = previous slash (or beyond start of buffer)
|
|
* q[-2] = last char of previous component (or beyond start of buffer)
|
|
*/
|
|
p++; /* eat (first) input slash */
|
|
DUK_ASSERT(q >= buf_out);
|
|
if (q == buf_out) {
|
|
DUK_DD(DUK_DDPRINT("resolve error: term was '..' but nothing to backtrack"));
|
|
goto resolve_error;
|
|
}
|
|
DUK_ASSERT(*(q - 1) == '/');
|
|
q--; /* backtrack to last output slash */
|
|
for (;;) {
|
|
/* Backtrack to previous slash or start of buffer. */
|
|
DUK_ASSERT(q >= buf_out);
|
|
if (q == buf_out) {
|
|
break;
|
|
}
|
|
if (*(q - 1) == '/') {
|
|
break;
|
|
}
|
|
q--;
|
|
}
|
|
goto eat_dup_slashes;
|
|
}
|
|
DUK_DD(DUK_DDPRINT("resolve error: term begins with '.' but is not '.' or '..' (not allowed now)"));
|
|
goto resolve_error;
|
|
} else if (DUK_UNLIKELY(c == '/')) {
|
|
/* e.g. require('/foo'), empty terms not allowed */
|
|
DUK_DD(DUK_DDPRINT("resolve error: empty term (not allowed now)"));
|
|
goto resolve_error;
|
|
} else {
|
|
for (;;) {
|
|
/* Copy term name until end or '/'. */
|
|
*q++ = c;
|
|
c = *p++;
|
|
if (DUK_UNLIKELY(c == 0)) {
|
|
goto loop_done;
|
|
} else if (DUK_UNLIKELY(c == '/')) {
|
|
*q++ = '/';
|
|
break;
|
|
} else {
|
|
/* write on next loop */
|
|
}
|
|
}
|
|
}
|
|
|
|
eat_dup_slashes:
|
|
for (;;) {
|
|
/* eat dup slashes */
|
|
c = *p;
|
|
if (DUK_LIKELY(c != '/')) {
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
loop_done:
|
|
|
|
duk_push_lstring(ctx, (const char *) buf_out, (size_t) (q - buf_out));
|
|
return;
|
|
|
|
resolve_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "cannot resolve module id: %s", (const char *) req_id);
|
|
}
|
|
#endif /* DUK_USE_COMMONJS_MODULES */
|
|
|
|
#if defined(DUK_USE_COMMONJS_MODULES)
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_require(duk_context *ctx) {
|
|
const char *str_req_id; /* requested identifier */
|
|
const char *str_mod_id; /* require.id of current module */
|
|
|
|
/* NOTE: we try to minimize code size by avoiding unnecessary pops,
|
|
* so the stack looks a bit cluttered in this function. DUK_ASSERT_TOP()
|
|
* assertions are used to ensure stack configuration is correct at each
|
|
* step.
|
|
*/
|
|
|
|
/*
|
|
* Resolve module identifier into canonical absolute form.
|
|
*/
|
|
|
|
str_req_id = duk_require_string(ctx, 0);
|
|
duk_push_current_function(ctx);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_ID);
|
|
str_mod_id = duk_get_string(ctx, 2); /* ignore non-strings */
|
|
DUK_DDD(DUK_DDDPRINT("resolve module id: requested=%!T, currentmodule=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 2)));
|
|
duk__bi_global_resolve_module_id(ctx, str_req_id, str_mod_id);
|
|
str_req_id = NULL;
|
|
str_mod_id = NULL;
|
|
DUK_DDD(DUK_DDDPRINT("resolved module id: requested=%!T, currentmodule=%!T, result=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 2),
|
|
(duk_tval *) duk_get_tval(ctx, 3)));
|
|
|
|
/* [ requested_id require require.id resolved_id ] */
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
|
|
/*
|
|
* Cached module check.
|
|
*
|
|
* If module has been loaded or its loading has already begun without
|
|
* finishing, return the same cached value ('exports'). The value is
|
|
* registered when module load starts so that circular references can
|
|
* be supported to some extent.
|
|
*/
|
|
|
|
/* [ requested_id require require.id resolved_id ] */
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_DUKTAPE);
|
|
duk_get_prop_stridx(ctx, 4, DUK_STRIDX_MOD_LOADED); /* Duktape.modLoaded */
|
|
(void) duk_require_hobject(ctx, 5);
|
|
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded ] */
|
|
DUK_ASSERT_TOP(ctx, 6);
|
|
|
|
duk_dup(ctx, 3);
|
|
if (duk_get_prop(ctx, 5)) {
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded Duktape.modLoaded[id] ] */
|
|
DUK_DD(DUK_DDPRINT("module already loaded: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, 3)));
|
|
return 1;
|
|
}
|
|
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded undefined ] */
|
|
DUK_ASSERT_TOP(ctx, 7);
|
|
|
|
/*
|
|
* Module not loaded (and loading not started previously).
|
|
*
|
|
* Create a new require() function with 'id' set to resolved ID
|
|
* of module being loaded. Also create 'exports' and 'module'
|
|
* tables but don't register exports to the loaded table yet.
|
|
* We don't want to do that unless the user module search callbacks
|
|
* succeeds in finding the module.
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("module not yet loaded: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, 3)));
|
|
|
|
/* Fresh require: require.id is left configurable (but not writable)
|
|
* so that is not easy to accidentally tweak it, but it can still be
|
|
* done with Object.defineProperty().
|
|
*
|
|
* XXX: require.id could also be just made non-configurable, as there
|
|
* is no practical reason to touch it.
|
|
*/
|
|
duk_push_c_function(ctx, duk_bi_global_object_require, 1 /*nargs*/);
|
|
duk_dup(ctx, 3);
|
|
duk_xdef_prop_stridx(ctx, 7, DUK_STRIDX_ID, DUK_PROPDESC_FLAGS_C); /* a fresh require() with require.id = resolved target module id */
|
|
|
|
/* Exports table. */
|
|
duk_push_object(ctx);
|
|
|
|
/* Module table: module.id is non-writable and non-configurable, as
|
|
* the CommonJS spec suggests this if possible.
|
|
*/
|
|
duk_push_object(ctx);
|
|
duk_dup(ctx, 3); /* resolved id: require(id) must return this same module */
|
|
duk_xdef_prop_stridx(ctx, 9, DUK_STRIDX_ID, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded undefined fresh_require exports module ] */
|
|
DUK_ASSERT_TOP(ctx, 10);
|
|
|
|
/*
|
|
* Call user provided module search function and build the wrapped
|
|
* module source code (if necessary). The module search function
|
|
* can be used to implement pure Ecmacsript, pure C, and mixed
|
|
* Ecmascript/C modules.
|
|
*
|
|
* The module search function can operate on the exports table directly
|
|
* (e.g. DLL code can register values to it). It can also return a
|
|
* string which is interpreted as module source code (if a non-string
|
|
* is returned the module is assumed to be a pure C one). If a module
|
|
* cannot be found, an error must be thrown by the user callback.
|
|
*
|
|
* NOTE: the current arrangement allows C modules to be implemented
|
|
* but since the exports table is registered to Duktape.modLoaded only
|
|
* after the search function returns, circular requires / partially
|
|
* loaded modules don't work for C modules. This is rarely an issue,
|
|
* as C modules usually simply expose a set of helper functions.
|
|
*/
|
|
|
|
duk_push_string(ctx, "(function(require,exports,module){");
|
|
|
|
/* Duktape.modSearch(resolved_id, fresh_require, exports, module). */
|
|
duk_get_prop_stridx(ctx, 4, DUK_STRIDX_MOD_SEARCH); /* Duktape.modSearch */
|
|
duk_dup(ctx, 3);
|
|
duk_dup(ctx, 7);
|
|
duk_dup(ctx, 8);
|
|
duk_dup(ctx, 9); /* [ ... Duktape.modSearch resolved_id fresh_require exports module ] */
|
|
duk_call(ctx, 4 /*nargs*/); /* -> [ ... source ] */
|
|
DUK_ASSERT_TOP(ctx, 12);
|
|
|
|
/* Because user callback did not throw an error, remember exports table. */
|
|
duk_dup(ctx, 3);
|
|
duk_dup(ctx, 8);
|
|
duk_xdef_prop(ctx, 5, DUK_PROPDESC_FLAGS_EC); /* Duktape.modLoaded[resolved_id] = exports */
|
|
|
|
/* If user callback did not return source code, module loading
|
|
* is finished (user callback initialized exports table directly).
|
|
*/
|
|
if (!duk_is_string(ctx, 11)) {
|
|
/* User callback did not return source code, so
|
|
* module loading is finished.
|
|
*/
|
|
duk_dup(ctx, 8);
|
|
return 1;
|
|
}
|
|
|
|
/* Finish the wrapped module source. Force resolved module ID as the
|
|
* fileName so it gets set for functions defined within a module. This
|
|
* also ensures loggers created within the module get the module ID as
|
|
* their default logger name.
|
|
*/
|
|
duk_push_string(ctx, "})");
|
|
duk_concat(ctx, 3);
|
|
duk_dup(ctx, 3); /* resolved module ID for fileName */
|
|
duk_eval_raw(ctx, NULL, 0, DUK_COMPILE_EVAL);
|
|
|
|
/* XXX: The module wrapper function is currently anonymous and is shown
|
|
* in stack traces. It would be nice to force it to match the module
|
|
* name (perhaps just the cleaned up last term). At the moment 'name'
|
|
* is write protected so we can't change it directly. Note that we must
|
|
* not introduce an actual name binding into the function scope (which
|
|
* is usually the case with a named function) because it would affect
|
|
* the scope seen by the module and shadow accesses to globals of the
|
|
* same name.
|
|
*/
|
|
|
|
/*
|
|
* Call the wrapped module function.
|
|
*/
|
|
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded undefined fresh_require exports module mod_func ] */
|
|
DUK_ASSERT_TOP(ctx, 11);
|
|
|
|
duk_dup(ctx, 8); /* exports (this binding) */
|
|
duk_dup(ctx, 7); /* fresh require (argument) */
|
|
duk_dup(ctx, 8); /* exports (argument) */
|
|
duk_dup(ctx, 9); /* module (argument) */
|
|
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded undefined fresh_require exports module mod_func exports fresh_require exports module ] */
|
|
DUK_ASSERT_TOP(ctx, 15);
|
|
|
|
duk_call_method(ctx, 3 /*nargs*/);
|
|
|
|
/* [ requested_id require require.id resolved_id Duktape Duktape.modLoaded undefined fresh_require exports module result(ignored) ] */
|
|
DUK_ASSERT_TOP(ctx, 11);
|
|
|
|
duk_pop_2(ctx);
|
|
return 1; /* return exports */
|
|
}
|
|
#else
|
|
DUK_INTERNAL duk_ret_t duk_bi_global_object_require(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* DUK_USE_COMMONJS_MODULES */
|
|
#line 1 "duk_bi_json.c"
|
|
/*
|
|
* JSON built-ins.
|
|
*
|
|
* See doc/json.txt.
|
|
*
|
|
* Codepoints are handled as duk_uint_fast32_t to ensure that the full
|
|
* unsigned 32-bit range is supported. This matters to e.g. JX.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Local defines and forward declarations.
|
|
*/
|
|
|
|
DUK_LOCAL_DECL void duk__dec_syntax_error(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_eat_white(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL duk_small_int_t duk__dec_peek(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL duk_small_int_t duk__dec_get(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL duk_small_int_t duk__dec_get_nonwhite(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL duk_uint_fast32_t duk__dec_decode_hex_escape(duk_json_dec_ctx *js_ctx, duk_small_uint_t n);
|
|
DUK_LOCAL_DECL void duk__dec_req_stridx(duk_json_dec_ctx *js_ctx, duk_small_uint_t stridx);
|
|
DUK_LOCAL_DECL void duk__dec_string(duk_json_dec_ctx *js_ctx);
|
|
#ifdef DUK_USE_JX
|
|
DUK_LOCAL_DECL void duk__dec_plain_string(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_pointer(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_buffer(duk_json_dec_ctx *js_ctx);
|
|
#endif
|
|
DUK_LOCAL_DECL void duk__dec_number(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_objarr_entry(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_objarr_exit(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_object(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_array(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_value(duk_json_dec_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__dec_reviver_walk(duk_json_dec_ctx *js_ctx);
|
|
|
|
DUK_LOCAL_DECL void duk__emit_1(duk_json_enc_ctx *js_ctx, duk_uint_fast8_t ch);
|
|
DUK_LOCAL_DECL void duk__emit_2(duk_json_enc_ctx *js_ctx, duk_uint_fast16_t packed_chars);
|
|
DUK_LOCAL_DECL void duk__emit_esc_auto(duk_json_enc_ctx *js_ctx, duk_uint_fast32_t cp);
|
|
DUK_LOCAL_DECL void duk__emit_xutf8(duk_json_enc_ctx *js_ctx, duk_uint_fast32_t cp);
|
|
DUK_LOCAL_DECL void duk__emit_hstring(duk_json_enc_ctx *js_ctx, duk_hstring *h);
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
DUK_LOCAL_DECL void duk__emit_cstring(duk_json_enc_ctx *js_ctx, const char *p);
|
|
#endif
|
|
DUK_LOCAL_DECL void duk__emit_stridx(duk_json_enc_ctx *js_ctx, duk_small_uint_t stridx);
|
|
DUK_LOCAL_DECL duk_bool_t duk__enc_key_quotes_needed(duk_hstring *h_key);
|
|
DUK_LOCAL_DECL void duk__enc_quote_string(duk_json_enc_ctx *js_ctx, duk_hstring *h_str);
|
|
DUK_LOCAL_DECL void duk__enc_objarr_entry(duk_json_enc_ctx *js_ctx, duk_hstring **h_stepback, duk_hstring **h_indent, duk_idx_t *entry_top);
|
|
DUK_LOCAL_DECL void duk__enc_objarr_exit(duk_json_enc_ctx *js_ctx, duk_hstring **h_stepback, duk_hstring **h_indent, duk_idx_t *entry_top);
|
|
DUK_LOCAL_DECL void duk__enc_object(duk_json_enc_ctx *js_ctx);
|
|
DUK_LOCAL_DECL void duk__enc_array(duk_json_enc_ctx *js_ctx);
|
|
DUK_LOCAL_DECL duk_bool_t duk__enc_value1(duk_json_enc_ctx *js_ctx, duk_idx_t idx_holder);
|
|
DUK_LOCAL_DECL void duk__enc_value2(duk_json_enc_ctx *js_ctx);
|
|
DUK_LOCAL_DECL duk_bool_t duk__enc_allow_into_proplist(duk_tval *tv);
|
|
|
|
/*
|
|
* Parsing implementation.
|
|
*
|
|
* JSON lexer is now separate from duk_lexer.c because there are numerous
|
|
* small differences making it difficult to share the lexer.
|
|
*
|
|
* The parser here works with raw bytes directly; this works because all
|
|
* JSON delimiters are ASCII characters. Invalid xUTF-8 encoded values
|
|
* inside strings will be passed on without normalization; this is not a
|
|
* compliance concern because compliant inputs will always be valid
|
|
* CESU-8 encodings.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__dec_syntax_error(duk_json_dec_ctx *js_ctx) {
|
|
/* Shared handler to minimize parser size. Cause will be
|
|
* hidden, unfortunately, but we'll have an offset which
|
|
* is often quite enough.
|
|
*/
|
|
DUK_ERROR(js_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_FMT_INVALID_JSON,
|
|
(long) (js_ctx->p - js_ctx->p_start));
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_eat_white(duk_json_dec_ctx *js_ctx) {
|
|
duk_small_uint_t t;
|
|
for (;;) {
|
|
if (js_ctx->p >= js_ctx->p_end) {
|
|
break;
|
|
}
|
|
t = (*js_ctx->p);
|
|
if (!(t == 0x20 || t == 0x0a || t == 0x0d || t == 0x09)) {
|
|
break;
|
|
}
|
|
js_ctx->p++;
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_small_int_t duk__dec_peek(duk_json_dec_ctx *js_ctx) {
|
|
if (js_ctx->p >= js_ctx->p_end) {
|
|
return -1;
|
|
} else {
|
|
return (duk_small_int_t) (*js_ctx->p);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_small_int_t duk__dec_get(duk_json_dec_ctx *js_ctx) {
|
|
/* Multiple EOFs will now be supplied to the caller. This could also be
|
|
* changed so that reading the second EOF would cause an error automatically.
|
|
*/
|
|
if (js_ctx->p >= js_ctx->p_end) {
|
|
return -1;
|
|
} else {
|
|
return (duk_small_int_t) (*js_ctx->p++);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_small_int_t duk__dec_get_nonwhite(duk_json_dec_ctx *js_ctx) {
|
|
duk__dec_eat_white(js_ctx);
|
|
return duk__dec_get(js_ctx);
|
|
}
|
|
|
|
/* For JX, expressing the whole unsigned 32-bit range matters. */
|
|
DUK_LOCAL duk_uint_fast32_t duk__dec_decode_hex_escape(duk_json_dec_ctx *js_ctx, duk_small_uint_t n) {
|
|
duk_small_uint_t i;
|
|
duk_uint_fast32_t res = 0;
|
|
duk_small_int_t x;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
/* XXX: share helper from lexer; duk_lexer.c / hexval(). */
|
|
|
|
x = duk__dec_get(js_ctx);
|
|
DUK_ASSERT((x >= 0 && x <= 0xff) || (x == -1));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("decode_hex_escape: i=%ld, n=%ld, res=%ld, x=%ld",
|
|
(long) i, (long) n, (long) res, (long) x));
|
|
|
|
/* x == -1 will map to 0xff, dectab returns -1 which causes syntax_error */
|
|
x = duk_hex_dectab[x & 0xff];
|
|
if (DUK_LIKELY(x >= 0)) {
|
|
res = (res * 16) + x;
|
|
} else {
|
|
/* catches EOF and invalid digits */
|
|
goto syntax_error;
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final hex decoded value: %ld", (long) res));
|
|
return res;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_req_stridx(duk_json_dec_ctx *js_ctx, duk_small_uint_t stridx) {
|
|
duk_hstring *h;
|
|
duk_uint8_t *p;
|
|
duk_uint8_t *p_end;
|
|
duk_small_int_t x;
|
|
|
|
/* First character has already been eaten and checked by the caller. */
|
|
|
|
DUK_ASSERT_DISABLE(stridx >= 0); /* unsigned */
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
h = DUK_HTHREAD_GET_STRING(js_ctx->thr, stridx);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
p = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h);
|
|
p_end = ((duk_uint8_t *) DUK_HSTRING_GET_DATA(h)) +
|
|
DUK_HSTRING_GET_BYTELEN(h);
|
|
|
|
DUK_ASSERT(*(js_ctx->p - 1) == *p); /* first character has been matched */
|
|
p++; /* first char */
|
|
|
|
while (p < p_end) {
|
|
x = duk__dec_get(js_ctx);
|
|
if ((duk_small_int_t) (*p) != x) {
|
|
/* catches EOF */
|
|
goto syntax_error;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_string(duk_json_dec_ctx *js_ctx) {
|
|
duk_hthread *thr = js_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
duk_small_int_t x;
|
|
duk_uint_fast32_t cp;
|
|
|
|
/* '"' was eaten by caller */
|
|
|
|
/* Note that we currently parse -bytes-, not codepoints.
|
|
* All non-ASCII extended UTF-8 will encode to bytes >= 0x80,
|
|
* so they'll simply pass through (valid UTF-8 or not).
|
|
*/
|
|
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h_buf));
|
|
|
|
for (;;) {
|
|
x = duk__dec_get(js_ctx);
|
|
if (x == DUK_ASC_DOUBLEQUOTE) {
|
|
break;
|
|
} else if (x == DUK_ASC_BACKSLASH) {
|
|
/* EOF (-1) will be cast to an unsigned value first
|
|
* and then re-cast for the switch. In any case, it
|
|
* will match the default case (syntax error).
|
|
*/
|
|
cp = (duk_uint_fast32_t) duk__dec_get(js_ctx);
|
|
switch ((int) cp) {
|
|
case DUK_ASC_BACKSLASH: break;
|
|
case DUK_ASC_DOUBLEQUOTE: break;
|
|
case DUK_ASC_SLASH: break;
|
|
case DUK_ASC_LC_T: cp = 0x09; break;
|
|
case DUK_ASC_LC_N: cp = 0x0a; break;
|
|
case DUK_ASC_LC_R: cp = 0x0d; break;
|
|
case DUK_ASC_LC_F: cp = 0x0c; break;
|
|
case DUK_ASC_LC_B: cp = 0x08; break;
|
|
case DUK_ASC_LC_U: {
|
|
cp = duk__dec_decode_hex_escape(js_ctx, 4);
|
|
break;
|
|
}
|
|
#ifdef DUK_USE_JX
|
|
case DUK_ASC_UC_U: {
|
|
if (js_ctx->flag_ext_custom) {
|
|
cp = duk__dec_decode_hex_escape(js_ctx, 8);
|
|
} else {
|
|
goto syntax_error;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_ASC_LC_X: {
|
|
if (js_ctx->flag_ext_custom) {
|
|
cp = duk__dec_decode_hex_escape(js_ctx, 2);
|
|
} else {
|
|
goto syntax_error;
|
|
}
|
|
break;
|
|
}
|
|
#endif /* DUK_USE_JX */
|
|
default:
|
|
/* catches EOF (-1) */
|
|
goto syntax_error;
|
|
}
|
|
duk_hbuffer_append_xutf8(thr, h_buf, (duk_uint32_t) cp);
|
|
} else if (x < 0x20) {
|
|
/* catches EOF (-1) */
|
|
goto syntax_error;
|
|
} else {
|
|
duk_hbuffer_append_byte(thr, h_buf, (duk_uint8_t) x);
|
|
}
|
|
}
|
|
|
|
duk_to_string(ctx, -1);
|
|
|
|
/* [ ... str ] */
|
|
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
#ifdef DUK_USE_JX
|
|
/* Decode a plain string consisting entirely of identifier characters.
|
|
* Used to parse plain keys (e.g. "foo: 123").
|
|
*/
|
|
DUK_LOCAL void duk__dec_plain_string(duk_json_dec_ctx *js_ctx) {
|
|
duk_hthread *thr = js_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
const duk_uint8_t *p;
|
|
duk_small_int_t x;
|
|
|
|
/* Caller has already eaten the first char so backtrack one byte. */
|
|
|
|
js_ctx->p--; /* safe */
|
|
p = js_ctx->p;
|
|
|
|
/* Here again we parse bytes, and non-ASCII UTF-8 will cause end of
|
|
* parsing (which is correct except if there are non-shortest encodings).
|
|
* There is also no need to check explicitly for end of input buffer as
|
|
* the input is NUL padded and NUL will exit the parsing loop.
|
|
*
|
|
* Because no unescaping takes place, we can just scan to the end of the
|
|
* plain string and intern from the input buffer.
|
|
*/
|
|
|
|
for (;;) {
|
|
x = *p;
|
|
|
|
/* There is no need to check the first character specially here
|
|
* (i.e. reject digits): the caller only accepts valid initial
|
|
* characters and won't call us if the first character is a digit.
|
|
* This also ensures that the plain string won't be empty.
|
|
*/
|
|
|
|
if (!duk_unicode_is_identifier_part((duk_codepoint_t) x)) {
|
|
break;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
duk_push_lstring(ctx, (const char *) js_ctx->p, (duk_size_t) (p - js_ctx->p));
|
|
js_ctx->p = p;
|
|
|
|
/* [ ... str ] */
|
|
}
|
|
#endif /* DUK_USE_JX */
|
|
|
|
#ifdef DUK_USE_JX
|
|
DUK_LOCAL void duk__dec_pointer(duk_json_dec_ctx *js_ctx) {
|
|
duk_hthread *thr = js_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
const duk_uint8_t *p;
|
|
duk_small_int_t x;
|
|
void *voidptr;
|
|
|
|
/* Caller has already eaten the first character ('(') which we don't need. */
|
|
|
|
p = js_ctx->p;
|
|
|
|
for (;;) {
|
|
x = *p;
|
|
|
|
/* Assume that the native representation never contains a closing
|
|
* parenthesis.
|
|
*/
|
|
|
|
if (x == DUK_ASC_RPAREN) {
|
|
break;
|
|
} else if (x <= 0) {
|
|
/* NUL term or -1 (EOF), NUL check would suffice */
|
|
goto syntax_error;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
/* There is no need to NUL delimit the sscanf() call: trailing garbage is
|
|
* ignored and there is always a NUL terminator which will force an error
|
|
* if no error is encountered before it. It's possible that the scan
|
|
* would scan further than between [js_ctx->p,p[ though and we'd advance
|
|
* by less than the scanned value.
|
|
*
|
|
* Because pointers are platform specific, a failure to scan a pointer
|
|
* results in a null pointer which is a better placeholder than a missing
|
|
* value or an error.
|
|
*/
|
|
|
|
voidptr = NULL;
|
|
(void) DUK_SSCANF((const char *) js_ctx->p, DUK_STR_FMT_PTR, &voidptr);
|
|
duk_push_pointer(ctx, voidptr);
|
|
js_ctx->p = p + 1; /* skip ')' */
|
|
|
|
/* [ ... ptr ] */
|
|
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
#endif /* DUK_USE_JX */
|
|
|
|
#ifdef DUK_USE_JX
|
|
DUK_LOCAL void duk__dec_buffer(duk_json_dec_ctx *js_ctx) {
|
|
duk_hthread *thr = js_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
const duk_uint8_t *p;
|
|
duk_small_int_t x;
|
|
|
|
/* Caller has already eaten the first character ('|') which we don't need. */
|
|
|
|
p = js_ctx->p;
|
|
|
|
for (;;) {
|
|
x = *p;
|
|
|
|
/* This loop intentionally does not ensure characters are valid
|
|
* ([0-9a-fA-F]) because the hex decode call below will do that.
|
|
*/
|
|
if (x == DUK_ASC_PIPE) {
|
|
break;
|
|
} else if (x <= 0) {
|
|
/* NUL term or -1 (EOF), NUL check would suffice */
|
|
goto syntax_error;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
duk_push_lstring(ctx, (const char *) js_ctx->p, (duk_size_t) (p - js_ctx->p));
|
|
duk_hex_decode(ctx, -1);
|
|
js_ctx->p = p + 1; /* skip '|' */
|
|
|
|
/* [ ... buf ] */
|
|
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
#endif /* DUK_USE_JX */
|
|
|
|
/* Parse a number, other than NaN or +/- Infinity */
|
|
DUK_LOCAL void duk__dec_number(duk_json_dec_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
const duk_uint8_t *p_start;
|
|
duk_small_int_t x;
|
|
duk_small_uint_t s2n_flags;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_number"));
|
|
|
|
/* Caller has already eaten the first character so backtrack one
|
|
* byte. This is correct because the first character is either
|
|
* '-' or a digit (i.e. an ASCII character).
|
|
*/
|
|
|
|
js_ctx->p--; /* safe */
|
|
p_start = js_ctx->p;
|
|
|
|
/* First pass parse is very lenient (e.g. allows '1.2.3') and extracts a
|
|
* string for strict number parsing.
|
|
*/
|
|
|
|
for (;;) {
|
|
x = duk__dec_peek(js_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_number: p_start=%p, p=%p, p_end=%p, x=%ld",
|
|
(void *) p_start, (void *) js_ctx->p,
|
|
(void *) js_ctx->p_end, (long) x));
|
|
|
|
if (!((x >= DUK_ASC_0 && x <= DUK_ASC_9) ||
|
|
(x == DUK_ASC_PERIOD || x == DUK_ASC_LC_E ||
|
|
x == DUK_ASC_UC_E || x == DUK_ASC_MINUS || x == DUK_ASC_PLUS))) {
|
|
/* Plus sign must be accepted for positive exponents
|
|
* (e.g. '1.5e+2').
|
|
*/
|
|
break;
|
|
}
|
|
|
|
js_ctx->p++; /* safe, because matched char */
|
|
}
|
|
|
|
DUK_ASSERT(js_ctx->p > p_start);
|
|
duk_push_lstring(ctx, (const char *) p_start, (duk_size_t) (js_ctx->p - p_start));
|
|
|
|
s2n_flags = DUK_S2N_FLAG_ALLOW_EXP |
|
|
DUK_S2N_FLAG_ALLOW_MINUS | /* but don't allow leading plus */
|
|
DUK_S2N_FLAG_ALLOW_FRAC;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_number: string before parsing: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_numconv_parse(ctx, 10 /*radix*/, s2n_flags);
|
|
if (duk_is_nan(ctx, -1)) {
|
|
duk__dec_syntax_error(js_ctx);
|
|
}
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
DUK_DDD(DUK_DDDPRINT("parse_number: final number: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ ... num ] */
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_objarr_entry(duk_json_dec_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_require_stack(ctx, DUK_JSON_DEC_REQSTACK);
|
|
|
|
/* c recursion check */
|
|
|
|
DUK_ASSERT(js_ctx->recursion_depth >= 0);
|
|
DUK_ASSERT(js_ctx->recursion_depth <= js_ctx->recursion_limit);
|
|
if (js_ctx->recursion_depth >= js_ctx->recursion_limit) {
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_RANGE_ERROR, DUK_STR_JSONDEC_RECLIMIT);
|
|
}
|
|
js_ctx->recursion_depth++;
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_objarr_exit(duk_json_dec_ctx *js_ctx) {
|
|
/* c recursion check */
|
|
|
|
DUK_ASSERT(js_ctx->recursion_depth > 0);
|
|
DUK_ASSERT(js_ctx->recursion_depth <= js_ctx->recursion_limit);
|
|
js_ctx->recursion_depth--;
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_object(duk_json_dec_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_int_t key_count; /* XXX: a "first" flag would suffice */
|
|
duk_small_int_t x;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_object"));
|
|
|
|
duk__dec_objarr_entry(js_ctx);
|
|
|
|
duk_push_object(ctx);
|
|
|
|
/* Initial '{' has been checked and eaten by caller. */
|
|
|
|
key_count = 0;
|
|
for (;;) {
|
|
x = duk__dec_get_nonwhite(js_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_object: obj=%!T, x=%ld, key_count=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(long) x, (long) key_count));
|
|
|
|
/* handle comma and closing brace */
|
|
|
|
if (x == DUK_ASC_COMMA && key_count > 0) {
|
|
/* accept comma, expect new value */
|
|
x = duk__dec_get_nonwhite(js_ctx);
|
|
} else if (x == DUK_ASC_RCURLY) {
|
|
/* eat closing brace */
|
|
break;
|
|
} else if (key_count == 0) {
|
|
/* accept anything, expect first value (EOF will be
|
|
* caught by key parsing below.
|
|
*/
|
|
;
|
|
} else {
|
|
/* catches EOF (and initial comma) */
|
|
goto syntax_error;
|
|
}
|
|
|
|
/* parse key and value */
|
|
|
|
if (x == DUK_ASC_DOUBLEQUOTE) {
|
|
duk__dec_string(js_ctx);
|
|
#ifdef DUK_USE_JX
|
|
} else if (js_ctx->flag_ext_custom &&
|
|
duk_unicode_is_identifier_start((duk_codepoint_t) x)) {
|
|
duk__dec_plain_string(js_ctx);
|
|
#endif
|
|
} else {
|
|
goto syntax_error;
|
|
}
|
|
|
|
/* [ ... obj key ] */
|
|
|
|
x = duk__dec_get_nonwhite(js_ctx);
|
|
if (x != DUK_ASC_COLON) {
|
|
goto syntax_error;
|
|
}
|
|
|
|
duk__dec_value(js_ctx);
|
|
|
|
/* [ ... obj key val ] */
|
|
|
|
duk_xdef_prop_wec(ctx, -3);
|
|
|
|
/* [ ... obj ] */
|
|
|
|
key_count++;
|
|
}
|
|
|
|
/* [ ... obj ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_object: final object is %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk__dec_objarr_exit(js_ctx);
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_array(duk_json_dec_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_uarridx_t arr_idx;
|
|
duk_small_int_t x;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_array"));
|
|
|
|
duk__dec_objarr_entry(js_ctx);
|
|
|
|
duk_push_array(ctx);
|
|
|
|
/* Initial '[' has been checked and eaten by caller. */
|
|
|
|
arr_idx = 0;
|
|
for (;;) {
|
|
x = duk__dec_get_nonwhite(js_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_array: arr=%!T, x=%ld, arr_idx=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(long) x, (long) arr_idx));
|
|
|
|
/* handle comma and closing bracket */
|
|
|
|
if ((x == DUK_ASC_COMMA) && (arr_idx != 0)) {
|
|
/* accept comma, expect new value */
|
|
;
|
|
} else if (x == DUK_ASC_RBRACKET) {
|
|
/* eat closing bracket */
|
|
break;
|
|
} else if (arr_idx == 0) {
|
|
/* accept anything, expect first value (EOF will be
|
|
* caught by duk__dec_value() below.
|
|
*/
|
|
js_ctx->p--; /* backtrack (safe) */
|
|
} else {
|
|
/* catches EOF (and initial comma) */
|
|
goto syntax_error;
|
|
}
|
|
|
|
/* parse value */
|
|
|
|
duk__dec_value(js_ctx);
|
|
|
|
/* [ ... arr val ] */
|
|
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
}
|
|
|
|
/* Must set 'length' explicitly when using duk_xdef_prop_xxx() to
|
|
* set the values.
|
|
*/
|
|
|
|
duk_set_length(ctx, -1, arr_idx);
|
|
|
|
/* [ ... arr ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_array: final array is %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk__dec_objarr_exit(js_ctx);
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_LOCAL void duk__dec_value(duk_json_dec_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_small_int_t x;
|
|
|
|
x = duk__dec_get_nonwhite(js_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse_value: initial x=%ld", (long) x));
|
|
|
|
/* Note: duk__dec_req_stridx() backtracks one char */
|
|
|
|
if (x == DUK_ASC_DOUBLEQUOTE) {
|
|
duk__dec_string(js_ctx);
|
|
} else if ((x >= DUK_ASC_0 && x <= DUK_ASC_9) || (x == DUK_ASC_MINUS)) {
|
|
#ifdef DUK_USE_JX
|
|
if (js_ctx->flag_ext_custom && x == DUK_ASC_MINUS && duk__dec_peek(js_ctx) == DUK_ASC_UC_I) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_MINUS_INFINITY); /* "-Infinity", '-' has been eaten */
|
|
duk_push_number(ctx, -DUK_DOUBLE_INFINITY);
|
|
} else {
|
|
#else
|
|
{ /* unconditional block */
|
|
#endif
|
|
/* We already ate 'x', so duk__dec_number() will back up one byte. */
|
|
duk__dec_number(js_ctx);
|
|
}
|
|
} else if (x == DUK_ASC_LC_T) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_TRUE);
|
|
duk_push_true(ctx);
|
|
} else if (x == DUK_ASC_LC_F) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_FALSE);
|
|
duk_push_false(ctx);
|
|
} else if (x == DUK_ASC_LC_N) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_LC_NULL);
|
|
duk_push_null(ctx);
|
|
#ifdef DUK_USE_JX
|
|
} else if (js_ctx->flag_ext_custom && x == DUK_ASC_LC_U) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_LC_UNDEFINED);
|
|
duk_push_undefined(ctx);
|
|
} else if (js_ctx->flag_ext_custom && x == DUK_ASC_UC_N) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_NAN);
|
|
duk_push_nan(ctx);
|
|
} else if (js_ctx->flag_ext_custom && x == DUK_ASC_UC_I) {
|
|
duk__dec_req_stridx(js_ctx, DUK_STRIDX_INFINITY);
|
|
duk_push_number(ctx, DUK_DOUBLE_INFINITY);
|
|
} else if (js_ctx->flag_ext_custom && x == DUK_ASC_LPAREN) {
|
|
duk__dec_pointer(js_ctx);
|
|
} else if (js_ctx->flag_ext_custom && x == DUK_ASC_PIPE) {
|
|
duk__dec_buffer(js_ctx);
|
|
#endif
|
|
} else if (x == DUK_ASC_LCURLY) {
|
|
duk__dec_object(js_ctx);
|
|
} else if (x == DUK_ASC_LBRACKET) {
|
|
duk__dec_array(js_ctx);
|
|
} else {
|
|
/* catches EOF */
|
|
goto syntax_error;
|
|
}
|
|
|
|
duk__dec_eat_white(js_ctx);
|
|
|
|
/* [ ... val ] */
|
|
return;
|
|
|
|
syntax_error:
|
|
duk__dec_syntax_error(js_ctx);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/* Recursive value reviver, implements the Walk() algorithm. No C recursion
|
|
* check is done here because the initial parsing step will already ensure
|
|
* there is a reasonable limit on C recursion depth and hence object depth.
|
|
*/
|
|
DUK_LOCAL void duk__dec_reviver_walk(duk_json_dec_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hobject *h;
|
|
duk_uarridx_t i, arr_len;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("walk: top=%ld, holder=%!T, name=%!T",
|
|
(long) duk_get_top(ctx),
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk_dup_top(ctx);
|
|
duk_get_prop(ctx, -3); /* -> [ ... holder name val ] */
|
|
|
|
h = duk_get_hobject(ctx, -1);
|
|
if (h != NULL) {
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h) == DUK_HOBJECT_CLASS_ARRAY) {
|
|
arr_len = (duk_uarridx_t) duk_get_length(ctx, -1);
|
|
for (i = 0; i < arr_len; i++) {
|
|
/* [ ... holder name val ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("walk: array, top=%ld, i=%ld, arr_len=%ld, holder=%!T, name=%!T, val=%!T",
|
|
(long) duk_get_top(ctx), (long) i, (long) arr_len,
|
|
(duk_tval *) duk_get_tval(ctx, -3), (duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* XXX: push_uint_string / push_u32_string */
|
|
duk_dup_top(ctx);
|
|
duk_push_uint(ctx, (duk_uint_t) i);
|
|
duk_to_string(ctx, -1); /* -> [ ... holder name val val ToString(i) ] */
|
|
duk__dec_reviver_walk(js_ctx); /* -> [ ... holder name val new_elem ] */
|
|
|
|
if (duk_is_undefined(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
duk_del_prop_index(ctx, -1, i);
|
|
} else {
|
|
/* XXX: duk_xdef_prop_index_wec() would be more appropriate
|
|
* here but it currently makes some assumptions that might
|
|
* not hold (e.g. that previous property is not an accessor).
|
|
*/
|
|
duk_put_prop_index(ctx, -2, i);
|
|
}
|
|
}
|
|
} else {
|
|
/* [ ... holder name val ] */
|
|
duk_enum(ctx, -1, DUK_ENUM_OWN_PROPERTIES_ONLY /*flags*/);
|
|
while (duk_next(ctx, -1 /*enum_index*/, 0 /*get_value*/)) {
|
|
DUK_DDD(DUK_DDDPRINT("walk: object, top=%ld, holder=%!T, name=%!T, val=%!T, enum=%!iT, obj_key=%!T",
|
|
(long) duk_get_top(ctx), (duk_tval *) duk_get_tval(ctx, -5),
|
|
(duk_tval *) duk_get_tval(ctx, -4), (duk_tval *) duk_get_tval(ctx, -3),
|
|
(duk_tval *) duk_get_tval(ctx, -2), (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ ... holder name val enum obj_key ] */
|
|
duk_dup(ctx, -3);
|
|
duk_dup(ctx, -2);
|
|
|
|
/* [ ... holder name val enum obj_key val obj_key ] */
|
|
duk__dec_reviver_walk(js_ctx);
|
|
|
|
/* [ ... holder name val enum obj_key new_elem ] */
|
|
if (duk_is_undefined(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
duk_del_prop(ctx, -3);
|
|
} else {
|
|
/* XXX: duk_xdef_prop_index_wec() would be more appropriate
|
|
* here but it currently makes some assumptions that might
|
|
* not hold (e.g. that previous property is not an accessor).
|
|
*
|
|
* Using duk_put_prop() works incorrectly with '__proto__'
|
|
* if the own property with that name has been deleted. This
|
|
* does not happen normally, but a clever reviver can trigger
|
|
* that, see complex reviver case in: test-bug-json-parse-__proto__.js.
|
|
*/
|
|
duk_put_prop(ctx, -4);
|
|
}
|
|
}
|
|
duk_pop(ctx); /* pop enum */
|
|
}
|
|
}
|
|
|
|
/* [ ... holder name val ] */
|
|
|
|
duk_dup(ctx, js_ctx->idx_reviver);
|
|
duk_insert(ctx, -4); /* -> [ ... reviver holder name val ] */
|
|
duk_call_method(ctx, 2); /* -> [ ... res ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("walk: top=%ld, result=%!T",
|
|
(long) duk_get_top(ctx), (duk_tval *) duk_get_tval(ctx, -1)));
|
|
}
|
|
|
|
/*
|
|
* Stringify implementation.
|
|
*/
|
|
|
|
#define DUK__EMIT_1(js_ctx,ch) duk__emit_1((js_ctx), (duk_uint_fast8_t) (ch))
|
|
#define DUK__EMIT_2(js_ctx,ch1,ch2) duk__emit_2((js_ctx), (((duk_uint_fast16_t)(ch1)) << 8) + (duk_uint_fast16_t)(ch2))
|
|
#define DUK__EMIT_ESC_AUTO(js_ctx,cp) duk__emit_esc_auto((js_ctx), (cp))
|
|
#define DUK__EMIT_XUTF8(js_ctx,cp) duk__emit_xutf8((js_ctx), (cp))
|
|
#define DUK__EMIT_HSTR(js_ctx,h) duk__emit_hstring((js_ctx), (h))
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
#define DUK__EMIT_CSTR(js_ctx,p) duk__emit_cstring((js_ctx), (p))
|
|
#endif
|
|
#define DUK__EMIT_STRIDX(js_ctx,i) duk__emit_stridx((js_ctx), (i))
|
|
|
|
DUK_LOCAL void duk__emit_1(duk_json_enc_ctx *js_ctx, duk_uint_fast8_t ch) {
|
|
duk_hbuffer_append_byte(js_ctx->thr, js_ctx->h_buf, (duk_uint8_t) ch);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_2(duk_json_enc_ctx *js_ctx, duk_uint_fast16_t packed_chars) {
|
|
duk_uint8_t buf[2];
|
|
buf[0] = (duk_uint8_t) (packed_chars >> 8);
|
|
buf[1] = (duk_uint8_t) (packed_chars & 0xff);
|
|
duk_hbuffer_append_bytes(js_ctx->thr, js_ctx->h_buf, (duk_uint8_t *) buf, 2);
|
|
}
|
|
|
|
#define DUK__MKESC(nybbles,esc1,esc2) \
|
|
(((duk_uint_fast32_t) (nybbles)) << 16) | \
|
|
(((duk_uint_fast32_t) (esc1)) << 8) | \
|
|
((duk_uint_fast32_t) (esc2))
|
|
|
|
DUK_LOCAL void duk__emit_esc_auto(duk_json_enc_ctx *js_ctx, duk_uint_fast32_t cp) {
|
|
duk_uint8_t buf[2];
|
|
duk_uint_fast32_t tmp;
|
|
duk_small_uint_t dig;
|
|
|
|
/* Select appropriate escape format automatically, and set 'tmp' to a
|
|
* value encoding both the escape format character and the nybble count:
|
|
*
|
|
* (nybble_count << 16) | (escape_char1) | (escape_char2)
|
|
*/
|
|
|
|
#ifdef DUK_USE_JX
|
|
if (DUK_LIKELY(cp < 0x100UL)) {
|
|
if (DUK_UNLIKELY(js_ctx->flag_ext_custom)) {
|
|
tmp = DUK__MKESC(2, DUK_ASC_BACKSLASH, DUK_ASC_LC_X);
|
|
} else {
|
|
tmp = DUK__MKESC(4, DUK_ASC_BACKSLASH, DUK_ASC_LC_U);
|
|
}
|
|
} else
|
|
#endif
|
|
if (DUK_LIKELY(cp < 0x10000UL)) {
|
|
tmp = DUK__MKESC(4, DUK_ASC_BACKSLASH, DUK_ASC_LC_U);
|
|
} else {
|
|
#ifdef DUK_USE_JX
|
|
if (DUK_LIKELY(js_ctx->flag_ext_custom)) {
|
|
tmp = DUK__MKESC(8, DUK_ASC_BACKSLASH, DUK_ASC_UC_U);
|
|
} else
|
|
#endif
|
|
{
|
|
/* In compatible mode and standard JSON mode, output
|
|
* something useful for non-BMP characters. This won't
|
|
* roundtrip but will still be more or less readable and
|
|
* more useful than an error.
|
|
*/
|
|
tmp = DUK__MKESC(8, DUK_ASC_UC_U, DUK_ASC_PLUS);
|
|
}
|
|
}
|
|
|
|
buf[0] = (duk_uint8_t) ((tmp >> 8) & 0xff);
|
|
buf[1] = (duk_uint8_t) (tmp & 0xff);
|
|
duk_hbuffer_append_bytes(js_ctx->thr, js_ctx->h_buf, buf, 2);
|
|
|
|
tmp = tmp >> 16;
|
|
while (tmp > 0) {
|
|
tmp--;
|
|
dig = (duk_small_uint_t) ((cp >> (4 * tmp)) & 0x0f);
|
|
duk_hbuffer_append_byte(js_ctx->thr, js_ctx->h_buf, duk_lc_digits[dig]);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_xutf8(duk_json_enc_ctx *js_ctx, duk_uint_fast32_t cp) {
|
|
(void) duk_hbuffer_append_xutf8(js_ctx->thr, js_ctx->h_buf, cp);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_hstring(duk_json_enc_ctx *js_ctx, duk_hstring *h) {
|
|
DUK_ASSERT(h != NULL);
|
|
duk_hbuffer_append_bytes(js_ctx->thr,
|
|
js_ctx->h_buf,
|
|
(duk_uint8_t *) DUK_HSTRING_GET_DATA(h),
|
|
(duk_size_t) DUK_HSTRING_GET_BYTELEN(h));
|
|
}
|
|
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
DUK_LOCAL void duk__emit_cstring(duk_json_enc_ctx *js_ctx, const char *p) {
|
|
DUK_ASSERT(p != NULL);
|
|
(void) duk_hbuffer_append_cstring(js_ctx->thr, js_ctx->h_buf, p);
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__emit_stridx(duk_json_enc_ctx *js_ctx, duk_small_uint_t stridx) {
|
|
DUK_ASSERT_DISABLE(stridx >= 0); /* unsigned */
|
|
DUK_ASSERT(stridx < DUK_HEAP_NUM_STRINGS);
|
|
duk__emit_hstring(js_ctx, DUK_HTHREAD_GET_STRING(js_ctx->thr, stridx));
|
|
}
|
|
|
|
/* Check whether key quotes would be needed (custom encoding). */
|
|
DUK_LOCAL duk_bool_t duk__enc_key_quotes_needed(duk_hstring *h_key) {
|
|
const duk_uint8_t *p, *p_start, *p_end;
|
|
duk_small_uint_t ch;
|
|
|
|
DUK_ASSERT(h_key != NULL);
|
|
p_start = DUK_HSTRING_GET_DATA(h_key);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_key);
|
|
p = p_start;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__enc_key_quotes_needed: h_key=%!O, p_start=%p, p_end=%p, p=%p",
|
|
(duk_heaphdr *) h_key, (void *) p_start, (void *) p_end, (void *) p));
|
|
|
|
/* Since we only accept ASCII characters, there is no need for
|
|
* actual decoding. A non-ASCII character will be >= 0x80 which
|
|
* causes a false return value immediately.
|
|
*/
|
|
|
|
if (p == p_end) {
|
|
/* Zero length string is not accepted without quotes */
|
|
return 1;
|
|
}
|
|
|
|
while (p < p_end) {
|
|
ch = (duk_small_uint_t) (*p);
|
|
|
|
/* Accept ASCII IdentifierStart and IdentifierPart if not first char.
|
|
* Function selection is a bit uncommon.
|
|
*/
|
|
if ((p > p_start ? duk_unicode_is_identifier_part :
|
|
duk_unicode_is_identifier_start) ((duk_codepoint_t) ch)) {
|
|
p++;
|
|
continue;
|
|
}
|
|
|
|
/* all non-ASCII characters also come here (first byte >= 0x80) */
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The Quote(value) operation: quote a string.
|
|
*
|
|
* Stack policy: [ ] -> [ ].
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint8_t duk__quote_esc[14] = {
|
|
DUK_ASC_NUL, DUK_ASC_NUL, DUK_ASC_NUL, DUK_ASC_NUL,
|
|
DUK_ASC_NUL, DUK_ASC_NUL, DUK_ASC_NUL, DUK_ASC_NUL,
|
|
DUK_ASC_LC_B, DUK_ASC_LC_T, DUK_ASC_LC_N, DUK_ASC_NUL,
|
|
DUK_ASC_LC_F, DUK_ASC_LC_R
|
|
};
|
|
|
|
DUK_LOCAL void duk__enc_quote_string(duk_json_enc_ctx *js_ctx, duk_hstring *h_str) {
|
|
duk_hthread *thr = js_ctx->thr;
|
|
const duk_uint8_t *p, *p_start, *p_end, *p_tmp;
|
|
duk_ucodepoint_t cp; /* typed for duk_unicode_decode_xutf8() */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__enc_quote_string: h_str=%!O", (duk_heaphdr *) h_str));
|
|
|
|
DUK_ASSERT(h_str != NULL);
|
|
p_start = DUK_HSTRING_GET_DATA(h_str);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_str);
|
|
p = p_start;
|
|
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_DOUBLEQUOTE);
|
|
|
|
while (p < p_end) {
|
|
cp = *p;
|
|
|
|
if (DUK_LIKELY(cp <= 0x7f)) {
|
|
/* ascii fast path: avoid decoding utf-8 */
|
|
p++;
|
|
if (cp == 0x22 || cp == 0x5c) {
|
|
/* double quote or backslash */
|
|
DUK__EMIT_2(js_ctx, DUK_ASC_BACKSLASH, cp);
|
|
} else if (cp < 0x20) {
|
|
duk_uint_fast8_t esc_char;
|
|
|
|
/* This approach is a bit shorter than a straight
|
|
* if-else-ladder and also a bit faster.
|
|
*/
|
|
if (cp < (sizeof(duk__quote_esc) / sizeof(duk_uint8_t)) &&
|
|
(esc_char = duk__quote_esc[cp]) != 0) {
|
|
DUK__EMIT_2(js_ctx, DUK_ASC_BACKSLASH, esc_char);
|
|
} else {
|
|
DUK__EMIT_ESC_AUTO(js_ctx, cp);
|
|
}
|
|
} else if (cp == 0x7f && js_ctx->flag_ascii_only) {
|
|
DUK__EMIT_ESC_AUTO(js_ctx, cp);
|
|
} else {
|
|
/* any other printable -> as is */
|
|
DUK__EMIT_1(js_ctx, cp);
|
|
}
|
|
} else {
|
|
/* slow path decode */
|
|
|
|
/* If XUTF-8 decoding fails, treat the offending byte as a codepoint directly
|
|
* and go forward one byte. This is of course very lossy, but allows some kind
|
|
* of output to be produced even for internal strings which don't conform to
|
|
* XUTF-8. All standard Ecmascript strings are always CESU-8, so this behavior
|
|
* does not violate the Ecmascript specification. The behavior is applied to
|
|
* all modes, including Ecmascript standard JSON. Because the current XUTF-8
|
|
* decoding is not very strict, this behavior only really affects initial bytes
|
|
* and truncated codepoints.
|
|
*
|
|
* XXX: another alternative would be to scan forwards to start of next codepoint
|
|
* (or end of input) and emit just one replacement codepoint.
|
|
*/
|
|
|
|
p_tmp = p;
|
|
if (!duk_unicode_decode_xutf8(thr, &p, p_start, p_end, &cp)) {
|
|
/* Decode failed. */
|
|
cp = *p_tmp;
|
|
p = p_tmp + 1;
|
|
}
|
|
|
|
#ifdef DUK_USE_NONSTD_JSON_ESC_U2028_U2029
|
|
if (js_ctx->flag_ascii_only || cp == 0x2028 || cp == 0x2029) {
|
|
#else
|
|
if (js_ctx->flag_ascii_only) {
|
|
#endif
|
|
DUK__EMIT_ESC_AUTO(js_ctx, cp);
|
|
} else {
|
|
/* as is */
|
|
DUK__EMIT_XUTF8(js_ctx, cp);
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_DOUBLEQUOTE);
|
|
}
|
|
|
|
/* Shared entry handling for object/array serialization: indent/stepback,
|
|
* loop detection.
|
|
*/
|
|
DUK_LOCAL void duk__enc_objarr_entry(duk_json_enc_ctx *js_ctx, duk_hstring **h_stepback, duk_hstring **h_indent, duk_idx_t *entry_top) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hobject *h_target;
|
|
|
|
*entry_top = duk_get_top(ctx);
|
|
|
|
duk_require_stack(ctx, DUK_JSON_ENC_REQSTACK);
|
|
|
|
/* loop check */
|
|
|
|
h_target = duk_get_hobject(ctx, -1); /* object or array */
|
|
DUK_ASSERT(h_target != NULL);
|
|
duk_push_sprintf(ctx, DUK_STR_FMT_PTR, (void *) h_target);
|
|
|
|
duk_dup_top(ctx); /* -> [ ... voidp voidp ] */
|
|
if (duk_has_prop(ctx, js_ctx->idx_loop)) {
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_TYPE_ERROR, DUK_STR_CYCLIC_INPUT);
|
|
}
|
|
duk_push_true(ctx); /* -> [ ... voidp true ] */
|
|
duk_put_prop(ctx, js_ctx->idx_loop); /* -> [ ... ] */
|
|
|
|
/* c recursion check */
|
|
|
|
DUK_ASSERT(js_ctx->recursion_depth >= 0);
|
|
DUK_ASSERT(js_ctx->recursion_depth <= js_ctx->recursion_limit);
|
|
if (js_ctx->recursion_depth >= js_ctx->recursion_limit) {
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_RANGE_ERROR, DUK_STR_JSONENC_RECLIMIT);
|
|
}
|
|
js_ctx->recursion_depth++;
|
|
|
|
/* figure out indent and stepback */
|
|
|
|
*h_indent = NULL;
|
|
*h_stepback = NULL;
|
|
if (js_ctx->h_gap != NULL) {
|
|
DUK_ASSERT(js_ctx->h_indent != NULL);
|
|
|
|
*h_stepback = js_ctx->h_indent;
|
|
duk_push_hstring(ctx, js_ctx->h_indent);
|
|
duk_push_hstring(ctx, js_ctx->h_gap);
|
|
duk_concat(ctx, 2);
|
|
js_ctx->h_indent = duk_get_hstring(ctx, -1);
|
|
*h_indent = js_ctx->h_indent;
|
|
DUK_ASSERT(js_ctx->h_indent != NULL);
|
|
|
|
/* The new indent string is left at value stack top, and will
|
|
* be popped by the shared exit handler.
|
|
*/
|
|
} else {
|
|
DUK_ASSERT(js_ctx->h_indent == NULL);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("shared entry finished: top=%ld, loop=%!T",
|
|
(long) duk_get_top(ctx), (duk_tval *) duk_get_tval(ctx, js_ctx->idx_loop)));
|
|
}
|
|
|
|
/* Shared exit handling for object/array serialization. */
|
|
DUK_LOCAL void duk__enc_objarr_exit(duk_json_enc_ctx *js_ctx, duk_hstring **h_stepback, duk_hstring **h_indent, duk_idx_t *entry_top) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hobject *h_target;
|
|
|
|
DUK_UNREF(h_indent);
|
|
|
|
if (js_ctx->h_gap != NULL) {
|
|
DUK_ASSERT(js_ctx->h_indent != NULL);
|
|
DUK_ASSERT(*h_stepback != NULL);
|
|
DUK_ASSERT(*h_indent != NULL);
|
|
|
|
js_ctx->h_indent = *h_stepback; /* previous js_ctx->h_indent */
|
|
|
|
/* Note: we don't need to pop anything because the duk_set_top()
|
|
* at the end will take care of it.
|
|
*/
|
|
} else {
|
|
DUK_ASSERT(js_ctx->h_indent == NULL);
|
|
DUK_ASSERT(*h_stepback == NULL);
|
|
DUK_ASSERT(*h_indent == NULL);
|
|
}
|
|
|
|
/* c recursion check */
|
|
|
|
DUK_ASSERT(js_ctx->recursion_depth > 0);
|
|
DUK_ASSERT(js_ctx->recursion_depth <= js_ctx->recursion_limit);
|
|
js_ctx->recursion_depth--;
|
|
|
|
/* loop check */
|
|
|
|
h_target = duk_get_hobject(ctx, *entry_top - 1); /* original target at entry_top - 1 */
|
|
DUK_ASSERT(h_target != NULL);
|
|
duk_push_sprintf(ctx, DUK_STR_FMT_PTR, (void *) h_target);
|
|
|
|
duk_del_prop(ctx, js_ctx->idx_loop); /* -> [ ... ] */
|
|
|
|
/* restore stack top after unbalanced code paths */
|
|
duk_set_top(ctx, *entry_top);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("shared entry finished: top=%ld, loop=%!T",
|
|
(long) duk_get_top(ctx), (duk_tval *) duk_get_tval(ctx, js_ctx->idx_loop)));
|
|
}
|
|
|
|
/* The JO(value) operation: encode object.
|
|
*
|
|
* Stack policy: [ object ] -> [ object ].
|
|
*/
|
|
DUK_LOCAL void duk__enc_object(duk_json_enc_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hstring *h_stepback;
|
|
duk_hstring *h_indent;
|
|
duk_hstring *h_key;
|
|
duk_idx_t entry_top;
|
|
duk_idx_t idx_obj;
|
|
duk_idx_t idx_keys;
|
|
duk_bool_t first;
|
|
duk_bool_t undef;
|
|
duk_uarridx_t arr_len, i;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__enc_object: obj=%!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk__enc_objarr_entry(js_ctx, &h_stepback, &h_indent, &entry_top);
|
|
|
|
idx_obj = entry_top - 1;
|
|
|
|
if (js_ctx->idx_proplist >= 0) {
|
|
idx_keys = js_ctx->idx_proplist;
|
|
} else {
|
|
/* XXX: would be nice to enumerate an object at specified index */
|
|
duk_dup(ctx, idx_obj);
|
|
(void) duk_hobject_get_enumerated_keys(ctx, DUK_ENUM_OWN_PROPERTIES_ONLY /*flags*/); /* [ ... target ] -> [ ... target keys ] */
|
|
idx_keys = duk_require_normalize_index(ctx, -1);
|
|
/* leave stack unbalanced on purpose */
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("idx_keys=%ld, h_keys=%!T",
|
|
(long) idx_keys, (duk_tval *) duk_get_tval(ctx, idx_keys)));
|
|
|
|
/* Steps 8-10 have been merged to avoid a "partial" variable. */
|
|
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_LCURLY);
|
|
|
|
/* XXX: keys is an internal object with all keys to be processed
|
|
* in its (gapless) array part. Because nobody can touch the keys
|
|
* object, we could iterate its array part directly (keeping in mind
|
|
* that it can be reallocated).
|
|
*/
|
|
|
|
arr_len = (duk_uarridx_t) duk_get_length(ctx, idx_keys);
|
|
first = 1;
|
|
for (i = 0; i < arr_len; i++) {
|
|
duk_get_prop_index(ctx, idx_keys, i); /* -> [ ... key ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("object property loop: holder=%!T, key=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, idx_obj),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
undef = duk__enc_value1(js_ctx, idx_obj);
|
|
if (undef) {
|
|
/* Value would yield 'undefined', so skip key altogether.
|
|
* Side effects have already happened.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/* [ ... key val ] */
|
|
|
|
if (first) {
|
|
first = 0;
|
|
} else {
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_COMMA);
|
|
}
|
|
if (h_indent != NULL) {
|
|
DUK__EMIT_1(js_ctx, 0x0a);
|
|
DUK__EMIT_HSTR(js_ctx, h_indent);
|
|
}
|
|
|
|
h_key = duk_get_hstring(ctx, -2);
|
|
DUK_ASSERT(h_key != NULL);
|
|
if (js_ctx->flag_avoid_key_quotes && !duk__enc_key_quotes_needed(h_key)) {
|
|
/* emit key as is */
|
|
DUK__EMIT_HSTR(js_ctx, h_key);
|
|
} else {
|
|
duk__enc_quote_string(js_ctx, h_key);
|
|
}
|
|
|
|
if (h_indent != NULL) {
|
|
DUK__EMIT_2(js_ctx, DUK_ASC_COLON, DUK_ASC_SPACE);
|
|
} else {
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_COLON);
|
|
}
|
|
|
|
/* [ ... key val ] */
|
|
|
|
duk__enc_value2(js_ctx); /* -> [ ... ] */
|
|
}
|
|
|
|
if (!first) {
|
|
if (h_stepback != NULL) {
|
|
DUK_ASSERT(h_indent != NULL);
|
|
DUK__EMIT_1(js_ctx, 0x0a);
|
|
DUK__EMIT_HSTR(js_ctx, h_stepback);
|
|
}
|
|
}
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_RCURLY);
|
|
|
|
duk__enc_objarr_exit(js_ctx, &h_stepback, &h_indent, &entry_top);
|
|
|
|
DUK_ASSERT_TOP(ctx, entry_top);
|
|
}
|
|
|
|
/* The JA(value) operation: encode array.
|
|
*
|
|
* Stack policy: [ array ] -> [ array ].
|
|
*/
|
|
DUK_LOCAL void duk__enc_array(duk_json_enc_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hstring *h_stepback;
|
|
duk_hstring *h_indent;
|
|
duk_idx_t entry_top;
|
|
duk_idx_t idx_arr;
|
|
duk_bool_t undef;
|
|
duk_uarridx_t i, arr_len;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__enc_array: array=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk__enc_objarr_entry(js_ctx, &h_stepback, &h_indent, &entry_top);
|
|
|
|
idx_arr = entry_top - 1;
|
|
|
|
/* Steps 8-10 have been merged to avoid a "partial" variable. */
|
|
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_LBRACKET);
|
|
|
|
arr_len = (duk_uarridx_t) duk_get_length(ctx, idx_arr);
|
|
for (i = 0; i < arr_len; i++) {
|
|
DUK_DDD(DUK_DDDPRINT("array entry loop: array=%!T, h_indent=%!O, h_stepback=%!O, index=%ld, arr_len=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, idx_arr), (duk_heaphdr *) h_indent,
|
|
(duk_heaphdr *) h_stepback, (long) i, (long) arr_len));
|
|
|
|
if (i > 0) {
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_COMMA);
|
|
}
|
|
if (h_indent != NULL) {
|
|
DUK__EMIT_1(js_ctx, 0x0a);
|
|
DUK__EMIT_HSTR(js_ctx, h_indent);
|
|
}
|
|
|
|
/* XXX: duk_push_uint_string() */
|
|
duk_push_uint(ctx, (duk_uint_t) i);
|
|
duk_to_string(ctx, -1); /* -> [ ... key ] */
|
|
undef = duk__enc_value1(js_ctx, idx_arr);
|
|
|
|
if (undef) {
|
|
DUK__EMIT_STRIDX(js_ctx, DUK_STRIDX_LC_NULL);
|
|
} else {
|
|
/* [ ... key val ] */
|
|
duk__enc_value2(js_ctx);
|
|
}
|
|
}
|
|
|
|
if (arr_len > 0) {
|
|
if (h_stepback != NULL) {
|
|
DUK_ASSERT(h_indent != NULL);
|
|
DUK__EMIT_1(js_ctx, 0x0a);
|
|
DUK__EMIT_HSTR(js_ctx, h_stepback);
|
|
}
|
|
}
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_RBRACKET);
|
|
|
|
duk__enc_objarr_exit(js_ctx, &h_stepback, &h_indent, &entry_top);
|
|
|
|
DUK_ASSERT_TOP(ctx, entry_top);
|
|
}
|
|
|
|
/* The Str(key, holder) operation: encode value, steps 1-4.
|
|
*
|
|
* Returns non-zero if the value between steps 4 and 5 would yield an
|
|
* 'undefined' final result. This is useful in JO() because we need to
|
|
* get the side effects out, but need to know whether or not a key will
|
|
* be omitted from the serialization.
|
|
*
|
|
* Stack policy: [ ... key ] -> [ ... key val ] if retval == 0.
|
|
* -> [ ... ] if retval != 0.
|
|
*/
|
|
DUK_LOCAL duk_bool_t duk__enc_value1(duk_json_enc_ctx *js_ctx, duk_idx_t idx_holder) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hobject *h;
|
|
duk_tval *tv;
|
|
duk_small_int_t c;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__enc_value1: idx_holder=%ld, holder=%!T, key=%!T",
|
|
(long) idx_holder, (duk_tval *) duk_get_tval(ctx, idx_holder),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk_dup_top(ctx); /* -> [ ... key key ] */
|
|
duk_get_prop(ctx, idx_holder); /* -> [ ... key val ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("value=%!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
h = duk_get_hobject_or_lfunc_coerce(ctx, -1);
|
|
if (h != NULL) {
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_TO_JSON);
|
|
h = duk_get_hobject_or_lfunc_coerce(ctx, -1); /* toJSON() can also be a lightfunc */
|
|
|
|
if (h != NULL && DUK_HOBJECT_IS_CALLABLE(h)) {
|
|
DUK_DDD(DUK_DDDPRINT("value is object, has callable toJSON() -> call it"));
|
|
duk_dup(ctx, -2); /* -> [ ... key val toJSON val ] */
|
|
duk_dup(ctx, -4); /* -> [ ... key val toJSON val key ] */
|
|
duk_call_method(ctx, 1); /* -> [ ... key val val' ] */
|
|
duk_remove(ctx, -2); /* -> [ ... key val' ] */
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
|
|
/* [ ... key val ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("value=%!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
if (js_ctx->h_replacer) {
|
|
/* XXX: here a "slice copy" would be useful */
|
|
DUK_DDD(DUK_DDDPRINT("replacer is set, call replacer"));
|
|
duk_push_hobject(ctx, js_ctx->h_replacer); /* -> [ ... key val replacer ] */
|
|
duk_dup(ctx, idx_holder); /* -> [ ... key val replacer holder ] */
|
|
duk_dup(ctx, -4); /* -> [ ... key val replacer holder key ] */
|
|
duk_dup(ctx, -4); /* -> [ ... key val replacer holder key val ] */
|
|
duk_call_method(ctx, 2); /* -> [ ... key val val' ] */
|
|
duk_remove(ctx, -2); /* -> [ ... key val' ] */
|
|
}
|
|
|
|
/* [ ... key val ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("value=%!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
tv = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
c = (duk_small_int_t) DUK_HOBJECT_GET_CLASS_NUMBER(h);
|
|
switch ((int) c) {
|
|
case DUK_HOBJECT_CLASS_NUMBER:
|
|
DUK_DDD(DUK_DDDPRINT("value is a Number object -> coerce with ToNumber()"));
|
|
duk_to_number(ctx, -1);
|
|
break;
|
|
case DUK_HOBJECT_CLASS_STRING:
|
|
DUK_DDD(DUK_DDDPRINT("value is a String object -> coerce with ToString()"));
|
|
duk_to_string(ctx, -1);
|
|
break;
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
case DUK_HOBJECT_CLASS_BUFFER:
|
|
case DUK_HOBJECT_CLASS_POINTER:
|
|
#endif
|
|
case DUK_HOBJECT_CLASS_BOOLEAN:
|
|
DUK_DDD(DUK_DDDPRINT("value is a Boolean/Buffer/Pointer object -> get internal value"));
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
duk_remove(ctx, -2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* [ ... key val ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("value=%!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
if (duk_check_type_mask(ctx, -1, js_ctx->mask_for_undefined)) {
|
|
/* will result in undefined */
|
|
DUK_DDD(DUK_DDDPRINT("-> will result in undefined (type mask check)"));
|
|
goto undef;
|
|
}
|
|
|
|
/* functions are detected specially */
|
|
h = duk_get_hobject(ctx, -1);
|
|
if (h != NULL && DUK_HOBJECT_IS_CALLABLE(h)) {
|
|
if (js_ctx->flags & (DUK_JSON_FLAG_EXT_CUSTOM |
|
|
DUK_JSON_FLAG_EXT_COMPATIBLE)) {
|
|
/* function will be serialized to custom format */
|
|
} else {
|
|
/* functions are not serialized, results in undefined */
|
|
DUK_DDD(DUK_DDDPRINT("-> will result in undefined (function)"));
|
|
goto undef;
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> will not result in undefined"));
|
|
return 0;
|
|
|
|
undef:
|
|
duk_pop_2(ctx);
|
|
return 1;
|
|
}
|
|
|
|
/* The Str(key, holder) operation: encode value, steps 5-10.
|
|
*
|
|
* This must not be called unless duk__enc_value1() returns non-zero.
|
|
* If so, this is guaranteed to produce a non-undefined result.
|
|
* Non-standard encodings (e.g. for undefined) are only used if
|
|
* duk__enc_value1() indicates they are accepted; they're not
|
|
* checked or asserted here again.
|
|
*
|
|
* Stack policy: [ ... key val ] -> [ ... ].
|
|
*/
|
|
DUK_LOCAL void duk__enc_value2(duk_json_enc_ctx *js_ctx) {
|
|
duk_context *ctx = (duk_context *) js_ctx->thr;
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__enc_value2: key=%!T, val=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ ... key val ] */
|
|
|
|
tv = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
/* When JX/JC not in use, duk__enc_value1 will block undefined values. */
|
|
case DUK_TAG_UNDEFINED: {
|
|
DUK__EMIT_STRIDX(js_ctx, js_ctx->stridx_custom_undefined);
|
|
break;
|
|
}
|
|
#endif
|
|
case DUK_TAG_NULL: {
|
|
DUK__EMIT_STRIDX(js_ctx, DUK_STRIDX_LC_NULL);
|
|
break;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
DUK__EMIT_STRIDX(js_ctx, DUK_TVAL_GET_BOOLEAN(tv) ?
|
|
DUK_STRIDX_TRUE : DUK_STRIDX_FALSE);
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
/* When JX/JC not in use, duk__enc_value1 will block pointer values. */
|
|
case DUK_TAG_POINTER: {
|
|
char buf[64]; /* XXX: how to figure correct size? */
|
|
const char *fmt;
|
|
void *ptr = DUK_TVAL_GET_POINTER(tv);
|
|
|
|
DUK_MEMZERO(buf, sizeof(buf));
|
|
|
|
/* The #ifdef clutter here needs to handle the three cases:
|
|
* (1) JX+JC, (2) JX only, (3) JC only.
|
|
*/
|
|
#if defined(DUK_USE_JX) && defined(DUK_USE_JC)
|
|
if (js_ctx->flag_ext_custom)
|
|
#endif
|
|
#if defined(DUK_USE_JX)
|
|
{
|
|
fmt = ptr ? "(%p)" : "(null)";
|
|
}
|
|
#endif
|
|
#if defined(DUK_USE_JX) && defined(DUK_USE_JC)
|
|
else
|
|
#endif
|
|
#if defined(DUK_USE_JC)
|
|
{
|
|
fmt = ptr ? "{\"_ptr\":\"%p\"}" : "{\"_ptr\":\"null\"}";
|
|
}
|
|
#endif
|
|
|
|
/* When ptr == NULL, the format argument is unused. */
|
|
DUK_SNPRINTF(buf, sizeof(buf) - 1, fmt, ptr); /* must not truncate */
|
|
DUK__EMIT_CSTR(js_ctx, buf);
|
|
break;
|
|
}
|
|
#endif /* DUK_USE_JX || DUK_USE_JC */
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
duk__enc_quote_string(js_ctx, h);
|
|
break;
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
duk_hobject *h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
if (DUK_HOBJECT_IS_CALLABLE(h)) {
|
|
/* We only get here when doing non-standard JSON encoding */
|
|
DUK_ASSERT(js_ctx->flag_ext_custom || js_ctx->flag_ext_compatible);
|
|
DUK__EMIT_STRIDX(js_ctx, js_ctx->stridx_custom_function);
|
|
} else /* continues below */
|
|
#endif
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h) == DUK_HOBJECT_CLASS_ARRAY) {
|
|
duk__enc_array(js_ctx);
|
|
} else {
|
|
duk__enc_object(js_ctx);
|
|
}
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
/* When JX/JC not in use, duk__enc_value1 will block buffer values. */
|
|
case DUK_TAG_BUFFER: {
|
|
/* Buffer values are encoded in (lowercase) hex to make the
|
|
* binary data readable. Base64 or similar would be more
|
|
* compact but less readable, and the point of JX/JC
|
|
* variants is to be as useful to a programmer as possible.
|
|
*/
|
|
|
|
/* The #ifdef clutter here needs to handle the three cases:
|
|
* (1) JX+JC, (2) JX only, (3) JC only.
|
|
*/
|
|
#if defined(DUK_USE_JX) && defined(DUK_USE_JC)
|
|
if (js_ctx->flag_ext_custom)
|
|
#endif
|
|
#if defined(DUK_USE_JX)
|
|
{
|
|
duk_uint8_t *p, *p_end;
|
|
duk_small_uint_t x;
|
|
duk_hbuffer *h;
|
|
|
|
h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
p = (duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h);
|
|
p_end = p + DUK_HBUFFER_GET_SIZE(h);
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_PIPE);
|
|
while (p < p_end) {
|
|
x = *p++;
|
|
duk_hbuffer_append_byte(js_ctx->thr, js_ctx->h_buf, duk_lc_digits[(x >> 4) & 0x0f]);
|
|
duk_hbuffer_append_byte(js_ctx->thr, js_ctx->h_buf, duk_lc_digits[x & 0x0f]);
|
|
}
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_PIPE);
|
|
}
|
|
#endif
|
|
#if defined(DUK_USE_JX) && defined(DUK_USE_JC)
|
|
else
|
|
#endif
|
|
#if defined(DUK_USE_JC)
|
|
{
|
|
DUK_ASSERT(js_ctx->flag_ext_compatible);
|
|
duk_hex_encode(ctx, -1);
|
|
DUK__EMIT_CSTR(js_ctx, "{\"_buf\":");
|
|
duk__enc_quote_string(js_ctx, duk_require_hstring(ctx, -1));
|
|
DUK__EMIT_1(js_ctx, DUK_ASC_RCURLY);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
#endif /* DUK_USE_JX || DUK_USE_JC */
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
/* We only get here when doing non-standard JSON encoding */
|
|
DUK_ASSERT(js_ctx->flag_ext_custom || js_ctx->flag_ext_compatible);
|
|
DUK__EMIT_STRIDX(js_ctx, js_ctx->stridx_custom_function);
|
|
#else
|
|
/* Standard JSON omits functions */
|
|
DUK_UNREACHABLE();
|
|
#endif
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
duk_double_t d;
|
|
duk_small_int_t c;
|
|
duk_small_int_t s;
|
|
duk_small_uint_t stridx;
|
|
duk_small_uint_t n2s_flags;
|
|
duk_hstring *h_str;
|
|
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
d = DUK_TVAL_GET_NUMBER(tv);
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(d);
|
|
s = (duk_small_int_t) DUK_SIGNBIT(d);
|
|
DUK_UNREF(s);
|
|
|
|
if (DUK_LIKELY(!(c == DUK_FP_INFINITE || c == DUK_FP_NAN))) {
|
|
DUK_ASSERT(DUK_ISFINITE(d));
|
|
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
/* Negative zero needs special handling in JX/JC because
|
|
* it would otherwise serialize to '0', not '-0'.
|
|
*/
|
|
if (DUK_UNLIKELY(c == DUK_FP_ZERO && s != 0 &&
|
|
(js_ctx->flag_ext_custom || js_ctx->flag_ext_compatible))) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_MINUS_ZERO); /* '-0' */
|
|
} else
|
|
#endif /* DUK_USE_JX || DUK_USE_JC */
|
|
{
|
|
n2s_flags = 0;
|
|
/* [ ... number ] -> [ ... string ] */
|
|
duk_numconv_stringify(ctx, 10 /*radix*/, 0 /*digits*/, n2s_flags);
|
|
}
|
|
h_str = duk_to_hstring(ctx, -1);
|
|
DUK_ASSERT(h_str != NULL);
|
|
DUK__EMIT_HSTR(js_ctx, h_str);
|
|
break;
|
|
}
|
|
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
if (!(js_ctx->flags & (DUK_JSON_FLAG_EXT_CUSTOM |
|
|
DUK_JSON_FLAG_EXT_COMPATIBLE))) {
|
|
stridx = DUK_STRIDX_LC_NULL;
|
|
} else if (c == DUK_FP_NAN) {
|
|
stridx = js_ctx->stridx_custom_nan;
|
|
} else if (s == 0) {
|
|
stridx = js_ctx->stridx_custom_posinf;
|
|
} else {
|
|
stridx = js_ctx->stridx_custom_neginf;
|
|
}
|
|
#else
|
|
stridx = DUK_STRIDX_LC_NULL;
|
|
#endif
|
|
DUK__EMIT_STRIDX(js_ctx, stridx);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* [ ... key val ] -> [ ... ] */
|
|
|
|
duk_pop_2(ctx);
|
|
}
|
|
|
|
/* E5 Section 15.12.3, main algorithm, step 4.b.ii steps 1-4. */
|
|
DUK_LOCAL duk_bool_t duk__enc_allow_into_proplist(duk_tval *tv) {
|
|
duk_hobject *h;
|
|
duk_small_int_t c;
|
|
|
|
DUK_ASSERT(tv != NULL);
|
|
if (DUK_TVAL_IS_STRING(tv) || DUK_TVAL_IS_NUMBER(tv)) {
|
|
return 1;
|
|
} else if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
c = (duk_small_int_t) DUK_HOBJECT_GET_CLASS_NUMBER(h);
|
|
if (c == DUK_HOBJECT_CLASS_STRING || c == DUK_HOBJECT_CLASS_NUMBER) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Top level wrappers
|
|
*/
|
|
|
|
DUK_INTERNAL
|
|
void duk_bi_json_parse_helper(duk_context *ctx,
|
|
duk_idx_t idx_value,
|
|
duk_idx_t idx_reviver,
|
|
duk_small_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_json_dec_ctx js_ctx_alloc;
|
|
duk_json_dec_ctx *js_ctx = &js_ctx_alloc;
|
|
duk_hstring *h_text;
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_idx_t entry_top = duk_get_top(ctx);
|
|
#endif
|
|
|
|
/* negative top-relative indices not allowed now */
|
|
DUK_ASSERT(idx_value == DUK_INVALID_INDEX || idx_value >= 0);
|
|
DUK_ASSERT(idx_reviver == DUK_INVALID_INDEX || idx_reviver >= 0);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("JSON parse start: text=%!T, reviver=%!T, flags=0x%08lx, stack_top=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, idx_value),
|
|
(duk_tval *) duk_get_tval(ctx, idx_reviver),
|
|
(unsigned long) flags,
|
|
(long) duk_get_top(ctx)));
|
|
|
|
DUK_MEMZERO(&js_ctx_alloc, sizeof(js_ctx_alloc));
|
|
js_ctx->thr = thr;
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
/* nothing now */
|
|
#endif
|
|
js_ctx->recursion_limit = DUK_JSON_DEC_RECURSION_LIMIT;
|
|
|
|
/* Flag handling currently assumes that flags are consistent. This is OK
|
|
* because the call sites are now strictly controlled.
|
|
*/
|
|
|
|
js_ctx->flags = flags;
|
|
#ifdef DUK_USE_JX
|
|
js_ctx->flag_ext_custom = flags & DUK_JSON_FLAG_EXT_CUSTOM;
|
|
#endif
|
|
#ifdef DUK_USE_JC
|
|
js_ctx->flag_ext_compatible = flags & DUK_JSON_FLAG_EXT_COMPATIBLE;
|
|
#endif
|
|
|
|
h_text = duk_to_hstring(ctx, idx_value); /* coerce in-place */
|
|
DUK_ASSERT(h_text != NULL);
|
|
|
|
js_ctx->p_start = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h_text);
|
|
js_ctx->p = js_ctx->p_start;
|
|
js_ctx->p_end = ((duk_uint8_t *) DUK_HSTRING_GET_DATA(h_text)) +
|
|
DUK_HSTRING_GET_BYTELEN(h_text);
|
|
|
|
duk__dec_value(js_ctx); /* -> [ ... value ] */
|
|
|
|
/* Trailing whitespace has been eaten by duk__dec_value(), so if
|
|
* we're not at end of input here, it's a SyntaxError.
|
|
*/
|
|
|
|
if (js_ctx->p != js_ctx->p_end) {
|
|
duk__dec_syntax_error(js_ctx);
|
|
}
|
|
|
|
if (duk_is_callable(ctx, idx_reviver)) {
|
|
DUK_DDD(DUK_DDDPRINT("applying reviver: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, idx_reviver)));
|
|
|
|
js_ctx->idx_reviver = idx_reviver;
|
|
|
|
duk_push_object(ctx);
|
|
duk_dup(ctx, -2); /* -> [ ... val root val ] */
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_EMPTY_STRING); /* default attrs ok */
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING); /* -> [ ... val root "" ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("start reviver walk, root=%!T, name=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk__dec_reviver_walk(js_ctx); /* [ ... val root "" ] -> [ ... val val' ] */
|
|
duk_remove(ctx, -2); /* -> [ ... val' ] */
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("reviver does not exist or is not callable: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, idx_reviver)));
|
|
}
|
|
|
|
/* Final result is at stack top. */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("JSON parse end: text=%!T, reviver=%!T, flags=0x%08lx, result=%!T, stack_top=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, idx_value),
|
|
(duk_tval *) duk_get_tval(ctx, idx_reviver),
|
|
(unsigned long) flags,
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(long) duk_get_top(ctx)));
|
|
|
|
DUK_ASSERT(duk_get_top(ctx) == entry_top + 1);
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
void duk_bi_json_stringify_helper(duk_context *ctx,
|
|
duk_idx_t idx_value,
|
|
duk_idx_t idx_replacer,
|
|
duk_idx_t idx_space,
|
|
duk_small_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_json_enc_ctx js_ctx_alloc;
|
|
duk_json_enc_ctx *js_ctx = &js_ctx_alloc;
|
|
duk_hobject *h;
|
|
duk_bool_t undef;
|
|
duk_idx_t idx_holder;
|
|
duk_idx_t entry_top;
|
|
|
|
/* negative top-relative indices not allowed now */
|
|
DUK_ASSERT(idx_value == DUK_INVALID_INDEX || idx_value >= 0);
|
|
DUK_ASSERT(idx_replacer == DUK_INVALID_INDEX || idx_replacer >= 0);
|
|
DUK_ASSERT(idx_space == DUK_INVALID_INDEX || idx_space >= 0);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("JSON stringify start: value=%!T, replacer=%!T, space=%!T, flags=0x%08lx, stack_top=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, idx_value),
|
|
(duk_tval *) duk_get_tval(ctx, idx_replacer),
|
|
(duk_tval *) duk_get_tval(ctx, idx_space),
|
|
(unsigned long) flags,
|
|
(long) duk_get_top(ctx)));
|
|
|
|
entry_top = duk_get_top(ctx);
|
|
|
|
/*
|
|
* Context init
|
|
*/
|
|
|
|
DUK_MEMZERO(&js_ctx_alloc, sizeof(js_ctx_alloc));
|
|
js_ctx->thr = thr;
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
js_ctx->h_replacer = NULL;
|
|
js_ctx->h_gap = NULL;
|
|
js_ctx->h_indent = NULL;
|
|
#endif
|
|
js_ctx->idx_proplist = -1;
|
|
js_ctx->recursion_limit = DUK_JSON_ENC_RECURSION_LIMIT;
|
|
|
|
/* Flag handling currently assumes that flags are consistent. This is OK
|
|
* because the call sites are now strictly controlled.
|
|
*/
|
|
|
|
js_ctx->flags = flags;
|
|
js_ctx->flag_ascii_only = flags & DUK_JSON_FLAG_ASCII_ONLY;
|
|
js_ctx->flag_avoid_key_quotes = flags & DUK_JSON_FLAG_AVOID_KEY_QUOTES;
|
|
#ifdef DUK_USE_JX
|
|
js_ctx->flag_ext_custom = flags & DUK_JSON_FLAG_EXT_CUSTOM;
|
|
#endif
|
|
#ifdef DUK_USE_JC
|
|
js_ctx->flag_ext_compatible = flags & DUK_JSON_FLAG_EXT_COMPATIBLE;
|
|
#endif
|
|
|
|
/* The #ifdef clutter here handles the JX/JC enable/disable
|
|
* combinations properly.
|
|
*/
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
#if defined(DUK_USE_JX)
|
|
if (flags & DUK_JSON_FLAG_EXT_CUSTOM) {
|
|
js_ctx->stridx_custom_undefined = DUK_STRIDX_LC_UNDEFINED;
|
|
js_ctx->stridx_custom_nan = DUK_STRIDX_NAN;
|
|
js_ctx->stridx_custom_neginf = DUK_STRIDX_MINUS_INFINITY;
|
|
js_ctx->stridx_custom_posinf = DUK_STRIDX_INFINITY;
|
|
js_ctx->stridx_custom_function =
|
|
(flags & DUK_JSON_FLAG_AVOID_KEY_QUOTES) ?
|
|
DUK_STRIDX_JSON_EXT_FUNCTION2 :
|
|
DUK_STRIDX_JSON_EXT_FUNCTION1;
|
|
}
|
|
#endif /* DUK_USE_JX */
|
|
#if defined(DUK_USE_JX) && defined(DUK_USE_JC)
|
|
else
|
|
#endif /* DUK_USE_JX && DUK_USE_JC */
|
|
#if defined(DUK_USE_JC)
|
|
if (js_ctx->flags & DUK_JSON_FLAG_EXT_COMPATIBLE) {
|
|
js_ctx->stridx_custom_undefined = DUK_STRIDX_JSON_EXT_UNDEFINED;
|
|
js_ctx->stridx_custom_nan = DUK_STRIDX_JSON_EXT_NAN;
|
|
js_ctx->stridx_custom_neginf = DUK_STRIDX_JSON_EXT_NEGINF;
|
|
js_ctx->stridx_custom_posinf = DUK_STRIDX_JSON_EXT_POSINF;
|
|
js_ctx->stridx_custom_function = DUK_STRIDX_JSON_EXT_FUNCTION1;
|
|
}
|
|
#endif /* DUK_USE_JC */
|
|
#endif /* DUK_USE_JX || DUK_USE_JC */
|
|
|
|
#if defined(DUK_USE_JX) || defined(DUK_USE_JC)
|
|
if (js_ctx->flags & (DUK_JSON_FLAG_EXT_CUSTOM |
|
|
DUK_JSON_FLAG_EXT_COMPATIBLE)) {
|
|
DUK_ASSERT(js_ctx->mask_for_undefined == 0); /* already zero */
|
|
}
|
|
else
|
|
#endif /* DUK_USE_JX || DUK_USE_JC */
|
|
{
|
|
js_ctx->mask_for_undefined = DUK_TYPE_MASK_UNDEFINED |
|
|
DUK_TYPE_MASK_POINTER |
|
|
DUK_TYPE_MASK_BUFFER |
|
|
DUK_TYPE_MASK_LIGHTFUNC;
|
|
}
|
|
|
|
(void) duk_push_dynamic_buffer(ctx, 0);
|
|
js_ctx->h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(js_ctx->h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(js_ctx->h_buf));
|
|
|
|
js_ctx->idx_loop = duk_push_object_internal(ctx);
|
|
DUK_ASSERT(js_ctx->idx_loop >= 0);
|
|
|
|
/* [ ... buf loop ] */
|
|
|
|
/*
|
|
* Process replacer/proplist (2nd argument to JSON.stringify)
|
|
*/
|
|
|
|
h = duk_get_hobject(ctx, idx_replacer);
|
|
if (h != NULL) {
|
|
if (DUK_HOBJECT_IS_CALLABLE(h)) {
|
|
js_ctx->h_replacer = h;
|
|
} else if (DUK_HOBJECT_GET_CLASS_NUMBER(h) == DUK_HOBJECT_CLASS_ARRAY) {
|
|
/* Here the specification requires correct array index enumeration
|
|
* which is a bit tricky for sparse arrays (it is handled by the
|
|
* enum setup code). We now enumerate ancestors too, although the
|
|
* specification is not very clear on whether that is required.
|
|
*/
|
|
|
|
duk_uarridx_t plist_idx = 0;
|
|
duk_small_uint_t enum_flags;
|
|
|
|
js_ctx->idx_proplist = duk_push_array(ctx); /* XXX: array internal? */
|
|
|
|
enum_flags = DUK_ENUM_ARRAY_INDICES_ONLY |
|
|
DUK_ENUM_SORT_ARRAY_INDICES; /* expensive flag */
|
|
duk_enum(ctx, idx_replacer, enum_flags);
|
|
while (duk_next(ctx, -1 /*enum_index*/, 1 /*get_value*/)) {
|
|
/* [ ... proplist enum_obj key val ] */
|
|
if (duk__enc_allow_into_proplist(duk_get_tval(ctx, -1))) {
|
|
/* XXX: duplicates should be eliminated here */
|
|
DUK_DDD(DUK_DDDPRINT("proplist enum: key=%!T, val=%!T --> accept",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_to_string(ctx, -1); /* extra coercion of strings is OK */
|
|
duk_put_prop_index(ctx, -4, plist_idx); /* -> [ ... proplist enum_obj key ] */
|
|
plist_idx++;
|
|
duk_pop(ctx);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("proplist enum: key=%!T, val=%!T --> reject",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_pop_2(ctx);
|
|
}
|
|
}
|
|
duk_pop(ctx); /* pop enum */
|
|
|
|
/* [ ... proplist ] */
|
|
}
|
|
}
|
|
|
|
/* [ ... buf loop (proplist) ] */
|
|
|
|
/*
|
|
* Process space (3rd argument to JSON.stringify)
|
|
*/
|
|
|
|
h = duk_get_hobject(ctx, idx_space);
|
|
if (h != NULL) {
|
|
int c = DUK_HOBJECT_GET_CLASS_NUMBER(h);
|
|
if (c == DUK_HOBJECT_CLASS_NUMBER) {
|
|
duk_to_number(ctx, idx_space);
|
|
} else if (c == DUK_HOBJECT_CLASS_STRING) {
|
|
duk_to_string(ctx, idx_space);
|
|
}
|
|
}
|
|
|
|
if (duk_is_number(ctx, idx_space)) {
|
|
duk_small_int_t nspace;
|
|
/* spaces[] must be static to allow initializer with old compilers like BCC */
|
|
static const char spaces[10] = {
|
|
DUK_ASC_SPACE, DUK_ASC_SPACE, DUK_ASC_SPACE, DUK_ASC_SPACE,
|
|
DUK_ASC_SPACE, DUK_ASC_SPACE, DUK_ASC_SPACE, DUK_ASC_SPACE,
|
|
DUK_ASC_SPACE, DUK_ASC_SPACE
|
|
}; /* XXX: helper */
|
|
|
|
/* ToInteger() coercion; NaN -> 0, infinities are clamped to 0 and 10 */
|
|
nspace = (duk_small_int_t) duk_to_int_clamped(ctx, idx_space, 0 /*minval*/, 10 /*maxval*/);
|
|
DUK_ASSERT(nspace >= 0 && nspace <= 10);
|
|
|
|
duk_push_lstring(ctx, spaces, (duk_size_t) nspace);
|
|
js_ctx->h_gap = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(js_ctx->h_gap != NULL);
|
|
} else if (duk_is_string(ctx, idx_space)) {
|
|
/* XXX: substring in-place at idx_place? */
|
|
duk_dup(ctx, idx_space);
|
|
duk_substring(ctx, -1, 0, 10); /* clamp to 10 chars */
|
|
js_ctx->h_gap = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(js_ctx->h_gap != NULL);
|
|
} else {
|
|
/* nop */
|
|
}
|
|
|
|
if (js_ctx->h_gap != NULL) {
|
|
/* if gap is empty, behave as if not given at all */
|
|
if (DUK_HSTRING_GET_CHARLEN(js_ctx->h_gap) == 0) {
|
|
js_ctx->h_gap = NULL;
|
|
} else {
|
|
/* set 'indent' only if it will actually increase */
|
|
js_ctx->h_indent = DUK_HTHREAD_STRING_EMPTY_STRING(thr);
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT((js_ctx->h_gap == NULL && js_ctx->h_indent == NULL) ||
|
|
(js_ctx->h_gap != NULL && js_ctx->h_indent != NULL));
|
|
|
|
/* [ ... buf loop (proplist) (gap) ] */
|
|
|
|
/*
|
|
* Create wrapper object and serialize
|
|
*/
|
|
|
|
idx_holder = duk_push_object(ctx);
|
|
duk_dup(ctx, idx_value);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_EMPTY_STRING);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("before: flags=0x%08lx, buf=%!O, loop=%!T, replacer=%!O, "
|
|
"proplist=%!T, gap=%!O, indent=%!O, holder=%!T",
|
|
(unsigned long) js_ctx->flags,
|
|
(duk_heaphdr *) js_ctx->h_buf,
|
|
(duk_tval *) duk_get_tval(ctx, js_ctx->idx_loop),
|
|
(duk_heaphdr *) js_ctx->h_replacer,
|
|
(duk_tval *) (js_ctx->idx_proplist >= 0 ? duk_get_tval(ctx, js_ctx->idx_proplist) : NULL),
|
|
(duk_heaphdr *) js_ctx->h_gap,
|
|
(duk_heaphdr *) js_ctx->h_indent,
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* serialize the wrapper with empty string key */
|
|
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
|
|
|
|
/* [ ... buf loop (proplist) (gap) holder "" ] */
|
|
|
|
undef = duk__enc_value1(js_ctx, idx_holder); /* [ ... holder key ] -> [ ... holder key val ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("after: flags=0x%08lx, buf=%!O, loop=%!T, replacer=%!O, "
|
|
"proplist=%!T, gap=%!O, indent=%!O, holder=%!T",
|
|
(unsigned long) js_ctx->flags,
|
|
(duk_heaphdr *) js_ctx->h_buf,
|
|
(duk_tval *) duk_get_tval(ctx, js_ctx->idx_loop),
|
|
(duk_heaphdr *) js_ctx->h_replacer,
|
|
(duk_tval *) (js_ctx->idx_proplist >= 0 ? duk_get_tval(ctx, js_ctx->idx_proplist) : NULL),
|
|
(duk_heaphdr *) js_ctx->h_gap,
|
|
(duk_heaphdr *) js_ctx->h_indent,
|
|
(duk_tval *) duk_get_tval(ctx, -3)));
|
|
|
|
if (undef) {
|
|
/*
|
|
* Result is undefined
|
|
*/
|
|
|
|
duk_push_undefined(ctx);
|
|
} else {
|
|
/*
|
|
* Finish and convert buffer to result string
|
|
*/
|
|
|
|
duk__enc_value2(js_ctx); /* [ ... key val ] -> [ ... ] */
|
|
DUK_ASSERT(js_ctx->h_buf != NULL);
|
|
duk_push_hbuffer(ctx, (duk_hbuffer *) js_ctx->h_buf);
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
|
|
/* The stack has a variable shape here, so force it to the
|
|
* desired one explicitly.
|
|
*/
|
|
|
|
duk_replace(ctx, entry_top);
|
|
duk_set_top(ctx, entry_top + 1);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("JSON stringify end: value=%!T, replacer=%!T, space=%!T, "
|
|
"flags=0x%08lx, result=%!T, stack_top=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, idx_value),
|
|
(duk_tval *) duk_get_tval(ctx, idx_replacer),
|
|
(duk_tval *) duk_get_tval(ctx, idx_space),
|
|
(unsigned long) flags,
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(long) duk_get_top(ctx)));
|
|
|
|
DUK_ASSERT(duk_get_top(ctx) == entry_top + 1);
|
|
}
|
|
|
|
/*
|
|
* Entry points
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_json_object_parse(duk_context *ctx) {
|
|
duk_bi_json_parse_helper(ctx,
|
|
0 /*idx_value*/,
|
|
1 /*idx_replacer*/,
|
|
0 /*flags*/);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_json_object_stringify(duk_context *ctx) {
|
|
duk_bi_json_stringify_helper(ctx,
|
|
0 /*idx_value*/,
|
|
1 /*idx_replacer*/,
|
|
2 /*idx_space*/,
|
|
0 /*flags*/);
|
|
return 1;
|
|
}
|
|
#line 1 "duk_bi_logger.c"
|
|
/*
|
|
* Logging support
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* 3-letter log level strings */
|
|
DUK_LOCAL const duk_uint8_t duk__log_level_strings[] = {
|
|
(duk_uint8_t) DUK_ASC_UC_T, (duk_uint8_t) DUK_ASC_UC_R, (duk_uint8_t) DUK_ASC_UC_C,
|
|
(duk_uint8_t) DUK_ASC_UC_D, (duk_uint8_t) DUK_ASC_UC_B, (duk_uint8_t) DUK_ASC_UC_G,
|
|
(duk_uint8_t) DUK_ASC_UC_I, (duk_uint8_t) DUK_ASC_UC_N, (duk_uint8_t) DUK_ASC_UC_F,
|
|
(duk_uint8_t) DUK_ASC_UC_W, (duk_uint8_t) DUK_ASC_UC_R, (duk_uint8_t) DUK_ASC_UC_N,
|
|
(duk_uint8_t) DUK_ASC_UC_E, (duk_uint8_t) DUK_ASC_UC_R, (duk_uint8_t) DUK_ASC_UC_R,
|
|
(duk_uint8_t) DUK_ASC_UC_F, (duk_uint8_t) DUK_ASC_UC_T, (duk_uint8_t) DUK_ASC_UC_L
|
|
};
|
|
|
|
/* Constructor */
|
|
DUK_INTERNAL duk_ret_t duk_bi_logger_constructor(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t nargs;
|
|
|
|
/* Calling as a non-constructor is not meaningful. */
|
|
if (!duk_is_constructor_call(ctx)) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
nargs = duk_get_top(ctx);
|
|
duk_set_top(ctx, 1);
|
|
|
|
duk_push_this(ctx);
|
|
|
|
/* [ name this ] */
|
|
|
|
if (nargs == 0) {
|
|
/* Automatic defaulting of logger name from caller. This would
|
|
* work poorly with tail calls, but constructor calls are currently
|
|
* never tail calls, so tail calls are not an issue now.
|
|
*/
|
|
|
|
if (thr->callstack_top >= 2) {
|
|
duk_activation *act_caller = thr->callstack + thr->callstack_top - 2;
|
|
duk_hobject *func_caller;
|
|
|
|
func_caller = DUK_ACT_GET_FUNC(act_caller);
|
|
if (func_caller) {
|
|
/* Stripping the filename might be a good idea
|
|
* ("/foo/bar/quux.js" -> logger name "quux"),
|
|
* but now used verbatim.
|
|
*/
|
|
duk_push_hobject(ctx, func_caller);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_FILE_NAME);
|
|
duk_replace(ctx, 0);
|
|
}
|
|
}
|
|
}
|
|
/* the stack is unbalanced here on purpose; we only rely on the
|
|
* initial two values: [ name this ].
|
|
*/
|
|
|
|
if (duk_is_string(ctx, 0)) {
|
|
duk_dup(ctx, 0);
|
|
duk_put_prop_stridx(ctx, 1, DUK_STRIDX_LC_N);
|
|
} else {
|
|
/* don't set 'n' at all, inherited value is used as name */
|
|
}
|
|
|
|
duk_compact(ctx, 1);
|
|
|
|
return 0; /* keep default instance */
|
|
}
|
|
|
|
/* Default function to format objects. Tries to use toLogString() but falls
|
|
* back to toString(). Any errors are propagated out without catching.
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_logger_prototype_fmt(duk_context *ctx) {
|
|
if (duk_get_prop_stridx(ctx, 0, DUK_STRIDX_TO_LOG_STRING)) {
|
|
/* [ arg toLogString ] */
|
|
|
|
duk_dup(ctx, 0);
|
|
duk_call_method(ctx, 0);
|
|
|
|
/* [ arg result ] */
|
|
return 1;
|
|
}
|
|
|
|
/* [ arg undefined ] */
|
|
duk_pop(ctx);
|
|
duk_to_string(ctx, 0);
|
|
return 1;
|
|
}
|
|
|
|
/* Default function to write a formatted log line. Writes to stderr,
|
|
* appending a newline to the log line.
|
|
*
|
|
* The argument is a buffer whose visible size contains the log message.
|
|
* This function should avoid coercing the buffer to a string to avoid
|
|
* string table traffic.
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_logger_prototype_raw(duk_context *ctx) {
|
|
const char *data;
|
|
duk_size_t data_len;
|
|
|
|
DUK_UNREF(ctx);
|
|
DUK_UNREF(data);
|
|
DUK_UNREF(data_len);
|
|
|
|
#ifdef DUK_USE_FILE_IO
|
|
data = (const char *) duk_require_buffer(ctx, 0, &data_len);
|
|
DUK_FWRITE((const void *) data, 1, data_len, DUK_STDERR);
|
|
DUK_FPUTC((int) '\n', DUK_STDERR);
|
|
DUK_FFLUSH(DUK_STDERR);
|
|
#else
|
|
/* nop */
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
/* Log frontend shared helper, magic value indicates log level. Provides
|
|
* frontend functions: trace(), debug(), info(), warn(), error(), fatal().
|
|
* This needs to have small footprint, reasonable performance, minimal
|
|
* memory churn, etc.
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_logger_prototype_log_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_double_t now;
|
|
duk_small_int_t entry_lev = duk_get_current_magic(ctx);
|
|
duk_small_int_t logger_lev;
|
|
duk_int_t nargs;
|
|
duk_int_t i;
|
|
duk_size_t tot_len;
|
|
const duk_uint8_t *arg_str;
|
|
duk_size_t arg_len;
|
|
duk_uint8_t *buf, *p;
|
|
const duk_uint8_t *q;
|
|
duk_uint8_t date_buf[DUK_BI_DATE_ISO8601_BUFSIZE];
|
|
duk_size_t date_len;
|
|
duk_small_int_t rc;
|
|
|
|
DUK_ASSERT(entry_lev >= 0 && entry_lev <= 5);
|
|
|
|
/* XXX: sanitize to printable (and maybe ASCII) */
|
|
/* XXX: better multiline */
|
|
|
|
/*
|
|
* Logger arguments are:
|
|
*
|
|
* magic: log level (0-5)
|
|
* this: logger
|
|
* stack: plain log args
|
|
*
|
|
* We want to minimize memory churn so a two-pass approach
|
|
* is used: first pass formats arguments and computes final
|
|
* string length, second pass copies strings either into a
|
|
* pre-allocated and reused buffer (short messages) or into a
|
|
* newly allocated fixed buffer. If the backend function plays
|
|
* nice, it won't coerce the buffer to a string (and thus
|
|
* intern it).
|
|
*/
|
|
|
|
nargs = duk_get_top(ctx);
|
|
|
|
/* [ arg1 ... argN this ] */
|
|
|
|
/*
|
|
* Log level check
|
|
*/
|
|
|
|
duk_push_this(ctx);
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_LC_L);
|
|
logger_lev = (duk_small_int_t) duk_get_int(ctx, -1);
|
|
if (entry_lev < logger_lev) {
|
|
return 0;
|
|
}
|
|
/* log level could be popped but that's not necessary */
|
|
|
|
now = duk_bi_date_get_now(ctx);
|
|
duk_bi_date_format_timeval(now, date_buf);
|
|
date_len = DUK_STRLEN((const char *) date_buf);
|
|
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_LC_N);
|
|
duk_to_string(ctx, -1);
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
|
|
/* [ arg1 ... argN this loggerLevel loggerName ] */
|
|
|
|
/*
|
|
* Pass 1
|
|
*/
|
|
|
|
/* Line format: <time> <entryLev> <loggerName>: <msg> */
|
|
|
|
tot_len = 0;
|
|
tot_len += 3 + /* separators: space, space, colon */
|
|
3 + /* level string */
|
|
date_len + /* time */
|
|
duk_get_length(ctx, -1); /* loggerName */
|
|
|
|
for (i = 0; i < nargs; i++) {
|
|
/* When formatting an argument to a string, errors may happen from multiple
|
|
* causes. In general we want to catch obvious errors like a toLogString()
|
|
* throwing an error, but we don't currently try to catch every possible
|
|
* error. In particular, internal errors (like out of memory or stack) are
|
|
* not caught. Also, we expect Error toString() to not throw an error.
|
|
*/
|
|
if (duk_is_object(ctx, i)) {
|
|
/* duk_pcall_prop() may itself throw an error, but we're content
|
|
* in catching the obvious errors (like toLogString() throwing an
|
|
* error).
|
|
*/
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_FMT);
|
|
duk_dup(ctx, i);
|
|
/* [ arg1 ... argN this loggerLevel loggerName 'fmt' arg ] */
|
|
/* call: this.fmt(arg) */
|
|
rc = duk_pcall_prop(ctx, -5 /*obj_index*/, 1 /*nargs*/);
|
|
if (rc) {
|
|
/* Keep the error as the result (coercing it might fail below,
|
|
* but we don't catch that now).
|
|
*/
|
|
;
|
|
}
|
|
duk_replace(ctx, i);
|
|
}
|
|
(void) duk_to_lstring(ctx, i, &arg_len);
|
|
tot_len++; /* sep (even before first one) */
|
|
tot_len += arg_len;
|
|
}
|
|
|
|
/*
|
|
* Pass 2
|
|
*/
|
|
|
|
if (tot_len <= DUK_BI_LOGGER_SHORT_MSG_LIMIT) {
|
|
duk_hbuffer_dynamic *h_buf;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("reuse existing small log message buffer, tot_len %ld", (long) tot_len));
|
|
|
|
/* We can assert for all buffer properties because user code
|
|
* never has access to heap->log_buffer.
|
|
*/
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
h_buf = thr->heap->log_buffer;
|
|
DUK_ASSERT(h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC((duk_hbuffer *) h_buf));
|
|
DUK_ASSERT(DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(h_buf) == DUK_BI_LOGGER_SHORT_MSG_LIMIT);
|
|
|
|
/* Set buffer 'visible size' to actual message length and
|
|
* push it to the stack.
|
|
*/
|
|
|
|
DUK_HBUFFER_SET_SIZE((duk_hbuffer *) h_buf, tot_len);
|
|
duk_push_hbuffer(ctx, (duk_hbuffer *) h_buf);
|
|
buf = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, h_buf);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("use a one-off large log message buffer, tot_len %ld", (long) tot_len));
|
|
buf = (duk_uint8_t *) duk_push_fixed_buffer(ctx, tot_len);
|
|
}
|
|
DUK_ASSERT(buf != NULL);
|
|
p = buf;
|
|
|
|
DUK_MEMCPY((void *) p, (void *) date_buf, date_len);
|
|
p += date_len;
|
|
*p++ = (duk_uint8_t) DUK_ASC_SPACE;
|
|
|
|
q = duk__log_level_strings + (entry_lev * 3);
|
|
DUK_MEMCPY((void *) p, (void *) q, (duk_size_t) 3);
|
|
p += 3;
|
|
|
|
*p++ = (duk_uint8_t) DUK_ASC_SPACE;
|
|
|
|
arg_str = (const duk_uint8_t *) duk_get_lstring(ctx, -2, &arg_len);
|
|
DUK_MEMCPY((void *) p, (const void *) arg_str, arg_len);
|
|
p += arg_len;
|
|
|
|
*p++ = (duk_uint8_t) DUK_ASC_COLON;
|
|
|
|
for (i = 0; i < nargs; i++) {
|
|
*p++ = (duk_uint8_t) DUK_ASC_SPACE;
|
|
|
|
arg_str = (const duk_uint8_t *) duk_get_lstring(ctx, i, &arg_len);
|
|
DUK_ASSERT(arg_str != NULL);
|
|
DUK_MEMCPY((void *) p, (const void *) arg_str, arg_len);
|
|
p += arg_len;
|
|
}
|
|
DUK_ASSERT(buf + tot_len == p);
|
|
|
|
/* [ arg1 ... argN this loggerLevel loggerName buffer ] */
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT) && defined(DUK_USE_DEBUGGER_FWD_LOGGING)
|
|
/* Do debugger forwarding before raw() because the raw() function
|
|
* doesn't get the log level right now.
|
|
*/
|
|
if (DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap)) {
|
|
const char *log_buf;
|
|
duk_size_t sz_buf;
|
|
log_buf = (const char *) duk_get_buffer(ctx, -1, &sz_buf);
|
|
DUK_ASSERT(log_buf != NULL);
|
|
duk_debug_write_notify(thr, DUK_DBG_CMD_LOG);
|
|
duk_debug_write_int(thr, (duk_int32_t) entry_lev);
|
|
duk_debug_write_string(thr, (const char *) log_buf, sz_buf);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
#endif
|
|
|
|
/* Call this.raw(msg); look up through the instance allows user to override
|
|
* the raw() function in the instance or in the prototype for maximum
|
|
* flexibility.
|
|
*/
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_RAW);
|
|
duk_dup(ctx, -2);
|
|
/* [ arg1 ... argN this loggerLevel loggerName buffer 'raw' buffer ] */
|
|
duk_call_prop(ctx, -6, 1); /* this.raw(buffer) */
|
|
|
|
return 0;
|
|
}
|
|
#line 1 "duk_bi_math.c"
|
|
/*
|
|
* Math built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_MATH_BUILTIN)
|
|
|
|
/*
|
|
* Use static helpers which can work with math.h functions matching
|
|
* the following signatures. This is not portable if any of these math
|
|
* functions is actually a macro.
|
|
*
|
|
* Typing here is intentionally 'double' wherever values interact with
|
|
* the standard library APIs.
|
|
*/
|
|
|
|
typedef double (*duk__one_arg_func)(double);
|
|
typedef double (*duk__two_arg_func)(double, double);
|
|
|
|
DUK_LOCAL duk_ret_t duk__math_minmax(duk_context *ctx, duk_double_t initial, duk__two_arg_func min_max) {
|
|
duk_idx_t n = duk_get_top(ctx);
|
|
duk_idx_t i;
|
|
duk_double_t res = initial;
|
|
duk_double_t t;
|
|
|
|
/*
|
|
* Note: fmax() does not match the E5 semantics. E5 requires
|
|
* that if -any- input to Math.max() is a NaN, the result is a
|
|
* NaN. fmax() will return a NaN only if -both- inputs are NaN.
|
|
* Same applies to fmin().
|
|
*
|
|
* Note: every input value must be coerced with ToNumber(), even
|
|
* if we know the result will be a NaN anyway: ToNumber() may have
|
|
* side effects for which even order of evaluation matters.
|
|
*/
|
|
|
|
for (i = 0; i < n; i++) {
|
|
t = duk_to_number(ctx, i);
|
|
if (DUK_FPCLASSIFY(t) == DUK_FP_NAN || DUK_FPCLASSIFY(res) == DUK_FP_NAN) {
|
|
/* Note: not normalized, but duk_push_number() will normalize */
|
|
res = (duk_double_t) DUK_DOUBLE_NAN;
|
|
} else {
|
|
res = (duk_double_t) min_max(res, (double) t);
|
|
}
|
|
}
|
|
|
|
duk_push_number(ctx, res);
|
|
return 1;
|
|
}
|
|
|
|
DUK_LOCAL double duk__fmin_fixed(double x, double y) {
|
|
/* fmin() with args -0 and +0 is not guaranteed to return
|
|
* -0 as Ecmascript requires.
|
|
*/
|
|
if (x == 0 && y == 0) {
|
|
/* XXX: what's the safest way of creating a negative zero? */
|
|
if (DUK_SIGNBIT(x) != 0 || DUK_SIGNBIT(y) != 0) {
|
|
return -0.0;
|
|
} else {
|
|
return +0.0;
|
|
}
|
|
}
|
|
#ifdef DUK_USE_MATH_FMIN
|
|
return DUK_FMIN(x, y);
|
|
#else
|
|
return (x < y ? x : y);
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL double duk__fmax_fixed(double x, double y) {
|
|
/* fmax() with args -0 and +0 is not guaranteed to return
|
|
* +0 as Ecmascript requires.
|
|
*/
|
|
if (x == 0 && y == 0) {
|
|
if (DUK_SIGNBIT(x) == 0 || DUK_SIGNBIT(y) == 0) {
|
|
return +0.0;
|
|
} else {
|
|
return -0.0;
|
|
}
|
|
}
|
|
#ifdef DUK_USE_MATH_FMAX
|
|
return DUK_FMAX(x, y);
|
|
#else
|
|
return (x > y ? x : y);
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL double duk__round_fixed(double x) {
|
|
/* Numbers half-way between integers must be rounded towards +Infinity,
|
|
* e.g. -3.5 must be rounded to -3 (not -4). When rounded to zero, zero
|
|
* sign must be set appropriately. E5.1 Section 15.8.2.15.
|
|
*
|
|
* Note that ANSI C round() is "round to nearest integer, away from zero",
|
|
* which is incorrect for negative values. Here we make do with floor().
|
|
*/
|
|
|
|
duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE || c == DUK_FP_ZERO) {
|
|
return x;
|
|
}
|
|
|
|
/*
|
|
* x is finite and non-zero
|
|
*
|
|
* -1.6 -> floor(-1.1) -> -2
|
|
* -1.5 -> floor(-1.0) -> -1 (towards +Inf)
|
|
* -1.4 -> floor(-0.9) -> -1
|
|
* -0.5 -> -0.0 (special case)
|
|
* -0.1 -> -0.0 (special case)
|
|
* +0.1 -> +0.0 (special case)
|
|
* +0.5 -> floor(+1.0) -> 1 (towards +Inf)
|
|
* +1.4 -> floor(+1.9) -> 1
|
|
* +1.5 -> floor(+2.0) -> 2 (towards +Inf)
|
|
* +1.6 -> floor(+2.1) -> 2
|
|
*/
|
|
|
|
if (x >= -0.5 && x < 0.5) {
|
|
/* +0.5 is handled by floor, this is on purpose */
|
|
if (x < 0.0) {
|
|
return -0.0;
|
|
} else {
|
|
return +0.0;
|
|
}
|
|
}
|
|
|
|
return DUK_FLOOR(x + 0.5);
|
|
}
|
|
|
|
DUK_LOCAL double duk__pow_fixed(double x, double y) {
|
|
/* The ANSI C pow() semantics differ from Ecmascript.
|
|
*
|
|
* E.g. when x==1 and y is +/- infinite, the Ecmascript required
|
|
* result is NaN, while at least Linux pow() returns 1.
|
|
*/
|
|
|
|
duk_small_int_t cx, cy, sx;
|
|
|
|
DUK_UNREF(cx);
|
|
DUK_UNREF(sx);
|
|
cy = (duk_small_int_t) DUK_FPCLASSIFY(y);
|
|
|
|
if (cy == DUK_FP_NAN) {
|
|
goto ret_nan;
|
|
}
|
|
if (DUK_FABS(x) == 1.0 && cy == DUK_FP_INFINITE) {
|
|
goto ret_nan;
|
|
}
|
|
#if defined(DUK_USE_POW_NETBSD_WORKAROUND)
|
|
/* See test-bug-netbsd-math-pow.js: NetBSD 6.0 on x86 (at least) does not
|
|
* correctly handle some cases where x=+/-0. Specific fixes to these
|
|
* here.
|
|
*/
|
|
cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
if (cx == DUK_FP_ZERO && y < 0.0) {
|
|
sx = (duk_small_int_t) DUK_SIGNBIT(x);
|
|
if (sx == 0) {
|
|
/* Math.pow(+0,y) should be Infinity when y<0. NetBSD pow()
|
|
* returns -Infinity instead when y is <0 and finite. The
|
|
* if-clause also catches y == -Infinity (which works even
|
|
* without the fix).
|
|
*/
|
|
return DUK_DOUBLE_INFINITY;
|
|
} else {
|
|
/* Math.pow(-0,y) where y<0 should be:
|
|
* - -Infinity if y<0 and an odd integer
|
|
* - Infinity otherwise
|
|
* NetBSD pow() returns -Infinity for all finite y<0. The
|
|
* if-clause also catches y == -Infinity (which works even
|
|
* without the fix).
|
|
*/
|
|
|
|
/* fmod() return value has same sign as input (negative) so
|
|
* the result here will be in the range ]-2,0], 1 indicates
|
|
* odd. If x is -Infinity, NaN is returned and the odd check
|
|
* always concludes "not odd" which results in desired outcome.
|
|
*/
|
|
double tmp = DUK_FMOD(y, 2);
|
|
if (tmp == -1.0) {
|
|
return -DUK_DOUBLE_INFINITY;
|
|
} else {
|
|
/* Not odd, or y == -Infinity */
|
|
return DUK_DOUBLE_INFINITY;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
return DUK_POW(x, y);
|
|
|
|
ret_nan:
|
|
return DUK_DOUBLE_NAN;
|
|
}
|
|
|
|
/* Wrappers for calling standard math library methods. These may be required
|
|
* on platforms where one or more of the math built-ins are defined as macros
|
|
* or inline functions and are thus not suitable to be used as function pointers.
|
|
*/
|
|
#if defined(DUK_USE_AVOID_PLATFORM_FUNCPTRS)
|
|
DUK_LOCAL double duk__fabs(double x) {
|
|
return DUK_FABS(x);
|
|
}
|
|
DUK_LOCAL double duk__acos(double x) {
|
|
return DUK_ACOS(x);
|
|
}
|
|
DUK_LOCAL double duk__asin(double x) {
|
|
return DUK_ASIN(x);
|
|
}
|
|
DUK_LOCAL double duk__atan(double x) {
|
|
return DUK_ATAN(x);
|
|
}
|
|
DUK_LOCAL double duk__ceil(double x) {
|
|
return DUK_CEIL(x);
|
|
}
|
|
DUK_LOCAL double duk__cos(double x) {
|
|
return DUK_COS(x);
|
|
}
|
|
DUK_LOCAL double duk__exp(double x) {
|
|
return DUK_EXP(x);
|
|
}
|
|
DUK_LOCAL double duk__floor(double x) {
|
|
return DUK_FLOOR(x);
|
|
}
|
|
DUK_LOCAL double duk__log(double x) {
|
|
return DUK_LOG(x);
|
|
}
|
|
DUK_LOCAL double duk__sin(double x) {
|
|
return DUK_SIN(x);
|
|
}
|
|
DUK_LOCAL double duk__sqrt(double x) {
|
|
return DUK_SQRT(x);
|
|
}
|
|
DUK_LOCAL double duk__tan(double x) {
|
|
return DUK_TAN(x);
|
|
}
|
|
DUK_LOCAL double duk__atan2(double x, double y) {
|
|
return DUK_ATAN2(x, y);
|
|
}
|
|
#endif /* DUK_USE_AVOID_PLATFORM_FUNCPTRS */
|
|
|
|
/* order must match constants in genbuiltins.py */
|
|
DUK_LOCAL const duk__one_arg_func duk__one_arg_funcs[] = {
|
|
#if defined(DUK_USE_AVOID_PLATFORM_FUNCPTRS)
|
|
duk__fabs,
|
|
duk__acos,
|
|
duk__asin,
|
|
duk__atan,
|
|
duk__ceil,
|
|
duk__cos,
|
|
duk__exp,
|
|
duk__floor,
|
|
duk__log,
|
|
duk__round_fixed,
|
|
duk__sin,
|
|
duk__sqrt,
|
|
duk__tan
|
|
#else
|
|
DUK_FABS,
|
|
DUK_ACOS,
|
|
DUK_ASIN,
|
|
DUK_ATAN,
|
|
DUK_CEIL,
|
|
DUK_COS,
|
|
DUK_EXP,
|
|
DUK_FLOOR,
|
|
DUK_LOG,
|
|
duk__round_fixed,
|
|
DUK_SIN,
|
|
DUK_SQRT,
|
|
DUK_TAN
|
|
#endif
|
|
};
|
|
|
|
/* order must match constants in genbuiltins.py */
|
|
DUK_LOCAL const duk__two_arg_func duk__two_arg_funcs[] = {
|
|
#if defined(DUK_USE_AVOID_PLATFORM_FUNCPTRS)
|
|
duk__atan2,
|
|
duk__pow_fixed
|
|
#else
|
|
DUK_ATAN2,
|
|
duk__pow_fixed
|
|
#endif
|
|
};
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_onearg_shared(duk_context *ctx) {
|
|
duk_small_int_t fun_idx = duk_get_current_magic(ctx);
|
|
duk__one_arg_func fun;
|
|
|
|
DUK_ASSERT(fun_idx >= 0);
|
|
DUK_ASSERT(fun_idx < (duk_small_int_t) (sizeof(duk__one_arg_funcs) / sizeof(duk__one_arg_func)));
|
|
fun = duk__one_arg_funcs[fun_idx];
|
|
duk_push_number(ctx, (duk_double_t) fun((double) duk_to_number(ctx, 0)));
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_twoarg_shared(duk_context *ctx) {
|
|
duk_small_int_t fun_idx = duk_get_current_magic(ctx);
|
|
duk__two_arg_func fun;
|
|
|
|
DUK_ASSERT(fun_idx >= 0);
|
|
DUK_ASSERT(fun_idx < (duk_small_int_t) (sizeof(duk__two_arg_funcs) / sizeof(duk__two_arg_func)));
|
|
fun = duk__two_arg_funcs[fun_idx];
|
|
duk_push_number(ctx, (duk_double_t) fun((double) duk_to_number(ctx, 0), (double) duk_to_number(ctx, 1)));
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_max(duk_context *ctx) {
|
|
return duk__math_minmax(ctx, -DUK_DOUBLE_INFINITY, duk__fmax_fixed);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_min(duk_context *ctx) {
|
|
return duk__math_minmax(ctx, DUK_DOUBLE_INFINITY, duk__fmin_fixed);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_random(duk_context *ctx) {
|
|
duk_push_number(ctx, (duk_double_t) duk_util_tinyrandom_get_double((duk_hthread *) ctx));
|
|
return 1;
|
|
}
|
|
|
|
#else /* DUK_USE_MATH_BUILTIN */
|
|
|
|
/* A stubbed built-in is useful for e.g. compilation torture testing with BCC. */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_onearg_shared(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNIMPLEMENTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_twoarg_shared(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNIMPLEMENTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_max(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNIMPLEMENTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_min(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNIMPLEMENTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_math_object_random(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNIMPLEMENTED_ERROR;
|
|
}
|
|
|
|
#endif /* DUK_USE_MATH_BUILTIN */
|
|
#line 1 "duk_bi_number.c"
|
|
/*
|
|
* Number built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_LOCAL duk_double_t duk__push_this_number_plain(duk_context *ctx) {
|
|
duk_hobject *h;
|
|
|
|
/* Number built-in accepts a plain number or a Number object (whose
|
|
* internal value is operated on). Other types cause TypeError.
|
|
*/
|
|
|
|
duk_push_this(ctx);
|
|
if (duk_is_number(ctx, -1)) {
|
|
DUK_DDD(DUK_DDDPRINT("plain number value: %!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
goto done;
|
|
}
|
|
h = duk_get_hobject(ctx, -1);
|
|
if (!h ||
|
|
(DUK_HOBJECT_GET_CLASS_NUMBER(h) != DUK_HOBJECT_CLASS_NUMBER)) {
|
|
DUK_DDD(DUK_DDDPRINT("unacceptable this value: %!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
DUK_ERROR((duk_hthread *) ctx, DUK_ERR_TYPE_ERROR, "expected a number");
|
|
}
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
DUK_DDD(DUK_DDDPRINT("number object: %!T, internal value: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2), (duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_remove(ctx, -2);
|
|
|
|
done:
|
|
return duk_get_number(ctx, -1);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_constructor(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t nargs;
|
|
duk_hobject *h_this;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
/*
|
|
* The Number constructor uses ToNumber(arg) for number coercion
|
|
* (coercing an undefined argument to NaN). However, if the
|
|
* argument is not given at all, +0 must be used instead. To do
|
|
* this, a vararg function is used.
|
|
*/
|
|
|
|
nargs = duk_get_top(ctx);
|
|
if (nargs == 0) {
|
|
duk_push_int(ctx, 0);
|
|
}
|
|
duk_to_number(ctx, 0);
|
|
duk_set_top(ctx, 1);
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
|
|
if (!duk_is_constructor_call(ctx)) {
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* E5 Section 15.7.2.1 requires that the constructed object
|
|
* must have the original Number.prototype as its internal
|
|
* prototype. However, since Number.prototype is non-writable
|
|
* and non-configurable, this doesn't have to be enforced here:
|
|
* The default object (bound to 'this') is OK, though we have
|
|
* to change its class.
|
|
*
|
|
* Internal value set to ToNumber(arg) or +0; if no arg given,
|
|
* ToNumber(undefined) = NaN, so special treatment is needed
|
|
* (above). String internal value is immutable.
|
|
*/
|
|
|
|
/* XXX: helper */
|
|
duk_push_this(ctx);
|
|
h_this = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h_this != NULL);
|
|
DUK_HOBJECT_SET_CLASS_NUMBER(h_this, DUK_HOBJECT_CLASS_NUMBER);
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h_this) == thr->builtins[DUK_BIDX_NUMBER_PROTOTYPE]);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_CLASS_NUMBER(h_this) == DUK_HOBJECT_CLASS_NUMBER);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXTENSIBLE(h_this));
|
|
|
|
duk_dup(ctx, 0); /* -> [ val obj val ] */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_NONE);
|
|
return 0; /* no return value -> don't replace created value */
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_prototype_value_of(duk_context *ctx) {
|
|
(void) duk__push_this_number_plain(ctx);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_prototype_to_string(duk_context *ctx) {
|
|
duk_small_int_t radix;
|
|
duk_small_uint_t n2s_flags;
|
|
|
|
(void) duk__push_this_number_plain(ctx);
|
|
if (duk_is_undefined(ctx, 0)) {
|
|
radix = 10;
|
|
} else {
|
|
radix = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 2, 36);
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("radix=%ld", (long) radix));
|
|
|
|
n2s_flags = 0;
|
|
|
|
duk_numconv_stringify(ctx,
|
|
radix /*radix*/,
|
|
0 /*digits*/,
|
|
n2s_flags /*flags*/);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_prototype_to_locale_string(duk_context *ctx) {
|
|
/* XXX: just use toString() for now; permitted although not recommended.
|
|
* nargs==1, so radix is passed to toString().
|
|
*/
|
|
return duk_bi_number_prototype_to_string(ctx);
|
|
}
|
|
|
|
/*
|
|
* toFixed(), toExponential(), toPrecision()
|
|
*/
|
|
|
|
/* XXX: shared helper for toFixed(), toExponential(), toPrecision()? */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_prototype_to_fixed(duk_context *ctx) {
|
|
duk_small_int_t frac_digits;
|
|
duk_double_t d;
|
|
duk_small_int_t c;
|
|
duk_small_uint_t n2s_flags;
|
|
|
|
frac_digits = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 0, 20);
|
|
d = duk__push_this_number_plain(ctx);
|
|
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(d);
|
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
|
|
goto use_to_string;
|
|
}
|
|
|
|
if (d >= 1.0e21 || d <= -1.0e21) {
|
|
goto use_to_string;
|
|
}
|
|
|
|
n2s_flags = DUK_N2S_FLAG_FIXED_FORMAT |
|
|
DUK_N2S_FLAG_FRACTION_DIGITS;
|
|
|
|
duk_numconv_stringify(ctx,
|
|
10 /*radix*/,
|
|
frac_digits /*digits*/,
|
|
n2s_flags /*flags*/);
|
|
return 1;
|
|
|
|
use_to_string:
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_prototype_to_exponential(duk_context *ctx) {
|
|
duk_bool_t frac_undefined;
|
|
duk_small_int_t frac_digits;
|
|
duk_double_t d;
|
|
duk_small_int_t c;
|
|
duk_small_uint_t n2s_flags;
|
|
|
|
d = duk__push_this_number_plain(ctx);
|
|
|
|
frac_undefined = duk_is_undefined(ctx, 0);
|
|
duk_to_int(ctx, 0); /* for side effects */
|
|
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(d);
|
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
|
|
goto use_to_string;
|
|
}
|
|
|
|
frac_digits = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 0, 20);
|
|
|
|
n2s_flags = DUK_N2S_FLAG_FORCE_EXP |
|
|
(frac_undefined ? 0 : DUK_N2S_FLAG_FIXED_FORMAT);
|
|
|
|
duk_numconv_stringify(ctx,
|
|
10 /*radix*/,
|
|
frac_digits + 1 /*leading digit + fractions*/,
|
|
n2s_flags /*flags*/);
|
|
return 1;
|
|
|
|
use_to_string:
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_number_prototype_to_precision(duk_context *ctx) {
|
|
/* The specification has quite awkward order of coercion and
|
|
* checks for toPrecision(). The operations below are a bit
|
|
* reordered, within constraints of observable side effects.
|
|
*/
|
|
|
|
duk_double_t d;
|
|
duk_small_int_t prec;
|
|
duk_small_int_t c;
|
|
duk_small_uint_t n2s_flags;
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
|
|
d = duk__push_this_number_plain(ctx);
|
|
if (duk_is_undefined(ctx, 0)) {
|
|
goto use_to_string;
|
|
}
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
|
|
duk_to_int(ctx, 0); /* for side effects */
|
|
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(d);
|
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
|
|
goto use_to_string;
|
|
}
|
|
|
|
prec = (duk_small_int_t) duk_to_int_check_range(ctx, 0, 1, 21);
|
|
|
|
n2s_flags = DUK_N2S_FLAG_FIXED_FORMAT |
|
|
DUK_N2S_FLAG_NO_ZERO_PAD;
|
|
|
|
duk_numconv_stringify(ctx,
|
|
10 /*radix*/,
|
|
prec /*digits*/,
|
|
n2s_flags /*flags*/);
|
|
return 1;
|
|
|
|
use_to_string:
|
|
/* Used when precision is undefined; also used for NaN (-> "NaN"),
|
|
* and +/- infinity (-> "Infinity", "-Infinity").
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
#line 1 "duk_bi_object.c"
|
|
/*
|
|
* Object built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor(duk_context *ctx) {
|
|
if (!duk_is_constructor_call(ctx) &&
|
|
!duk_is_null_or_undefined(ctx, 0)) {
|
|
duk_to_object(ctx, 0);
|
|
return 1;
|
|
}
|
|
|
|
if (duk_is_object(ctx, 0)) {
|
|
return 1;
|
|
}
|
|
|
|
/* Pointer and buffer primitive values are treated like other
|
|
* primitives values which have a fully fledged object counterpart:
|
|
* promote to an object value. Lightfuncs are coerced with
|
|
* ToObject() even they could also be returned as is.
|
|
*/
|
|
if (duk_check_type_mask(ctx, 0, DUK_TYPE_MASK_STRING |
|
|
DUK_TYPE_MASK_BOOLEAN |
|
|
DUK_TYPE_MASK_NUMBER |
|
|
DUK_TYPE_MASK_POINTER |
|
|
DUK_TYPE_MASK_BUFFER |
|
|
DUK_TYPE_MASK_LIGHTFUNC)) {
|
|
duk_to_object(ctx, 0);
|
|
return 1;
|
|
}
|
|
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
DUK_BIDX_OBJECT_PROTOTYPE);
|
|
return 1;
|
|
}
|
|
|
|
/* Shared helper to implement Object.getPrototypeOf and the ES6
|
|
* Object.prototype.__proto__ getter.
|
|
*
|
|
* https://people.mozilla.org/~jorendorff/es6-draft.html#sec-get-object.prototype.__proto__
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_getprototype_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h;
|
|
duk_hobject *proto;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
/* magic: 0=getter call, 1=Object.getPrototypeOf */
|
|
if (duk_get_current_magic(ctx) == 0) {
|
|
duk_push_this_coercible_to_object(ctx);
|
|
duk_insert(ctx, 0);
|
|
}
|
|
|
|
h = duk_require_hobject_or_lfunc(ctx, 0);
|
|
/* h is NULL for lightfunc */
|
|
|
|
/* XXX: should the API call handle this directly, i.e. attempt
|
|
* to duk_push_hobject(ctx, null) would push a null instead?
|
|
* (On the other hand 'undefined' would be just as logical, but
|
|
* not wanted here.)
|
|
*/
|
|
|
|
if (h == NULL) {
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_FUNCTION_PROTOTYPE);
|
|
} else {
|
|
proto = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h);
|
|
if (proto) {
|
|
duk_push_hobject(ctx, proto);
|
|
} else {
|
|
duk_push_null(ctx);
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Shared helper to implement ES6 Object.setPrototypeOf and
|
|
* Object.prototype.__proto__ setter.
|
|
*
|
|
* https://people.mozilla.org/~jorendorff/es6-draft.html#sec-get-object.prototype.__proto__
|
|
* https://people.mozilla.org/~jorendorff/es6-draft.html#sec-object.setprototypeof
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_setprototype_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h_obj;
|
|
duk_hobject *h_new_proto;
|
|
duk_hobject *h_curr;
|
|
duk_ret_t ret_success = 1; /* retval for success path */
|
|
|
|
/* Preliminaries for __proto__ and setPrototypeOf (E6 19.1.2.18 steps 1-4);
|
|
* magic: 0=setter call, 1=Object.setPrototypeOf
|
|
*/
|
|
if (duk_get_current_magic(ctx) == 0) {
|
|
duk_push_this_check_object_coercible(ctx);
|
|
duk_insert(ctx, 0);
|
|
if (!duk_check_type_mask(ctx, 1, DUK_TYPE_MASK_NULL | DUK_TYPE_MASK_OBJECT)) {
|
|
return 0;
|
|
}
|
|
|
|
/* __proto__ setter returns 'undefined' on success unlike the
|
|
* setPrototypeOf() call which returns the target object.
|
|
*/
|
|
ret_success = 0;
|
|
} else {
|
|
duk_require_object_coercible(ctx, 0);
|
|
duk_require_type_mask(ctx, 1, DUK_TYPE_MASK_NULL | DUK_TYPE_MASK_OBJECT);
|
|
}
|
|
|
|
h_new_proto = duk_get_hobject(ctx, 1);
|
|
/* h_new_proto may be NULL */
|
|
if (duk_is_lightfunc(ctx, 0)) {
|
|
if (h_new_proto == thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE]) {
|
|
goto skip;
|
|
}
|
|
goto fail_nonextensible;
|
|
}
|
|
h_obj = duk_get_hobject(ctx, 0);
|
|
if (!h_obj) {
|
|
goto skip;
|
|
}
|
|
DUK_ASSERT(h_obj != NULL);
|
|
|
|
/* [[SetPrototypeOf]] standard behavior, E6 9.1.2 */
|
|
/* NOTE: steps 7-8 seem to be a cut-paste bug in the E6 draft */
|
|
/* TODO: implement Proxy object support here */
|
|
|
|
if (h_new_proto == DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h_obj)) {
|
|
goto skip;
|
|
}
|
|
if (!DUK_HOBJECT_HAS_EXTENSIBLE(h_obj)) {
|
|
goto fail_nonextensible;
|
|
}
|
|
for (h_curr = h_new_proto; h_curr != NULL; h_curr = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h_curr)) {
|
|
/* Loop prevention */
|
|
if (h_curr == h_obj) {
|
|
goto fail_loop;
|
|
}
|
|
}
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, h_obj, h_new_proto);
|
|
/* fall thru */
|
|
|
|
skip:
|
|
duk_set_top(ctx, 1);
|
|
return ret_success;
|
|
|
|
fail_nonextensible:
|
|
fail_loop:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_get_own_property_descriptor(duk_context *ctx) {
|
|
/* XXX: no need for indirect call */
|
|
return duk_hobject_object_get_own_property_descriptor(ctx);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_create(duk_context *ctx) {
|
|
duk_tval *tv;
|
|
duk_hobject *proto = NULL;
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
|
|
tv = duk_get_tval(ctx, 0);
|
|
DUK_ASSERT(tv != NULL);
|
|
if (DUK_TVAL_IS_NULL(tv)) {
|
|
;
|
|
} else if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
proto = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(proto != NULL);
|
|
} else {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
(void) duk_push_object_helper_proto(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
proto);
|
|
|
|
if (!duk_is_undefined(ctx, 1)) {
|
|
/* [ O Properties obj ] */
|
|
|
|
duk_replace(ctx, 0);
|
|
|
|
/* [ obj Properties ] */
|
|
|
|
/* Just call the "original" Object.defineProperties() to
|
|
* finish up.
|
|
*/
|
|
|
|
return duk_bi_object_constructor_define_properties(ctx);
|
|
}
|
|
|
|
/* [ O Properties obj ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_define_property(duk_context *ctx) {
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
duk_hobject *get;
|
|
duk_hobject *set;
|
|
duk_idx_t idx_value;
|
|
duk_uint_t defprop_flags;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("Object.defineProperty(): ctx=%p obj=%!T key=%!T desc=%!T",
|
|
(void *) ctx,
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1),
|
|
(duk_tval *) duk_get_tval(ctx, 2)));
|
|
|
|
/* [ obj key desc ] */
|
|
|
|
/* Lightfuncs are currently supported by coercing to a temporary
|
|
* Function object; changes will be allowed (the coerced value is
|
|
* extensible) but will be lost.
|
|
*/
|
|
obj = duk_require_hobject_or_lfunc_coerce(ctx, 0);
|
|
(void) duk_to_string(ctx, 1);
|
|
key = duk_require_hstring(ctx, 1);
|
|
(void) duk_require_hobject(ctx, 2);
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(duk_get_hobject(ctx, 2) != NULL);
|
|
|
|
/*
|
|
* Validate and convert argument property descriptor (an Ecmascript
|
|
* object) into a set of defprop_flags and possibly property value,
|
|
* getter, and/or setter values on the value stack.
|
|
*
|
|
* Lightfunc set/get values are coerced to full Functions.
|
|
*/
|
|
|
|
duk_hobject_prepare_property_descriptor(ctx,
|
|
2 /*idx_desc*/,
|
|
&defprop_flags,
|
|
&idx_value,
|
|
&get,
|
|
&set);
|
|
|
|
/*
|
|
* Use Object.defineProperty() helper for the actual operation.
|
|
*/
|
|
|
|
duk_hobject_define_property_helper(ctx,
|
|
defprop_flags,
|
|
obj,
|
|
key,
|
|
idx_value,
|
|
get,
|
|
set);
|
|
|
|
/* Ignore the normalize/validate helper outputs on the value stack,
|
|
* they're popped automatically.
|
|
*/
|
|
|
|
/*
|
|
* Return target object.
|
|
*/
|
|
|
|
duk_push_hobject(ctx, obj);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_define_properties(duk_context *ctx) {
|
|
duk_small_uint_t pass;
|
|
duk_uint_t defprop_flags;
|
|
duk_hobject *obj;
|
|
duk_idx_t idx_value;
|
|
duk_hobject *get;
|
|
duk_hobject *set;
|
|
|
|
/* Lightfunc handling by ToObject() coercion. */
|
|
obj = duk_require_hobject_or_lfunc_coerce(ctx, 0); /* target */
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
duk_to_object(ctx, 1); /* properties object */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("target=%!iT, properties=%!iT",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1)));
|
|
|
|
/*
|
|
* Two pass approach to processing the property descriptors.
|
|
* On first pass validate and normalize all descriptors before
|
|
* any changes are made to the target object. On second pass
|
|
* make the actual modifications to the target object.
|
|
*
|
|
* Right now we'll just use the same normalize/validate helper
|
|
* on both passes, ignoring its outputs on the first pass.
|
|
*/
|
|
|
|
for (pass = 0; pass < 2; pass++) {
|
|
duk_set_top(ctx, 2); /* -> [ hobject props ] */
|
|
duk_enum(ctx, 1, DUK_ENUM_OWN_PROPERTIES_ONLY /*enum_flags*/);
|
|
|
|
for (;;) {
|
|
duk_hstring *key;
|
|
|
|
/* [ hobject props enum(props) ] */
|
|
|
|
duk_set_top(ctx, 3);
|
|
|
|
if (!duk_next(ctx, 2, 1 /*get_value*/)) {
|
|
break;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> key=%!iT, desc=%!iT",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ hobject props enum(props) key desc ] */
|
|
|
|
duk_hobject_prepare_property_descriptor(ctx,
|
|
4 /*idx_desc*/,
|
|
&defprop_flags,
|
|
&idx_value,
|
|
&get,
|
|
&set);
|
|
|
|
/* [ hobject props enum(props) key desc value? getter? setter? ] */
|
|
|
|
if (pass == 0) {
|
|
continue;
|
|
}
|
|
|
|
key = duk_get_hstring(ctx, 3);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
duk_hobject_define_property_helper(ctx,
|
|
defprop_flags,
|
|
obj,
|
|
key,
|
|
idx_value,
|
|
get,
|
|
set);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return target object
|
|
*/
|
|
|
|
duk_dup(ctx, 0);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_seal_freeze_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h;
|
|
duk_bool_t is_freeze;
|
|
|
|
h = duk_require_hobject_or_lfunc(ctx, 0);
|
|
if (!h) {
|
|
/* Lightfunc, always success. */
|
|
return 1;
|
|
}
|
|
|
|
is_freeze = (duk_bool_t) duk_get_current_magic(ctx);
|
|
duk_hobject_object_seal_freeze_helper(thr, h, is_freeze);
|
|
|
|
/* Sealed and frozen objects cannot gain any more properties,
|
|
* so this is a good time to compact them.
|
|
*/
|
|
duk_hobject_compact_props(thr, h);
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_prevent_extensions(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h;
|
|
|
|
h = duk_require_hobject_or_lfunc(ctx, 0);
|
|
if (!h) {
|
|
/* Lightfunc, always success. */
|
|
return 1;
|
|
}
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
DUK_HOBJECT_CLEAR_EXTENSIBLE(h);
|
|
|
|
/* A non-extensible object cannot gain any more properties,
|
|
* so this is a good time to compact.
|
|
*/
|
|
duk_hobject_compact_props(thr, h);
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_is_sealed_frozen_shared(duk_context *ctx) {
|
|
duk_hobject *h;
|
|
duk_bool_t is_frozen;
|
|
duk_bool_t rc;
|
|
|
|
h = duk_require_hobject_or_lfunc(ctx, 0);
|
|
if (!h) {
|
|
duk_push_true(ctx); /* frozen and sealed */
|
|
} else {
|
|
is_frozen = duk_get_current_magic(ctx);
|
|
rc = duk_hobject_object_is_sealed_frozen_helper((duk_hthread *) ctx, h, is_frozen /*is_frozen*/);
|
|
duk_push_boolean(ctx, rc);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_is_extensible(duk_context *ctx) {
|
|
duk_hobject *h;
|
|
|
|
h = duk_require_hobject_or_lfunc(ctx, 0);
|
|
if (!h) {
|
|
duk_push_false(ctx);
|
|
} else {
|
|
duk_push_boolean(ctx, DUK_HOBJECT_HAS_EXTENSIBLE(h));
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Shared helper for Object.getOwnPropertyNames() and Object.keys().
|
|
* Magic: 0=getOwnPropertyNames, 1=Object.keys.
|
|
*/
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_constructor_keys_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
duk_hobject *h_proxy_target;
|
|
duk_hobject *h_proxy_handler;
|
|
duk_hobject *h_trap_result;
|
|
duk_uarridx_t i, len, idx;
|
|
#endif
|
|
duk_small_uint_t enum_flags;
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
DUK_UNREF(thr);
|
|
|
|
obj = duk_require_hobject_or_lfunc_coerce(ctx, 0);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_UNREF(obj);
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
if (DUK_LIKELY(!duk_hobject_proxy_check(thr,
|
|
obj,
|
|
&h_proxy_target,
|
|
&h_proxy_handler))) {
|
|
goto skip_proxy;
|
|
}
|
|
|
|
duk_push_hobject(ctx, h_proxy_handler);
|
|
if (!duk_get_prop_stridx(ctx, -1, DUK_STRIDX_OWN_KEYS)) {
|
|
/* Careful with reachability here: don't pop 'obj' before pushing
|
|
* proxy target.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("no ownKeys trap, get keys of target instead"));
|
|
duk_pop_2(ctx);
|
|
duk_push_hobject(ctx, h_proxy_target);
|
|
duk_replace(ctx, 0);
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
goto skip_proxy;
|
|
}
|
|
|
|
/* [ obj handler trap ] */
|
|
duk_insert(ctx, -2);
|
|
duk_push_hobject(ctx, h_proxy_target); /* -> [ obj trap handler target ] */
|
|
duk_call_method(ctx, 1 /*nargs*/); /* -> [ obj trap_result ] */
|
|
h_trap_result = duk_require_hobject(ctx, -1);
|
|
DUK_UNREF(h_trap_result);
|
|
|
|
len = (duk_uarridx_t) duk_get_length(ctx, -1);
|
|
idx = 0;
|
|
duk_push_array(ctx);
|
|
for (i = 0; i < len; i++) {
|
|
/* [ obj trap_result res_arr ] */
|
|
if (duk_get_prop_index(ctx, -2, i) && duk_is_string(ctx, -1)) {
|
|
/* XXX: for Object.keys() we should check enumerability of key */
|
|
/* [ obj trap_result res_arr propname ] */
|
|
duk_put_prop_index(ctx, -2, idx);
|
|
idx++;
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
|
|
/* XXX: for Object.keys() the [[OwnPropertyKeys]] result (trap result)
|
|
* should be filtered so that only enumerable keys remain. Enumerability
|
|
* should be checked with [[GetOwnProperty]] on the original object
|
|
* (i.e., the proxy in this case). If the proxy has a getOwnPropertyDescriptor
|
|
* trap, it should be triggered for every property. If the proxy doesn't have
|
|
* the trap, enumerability should be checked against the target object instead.
|
|
* We don't do any of this now, so Object.keys() and Object.getOwnPropertyNames()
|
|
* return the same result now for proxy traps. We still do clean up the trap
|
|
* result, so that Object.keys() and Object.getOwnPropertyNames() will return a
|
|
* clean array of strings without gaps.
|
|
*/
|
|
return 1;
|
|
|
|
skip_proxy:
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
|
|
if (duk_get_current_magic(ctx)) {
|
|
/* Object.keys */
|
|
enum_flags = DUK_ENUM_OWN_PROPERTIES_ONLY |
|
|
DUK_ENUM_NO_PROXY_BEHAVIOR;
|
|
} else {
|
|
/* Object.getOwnPropertyNames */
|
|
enum_flags = DUK_ENUM_INCLUDE_NONENUMERABLE |
|
|
DUK_ENUM_OWN_PROPERTIES_ONLY |
|
|
DUK_ENUM_NO_PROXY_BEHAVIOR;
|
|
}
|
|
|
|
return duk_hobject_get_enumerated_keys(ctx, enum_flags);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_prototype_to_string(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
duk_push_this(ctx);
|
|
duk_push_string(ctx, "[object ");
|
|
|
|
if (duk_is_undefined(ctx, -2)) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_UC_UNDEFINED);
|
|
} else if (duk_is_null(ctx, -2)) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_UC_NULL);
|
|
} else {
|
|
duk_hobject *h_this;
|
|
duk_hstring *h_classname;
|
|
|
|
duk_to_object(ctx, -2);
|
|
h_this = duk_get_hobject(ctx, -2);
|
|
DUK_ASSERT(h_this != NULL);
|
|
|
|
h_classname = DUK_HOBJECT_GET_CLASS_STRING(thr->heap, h_this);
|
|
DUK_ASSERT(h_classname != NULL);
|
|
|
|
duk_push_hstring(ctx, h_classname);
|
|
}
|
|
|
|
duk_push_string(ctx, "]");
|
|
duk_concat(ctx, 3);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_prototype_to_locale_string(duk_context *ctx) {
|
|
DUK_ASSERT_TOP(ctx, 0);
|
|
(void) duk_push_this_coercible_to_object(ctx);
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_TO_STRING);
|
|
if (!duk_is_callable(ctx, 1)) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
duk_dup(ctx, 0); /* -> [ O toString O ] */
|
|
duk_call_method(ctx, 0); /* XXX: call method tailcall? */
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_prototype_value_of(duk_context *ctx) {
|
|
(void) duk_push_this_coercible_to_object(ctx);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_prototype_is_prototype_of(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h_v;
|
|
duk_hobject *h_obj;
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
|
|
h_v = duk_get_hobject(ctx, 0);
|
|
if (!h_v) {
|
|
duk_push_false(ctx); /* XXX: tail call: return duk_push_false(ctx) */
|
|
return 1;
|
|
}
|
|
|
|
h_obj = duk_push_this_coercible_to_object(ctx);
|
|
DUK_ASSERT(h_obj != NULL);
|
|
|
|
/* E5.1 Section 15.2.4.6, step 3.a, lookup proto once before compare.
|
|
* Prototype loops should cause an error to be thrown.
|
|
*/
|
|
duk_push_boolean(ctx, duk_hobject_prototype_chain_contains(thr, DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h_v), h_obj, 0 /*ignore_loop*/));
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_prototype_has_own_property(duk_context *ctx) {
|
|
return duk_hobject_object_ownprop_helper(ctx, 0 /*required_desc_flags*/);
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_object_prototype_property_is_enumerable(duk_context *ctx) {
|
|
return duk_hobject_object_ownprop_helper(ctx, DUK_PROPDESC_FLAG_ENUMERABLE /*required_desc_flags*/);
|
|
}
|
|
#line 1 "duk_bi_pointer.c"
|
|
/*
|
|
* Pointer built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Constructor
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_pointer_constructor(duk_context *ctx) {
|
|
/* XXX: this behavior is quite useless now; it would be nice to be able
|
|
* to create pointer values from e.g. numbers or strings. Numbers are
|
|
* problematic on 64-bit platforms though. Hex encoded strings?
|
|
*/
|
|
if (duk_get_top(ctx) == 0) {
|
|
duk_push_pointer(ctx, NULL);
|
|
} else {
|
|
duk_to_pointer(ctx, 0);
|
|
}
|
|
DUK_ASSERT(duk_is_pointer(ctx, 0));
|
|
duk_set_top(ctx, 1);
|
|
|
|
if (duk_is_constructor_call(ctx)) {
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_POINTER),
|
|
DUK_BIDX_POINTER_PROTOTYPE);
|
|
|
|
/* Pointer object internal value is immutable */
|
|
duk_dup(ctx, 0);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
/* Note: unbalanced stack on purpose */
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* toString(), valueOf()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_pointer_prototype_tostring_shared(duk_context *ctx) {
|
|
duk_tval *tv;
|
|
duk_small_int_t to_string = duk_get_current_magic(ctx);
|
|
|
|
duk_push_this(ctx);
|
|
tv = duk_require_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_POINTER(tv)) {
|
|
/* nop */
|
|
} else if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
duk_hobject *h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* Must be a "pointer object", i.e. class "Pointer" */
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h) != DUK_HOBJECT_CLASS_POINTER) {
|
|
goto type_error;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
} else {
|
|
goto type_error;
|
|
}
|
|
|
|
if (to_string) {
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
return 1;
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
#line 1 "duk_bi_proxy.c"
|
|
/*
|
|
* Proxy built-in (ES6 draft)
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
DUK_INTERNAL duk_ret_t duk_bi_proxy_constructor(duk_context *ctx) {
|
|
duk_hobject *h_target;
|
|
duk_hobject *h_handler;
|
|
|
|
if (!duk_is_constructor_call(ctx)) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
/* Reject a proxy object as the target because it would need
|
|
* special handler in property lookups. (ES6 has no such restriction)
|
|
*/
|
|
h_target = duk_require_hobject_or_lfunc_coerce(ctx, 0);
|
|
DUK_ASSERT(h_target != NULL);
|
|
if (DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(h_target)) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
/* Reject a proxy object as the handler because it would cause
|
|
* potentially unbounded recursion. (ES6 has no such restriction)
|
|
*/
|
|
h_handler = duk_require_hobject_or_lfunc_coerce(ctx, 1);
|
|
DUK_ASSERT(h_handler != NULL);
|
|
if (DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(h_handler)) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
/* XXX: the returned value is exotic in ES6 (draft), but we use a
|
|
* simple object here with no prototype. Without a prototype,
|
|
* [[DefaultValue]] coercion fails which is abit confusing.
|
|
* No callable check/handling in the current Proxy subset.
|
|
*/
|
|
(void) duk_push_object_helper_proto(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_EXOTIC_PROXYOBJ |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
NULL);
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
|
|
/* Proxy target */
|
|
duk_dup(ctx, 0);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_TARGET, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
/* Proxy handler */
|
|
duk_dup(ctx, 1);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_HANDLER, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
return 1; /* replacement handler */
|
|
}
|
|
#else /* DUK_USE_ES6_PROXY */
|
|
DUK_INTERNAL duk_ret_t duk_bi_proxy_constructor(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
#line 1 "duk_bi_regexp.c"
|
|
/*
|
|
* RegExp built-ins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
|
|
DUK_LOCAL void duk__get_this_regexp(duk_context *ctx) {
|
|
duk_hobject *h;
|
|
|
|
duk_push_this(ctx);
|
|
h = duk_require_hobject_with_class(ctx, -1, DUK_HOBJECT_CLASS_REGEXP);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_UNREF(h);
|
|
duk_insert(ctx, 0); /* prepend regexp to valstack 0 index */
|
|
}
|
|
|
|
/* XXX: much to improve (code size) */
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_constructor(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *h_pattern;
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
h_pattern = duk_get_hobject(ctx, 0);
|
|
|
|
if (!duk_is_constructor_call(ctx) &&
|
|
h_pattern != NULL &&
|
|
DUK_HOBJECT_GET_CLASS_NUMBER(h_pattern) == DUK_HOBJECT_CLASS_REGEXP &&
|
|
duk_is_undefined(ctx, 1)) {
|
|
/* Called as a function, pattern has [[Class]] "RegExp" and
|
|
* flags is undefined -> return object as is.
|
|
*/
|
|
duk_dup(ctx, 0);
|
|
return 1;
|
|
}
|
|
|
|
/* Else functionality is identical for function call and constructor
|
|
* call.
|
|
*/
|
|
|
|
if (h_pattern != NULL &&
|
|
DUK_HOBJECT_GET_CLASS_NUMBER(h_pattern) == DUK_HOBJECT_CLASS_REGEXP) {
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
duk_bool_t flag_g, flag_i, flag_m;
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_SOURCE);
|
|
flag_g = duk_get_prop_stridx_boolean(ctx, 0, DUK_STRIDX_GLOBAL, NULL);
|
|
flag_i = duk_get_prop_stridx_boolean(ctx, 0, DUK_STRIDX_IGNORE_CASE, NULL);
|
|
flag_m = duk_get_prop_stridx_boolean(ctx, 0, DUK_STRIDX_MULTILINE, NULL);
|
|
|
|
duk_push_sprintf(ctx, "%s%s%s",
|
|
(const char *) (flag_g ? "g" : ""),
|
|
(const char *) (flag_i ? "i" : ""),
|
|
(const char *) (flag_m ? "m" : ""));
|
|
|
|
/* [ ... pattern flags ] */
|
|
} else {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
} else {
|
|
if (duk_is_undefined(ctx, 0)) {
|
|
duk_push_string(ctx, "");
|
|
} else {
|
|
duk_dup(ctx, 0);
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
duk_push_string(ctx, "");
|
|
} else {
|
|
duk_dup(ctx, 1);
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
|
|
/* [ ... pattern flags ] */
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("RegExp constructor/function call, pattern=%!T, flags=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2), (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ ... pattern flags ] */
|
|
|
|
duk_regexp_compile(thr);
|
|
|
|
/* [ ... bytecode escaped_source ] */
|
|
|
|
duk_regexp_create_instance(thr);
|
|
|
|
/* [ ... RegExp ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_prototype_exec(duk_context *ctx) {
|
|
duk__get_this_regexp(ctx);
|
|
|
|
/* [ regexp input ] */
|
|
|
|
duk_regexp_match((duk_hthread *) ctx);
|
|
|
|
/* [ result ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_prototype_test(duk_context *ctx) {
|
|
duk__get_this_regexp(ctx);
|
|
|
|
/* [ regexp input ] */
|
|
|
|
/* result object is created and discarded; wasteful but saves code space */
|
|
duk_regexp_match((duk_hthread *) ctx);
|
|
|
|
/* [ result ] */
|
|
|
|
duk_push_boolean(ctx, (duk_is_null(ctx, -1) ? 0 : 1));
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_prototype_to_string(duk_context *ctx) {
|
|
duk_hstring *h_bc;
|
|
duk_small_int_t re_flags;
|
|
|
|
#if 0
|
|
/* A little tricky string approach to provide the flags string.
|
|
* This depends on the specific flag values in duk_regexp.h,
|
|
* which needs to be asserted for. In practice this doesn't
|
|
* produce more compact code than the easier approach in use.
|
|
*/
|
|
|
|
const char *flag_strings = "gim\0gi\0gm\0g\0";
|
|
duk_uint8_t flag_offsets[8] = {
|
|
(duk_uint8_t) 3, /* flags: "" */
|
|
(duk_uint8_t) 10, /* flags: "g" */
|
|
(duk_uint8_t) 5, /* flags: "i" */
|
|
(duk_uint8_t) 4, /* flags: "gi" */
|
|
(duk_uint8_t) 2, /* flags: "m" */
|
|
(duk_uint8_t) 7, /* flags: "gm" */
|
|
(duk_uint8_t) 1, /* flags: "im" */
|
|
(duk_uint8_t) 0, /* flags: "gim" */
|
|
};
|
|
DUK_ASSERT(DUK_RE_FLAG_GLOBAL == 1);
|
|
DUK_ASSERT(DUK_RE_FLAG_IGNORE_CASE == 2);
|
|
DUK_ASSERT(DUK_RE_FLAG_MULTILINE == 4);
|
|
#endif
|
|
|
|
duk__get_this_regexp(ctx);
|
|
|
|
/* [ regexp ] */
|
|
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_SOURCE);
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_INT_BYTECODE);
|
|
h_bc = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_bc != NULL);
|
|
DUK_ASSERT(DUK_HSTRING_GET_BYTELEN(h_bc) >= 1);
|
|
DUK_ASSERT(DUK_HSTRING_GET_CHARLEN(h_bc) >= 1);
|
|
DUK_ASSERT(DUK_HSTRING_GET_DATA(h_bc)[0] < 0x80);
|
|
re_flags = (duk_small_int_t) DUK_HSTRING_GET_DATA(h_bc)[0];
|
|
|
|
/* [ regexp source bytecode ] */
|
|
|
|
#if 1
|
|
/* This is a cleaner approach and also produces smaller code than
|
|
* the other alternative. Use duk_require_string() for format
|
|
* safety (although the source property should always exist).
|
|
*/
|
|
duk_push_sprintf(ctx, "/%s/%s%s%s",
|
|
(const char *) duk_require_string(ctx, -2), /* require to be safe */
|
|
(re_flags & DUK_RE_FLAG_GLOBAL) ? "g" : "",
|
|
(re_flags & DUK_RE_FLAG_IGNORE_CASE) ? "i" : "",
|
|
(re_flags & DUK_RE_FLAG_MULTILINE) ? "m" : "");
|
|
#else
|
|
/* This should not be necessary because no-one should tamper with the
|
|
* regexp bytecode, but is prudent to avoid potential segfaults if that
|
|
* were to happen for some reason.
|
|
*/
|
|
re_flags &= 0x07;
|
|
DUK_ASSERT(re_flags >= 0 && re_flags <= 7); /* three flags */
|
|
duk_push_sprintf(ctx, "/%s/%s",
|
|
(const char *) duk_require_string(ctx, -2),
|
|
(const char *) (flag_strings + flag_offsets[re_flags]));
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_constructor(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_prototype_exec(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_prototype_test(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_regexp_prototype_to_string(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
#line 1 "duk_bi_string.c"
|
|
/*
|
|
* String built-ins
|
|
*/
|
|
|
|
/* XXX: There are several limitations in the current implementation for
|
|
* strings with >= 0x80000000UL characters. In some cases one would need
|
|
* to be able to represent the range [-0xffffffff,0xffffffff] and so on.
|
|
* Generally character and byte length are assumed to fit into signed 32
|
|
* bits (< 0x80000000UL). Places with issues are not marked explicitly
|
|
* below in all cases, look for signed type usage (duk_int_t etc) for
|
|
* offsets/lengths.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Constructor
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_constructor(duk_context *ctx) {
|
|
/* String constructor needs to distinguish between an argument not given at all
|
|
* vs. given as 'undefined'. We're a vararg function to handle this properly.
|
|
*/
|
|
|
|
if (duk_get_top(ctx) == 0) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
|
|
} else {
|
|
duk_to_string(ctx, 0);
|
|
}
|
|
DUK_ASSERT(duk_is_string(ctx, 0));
|
|
duk_set_top(ctx, 1);
|
|
|
|
if (duk_is_constructor_call(ctx)) {
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_STRING),
|
|
DUK_BIDX_STRING_PROTOTYPE);
|
|
|
|
/* String object internal value is immutable */
|
|
duk_dup(ctx, 0);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VALUE, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
/* Note: unbalanced stack on purpose */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_constructor_from_char_code(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hbuffer_dynamic *h;
|
|
duk_idx_t i, n;
|
|
duk_ucodepoint_t cp;
|
|
|
|
/* XXX: It would be nice to build the string directly but ToUint16()
|
|
* coercion is needed so a generic helper would not be very
|
|
* helpful (perhaps coerce the value stack first here and then
|
|
* build a string from a duk_tval number sequence in one go?).
|
|
*/
|
|
|
|
n = duk_get_top(ctx);
|
|
duk_push_dynamic_buffer(ctx, 0); /* XXX: initial spare size estimate from 'n' */
|
|
h = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
|
|
for (i = 0; i < n; i++) {
|
|
#if defined(DUK_USE_NONSTD_STRING_FROMCHARCODE_32BIT)
|
|
/* ToUint16() coercion is mandatory in the E5.1 specification, but
|
|
* this non-compliant behavior makes more sense because we support
|
|
* non-BMP codepoints. Don't use CESU-8 because that'd create
|
|
* surrogate pairs.
|
|
*/
|
|
cp = (duk_ucodepoint_t) duk_to_uint32(ctx, i);
|
|
duk_hbuffer_append_xutf8(thr, h, cp);
|
|
#else
|
|
cp = (duk_ucodepoint_t) duk_to_uint16(ctx, i);
|
|
duk_hbuffer_append_cesu8(thr, h, cp);
|
|
#endif
|
|
}
|
|
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* toString(), valueOf()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_to_string(duk_context *ctx) {
|
|
duk_tval *tv;
|
|
|
|
duk_push_this(ctx);
|
|
tv = duk_require_tval(ctx, -1);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_STRING(tv)) {
|
|
/* return as is */
|
|
return 1;
|
|
} else if (DUK_TVAL_IS_OBJECT(tv)) {
|
|
duk_hobject *h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* Must be a "string object", i.e. class "String" */
|
|
if (DUK_HOBJECT_GET_CLASS_NUMBER(h) != DUK_HOBJECT_CLASS_STRING) {
|
|
goto type_error;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VALUE);
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
|
|
return 1;
|
|
} else {
|
|
goto type_error;
|
|
}
|
|
|
|
/* never here, but fall through */
|
|
|
|
type_error:
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
|
|
/*
|
|
* Character and charcode access
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_char_at(duk_context *ctx) {
|
|
duk_int_t pos;
|
|
|
|
/* XXX: faster implementation */
|
|
|
|
(void) duk_push_this_coercible_to_string(ctx);
|
|
pos = duk_to_int(ctx, 0);
|
|
duk_substring(ctx, -1, pos, pos + 1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_char_code_at(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_int_t pos;
|
|
duk_hstring *h;
|
|
duk_bool_t clamped;
|
|
|
|
/* XXX: faster implementation */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arg=%!T", (duk_tval *) duk_get_tval(ctx, 0)));
|
|
|
|
h = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
pos = duk_to_int_clamped_raw(ctx,
|
|
0 /*index*/,
|
|
0 /*min(incl)*/,
|
|
DUK_HSTRING_GET_CHARLEN(h) - 1 /*max(incl)*/,
|
|
&clamped /*out_clamped*/);
|
|
if (clamped) {
|
|
duk_push_number(ctx, DUK_DOUBLE_NAN);
|
|
return 1;
|
|
}
|
|
|
|
duk_push_u32(ctx, (duk_uint32_t) duk_hstring_char_code_at_raw(thr, h, pos));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* substring(), substr(), slice()
|
|
*/
|
|
|
|
/* XXX: any chance of merging these three similar but still slightly
|
|
* different algorithms so that footprint would be reduced?
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_substring(duk_context *ctx) {
|
|
duk_hstring *h;
|
|
duk_int_t start_pos, end_pos;
|
|
duk_int_t len;
|
|
|
|
h = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h != NULL);
|
|
len = (duk_int_t) DUK_HSTRING_GET_CHARLEN(h);
|
|
|
|
/* [ start end str ] */
|
|
|
|
start_pos = duk_to_int_clamped(ctx, 0, 0, len);
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
end_pos = len;
|
|
} else {
|
|
end_pos = duk_to_int_clamped(ctx, 1, 0, len);
|
|
}
|
|
DUK_ASSERT(start_pos >= 0 && start_pos <= len);
|
|
DUK_ASSERT(end_pos >= 0 && end_pos <= len);
|
|
|
|
if (start_pos > end_pos) {
|
|
duk_int_t tmp = start_pos;
|
|
start_pos = end_pos;
|
|
end_pos = tmp;
|
|
}
|
|
|
|
DUK_ASSERT(end_pos >= start_pos);
|
|
|
|
duk_substring(ctx, -1, (duk_size_t) start_pos, (duk_size_t) end_pos);
|
|
return 1;
|
|
}
|
|
|
|
#ifdef DUK_USE_SECTION_B
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_substr(duk_context *ctx) {
|
|
duk_hstring *h;
|
|
duk_int_t start_pos, end_pos;
|
|
duk_int_t len;
|
|
|
|
/* Unlike non-obsolete String calls, substr() algorithm in E5.1
|
|
* specification will happily coerce undefined and null to strings
|
|
* ("undefined" and "null").
|
|
*/
|
|
duk_push_this(ctx);
|
|
h = duk_to_hstring(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
len = (duk_int_t) DUK_HSTRING_GET_CHARLEN(h);
|
|
|
|
/* [ start length str ] */
|
|
|
|
/* The implementation for computing of start_pos and end_pos differs
|
|
* from the standard algorithm, but is intended to result in the exactly
|
|
* same behavior. This is not always obvious.
|
|
*/
|
|
|
|
/* combines steps 2 and 5; -len ensures max() not needed for step 5 */
|
|
start_pos = duk_to_int_clamped(ctx, 0, -len, len);
|
|
if (start_pos < 0) {
|
|
start_pos = len + start_pos;
|
|
}
|
|
DUK_ASSERT(start_pos >= 0 && start_pos <= len);
|
|
|
|
/* combines steps 3, 6; step 7 is not needed */
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
end_pos = len;
|
|
} else {
|
|
DUK_ASSERT(start_pos <= len);
|
|
end_pos = start_pos + duk_to_int_clamped(ctx, 1, 0, len - start_pos);
|
|
}
|
|
DUK_ASSERT(start_pos >= 0 && start_pos <= len);
|
|
DUK_ASSERT(end_pos >= 0 && end_pos <= len);
|
|
DUK_ASSERT(end_pos >= start_pos);
|
|
|
|
duk_substring(ctx, -1, (duk_size_t) start_pos, (duk_size_t) end_pos);
|
|
return 1;
|
|
}
|
|
#else /* DUK_USE_SECTION_B */
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_substr(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* DUK_USE_SECTION_B */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_slice(duk_context *ctx) {
|
|
duk_hstring *h;
|
|
duk_int_t start_pos, end_pos;
|
|
duk_int_t len;
|
|
|
|
h = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h != NULL);
|
|
len = (duk_int_t) DUK_HSTRING_GET_CHARLEN(h);
|
|
|
|
/* [ start end str ] */
|
|
|
|
start_pos = duk_to_int_clamped(ctx, 0, -len, len);
|
|
if (start_pos < 0) {
|
|
start_pos = len + start_pos;
|
|
}
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
end_pos = len;
|
|
} else {
|
|
end_pos = duk_to_int_clamped(ctx, 1, -len, len);
|
|
if (end_pos < 0) {
|
|
end_pos = len + end_pos;
|
|
}
|
|
}
|
|
DUK_ASSERT(start_pos >= 0 && start_pos <= len);
|
|
DUK_ASSERT(end_pos >= 0 && end_pos <= len);
|
|
|
|
if (end_pos < start_pos) {
|
|
end_pos = start_pos;
|
|
}
|
|
|
|
DUK_ASSERT(end_pos >= start_pos);
|
|
|
|
duk_substring(ctx, -1, (duk_size_t) start_pos, (duk_size_t) end_pos);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Case conversion
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_caseconv_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_small_int_t uppercase = duk_get_current_magic(ctx);
|
|
|
|
(void) duk_push_this_coercible_to_string(ctx);
|
|
duk_unicode_case_convert_string(thr, (duk_bool_t) uppercase);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* indexOf() and lastIndexOf()
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_indexof_shared(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_this;
|
|
duk_hstring *h_search;
|
|
duk_int_t clen_this;
|
|
duk_int_t cpos;
|
|
duk_int_t bpos;
|
|
const duk_uint8_t *p_start, *p_end, *p;
|
|
const duk_uint8_t *q_start;
|
|
duk_int_t q_blen;
|
|
duk_uint8_t firstbyte;
|
|
duk_uint8_t t;
|
|
duk_small_int_t is_lastindexof = duk_get_current_magic(ctx); /* 0=indexOf, 1=lastIndexOf */
|
|
|
|
h_this = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h_this != NULL);
|
|
clen_this = (duk_int_t) DUK_HSTRING_GET_CHARLEN(h_this);
|
|
|
|
h_search = duk_to_hstring(ctx, 0);
|
|
DUK_ASSERT(h_search != NULL);
|
|
q_start = DUK_HSTRING_GET_DATA(h_search);
|
|
q_blen = (duk_int_t) DUK_HSTRING_GET_BYTELEN(h_search);
|
|
|
|
duk_to_number(ctx, 1);
|
|
if (duk_is_nan(ctx, 1) && is_lastindexof) {
|
|
/* indexOf: NaN should cause pos to be zero.
|
|
* lastIndexOf: NaN should cause pos to be +Infinity
|
|
* (and later be clamped to len).
|
|
*/
|
|
cpos = clen_this;
|
|
} else {
|
|
cpos = duk_to_int_clamped(ctx, 1, 0, clen_this);
|
|
}
|
|
|
|
/* Empty searchstring always matches; cpos must be clamped here.
|
|
* (If q_blen were < 0 due to clamped coercion, it would also be
|
|
* caught here.)
|
|
*/
|
|
if (q_blen <= 0) {
|
|
duk_push_int(ctx, cpos);
|
|
return 1;
|
|
}
|
|
DUK_ASSERT(q_blen > 0);
|
|
|
|
bpos = (duk_int_t) duk_heap_strcache_offset_char2byte(thr, h_this, (duk_uint32_t) cpos);
|
|
|
|
p_start = DUK_HSTRING_GET_DATA(h_this);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_this);
|
|
p = p_start + bpos;
|
|
|
|
/* This loop is optimized for size. For speed, there should be
|
|
* two separate loops, and we should ensure that memcmp() can be
|
|
* used without an extra "will searchstring fit" check. Doing
|
|
* the preconditioning for 'p' and 'p_end' is easy but cpos
|
|
* must be updated if 'p' is wound back (backward scanning).
|
|
*/
|
|
|
|
firstbyte = q_start[0]; /* leading byte of match string */
|
|
while (p <= p_end && p >= p_start) {
|
|
t = *p;
|
|
|
|
/* For Ecmascript strings, this check can only match for
|
|
* initial UTF-8 bytes (not continuation bytes). For other
|
|
* strings all bets are off.
|
|
*/
|
|
|
|
if ((t == firstbyte) && ((duk_size_t) (p_end - p) >= (duk_size_t) q_blen)) {
|
|
DUK_ASSERT(q_blen > 0); /* no issues with memcmp() zero size, even if broken */
|
|
if (DUK_MEMCMP(p, q_start, (duk_size_t) q_blen) == 0) {
|
|
duk_push_int(ctx, cpos);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/* track cpos while scanning */
|
|
if (is_lastindexof) {
|
|
/* when going backwards, we decrement cpos 'early';
|
|
* 'p' may point to a continuation byte of the char
|
|
* at offset 'cpos', but that's OK because we'll
|
|
* backtrack all the way to the initial byte.
|
|
*/
|
|
if ((t & 0xc0) != 0x80) {
|
|
cpos--;
|
|
}
|
|
p--;
|
|
} else {
|
|
if ((t & 0xc0) != 0x80) {
|
|
cpos++;
|
|
}
|
|
p++;
|
|
}
|
|
}
|
|
|
|
/* Not found. Empty string case is handled specially above. */
|
|
duk_push_int(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* replace()
|
|
*/
|
|
|
|
/* XXX: the current implementation works but is quite clunky; it compiles
|
|
* to almost 1,4kB of x86 code so it needs to be simplified (better approach,
|
|
* shared helpers, etc). Some ideas for refactoring:
|
|
*
|
|
* - a primitive to convert a string into a regexp matcher (reduces matching
|
|
* code at the cost of making matching much slower)
|
|
* - use replace() as a basic helper for match() and split(), which are both
|
|
* much simpler
|
|
* - API call to get_prop and to_boolean
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_replace(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_input;
|
|
duk_hstring *h_match;
|
|
duk_hstring *h_search;
|
|
duk_hobject *h_re;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_bool_t is_regexp;
|
|
duk_bool_t is_global;
|
|
#endif
|
|
duk_bool_t is_repl_func;
|
|
duk_uint32_t match_start_coff, match_start_boff;
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_int_t match_caps;
|
|
#endif
|
|
duk_uint32_t prev_match_end_boff;
|
|
const duk_uint8_t *r_start, *r_end, *r; /* repl string scan */
|
|
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
h_input = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h_input != NULL);
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(h_buf != NULL);
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
|
|
/* stack[0] = search value
|
|
* stack[1] = replace value
|
|
* stack[2] = input string
|
|
* stack[3] = result buffer
|
|
*/
|
|
|
|
h_re = duk_get_hobject_with_class(ctx, 0, DUK_HOBJECT_CLASS_REGEXP);
|
|
if (h_re) {
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
is_regexp = 1;
|
|
is_global = duk_get_prop_stridx_boolean(ctx, 0, DUK_STRIDX_GLOBAL, NULL);
|
|
|
|
if (is_global) {
|
|
/* start match from beginning */
|
|
duk_push_int(ctx, 0);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
}
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
} else {
|
|
duk_to_string(ctx, 0);
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
is_regexp = 0;
|
|
is_global = 0;
|
|
#endif
|
|
}
|
|
|
|
if (duk_is_function(ctx, 1)) {
|
|
is_repl_func = 1;
|
|
r_start = NULL;
|
|
r_end = NULL;
|
|
} else {
|
|
duk_hstring *h_repl;
|
|
|
|
is_repl_func = 0;
|
|
h_repl = duk_to_hstring(ctx, 1);
|
|
DUK_ASSERT(h_repl != NULL);
|
|
r_start = DUK_HSTRING_GET_DATA(h_repl);
|
|
r_end = r_start + DUK_HSTRING_GET_BYTELEN(h_repl);
|
|
}
|
|
|
|
prev_match_end_boff = 0;
|
|
|
|
for (;;) {
|
|
/*
|
|
* If matching with a regexp:
|
|
* - non-global RegExp: lastIndex not touched on a match, zeroed
|
|
* on a non-match
|
|
* - global RegExp: on match, lastIndex will be updated by regexp
|
|
* executor to point to next char after the matching part (so that
|
|
* characters in the matching part are not matched again)
|
|
*
|
|
* If matching with a string:
|
|
* - always non-global match, find first occurrence
|
|
*
|
|
* We need:
|
|
* - The character offset of start-of-match for the replacer function
|
|
* - The byte offsets for start-of-match and end-of-match to implement
|
|
* the replacement values $&, $`, and $', and to copy non-matching
|
|
* input string portions (including header and trailer) verbatim.
|
|
*
|
|
* NOTE: the E5.1 specification is a bit vague how the RegExp should
|
|
* behave in the replacement process; e.g. is matching done first for
|
|
* all matches (in the global RegExp case) before any replacer calls
|
|
* are made? See: test-bi-string-proto-replace.js for discussion.
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
if (is_regexp) {
|
|
duk_dup(ctx, 0);
|
|
duk_dup(ctx, 2);
|
|
duk_regexp_match(thr); /* [ ... regexp input ] -> [ res_obj ] */
|
|
if (!duk_is_object(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
break;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INDEX);
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
match_start_coff = duk_get_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
|
|
duk_get_prop_index(ctx, -1, 0);
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
h_match = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_match != NULL);
|
|
duk_pop(ctx); /* h_match is borrowed, remains reachable through match_obj */
|
|
|
|
if (DUK_HSTRING_GET_BYTELEN(h_match) == 0) {
|
|
/* This should be equivalent to match() algorithm step 8.f.iii.2:
|
|
* detect an empty match and allow it, but don't allow it twice.
|
|
*/
|
|
duk_uint32_t last_index;
|
|
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
last_index = (duk_uint32_t) duk_get_uint(ctx, -1);
|
|
DUK_DDD(DUK_DDDPRINT("empty match, bump lastIndex: %ld -> %ld",
|
|
(long) last_index, (long) (last_index + 1)));
|
|
duk_pop(ctx);
|
|
duk_push_int(ctx, last_index + 1);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
}
|
|
|
|
DUK_ASSERT(duk_get_length(ctx, -1) <= DUK_INT_MAX); /* string limits */
|
|
match_caps = (duk_int_t) duk_get_length(ctx, -1);
|
|
} else {
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
{ /* unconditionally */
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
const duk_uint8_t *p_start, *p_end, *p; /* input string scan */
|
|
const duk_uint8_t *q_start; /* match string */
|
|
duk_size_t q_blen;
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
DUK_ASSERT(!is_global); /* single match always */
|
|
#endif
|
|
|
|
p_start = DUK_HSTRING_GET_DATA(h_input);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_input);
|
|
p = p_start;
|
|
|
|
h_search = duk_get_hstring(ctx, 0);
|
|
DUK_ASSERT(h_search != NULL);
|
|
q_start = DUK_HSTRING_GET_DATA(h_search);
|
|
q_blen = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h_search);
|
|
|
|
p_end -= q_blen; /* ensure full memcmp() fits in while */
|
|
|
|
match_start_coff = 0;
|
|
|
|
while (p <= p_end) {
|
|
DUK_ASSERT(p + q_blen <= DUK_HSTRING_GET_DATA(h_input) + DUK_HSTRING_GET_BYTELEN(h_input));
|
|
if (DUK_MEMCMP((void *) p, (void *) q_start, (size_t) q_blen) == 0) {
|
|
duk_dup(ctx, 0);
|
|
h_match = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_match != NULL);
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
match_caps = 0;
|
|
#endif
|
|
goto found;
|
|
}
|
|
|
|
/* track utf-8 non-continuation bytes */
|
|
if ((p[0] & 0xc0) != 0x80) {
|
|
match_start_coff++;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
/* not found */
|
|
break;
|
|
}
|
|
found:
|
|
|
|
/* stack[0] = search value
|
|
* stack[1] = replace value
|
|
* stack[2] = input string
|
|
* stack[3] = result buffer
|
|
* stack[4] = regexp match OR match string
|
|
*/
|
|
|
|
match_start_boff = duk_heap_strcache_offset_char2byte(thr, h_input, match_start_coff);
|
|
|
|
duk_hbuffer_append_bytes(thr,
|
|
h_buf,
|
|
DUK_HSTRING_GET_DATA(h_input) + prev_match_end_boff,
|
|
(duk_size_t) (match_start_boff - prev_match_end_boff));
|
|
|
|
prev_match_end_boff = match_start_boff + DUK_HSTRING_GET_BYTELEN(h_match);
|
|
|
|
if (is_repl_func) {
|
|
duk_idx_t idx_args;
|
|
duk_hstring *h_repl;
|
|
|
|
/* regexp res_obj is at index 4 */
|
|
|
|
duk_dup(ctx, 1);
|
|
idx_args = duk_get_top(ctx);
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
if (is_regexp) {
|
|
duk_int_t idx;
|
|
duk_require_stack(ctx, match_caps + 2);
|
|
for (idx = 0; idx < match_caps; idx++) {
|
|
/* match followed by capture(s) */
|
|
duk_get_prop_index(ctx, 4, idx);
|
|
}
|
|
} else {
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
{ /* unconditionally */
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
/* match == search string, by definition */
|
|
duk_dup(ctx, 0);
|
|
}
|
|
duk_push_int(ctx, match_start_coff);
|
|
duk_dup(ctx, 2);
|
|
|
|
/* [ ... replacer match [captures] match_char_offset input ] */
|
|
|
|
duk_call(ctx, duk_get_top(ctx) - idx_args);
|
|
h_repl = duk_to_hstring(ctx, -1); /* -> [ ... repl_value ] */
|
|
DUK_ASSERT(h_repl != NULL);
|
|
duk_hbuffer_append_hstring(thr, h_buf, h_repl);
|
|
duk_pop(ctx); /* repl_value */
|
|
} else {
|
|
r = r_start;
|
|
|
|
while (r < r_end) {
|
|
duk_int_t ch1;
|
|
duk_int_t ch2;
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_int_t ch3;
|
|
#endif
|
|
duk_size_t left;
|
|
|
|
ch1 = *r++;
|
|
if (ch1 != DUK_ASC_DOLLAR) {
|
|
goto repl_write;
|
|
}
|
|
left = r_end - r;
|
|
|
|
if (left <= 0) {
|
|
goto repl_write;
|
|
}
|
|
|
|
ch2 = r[0];
|
|
switch ((int) ch2) {
|
|
case DUK_ASC_DOLLAR: {
|
|
ch1 = (1 << 8) + DUK_ASC_DOLLAR;
|
|
goto repl_write;
|
|
}
|
|
case DUK_ASC_AMP: {
|
|
duk_hbuffer_append_hstring(thr, h_buf, h_match);
|
|
r++;
|
|
continue;
|
|
}
|
|
case DUK_ASC_GRAVE: {
|
|
duk_hbuffer_append_bytes(thr,
|
|
h_buf,
|
|
DUK_HSTRING_GET_DATA(h_input),
|
|
match_start_boff);
|
|
r++;
|
|
continue;
|
|
}
|
|
case DUK_ASC_SINGLEQUOTE: {
|
|
duk_uint32_t match_end_boff;
|
|
|
|
/* Use match charlen instead of bytelen, just in case the input and
|
|
* match codepoint encodings would have different lengths.
|
|
*/
|
|
match_end_boff = duk_heap_strcache_offset_char2byte(thr,
|
|
h_input,
|
|
match_start_coff + DUK_HSTRING_GET_CHARLEN(h_match));
|
|
|
|
duk_hbuffer_append_bytes(thr,
|
|
h_buf,
|
|
DUK_HSTRING_GET_DATA(h_input) + match_end_boff,
|
|
DUK_HSTRING_GET_BYTELEN(h_input) - match_end_boff);
|
|
r++;
|
|
continue;
|
|
}
|
|
default: {
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_int_t capnum, captmp, capadv;
|
|
/* XXX: optional check, match_caps is zero if no regexp,
|
|
* so dollar will be interpreted literally anyway.
|
|
*/
|
|
|
|
if (!is_regexp) {
|
|
goto repl_write;
|
|
}
|
|
|
|
if (!(ch2 >= DUK_ASC_0 && ch2 <= DUK_ASC_9)) {
|
|
goto repl_write;
|
|
}
|
|
capnum = ch2 - DUK_ASC_0;
|
|
capadv = 1;
|
|
|
|
if (left >= 2) {
|
|
ch3 = r[1];
|
|
if (ch3 >= DUK_ASC_0 && ch3 <= DUK_ASC_9) {
|
|
captmp = capnum * 10 + (ch3 - DUK_ASC_0);
|
|
if (captmp < match_caps) {
|
|
capnum = captmp;
|
|
capadv = 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (capnum > 0 && capnum < match_caps) {
|
|
DUK_ASSERT(is_regexp != 0); /* match_caps == 0 without regexps */
|
|
|
|
/* regexp res_obj is at offset 4 */
|
|
duk_get_prop_index(ctx, 4, (duk_uarridx_t) capnum);
|
|
if (duk_is_string(ctx, -1)) {
|
|
DUK_ASSERT(duk_get_hstring(ctx, -1) != NULL);
|
|
duk_hbuffer_append_hstring(thr, h_buf, duk_get_hstring(ctx, -1));
|
|
} else {
|
|
/* undefined -> skip (replaced with empty) */
|
|
}
|
|
duk_pop(ctx);
|
|
r += capadv;
|
|
continue;
|
|
} else {
|
|
goto repl_write;
|
|
}
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
goto repl_write; /* unconditionally */
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
} /* default case */
|
|
} /* switch (ch2) */
|
|
|
|
repl_write:
|
|
/* ch1 = (r_increment << 8) + byte */
|
|
duk_hbuffer_append_byte(thr, h_buf, (duk_uint8_t) (ch1 & 0xff));
|
|
r += ch1 >> 8;
|
|
} /* while repl */
|
|
} /* if (is_repl_func) */
|
|
|
|
duk_pop(ctx); /* pop regexp res_obj or match string */
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
if (!is_global) {
|
|
#else
|
|
{ /* unconditionally; is_global==0 */
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* trailer */
|
|
duk_hbuffer_append_bytes(thr,
|
|
h_buf,
|
|
DUK_HSTRING_GET_DATA(h_input) + prev_match_end_boff,
|
|
(duk_size_t) (DUK_HSTRING_GET_BYTELEN(h_input) - prev_match_end_boff));
|
|
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
duk_to_string(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* split()
|
|
*/
|
|
|
|
/* XXX: very messy now, but works; clean up, remove unused variables (nomimally
|
|
* used so compiler doesn't complain).
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_split(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_input;
|
|
duk_hstring *h_sep;
|
|
duk_uint32_t limit;
|
|
duk_uint32_t arr_idx;
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_bool_t is_regexp;
|
|
#endif
|
|
duk_bool_t matched; /* set to 1 if any match exists (needed for empty input special case) */
|
|
duk_uint32_t prev_match_end_coff, prev_match_end_boff;
|
|
duk_uint32_t match_start_boff, match_start_coff;
|
|
duk_uint32_t match_end_boff, match_end_coff;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
h_input = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h_input != NULL);
|
|
|
|
duk_push_array(ctx);
|
|
|
|
if (duk_is_undefined(ctx, 1)) {
|
|
limit = 0xffffffffUL;
|
|
} else {
|
|
limit = duk_to_uint32(ctx, 1);
|
|
}
|
|
|
|
if (limit == 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* If the separator is a RegExp, make a "clone" of it. The specification
|
|
* algorithm calls [[Match]] directly for specific indices; we emulate this
|
|
* by tweaking lastIndex and using a "force global" variant of duk_regexp_match()
|
|
* which will use global-style matching even when the RegExp itself is non-global.
|
|
*/
|
|
|
|
if (duk_is_undefined(ctx, 0)) {
|
|
/* The spec algorithm first does "R = ToString(separator)" before checking
|
|
* whether separator is undefined. Since this is side effect free, we can
|
|
* skip the ToString() here.
|
|
*/
|
|
duk_dup(ctx, 2);
|
|
duk_put_prop_index(ctx, 3, 0);
|
|
return 1;
|
|
} else if (duk_get_hobject_with_class(ctx, 0, DUK_HOBJECT_CLASS_REGEXP) != NULL) {
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_REGEXP_CONSTRUCTOR);
|
|
duk_dup(ctx, 0);
|
|
duk_new(ctx, 1); /* [ ... RegExp val ] -> [ ... res ] */
|
|
duk_replace(ctx, 0);
|
|
/* lastIndex is initialized to zero by new RegExp() */
|
|
is_regexp = 1;
|
|
#else
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
#endif
|
|
} else {
|
|
duk_to_string(ctx, 0);
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
is_regexp = 0;
|
|
#endif
|
|
}
|
|
|
|
/* stack[0] = separator (string or regexp)
|
|
* stack[1] = limit
|
|
* stack[2] = input string
|
|
* stack[3] = result array
|
|
*/
|
|
|
|
prev_match_end_boff = 0;
|
|
prev_match_end_coff = 0;
|
|
arr_idx = 0;
|
|
matched = 0;
|
|
|
|
for (;;) {
|
|
/*
|
|
* The specification uses RegExp [[Match]] to attempt match at specific
|
|
* offsets. We don't have such a primitive, so we use an actual RegExp
|
|
* and tweak lastIndex. Since the RegExp may be non-global, we use a
|
|
* special variant which forces global-like behavior for matching.
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, 4);
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
if (is_regexp) {
|
|
duk_dup(ctx, 0);
|
|
duk_dup(ctx, 2);
|
|
duk_regexp_match_force_global(thr); /* [ ... regexp input ] -> [ res_obj ] */
|
|
if (!duk_is_object(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
break;
|
|
}
|
|
matched = 1;
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INDEX);
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
match_start_coff = duk_get_int(ctx, -1);
|
|
match_start_boff = duk_heap_strcache_offset_char2byte(thr, h_input, match_start_coff);
|
|
duk_pop(ctx);
|
|
|
|
if (match_start_coff == DUK_HSTRING_GET_CHARLEN(h_input)) {
|
|
/* don't allow an empty match at the end of the string */
|
|
duk_pop(ctx);
|
|
break;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
match_end_coff = duk_get_int(ctx, -1);
|
|
match_end_boff = duk_heap_strcache_offset_char2byte(thr, h_input, match_end_coff);
|
|
duk_pop(ctx);
|
|
|
|
/* empty match -> bump and continue */
|
|
if (prev_match_end_boff == match_end_boff) {
|
|
duk_push_int(ctx, match_end_coff + 1);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
duk_pop(ctx);
|
|
continue;
|
|
}
|
|
} else {
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
{ /* unconditionally */
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
const duk_uint8_t *p_start, *p_end, *p; /* input string scan */
|
|
const duk_uint8_t *q_start; /* match string */
|
|
duk_size_t q_blen, q_clen;
|
|
|
|
p_start = DUK_HSTRING_GET_DATA(h_input);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h_input);
|
|
p = p_start + prev_match_end_boff;
|
|
|
|
h_sep = duk_get_hstring(ctx, 0);
|
|
DUK_ASSERT(h_sep != NULL);
|
|
q_start = DUK_HSTRING_GET_DATA(h_sep);
|
|
q_blen = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h_sep);
|
|
q_clen = (duk_size_t) DUK_HSTRING_GET_CHARLEN(h_sep);
|
|
|
|
p_end -= q_blen; /* ensure full memcmp() fits in while */
|
|
|
|
match_start_coff = prev_match_end_coff;
|
|
|
|
if (q_blen == 0) {
|
|
/* Handle empty separator case: it will always match, and always
|
|
* triggers the check in step 13.c.iii initially. Note that we
|
|
* must skip to either end of string or start of first codepoint,
|
|
* skipping over any continuation bytes!
|
|
*
|
|
* Don't allow an empty string to match at the end of the input.
|
|
*/
|
|
|
|
matched = 1; /* empty separator can always match */
|
|
|
|
match_start_coff++;
|
|
p++;
|
|
while (p < p_end) {
|
|
if ((p[0] & 0xc0) != 0x80) {
|
|
goto found;
|
|
}
|
|
p++;
|
|
}
|
|
goto not_found;
|
|
}
|
|
|
|
DUK_ASSERT(q_blen > 0 && q_clen > 0);
|
|
while (p <= p_end) {
|
|
DUK_ASSERT(p + q_blen <= DUK_HSTRING_GET_DATA(h_input) + DUK_HSTRING_GET_BYTELEN(h_input));
|
|
DUK_ASSERT(q_blen > 0); /* no issues with empty memcmp() */
|
|
if (DUK_MEMCMP((void *) p, (void *) q_start, (duk_size_t) q_blen) == 0) {
|
|
/* never an empty match, so step 13.c.iii can't be triggered */
|
|
goto found;
|
|
}
|
|
|
|
/* track utf-8 non-continuation bytes */
|
|
if ((p[0] & 0xc0) != 0x80) {
|
|
match_start_coff++;
|
|
}
|
|
p++;
|
|
}
|
|
|
|
not_found:
|
|
/* not found */
|
|
break;
|
|
|
|
found:
|
|
matched = 1;
|
|
match_start_boff = (duk_uint32_t) (p - p_start);
|
|
match_end_coff = (duk_uint32_t) (match_start_coff + q_clen); /* constrained by string length */
|
|
match_end_boff = (duk_uint32_t) (match_start_boff + q_blen); /* ditto */
|
|
|
|
/* empty match (may happen with empty separator) -> bump and continue */
|
|
if (prev_match_end_boff == match_end_boff) {
|
|
prev_match_end_boff++;
|
|
prev_match_end_coff++;
|
|
continue;
|
|
}
|
|
} /* if (is_regexp) */
|
|
|
|
/* stack[0] = separator (string or regexp)
|
|
* stack[1] = limit
|
|
* stack[2] = input string
|
|
* stack[3] = result array
|
|
* stack[4] = regexp res_obj (if is_regexp)
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("split; match_start b=%ld,c=%ld, match_end b=%ld,c=%ld, prev_end b=%ld,c=%ld",
|
|
(long) match_start_boff, (long) match_start_coff,
|
|
(long) match_end_boff, (long) match_end_coff,
|
|
(long) prev_match_end_boff, (long) prev_match_end_coff));
|
|
|
|
duk_push_lstring(ctx,
|
|
(const char *) (DUK_HSTRING_GET_DATA(h_input) + prev_match_end_boff),
|
|
(duk_size_t) (match_start_boff - prev_match_end_boff));
|
|
duk_put_prop_index(ctx, 3, arr_idx);
|
|
arr_idx++;
|
|
if (arr_idx >= limit) {
|
|
goto hit_limit;
|
|
}
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
if (is_regexp) {
|
|
duk_size_t i, len;
|
|
|
|
len = duk_get_length(ctx, 4);
|
|
for (i = 1; i < len; i++) {
|
|
DUK_ASSERT(i <= DUK_UARRIDX_MAX); /* cannot have >4G captures */
|
|
duk_get_prop_index(ctx, 4, (duk_uarridx_t) i);
|
|
duk_put_prop_index(ctx, 3, arr_idx);
|
|
arr_idx++;
|
|
if (arr_idx >= limit) {
|
|
goto hit_limit;
|
|
}
|
|
}
|
|
|
|
duk_pop(ctx);
|
|
/* lastIndex already set up for next match */
|
|
} else {
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
{ /* unconditionally */
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
/* no action */
|
|
}
|
|
|
|
prev_match_end_boff = match_end_boff;
|
|
prev_match_end_coff = match_end_coff;
|
|
continue;
|
|
} /* for */
|
|
|
|
/* Combined step 11 (empty string special case) and 14-15. */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("split trailer; prev_end b=%ld,c=%ld",
|
|
(long) prev_match_end_boff, (long) prev_match_end_coff));
|
|
|
|
if (DUK_HSTRING_GET_CHARLEN(h_input) > 0 || !matched) {
|
|
/* Add trailer if:
|
|
* a) non-empty input
|
|
* b) empty input and no (zero size) match found (step 11)
|
|
*/
|
|
|
|
duk_push_lstring(ctx,
|
|
(const char *) DUK_HSTRING_GET_DATA(h_input) + prev_match_end_boff,
|
|
(duk_size_t) (DUK_HSTRING_GET_BYTELEN(h_input) - prev_match_end_boff));
|
|
duk_put_prop_index(ctx, 3, arr_idx);
|
|
/* No arr_idx update or limit check */
|
|
}
|
|
|
|
return 1;
|
|
|
|
hit_limit:
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
if (is_regexp) {
|
|
duk_pop(ctx);
|
|
}
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Various
|
|
*/
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
DUK_LOCAL void duk__to_regexp_helper(duk_context *ctx, duk_idx_t index, duk_bool_t force_new) {
|
|
duk_hobject *h;
|
|
|
|
/* Shared helper for match() steps 3-4, search() steps 3-4. */
|
|
|
|
DUK_ASSERT(index >= 0);
|
|
|
|
if (force_new) {
|
|
goto do_new;
|
|
}
|
|
|
|
h = duk_get_hobject_with_class(ctx, index, DUK_HOBJECT_CLASS_REGEXP);
|
|
if (!h) {
|
|
goto do_new;
|
|
}
|
|
return;
|
|
|
|
do_new:
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_REGEXP_CONSTRUCTOR);
|
|
duk_dup(ctx, index);
|
|
duk_new(ctx, 1); /* [ ... RegExp val ] -> [ ... res ] */
|
|
duk_replace(ctx, index);
|
|
}
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_search(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
|
|
/* Easiest way to implement the search required by the specification
|
|
* is to do a RegExp test() with lastIndex forced to zero. To avoid
|
|
* side effects on the argument, "clone" the RegExp if a RegExp was
|
|
* given as input.
|
|
*
|
|
* The global flag of the RegExp should be ignored; setting lastIndex
|
|
* to zero (which happens when "cloning" the RegExp) should have an
|
|
* equivalent effect.
|
|
*/
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
(void) duk_push_this_coercible_to_string(ctx); /* at index 1 */
|
|
duk__to_regexp_helper(ctx, 0 /*index*/, 1 /*force_new*/);
|
|
|
|
/* stack[0] = regexp
|
|
* stack[1] = string
|
|
*/
|
|
|
|
/* Avoid using RegExp.prototype methods, as they're writable and
|
|
* configurable and may have been changed.
|
|
*/
|
|
|
|
duk_dup(ctx, 0);
|
|
duk_dup(ctx, 1); /* [ ... re_obj input ] */
|
|
duk_regexp_match(thr); /* -> [ ... res_obj ] */
|
|
|
|
if (!duk_is_object(ctx, -1)) {
|
|
duk_push_int(ctx, -1);
|
|
return 1;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INDEX);
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
return 1;
|
|
}
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_search(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_match(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_bool_t global;
|
|
duk_int_t prev_last_index;
|
|
duk_int_t this_index;
|
|
duk_int_t arr_idx;
|
|
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
(void) duk_push_this_coercible_to_string(ctx);
|
|
duk__to_regexp_helper(ctx, 0 /*index*/, 0 /*force_new*/);
|
|
global = duk_get_prop_stridx_boolean(ctx, 0, DUK_STRIDX_GLOBAL, NULL);
|
|
DUK_ASSERT_TOP(ctx, 2);
|
|
|
|
/* stack[0] = regexp
|
|
* stack[1] = string
|
|
*/
|
|
|
|
if (!global) {
|
|
duk_regexp_match(thr); /* -> [ res_obj ] */
|
|
return 1; /* return 'res_obj' */
|
|
}
|
|
|
|
/* Global case is more complex. */
|
|
|
|
/* [ regexp string ] */
|
|
|
|
duk_push_int(ctx, 0);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
duk_push_array(ctx);
|
|
|
|
/* [ regexp string res_arr ] */
|
|
|
|
prev_last_index = 0;
|
|
arr_idx = 0;
|
|
|
|
for (;;) {
|
|
DUK_ASSERT_TOP(ctx, 3);
|
|
|
|
duk_dup(ctx, 0);
|
|
duk_dup(ctx, 1);
|
|
duk_regexp_match(thr); /* -> [ ... regexp string ] -> [ ... res_obj ] */
|
|
|
|
if (!duk_is_object(ctx, -1)) {
|
|
duk_pop(ctx);
|
|
break;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
this_index = duk_get_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
|
|
if (this_index == prev_last_index) {
|
|
this_index++;
|
|
duk_push_int(ctx, this_index);
|
|
duk_put_prop_stridx(ctx, 0, DUK_STRIDX_LAST_INDEX);
|
|
}
|
|
prev_last_index = this_index;
|
|
|
|
duk_get_prop_index(ctx, -1, 0); /* match string */
|
|
duk_put_prop_index(ctx, 2, arr_idx);
|
|
arr_idx++;
|
|
duk_pop(ctx); /* res_obj */
|
|
}
|
|
|
|
if (arr_idx == 0) {
|
|
duk_push_null(ctx);
|
|
}
|
|
|
|
return 1; /* return 'res_arr' or 'null' */
|
|
}
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_match(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_UNSUPPORTED_ERROR;
|
|
}
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_concat(duk_context *ctx) {
|
|
/* duk_concat() coerces arguments with ToString() in correct order */
|
|
(void) duk_push_this_coercible_to_string(ctx);
|
|
duk_insert(ctx, 0); /* this is relatively expensive */
|
|
duk_concat(ctx, duk_get_top(ctx));
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_trim(duk_context *ctx) {
|
|
DUK_ASSERT_TOP(ctx, 0);
|
|
(void) duk_push_this_coercible_to_string(ctx);
|
|
duk_trim(ctx, 0);
|
|
DUK_ASSERT_TOP(ctx, 1);
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_string_prototype_locale_compare(duk_context *ctx) {
|
|
duk_hstring *h1;
|
|
duk_hstring *h2;
|
|
duk_size_t h1_len, h2_len, prefix_len;
|
|
duk_small_int_t ret = 0;
|
|
duk_small_int_t rc;
|
|
|
|
/* The current implementation of localeCompare() is simply a codepoint
|
|
* by codepoint comparison, implemented with a simple string compare
|
|
* because UTF-8 should preserve codepoint ordering (assuming valid
|
|
* shortest UTF-8 encoding).
|
|
*
|
|
* The specification requires that the return value must be related
|
|
* to the sort order: e.g. negative means that 'this' comes before
|
|
* 'that' in sort order. We assume an ascending sort order.
|
|
*/
|
|
|
|
/* XXX: could share code with duk_js_ops.c, duk_js_compare_helper */
|
|
|
|
h1 = duk_push_this_coercible_to_string(ctx);
|
|
DUK_ASSERT(h1 != NULL);
|
|
|
|
h2 = duk_to_hstring(ctx, 0);
|
|
DUK_ASSERT(h2 != NULL);
|
|
|
|
h1_len = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h1);
|
|
h2_len = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h2);
|
|
prefix_len = (h1_len <= h2_len ? h1_len : h2_len);
|
|
|
|
/* Zero size compare not an issue with DUK_MEMCMP. */
|
|
rc = (duk_small_int_t) DUK_MEMCMP((const char *) DUK_HSTRING_GET_DATA(h1),
|
|
(const char *) DUK_HSTRING_GET_DATA(h2),
|
|
prefix_len);
|
|
|
|
if (rc < 0) {
|
|
ret = -1;
|
|
goto done;
|
|
} else if (rc > 0) {
|
|
ret = 1;
|
|
goto done;
|
|
}
|
|
|
|
/* prefix matches, lengths matter now */
|
|
if (h1_len > h2_len) {
|
|
ret = 1;
|
|
goto done;
|
|
} else if (h1_len == h2_len) {
|
|
DUK_ASSERT(ret == 0);
|
|
goto done;
|
|
}
|
|
ret = -1;
|
|
goto done;
|
|
|
|
done:
|
|
duk_push_int(ctx, (duk_int_t) ret);
|
|
return 1;
|
|
}
|
|
#line 1 "duk_bi_thread.c"
|
|
/*
|
|
* Thread builtins
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Constructor
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_thread_constructor(duk_context *ctx) {
|
|
duk_hthread *new_thr;
|
|
duk_hobject *func;
|
|
|
|
/* XXX: need a duk_require_func_or_lfunc_coerce() */
|
|
if (!duk_is_callable(ctx, 0)) {
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
func = duk_require_hobject_or_lfunc_coerce(ctx, 0);
|
|
DUK_ASSERT(func != NULL);
|
|
|
|
duk_push_thread(ctx);
|
|
new_thr = (duk_hthread *) duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(new_thr != NULL);
|
|
new_thr->state = DUK_HTHREAD_STATE_INACTIVE;
|
|
|
|
/* push initial function call to new thread stack; this is
|
|
* picked up by resume().
|
|
*/
|
|
duk_push_hobject((duk_context *) new_thr, func);
|
|
|
|
return 1; /* return thread */
|
|
}
|
|
|
|
/*
|
|
* Resume a thread.
|
|
*
|
|
* The thread must be in resumable state, either (a) new thread which hasn't
|
|
* yet started, or (b) a thread which has previously yielded. This method
|
|
* must be called from an Ecmascript function.
|
|
*
|
|
* Args:
|
|
* - thread
|
|
* - value
|
|
* - isError (defaults to false)
|
|
*
|
|
* Note: yield and resume handling is currently asymmetric.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_thread_resume(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hthread *thr_resume;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv;
|
|
duk_hobject *func;
|
|
duk_hobject *caller_func;
|
|
duk_small_int_t is_error;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("Duktape.Thread.resume(): thread=%!T, value=%!T, is_error=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1),
|
|
(duk_tval *) duk_get_tval(ctx, 2)));
|
|
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING);
|
|
DUK_ASSERT(thr->heap->curr_thread == thr);
|
|
|
|
thr_resume = duk_require_hthread(ctx, 0);
|
|
is_error = (duk_small_int_t) duk_to_boolean(ctx, 2);
|
|
duk_set_top(ctx, 2);
|
|
|
|
/* [ thread value ] */
|
|
|
|
/*
|
|
* Thread state and calling context checks
|
|
*/
|
|
|
|
if (thr->callstack_top < 2) {
|
|
DUK_DD(DUK_DDPRINT("resume state invalid: callstack should contain at least 2 entries (caller and Duktape.Thread.resume)"));
|
|
goto state_error;
|
|
}
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1) != NULL); /* us */
|
|
DUK_ASSERT(DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1)));
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2) != NULL); /* caller */
|
|
|
|
caller_func = DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2);
|
|
if (!DUK_HOBJECT_IS_COMPILEDFUNCTION(caller_func)) {
|
|
DUK_DD(DUK_DDPRINT("resume state invalid: caller must be Ecmascript code"));
|
|
goto state_error;
|
|
}
|
|
|
|
/* Note: there is no requirement that: 'thr->callstack_preventcount == 1'
|
|
* like for yield.
|
|
*/
|
|
|
|
if (thr_resume->state != DUK_HTHREAD_STATE_INACTIVE &&
|
|
thr_resume->state != DUK_HTHREAD_STATE_YIELDED) {
|
|
DUK_DD(DUK_DDPRINT("resume state invalid: target thread must be INACTIVE or YIELDED"));
|
|
goto state_error;
|
|
}
|
|
|
|
DUK_ASSERT(thr_resume->state == DUK_HTHREAD_STATE_INACTIVE ||
|
|
thr_resume->state == DUK_HTHREAD_STATE_YIELDED);
|
|
|
|
/* Further state-dependent pre-checks */
|
|
|
|
if (thr_resume->state == DUK_HTHREAD_STATE_YIELDED) {
|
|
/* no pre-checks now, assume a previous yield() has left things in
|
|
* tip-top shape (longjmp handler will assert for these).
|
|
*/
|
|
} else {
|
|
DUK_ASSERT(thr_resume->state == DUK_HTHREAD_STATE_INACTIVE);
|
|
|
|
if ((thr_resume->callstack_top != 0) ||
|
|
(thr_resume->valstack_top - thr_resume->valstack != 1)) {
|
|
goto state_invalid_initial;
|
|
}
|
|
tv = &thr_resume->valstack_top[-1];
|
|
DUK_ASSERT(tv >= thr_resume->valstack && tv < thr_resume->valstack_top);
|
|
if (!DUK_TVAL_IS_OBJECT(tv)) {
|
|
goto state_invalid_initial;
|
|
}
|
|
func = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(func != NULL);
|
|
if (!DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
/* Note: cannot be a bound function either right now,
|
|
* this would be easy to relax though.
|
|
*/
|
|
goto state_invalid_initial;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* The error object has been augmented with a traceback and other
|
|
* info from its creation point -- usually another thread. The
|
|
* error handler is called here right before throwing, but it also
|
|
* runs in the resumer's thread. It might be nice to get a traceback
|
|
* from the resumee but this is not the case now.
|
|
*/
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
if (is_error) {
|
|
DUK_ASSERT_TOP(ctx, 2); /* value (error) is at stack top */
|
|
duk_err_augment_error_throw(thr); /* in resumer's context */
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
if (is_error) {
|
|
DUK_DDD(DUK_DDDPRINT("RESUME ERROR: thread=%!T, value=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1)));
|
|
} else if (thr_resume->state == DUK_HTHREAD_STATE_YIELDED) {
|
|
DUK_DDD(DUK_DDDPRINT("RESUME NORMAL: thread=%!T, value=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1)));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("RESUME INITIAL: thread=%!T, value=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1)));
|
|
}
|
|
#endif
|
|
|
|
thr->heap->lj.type = DUK_LJ_TYPE_RESUME;
|
|
|
|
/* lj value2: thread */
|
|
DUK_ASSERT(thr->valstack_bottom < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value2);
|
|
DUK_TVAL_SET_TVAL(&thr->heap->lj.value2, &thr->valstack_bottom[0]);
|
|
DUK_TVAL_INCREF(thr, &thr->heap->lj.value2);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
/* lj value1: value */
|
|
DUK_ASSERT(thr->valstack_bottom + 1 < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value1);
|
|
DUK_TVAL_SET_TVAL(&thr->heap->lj.value1, &thr->valstack_bottom[1]);
|
|
DUK_TVAL_INCREF(thr, &thr->heap->lj.value1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
thr->heap->lj.iserror = is_error;
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* call is from executor, so we know we have a jmpbuf */
|
|
duk_err_longjmp(thr); /* execution resumes in bytecode executor */
|
|
return 0; /* never here */
|
|
|
|
state_invalid_initial:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "invalid initial thread state/stack");
|
|
return 0; /* never here */
|
|
|
|
state_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "invalid state for resume");
|
|
return 0; /* never here */
|
|
}
|
|
|
|
/*
|
|
* Yield the current thread.
|
|
*
|
|
* The thread must be in yieldable state: it must have a resumer, and there
|
|
* must not be any yield-preventing calls (native calls and constructor calls,
|
|
* currently) in the thread's call stack (otherwise a resume would not be
|
|
* possible later). This method must be called from an Ecmascript function.
|
|
*
|
|
* Args:
|
|
* - value
|
|
* - isError (defaults to false)
|
|
*
|
|
* Note: yield and resume handling is currently asymmetric.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_thread_yield(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval tv_tmp;
|
|
duk_hobject *caller_func;
|
|
duk_small_int_t is_error;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("Duktape.Thread.yield(): value=%!T, is_error=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0),
|
|
(duk_tval *) duk_get_tval(ctx, 1)));
|
|
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING);
|
|
DUK_ASSERT(thr->heap->curr_thread == thr);
|
|
|
|
is_error = (duk_small_int_t) duk_to_boolean(ctx, 1);
|
|
duk_set_top(ctx, 1);
|
|
|
|
/* [ value ] */
|
|
|
|
/*
|
|
* Thread state and calling context checks
|
|
*/
|
|
|
|
if (!thr->resumer) {
|
|
DUK_DD(DUK_DDPRINT("yield state invalid: current thread must have a resumer"));
|
|
goto state_error;
|
|
}
|
|
DUK_ASSERT(thr->resumer->state == DUK_HTHREAD_STATE_RESUMED);
|
|
|
|
if (thr->callstack_top < 2) {
|
|
DUK_DD(DUK_DDPRINT("yield state invalid: callstack should contain at least 2 entries (caller and Duktape.Thread.yield)"));
|
|
goto state_error;
|
|
}
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1) != NULL); /* us */
|
|
DUK_ASSERT(DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1)));
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2) != NULL); /* caller */
|
|
|
|
caller_func = DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2);
|
|
if (!DUK_HOBJECT_IS_COMPILEDFUNCTION(caller_func)) {
|
|
DUK_DD(DUK_DDPRINT("yield state invalid: caller must be Ecmascript code"));
|
|
goto state_error;
|
|
}
|
|
|
|
DUK_ASSERT(thr->callstack_preventcount >= 1); /* should never be zero, because we (Duktape.Thread.yield) are on the stack */
|
|
if (thr->callstack_preventcount != 1) {
|
|
/* Note: the only yield-preventing call is Duktape.Thread.yield(), hence check for 1, not 0 */
|
|
DUK_DD(DUK_DDPRINT("yield state invalid: there must be no yield-preventing calls in current thread callstack (preventcount is %ld)",
|
|
(long) thr->callstack_preventcount));
|
|
goto state_error;
|
|
}
|
|
|
|
/*
|
|
* The error object has been augmented with a traceback and other
|
|
* info from its creation point -- usually the current thread.
|
|
* The error handler, however, is called right before throwing
|
|
* and runs in the yielder's thread.
|
|
*/
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
if (is_error) {
|
|
DUK_ASSERT_TOP(ctx, 1); /* value (error) is at stack top */
|
|
duk_err_augment_error_throw(thr); /* in yielder's context */
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
if (is_error) {
|
|
DUK_DDD(DUK_DDDPRINT("YIELD ERROR: value=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0)));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("YIELD NORMAL: value=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, 0)));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Process yield
|
|
*
|
|
* After longjmp(), processing continues in bytecode executor longjmp
|
|
* handler, which will e.g. update thr->resumer to NULL.
|
|
*/
|
|
|
|
thr->heap->lj.type = DUK_LJ_TYPE_YIELD;
|
|
|
|
/* lj value1: value */
|
|
DUK_ASSERT(thr->valstack_bottom < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value1);
|
|
DUK_TVAL_SET_TVAL(&thr->heap->lj.value1, &thr->valstack_bottom[0]);
|
|
DUK_TVAL_INCREF(thr, &thr->heap->lj.value1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
thr->heap->lj.iserror = is_error;
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* call is from executor, so we know we have a jmpbuf */
|
|
duk_err_longjmp(thr); /* execution resumes in bytecode executor */
|
|
return 0; /* never here */
|
|
|
|
state_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "invalid state for yield");
|
|
return 0; /* never here */
|
|
}
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_thread_current(duk_context *ctx) {
|
|
duk_push_current_thread(ctx);
|
|
return 1;
|
|
}
|
|
#line 1 "duk_bi_thrower.c"
|
|
/*
|
|
* Type error thrower, E5 Section 13.2.3.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_ret_t duk_bi_type_error_thrower(duk_context *ctx) {
|
|
DUK_UNREF(ctx);
|
|
return DUK_RET_TYPE_ERROR;
|
|
}
|
|
#line 1 "duk_debug_fixedbuffer.c"
|
|
/*
|
|
* Fixed buffer helper useful for debugging, requires no allocation
|
|
* which is critical for debugging.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
|
|
DUK_INTERNAL void duk_fb_put_bytes(duk_fixedbuffer *fb, duk_uint8_t *buffer, duk_size_t length) {
|
|
duk_size_t avail;
|
|
duk_size_t copylen;
|
|
|
|
avail = (fb->offset >= fb->length ? (duk_size_t) 0 : (duk_size_t) (fb->length - fb->offset));
|
|
if (length > avail) {
|
|
copylen = avail;
|
|
fb->truncated = 1;
|
|
} else {
|
|
copylen = length;
|
|
}
|
|
DUK_MEMCPY(fb->buffer + fb->offset, buffer, copylen);
|
|
fb->offset += copylen;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_fb_put_byte(duk_fixedbuffer *fb, duk_uint8_t x) {
|
|
duk_fb_put_bytes(fb, &x, 1);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_fb_put_cstring(duk_fixedbuffer *fb, const char *x) {
|
|
duk_fb_put_bytes(fb, (duk_uint8_t *) x, (duk_size_t) DUK_STRLEN(x));
|
|
}
|
|
|
|
DUK_INTERNAL void duk_fb_sprintf(duk_fixedbuffer *fb, const char *fmt, ...) {
|
|
duk_size_t avail;
|
|
va_list ap;
|
|
|
|
va_start(ap, fmt);
|
|
avail = (fb->offset >= fb->length ? (duk_size_t) 0 : (duk_size_t) (fb->length - fb->offset));
|
|
if (avail > 0) {
|
|
duk_int_t res = (duk_int_t) DUK_VSNPRINTF((char *) (fb->buffer + fb->offset), avail, fmt, ap);
|
|
if (res < 0) {
|
|
/* error */
|
|
} else if ((duk_size_t) res >= avail) {
|
|
/* (maybe) truncated */
|
|
fb->offset += avail;
|
|
if ((duk_size_t) res > avail) {
|
|
/* actual chars dropped (not just NUL term) */
|
|
fb->truncated = 1;
|
|
}
|
|
} else {
|
|
/* normal */
|
|
fb->offset += res;
|
|
}
|
|
}
|
|
va_end(ap);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_fb_put_funcptr(duk_fixedbuffer *fb, duk_uint8_t *fptr, duk_size_t fptr_size) {
|
|
char buf[64+1];
|
|
duk_debug_format_funcptr(buf, sizeof(buf), fptr, fptr_size);
|
|
buf[sizeof(buf) - 1] = (char) 0;
|
|
duk_fb_put_cstring(fb, buf);
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_fb_is_full(duk_fixedbuffer *fb) {
|
|
return (fb->offset >= fb->length);
|
|
}
|
|
|
|
#endif /* DUK_USE_DEBUG */
|
|
#line 1 "duk_debug_heap.c"
|
|
/*
|
|
* Debug dumping of duk_heap.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
|
|
#if 0 /*unused*/
|
|
DUK_LOCAL void duk__sanitize_snippet(char *buf, duk_size_t buf_size, duk_hstring *str) {
|
|
duk_size_t i;
|
|
duk_size_t nchars;
|
|
duk_size_t maxchars;
|
|
duk_uint8_t *data;
|
|
|
|
DUK_MEMZERO(buf, buf_size);
|
|
|
|
maxchars = (duk_size_t) (buf_size - 1);
|
|
data = DUK_HSTRING_GET_DATA(str);
|
|
nchars = ((duk_size_t) str->blen < maxchars ? (duk_size_t) str->blen : maxchars);
|
|
for (i = 0; i < nchars; i++) {
|
|
duk_small_int_t c = (duk_small_int_t) data[i];
|
|
if (c < 0x20 || c > 0x7e) {
|
|
c = '.';
|
|
}
|
|
buf[i] = (char) c;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
DUK_LOCAL const char *duk__get_heap_type_string(duk_heaphdr *hdr) {
|
|
switch (DUK_HEAPHDR_GET_TYPE(hdr)) {
|
|
case DUK_HTYPE_STRING:
|
|
return "string";
|
|
case DUK_HTYPE_OBJECT:
|
|
return "object";
|
|
case DUK_HTYPE_BUFFER:
|
|
return "buffer";
|
|
default:
|
|
return "???";
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0
|
|
DUK_LOCAL void duk__dump_indented(duk_heaphdr *obj, int index) {
|
|
DUK_UNREF(obj);
|
|
DUK_UNREF(index);
|
|
DUK_UNREF(duk__get_heap_type_string);
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_D(DUK_DPRINT(" [%ld]: %p %s (flags: 0x%08lx, ref: %ld) -> %!O",
|
|
(long) index,
|
|
(void *) obj,
|
|
(const char *) duk__get_heap_type_string(obj),
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS(obj),
|
|
(long) DUK_HEAPHDR_GET_REFCOUNT(obj),
|
|
(duk_heaphdr *) obj));
|
|
#else
|
|
DUK_D(DUK_DPRINT(" [%ld]: %p %s (flags: 0x%08lx) -> %!O",
|
|
(long) index,
|
|
(void *) obj,
|
|
(const char *) duk__get_heap_type_string(obj),
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS(obj),
|
|
(duk_heaphdr *) obj));
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_LOCAL void duk__dump_heaphdr_list(duk_heap *heap, duk_heaphdr *root, const char *name) {
|
|
duk_int_t count;
|
|
duk_heaphdr *curr;
|
|
|
|
DUK_UNREF(heap);
|
|
DUK_UNREF(name);
|
|
|
|
count = 0;
|
|
curr = root;
|
|
while (curr) {
|
|
count++;
|
|
curr = DUK_HEAPHDR_GET_NEXT(curr);
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("%s, %ld objects", (const char *) name, (long) count));
|
|
|
|
count = 0;
|
|
curr = root;
|
|
while (curr) {
|
|
count++;
|
|
duk__dump_indented(curr, count);
|
|
curr = DUK_HEAPHDR_GET_NEXT(curr);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_LOCAL void duk__dump_stringtable(duk_heap *heap) {
|
|
duk_uint_fast32_t i;
|
|
char buf[64+1];
|
|
|
|
DUK_D(DUK_DPRINT("stringtable %p, used %ld, size %ld, load %ld%%",
|
|
(void *) heap->strtable,
|
|
(long) heap->st_used,
|
|
(long) heap->st_size,
|
|
(long) (((double) heap->st_used) / ((double) heap->st_size) * 100.0)));
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) heap->st_size; i++) {
|
|
duk_hstring *e = heap->strtable[i];
|
|
|
|
if (!e) {
|
|
DUK_D(DUK_DPRINT(" [%ld]: NULL", (long) i));
|
|
} else if (e == DUK_STRTAB_DELETED_MARKER(heap)) {
|
|
DUK_D(DUK_DPRINT(" [%ld]: DELETED", (long) i));
|
|
} else {
|
|
duk__sanitize_snippet(buf, sizeof(buf), e);
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_D(DUK_DPRINT(" [%ld]: %p (flags: 0x%08lx, ref: %ld) '%s', strhash=0x%08lx, blen=%ld, clen=%ld, "
|
|
"arridx=%ld, internal=%ld, reserved_word=%ld, strict_reserved_word=%ld, eval_or_arguments=%ld",
|
|
(long) i,
|
|
(void *) e,
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS((duk_heaphdr *) e),
|
|
(long) DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) e),
|
|
(const char *) buf,
|
|
(unsigned long) e->hash,
|
|
(long) e->blen,
|
|
(long) e->clen,
|
|
(long) (DUK_HSTRING_HAS_ARRIDX(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_INTERNAL(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_RESERVED_WORD(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_STRICT_RESERVED_WORD(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_EVAL_OR_ARGUMENTS(e) ? 1 : 0)));
|
|
#else
|
|
DUK_D(DUK_DPRINT(" [%ld]: %p (flags: 0x%08lx) '%s', strhash=0x%08lx, blen=%ld, clen=%ld, "
|
|
"arridx=%ld, internal=%ld, reserved_word=%ld, strict_reserved_word=%ld, eval_or_arguments=%ld",
|
|
(long) i,
|
|
(void *) e,
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS((duk_heaphdr *) e),
|
|
(const char *) buf,
|
|
(long) e->hash,
|
|
(long) e->blen,
|
|
(long) e->clen,
|
|
(long) (DUK_HSTRING_HAS_ARRIDX(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_INTERNAL(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_RESERVED_WORD(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_STRICT_RESERVED_WORD(e) ? 1 : 0),
|
|
(long) (DUK_HSTRING_HAS_EVAL_OR_ARGUMENTS(e) ? 1 : 0)));
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_LOCAL void duk__dump_strcache(duk_heap *heap) {
|
|
duk_uint_fast32_t i;
|
|
char buf[64+1];
|
|
|
|
DUK_D(DUK_DPRINT("stringcache"));
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HEAP_STRCACHE_SIZE; i++) {
|
|
duk_strcache *c = &heap->strcache[i];
|
|
if (!c->h) {
|
|
DUK_D(DUK_DPRINT(" [%ld]: bidx=%ld, cidx=%ld, str=NULL",
|
|
(long) i, (long) c->bidx, (long) c->cidx));
|
|
} else {
|
|
duk__sanitize_snippet(buf, sizeof(buf), c->h);
|
|
DUK_D(DUK_DPRINT(" [%ld]: bidx=%ld cidx=%ld str=%s",
|
|
(long) i, (long) c->bidx, (long) c->cidx, (const char *) buf));
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL void duk_debug_dump_heap(duk_heap *heap) {
|
|
char buf[64+1];
|
|
|
|
DUK_D(DUK_DPRINT("=== heap %p ===", (void *) heap));
|
|
DUK_D(DUK_DPRINT(" flags: 0x%08lx", (unsigned long) heap->flags));
|
|
|
|
/* Note: there is no standard formatter for function pointers */
|
|
#ifdef DUK_USE_GCC_PRAGMAS
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-pedantic"
|
|
#endif
|
|
duk_debug_format_funcptr(buf, sizeof(buf), (duk_uint8_t *) &heap->alloc_func, sizeof(heap->alloc_func));
|
|
DUK_D(DUK_DPRINT(" alloc_func: %s", (const char *) buf));
|
|
duk_debug_format_funcptr(buf, sizeof(buf), (duk_uint8_t *) &heap->realloc_func, sizeof(heap->realloc_func));
|
|
DUK_D(DUK_DPRINT(" realloc_func: %s", (const char *) buf));
|
|
duk_debug_format_funcptr(buf, sizeof(buf), (duk_uint8_t *) &heap->free_func, sizeof(heap->free_func));
|
|
DUK_D(DUK_DPRINT(" free_func: %s", (const char *) buf));
|
|
duk_debug_format_funcptr(buf, sizeof(buf), (duk_uint8_t *) &heap->fatal_func, sizeof(heap->fatal_func));
|
|
DUK_D(DUK_DPRINT(" fatal_func: %s", (const char *) buf));
|
|
#ifdef DUK_USE_GCC_PRAGMAS
|
|
#pragma GCC diagnostic pop
|
|
#endif
|
|
|
|
DUK_D(DUK_DPRINT(" heap_udata: %p", (void *) heap->heap_udata));
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
#ifdef DUK_USE_VOLUNTARY_GC
|
|
DUK_D(DUK_DPRINT(" mark-and-sweep trig counter: %ld", (long) heap->mark_and_sweep_trigger_counter));
|
|
#endif
|
|
DUK_D(DUK_DPRINT(" mark-and-sweep rec depth: %ld", (long) heap->mark_and_sweep_recursion_depth));
|
|
DUK_D(DUK_DPRINT(" mark-and-sweep base flags: 0x%08lx", (unsigned long) heap->mark_and_sweep_base_flags));
|
|
#endif
|
|
|
|
DUK_D(DUK_DPRINT(" lj.jmpbuf_ptr: %p", (void *) heap->lj.jmpbuf_ptr));
|
|
DUK_D(DUK_DPRINT(" lj.type: %ld", (long) heap->lj.type));
|
|
DUK_D(DUK_DPRINT(" lj.value1: %!T", (duk_tval *) &heap->lj.value1));
|
|
DUK_D(DUK_DPRINT(" lj.value2: %!T", (duk_tval *) &heap->lj.value2));
|
|
DUK_D(DUK_DPRINT(" lj.iserror: %ld", (long) heap->lj.iserror));
|
|
|
|
DUK_D(DUK_DPRINT(" handling_error: %ld", (long) heap->handling_error));
|
|
|
|
DUK_D(DUK_DPRINT(" heap_thread: %!@O", (duk_heaphdr *) heap->heap_thread));
|
|
DUK_D(DUK_DPRINT(" curr_thread: %!@O", (duk_heaphdr *) heap->curr_thread));
|
|
DUK_D(DUK_DPRINT(" heap_object: %!@O", (duk_heaphdr *) heap->heap_object));
|
|
|
|
DUK_D(DUK_DPRINT(" call_recursion_depth: %ld", (long) heap->call_recursion_depth));
|
|
DUK_D(DUK_DPRINT(" call_recursion_limit: %ld", (long) heap->call_recursion_limit));
|
|
|
|
DUK_D(DUK_DPRINT(" hash_seed: 0x%08lx", (unsigned long) heap->hash_seed));
|
|
DUK_D(DUK_DPRINT(" rnd_state: 0x%08lx", (unsigned long) heap->rnd_state));
|
|
|
|
duk__dump_strcache(heap);
|
|
|
|
duk__dump_heaphdr_list(heap, heap->heap_allocated, "heap allocated");
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk__dump_heaphdr_list(heap, heap->refzero_list, "refcounting refzero list");
|
|
#endif
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
duk__dump_heaphdr_list(heap, heap->finalize_list, "mark-and-sweep finalize list");
|
|
#endif
|
|
|
|
duk__dump_stringtable(heap);
|
|
|
|
/* heap->strs: not worth dumping */
|
|
}
|
|
#endif
|
|
|
|
#endif /* DUK_USE_DEBUG */
|
|
#line 1 "duk_debug_vsnprintf.c"
|
|
/*
|
|
* Custom formatter for debug printing, allowing Duktape specific data
|
|
* structures (such as tagged values and heap objects) to be printed with
|
|
* a nice format string. Because debug printing should not affect execution
|
|
* state, formatting here must be independent of execution (see implications
|
|
* below) and must not allocate memory.
|
|
*
|
|
* Custom format tags begin with a '%!' to safely distinguish them from
|
|
* standard format tags. The following conversions are supported:
|
|
*
|
|
* %!T tagged value (duk_tval *)
|
|
* %!O heap object (duk_heaphdr *)
|
|
* %!I decoded bytecode instruction
|
|
* %!C bytecode instruction opcode name (arg is long)
|
|
*
|
|
* Everything is serialized in a JSON-like manner. The default depth is one
|
|
* level, internal prototype is not followed, and internal properties are not
|
|
* serialized. The following modifiers change this behavior:
|
|
*
|
|
* @ print pointers
|
|
* # print binary representations (where applicable)
|
|
* d deep traversal of own properties (not prototype)
|
|
* p follow prototype chain (useless without 'd')
|
|
* i include internal properties (other than prototype)
|
|
* x hexdump buffers
|
|
* h heavy formatting
|
|
*
|
|
* For instance, the following serializes objects recursively, but does not
|
|
* follow the prototype chain nor print internal properties: "%!dO".
|
|
*
|
|
* Notes:
|
|
*
|
|
* * Standard snprintf return value semantics seem to vary. This
|
|
* implementation returns the number of bytes it actually wrote
|
|
* (excluding the null terminator). If retval == buffer size,
|
|
* output was truncated (except for corner cases).
|
|
*
|
|
* * Output format is intentionally different from Ecmascript
|
|
* formatting requirements, as formatting here serves debugging
|
|
* of internals.
|
|
*
|
|
* * Depth checking (and updating) is done in each type printer
|
|
* separately, to allow them to call each other freely.
|
|
*
|
|
* * Some pathological structures might take ages to print (e.g.
|
|
* self recursion with 100 properties pointing to the object
|
|
* itself). To guard against these, each printer also checks
|
|
* whether the output buffer is full; if so, early exit.
|
|
*
|
|
* * Reference loops are detected using a loop stack.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
|
|
#include <stdio.h>
|
|
#include <stdarg.h>
|
|
#include <string.h>
|
|
|
|
/* list of conversion specifiers that terminate a format tag;
|
|
* this is unfortunately guesswork.
|
|
*/
|
|
#define DUK__ALLOWED_STANDARD_SPECIFIERS "diouxXeEfFgGaAcsCSpnm"
|
|
|
|
/* maximum length of standard format tag that we support */
|
|
#define DUK__MAX_FORMAT_TAG_LENGTH 32
|
|
|
|
/* heapobj recursion depth when deep printing is selected */
|
|
#define DUK__DEEP_DEPTH_LIMIT 8
|
|
|
|
/* maximum recursion depth for loop detection stacks */
|
|
#define DUK__LOOP_STACK_DEPTH 256
|
|
|
|
/* must match bytecode defines now; build autogenerate? */
|
|
DUK_LOCAL const char *duk__bc_optab[64] = {
|
|
"LDREG", "STREG", "LDCONST", "LDINT", "LDINTX", "MPUTOBJ", "MPUTOBJI", "MPUTARR", "MPUTARRI", "NEW",
|
|
"NEWI", "REGEXP", "CSREG", "CSREGI", "GETVAR", "PUTVAR", "DECLVAR", "DELVAR", "CSVAR", "CSVARI",
|
|
"CLOSURE", "GETPROP", "PUTPROP", "DELPROP", "CSPROP", "CSPROPI", "ADD", "SUB", "MUL", "DIV",
|
|
"MOD", "BAND", "BOR", "BXOR", "BASL", "BLSR", "BASR", "EQ", "NEQ", "SEQ",
|
|
"SNEQ", "GT", "GE", "LT", "LE", "IF", "JUMP", "RETURN", "CALL", "CALLI",
|
|
"TRYCATCH", "EXTRA", "PREINCR", "PREDECR", "POSTINCR", "POSTDECR", "PREINCV", "PREDECV", "POSTINCV", "POSTDECV",
|
|
"PREINCP", "PREDECP", "POSTINCP", "POSTDECP"
|
|
};
|
|
|
|
DUK_LOCAL const char *duk__bc_extraoptab[256] = {
|
|
"NOP", "INVALID", "LDTHIS", "LDUNDEF", "LDNULL", "LDTRUE", "LDFALSE", "NEWOBJ", "NEWARR", "SETALEN",
|
|
"TYPEOF", "TYPEOFID", "INITENUM", "NEXTENUM", "INITSET", "INITSETI", "INITGET", "INITGETI", "ENDTRY", "ENDCATCH",
|
|
"ENDFIN", "THROW", "INVLHS", "UNM", "UNP", "DEBUGGER", "BREAK", "CONTINUE", "BNOT", "LNOT",
|
|
"INSTOF", "IN", "LABEL", "ENDLABEL", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX", "XXX",
|
|
|
|
"XXX", "XXX", "XXX", "XXX", "XXX", "XXX"
|
|
};
|
|
|
|
typedef struct duk__dprint_state duk__dprint_state;
|
|
struct duk__dprint_state {
|
|
duk_fixedbuffer *fb;
|
|
|
|
/* loop_stack_index could be perhaps be replaced by 'depth', but it's nice
|
|
* to not couple these two mechanisms unnecessarily.
|
|
*/
|
|
duk_hobject *loop_stack[DUK__LOOP_STACK_DEPTH];
|
|
duk_int_t loop_stack_index;
|
|
duk_int_t loop_stack_limit;
|
|
|
|
duk_int_t depth;
|
|
duk_int_t depth_limit;
|
|
|
|
duk_bool_t pointer;
|
|
duk_bool_t heavy;
|
|
duk_bool_t binary;
|
|
duk_bool_t follow_proto;
|
|
duk_bool_t internal;
|
|
duk_bool_t hexdump;
|
|
};
|
|
|
|
/* helpers */
|
|
DUK_LOCAL_DECL void duk__print_hstring(duk__dprint_state *st, duk_hstring *k, duk_bool_t quotes);
|
|
DUK_LOCAL_DECL void duk__print_hobject(duk__dprint_state *st, duk_hobject *h);
|
|
DUK_LOCAL_DECL void duk__print_hbuffer(duk__dprint_state *st, duk_hbuffer *h);
|
|
DUK_LOCAL_DECL void duk__print_tval(duk__dprint_state *st, duk_tval *tv);
|
|
DUK_LOCAL_DECL void duk__print_instr(duk__dprint_state *st, duk_instr_t ins);
|
|
DUK_LOCAL_DECL void duk__print_heaphdr(duk__dprint_state *st, duk_heaphdr *h);
|
|
DUK_LOCAL_DECL void duk__print_shared_heaphdr(duk__dprint_state *st, duk_heaphdr *h);
|
|
DUK_LOCAL_DECL void duk__print_shared_heaphdr_string(duk__dprint_state *st, duk_heaphdr_string *h);
|
|
|
|
DUK_LOCAL void duk__print_shared_heaphdr(duk__dprint_state *st, duk_heaphdr *h) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "(%p)", (void *) h);
|
|
}
|
|
|
|
if (!h) {
|
|
return;
|
|
}
|
|
|
|
if (st->binary) {
|
|
duk_size_t i;
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_LBRACKET);
|
|
for (i = 0; i < (duk_size_t) sizeof(*h); i++) {
|
|
duk_fb_sprintf(fb, "%02lx", (unsigned long) ((duk_uint8_t *)h)[i]);
|
|
}
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_RBRACKET);
|
|
}
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING /* currently implicitly also DUK_USE_DOUBLE_LINKED_HEAP */
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "[h_next=%p,h_prev=%p,h_refcount=%lu,h_flags=%08lx,type=%ld,"
|
|
"reachable=%ld,temproot=%ld,finalizable=%ld,finalized=%ld]",
|
|
(void *) DUK_HEAPHDR_GET_NEXT(NULL, h),
|
|
(void *) DUK_HEAPHDR_GET_PREV(NULL, h),
|
|
(unsigned long) DUK_HEAPHDR_GET_REFCOUNT(h),
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS(h),
|
|
(long) DUK_HEAPHDR_GET_TYPE(h),
|
|
(long) (DUK_HEAPHDR_HAS_REACHABLE(h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_TEMPROOT(h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZABLE(h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZED(h) ? 1 : 0));
|
|
}
|
|
#else
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "[h_next=%p,h_flags=%08lx,type=%ld,reachable=%ld,temproot=%ld,finalizable=%ld,finalized=%ld]",
|
|
(void *) DUK_HEAPHDR_GET_NEXT(NULL, h),
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS(h),
|
|
(long) DUK_HEAPHDR_GET_TYPE(h),
|
|
(long) (DUK_HEAPHDR_HAS_REACHABLE(h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_TEMPROOT(h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZABLE(h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZED(h) ? 1 : 0));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL void duk__print_shared_heaphdr_string(duk__dprint_state *st, duk_heaphdr_string *h) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "(%p)", (void *) h);
|
|
}
|
|
|
|
if (!h) {
|
|
return;
|
|
}
|
|
|
|
if (st->binary) {
|
|
duk_size_t i;
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_LBRACKET);
|
|
for (i = 0; i < (duk_size_t) sizeof(*h); i++) {
|
|
duk_fb_sprintf(fb, "%02lx", (unsigned long) ((duk_uint8_t *)h)[i]);
|
|
}
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_RBRACKET);
|
|
}
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "[h_refcount=%lu,h_flags=%08lx,type=%ld,reachable=%ld,temproot=%ld,finalizable=%ld,finalized=%ld]",
|
|
(unsigned long) DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) h),
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS((duk_heaphdr *) h),
|
|
(long) DUK_HEAPHDR_GET_TYPE((duk_heaphdr *) h),
|
|
(long) (DUK_HEAPHDR_HAS_REACHABLE((duk_heaphdr *) h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_TEMPROOT((duk_heaphdr *) h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZABLE((duk_heaphdr *) h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZED((duk_heaphdr *) h) ? 1 : 0));
|
|
}
|
|
#else
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "[h_flags=%08lx,type=%ld,reachable=%ld,temproot=%ld,finalizable=%ld,finalized=%ld]",
|
|
(unsigned long) DUK_HEAPHDR_GET_FLAGS((duk_heaphdr *) h),
|
|
(long) DUK_HEAPHDR_GET_TYPE((duk_heaphdr *) h),
|
|
(long) (DUK_HEAPHDR_HAS_REACHABLE((duk_heaphdr *) h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_TEMPROOT((duk_heaphdr *) h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZABLE((duk_heaphdr *) h) ? 1 : 0),
|
|
(long) (DUK_HEAPHDR_HAS_FINALIZED((duk_heaphdr *) h) ? 1 : 0));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL void duk__print_hstring(duk__dprint_state *st, duk_hstring *h, duk_bool_t quotes) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
const duk_uint8_t *p;
|
|
const duk_uint8_t *p_end;
|
|
|
|
/* terminal type: no depth check */
|
|
|
|
if (duk_fb_is_full(fb)) {
|
|
return;
|
|
}
|
|
|
|
duk__print_shared_heaphdr_string(st, &h->hdr);
|
|
|
|
if (!h) {
|
|
duk_fb_put_cstring(fb, "NULL");
|
|
return;
|
|
}
|
|
|
|
p = DUK_HSTRING_GET_DATA(h);
|
|
p_end = p + DUK_HSTRING_GET_BYTELEN(h);
|
|
|
|
if (p_end > p && p[0] == DUK_ASC_UNDERSCORE) {
|
|
/* if property key begins with underscore, encode it with
|
|
* forced quotes (e.g. "_Foo") to distinguish it from encoded
|
|
* internal properties (e.g. \xffBar -> _Bar).
|
|
*/
|
|
quotes = 1;
|
|
}
|
|
|
|
if (quotes) {
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_DOUBLEQUOTE);
|
|
}
|
|
while (p < p_end) {
|
|
duk_uint8_t ch = *p++;
|
|
|
|
/* two special escapes: '\' and '"', other printables as is */
|
|
if (ch == '\\') {
|
|
duk_fb_sprintf(fb, "\\\\");
|
|
} else if (ch == '"') {
|
|
duk_fb_sprintf(fb, "\\\"");
|
|
} else if (ch >= 0x20 && ch <= 0x7e) {
|
|
duk_fb_put_byte(fb, ch);
|
|
} else if (ch == 0xff && !quotes) {
|
|
/* encode \xffBar as _Bar if no quotes are applied, this is for
|
|
* readable internal keys.
|
|
*/
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_UNDERSCORE);
|
|
} else {
|
|
duk_fb_sprintf(fb, "\\x%02lx", (unsigned long) ch);
|
|
}
|
|
}
|
|
if (quotes) {
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_DOUBLEQUOTE);
|
|
}
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
/* XXX: limit to quoted strings only, to save keys from being cluttered? */
|
|
duk_fb_sprintf(fb, "/%lu", (unsigned long) DUK_HEAPHDR_GET_REFCOUNT(&h->hdr));
|
|
#endif
|
|
}
|
|
|
|
#ifdef DUK__COMMA
|
|
#undef DUK__COMMA
|
|
#endif
|
|
#define DUK__COMMA() do { \
|
|
if (first) { \
|
|
first = 0; \
|
|
} else { \
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_COMMA); \
|
|
} \
|
|
} while (0)
|
|
|
|
DUK_LOCAL void duk__print_hobject(duk__dprint_state *st, duk_hobject *h) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
duk_uint_fast32_t i;
|
|
duk_tval *tv;
|
|
duk_hstring *key;
|
|
duk_bool_t first = 1;
|
|
const char *brace1 = "{";
|
|
const char *brace2 = "}";
|
|
duk_bool_t pushed_loopstack = 0;
|
|
|
|
if (duk_fb_is_full(fb)) {
|
|
return;
|
|
}
|
|
|
|
duk__print_shared_heaphdr(st, &h->hdr);
|
|
|
|
if (h && DUK_HOBJECT_HAS_ARRAY_PART(h)) {
|
|
brace1 = "[";
|
|
brace2 = "]";
|
|
}
|
|
|
|
if (!h) {
|
|
duk_fb_put_cstring(fb, "NULL");
|
|
goto finished;
|
|
}
|
|
|
|
if (st->depth >= st->depth_limit) {
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
duk_fb_sprintf(fb, "%sobject/compiledfunction %p%s", (const char *) brace1, (void *) h, (const char *) brace2);
|
|
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
duk_fb_sprintf(fb, "%sobject/nativefunction %p%s", (const char *) brace1, (void *) h, (const char *) brace2);
|
|
} else if (DUK_HOBJECT_IS_THREAD(h)) {
|
|
duk_fb_sprintf(fb, "%sobject/thread %p%s", (const char *) brace1, (void *) h, (const char *) brace2);
|
|
} else {
|
|
duk_fb_sprintf(fb, "%sobject %p%s", (const char *) brace1, (void *) h, (const char *) brace2); /* may be NULL */
|
|
}
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) st->loop_stack_index; i++) {
|
|
if (st->loop_stack[i] == h) {
|
|
duk_fb_sprintf(fb, "%sLOOP:%p%s", (const char *) brace1, (void *) h, (const char *) brace2);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* after this, return paths should 'goto finished' for decrement */
|
|
st->depth++;
|
|
|
|
if (st->loop_stack_index >= st->loop_stack_limit) {
|
|
duk_fb_sprintf(fb, "%sOUT-OF-LOOP-STACK%s", (const char *) brace1, (const char *) brace2);
|
|
goto finished;
|
|
}
|
|
st->loop_stack[st->loop_stack_index++] = h;
|
|
pushed_loopstack = 1;
|
|
|
|
/*
|
|
* Notation: double underscore used for internal properties which are not
|
|
* stored in the property allocation (e.g. '__valstack').
|
|
*/
|
|
|
|
duk_fb_put_cstring(fb, brace1);
|
|
|
|
if (DUK_HOBJECT_GET_PROPS(NULL, h)) {
|
|
duk_uint32_t a_limit;
|
|
|
|
a_limit = DUK_HOBJECT_GET_ASIZE(h);
|
|
if (st->internal) {
|
|
/* dump all allocated entries, unused entries print as 'unused',
|
|
* note that these may extend beyond current 'length' and look
|
|
* a bit funny.
|
|
*/
|
|
} else {
|
|
/* leave out trailing 'unused' elements */
|
|
while (a_limit > 0) {
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(NULL, h, a_limit - 1);
|
|
if (!DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
break;
|
|
}
|
|
a_limit--;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < a_limit; i++) {
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(NULL, h, i);
|
|
DUK__COMMA();
|
|
duk__print_tval(st, tv);
|
|
}
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(h); i++) {
|
|
key = DUK_HOBJECT_E_GET_KEY(NULL, h, i);
|
|
if (!key) {
|
|
continue;
|
|
}
|
|
if (!st->internal &&
|
|
DUK_HSTRING_GET_BYTELEN(key) > 0 &&
|
|
DUK_HSTRING_GET_DATA(key)[0] == 0xff) {
|
|
/* XXX: use DUK_HSTRING_FLAG_INTERNAL? */
|
|
continue;
|
|
}
|
|
DUK__COMMA();
|
|
duk__print_hstring(st, key, 0);
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_COLON);
|
|
if (DUK_HOBJECT_E_SLOT_IS_ACCESSOR(NULL, h, i)) {
|
|
duk_fb_sprintf(fb, "[get:%p,set:%p]",
|
|
(void *) DUK_HOBJECT_E_GET_VALUE(NULL, h, i).a.get,
|
|
(void *) DUK_HOBJECT_E_GET_VALUE(NULL, h, i).a.set);
|
|
} else {
|
|
tv = &DUK_HOBJECT_E_GET_VALUE(NULL, h, i).v;
|
|
duk__print_tval(st, tv);
|
|
}
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "<%02lx>", (unsigned long) DUK_HOBJECT_E_GET_FLAGS(NULL, h, i));
|
|
}
|
|
}
|
|
}
|
|
if (st->internal) {
|
|
if (DUK_HOBJECT_HAS_EXTENSIBLE(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__extensible:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_CONSTRUCTABLE(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__constructable:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_BOUND(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__bound:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_COMPILEDFUNCTION(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__compiledfunction:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_NATIVEFUNCTION(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__nativefunction:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_THREAD(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__thread:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_ARRAY_PART(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__array_part:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_STRICT(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__strict:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_NEWENV(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__newenv:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_NAMEBINDING(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__namebinding:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_CREATEARGS(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__createargs:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_ENVRECCLOSED(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__envrecclosed:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARRAY(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__special_array:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__special_stringobj:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__special_arguments:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXOTIC_DUKFUNC(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__special_dukfunc:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__special_bufferobj:true");
|
|
} else {
|
|
;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(h)) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__special_proxyobj:true");
|
|
} else {
|
|
;
|
|
}
|
|
}
|
|
if (st->internal && DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
duk_hcompiledfunction *f = (duk_hcompiledfunction *) h;
|
|
DUK__COMMA(); duk_fb_put_cstring(fb, "__data:");
|
|
duk__print_hbuffer(st, (duk_hbuffer *) DUK_HCOMPILEDFUNCTION_GET_DATA(NULL, f));
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__nregs:%ld", (long) f->nregs);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__nargs:%ld", (long) f->nargs);
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__start_line:%ld", (long) f->start_line);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__end_line:%ld", (long) f->end_line);
|
|
#endif
|
|
DUK__COMMA(); duk_fb_put_cstring(fb, "__data:");
|
|
duk__print_hbuffer(st, (duk_hbuffer *) DUK_HCOMPILEDFUNCTION_GET_DATA(NULL, f));
|
|
} else if (st->internal && DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
duk_hnativefunction *f = (duk_hnativefunction *) h;
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__func:");
|
|
duk_fb_put_funcptr(fb, (duk_uint8_t *) &f->func, sizeof(f->func));
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__nargs:%ld", (long) f->nargs);
|
|
} else if (st->internal && DUK_HOBJECT_IS_THREAD(h)) {
|
|
duk_hthread *t = (duk_hthread *) h;
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__strict:%ld", (long) t->strict);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__state:%ld", (long) t->state);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__unused1:%ld", (long) t->unused1);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__unused2:%ld", (long) t->unused2);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__valstack_max:%ld", (long) t->valstack_max);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__callstack_max:%ld", (long) t->callstack_max);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__catchstack_max:%ld", (long) t->catchstack_max);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__valstack:%p", (void *) t->valstack);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__valstack_end:%p/%ld", (void *) t->valstack_end, (long) (t->valstack_end - t->valstack));
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__valstack_bottom:%p/%ld", (void *) t->valstack_bottom, (long) (t->valstack_bottom - t->valstack));
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__valstack_top:%p/%ld", (void *) t->valstack_top, (long) (t->valstack_top - t->valstack));
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__catchstack:%p", (void *) t->catchstack);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__catchstack_size:%ld", (long) t->catchstack_size);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__catchstack_top:%ld", (long) t->catchstack_top);
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__resumer:"); duk__print_hobject(st, (duk_hobject *) t->resumer);
|
|
/* XXX: print built-ins array? */
|
|
|
|
}
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
if (st->internal) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__refcount:%lu", (unsigned long) DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) h));
|
|
}
|
|
#endif
|
|
if (st->internal) {
|
|
DUK__COMMA(); duk_fb_sprintf(fb, "__class:%ld", (long) DUK_HOBJECT_GET_CLASS_NUMBER(h));
|
|
}
|
|
|
|
/* prototype should be last, for readability */
|
|
if (st->follow_proto && DUK_HOBJECT_GET_PROTOTYPE(NULL, h)) {
|
|
DUK__COMMA(); duk_fb_put_cstring(fb, "__prototype:"); duk__print_hobject(st, DUK_HOBJECT_GET_PROTOTYPE(NULL, h));
|
|
}
|
|
|
|
duk_fb_put_cstring(fb, brace2);
|
|
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
if (st->heavy && DUK_HOBJECT_GET_HSIZE(h) > 0) {
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_LANGLE);
|
|
for (i = 0; i < DUK_HOBJECT_GET_HSIZE(h); i++) {
|
|
duk_uint_t h_idx = DUK_HOBJECT_H_GET_INDEX(NULL, h, i);
|
|
if (i > 0) {
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_COMMA);
|
|
}
|
|
if (h_idx == DUK_HOBJECT_HASHIDX_UNUSED) {
|
|
duk_fb_sprintf(fb, "u");
|
|
} else if (h_idx == DUK_HOBJECT_HASHIDX_DELETED) {
|
|
duk_fb_sprintf(fb, "d");
|
|
} else {
|
|
duk_fb_sprintf(fb, "%ld", (long) h_idx);
|
|
}
|
|
}
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_RANGLE);
|
|
}
|
|
#endif
|
|
|
|
finished:
|
|
st->depth--;
|
|
if (pushed_loopstack) {
|
|
st->loop_stack_index--;
|
|
st->loop_stack[st->loop_stack_index] = NULL;
|
|
}
|
|
}
|
|
|
|
#undef DUK__COMMA
|
|
|
|
DUK_LOCAL void duk__print_hbuffer(duk__dprint_state *st, duk_hbuffer *h) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
duk_size_t i, n;
|
|
duk_uint8_t *p;
|
|
|
|
if (duk_fb_is_full(fb)) {
|
|
return;
|
|
}
|
|
|
|
/* terminal type: no depth check */
|
|
|
|
if (!h) {
|
|
duk_fb_put_cstring(fb, "NULL");
|
|
return;
|
|
}
|
|
|
|
if (DUK_HBUFFER_HAS_DYNAMIC(h)) {
|
|
duk_hbuffer_dynamic *g = (duk_hbuffer_dynamic *) h;
|
|
duk_fb_sprintf(fb, "buffer:dynamic:%p:%ld:%ld",
|
|
(void *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(NULL, g),
|
|
(long) DUK_HBUFFER_DYNAMIC_GET_SIZE(g),
|
|
(long) DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(g));
|
|
} else {
|
|
duk_fb_sprintf(fb, "buffer:fixed:%ld", (long) DUK_HBUFFER_GET_SIZE(h));
|
|
}
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk_fb_sprintf(fb, "/%lu", (unsigned long) DUK_HEAPHDR_GET_REFCOUNT(&h->hdr));
|
|
#endif
|
|
|
|
if (st->hexdump) {
|
|
duk_fb_sprintf(fb, "=[");
|
|
n = DUK_HBUFFER_GET_SIZE(h);
|
|
p = (duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(NULL, h);
|
|
for (i = 0; i < n; i++) {
|
|
duk_fb_sprintf(fb, "%02lx", (unsigned long) p[i]);
|
|
}
|
|
duk_fb_sprintf(fb, "]");
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__print_heaphdr(duk__dprint_state *st, duk_heaphdr *h) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
|
|
if (duk_fb_is_full(fb)) {
|
|
return;
|
|
}
|
|
|
|
if (!h) {
|
|
duk_fb_put_cstring(fb, "NULL");
|
|
return;
|
|
}
|
|
|
|
switch (DUK_HEAPHDR_GET_TYPE(h)) {
|
|
case DUK_HTYPE_STRING:
|
|
duk__print_hstring(st, (duk_hstring *) h, 1);
|
|
break;
|
|
case DUK_HTYPE_OBJECT:
|
|
duk__print_hobject(st, (duk_hobject *) h);
|
|
break;
|
|
case DUK_HTYPE_BUFFER:
|
|
duk__print_hbuffer(st, (duk_hbuffer *) h);
|
|
break;
|
|
default:
|
|
duk_fb_sprintf(fb, "[unknown htype %ld]", (long) DUK_HEAPHDR_GET_TYPE(h));
|
|
break;
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__print_tval(duk__dprint_state *st, duk_tval *tv) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
|
|
if (duk_fb_is_full(fb)) {
|
|
return;
|
|
}
|
|
|
|
/* depth check is done when printing an actual type */
|
|
|
|
if (st->heavy) {
|
|
duk_fb_sprintf(fb, "(%p)", (void *) tv);
|
|
}
|
|
|
|
if (!tv) {
|
|
duk_fb_put_cstring(fb, "NULL");
|
|
return;
|
|
}
|
|
|
|
if (st->binary) {
|
|
duk_size_t i;
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_LBRACKET);
|
|
for (i = 0; i < (duk_size_t) sizeof(*tv); i++) {
|
|
duk_fb_sprintf(fb, "%02lx", (unsigned long) ((duk_uint8_t *)tv)[i]);
|
|
}
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_RBRACKET);
|
|
}
|
|
|
|
if (st->heavy) {
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_LANGLE);
|
|
}
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED: {
|
|
if (DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
duk_fb_put_cstring(fb, "unused");
|
|
} else {
|
|
duk_fb_put_cstring(fb, "undefined");
|
|
}
|
|
break;
|
|
}
|
|
case DUK_TAG_NULL: {
|
|
duk_fb_put_cstring(fb, "null");
|
|
break;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
duk_fb_put_cstring(fb, DUK_TVAL_GET_BOOLEAN(tv) ? "true" : "false");
|
|
break;
|
|
}
|
|
case DUK_TAG_STRING: {
|
|
/* Note: string is a terminal heap object, so no depth check here */
|
|
duk__print_hstring(st, DUK_TVAL_GET_STRING(tv), 1);
|
|
break;
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
duk__print_hobject(st, DUK_TVAL_GET_OBJECT(tv));
|
|
break;
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
duk__print_hbuffer(st, DUK_TVAL_GET_BUFFER(tv));
|
|
break;
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
duk_fb_sprintf(fb, "pointer:%p", (void *) DUK_TVAL_GET_POINTER(tv));
|
|
break;
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
duk_c_function func;
|
|
duk_small_uint_t lf_flags;
|
|
|
|
DUK_TVAL_GET_LIGHTFUNC(tv, func, lf_flags);
|
|
duk_fb_sprintf(fb, "lightfunc:");
|
|
duk_fb_put_funcptr(fb, (duk_uint8_t *) &func, sizeof(func));
|
|
duk_fb_sprintf(fb, ":%04lx", (long) lf_flags);
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* IEEE double is approximately 16 decimal digits; print a couple extra */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
duk_fb_sprintf(fb, "%.18g", (double) DUK_TVAL_GET_NUMBER(tv));
|
|
break;
|
|
}
|
|
}
|
|
if (st->heavy) {
|
|
duk_fb_put_byte(fb, (duk_uint8_t) DUK_ASC_RANGLE);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__print_instr(duk__dprint_state *st, duk_instr_t ins) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
duk_small_int_t op;
|
|
const char *op_name;
|
|
const char *extraop_name;
|
|
|
|
op = (duk_small_int_t) DUK_DEC_OP(ins);
|
|
op_name = duk__bc_optab[op];
|
|
|
|
/* XXX: option to fix opcode length so it lines up nicely */
|
|
|
|
if (op == DUK_OP_EXTRA) {
|
|
extraop_name = duk__bc_extraoptab[DUK_DEC_A(ins)];
|
|
|
|
duk_fb_sprintf(fb, "%s %ld, %ld",
|
|
(const char *) extraop_name, (long) DUK_DEC_B(ins), (long) DUK_DEC_C(ins));
|
|
} else if (op == DUK_OP_JUMP) {
|
|
duk_int_t diff1 = DUK_DEC_ABC(ins) - DUK_BC_JUMP_BIAS; /* from next pc */
|
|
duk_int_t diff2 = diff1 + 1; /* from curr pc */
|
|
|
|
duk_fb_sprintf(fb, "%s %ld (to pc%c%ld)",
|
|
(const char *) op_name, (long) diff1,
|
|
(int) (diff2 >= 0 ? '+' : '-'), /* char format: use int */
|
|
(long) (diff2 >= 0 ? diff2 : -diff2));
|
|
} else {
|
|
duk_fb_sprintf(fb, "%s %ld, %ld, %ld",
|
|
(const char *) op_name, (long) DUK_DEC_A(ins),
|
|
(long) DUK_DEC_B(ins), (long) DUK_DEC_C(ins));
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__print_opcode(duk__dprint_state *st, duk_small_int_t opcode) {
|
|
duk_fixedbuffer *fb = st->fb;
|
|
|
|
if (opcode < DUK_BC_OP_MIN || opcode > DUK_BC_OP_MAX) {
|
|
duk_fb_sprintf(fb, "?(%ld)", (long) opcode);
|
|
} else {
|
|
duk_fb_sprintf(fb, "%s", (const char *) duk__bc_optab[opcode]);
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL duk_int_t duk_debug_vsnprintf(char *str, duk_size_t size, const char *format, va_list ap) {
|
|
duk_fixedbuffer fb;
|
|
const char *p = format;
|
|
const char *p_end = p + DUK_STRLEN(format);
|
|
duk_int_t retval;
|
|
|
|
DUK_MEMZERO(&fb, sizeof(fb));
|
|
fb.buffer = (duk_uint8_t *) str;
|
|
fb.length = size;
|
|
fb.offset = 0;
|
|
fb.truncated = 0;
|
|
|
|
while (p < p_end) {
|
|
char ch = *p++;
|
|
const char *p_begfmt = NULL;
|
|
duk_bool_t got_exclamation = 0;
|
|
duk_bool_t got_long = 0; /* %lf, %ld etc */
|
|
duk__dprint_state st;
|
|
|
|
if (ch != DUK_ASC_PERCENT) {
|
|
duk_fb_put_byte(&fb, (duk_uint8_t) ch);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Format tag parsing. Since we don't understand all the
|
|
* possible format tags allowed, we just scan for a terminating
|
|
* specifier and keep track of relevant modifiers that we do
|
|
* understand. See man 3 printf.
|
|
*/
|
|
|
|
DUK_MEMZERO(&st, sizeof(st));
|
|
st.fb = &fb;
|
|
st.depth = 0;
|
|
st.depth_limit = 1;
|
|
st.loop_stack_index = 0;
|
|
st.loop_stack_limit = DUK__LOOP_STACK_DEPTH;
|
|
|
|
p_begfmt = p - 1;
|
|
while (p < p_end) {
|
|
ch = *p++;
|
|
|
|
if (ch == DUK_ASC_STAR) {
|
|
/* unsupported: would consume multiple args */
|
|
goto error;
|
|
} else if (ch == DUK_ASC_PERCENT) {
|
|
duk_fb_put_byte(&fb, (duk_uint8_t) DUK_ASC_PERCENT);
|
|
break;
|
|
} else if (ch == DUK_ASC_EXCLAMATION) {
|
|
got_exclamation = 1;
|
|
} else if (!got_exclamation && ch == DUK_ASC_LC_L) {
|
|
got_long = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_LC_D) {
|
|
st.depth_limit = DUK__DEEP_DEPTH_LIMIT;
|
|
} else if (got_exclamation && ch == DUK_ASC_LC_P) {
|
|
st.follow_proto = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_LC_I) {
|
|
st.internal = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_LC_X) {
|
|
st.hexdump = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_LC_H) {
|
|
st.heavy = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_ATSIGN) {
|
|
st.pointer = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_HASH) {
|
|
st.binary = 1;
|
|
} else if (got_exclamation && ch == DUK_ASC_UC_T) {
|
|
duk_tval *t = va_arg(ap, duk_tval *);
|
|
if (st.pointer && !st.heavy) {
|
|
duk_fb_sprintf(&fb, "(%p)", (void *) t);
|
|
}
|
|
duk__print_tval(&st, t);
|
|
break;
|
|
} else if (got_exclamation && ch == DUK_ASC_UC_O) {
|
|
duk_heaphdr *t = va_arg(ap, duk_heaphdr *);
|
|
if (st.pointer && !st.heavy) {
|
|
duk_fb_sprintf(&fb, "(%p)", (void *) t);
|
|
}
|
|
duk__print_heaphdr(&st, t);
|
|
break;
|
|
} else if (got_exclamation && ch == DUK_ASC_UC_I) {
|
|
duk_instr_t t = va_arg(ap, duk_instr_t);
|
|
duk__print_instr(&st, t);
|
|
break;
|
|
} else if (got_exclamation && ch == DUK_ASC_UC_C) {
|
|
long t = va_arg(ap, long);
|
|
duk__print_opcode(&st, (duk_small_int_t) t);
|
|
break;
|
|
} else if (!got_exclamation && strchr(DUK__ALLOWED_STANDARD_SPECIFIERS, (int) ch)) {
|
|
char fmtbuf[DUK__MAX_FORMAT_TAG_LENGTH];
|
|
duk_size_t fmtlen;
|
|
|
|
DUK_ASSERT(p >= p_begfmt);
|
|
fmtlen = (duk_size_t) (p - p_begfmt);
|
|
if (fmtlen >= sizeof(fmtbuf)) {
|
|
/* format is too large, abort */
|
|
goto error;
|
|
}
|
|
DUK_MEMZERO(fmtbuf, sizeof(fmtbuf));
|
|
DUK_MEMCPY(fmtbuf, p_begfmt, fmtlen);
|
|
|
|
/* assume exactly 1 arg, which is why '*' is forbidden; arg size still
|
|
* depends on type though.
|
|
*/
|
|
|
|
if (ch == DUK_ASC_LC_F || ch == DUK_ASC_LC_G || ch == DUK_ASC_LC_E) {
|
|
/* %f and %lf both consume a 'long' */
|
|
double arg = va_arg(ap, double);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_D && got_long) {
|
|
/* %ld */
|
|
long arg = va_arg(ap, long);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_D) {
|
|
/* %d; only 16 bits are guaranteed */
|
|
int arg = va_arg(ap, int);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_U && got_long) {
|
|
/* %lu */
|
|
unsigned long arg = va_arg(ap, unsigned long);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_U) {
|
|
/* %u; only 16 bits are guaranteed */
|
|
unsigned int arg = va_arg(ap, unsigned int);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_X && got_long) {
|
|
/* %lx */
|
|
unsigned long arg = va_arg(ap, unsigned long);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_X) {
|
|
/* %x; only 16 bits are guaranteed */
|
|
unsigned int arg = va_arg(ap, unsigned int);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else if (ch == DUK_ASC_LC_S) {
|
|
/* %s */
|
|
const char *arg = va_arg(ap, const char *);
|
|
if (arg == NULL) {
|
|
/* '%s' and NULL is not portable, so special case
|
|
* it for debug printing.
|
|
*/
|
|
duk_fb_sprintf(&fb, "NULL");
|
|
} else {
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
}
|
|
} else if (ch == DUK_ASC_LC_P) {
|
|
/* %p */
|
|
void *arg = va_arg(ap, void *);
|
|
if (arg == NULL) {
|
|
/* '%p' and NULL is portable, but special case it
|
|
* anyway to get a standard NULL marker in logs.
|
|
*/
|
|
duk_fb_sprintf(&fb, "NULL");
|
|
} else {
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
}
|
|
} else if (ch == DUK_ASC_LC_C) {
|
|
/* '%c', passed concretely as int */
|
|
int arg = va_arg(ap, int);
|
|
duk_fb_sprintf(&fb, fmtbuf, arg);
|
|
} else {
|
|
/* Should not happen. */
|
|
duk_fb_sprintf(&fb, "INVALID-FORMAT(%s)", (const char *) fmtbuf);
|
|
}
|
|
break;
|
|
} else {
|
|
/* ignore */
|
|
}
|
|
}
|
|
}
|
|
goto done;
|
|
|
|
error:
|
|
duk_fb_put_cstring(&fb, "FMTERR");
|
|
/* fall through */
|
|
|
|
done:
|
|
retval = (duk_int_t) fb.offset;
|
|
duk_fb_put_byte(&fb, (duk_uint8_t) 0);
|
|
|
|
/* return total chars written excluding terminator */
|
|
return retval;
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_int_t duk_debug_snprintf(char *str, duk_size_t size, const char *format, ...) {
|
|
duk_int_t retval;
|
|
va_list ap;
|
|
va_start(ap, format);
|
|
retval = duk_debug_vsnprintf(str, size, format, ap);
|
|
va_end(ap);
|
|
return retval;
|
|
}
|
|
#endif
|
|
|
|
/* Formatting function pointers is tricky: there is no standard pointer for
|
|
* function pointers and the size of a function pointer may depend on the
|
|
* specific pointer type. This helper formats a function pointer based on
|
|
* its memory layout to get something useful on most platforms.
|
|
*/
|
|
DUK_INTERNAL void duk_debug_format_funcptr(char *buf, duk_size_t buf_size, duk_uint8_t *fptr, duk_size_t fptr_size) {
|
|
duk_size_t i;
|
|
duk_uint8_t *p = (duk_uint8_t *) buf;
|
|
duk_uint8_t *p_end = (duk_uint8_t *) (buf + buf_size - 1);
|
|
|
|
DUK_MEMZERO(buf, buf_size);
|
|
|
|
for (i = 0; i < fptr_size; i++) {
|
|
duk_int_t left = (duk_int_t) (p_end - p);
|
|
duk_uint8_t ch;
|
|
if (left <= 0) {
|
|
break;
|
|
}
|
|
|
|
/* Quite approximate but should be useful for little and big endian. */
|
|
#ifdef DUK_USE_INTEGER_BE
|
|
ch = fptr[i];
|
|
#else
|
|
ch = fptr[fptr_size - 1 - i];
|
|
#endif
|
|
p += DUK_SNPRINTF((char *) p, left, "%02lx", (unsigned long) ch);
|
|
}
|
|
}
|
|
|
|
#endif /* DUK_USE_DEBUG */
|
|
#line 1 "duk_debugger.c"
|
|
/*
|
|
* Duktape debugger
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
|
|
/*
|
|
* Helper structs
|
|
*/
|
|
|
|
typedef union {
|
|
void *p;
|
|
duk_uint_t b[1];
|
|
/* Use b[] to access the size of the union, which is strictly not
|
|
* correct. Can't use fixed size unless there's feature detection
|
|
* for pointer byte size.
|
|
*/
|
|
} duk__ptr_union;
|
|
|
|
/*
|
|
* Detach handling
|
|
*/
|
|
|
|
#define DUK__SET_CONN_BROKEN(thr) do { \
|
|
/* For now shared handler is fine. */ \
|
|
duk_debug_do_detach((thr)->heap); \
|
|
} while (0)
|
|
|
|
DUK_INTERNAL void duk_debug_do_detach(duk_heap *heap) {
|
|
/* Can be called muliple times with no harm. */
|
|
|
|
heap->dbg_read_cb = NULL;
|
|
heap->dbg_write_cb = NULL;
|
|
heap->dbg_peek_cb = NULL;
|
|
heap->dbg_read_flush_cb = NULL;
|
|
heap->dbg_write_flush_cb = NULL;
|
|
if (heap->dbg_detached_cb) {
|
|
heap->dbg_detached_cb(heap->dbg_udata);
|
|
}
|
|
heap->dbg_detached_cb = NULL;
|
|
heap->dbg_udata = NULL;
|
|
heap->dbg_processing = 0;
|
|
heap->dbg_paused = 0;
|
|
heap->dbg_state_dirty = 0;
|
|
heap->dbg_step_type = 0;
|
|
heap->dbg_step_thread = NULL;
|
|
heap->dbg_step_csindex = 0;
|
|
heap->dbg_step_startline = 0;
|
|
|
|
/* Ensure there are no stale active breakpoint pointers.
|
|
* Breakpoint list is currently kept - we could empty it
|
|
* here but we'd need to handle refcounts correctly, and
|
|
* we'd need a 'thr' reference for that.
|
|
*
|
|
* XXX: clear breakpoint on either attach or detach?
|
|
*/
|
|
heap->dbg_breakpoints_active[0] = (duk_breakpoint *) NULL;
|
|
}
|
|
|
|
/*
|
|
* Debug connection peek and flush primitives
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_debug_read_peek(duk_hthread *thr) {
|
|
duk_heap *heap;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_read_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to peek in detached state, return zero (= no data)"));
|
|
return 0;
|
|
}
|
|
if (heap->dbg_peek_cb == NULL) {
|
|
DUK_DD(DUK_DDPRINT("no peek callback, return zero (= no data)"));
|
|
return 0;
|
|
}
|
|
|
|
return (duk_bool_t) (heap->dbg_peek_cb(heap->dbg_udata) > 0);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_read_flush(duk_hthread *thr) {
|
|
duk_heap *heap;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_read_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to read flush in detached state, ignore"));
|
|
return;
|
|
}
|
|
if (heap->dbg_read_flush_cb == NULL) {
|
|
DUK_DD(DUK_DDPRINT("no read flush callback, ignore"));
|
|
return;
|
|
}
|
|
|
|
heap->dbg_read_flush_cb(heap->dbg_udata);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_flush(duk_hthread *thr) {
|
|
duk_heap *heap;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_read_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to write flush in detached state, ignore"));
|
|
return;
|
|
}
|
|
if (heap->dbg_write_flush_cb == NULL) {
|
|
DUK_DD(DUK_DDPRINT("no write flush callback, ignore"));
|
|
return;
|
|
}
|
|
|
|
heap->dbg_write_flush_cb(heap->dbg_udata);
|
|
}
|
|
|
|
/*
|
|
* Debug connection skip primitives
|
|
*/
|
|
|
|
/* Skip fully. */
|
|
DUK_INTERNAL void duk_debug_skip_bytes(duk_hthread *thr, duk_size_t length) {
|
|
duk_uint8_t dummy[64];
|
|
duk_size_t now;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
while (length > 0) {
|
|
now = (length > sizeof(dummy) ? sizeof(dummy) : length);
|
|
duk_debug_read_bytes(thr, dummy, now);
|
|
length -= now;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_skip_byte(duk_hthread *thr) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
(void) duk_debug_read_byte(thr);
|
|
}
|
|
|
|
/*
|
|
* Debug connection read primitives
|
|
*/
|
|
|
|
/* Read fully. */
|
|
DUK_INTERNAL void duk_debug_read_bytes(duk_hthread *thr, duk_uint8_t *data, duk_size_t length) {
|
|
duk_heap *heap;
|
|
duk_uint8_t *p;
|
|
duk_size_t left;
|
|
duk_size_t got;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_read_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to read %ld bytes in detached state, return zero data", (long) length));
|
|
goto fail;
|
|
}
|
|
|
|
p = data;
|
|
for (;;) {
|
|
left = (duk_size_t) ((data + length) - p);
|
|
if (left == 0) {
|
|
break;
|
|
}
|
|
DUK_ASSERT(heap->dbg_read_cb != NULL);
|
|
DUK_ASSERT(left >= 1);
|
|
#if defined(DUK_USE_DEBUGGER_TRANSPORT_TORTURE)
|
|
left = 1;
|
|
#endif
|
|
got = heap->dbg_read_cb(heap->dbg_udata, (char *) p, left);
|
|
if (got == 0 || got > left) {
|
|
DUK_D(DUK_DPRINT("connection error during read, return zero data"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
goto fail;
|
|
}
|
|
p += got;
|
|
}
|
|
return;
|
|
|
|
fail:
|
|
DUK_MEMZERO((void *) data, (size_t) length);
|
|
}
|
|
|
|
DUK_INTERNAL duk_uint8_t duk_debug_read_byte(duk_hthread *thr) {
|
|
duk_heap *heap;
|
|
duk_size_t got;
|
|
duk_uint8_t x;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_read_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to read 1 bytes in detached state, return zero data"));
|
|
return 0;
|
|
}
|
|
|
|
x = 0; /* just in case callback is broken and won't write 'x' */
|
|
DUK_ASSERT(heap->dbg_read_cb != NULL);
|
|
got = heap->dbg_read_cb(heap->dbg_udata, (char *) (&x), 1);
|
|
if (got != 1) {
|
|
DUK_D(DUK_DPRINT("connection error during read, return zero data"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
return 0;
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__debug_read_uint32_raw(duk_hthread *thr) {
|
|
duk_uint8_t buf[4];
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
duk_debug_read_bytes(thr, buf, 4);
|
|
return ((duk_uint32_t) buf[0] << 24) |
|
|
((duk_uint32_t) buf[1] << 16) |
|
|
((duk_uint32_t) buf[2] << 8) |
|
|
(duk_uint32_t) buf[3];
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__debug_read_int32_raw(duk_hthread *thr) {
|
|
return (duk_int32_t) duk__debug_read_uint32_raw(thr);
|
|
}
|
|
|
|
DUK_LOCAL duk_uint16_t duk__debug_read_uint16_raw(duk_hthread *thr) {
|
|
duk_uint8_t buf[2];
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
duk_debug_read_bytes(thr, buf, 2);
|
|
return ((duk_uint16_t) buf[0] << 8) |
|
|
(duk_uint16_t) buf[1];
|
|
}
|
|
|
|
DUK_INTERNAL duk_int32_t duk_debug_read_int(duk_hthread *thr) {
|
|
duk_small_uint_t x;
|
|
duk_small_uint_t t;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
x = duk_debug_read_byte(thr);
|
|
if (x >= 0xc0) {
|
|
t = duk_debug_read_byte(thr);
|
|
return (duk_int32_t) (((x - 0xc0) << 8) + t);
|
|
} else if (x >= 0x80) {
|
|
return (duk_int32_t) (x - 0x80);
|
|
} else if (x == 0x10) {
|
|
return (duk_int32_t) duk__debug_read_uint32_raw(thr);
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("debug connection error: failed to decode int"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL duk_hstring *duk__debug_read_hstring_raw(duk_hthread *thr, duk_uint32_t len) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint8_t buf[31];
|
|
duk_uint8_t *p;
|
|
|
|
if (len <= sizeof(buf)) {
|
|
duk_debug_read_bytes(thr, buf, (duk_size_t) len);
|
|
duk_push_lstring(ctx, (const char *) buf, (duk_size_t) len);
|
|
} else {
|
|
p = (duk_uint8_t *) duk_push_fixed_buffer(ctx, (duk_size_t) len);
|
|
DUK_ASSERT(p != NULL);
|
|
duk_debug_read_bytes(thr, p, (duk_size_t) len);
|
|
duk_to_string(ctx, -1);
|
|
}
|
|
|
|
return duk_require_hstring(ctx, -1);
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_debug_read_hstring(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_t x;
|
|
duk_uint32_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
x = duk_debug_read_byte(thr);
|
|
if (x >= 0x60 && x <= 0x7f) {
|
|
/* For short strings, use a fixed temp buffer. */
|
|
len = (duk_uint32_t) (x - 0x60);
|
|
} else if (x == 0x12) {
|
|
len = (duk_uint32_t) duk__debug_read_uint16_raw(thr);
|
|
} else if (x == 0x11) {
|
|
len = (duk_uint32_t) duk__debug_read_uint32_raw(thr);
|
|
} else {
|
|
goto fail;
|
|
}
|
|
|
|
return duk__debug_read_hstring_raw(thr, len);
|
|
|
|
fail:
|
|
DUK_D(DUK_DPRINT("debug connection error: failed to decode int"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
duk_push_hstring_stridx(thr, DUK_STRIDX_EMPTY_STRING); /* always push some string */
|
|
return duk_require_hstring(ctx, -1);
|
|
}
|
|
|
|
DUK_LOCAL duk_hbuffer *duk__debug_read_hbuffer_raw(duk_hthread *thr, duk_uint32_t len) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint8_t *p;
|
|
|
|
p = (duk_uint8_t *) duk_push_fixed_buffer(ctx, (duk_size_t) len);
|
|
DUK_ASSERT(p != NULL);
|
|
duk_debug_read_bytes(thr, p, (duk_size_t) len);
|
|
|
|
return duk_require_hbuffer(ctx, -1);
|
|
}
|
|
|
|
DUK_LOCAL const void *duk__debug_read_pointer_raw(duk_hthread *thr) {
|
|
duk_small_uint_t x;
|
|
volatile duk__ptr_union pu;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
x = duk_debug_read_byte(thr);
|
|
if (x != sizeof(pu)) {
|
|
goto fail;
|
|
}
|
|
duk_debug_read_bytes(thr, (duk_uint8_t *) &pu.p, sizeof(pu));
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
duk_byteswap_bytes((duk_uint8_t *) pu.b, sizeof(pu));
|
|
#endif
|
|
return (const void *) pu.p;
|
|
|
|
fail:
|
|
DUK_D(DUK_DPRINT("debug connection error: failed to decode pointer"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
return (const void *) NULL;
|
|
}
|
|
|
|
DUK_LOCAL duk_double_t duk__debug_read_double_raw(duk_hthread *thr) {
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(sizeof(du.uc) == 8);
|
|
duk_debug_read_bytes(thr, (duk_uint8_t *) du.uc, sizeof(du.uc));
|
|
DUK_DBLUNION_BSWAP(&du);
|
|
return du.d;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_read_tval(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint8_t x;
|
|
duk_uint_t t;
|
|
duk_uint32_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
x = duk_debug_read_byte(thr);
|
|
|
|
if (x >= 0xc0) {
|
|
t = (duk_uint_t) (x - 0xc0);
|
|
t = (t << 8) + duk_debug_read_byte(thr);
|
|
duk_push_uint(ctx, (duk_uint_t) t);
|
|
return;
|
|
}
|
|
if (x >= 0x80) {
|
|
duk_push_uint(ctx, (duk_uint_t) (x - 0x80));
|
|
return;
|
|
}
|
|
if (x >= 0x60) {
|
|
len = (duk_uint32_t) (x - 0x60);
|
|
duk__debug_read_hstring_raw(thr, len);
|
|
return;
|
|
}
|
|
|
|
switch (x) {
|
|
case 0x10: {
|
|
duk_int32_t i = duk__debug_read_int32_raw(thr);
|
|
duk_push_i32(ctx, i);
|
|
break;
|
|
}
|
|
case 0x11:
|
|
len = duk__debug_read_uint32_raw(thr);
|
|
duk__debug_read_hstring_raw(thr, len);
|
|
break;
|
|
case 0x12:
|
|
len = duk__debug_read_uint16_raw(thr);
|
|
duk__debug_read_hstring_raw(thr, len);
|
|
break;
|
|
case 0x13:
|
|
len = duk__debug_read_uint32_raw(thr);
|
|
duk__debug_read_hbuffer_raw(thr, len);
|
|
break;
|
|
case 0x14:
|
|
len = duk__debug_read_uint16_raw(thr);
|
|
duk__debug_read_hbuffer_raw(thr, len);
|
|
break;
|
|
case 0x15:
|
|
duk_push_unused(ctx);
|
|
break;
|
|
case 0x16:
|
|
duk_push_undefined(ctx);
|
|
break;
|
|
case 0x17:
|
|
duk_push_null(ctx);
|
|
break;
|
|
case 0x18:
|
|
duk_push_true(ctx);
|
|
break;
|
|
case 0x19:
|
|
duk_push_false(ctx);
|
|
break;
|
|
case 0x1a: {
|
|
duk_double_t d;
|
|
d = duk__debug_read_double_raw(thr);
|
|
duk_push_number(ctx, d);
|
|
break;
|
|
}
|
|
case 0x1b:
|
|
/* XXX: not needed for now, so not implemented */
|
|
DUK_D(DUK_DPRINT("reading object values unimplemented"));
|
|
goto fail;
|
|
case 0x1c: {
|
|
const void *ptr;
|
|
ptr = duk__debug_read_pointer_raw(thr);
|
|
duk_push_pointer(thr, (void *) ptr);
|
|
break;
|
|
}
|
|
case 0x1d:
|
|
/* XXX: not needed for now, so not implemented */
|
|
DUK_D(DUK_DPRINT("reading lightfunc values unimplemented"));
|
|
goto fail;
|
|
case 0x1e: {
|
|
duk_heaphdr *h;
|
|
h = (duk_heaphdr *) duk__debug_read_pointer_raw(thr);
|
|
duk_push_heapptr(thr, (void *) h);
|
|
break;
|
|
}
|
|
default:
|
|
goto fail;
|
|
}
|
|
|
|
return;
|
|
|
|
fail:
|
|
DUK_D(DUK_DPRINT("debug connection error: failed to decode tval"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
}
|
|
|
|
/*
|
|
* Debug connection write primitives
|
|
*/
|
|
|
|
/* Write fully. */
|
|
DUK_INTERNAL void duk_debug_write_bytes(duk_hthread *thr, const duk_uint8_t *data, duk_size_t length) {
|
|
duk_heap *heap;
|
|
const duk_uint8_t *p;
|
|
duk_size_t left;
|
|
duk_size_t got;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(length == 0 || data != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_write_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to write %ld bytes in detached state, ignore", (long) length));
|
|
return;
|
|
}
|
|
if (length == 0) {
|
|
/* Avoid doing an actual write callback with length == 0,
|
|
* because that's reserved for a write flush.
|
|
*/
|
|
return;
|
|
}
|
|
DUK_ASSERT(data != NULL);
|
|
|
|
p = data;
|
|
for (;;) {
|
|
left = (duk_size_t) ((data + length) - p);
|
|
if (left == 0) {
|
|
break;
|
|
}
|
|
DUK_ASSERT(heap->dbg_write_cb != NULL);
|
|
DUK_ASSERT(left >= 1);
|
|
#if defined(DUK_USE_DEBUGGER_TRANSPORT_TORTURE)
|
|
left = 1;
|
|
#endif
|
|
got = heap->dbg_write_cb(heap->dbg_udata, (const char *) p, left);
|
|
if (got == 0 || got > left) {
|
|
DUK_D(DUK_DPRINT("connection error during write"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
return;
|
|
}
|
|
p += got;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_byte(duk_hthread *thr, duk_uint8_t x) {
|
|
duk_heap *heap;
|
|
duk_size_t got;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_write_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("attempt to write 1 bytes in detached state, ignore"));
|
|
return;
|
|
}
|
|
|
|
DUK_ASSERT(heap->dbg_write_cb != NULL);
|
|
got = heap->dbg_write_cb(heap->dbg_udata, (const char *) (&x), 1);
|
|
if (got != 1) {
|
|
DUK_D(DUK_DPRINT("connection error during write"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_unused(duk_hthread *thr) {
|
|
duk_debug_write_byte(thr, 0x15);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_undefined(duk_hthread *thr) {
|
|
duk_debug_write_byte(thr, 0x16);
|
|
}
|
|
|
|
/* Write signed 32-bit integer. */
|
|
DUK_INTERNAL void duk_debug_write_int(duk_hthread *thr, duk_int32_t x) {
|
|
duk_uint8_t buf[5];
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (x >= 0 && x <= 0x3fL) {
|
|
buf[0] = (duk_uint8_t) (0x80 + x);
|
|
len = 1;
|
|
} else if (x >= 0 && x <= 0x3fffL) {
|
|
buf[0] = (duk_uint8_t) (0xc0 + (x >> 8));
|
|
buf[1] = (duk_uint8_t) (x & 0xff);
|
|
len = 2;
|
|
} else {
|
|
/* Signed integers always map to 4 bytes now. */
|
|
buf[0] = (duk_uint8_t) 0x10;
|
|
buf[1] = (duk_uint8_t) ((x >> 24) & 0xff);
|
|
buf[2] = (duk_uint8_t) ((x >> 16) & 0xff);
|
|
buf[3] = (duk_uint8_t) ((x >> 8) & 0xff);
|
|
buf[4] = (duk_uint8_t) (x & 0xff);
|
|
len = 5;
|
|
}
|
|
duk_debug_write_bytes(thr, buf, len);
|
|
}
|
|
|
|
/* Write unsigned 32-bit integer. */
|
|
DUK_INTERNAL void duk_debug_write_uint(duk_hthread *thr, duk_uint32_t x) {
|
|
/* XXX: there's currently no need to support full 32-bit unsigned
|
|
* integer range in practice. If that becomes necessary, add a new
|
|
* dvalue type or encode as an IEEE double.
|
|
*/
|
|
duk_debug_write_int(thr, (duk_int32_t) x);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_strbuf(duk_hthread *thr, const char *data, duk_size_t length, duk_uint8_t marker_base) {
|
|
duk_uint8_t buf[5];
|
|
duk_size_t buflen;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(length == 0 || data != NULL);
|
|
|
|
if (length <= 0x1fUL && marker_base == 0x11) {
|
|
/* For strings, special form for short lengths. */
|
|
buf[0] = (duk_uint8_t) (0x60 + length);
|
|
buflen = 1;
|
|
} else if (length <= 0xffffUL) {
|
|
buf[0] = (duk_uint8_t) (marker_base + 1);
|
|
buf[1] = (duk_uint8_t) (length >> 8);
|
|
buf[2] = (duk_uint8_t) (length & 0xff);
|
|
buflen = 3;
|
|
} else {
|
|
buf[0] = (duk_uint8_t) marker_base;
|
|
buf[1] = (duk_uint8_t) (length >> 24);
|
|
buf[2] = (duk_uint8_t) ((length >> 16) & 0xff);
|
|
buf[3] = (duk_uint8_t) ((length >> 8) & 0xff);
|
|
buf[4] = (duk_uint8_t) (length & 0xff);
|
|
buflen = 5;
|
|
}
|
|
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) buf, buflen);
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) data, length);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_string(duk_hthread *thr, const char *data, duk_size_t length) {
|
|
duk_debug_write_strbuf(thr, data, length, 0x11);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_cstring(duk_hthread *thr, const char *data) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
duk_debug_write_string(thr,
|
|
data,
|
|
data ? DUK_STRLEN(data) : 0);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_hstring(duk_hthread *thr, duk_hstring *h) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
/* XXX: differentiate null pointer from empty string? */
|
|
duk_debug_write_string(thr,
|
|
(h != NULL ? (const char *) DUK_HSTRING_GET_DATA(h) : NULL),
|
|
(h != NULL ? (duk_size_t) DUK_HSTRING_GET_BYTELEN(h) : 0));
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_buffer(duk_hthread *thr, const char *data, duk_size_t length) {
|
|
duk_debug_write_strbuf(thr, data, length, 0x13);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_hbuffer(duk_hthread *thr, duk_hbuffer *h) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
duk_debug_write_buffer(thr,
|
|
(h != NULL ? (const char *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h) : NULL),
|
|
(h != NULL ? (duk_size_t) DUK_HBUFFER_GET_SIZE(h) : 0));
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_write_pointer_raw(duk_hthread *thr, const void *ptr, duk_uint8_t ibyte) {
|
|
duk_uint8_t buf[2];
|
|
volatile duk__ptr_union pu;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(sizeof(ptr) >= 1 && sizeof(ptr) <= 16);
|
|
/* ptr may be NULL */
|
|
|
|
buf[0] = ibyte;
|
|
buf[1] = sizeof(pu);
|
|
duk_debug_write_bytes(thr, buf, 2);
|
|
pu.p = (void *) ptr;
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
duk_byteswap_bytes((duk_uint8_t *) pu.b, sizeof(pu));
|
|
#endif
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) &pu.p, (duk_size_t) sizeof(pu));
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_pointer(duk_hthread *thr, const void *ptr) {
|
|
duk__debug_write_pointer_raw(thr, ptr, 0x1c);
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUGGER_DUMPHEAP)
|
|
DUK_INTERNAL void duk_debug_write_heapptr(duk_hthread *thr, duk_heaphdr *h) {
|
|
duk__debug_write_pointer_raw(thr, (const void *) h, 0x1e);
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_DUMPHEAP */
|
|
|
|
DUK_INTERNAL void duk_debug_write_hobject(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_uint8_t buf[3];
|
|
volatile duk__ptr_union pu;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(sizeof(obj) >= 1 && sizeof(obj) <= 16);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
buf[0] = 0x1b;
|
|
buf[1] = (duk_uint8_t) DUK_HOBJECT_GET_CLASS_NUMBER(obj);
|
|
buf[2] = sizeof(pu);
|
|
duk_debug_write_bytes(thr, buf, 3);
|
|
pu.p = (void *) obj;
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
duk_byteswap_bytes((duk_uint8_t *) pu.b, sizeof(pu));
|
|
#endif
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) &pu.p, (duk_size_t) sizeof(pu));
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_tval(duk_hthread *thr, duk_tval *tv) {
|
|
duk_c_function lf_func;
|
|
duk_small_uint_t lf_flags;
|
|
duk_uint8_t buf[4];
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
duk_debug_write_byte(thr,
|
|
DUK_TVAL_IS_UNDEFINED_UNUSED(tv) ? 0x15 : 0x16);
|
|
break;
|
|
case DUK_TAG_NULL:
|
|
duk_debug_write_byte(thr, 0x17);
|
|
break;
|
|
case DUK_TAG_BOOLEAN:
|
|
DUK_ASSERT(DUK_TVAL_GET_BOOLEAN(tv) == 0 ||
|
|
DUK_TVAL_GET_BOOLEAN(tv) == 1);
|
|
duk_debug_write_byte(thr, DUK_TVAL_GET_BOOLEAN(tv) ? 0x18 : 0x19);
|
|
break;
|
|
case DUK_TAG_POINTER:
|
|
duk_debug_write_pointer(thr, (const void *) DUK_TVAL_GET_POINTER(tv));
|
|
break;
|
|
case DUK_TAG_LIGHTFUNC:
|
|
DUK_TVAL_GET_LIGHTFUNC(tv, lf_func, lf_flags);
|
|
buf[0] = 0x1d;
|
|
buf[1] = (duk_uint8_t) (lf_flags >> 8);
|
|
buf[2] = (duk_uint8_t) (lf_flags & 0xff);
|
|
buf[3] = sizeof(lf_func);
|
|
duk_debug_write_bytes(thr, buf, 4);
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) &lf_func, sizeof(lf_func));
|
|
break;
|
|
case DUK_TAG_STRING:
|
|
duk_debug_write_hstring(thr, DUK_TVAL_GET_STRING(tv));
|
|
break;
|
|
case DUK_TAG_OBJECT:
|
|
duk_debug_write_hobject(thr, DUK_TVAL_GET_OBJECT(tv));
|
|
break;
|
|
case DUK_TAG_BUFFER:
|
|
duk_debug_write_hbuffer(thr, DUK_TVAL_GET_BUFFER(tv));
|
|
break;
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default:
|
|
/* Numbers are normalized to big (network) endian. */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
du.d = DUK_TVAL_GET_NUMBER(tv);
|
|
DUK_DBLUNION_BSWAP(&du);
|
|
|
|
duk_debug_write_byte(thr, 0x1a);
|
|
duk_debug_write_bytes(thr, (const duk_uint8_t *) du.uc, sizeof(du.uc));
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUGGER_DUMPHEAP)
|
|
/* Variant for writing duk_tvals so that any heap allocated values are
|
|
* written out as tagged heap pointers.
|
|
*/
|
|
DUK_LOCAL void duk__debug_write_tval_heapptr(duk_hthread *thr, duk_tval *tv) {
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk_heaphdr *h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
duk_debug_write_heapptr(thr, h);
|
|
} else {
|
|
duk_debug_write_tval(thr, tv);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_DUMPHEAP */
|
|
|
|
/*
|
|
* Debug connection message write helpers
|
|
*/
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL void duk_debug_write_request(duk_hthread *thr, duk_small_uint_t command) {
|
|
duk_debug_write_byte(thr, DUK_DBG_MARKER_REQUEST);
|
|
duk_debug_write_int(thr, command);
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL void duk_debug_write_reply(duk_hthread *thr) {
|
|
duk_debug_write_byte(thr, DUK_DBG_MARKER_REPLY);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_error_eom(duk_hthread *thr, duk_small_uint_t err_code, const char *msg) {
|
|
/* Allow NULL 'msg' */
|
|
duk_debug_write_byte(thr, DUK_DBG_MARKER_ERROR);
|
|
duk_debug_write_int(thr, (duk_int32_t) err_code);
|
|
duk_debug_write_cstring(thr, msg);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_notify(duk_hthread *thr, duk_small_uint_t command) {
|
|
duk_debug_write_byte(thr, DUK_DBG_MARKER_NOTIFY);
|
|
duk_debug_write_int(thr, command);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_write_eom(duk_hthread *thr) {
|
|
duk_debug_write_byte(thr, DUK_DBG_MARKER_EOM);
|
|
|
|
/* As an initial implementation, write flush after every EOM (and the
|
|
* version identifier). A better implementation would flush only when
|
|
* Duktape is finished processing messages so that a flush only happens
|
|
* after all outbound messages are finished on that occasion.
|
|
*/
|
|
duk_debug_write_flush(thr);
|
|
}
|
|
|
|
/*
|
|
* Status message and helpers
|
|
*/
|
|
|
|
DUK_INTERNAL duk_uint_fast32_t duk_debug_curr_line(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_activation *act;
|
|
duk_uint_fast32_t line;
|
|
duk_uint_fast32_t pc;
|
|
|
|
if (thr->callstack_top == 0) {
|
|
return 0;
|
|
}
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
|
|
/* act->pc indicates the next instruction about to be executed. This
|
|
* is usually correct, but for the 'debugger' statement it will be the
|
|
* instruction after that.
|
|
*/
|
|
|
|
pc = (duk_uint_fast32_t) act->pc;
|
|
|
|
/* XXX: this should be optimized to be a raw query and avoid valstack
|
|
* operations if possible.
|
|
*/
|
|
duk_push_hobject(ctx, act->func);
|
|
line = duk_hobject_pc2line_query(ctx, -1, pc);
|
|
duk_pop(ctx);
|
|
return line;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_debug_send_status(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_activation *act;
|
|
|
|
duk_debug_write_notify(thr, DUK_DBG_CMD_STATUS);
|
|
duk_debug_write_int(thr, thr->heap->dbg_paused);
|
|
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0); /* unsigned */
|
|
if (thr->callstack_top == 0) {
|
|
duk_debug_write_undefined(thr);
|
|
duk_debug_write_undefined(thr);
|
|
duk_debug_write_int(thr, 0);
|
|
duk_debug_write_int(thr, 0);
|
|
} else {
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
duk_push_hobject(ctx, act->func);
|
|
duk_get_prop_string(ctx, -1, "fileName");
|
|
duk_safe_to_string(ctx, -1);
|
|
duk_debug_write_hstring(thr, duk_require_hstring(ctx, -1));
|
|
duk_get_prop_string(ctx, -2, "name");
|
|
duk_safe_to_string(ctx, -1);
|
|
duk_debug_write_hstring(thr, duk_require_hstring(ctx, -1));
|
|
duk_pop_3(ctx);
|
|
duk_debug_write_uint(thr, (duk_uint32_t) duk_debug_curr_line(thr));
|
|
duk_debug_write_uint(thr, (duk_uint32_t) act->pc);
|
|
}
|
|
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
/*
|
|
* Debug message processing
|
|
*/
|
|
|
|
/* Skip dvalue. */
|
|
DUK_LOCAL duk_bool_t duk__debug_skip_dvalue(duk_hthread *thr) {
|
|
duk_uint8_t x;
|
|
duk_uint32_t len;
|
|
|
|
x = duk_debug_read_byte(thr);
|
|
|
|
if (x >= 0xc0) {
|
|
duk_debug_skip_byte(thr);
|
|
return 0;
|
|
}
|
|
if (x >= 0x80) {
|
|
return 0;
|
|
}
|
|
if (x >= 0x60) {
|
|
duk_debug_skip_bytes(thr, x - 0x60);
|
|
return 0;
|
|
}
|
|
switch(x) {
|
|
case 0x00:
|
|
return 1; /* Return 1: got EOM */
|
|
case 0x01:
|
|
case 0x02:
|
|
case 0x03:
|
|
case 0x04:
|
|
break;
|
|
case 0x10:
|
|
(void) duk__debug_read_uint32_raw(thr);
|
|
break;
|
|
case 0x11:
|
|
case 0x13:
|
|
len = duk__debug_read_uint32_raw(thr);
|
|
duk_debug_skip_bytes(thr, len);
|
|
break;
|
|
case 0x12:
|
|
case 0x14:
|
|
len = duk__debug_read_uint16_raw(thr);
|
|
duk_debug_skip_bytes(thr, len);
|
|
break;
|
|
case 0x15:
|
|
case 0x16:
|
|
case 0x17:
|
|
case 0x18:
|
|
case 0x19:
|
|
break;
|
|
case 0x1a:
|
|
duk_debug_skip_bytes(thr, 8);
|
|
break;
|
|
case 0x1b:
|
|
duk_debug_skip_byte(thr);
|
|
len = duk_debug_read_byte(thr);
|
|
duk_debug_skip_bytes(thr, len);
|
|
break;
|
|
case 0x1c:
|
|
len = duk_debug_read_byte(thr);
|
|
duk_debug_skip_bytes(thr, len);
|
|
break;
|
|
case 0x1d:
|
|
duk_debug_skip_bytes(thr, 2);
|
|
len = duk_debug_read_byte(thr);
|
|
duk_debug_skip_bytes(thr, len);
|
|
break;
|
|
default:
|
|
goto fail;
|
|
}
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
return 1; /* Pretend like we got EOM */
|
|
}
|
|
|
|
/* Skip dvalues to EOM. */
|
|
DUK_LOCAL void duk__debug_skip_to_eom(duk_hthread *thr) {
|
|
for (;;) {
|
|
if (duk__debug_skip_dvalue(thr)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process incoming debug requests
|
|
*/
|
|
|
|
DUK_LOCAL void duk__debug_handle_basic_info(duk_hthread *thr, duk_heap *heap) {
|
|
DUK_UNREF(heap);
|
|
DUK_D(DUK_DPRINT("debug command version"));
|
|
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_int(thr, DUK_VERSION);
|
|
duk_debug_write_cstring(thr, DUK_GIT_DESCRIBE);
|
|
duk_debug_write_cstring(thr, DUK_USE_TARGET_INFO);
|
|
#if defined(DUK_USE_DOUBLE_LE)
|
|
duk_debug_write_int(thr, 1);
|
|
#elif defined(DUK_USE_DOUBLE_ME)
|
|
duk_debug_write_int(thr, 2);
|
|
#elif defined(DUK_USE_DOUBLE_BE)
|
|
duk_debug_write_int(thr, 3);
|
|
#else
|
|
duk_debug_write_int(thr, 0);
|
|
#endif
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_trigger_status(duk_hthread *thr, duk_heap *heap) {
|
|
DUK_UNREF(heap);
|
|
DUK_D(DUK_DPRINT("debug command triggerstatus"));
|
|
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
heap->dbg_state_dirty = 1;
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_pause(duk_hthread *thr, duk_heap *heap) {
|
|
DUK_D(DUK_DPRINT("debug command pause"));
|
|
|
|
DUK_HEAP_SET_PAUSED(heap);
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_resume(duk_hthread *thr, duk_heap *heap) {
|
|
DUK_D(DUK_DPRINT("debug command resume"));
|
|
|
|
DUK_HEAP_CLEAR_PAUSED(heap);
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_step(duk_hthread *thr, duk_heap *heap, duk_int32_t cmd) {
|
|
duk_small_uint_t step_type;
|
|
duk_uint_fast32_t line;
|
|
|
|
if (cmd == DUK_DBG_CMD_STEPINTO) {
|
|
step_type = DUK_STEP_TYPE_INTO;
|
|
} else if (cmd == DUK_DBG_CMD_STEPOVER) {
|
|
step_type = DUK_STEP_TYPE_OVER;
|
|
} else {
|
|
DUK_ASSERT(cmd == DUK_DBG_CMD_STEPOUT);
|
|
step_type = DUK_STEP_TYPE_OUT;
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("debug command stepinto/stepover/stepout: %d", (int) cmd));
|
|
line = duk_debug_curr_line(thr);
|
|
if (line > 0) {
|
|
heap->dbg_paused = 0;
|
|
heap->dbg_step_type = step_type;
|
|
heap->dbg_step_thread = thr;
|
|
heap->dbg_step_csindex = thr->callstack_top - 1;
|
|
heap->dbg_step_startline = line;
|
|
heap->dbg_state_dirty = 1;
|
|
} else {
|
|
DUK_D(DUK_DPRINT("cannot determine current line, stepinto/stepover/stepout ignored"));
|
|
}
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_list_break(duk_hthread *thr, duk_heap *heap) {
|
|
duk_small_int_t i;
|
|
|
|
DUK_D(DUK_DPRINT("debug command listbreak"));
|
|
duk_debug_write_reply(thr);
|
|
for (i = 0; i < (duk_small_int_t) heap->dbg_breakpoint_count; i++) {
|
|
duk_debug_write_hstring(thr, heap->dbg_breakpoints[i].filename);
|
|
duk_debug_write_uint(thr, (duk_uint32_t) heap->dbg_breakpoints[i].line);
|
|
}
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_add_break(duk_hthread *thr, duk_heap *heap) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *filename;
|
|
duk_uint32_t linenumber;
|
|
duk_small_int_t idx;
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
filename = duk_debug_read_hstring(thr);
|
|
linenumber = (duk_uint32_t) duk_debug_read_int(thr);
|
|
DUK_D(DUK_DPRINT("debug command addbreak: %!O:%ld", (duk_hobject *) filename, (long) linenumber));
|
|
idx = duk_debug_add_breakpoint(thr, filename, linenumber);
|
|
if (idx >= 0) {
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_int(thr, (duk_int32_t) idx);
|
|
duk_debug_write_eom(thr);
|
|
} else {
|
|
duk_debug_write_error_eom(thr, DUK_DBG_ERR_TOOMANY, "no space for breakpoint");
|
|
}
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_del_break(duk_hthread *thr, duk_heap *heap) {
|
|
duk_small_uint_t idx;
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
DUK_D(DUK_DPRINT("debug command delbreak"));
|
|
idx = (duk_small_uint_t) duk_debug_read_int(thr);
|
|
if (duk_debug_remove_breakpoint(thr, idx)) {
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
} else {
|
|
duk_debug_write_error_eom(thr, DUK_DBG_ERR_NOTFOUND, "invalid breakpoint index");
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_get_var(duk_hthread *thr, duk_heap *heap) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *str;
|
|
duk_bool_t rc;
|
|
|
|
DUK_UNREF(heap);
|
|
DUK_D(DUK_DPRINT("debug command getvar"));
|
|
|
|
str = duk_debug_read_hstring(thr); /* push to stack */
|
|
DUK_ASSERT(str != NULL);
|
|
|
|
if (thr->callstack_top > 0) {
|
|
rc = duk_js_getvar_activation(thr,
|
|
thr->callstack + thr->callstack_top - 1,
|
|
str,
|
|
0);
|
|
} else {
|
|
/* No activation, no variable access. Could also pretend
|
|
* we're in the global program context and read stuff off
|
|
* the global object.
|
|
*/
|
|
DUK_D(DUK_DPRINT("callstack empty, no activation -> ignore getvar"));
|
|
rc = 0;
|
|
}
|
|
|
|
duk_debug_write_reply(thr);
|
|
if (rc) {
|
|
duk_debug_write_int(thr, 1);
|
|
duk_debug_write_tval(thr, duk_require_tval(ctx, -2));
|
|
duk_pop_2(ctx);
|
|
} else {
|
|
duk_debug_write_int(thr, 0);
|
|
duk_debug_write_unused(thr);
|
|
}
|
|
duk_pop(ctx);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_put_var(duk_hthread *thr, duk_heap *heap) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *str;
|
|
duk_tval *tv;
|
|
|
|
DUK_UNREF(heap);
|
|
DUK_D(DUK_DPRINT("debug command putvar"));
|
|
|
|
str = duk_debug_read_hstring(thr); /* push to stack */
|
|
DUK_ASSERT(str != NULL);
|
|
duk_debug_read_tval(thr); /* push to stack */
|
|
tv = duk_require_tval(ctx, -1);
|
|
|
|
if (thr->callstack_top > 0) {
|
|
duk_js_putvar_activation(thr,
|
|
thr->callstack + thr->callstack_top - 1,
|
|
str,
|
|
tv,
|
|
0);
|
|
} else {
|
|
DUK_D(DUK_DPRINT("callstack empty, no activation -> ignore putvar"));
|
|
}
|
|
duk_pop_2(ctx);
|
|
|
|
/* XXX: Current putvar implementation doesn't have a success flag,
|
|
* add one and send to debug client?
|
|
*/
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_get_call_stack(duk_hthread *thr, duk_heap *heap) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hthread *curr_thr = thr;
|
|
duk_activation *curr_act;
|
|
duk_uint_fast32_t line;
|
|
duk_size_t i;
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
duk_debug_write_reply(thr);
|
|
while (curr_thr != NULL) {
|
|
i = curr_thr->callstack_top;
|
|
while (i > 0) {
|
|
i--;
|
|
curr_act = curr_thr->callstack + i;
|
|
|
|
/* XXX: optimize to use direct reads,
|
|
* i.e. avoid value stack operations.
|
|
*/
|
|
duk_push_tval(ctx, &curr_act->tv_func);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_FILE_NAME);
|
|
duk_safe_to_string(ctx, -1);
|
|
duk_debug_write_hstring(thr, duk_get_hstring(ctx, -1));
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_NAME);
|
|
duk_safe_to_string(ctx, -1);
|
|
duk_debug_write_hstring(thr, duk_get_hstring(ctx, -1));
|
|
line = duk_hobject_pc2line_query(ctx, -3, curr_act->pc);
|
|
duk_debug_write_uint(thr, (duk_uint32_t) line);
|
|
duk_debug_write_uint(thr, (duk_uint32_t) curr_act->pc);
|
|
duk_pop_3(ctx);
|
|
}
|
|
curr_thr = curr_thr->resumer;
|
|
}
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_get_locals(duk_hthread *thr, duk_heap *heap) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_activation *curr_act;
|
|
duk_hstring *varname;
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
duk_debug_write_reply(thr);
|
|
if (thr->callstack_top == 0) {
|
|
goto callstack_empty;
|
|
}
|
|
curr_act = thr->callstack + thr->callstack_top - 1;
|
|
|
|
/* XXX: several nice-to-have improvements here:
|
|
* - Use direct reads avoiding value stack operations
|
|
* - Avoid triggering getters, indicate getter values to debug client
|
|
* - If side effects are possible, add error catching
|
|
*/
|
|
|
|
duk_push_tval(ctx, &curr_act->tv_func);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VARMAP);
|
|
if (duk_is_object(ctx, -1)) {
|
|
duk_enum(ctx, -1, 0 /*enum_flags*/);
|
|
while (duk_next(ctx, -1 /*enum_index*/, 0 /*get_value*/)) {
|
|
varname = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(varname != NULL);
|
|
|
|
duk_js_getvar_activation(thr, curr_act, varname, 0 /*throw_flag*/);
|
|
/* [ ... func varmap enum key value this ] */
|
|
duk_debug_write_hstring(thr, duk_get_hstring(ctx, -3));
|
|
duk_debug_write_tval(thr, duk_get_tval(ctx, -2));
|
|
duk_pop_3(ctx); /* -> [ ... func varmap enum ] */
|
|
}
|
|
duk_pop(ctx);
|
|
} else {
|
|
DUK_D(DUK_DPRINT("varmap is not an object in GetLocals, ignore"));
|
|
}
|
|
duk_pop_2(ctx);
|
|
|
|
callstack_empty:
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_eval(duk_hthread *thr, duk_heap *heap) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
|
|
duk_small_uint_t call_flags;
|
|
duk_int_t call_ret;
|
|
duk_small_int_t eval_err;
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
duk_idx_t entry_top;
|
|
#endif
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
DUK_D(DUK_DPRINT("debug command eval"));
|
|
|
|
/* The eval code must be executed within the current (topmost)
|
|
* activation. For now, use global object eval() function, with
|
|
* the eval considered a 'direct call to eval'.
|
|
*/
|
|
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
entry_top = duk_get_top(ctx);
|
|
#endif
|
|
|
|
duk_push_c_function(ctx, duk_bi_global_object_eval, 1 /*nargs*/);
|
|
duk_push_undefined(ctx); /* 'this' binding shouldn't matter here */
|
|
(void) duk_debug_read_hstring(thr);
|
|
|
|
/* [ ... eval "eval" eval_input ] */
|
|
|
|
call_flags = DUK_CALL_FLAG_PROTECTED;
|
|
if (thr->callstack_top >= 1) {
|
|
duk_activation *act;
|
|
duk_hobject *fun;
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
fun = DUK_ACT_GET_FUNC(act);
|
|
if (fun && DUK_HOBJECT_IS_COMPILEDFUNCTION(fun)) {
|
|
/* Direct eval requires that there's a current
|
|
* activation and it is an Ecmascript function.
|
|
* When Eval is executed from e.g. cooperate API
|
|
* call we'll need to an indirect eval instead.
|
|
*/
|
|
call_flags |= DUK_CALL_FLAG_DIRECT_EVAL;
|
|
}
|
|
}
|
|
|
|
call_ret = duk_handle_call(thr, 1 /*num_stack_args*/, call_flags);
|
|
|
|
if (call_ret == DUK_EXEC_SUCCESS) {
|
|
eval_err = 0;
|
|
/* Use result value as is. */
|
|
} else {
|
|
/* For errors a string coerced result is most informative
|
|
* right now, as the debug client doesn't have the capability
|
|
* to traverse the error object.
|
|
*/
|
|
eval_err = 1;
|
|
duk_safe_to_string(ctx, -1);
|
|
}
|
|
|
|
/* [ ... result ] */
|
|
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_int(thr, (duk_int32_t) eval_err);
|
|
duk_debug_write_tval(thr, duk_require_tval(ctx, -1));
|
|
duk_debug_write_eom(thr);
|
|
duk_pop(ctx);
|
|
|
|
DUK_ASSERT(duk_get_top(ctx) == entry_top);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_handle_detach(duk_hthread *thr, duk_heap *heap) {
|
|
DUK_UNREF(heap);
|
|
DUK_D(DUK_DPRINT("debug command detach"));
|
|
|
|
duk_debug_write_reply(thr);
|
|
duk_debug_write_eom(thr);
|
|
|
|
DUK_D(DUK_DPRINT("debug connection detached, mark broken"));
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUGGER_DUMPHEAP)
|
|
DUK_LOCAL void duk__debug_dump_heaphdr(duk_hthread *thr, duk_heap *heap, duk_heaphdr *hdr) {
|
|
DUK_UNREF(heap);
|
|
|
|
duk_debug_write_heapptr(thr, hdr);
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HEAPHDR_GET_TYPE(hdr));
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HEAPHDR_GET_FLAGS_RAW(hdr));
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HEAPHDR_GET_REFCOUNT(hdr));
|
|
#else
|
|
duk_debug_write_int(thr, (duk_int32_t) -1);
|
|
#endif
|
|
|
|
switch (DUK_HEAPHDR_GET_TYPE(hdr)) {
|
|
case DUK_HTYPE_STRING: {
|
|
duk_hstring *h = (duk_hstring *) hdr;
|
|
|
|
duk_debug_write_uint(thr, (duk_int32_t) DUK_HSTRING_GET_BYTELEN(h));
|
|
duk_debug_write_uint(thr, (duk_int32_t) DUK_HSTRING_GET_CHARLEN(h));
|
|
duk_debug_write_uint(thr, (duk_int32_t) DUK_HSTRING_GET_HASH(h));
|
|
duk_debug_write_hstring(thr, h);
|
|
break;
|
|
}
|
|
case DUK_HTYPE_OBJECT: {
|
|
duk_hobject *h = (duk_hobject *) hdr;
|
|
duk_hstring *k;
|
|
duk_uint_fast32_t i;
|
|
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HOBJECT_GET_CLASS_NUMBER(h));
|
|
duk_debug_write_heapptr(thr, (duk_heaphdr *) DUK_HOBJECT_GET_PROTOTYPE(heap, h));
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HOBJECT_GET_ESIZE(h));
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HOBJECT_GET_ENEXT(h));
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HOBJECT_GET_ASIZE(h));
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HOBJECT_GET_HSIZE(h));
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(h); i++) {
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HOBJECT_E_GET_FLAGS(heap, h, i));
|
|
k = DUK_HOBJECT_E_GET_KEY(heap, h, i);
|
|
duk_debug_write_heapptr(thr, (duk_heaphdr *) k);
|
|
if (k == NULL) {
|
|
duk_debug_write_int(thr, 0); /* isAccessor */
|
|
duk_debug_write_unused(thr);
|
|
continue;
|
|
}
|
|
if (DUK_HOBJECT_E_SLOT_IS_ACCESSOR(heap, h, i)) {
|
|
duk_debug_write_int(thr, 1); /* isAccessor */
|
|
duk_debug_write_heapptr(thr, (duk_heaphdr *) DUK_HOBJECT_E_GET_VALUE_PTR(heap, h, i)->a.get);
|
|
duk_debug_write_heapptr(thr, (duk_heaphdr *) DUK_HOBJECT_E_GET_VALUE_PTR(heap, h, i)->a.set);
|
|
} else {
|
|
duk_debug_write_int(thr, 0); /* isAccessor */
|
|
|
|
duk__debug_write_tval_heapptr(thr, &DUK_HOBJECT_E_GET_VALUE_PTR(heap, h, i)->v);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ASIZE(h); i++) {
|
|
/* Note: array dump will include elements beyond
|
|
* 'length'.
|
|
*/
|
|
duk__debug_write_tval_heapptr(thr, DUK_HOBJECT_A_GET_VALUE_PTR(heap, h, i));
|
|
}
|
|
break;
|
|
}
|
|
case DUK_HTYPE_BUFFER: {
|
|
duk_hbuffer *h = (duk_hbuffer *) hdr;
|
|
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HBUFFER_GET_SIZE(h));
|
|
if (DUK_HBUFFER_HAS_DYNAMIC(h)) {
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE((duk_hbuffer_dynamic *) h));
|
|
} else {
|
|
duk_debug_write_uint(thr, (duk_uint32_t) DUK_HBUFFER_GET_SIZE(h));
|
|
}
|
|
duk_debug_write_buffer(thr, (const char *) DUK_HBUFFER_GET_DATA_PTR(heap, h), (duk_size_t) DUK_HBUFFER_GET_SIZE(h));
|
|
break;
|
|
}
|
|
default: {
|
|
DUK_D(DUK_DPRINT("invalid htype: %d", (int) DUK_HEAPHDR_GET_TYPE(hdr)));
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_dump_heap_allocated(duk_hthread *thr, duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
|
|
hdr = heap->heap_allocated;
|
|
while (hdr != NULL) {
|
|
duk__debug_dump_heaphdr(thr, heap, hdr);
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
DUK_LOCAL void duk__debug_dump_strtab_chain(duk_hthread *thr, duk_heap *heap) {
|
|
duk_uint_fast32_t i, j;
|
|
duk_strtab_entry *e;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *lst;
|
|
#else
|
|
duk_hstring **lst;
|
|
#endif
|
|
duk_hstring *h;
|
|
|
|
for (i = 0; i < DUK_STRTAB_CHAIN_SIZE; i++) {
|
|
e = heap->strtable + i;
|
|
if (e->listlen > 0) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
#else
|
|
lst = e->u.strlist;
|
|
#endif
|
|
DUK_ASSERT(lst != NULL);
|
|
|
|
for (j = 0; j < e->listlen; j++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = DUK_USE_HEAPPTR_DEC16(heap->heap_udata, lst[j]);
|
|
#else
|
|
h = lst[j];
|
|
#endif
|
|
if (h != NULL) {
|
|
duk__debug_dump_heaphdr(thr, heap, (duk_heaphdr *) h);
|
|
}
|
|
}
|
|
} else {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.str16);
|
|
#else
|
|
h = e->u.str;
|
|
#endif
|
|
if (h != NULL) {
|
|
duk__debug_dump_heaphdr(thr, heap, (duk_heaphdr *) h);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* DUK_USE_STRTAB_CHAIN */
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
DUK_LOCAL void duk__debug_dump_strtab_probe(duk_hthread *thr, duk_heap *heap) {
|
|
duk_uint32_t i;
|
|
duk_hstring *h;
|
|
|
|
for (i = 0; i < heap->st_size; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = DUK_USE_HEAPPTR_DEC16(heap->strtable16[i]);
|
|
#else
|
|
h = heap->strtable[i];
|
|
#endif
|
|
if (h == NULL || h == DUK_STRTAB_DELETED_MARKER(heap)) {
|
|
continue;
|
|
}
|
|
|
|
duk__debug_dump_heaphdr(thr, heap, (duk_heaphdr *) h);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_STRTAB_PROBE */
|
|
|
|
DUK_LOCAL void duk__debug_handle_dump_heap(duk_hthread *thr, duk_heap *heap) {
|
|
DUK_D(DUK_DPRINT("debug command dumpheap"));
|
|
|
|
duk_debug_write_reply(thr);
|
|
duk__debug_dump_heap_allocated(thr, heap);
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
duk__debug_dump_strtab_chain(thr, heap);
|
|
#endif
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
duk__debug_dump_strtab_probe(thr, heap);
|
|
#endif
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_DUMPHEAP */
|
|
|
|
DUK_LOCAL void duk__debug_handle_get_bytecode(duk_hthread *thr, duk_heap *heap) {
|
|
duk_activation *act;
|
|
duk_hcompiledfunction *fun;
|
|
duk_size_t i, n;
|
|
duk_tval *tv;
|
|
duk_hobject **fn;
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
DUK_D(DUK_DPRINT("debug command getbytecode"));
|
|
|
|
duk_debug_write_reply(thr);
|
|
if (thr->callstack_top == 0) {
|
|
fun = NULL;
|
|
} else {
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
fun = (duk_hcompiledfunction *) DUK_ACT_GET_FUNC(act);
|
|
if (!DUK_HOBJECT_IS_COMPILEDFUNCTION((duk_hobject *) fun)) {
|
|
fun = NULL;
|
|
}
|
|
}
|
|
DUK_ASSERT(fun == NULL || DUK_HOBJECT_IS_COMPILEDFUNCTION((duk_hobject *) fun));
|
|
|
|
if (fun) {
|
|
n = DUK_HCOMPILEDFUNCTION_GET_CONSTS_COUNT(heap, fun);
|
|
duk_debug_write_int(thr, (int) n);
|
|
tv = DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(heap, fun);
|
|
for (i = 0; i < n; i++) {
|
|
duk_debug_write_tval(thr, tv);
|
|
tv++;
|
|
}
|
|
|
|
n = DUK_HCOMPILEDFUNCTION_GET_FUNCS_COUNT(heap, fun);
|
|
duk_debug_write_int(thr, (int) n);
|
|
fn = DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(heap, fun);
|
|
for (i = 0; i < n; i++) {
|
|
duk_debug_write_hobject(thr, *fn);
|
|
fn++;
|
|
}
|
|
|
|
duk_debug_write_string(thr,
|
|
(const char *) DUK_HCOMPILEDFUNCTION_GET_CODE_BASE(heap, fun),
|
|
(duk_size_t) DUK_HCOMPILEDFUNCTION_GET_CODE_SIZE(heap, fun));
|
|
} else {
|
|
duk_debug_write_int(thr, 0);
|
|
duk_debug_write_int(thr, 0);
|
|
duk_debug_write_cstring(thr, "");
|
|
}
|
|
duk_debug_write_eom(thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__debug_process_message(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_heap *heap;
|
|
duk_uint8_t x;
|
|
duk_int32_t cmd;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_UNREF(ctx);
|
|
|
|
x = duk_debug_read_byte(thr);
|
|
switch (x) {
|
|
case DUK_DBG_MARKER_REQUEST: {
|
|
cmd = duk_debug_read_int(thr);
|
|
switch (cmd) {
|
|
case DUK_DBG_CMD_BASICINFO: {
|
|
duk__debug_handle_basic_info(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_TRIGGERSTATUS: {
|
|
duk__debug_handle_trigger_status(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_PAUSE: {
|
|
duk__debug_handle_pause(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_RESUME: {
|
|
duk__debug_handle_resume(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_STEPINTO:
|
|
case DUK_DBG_CMD_STEPOVER:
|
|
case DUK_DBG_CMD_STEPOUT: {
|
|
duk__debug_handle_step(thr, heap, cmd);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_LISTBREAK: {
|
|
duk__debug_handle_list_break(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_ADDBREAK: {
|
|
duk__debug_handle_add_break(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_DELBREAK: {
|
|
duk__debug_handle_del_break(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_GETVAR: {
|
|
duk__debug_handle_get_var(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_PUTVAR: {
|
|
duk__debug_handle_put_var(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_GETCALLSTACK: {
|
|
duk__debug_handle_get_call_stack(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_GETLOCALS: {
|
|
duk__debug_handle_get_locals(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_EVAL: {
|
|
duk__debug_handle_eval(thr, heap);
|
|
break;
|
|
}
|
|
case DUK_DBG_CMD_DETACH: {
|
|
duk__debug_handle_detach(thr, heap);
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_DEBUGGER_DUMPHEAP)
|
|
case DUK_DBG_CMD_DUMPHEAP: {
|
|
duk__debug_handle_dump_heap(thr, heap);
|
|
break;
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_DUMPHEAP */
|
|
case DUK_DBG_CMD_GETBYTECODE: {
|
|
duk__debug_handle_get_bytecode(thr, heap);
|
|
break;
|
|
}
|
|
default: {
|
|
DUK_D(DUK_DPRINT("debug command unsupported: %d", (int) cmd));
|
|
duk_debug_write_error_eom(thr, DUK_DBG_ERR_UNSUPPORTED, "unsupported command");
|
|
}
|
|
} /* switch cmd */
|
|
break;
|
|
}
|
|
case DUK_DBG_MARKER_REPLY: {
|
|
DUK_D(DUK_DPRINT("debug reply, skipping"));
|
|
break;
|
|
}
|
|
case DUK_DBG_MARKER_ERROR: {
|
|
DUK_D(DUK_DPRINT("debug error, skipping"));
|
|
break;
|
|
}
|
|
case DUK_DBG_MARKER_NOTIFY: {
|
|
DUK_D(DUK_DPRINT("debug notify, skipping"));
|
|
break;
|
|
}
|
|
default: {
|
|
DUK_D(DUK_DPRINT("invalid initial byte, drop connection: %d", (int) x));
|
|
goto fail;
|
|
}
|
|
} /* switch initial byte */
|
|
|
|
duk__debug_skip_to_eom(thr);
|
|
return;
|
|
|
|
fail:
|
|
DUK__SET_CONN_BROKEN(thr);
|
|
return;
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_debug_process_messages(duk_hthread *thr, duk_bool_t no_block) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
duk_idx_t entry_top;
|
|
#endif
|
|
duk_bool_t retval = 0;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_UNREF(ctx);
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
entry_top = duk_get_top(ctx);
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("top at entry: %ld", (long) duk_get_top(ctx)));
|
|
|
|
for (;;) {
|
|
/* Process messages until we're no longer paused or we peek
|
|
* and see there's nothing to read right now.
|
|
*/
|
|
DUK_DD(DUK_DDPRINT("top at loop top: %ld", (long) duk_get_top(ctx)));
|
|
|
|
if (thr->heap->dbg_read_cb == NULL) {
|
|
DUK_D(DUK_DPRINT("debug connection broken, stop processing messages"));
|
|
break;
|
|
} else if (!thr->heap->dbg_paused || no_block) {
|
|
if (!duk_debug_read_peek(thr)) {
|
|
DUK_D(DUK_DPRINT("processing debug message, peek indicated no data, stop processing"));
|
|
break;
|
|
}
|
|
DUK_D(DUK_DPRINT("processing debug message, peek indicated there is data, handle it"));
|
|
} else {
|
|
DUK_D(DUK_DPRINT("paused, process debug message, blocking if necessary"));
|
|
}
|
|
|
|
duk__debug_process_message(thr);
|
|
if (thr->heap->dbg_state_dirty) {
|
|
/* Executed something that may have affected status,
|
|
* resend.
|
|
*/
|
|
duk_debug_send_status(thr);
|
|
thr->heap->dbg_state_dirty = 0;
|
|
}
|
|
retval = 1; /* processed one or more messages */
|
|
}
|
|
|
|
/* As an initial implementation, read flush after exiting the message
|
|
* loop.
|
|
*/
|
|
duk_debug_read_flush(thr);
|
|
|
|
DUK_DD(DUK_DDPRINT("top at exit: %ld", (long) duk_get_top(ctx)));
|
|
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
/* Easy to get wrong, so assert for it. */
|
|
DUK_ASSERT(entry_top == duk_get_top(ctx));
|
|
#endif
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Breakpoint management
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_debug_add_breakpoint(duk_hthread *thr, duk_hstring *filename, duk_uint32_t line) {
|
|
duk_heap *heap;
|
|
duk_breakpoint *b;
|
|
|
|
/* Caller must trigger recomputation of active breakpoint list. To
|
|
* ensure stale values are not used if that doesn't happen, clear the
|
|
* active breakpoint list here.
|
|
*/
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(filename != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
if (heap->dbg_breakpoint_count >= DUK_HEAP_MAX_BREAKPOINTS) {
|
|
DUK_D(DUK_DPRINT("failed to add breakpoint for %O:%ld, all breakpoint slots used",
|
|
(duk_heaphdr *) filename, (long) line));
|
|
return -1;
|
|
}
|
|
heap->dbg_breakpoints_active[0] = (duk_breakpoint *) NULL;
|
|
b = heap->dbg_breakpoints + (heap->dbg_breakpoint_count++);
|
|
b->filename = filename;
|
|
b->line = line;
|
|
DUK_HSTRING_INCREF(thr, filename);
|
|
|
|
return heap->dbg_breakpoint_count - 1; /* index */
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_debug_remove_breakpoint(duk_hthread *thr, duk_small_uint_t breakpoint_index) {
|
|
duk_heap *heap;
|
|
duk_hstring *h;
|
|
duk_breakpoint *b;
|
|
duk_size_t move_size;
|
|
|
|
/* Caller must trigger recomputation of active breakpoint list. To
|
|
* ensure stale values are not used if that doesn't happen, clear the
|
|
* active breakpoint list here.
|
|
*/
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT_DISABLE(breakpoint_index >= 0); /* unsigned */
|
|
|
|
if (breakpoint_index >= heap->dbg_breakpoint_count) {
|
|
DUK_D(DUK_DPRINT("invalid breakpoint index: %ld", (long) breakpoint_index));
|
|
return 0;
|
|
}
|
|
b = heap->dbg_breakpoints + breakpoint_index;
|
|
|
|
h = b->filename;
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
move_size = sizeof(duk_breakpoint) * (heap->dbg_breakpoint_count - breakpoint_index - 1);
|
|
if (move_size > 0) {
|
|
DUK_MEMMOVE((void *) b,
|
|
(void *) (b + 1),
|
|
move_size);
|
|
}
|
|
heap->dbg_breakpoint_count--;
|
|
heap->dbg_breakpoints_active[0] = (duk_breakpoint *) NULL;
|
|
|
|
DUK_HSTRING_DECREF(thr, h); /* side effects */
|
|
|
|
/* Breakpoint entries above the used area are left as garbage. */
|
|
|
|
return 1;
|
|
}
|
|
|
|
#undef DUK__SET_CONN_BROKEN
|
|
|
|
#else /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
/* No debugger support. */
|
|
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
#line 1 "duk_error_augment.c"
|
|
/*
|
|
* Augmenting errors at their creation site and their throw site.
|
|
*
|
|
* When errors are created, traceback data is added by built-in code
|
|
* and a user error handler (if defined) can process or replace the
|
|
* error. Similarly, when errors are thrown, a user error handler
|
|
* (if defined) can process or replace the error.
|
|
*
|
|
* Augmentation and other processing at error creation time is nice
|
|
* because an error is only created once, but it may be thrown and
|
|
* rethrown multiple times. User error handler registered for processing
|
|
* an error at its throw site must be careful to handle rethrowing in
|
|
* a useful manner.
|
|
*
|
|
* Error augmentation may throw an internal error (e.g. alloc error).
|
|
*
|
|
* Ecmascript allows throwing any values, so all values cannot be
|
|
* augmented. Currently, the built-in augmentation at error creation
|
|
* only augments error values which are Error instances (= have the
|
|
* built-in Error.prototype in their prototype chain) and are also
|
|
* extensible. User error handlers have no limitations in this respect.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Helper for calling a user error handler.
|
|
*
|
|
* 'thr' must be the currently active thread; the error handler is called
|
|
* in its context. The valstack of 'thr' must have the error value on
|
|
* top, and will be replaced by another error value based on the return
|
|
* value of the error handler.
|
|
*
|
|
* The helper calls duk_handle_call() recursively in protected mode.
|
|
* Before that call happens, no longjmps should happen; as a consequence,
|
|
* we must assume that the valstack contains enough temporary space for
|
|
* arguments and such.
|
|
*
|
|
* While the error handler runs, any errors thrown will not trigger a
|
|
* recursive error handler call (this is implemented using a heap level
|
|
* flag which will "follow" through any coroutines resumed inside the
|
|
* error handler). If the error handler is not callable or throws an
|
|
* error, the resulting error replaces the original error (for Duktape
|
|
* internal errors, duk_error_throw.c further substitutes this error with
|
|
* a DoubleError which is not ideal). This would be easy to change and
|
|
* even signal to the caller.
|
|
*
|
|
* The user error handler is stored in 'Duktape.errCreate' or
|
|
* 'Duktape.errThrow' depending on whether we're augmenting the error at
|
|
* creation or throw time. There are several alternatives to this approach,
|
|
* see doc/error-objects.txt for discussion.
|
|
*
|
|
* Note: since further longjmp()s may occur while calling the error handler
|
|
* (for many reasons, e.g. a labeled 'break' inside the handler), the
|
|
* caller can make no assumptions on the thr->heap->lj state after the
|
|
* call (this affects especially duk_error_throw.c). This is not an issue
|
|
* as long as the caller writes to the lj state only after the error handler
|
|
* finishes.
|
|
*/
|
|
|
|
#if defined(DUK_USE_ERRTHROW) || defined(DUK_USE_ERRCREATE)
|
|
DUK_LOCAL void duk__err_augment_user(duk_hthread *thr, duk_small_uint_t stridx_cb) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval *tv_hnd;
|
|
duk_small_uint_t call_flags;
|
|
duk_int_t rc;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT_DISABLE(stridx_cb >= 0); /* unsigned */
|
|
DUK_ASSERT(stridx_cb < DUK_HEAP_NUM_STRINGS);
|
|
|
|
if (DUK_HEAP_HAS_ERRHANDLER_RUNNING(thr->heap)) {
|
|
DUK_DD(DUK_DDPRINT("recursive call to error handler, ignore"));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Check whether or not we have an error handler.
|
|
*
|
|
* We must be careful of not triggering an error when looking up the
|
|
* property. For instance, if the property is a getter, we don't want
|
|
* to call it, only plain values are allowed. The value, if it exists,
|
|
* is not checked. If the value is not a function, a TypeError happens
|
|
* when it is called and that error replaces the original one.
|
|
*/
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, 4); /* 3 entries actually needed below */
|
|
|
|
/* [ ... errval ] */
|
|
|
|
if (thr->builtins[DUK_BIDX_DUKTAPE] == NULL) {
|
|
/* When creating built-ins, some of the built-ins may not be set
|
|
* and we want to tolerate that when throwing errors.
|
|
*/
|
|
DUK_DD(DUK_DDPRINT("error occurred when DUK_BIDX_DUKTAPE is NULL, ignoring"));
|
|
return;
|
|
}
|
|
tv_hnd = duk_hobject_find_existing_entry_tval_ptr(thr->heap,
|
|
thr->builtins[DUK_BIDX_DUKTAPE],
|
|
DUK_HTHREAD_GET_STRING(thr, stridx_cb));
|
|
if (tv_hnd == NULL) {
|
|
DUK_DD(DUK_DDPRINT("error handler does not exist or is not a plain value: %!T",
|
|
(duk_tval *) tv_hnd));
|
|
return;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("error handler dump (callability not checked): %!T",
|
|
(duk_tval *) tv_hnd));
|
|
duk_push_tval(ctx, tv_hnd);
|
|
|
|
/* [ ... errval errhandler ] */
|
|
|
|
duk_insert(ctx, -2); /* -> [ ... errhandler errval ] */
|
|
duk_push_undefined(ctx);
|
|
duk_insert(ctx, -2); /* -> [ ... errhandler undefined(= this) errval ] */
|
|
|
|
/* [ ... errhandler undefined errval ] */
|
|
|
|
/*
|
|
* DUK_CALL_FLAG_IGNORE_RECLIMIT causes duk_handle_call() to ignore C
|
|
* recursion depth limit (and won't increase it either). This is
|
|
* dangerous, but useful because it allows the error handler to run
|
|
* even if the original error is caused by C recursion depth limit.
|
|
*
|
|
* The heap level DUK_HEAP_FLAG_ERRHANDLER_RUNNING is set for the
|
|
* duration of the error handler and cleared afterwards. This flag
|
|
* prevents the error handler from running recursively. The flag is
|
|
* heap level so that the flag properly controls even coroutines
|
|
* launched by an error handler. Since the flag is heap level, it is
|
|
* critical to restore it correctly.
|
|
*
|
|
* We ignore errors now: a success return and an error value both
|
|
* replace the original error value. (This would be easy to change.)
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HEAP_HAS_ERRHANDLER_RUNNING(thr->heap)); /* since no recursive error handler calls */
|
|
DUK_HEAP_SET_ERRHANDLER_RUNNING(thr->heap);
|
|
|
|
call_flags = DUK_CALL_FLAG_PROTECTED |
|
|
DUK_CALL_FLAG_IGNORE_RECLIMIT; /* protected, ignore reclimit, not constructor */
|
|
|
|
rc = duk_handle_call(thr,
|
|
1, /* num args */
|
|
call_flags); /* call_flags */
|
|
DUK_UNREF(rc); /* no need to check now: both success and error are OK */
|
|
|
|
DUK_ASSERT(DUK_HEAP_HAS_ERRHANDLER_RUNNING(thr->heap));
|
|
DUK_HEAP_CLEAR_ERRHANDLER_RUNNING(thr->heap);
|
|
|
|
/* [ ... errval ] */
|
|
}
|
|
#endif /* DUK_USE_ERRTHROW || DUK_USE_ERRHANDLE */
|
|
|
|
/*
|
|
* Add tracedata to an error on the stack top.
|
|
*/
|
|
|
|
#ifdef DUK_USE_TRACEBACKS
|
|
DUK_LOCAL void duk__add_traceback(duk_hthread *thr, duk_hthread *thr_callstack, const char *c_filename, duk_int_t c_line, duk_bool_t noblame_fileline) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_t depth;
|
|
duk_int_t i, i_min;
|
|
duk_uarridx_t arr_idx;
|
|
duk_double_t d;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr_callstack != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* [ ... error ] */
|
|
|
|
/*
|
|
* The traceback format is pretty arcane in an attempt to keep it compact
|
|
* and cheap to create. It may change arbitrarily from version to version.
|
|
* It should be decoded/accessed through version specific accessors only.
|
|
*
|
|
* See doc/error-objects.txt.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("adding traceback to object: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk_push_array(ctx); /* XXX: specify array size, as we know it */
|
|
arr_idx = 0;
|
|
|
|
/* compiler SyntaxErrors (and other errors) come first; blame the source
|
|
* code file/line primarily.
|
|
*/
|
|
if (thr->compile_ctx != NULL && thr->compile_ctx->h_filename != NULL) {
|
|
duk_push_hstring(ctx, thr->compile_ctx->h_filename);
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
|
|
duk_push_uint(ctx, (duk_uint_t) thr->compile_ctx->curr_token.start_line); /* (flags<<32) + (line), flags = 0 */
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
}
|
|
|
|
/* filename/line from C macros (__FILE__, __LINE__) are added as an
|
|
* entry with a special format: (string, number). The number contains
|
|
* the line and flags.
|
|
*/
|
|
|
|
/* XXX: optimize: allocate an array part to the necessary size (upwards
|
|
* estimate) and fill in the values directly into the array part; finally
|
|
* update 'length'.
|
|
*/
|
|
|
|
/* XXX: using duk_put_prop_index() would cause obscure error cases when Array.prototype
|
|
* has write-protected array index named properties. This was seen as DoubleErrors
|
|
* in e.g. some test262 test cases. Using duk_xdef_prop_index() is better but heavier.
|
|
* The best fix is to fill in the tracedata directly into the array part.
|
|
*/
|
|
|
|
/* [ ... error arr ] */
|
|
|
|
if (c_filename) {
|
|
duk_push_string(ctx, c_filename);
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
|
|
d = (noblame_fileline ? ((duk_double_t) DUK_TB_FLAG_NOBLAME_FILELINE) * DUK_DOUBLE_2TO32 : 0.0) +
|
|
(duk_double_t) c_line;
|
|
duk_push_number(ctx, d);
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
}
|
|
|
|
/* traceback depth doesn't take into account the filename/line
|
|
* special handling above (intentional)
|
|
*/
|
|
depth = DUK_USE_TRACEBACK_DEPTH;
|
|
i_min = (thr_callstack->callstack_top > (duk_size_t) depth ? (duk_int_t) (thr_callstack->callstack_top - depth) : 0);
|
|
DUK_ASSERT(i_min >= 0);
|
|
|
|
/* [ ... error arr ] */
|
|
|
|
DUK_ASSERT(thr_callstack->callstack_top <= DUK_INT_MAX); /* callstack limits */
|
|
for (i = (duk_int_t) (thr_callstack->callstack_top - 1); i >= i_min; i--) {
|
|
duk_uint32_t pc;
|
|
|
|
/*
|
|
* Note: each API operation potentially resizes the callstack,
|
|
* so be careful to re-lookup after every operation. Currently
|
|
* these is no issue because we don't store a temporary 'act'
|
|
* pointer at all. (This would be a non-issue if we operated
|
|
* directly on the array part.)
|
|
*/
|
|
|
|
/* [... arr] */
|
|
|
|
DUK_ASSERT_DISABLE(thr_callstack->callstack[i].pc >= 0); /* unsigned */
|
|
|
|
/* Add function object. */
|
|
duk_push_tval(ctx, &(thr_callstack->callstack + i)->tv_func);
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
|
|
/* Add a number containing: pc, activation flags.
|
|
*
|
|
* PC points to next instruction, find offending PC. Note that
|
|
* PC == 0 for native code.
|
|
*/
|
|
pc = thr_callstack->callstack[i].pc;
|
|
if (pc > 0) {
|
|
pc--;
|
|
}
|
|
DUK_ASSERT_DISABLE(pc >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_double_t) pc < DUK_DOUBLE_2TO32); /* assume PC is at most 32 bits and non-negative */
|
|
d = ((duk_double_t) thr_callstack->callstack[i].flags) * DUK_DOUBLE_2TO32 + (duk_double_t) pc;
|
|
duk_push_number(ctx, d); /* -> [... arr num] */
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx);
|
|
arr_idx++;
|
|
}
|
|
|
|
/* XXX: set with duk_hobject_set_length() when tracedata is filled directly */
|
|
duk_push_uint(ctx, (duk_uint_t) arr_idx);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
/* [ ... error arr ] */
|
|
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_INT_TRACEDATA); /* -> [ ... error ] */
|
|
}
|
|
#endif /* DUK_USE_TRACEBACKS */
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_CREATE)
|
|
DUK_LOCAL void duk__err_augment_builtin_throw(duk_hthread *thr, duk_hthread *thr_callstack, const char *c_filename, duk_int_t c_line, duk_small_int_t noblame_fileline, duk_hobject *obj) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_int_t entry_top;
|
|
#endif
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
entry_top = duk_get_top(ctx);
|
|
#endif
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
DUK_UNREF(obj); /* unreferenced w/o tracebacks */
|
|
DUK_UNREF(ctx); /* unreferenced w/ tracebacks */
|
|
|
|
#ifdef DUK_USE_TRACEBACKS
|
|
/*
|
|
* If tracebacks are enabled, the '_Tracedata' property is the only
|
|
* thing we need: 'fileName' and 'lineNumber' are virtual properties
|
|
* which use '_Tracedata'.
|
|
*/
|
|
|
|
if (duk_hobject_hasprop_raw(thr, obj, DUK_HTHREAD_STRING_INT_TRACEDATA(thr))) {
|
|
DUK_DDD(DUK_DDDPRINT("error value already has a '_Tracedata' property, not modifying it"));
|
|
} else {
|
|
duk__add_traceback(thr, thr_callstack, c_filename, c_line, noblame_fileline);
|
|
}
|
|
#else
|
|
/*
|
|
* If tracebacks are disabled, 'fileName' and 'lineNumber' are added
|
|
* as plain own properties. Since Error.prototype has accessors of
|
|
* the same name, we need to define own properties directly (cannot
|
|
* just use e.g. duk_put_prop_stridx). Existing properties are not
|
|
* overwritten in case they already exist.
|
|
*/
|
|
|
|
if (thr->compile_ctx != NULL && thr->compile_ctx->h_filename != NULL) {
|
|
/* Compiler SyntaxError (or other error) gets the primary blame. */
|
|
duk_push_hstring(ctx, thr->compile_ctx->h_filename);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_FILE_NAME, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAG_NO_OVERWRITE);
|
|
duk_push_uint(ctx, (duk_uint_t) thr->compile_ctx->curr_token.start_line);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LINE_NUMBER, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAG_NO_OVERWRITE);
|
|
} else if (c_filename && !noblame_fileline) {
|
|
/* XXX: file/line is disabled in minimal builds, so disable this too
|
|
* when appropriate.
|
|
*/
|
|
duk_push_string(ctx, c_filename);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_FILE_NAME, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAG_NO_OVERWRITE);
|
|
duk_push_int(ctx, c_line);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LINE_NUMBER, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAG_NO_OVERWRITE);
|
|
} else if (thr_callstack->callstack_top > 0) {
|
|
duk_activation *act;
|
|
duk_hobject *func;
|
|
|
|
act = thr_callstack->callstack + thr_callstack->callstack_top - 1;
|
|
DUK_ASSERT(act >= thr_callstack->callstack && act < thr_callstack->callstack + thr_callstack->callstack_size);
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
if (func) {
|
|
duk_uint32_t pc;
|
|
|
|
/* PC points to next instruction, find offending PC. Note that
|
|
* PC == 0 for native code.
|
|
*/
|
|
pc = act->pc;
|
|
if (pc > 0) {
|
|
pc--;
|
|
}
|
|
DUK_ASSERT_DISABLE(pc >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_double_t) pc < DUK_DOUBLE_2TO32); /* assume PC is at most 32 bits and non-negative */
|
|
act = NULL; /* invalidated by pushes, so get out of the way */
|
|
|
|
duk_push_hobject(ctx, func);
|
|
|
|
/* [ ... error func ] */
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_FILE_NAME);
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_FILE_NAME, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAG_NO_OVERWRITE);
|
|
|
|
#if defined(DUK_USE_PC2LINE)
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
duk_uint32_t ecma_line;
|
|
#if 0
|
|
duk_push_u32(ctx, pc);
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_PC, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAGS_NO_OVERWRITE);
|
|
#endif
|
|
ecma_line = duk_hobject_pc2line_query(ctx, -1, (duk_uint_fast32_t) pc);
|
|
if (ecma_line > 0) {
|
|
duk_push_u32(ctx, (duk_uint32_t) ecma_line); /* -> [ ... error func line ] */
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_LINE_NUMBER, DUK_PROPDESC_FLAGS_WC | DUK_PROPDESC_FLAG_NO_OVERWRITE);
|
|
}
|
|
} else {
|
|
/* Native function, no relevant lineNumber. */
|
|
}
|
|
#endif /* DUK_USE_PC2LINE */
|
|
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_TRACEBACKS */
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
DUK_ASSERT(duk_get_top(ctx) == entry_top);
|
|
#endif
|
|
}
|
|
#endif /* DUK_USE_AUGMENT_ERROR_CREATE */
|
|
|
|
/*
|
|
* Augment an error at creation time with _Tracedata/fileName/lineNumber
|
|
* and allow a user error handler (if defined) to process/replace the error.
|
|
* The error to be augmented is at the stack top.
|
|
*
|
|
* thr: thread containing the error value
|
|
* thr_callstack: thread which should be used for generating callstack etc.
|
|
* c_filename: C __FILE__ related to the error
|
|
* c_line: C __LINE__ related to the error
|
|
* noblame_fileline: if true, don't fileName/line as error source, otherwise use traceback
|
|
* (needed because user code filename/line are reported but internal ones
|
|
* are not)
|
|
*
|
|
* XXX: rename noblame_fileline to flags field; combine it to some existing
|
|
* field (there are only a few call sites so this may not be worth it).
|
|
*/
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_CREATE)
|
|
DUK_INTERNAL void duk_err_augment_error_create(duk_hthread *thr, duk_hthread *thr_callstack, const char *c_filename, duk_int_t c_line, duk_bool_t noblame_fileline) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *obj;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr_callstack != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* [ ... error ] */
|
|
|
|
/*
|
|
* Criteria for augmenting:
|
|
*
|
|
* - augmentation enabled in build (naturally)
|
|
* - error value internal prototype chain contains the built-in
|
|
* Error prototype object (i.e. 'val instanceof Error')
|
|
*
|
|
* Additional criteria for built-in augmenting:
|
|
*
|
|
* - error value is an extensible object
|
|
*/
|
|
|
|
obj = duk_get_hobject(ctx, -1);
|
|
if (!obj) {
|
|
DUK_DDD(DUK_DDDPRINT("value is not an object, skip both built-in and user augment"));
|
|
return;
|
|
}
|
|
if (!duk_hobject_prototype_chain_contains(thr, obj, thr->builtins[DUK_BIDX_ERROR_PROTOTYPE], 1 /*ignore_loop*/)) {
|
|
/* If the value has a prototype loop, it's critical not to
|
|
* throw here. Instead, assume the value is not to be
|
|
* augmented.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("value is not an error instance, skip both built-in and user augment"));
|
|
return;
|
|
}
|
|
if (DUK_HOBJECT_HAS_EXTENSIBLE(obj)) {
|
|
DUK_DDD(DUK_DDDPRINT("error meets criteria, built-in augment"));
|
|
duk__err_augment_builtin_throw(thr, thr_callstack, c_filename, c_line, noblame_fileline, obj);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("error does not meet criteria, no built-in augment"));
|
|
}
|
|
|
|
/* [ ... error ] */
|
|
|
|
#if defined(DUK_USE_ERRCREATE)
|
|
duk__err_augment_user(thr, DUK_STRIDX_ERR_CREATE);
|
|
#endif
|
|
}
|
|
#endif /* DUK_USE_AUGMENT_ERROR_CREATE */
|
|
|
|
/*
|
|
* Augment an error at throw time; allow a user error handler (if defined)
|
|
* to process/replace the error. The error to be augmented is at the
|
|
* stack top.
|
|
*/
|
|
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
DUK_INTERNAL void duk_err_augment_error_throw(duk_hthread *thr) {
|
|
#if defined(DUK_USE_ERRTHROW)
|
|
duk__err_augment_user(thr, DUK_STRIDX_ERR_THROW);
|
|
#endif /* DUK_USE_ERRTHROW */
|
|
}
|
|
#endif /* DUK_USE_AUGMENT_ERROR_THROW */
|
|
#line 1 "duk_error_longjmp.c"
|
|
/*
|
|
* Do a longjmp call, calling the fatal error handler if no
|
|
* catchpoint exists.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL void duk_err_longjmp(duk_hthread *thr) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (!thr->heap->lj.jmpbuf_ptr) {
|
|
/*
|
|
* If we don't have a jmpbuf_ptr, there is little we can do
|
|
* except panic. The caller's expectation is that we never
|
|
* return.
|
|
*/
|
|
|
|
DUK_D(DUK_DPRINT("uncaught error: type=%d iserror=%d value1=%!T value2=%!T",
|
|
(int) thr->heap->lj.type, (int) thr->heap->lj.iserror,
|
|
&thr->heap->lj.value1, &thr->heap->lj.value2));
|
|
|
|
duk_fatal((duk_context *) thr, DUK_ERR_UNCAUGHT_ERROR, "uncaught error");
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_LONGJMP(thr->heap->lj.jmpbuf_ptr->jb);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
#line 1 "duk_error_misc.c"
|
|
/*
|
|
* Error helpers
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Get prototype object for an integer error code.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_hobject *duk_error_prototype_from_code(duk_hthread *thr, duk_errcode_t code) {
|
|
switch (code) {
|
|
case DUK_ERR_EVAL_ERROR:
|
|
return thr->builtins[DUK_BIDX_EVAL_ERROR_PROTOTYPE];
|
|
case DUK_ERR_RANGE_ERROR:
|
|
return thr->builtins[DUK_BIDX_RANGE_ERROR_PROTOTYPE];
|
|
case DUK_ERR_REFERENCE_ERROR:
|
|
return thr->builtins[DUK_BIDX_REFERENCE_ERROR_PROTOTYPE];
|
|
case DUK_ERR_SYNTAX_ERROR:
|
|
return thr->builtins[DUK_BIDX_SYNTAX_ERROR_PROTOTYPE];
|
|
case DUK_ERR_TYPE_ERROR:
|
|
return thr->builtins[DUK_BIDX_TYPE_ERROR_PROTOTYPE];
|
|
case DUK_ERR_URI_ERROR:
|
|
return thr->builtins[DUK_BIDX_URI_ERROR_PROTOTYPE];
|
|
|
|
/* XXX: more specific error classes? */
|
|
case DUK_ERR_UNIMPLEMENTED_ERROR:
|
|
case DUK_ERR_INTERNAL_ERROR:
|
|
case DUK_ERR_ALLOC_ERROR:
|
|
case DUK_ERR_ASSERTION_ERROR:
|
|
case DUK_ERR_API_ERROR:
|
|
case DUK_ERR_ERROR:
|
|
default:
|
|
return thr->builtins[DUK_BIDX_ERROR_PROTOTYPE];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Exposed helper for setting up heap longjmp state.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_err_setup_heap_ljstate(duk_hthread *thr, duk_small_int_t lj_type) {
|
|
duk_tval tv_tmp;
|
|
|
|
thr->heap->lj.type = lj_type;
|
|
|
|
DUK_ASSERT(thr->valstack_top > thr->valstack);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value1);
|
|
DUK_TVAL_SET_TVAL(&thr->heap->lj.value1, thr->valstack_top - 1);
|
|
DUK_TVAL_INCREF(thr, &thr->heap->lj.value1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
duk_pop((duk_context *) thr);
|
|
}
|
|
#line 1 "duk_error_throw.c"
|
|
/*
|
|
* Create and throw an Ecmascript error object based on a code and a message.
|
|
*
|
|
* Used when we throw errors internally. Ecmascript generated error objects
|
|
* are created by Ecmascript code, and the throwing is handled by the bytecode
|
|
* executor.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Create and throw an error (originating from Duktape internally)
|
|
*
|
|
* Push an error object on top of the stack, possibly throw augmenting
|
|
* the error, and finally longjmp.
|
|
*
|
|
* If an error occurs while we're dealing with the current error, we might
|
|
* enter an infinite recursion loop. This is prevented by detecting a
|
|
* "double fault" through the heap->handling_error flag; the recursion
|
|
* then stops at the second level.
|
|
*/
|
|
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
DUK_INTERNAL void duk_err_create_and_throw(duk_hthread *thr, duk_errcode_t code, const char *msg, const char *filename, duk_int_t line) {
|
|
#else
|
|
DUK_INTERNAL void duk_err_create_and_throw(duk_hthread *thr, duk_errcode_t code) {
|
|
#endif
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bool_t double_error = thr->heap->handling_error;
|
|
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
DUK_DD(DUK_DDPRINT("duk_err_create_and_throw(): code=%ld, msg=%s, filename=%s, line=%ld",
|
|
(long) code, (const char *) msg,
|
|
(const char *) filename, (long) line));
|
|
#else
|
|
DUK_DD(DUK_DDPRINT("duk_err_create_and_throw(): code=%ld", (long) code));
|
|
#endif
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
thr->heap->handling_error = 1;
|
|
|
|
/*
|
|
* Create and push an error object onto the top of stack.
|
|
* If a "double error" occurs, use a fixed error instance
|
|
* to avoid further trouble.
|
|
*/
|
|
|
|
/* XXX: if attempt to push beyond allocated valstack, this double fault
|
|
* handling fails miserably. We should really write the double error
|
|
* directly to thr->heap->lj.value1 and avoid valstack use entirely.
|
|
*/
|
|
|
|
if (double_error) {
|
|
if (thr->builtins[DUK_BIDX_DOUBLE_ERROR]) {
|
|
DUK_D(DUK_DPRINT("double fault detected -> push built-in fixed 'double error' instance"));
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_DOUBLE_ERROR);
|
|
} else {
|
|
DUK_D(DUK_DPRINT("double fault detected; there is no built-in fixed 'double error' instance "
|
|
"-> push the error code as a number"));
|
|
duk_push_int(ctx, (duk_int_t) code);
|
|
}
|
|
} else {
|
|
/* Error object is augmented at its creation here. */
|
|
duk_require_stack(ctx, 1);
|
|
/* XXX: unnecessary '%s' formatting here, but cannot use
|
|
* 'msg' as a format string directly.
|
|
*/
|
|
#ifdef DUK_USE_VERBOSE_ERRORS
|
|
duk_push_error_object_raw(ctx,
|
|
code | DUK_ERRCODE_FLAG_NOBLAME_FILELINE,
|
|
filename,
|
|
line,
|
|
"%s",
|
|
(const char *) msg);
|
|
#else
|
|
duk_push_error_object_raw(ctx,
|
|
code | DUK_ERRCODE_FLAG_NOBLAME_FILELINE,
|
|
NULL,
|
|
0,
|
|
NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Augment error (throw time), unless alloc/double error
|
|
*/
|
|
|
|
if (double_error || code == DUK_ERR_ALLOC_ERROR) {
|
|
DUK_D(DUK_DPRINT("alloc or double error: skip throw augmenting to avoid further trouble"));
|
|
} else {
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
DUK_DDD(DUK_DDDPRINT("THROW ERROR (INTERNAL): %!iT (before throw augment)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_err_augment_error_throw(thr);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Finally, longjmp
|
|
*/
|
|
|
|
thr->heap->handling_error = 0;
|
|
|
|
duk_err_setup_heap_ljstate(thr, DUK_LJ_TYPE_THROW);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("THROW ERROR (INTERNAL): %!iT, %!iT (after throw augment)",
|
|
(duk_tval *) &thr->heap->lj.value1, (duk_tval *) &thr->heap->lj.value2));
|
|
|
|
duk_err_longjmp(thr);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/*
|
|
* Helper for C function call negative return values.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_error_throw_from_negative_rc(duk_hthread *thr, duk_ret_t rc) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
const char *msg;
|
|
duk_errcode_t code;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(rc < 0);
|
|
|
|
/* XXX: this generates quite large code - perhaps select the error
|
|
* class based on the code and then just use the error 'name'?
|
|
*/
|
|
|
|
code = -rc;
|
|
|
|
switch (rc) {
|
|
case DUK_RET_UNIMPLEMENTED_ERROR: msg = "unimplemented"; break;
|
|
case DUK_RET_UNSUPPORTED_ERROR: msg = "unsupported"; break;
|
|
case DUK_RET_INTERNAL_ERROR: msg = "internal"; break;
|
|
case DUK_RET_ALLOC_ERROR: msg = "alloc"; break;
|
|
case DUK_RET_ASSERTION_ERROR: msg = "assertion"; break;
|
|
case DUK_RET_API_ERROR: msg = "api"; break;
|
|
case DUK_RET_UNCAUGHT_ERROR: msg = "uncaught"; break;
|
|
case DUK_RET_ERROR: msg = "error"; break;
|
|
case DUK_RET_EVAL_ERROR: msg = "eval"; break;
|
|
case DUK_RET_RANGE_ERROR: msg = "range"; break;
|
|
case DUK_RET_REFERENCE_ERROR: msg = "reference"; break;
|
|
case DUK_RET_SYNTAX_ERROR: msg = "syntax"; break;
|
|
case DUK_RET_TYPE_ERROR: msg = "type"; break;
|
|
case DUK_RET_URI_ERROR: msg = "uri"; break;
|
|
default: msg = "unknown"; break;
|
|
}
|
|
|
|
DUK_ASSERT(msg != NULL);
|
|
|
|
/*
|
|
* The __FILE__ and __LINE__ information is intentionally not used in the
|
|
* creation of the error object, as it isn't useful in the tracedata. The
|
|
* tracedata still contains the function which returned the negative return
|
|
* code, and having the file/line of this function isn't very useful.
|
|
*/
|
|
|
|
duk_error_raw(ctx, code, NULL, 0, "%s error (rc %ld)", (const char *) msg, (long) rc);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
#line 1 "duk_hbuffer_alloc.c"
|
|
/*
|
|
* duk_hbuffer allocation and freeing.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_hbuffer *duk_hbuffer_alloc(duk_heap *heap, duk_size_t size, duk_small_uint_t flags) {
|
|
duk_hbuffer *res = NULL;
|
|
duk_size_t alloc_size;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("allocate hbuffer"));
|
|
|
|
/* Size sanity check. Should not be necessary because caller is
|
|
* required to check this, but we don't want to cause a segfault
|
|
* if the size wraps either in duk_size_t computation or when
|
|
* storing the size in a 16-bit field.
|
|
*/
|
|
if (size > DUK_HBUFFER_MAX_BYTELEN) {
|
|
DUK_D(DUK_DPRINT("hbuffer alloc failed: size too large: %ld", (long) size));
|
|
return NULL;
|
|
}
|
|
|
|
if (flags & DUK_BUF_FLAG_DYNAMIC) {
|
|
alloc_size = sizeof(duk_hbuffer_dynamic);
|
|
} else {
|
|
alloc_size = sizeof(duk_hbuffer_fixed) + size;
|
|
DUK_ASSERT(alloc_size >= sizeof(duk_hbuffer_fixed)); /* no wrapping */
|
|
}
|
|
|
|
res = (duk_hbuffer *) DUK_ALLOC(heap, alloc_size);
|
|
if (!res) {
|
|
goto error;
|
|
}
|
|
|
|
/* zero everything unless requested not to do so */
|
|
#if defined(DUK_USE_ZERO_BUFFER_DATA)
|
|
DUK_MEMZERO((void *) res,
|
|
(flags & DUK_BUF_FLAG_NOZERO) ?
|
|
((flags & DUK_BUF_FLAG_DYNAMIC) ?
|
|
sizeof(duk_hbuffer_dynamic) :
|
|
sizeof(duk_hbuffer_fixed)) :
|
|
alloc_size);
|
|
#else
|
|
DUK_MEMZERO((void *) res,
|
|
(flags & DUK_BUF_FLAG_DYNAMIC) ? sizeof(duk_hbuffer_dynamic) : sizeof(duk_hbuffer_fixed));
|
|
#endif
|
|
|
|
if (flags & DUK_BUF_FLAG_DYNAMIC) {
|
|
duk_hbuffer_dynamic *h = (duk_hbuffer_dynamic *) res;
|
|
void *ptr;
|
|
if (size > 0) {
|
|
DUK_DDD(DUK_DDDPRINT("dynamic buffer with nonzero size, alloc actual buffer"));
|
|
#ifdef DUK_USE_ZERO_BUFFER_DATA
|
|
ptr = DUK_ALLOC_ZEROED(heap, size);
|
|
#else
|
|
ptr = DUK_ALLOC(heap, size);
|
|
#endif
|
|
if (!ptr) {
|
|
/* Because size > 0, NULL check is correct */
|
|
goto error;
|
|
}
|
|
|
|
DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(heap, h, ptr);
|
|
DUK_HBUFFER_DYNAMIC_SET_ALLOC_SIZE(h, size); /* snug */
|
|
} else {
|
|
#if defined(DUK_USE_EXPLICIT_NULL_INIT)
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* the compressed pointer is zeroed which maps to NULL, so nothing to do. */
|
|
#else
|
|
DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(heap, h, NULL);
|
|
#endif
|
|
#endif
|
|
DUK_ASSERT(DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, h) == NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(h) == 0);
|
|
}
|
|
}
|
|
|
|
DUK_HBUFFER_SET_SIZE(res, size);
|
|
|
|
DUK_HEAPHDR_SET_TYPE(&res->hdr, DUK_HTYPE_BUFFER);
|
|
if (flags & DUK_BUF_FLAG_DYNAMIC) {
|
|
DUK_HBUFFER_SET_DYNAMIC(res);
|
|
}
|
|
DUK_HEAP_INSERT_INTO_HEAP_ALLOCATED(heap, &res->hdr);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("allocated hbuffer: %p", (void *) res));
|
|
return res;
|
|
|
|
error:
|
|
DUK_DD(DUK_DDPRINT("hbuffer allocation failed"));
|
|
|
|
DUK_FREE(heap, res);
|
|
return NULL;
|
|
}
|
|
|
|
/* For indirect allocs. */
|
|
|
|
DUK_INTERNAL void *duk_hbuffer_get_dynalloc_ptr(duk_heap *heap, void *ud) {
|
|
duk_hbuffer_dynamic *buf = (duk_hbuffer_dynamic *) ud;
|
|
DUK_UNREF(heap);
|
|
return (void *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, buf);
|
|
}
|
|
#line 1 "duk_hbuffer_ops.c"
|
|
/*
|
|
* duk_hbuffer operations such as resizing and inserting/appending data to
|
|
* a dynamic buffer.
|
|
*
|
|
* Append operations append to the end of the buffer and they are relatively
|
|
* efficient: the buffer is grown with a "spare" part relative to the buffer
|
|
* size to minimize reallocations. Insert operations need to move existing
|
|
* data forward in the buffer with memmove() and are not very efficient.
|
|
* They are used e.g. by the regexp compiler to "backpatch" regexp bytecode.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Resizing
|
|
*/
|
|
|
|
DUK_LOCAL duk_size_t duk__add_spare(duk_size_t size) {
|
|
duk_size_t spare = (size / DUK_HBUFFER_SPARE_DIVISOR) + DUK_HBUFFER_SPARE_ADD;
|
|
duk_size_t res;
|
|
|
|
res = size + spare;
|
|
if (res < size) {
|
|
/* XXX: handle corner cases where size is close to size limit (wraparound) */
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "duk_size_t wrapped");
|
|
}
|
|
DUK_ASSERT(res >= size);
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hbuffer_resize(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t new_size, duk_size_t new_alloc_size) {
|
|
void *res;
|
|
duk_size_t prev_alloc_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(new_alloc_size >= new_size);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
/*
|
|
* Maximum size check
|
|
*/
|
|
|
|
if (new_alloc_size > DUK_HBUFFER_MAX_BYTELEN) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, "buffer too long");
|
|
}
|
|
|
|
/*
|
|
* Note: use indirect realloc variant just in case mark-and-sweep
|
|
* (finalizers) might resize this same buffer during garbage
|
|
* collection.
|
|
*/
|
|
|
|
res = DUK_REALLOC_INDIRECT(thr->heap, duk_hbuffer_get_dynalloc_ptr, (void *) buf, new_alloc_size);
|
|
if (res != NULL || new_alloc_size == 0) {
|
|
/* 'res' may be NULL if new allocation size is 0. */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("resized dynamic buffer %p:%ld:%ld -> %p:%ld:%ld",
|
|
(void *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, buf),
|
|
(long) DUK_HBUFFER_DYNAMIC_GET_SIZE(buf),
|
|
(long) DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(buf),
|
|
(void *) res,
|
|
(long) new_size,
|
|
(long) new_alloc_size));
|
|
|
|
/*
|
|
* The entire allocated buffer area, regardless of actual used
|
|
* size, is kept zeroed in resizes for simplicity. If the buffer
|
|
* is grown, zero the new part. Another policy would be to
|
|
* ensure data is zeroed as the used part is extended. The
|
|
* current approach is much more simple and is not a big deal
|
|
* because the spare part is relatively small.
|
|
*/
|
|
|
|
prev_alloc_size = DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(buf);
|
|
if (new_alloc_size > prev_alloc_size) {
|
|
DUK_ASSERT(new_alloc_size - prev_alloc_size > 0);
|
|
#ifdef DUK_USE_ZERO_BUFFER_DATA
|
|
DUK_MEMZERO((void *) ((char *) res + prev_alloc_size),
|
|
new_alloc_size - prev_alloc_size);
|
|
#endif
|
|
}
|
|
|
|
DUK_HBUFFER_DYNAMIC_SET_SIZE(buf, new_size);
|
|
DUK_HBUFFER_DYNAMIC_SET_ALLOC_SIZE(buf, new_alloc_size);
|
|
DUK_HBUFFER_DYNAMIC_SET_DATA_PTR(thr->heap, buf, res);
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, "buffer resize failed: %ld:%ld to %ld:%ld",
|
|
(long) DUK_HBUFFER_DYNAMIC_GET_SIZE(buf),
|
|
(long) DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(buf),
|
|
(long) new_size,
|
|
(long) new_alloc_size);
|
|
}
|
|
|
|
DUK_ASSERT(res != NULL || new_alloc_size == 0);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hbuffer_reset(duk_hthread *thr, duk_hbuffer_dynamic *buf) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
duk_hbuffer_resize(thr, buf, 0, 0);
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL void duk_hbuffer_compact(duk_hthread *thr, duk_hbuffer_dynamic *buf) {
|
|
duk_size_t curr_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
curr_size = DUK_HBUFFER_GET_SIZE(buf);
|
|
duk_hbuffer_resize(thr, buf, curr_size, curr_size);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Inserts
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hbuffer_insert_bytes(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, const duk_uint8_t *data, duk_size_t length) {
|
|
duk_uint8_t *p;
|
|
|
|
/* XXX: allow inserts with offset > curr_size? i.e., insert zeroes automatically? */
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT_DISABLE(offset >= 0); /* unsigned, so always true */
|
|
DUK_ASSERT(offset <= DUK_HBUFFER_GET_SIZE(buf)); /* equality is OK (= append) */
|
|
DUK_ASSERT(data != NULL);
|
|
DUK_ASSERT_DISABLE(length >= 0); /* unsigned, so always true */
|
|
|
|
if (length == 0) {
|
|
return;
|
|
}
|
|
|
|
if (DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(buf) < length) {
|
|
duk_hbuffer_resize(thr,
|
|
buf,
|
|
DUK_HBUFFER_GET_SIZE(buf),
|
|
duk__add_spare(DUK_HBUFFER_GET_SIZE(buf) + length));
|
|
}
|
|
DUK_ASSERT(DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(buf) >= length);
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, buf);
|
|
if (offset < DUK_HBUFFER_GET_SIZE(buf)) {
|
|
/* not an append */
|
|
|
|
DUK_ASSERT(DUK_HBUFFER_GET_SIZE(buf) - offset > 0);
|
|
DUK_MEMMOVE((void *) (p + offset + length),
|
|
(void *) (p + offset),
|
|
DUK_HBUFFER_GET_SIZE(buf) - offset);
|
|
}
|
|
|
|
DUK_ASSERT(length > 0);
|
|
DUK_MEMCPY((void *) (p + offset),
|
|
data,
|
|
length);
|
|
|
|
DUK_HBUFFER_DYNAMIC_ADD_SIZE(buf, length);
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL void duk_hbuffer_insert_byte(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_uint8_t byte) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
duk_hbuffer_insert_bytes(thr, buf, offset, &byte, 1);
|
|
}
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_insert_cstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, const char *str) {
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
len = DUK_STRLEN(str);
|
|
duk_hbuffer_insert_bytes(thr, buf, offset, (duk_uint8_t *) str, len);
|
|
return len;
|
|
}
|
|
#endif
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_insert_hstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_hstring *str) {
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
len = DUK_HSTRING_GET_BYTELEN(str);
|
|
duk_hbuffer_insert_bytes(thr, buf, offset, (duk_uint8_t *) DUK_HSTRING_GET_DATA(str), len);
|
|
return len;
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_insert_xutf8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_ucodepoint_t codepoint) {
|
|
duk_uint8_t tmp[DUK_UNICODE_MAX_XUTF8_LENGTH];
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
/* No range assertion for 'codepoint' */
|
|
|
|
/* Intentionally no fast path: insertion is not that central */
|
|
|
|
len = (duk_size_t) duk_unicode_encode_xutf8(codepoint, tmp);
|
|
duk_hbuffer_insert_bytes(thr, buf, offset, tmp, len);
|
|
return len;
|
|
}
|
|
|
|
/* Append a Unicode codepoint to the buffer in CESU-8 format, i.e., convert
|
|
* non-BMP characters to surrogate pairs which are then "UTF-8" encoded.
|
|
* If the codepoint is initially a surrogate, it is also encoded into CESU-8.
|
|
* Codepoints above valid Unicode range (> U+10FFFF) are mangled.
|
|
*/
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_insert_cesu8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_ucodepoint_t codepoint) {
|
|
duk_uint8_t tmp[DUK_UNICODE_MAX_CESU8_LENGTH];
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT_DISABLE(codepoint >= 0); /* unsigned */
|
|
DUK_ASSERT(codepoint <= 0x10ffff); /* if not in this range, results are garbage (but no crash) */
|
|
|
|
/* Intentionally no fast path: insertion is not that central */
|
|
|
|
len = (duk_size_t) duk_unicode_encode_cesu8(codepoint, tmp);
|
|
duk_hbuffer_insert_bytes(thr, buf, offset, tmp, len);
|
|
return len;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Appends
|
|
*
|
|
* Note: an optimized duk_hbuffer_append_bytes() could be implemented, but
|
|
* it is more compact to use duk_hbuffer_insert_bytes() instead. The
|
|
* important fast paths bypass these functions. anyway.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hbuffer_append_bytes(duk_hthread *thr, duk_hbuffer_dynamic *buf, const duk_uint8_t *data, duk_size_t length) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT(data != NULL);
|
|
|
|
duk_hbuffer_insert_bytes(thr, buf, DUK_HBUFFER_GET_SIZE(buf), data, length);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hbuffer_append_byte(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_uint8_t byte) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
duk_hbuffer_insert_bytes(thr, buf, DUK_HBUFFER_GET_SIZE(buf), &byte, 1);
|
|
}
|
|
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_append_cstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, const char *str) {
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
len = DUK_STRLEN(str);
|
|
duk_hbuffer_insert_bytes(thr, buf, DUK_HBUFFER_GET_SIZE(buf), (duk_uint8_t *) str, len);
|
|
return len;
|
|
}
|
|
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_append_hstring(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_hstring *str) {
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(str != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
|
|
len = DUK_HSTRING_GET_BYTELEN(str);
|
|
duk_hbuffer_insert_bytes(thr, buf, DUK_HBUFFER_GET_SIZE(buf), (duk_uint8_t *) DUK_HSTRING_GET_DATA(str), len);
|
|
return len;
|
|
}
|
|
|
|
/* Append a Unicode codepoint to the buffer in extended UTF-8 format, i.e.
|
|
* allow codepoints above standard Unicode range (> U+10FFFF) up to seven
|
|
* byte encoding (36 bits, but argument type is 32 bits). In particular,
|
|
* allows encoding of all unsigned 32-bit integers. If the codepoint is
|
|
* initially a surrogate, it is encoded without checking (and will become,
|
|
* effectively, CESU-8 encoded).
|
|
*/
|
|
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_append_xutf8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_ucodepoint_t codepoint) {
|
|
duk_uint8_t tmp[DUK_UNICODE_MAX_XUTF8_LENGTH];
|
|
duk_size_t len;
|
|
duk_size_t sz;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
/* No range assertion for 'codepoint' */
|
|
|
|
if (DUK_LIKELY(codepoint < 0x80 && DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(buf) > 0)) {
|
|
/* fast path: ASCII and there is spare */
|
|
duk_uint8_t *p = ((duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, buf));
|
|
sz = DUK_HBUFFER_DYNAMIC_GET_SIZE(buf);
|
|
p[sz++] = (duk_uint8_t) codepoint;
|
|
DUK_HBUFFER_DYNAMIC_SET_SIZE(buf, sz);
|
|
return 1;
|
|
}
|
|
|
|
len = (duk_size_t) duk_unicode_encode_xutf8(codepoint, tmp);
|
|
duk_hbuffer_insert_bytes(thr, buf, DUK_HBUFFER_GET_SIZE(buf), tmp, len);
|
|
return len;
|
|
}
|
|
|
|
/* Append a Unicode codepoint to the buffer in CESU-8 format, i.e., convert
|
|
* non-BMP characters to surrogate pairs which are then "UTF-8" encoded.
|
|
* If the codepoint is initially a surrogate, it is also encoded into CESU-8.
|
|
* Codepoints above valid Unicode range (> U+10FFFF) are mangled.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_size_t duk_hbuffer_append_cesu8(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_ucodepoint_t codepoint) {
|
|
duk_uint8_t tmp[DUK_UNICODE_MAX_CESU8_LENGTH];
|
|
duk_size_t len;
|
|
duk_size_t sz;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT_DISABLE(codepoint >= 0); /* unsigned */
|
|
DUK_ASSERT(codepoint <= 0x10ffff); /* if not in this range, results are garbage (but no crash) */
|
|
|
|
if (DUK_LIKELY(codepoint < 0x80 && DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(buf) > 0)) {
|
|
/* fast path: ASCII and there is spare */
|
|
duk_uint8_t *p = ((duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, buf));
|
|
sz = DUK_HBUFFER_DYNAMIC_GET_SIZE(buf);
|
|
p[sz++] = (duk_uint8_t) codepoint;
|
|
DUK_HBUFFER_DYNAMIC_SET_SIZE(buf, sz);
|
|
return 1;
|
|
}
|
|
|
|
len = (duk_size_t) duk_unicode_encode_cesu8(codepoint, tmp);
|
|
duk_hbuffer_insert_bytes(thr, buf, DUK_HBUFFER_GET_SIZE(buf), tmp, len);
|
|
return len;
|
|
}
|
|
|
|
/* Append an duk_uint32_t in native byte order. */
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL void duk_hbuffer_append_native_u32(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_uint32_t val) {
|
|
/* relies on duk_uint32_t being exactly right size */
|
|
DUK_ASSERT(sizeof(val) == 4);
|
|
duk_hbuffer_insert_bytes(thr,
|
|
buf,
|
|
DUK_HBUFFER_GET_SIZE(buf),
|
|
(duk_uint8_t *) &val,
|
|
sizeof(duk_uint32_t));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* In-buffer "slices"
|
|
*
|
|
* Slices are identified with an offset+length pair, referring to the current
|
|
* buffer data. A caller cannot otherwise reliably refer to existing data,
|
|
* because the buffer may be reallocated before a data pointer is referenced.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hbuffer_remove_slice(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t offset, duk_size_t length) {
|
|
duk_uint8_t *p;
|
|
duk_size_t end_offset;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT_DISABLE(offset >= 0); /* always true */
|
|
DUK_ASSERT(offset <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
DUK_ASSERT_DISABLE(length >= 0); /* always true */
|
|
DUK_ASSERT(offset + length <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
|
|
if (length == 0) {
|
|
return;
|
|
}
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, buf);
|
|
|
|
end_offset = offset + length;
|
|
|
|
if (end_offset < DUK_HBUFFER_GET_SIZE(buf)) {
|
|
/* not strictly from end of buffer; need to shuffle data */
|
|
DUK_ASSERT(DUK_HBUFFER_GET_SIZE(buf) - end_offset > 0);
|
|
DUK_MEMMOVE(p + offset,
|
|
p + end_offset,
|
|
DUK_HBUFFER_GET_SIZE(buf) - end_offset);
|
|
}
|
|
|
|
/* Here we want to zero data even with automatic buffer zeroing
|
|
* disabled as we depend on this internally too.
|
|
*/
|
|
DUK_ASSERT(length > 0);
|
|
DUK_MEMZERO(p + DUK_HBUFFER_GET_SIZE(buf) - length,
|
|
length);
|
|
|
|
DUK_HBUFFER_DYNAMIC_SUB_SIZE(buf, length);
|
|
|
|
/* Note: no shrink check, intentional */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hbuffer_insert_slice(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t dst_offset, duk_size_t src_offset, duk_size_t length) {
|
|
duk_uint8_t *p;
|
|
duk_size_t src_end_offset; /* source end (exclusive) in initial buffer */
|
|
duk_size_t len;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT_DISABLE(dst_offset >= 0); /* always true */
|
|
DUK_ASSERT(dst_offset <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
DUK_ASSERT_DISABLE(src_offset >= 0); /* always true */
|
|
DUK_ASSERT(src_offset <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
DUK_ASSERT_DISABLE(length >= 0); /* always true */
|
|
DUK_ASSERT(src_offset + length <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
|
|
if (length == 0) {
|
|
return;
|
|
}
|
|
|
|
if (DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(buf) < length) {
|
|
duk_hbuffer_resize(thr,
|
|
buf,
|
|
DUK_HBUFFER_GET_SIZE(buf),
|
|
duk__add_spare(DUK_HBUFFER_GET_SIZE(buf) + length));
|
|
}
|
|
DUK_ASSERT(DUK_HBUFFER_DYNAMIC_GET_SPARE_SIZE(buf) >= length);
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, buf);
|
|
DUK_ASSERT(p != NULL); /* must be the case because length > 0, and buffer has been resized if necessary */
|
|
|
|
/*
|
|
* src_offset and dst_offset refer to the state of the buffer
|
|
* before any changes are made. This must be taken into account
|
|
* when moving data around; in particular, the source data may
|
|
* "straddle" the dst_offset, so the insert may need to be handled
|
|
* in two pieces.
|
|
*/
|
|
|
|
src_end_offset = src_offset + length;
|
|
|
|
/* create a hole for the insert */
|
|
len = DUK_HBUFFER_GET_SIZE(buf) - dst_offset;
|
|
DUK_MEMMOVE(p + dst_offset + length,
|
|
p + dst_offset,
|
|
len); /* zero size is not an issue: pointers are valid */
|
|
|
|
if (src_offset < dst_offset) {
|
|
if (src_end_offset <= dst_offset) {
|
|
/* entire source is before 'dst_offset' */
|
|
DUK_MEMCPY(p + dst_offset,
|
|
p + src_offset,
|
|
length);
|
|
} else {
|
|
/* part of the source is before 'dst_offset'; straddles */
|
|
len = dst_offset - src_offset;
|
|
DUK_ASSERT(len >= 1 && len < length);
|
|
DUK_ASSERT(length - len >= 1);
|
|
DUK_MEMCPY(p + dst_offset,
|
|
p + src_offset,
|
|
len);
|
|
DUK_MEMCPY(p + dst_offset + len,
|
|
p + src_offset + length + len, /* take above memmove() into account */
|
|
length - len);
|
|
}
|
|
} else {
|
|
/* entire source is after 'dst_offset' */
|
|
DUK_MEMCPY(p + dst_offset,
|
|
p + src_offset + length, /* take above memmove() into account */
|
|
length);
|
|
}
|
|
|
|
DUK_HBUFFER_DYNAMIC_ADD_SIZE(buf, length);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hbuffer_append_slice(duk_hthread *thr, duk_hbuffer_dynamic *buf, duk_size_t src_offset, duk_size_t length) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_ASSERT_DISABLE(src_offset >= 0); /* always true */
|
|
DUK_ASSERT(src_offset <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
DUK_ASSERT_DISABLE(length >= 0); /* always true */
|
|
DUK_ASSERT(src_offset + length <= DUK_HBUFFER_GET_SIZE(buf)); /* allow equality */
|
|
|
|
duk_hbuffer_insert_slice(thr,
|
|
buf,
|
|
DUK_HBUFFER_GET_SIZE(buf),
|
|
src_offset,
|
|
length);
|
|
}
|
|
#line 1 "duk_heap_alloc.c"
|
|
/*
|
|
* duk_heap allocation and freeing.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* constants for built-in string data depacking */
|
|
#define DUK__BITPACK_LETTER_LIMIT 26
|
|
#define DUK__BITPACK_UNDERSCORE 26
|
|
#define DUK__BITPACK_FF 27
|
|
#define DUK__BITPACK_SWITCH1 29
|
|
#define DUK__BITPACK_SWITCH 30
|
|
#define DUK__BITPACK_SEVENBIT 31
|
|
|
|
/*
|
|
* Free a heap object.
|
|
*
|
|
* Free heap object and its internal (non-heap) pointers. Assumes that
|
|
* caller has removed the object from heap allocated list or the string
|
|
* intern table, and any weak references (which strings may have) have
|
|
* been already dealt with.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_free_hobject_inner(duk_heap *heap, duk_hobject *h) {
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
DUK_FREE(heap, DUK_HOBJECT_GET_PROPS(heap, h));
|
|
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
duk_hcompiledfunction *f = (duk_hcompiledfunction *) h;
|
|
DUK_UNREF(f);
|
|
/* Currently nothing to free; 'data' is a heap object */
|
|
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
duk_hnativefunction *f = (duk_hnativefunction *) h;
|
|
DUK_UNREF(f);
|
|
/* Currently nothing to free */
|
|
} else if (DUK_HOBJECT_IS_THREAD(h)) {
|
|
duk_hthread *t = (duk_hthread *) h;
|
|
DUK_FREE(heap, t->valstack);
|
|
DUK_FREE(heap, t->callstack);
|
|
DUK_FREE(heap, t->catchstack);
|
|
/* Don't free h->resumer because it exists in the heap.
|
|
* Callstack entries also contain function pointers which
|
|
* are not freed for the same reason.
|
|
*/
|
|
|
|
/* XXX: with 'caller' property the callstack would need
|
|
* to be unwound to update the 'caller' properties of
|
|
* functions in the callstack.
|
|
*/
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_free_hbuffer_inner(duk_heap *heap, duk_hbuffer *h) {
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (DUK_HBUFFER_HAS_DYNAMIC(h)) {
|
|
duk_hbuffer_dynamic *g = (duk_hbuffer_dynamic *) h;
|
|
DUK_DDD(DUK_DDDPRINT("free dynamic buffer %p", (void *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, g)));
|
|
DUK_FREE(heap, DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(heap, g));
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_free_hstring_inner(duk_heap *heap, duk_hstring *h) {
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
DUK_UNREF(heap);
|
|
DUK_UNREF(h);
|
|
|
|
#if defined(DUK_USE_HSTRING_EXTDATA) && defined(DUK_USE_EXTSTR_FREE)
|
|
if (DUK_HSTRING_HAS_EXTDATA(h)) {
|
|
DUK_DDD(DUK_DDDPRINT("free extstr: hstring %!O, extdata: %p",
|
|
h, DUK_HSTRING_GET_EXTDATA((duk_hstring_external *) h)));
|
|
DUK_USE_EXTSTR_FREE(heap->heap_udata, (const void *) DUK_HSTRING_GET_EXTDATA((duk_hstring_external *) h));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
DUK_INTERNAL void duk_heap_free_heaphdr_raw(duk_heap *heap, duk_heaphdr *hdr) {
|
|
DUK_ASSERT(heap);
|
|
DUK_ASSERT(hdr);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("free heaphdr %p, htype %ld", (void *) hdr, (long) DUK_HEAPHDR_GET_TYPE(hdr)));
|
|
|
|
switch ((int) DUK_HEAPHDR_GET_TYPE(hdr)) {
|
|
case DUK_HTYPE_STRING:
|
|
duk_free_hstring_inner(heap, (duk_hstring *) hdr);
|
|
break;
|
|
case DUK_HTYPE_OBJECT:
|
|
duk_free_hobject_inner(heap, (duk_hobject *) hdr);
|
|
break;
|
|
case DUK_HTYPE_BUFFER:
|
|
duk_free_hbuffer_inner(heap, (duk_hbuffer *) hdr);
|
|
break;
|
|
default:
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
DUK_FREE(heap, hdr);
|
|
}
|
|
|
|
/*
|
|
* Free the heap.
|
|
*
|
|
* Frees heap-related non-heap-tracked allocations such as the
|
|
* string intern table; then frees the heap allocated objects;
|
|
* and finally frees the heap structure itself. Reference counts
|
|
* and GC markers are ignored (and not updated) in this process,
|
|
* and finalizers won't be called.
|
|
*
|
|
* The heap pointer and heap object pointers must not be used
|
|
* after this call.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__free_allocated(duk_heap *heap) {
|
|
duk_heaphdr *curr;
|
|
duk_heaphdr *next;
|
|
|
|
curr = heap->heap_allocated;
|
|
while (curr) {
|
|
/* We don't log or warn about freeing zero refcount objects
|
|
* because they may happen with finalizer processing.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("FINALFREE (allocated): %!iO",
|
|
(duk_heaphdr *) curr));
|
|
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
duk_heap_free_heaphdr_raw(heap, curr);
|
|
curr = next;
|
|
}
|
|
}
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_LOCAL void duk__free_refzero_list(duk_heap *heap) {
|
|
duk_heaphdr *curr;
|
|
duk_heaphdr *next;
|
|
|
|
curr = heap->refzero_list;
|
|
while (curr) {
|
|
DUK_DDD(DUK_DDDPRINT("FINALFREE (refzero_list): %!iO",
|
|
(duk_heaphdr *) curr));
|
|
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
duk_heap_free_heaphdr_raw(heap, curr);
|
|
curr = next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_LOCAL void duk__free_markandsweep_finalize_list(duk_heap *heap) {
|
|
duk_heaphdr *curr;
|
|
duk_heaphdr *next;
|
|
|
|
curr = heap->finalize_list;
|
|
while (curr) {
|
|
DUK_DDD(DUK_DDDPRINT("FINALFREE (finalize_list): %!iO",
|
|
(duk_heaphdr *) curr));
|
|
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
duk_heap_free_heaphdr_raw(heap, curr);
|
|
curr = next;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__free_stringtable(duk_heap *heap) {
|
|
/* strings are only tracked by stringtable */
|
|
duk_heap_free_strtab(heap);
|
|
}
|
|
|
|
DUK_LOCAL void duk__free_run_finalizers(duk_heap *heap) {
|
|
duk_hthread *thr;
|
|
duk_heaphdr *curr;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count_obj = 0;
|
|
#endif
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(heap->heap_thread != NULL);
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_ASSERT(heap->refzero_list == NULL); /* refzero not running -> must be empty */
|
|
#endif
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_ASSERT(heap->finalize_list == NULL); /* mark-and-sweep not running -> must be empty */
|
|
#endif
|
|
|
|
/* XXX: here again finalizer thread is the heap_thread which needs
|
|
* to be coordinated with finalizer thread fixes.
|
|
*/
|
|
thr = heap->heap_thread;
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
curr = heap->heap_allocated;
|
|
while (curr) {
|
|
if (DUK_HEAPHDR_GET_TYPE(curr) == DUK_HTYPE_OBJECT) {
|
|
/* Only objects in heap_allocated may have finalizers. Check that
|
|
* the object itself has a _Finalizer property so that we don't
|
|
* execute finalizers for e.g. Proxy objects.
|
|
*/
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(curr != NULL);
|
|
|
|
if (duk_hobject_hasprop_raw(thr, (duk_hobject *) curr, DUK_HTHREAD_STRING_INT_FINALIZER(thr))) {
|
|
duk_hobject_run_finalizer(thr, (duk_hobject *) curr);
|
|
}
|
|
#ifdef DUK_USE_DEBUG
|
|
count_obj++;
|
|
#endif
|
|
}
|
|
curr = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
}
|
|
|
|
/* Note: count includes all objects, not only those with an actual finalizer. */
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_D(DUK_DPRINT("checked %ld objects for finalizers before freeing heap", (long) count_obj));
|
|
#endif
|
|
}
|
|
|
|
DUK_INTERNAL void duk_heap_free(duk_heap *heap) {
|
|
DUK_D(DUK_DPRINT("free heap: %p", (void *) heap));
|
|
|
|
#if defined(DUK_USE_DEBUG)
|
|
duk_heap_dump_strtab(heap);
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
/* Detach a debugger if attached (can be called multiple times)
|
|
* safely.
|
|
*/
|
|
duk_debug_do_detach(heap);
|
|
#endif
|
|
|
|
/* Execute finalizers before freeing the heap, even for reachable
|
|
* objects, and regardless of whether or not mark-and-sweep is
|
|
* enabled. This gives finalizers the chance to free any native
|
|
* resources like file handles, allocations made outside Duktape,
|
|
* etc.
|
|
*
|
|
* XXX: this perhaps requires an execution time limit.
|
|
*/
|
|
DUK_D(DUK_DPRINT("execute finalizers before freeing heap"));
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
/* run mark-and-sweep a few times just in case (unreachable
|
|
* object finalizers run already here)
|
|
*/
|
|
duk_heap_mark_and_sweep(heap, 0);
|
|
duk_heap_mark_and_sweep(heap, 0);
|
|
#endif
|
|
duk__free_run_finalizers(heap);
|
|
|
|
/* Note: heap->heap_thread, heap->curr_thread, heap->heap_object,
|
|
* and heap->log_buffer are on the heap allocated list.
|
|
*/
|
|
|
|
DUK_D(DUK_DPRINT("freeing heap objects of heap: %p", (void *) heap));
|
|
duk__free_allocated(heap);
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_D(DUK_DPRINT("freeing refzero list of heap: %p", (void *) heap));
|
|
duk__free_refzero_list(heap);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_D(DUK_DPRINT("freeing mark-and-sweep finalize list of heap: %p", (void *) heap));
|
|
duk__free_markandsweep_finalize_list(heap);
|
|
#endif
|
|
|
|
DUK_D(DUK_DPRINT("freeing string table of heap: %p", (void *) heap));
|
|
duk__free_stringtable(heap);
|
|
|
|
DUK_D(DUK_DPRINT("freeing heap structure: %p", (void *) heap));
|
|
heap->free_func(heap->heap_udata, heap);
|
|
}
|
|
|
|
/*
|
|
* Allocate a heap.
|
|
*
|
|
* String table is initialized with built-in strings from genstrings.py.
|
|
*/
|
|
|
|
/* intern built-in strings from precooked data (genstrings.py) */
|
|
DUK_LOCAL duk_bool_t duk__init_heap_strings(duk_heap *heap) {
|
|
duk_bitdecoder_ctx bd_ctx;
|
|
duk_bitdecoder_ctx *bd = &bd_ctx; /* convenience */
|
|
duk_small_uint_t i, j;
|
|
|
|
DUK_MEMZERO(&bd_ctx, sizeof(bd_ctx));
|
|
bd->data = (const duk_uint8_t *) duk_strings_data;
|
|
bd->length = (duk_size_t) DUK_STRDATA_DATA_LENGTH;
|
|
|
|
for (i = 0; i < DUK_HEAP_NUM_STRINGS; i++) {
|
|
duk_uint8_t tmp[DUK_STRDATA_MAX_STRLEN];
|
|
duk_hstring *h;
|
|
duk_small_uint_t len;
|
|
duk_small_uint_t mode;
|
|
duk_small_uint_t t;
|
|
|
|
len = duk_bd_decode(bd, 5);
|
|
mode = 32; /* 0 = uppercase, 32 = lowercase (= 'a' - 'A') */
|
|
for (j = 0; j < len; j++) {
|
|
t = duk_bd_decode(bd, 5);
|
|
if (t < DUK__BITPACK_LETTER_LIMIT) {
|
|
t = t + DUK_ASC_UC_A + mode;
|
|
} else if (t == DUK__BITPACK_UNDERSCORE) {
|
|
t = DUK_ASC_UNDERSCORE;
|
|
} else if (t == DUK__BITPACK_FF) {
|
|
/* Internal keys are prefixed with 0xFF in the stringtable
|
|
* (which makes them invalid UTF-8 on purpose).
|
|
*/
|
|
t = 0xff;
|
|
} else if (t == DUK__BITPACK_SWITCH1) {
|
|
t = duk_bd_decode(bd, 5);
|
|
DUK_ASSERT_DISABLE(t >= 0); /* unsigned */
|
|
DUK_ASSERT(t <= 25);
|
|
t = t + DUK_ASC_UC_A + (mode ^ 32);
|
|
} else if (t == DUK__BITPACK_SWITCH) {
|
|
mode = mode ^ 32;
|
|
t = duk_bd_decode(bd, 5);
|
|
DUK_ASSERT_DISABLE(t >= 0);
|
|
DUK_ASSERT(t <= 25);
|
|
t = t + DUK_ASC_UC_A + mode;
|
|
} else if (t == DUK__BITPACK_SEVENBIT) {
|
|
t = duk_bd_decode(bd, 7);
|
|
}
|
|
tmp[j] = (duk_uint8_t) t;
|
|
}
|
|
|
|
/* No need to length check string: it will never exceed even
|
|
* the 16-bit length maximum.
|
|
*/
|
|
DUK_ASSERT(len <= 0xffffUL);
|
|
DUK_DDD(DUK_DDDPRINT("intern built-in string %ld", (long) i));
|
|
h = duk_heap_string_intern(heap, tmp, len);
|
|
if (!h) {
|
|
goto error;
|
|
}
|
|
|
|
/* Special flags checks. Since these strings are always
|
|
* reachable and a string cannot appear twice in the string
|
|
* table, there's no need to check/set these flags elsewhere.
|
|
* The 'internal' flag is set by string intern code.
|
|
*/
|
|
if (i == DUK_STRIDX_EVAL || i == DUK_STRIDX_LC_ARGUMENTS) {
|
|
DUK_HSTRING_SET_EVAL_OR_ARGUMENTS(h);
|
|
}
|
|
if (i >= DUK_STRIDX_START_RESERVED && i < DUK_STRIDX_END_RESERVED) {
|
|
DUK_HSTRING_SET_RESERVED_WORD(h);
|
|
if (i >= DUK_STRIDX_START_STRICT_RESERVED) {
|
|
DUK_HSTRING_SET_STRICT_RESERVED_WORD(h);
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("interned: %!O", (duk_heaphdr *) h));
|
|
|
|
/* XXX: The incref macro takes a thread pointer but doesn't
|
|
* use it right now.
|
|
*/
|
|
DUK_HSTRING_INCREF(_never_referenced_, h);
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
heap->strs16[i] = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
|
|
#else
|
|
heap->strs[i] = h;
|
|
#endif
|
|
}
|
|
|
|
return 1;
|
|
|
|
error:
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__init_heap_thread(duk_heap *heap) {
|
|
duk_hthread *thr;
|
|
|
|
DUK_DD(DUK_DDPRINT("heap init: alloc heap thread"));
|
|
thr = duk_hthread_alloc(heap,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_THREAD |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_THREAD));
|
|
if (!thr) {
|
|
DUK_D(DUK_DPRINT("failed to alloc heap_thread"));
|
|
return 0;
|
|
}
|
|
thr->state = DUK_HTHREAD_STATE_INACTIVE;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
thr->strs16 = heap->strs16;
|
|
#else
|
|
thr->strs = heap->strs;
|
|
#endif
|
|
|
|
heap->heap_thread = thr;
|
|
DUK_HTHREAD_INCREF(thr, thr); /* Note: first argument not really used */
|
|
|
|
/* 'thr' is now reachable */
|
|
|
|
if (!duk_hthread_init_stacks(heap, thr)) {
|
|
return 0;
|
|
}
|
|
|
|
/* XXX: this may now fail, and is not handled correctly */
|
|
duk_hthread_create_builtin_objects(thr);
|
|
|
|
/* default prototype (Note: 'thr' must be reachable) */
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, (duk_hobject *) thr, thr->builtins[DUK_BIDX_THREAD_PROTOTYPE]);
|
|
|
|
return 1;
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
#define DUK__DUMPSZ(t) do { \
|
|
DUK_D(DUK_DPRINT("" #t "=%ld", (long) sizeof(t))); \
|
|
} while (0)
|
|
|
|
/* These is not 100% because format would need to be non-portable "long long".
|
|
* Also print out as doubles to catch cases where the "long" type is not wide
|
|
* enough; the limits will then not be printed accurately but the magnitude
|
|
* will be correct.
|
|
*/
|
|
#define DUK__DUMPLM_SIGNED_RAW(t,a,b) do { \
|
|
DUK_D(DUK_DPRINT(t "=[%ld,%ld]=[%lf,%lf]", \
|
|
(long) (a), (long) (b), \
|
|
(double) (a), (double) (b))); \
|
|
} while(0)
|
|
#define DUK__DUMPLM_UNSIGNED_RAW(t,a,b) do { \
|
|
DUK_D(DUK_DPRINT(t "=[%lu,%lu]=[%lf,%lf]", \
|
|
(unsigned long) (a), (unsigned long) (b), \
|
|
(double) (a), (double) (b))); \
|
|
} while(0)
|
|
#define DUK__DUMPLM_SIGNED(t) do { \
|
|
DUK__DUMPLM_SIGNED_RAW("DUK_" #t "_{MIN,MAX}", DUK_##t##_MIN, DUK_##t##_MAX); \
|
|
} while(0)
|
|
#define DUK__DUMPLM_UNSIGNED(t) do { \
|
|
DUK__DUMPLM_UNSIGNED_RAW("DUK_" #t "_{MIN,MAX}", DUK_##t##_MIN, DUK_##t##_MAX); \
|
|
} while(0)
|
|
|
|
DUK_LOCAL void duk__dump_type_sizes(void) {
|
|
DUK_D(DUK_DPRINT("sizeof()"));
|
|
|
|
/* basic platform types */
|
|
DUK__DUMPSZ(char);
|
|
DUK__DUMPSZ(short);
|
|
DUK__DUMPSZ(int);
|
|
DUK__DUMPSZ(long);
|
|
DUK__DUMPSZ(double);
|
|
DUK__DUMPSZ(void *);
|
|
DUK__DUMPSZ(size_t);
|
|
|
|
/* basic types from duk_features.h */
|
|
DUK__DUMPSZ(duk_uint8_t);
|
|
DUK__DUMPSZ(duk_int8_t);
|
|
DUK__DUMPSZ(duk_uint16_t);
|
|
DUK__DUMPSZ(duk_int16_t);
|
|
DUK__DUMPSZ(duk_uint32_t);
|
|
DUK__DUMPSZ(duk_int32_t);
|
|
DUK__DUMPSZ(duk_uint64_t);
|
|
DUK__DUMPSZ(duk_int64_t);
|
|
DUK__DUMPSZ(duk_uint_least8_t);
|
|
DUK__DUMPSZ(duk_int_least8_t);
|
|
DUK__DUMPSZ(duk_uint_least16_t);
|
|
DUK__DUMPSZ(duk_int_least16_t);
|
|
DUK__DUMPSZ(duk_uint_least32_t);
|
|
DUK__DUMPSZ(duk_int_least32_t);
|
|
#if defined(DUK_USE_64BIT_OPS)
|
|
DUK__DUMPSZ(duk_uint_least64_t);
|
|
DUK__DUMPSZ(duk_int_least64_t);
|
|
#endif
|
|
DUK__DUMPSZ(duk_uint_fast8_t);
|
|
DUK__DUMPSZ(duk_int_fast8_t);
|
|
DUK__DUMPSZ(duk_uint_fast16_t);
|
|
DUK__DUMPSZ(duk_int_fast16_t);
|
|
DUK__DUMPSZ(duk_uint_fast32_t);
|
|
DUK__DUMPSZ(duk_int_fast32_t);
|
|
#if defined(DUK_USE_64BIT_OPS)
|
|
DUK__DUMPSZ(duk_uint_fast64_t);
|
|
DUK__DUMPSZ(duk_int_fast64_t);
|
|
#endif
|
|
DUK__DUMPSZ(duk_uintptr_t);
|
|
DUK__DUMPSZ(duk_intptr_t);
|
|
DUK__DUMPSZ(duk_uintmax_t);
|
|
DUK__DUMPSZ(duk_intmax_t);
|
|
DUK__DUMPSZ(duk_double_t);
|
|
|
|
/* important chosen base types */
|
|
DUK__DUMPSZ(duk_int_t);
|
|
DUK__DUMPSZ(duk_uint_t);
|
|
DUK__DUMPSZ(duk_int_fast_t);
|
|
DUK__DUMPSZ(duk_uint_fast_t);
|
|
DUK__DUMPSZ(duk_small_int_t);
|
|
DUK__DUMPSZ(duk_small_uint_t);
|
|
DUK__DUMPSZ(duk_small_int_fast_t);
|
|
DUK__DUMPSZ(duk_small_uint_fast_t);
|
|
|
|
/* some derived types */
|
|
DUK__DUMPSZ(duk_codepoint_t);
|
|
DUK__DUMPSZ(duk_ucodepoint_t);
|
|
DUK__DUMPSZ(duk_idx_t);
|
|
DUK__DUMPSZ(duk_errcode_t);
|
|
DUK__DUMPSZ(duk_uarridx_t);
|
|
|
|
/* tval */
|
|
DUK__DUMPSZ(duk_double_union);
|
|
DUK__DUMPSZ(duk_tval);
|
|
|
|
/* structs from duk_forwdecl.h */
|
|
DUK__DUMPSZ(duk_jmpbuf);
|
|
DUK__DUMPSZ(duk_heaphdr);
|
|
DUK__DUMPSZ(duk_heaphdr_string);
|
|
DUK__DUMPSZ(duk_hstring);
|
|
DUK__DUMPSZ(duk_hstring_external);
|
|
DUK__DUMPSZ(duk_hobject);
|
|
DUK__DUMPSZ(duk_hcompiledfunction);
|
|
DUK__DUMPSZ(duk_hnativefunction);
|
|
DUK__DUMPSZ(duk_hthread);
|
|
DUK__DUMPSZ(duk_hbuffer);
|
|
DUK__DUMPSZ(duk_hbuffer_fixed);
|
|
DUK__DUMPSZ(duk_hbuffer_dynamic);
|
|
DUK__DUMPSZ(duk_propaccessor);
|
|
DUK__DUMPSZ(duk_propvalue);
|
|
DUK__DUMPSZ(duk_propdesc);
|
|
DUK__DUMPSZ(duk_heap);
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
DUK__DUMPSZ(duk_strtab_entry);
|
|
#endif
|
|
DUK__DUMPSZ(duk_activation);
|
|
DUK__DUMPSZ(duk_catcher);
|
|
DUK__DUMPSZ(duk_strcache);
|
|
DUK__DUMPSZ(duk_ljstate);
|
|
DUK__DUMPSZ(duk_fixedbuffer);
|
|
DUK__DUMPSZ(duk_bitdecoder_ctx);
|
|
DUK__DUMPSZ(duk_bitencoder_ctx);
|
|
DUK__DUMPSZ(duk_token);
|
|
DUK__DUMPSZ(duk_re_token);
|
|
DUK__DUMPSZ(duk_lexer_point);
|
|
DUK__DUMPSZ(duk_lexer_ctx);
|
|
DUK__DUMPSZ(duk_compiler_instr);
|
|
DUK__DUMPSZ(duk_compiler_func);
|
|
DUK__DUMPSZ(duk_compiler_ctx);
|
|
DUK__DUMPSZ(duk_re_matcher_ctx);
|
|
DUK__DUMPSZ(duk_re_compiler_ctx);
|
|
}
|
|
DUK_LOCAL void duk__dump_type_limits(void) {
|
|
DUK_D(DUK_DPRINT("limits"));
|
|
|
|
/* basic types */
|
|
DUK__DUMPLM_SIGNED(INT8);
|
|
DUK__DUMPLM_UNSIGNED(UINT8);
|
|
DUK__DUMPLM_SIGNED(INT_FAST8);
|
|
DUK__DUMPLM_UNSIGNED(UINT_FAST8);
|
|
DUK__DUMPLM_SIGNED(INT_LEAST8);
|
|
DUK__DUMPLM_UNSIGNED(UINT_LEAST8);
|
|
DUK__DUMPLM_SIGNED(INT16);
|
|
DUK__DUMPLM_UNSIGNED(UINT16);
|
|
DUK__DUMPLM_SIGNED(INT_FAST16);
|
|
DUK__DUMPLM_UNSIGNED(UINT_FAST16);
|
|
DUK__DUMPLM_SIGNED(INT_LEAST16);
|
|
DUK__DUMPLM_UNSIGNED(UINT_LEAST16);
|
|
DUK__DUMPLM_SIGNED(INT32);
|
|
DUK__DUMPLM_UNSIGNED(UINT32);
|
|
DUK__DUMPLM_SIGNED(INT_FAST32);
|
|
DUK__DUMPLM_UNSIGNED(UINT_FAST32);
|
|
DUK__DUMPLM_SIGNED(INT_LEAST32);
|
|
DUK__DUMPLM_UNSIGNED(UINT_LEAST32);
|
|
#if defined(DUK_USE_64BIT_OPS)
|
|
DUK__DUMPLM_SIGNED(INT64);
|
|
DUK__DUMPLM_UNSIGNED(UINT64);
|
|
DUK__DUMPLM_SIGNED(INT_FAST64);
|
|
DUK__DUMPLM_UNSIGNED(UINT_FAST64);
|
|
DUK__DUMPLM_SIGNED(INT_LEAST64);
|
|
DUK__DUMPLM_UNSIGNED(UINT_LEAST64);
|
|
#endif
|
|
DUK__DUMPLM_SIGNED(INTPTR);
|
|
DUK__DUMPLM_UNSIGNED(UINTPTR);
|
|
DUK__DUMPLM_SIGNED(INTMAX);
|
|
DUK__DUMPLM_UNSIGNED(UINTMAX);
|
|
|
|
/* derived types */
|
|
DUK__DUMPLM_SIGNED(INT);
|
|
DUK__DUMPLM_UNSIGNED(UINT);
|
|
DUK__DUMPLM_SIGNED(INT_FAST);
|
|
DUK__DUMPLM_UNSIGNED(UINT_FAST);
|
|
DUK__DUMPLM_SIGNED(SMALL_INT);
|
|
DUK__DUMPLM_UNSIGNED(SMALL_UINT);
|
|
DUK__DUMPLM_SIGNED(SMALL_INT_FAST);
|
|
DUK__DUMPLM_UNSIGNED(SMALL_UINT_FAST);
|
|
}
|
|
#undef DUK__DUMPSZ
|
|
#undef DUK__DUMPLM_SIGNED_RAW
|
|
#undef DUK__DUMPLM_UNSIGNED_RAW
|
|
#undef DUK__DUMPLM_SIGNED
|
|
#undef DUK__DUMPLM_UNSIGNED
|
|
|
|
DUK_LOCAL void duk__dump_misc_options(void) {
|
|
DUK_D(DUK_DPRINT("DUK_VERSION: %ld", (long) DUK_VERSION));
|
|
DUK_D(DUK_DPRINT("DUK_GIT_DESCRIBE: %s", DUK_GIT_DESCRIBE));
|
|
#if defined(DUK_USE_PACKED_TVAL)
|
|
DUK_D(DUK_DPRINT("DUK_USE_PACKED_TVAL: yes"));
|
|
#else
|
|
DUK_D(DUK_DPRINT("DUK_USE_PACKED_TVAL: no"));
|
|
#endif
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
DUK_D(DUK_DPRINT("Integer endianness: little"));
|
|
#elif defined(DUK_USE_INTEGER_ME)
|
|
DUK_D(DUK_DPRINT("Integer endianness: mixed"));
|
|
#elif defined(DUK_USE_INTEGER_BE)
|
|
DUK_D(DUK_DPRINT("Integer endianness: big"));
|
|
#else
|
|
DUK_D(DUK_DPRINT("Integer endianness: ???"));
|
|
#endif
|
|
#if defined(DUK_USE_DOUBLE_LE)
|
|
DUK_D(DUK_DPRINT("IEEE double endianness: little"));
|
|
#elif defined(DUK_USE_DOUBLE_ME)
|
|
DUK_D(DUK_DPRINT("IEEE double endianness: mixed"));
|
|
#elif defined(DUK_USE_DOUBLE_BE)
|
|
DUK_D(DUK_DPRINT("IEEE double endianness: big"));
|
|
#else
|
|
DUK_D(DUK_DPRINT("IEEE double endianness: ???"));
|
|
#endif
|
|
}
|
|
#endif /* DUK_USE_DEBUG */
|
|
|
|
DUK_INTERNAL
|
|
duk_heap *duk_heap_alloc(duk_alloc_function alloc_func,
|
|
duk_realloc_function realloc_func,
|
|
duk_free_function free_func,
|
|
void *heap_udata,
|
|
duk_fatal_function fatal_func) {
|
|
duk_heap *res = NULL;
|
|
|
|
DUK_D(DUK_DPRINT("allocate heap"));
|
|
|
|
/*
|
|
* Debug dump type sizes
|
|
*/
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
duk__dump_misc_options();
|
|
duk__dump_type_sizes();
|
|
duk__dump_type_limits();
|
|
#endif
|
|
|
|
/*
|
|
* If selftests enabled, run them as early as possible
|
|
*/
|
|
#ifdef DUK_USE_SELF_TESTS
|
|
DUK_D(DUK_DPRINT("running self tests"));
|
|
duk_selftest_run_tests();
|
|
DUK_D(DUK_DPRINT("self tests passed"));
|
|
#endif
|
|
|
|
#ifdef DUK_USE_COMPUTED_NAN
|
|
do {
|
|
/* Workaround for some exotic platforms where NAN is missing
|
|
* and the expression (0.0 / 0.0) does NOT result in a NaN.
|
|
* Such platforms use the global 'duk_computed_nan' which must
|
|
* be initialized at runtime. Use 'volatile' to ensure that
|
|
* the compiler will actually do the computation and not try
|
|
* to do constant folding which might result in the original
|
|
* problem.
|
|
*/
|
|
volatile double dbl1 = 0.0;
|
|
volatile double dbl2 = 0.0;
|
|
duk_computed_nan = dbl1 / dbl2;
|
|
} while (0);
|
|
#endif
|
|
|
|
/*
|
|
* Computed values (e.g. INFINITY)
|
|
*/
|
|
|
|
#ifdef DUK_USE_COMPUTED_INFINITY
|
|
do {
|
|
/* Similar workaround for INFINITY. */
|
|
volatile double dbl1 = 1.0;
|
|
volatile double dbl2 = 0.0;
|
|
duk_computed_infinity = dbl1 / dbl2;
|
|
} while (0);
|
|
#endif
|
|
|
|
/*
|
|
* Allocate heap struct
|
|
*
|
|
* Use a raw call, all macros expect the heap to be initialized
|
|
*/
|
|
|
|
res = (duk_heap *) alloc_func(heap_udata, sizeof(duk_heap));
|
|
if (!res) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Zero the struct, and start initializing roughly in order
|
|
*/
|
|
|
|
DUK_MEMZERO(res, sizeof(*res));
|
|
|
|
/* explicit NULL inits */
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
res->heap_udata = NULL;
|
|
res->heap_allocated = NULL;
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
res->refzero_list = NULL;
|
|
res->refzero_list_tail = NULL;
|
|
#endif
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
res->finalize_list = NULL;
|
|
#endif
|
|
res->heap_thread = NULL;
|
|
res->curr_thread = NULL;
|
|
res->heap_object = NULL;
|
|
res->log_buffer = NULL;
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
/* nothing to NULL */
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
res->strtable16 = (duk_uint16_t *) NULL;
|
|
#else
|
|
res->strtable = (duk_hstring **) NULL;
|
|
#endif
|
|
#endif
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* res->strs16[] is zeroed and zero decodes to NULL, so no NULL inits. */
|
|
#else
|
|
{
|
|
duk_small_uint_t i;
|
|
for (i = 0; i < DUK_HEAP_NUM_STRINGS; i++) {
|
|
res->strs[i] = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
res->dbg_read_cb = NULL;
|
|
res->dbg_write_cb = NULL;
|
|
res->dbg_peek_cb = NULL;
|
|
res->dbg_read_flush_cb = NULL;
|
|
res->dbg_write_flush_cb = NULL;
|
|
res->dbg_udata = NULL;
|
|
res->dbg_step_thread = NULL;
|
|
#endif
|
|
#endif /* DUK_USE_EXPLICIT_NULL_INIT */
|
|
|
|
res->alloc_func = alloc_func;
|
|
res->realloc_func = realloc_func;
|
|
res->free_func = free_func;
|
|
res->heap_udata = heap_udata;
|
|
res->fatal_func = fatal_func;
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* XXX: zero assumption */
|
|
res->heapptr_null16 = DUK_USE_HEAPPTR_ENC16(res->heap_udata, (void *) NULL);
|
|
res->heapptr_deleted16 = DUK_USE_HEAPPTR_ENC16(res->heap_udata, (void *) DUK_STRTAB_DELETED_MARKER(res));
|
|
#endif
|
|
|
|
/* res->mark_and_sweep_trigger_counter == 0 -> now causes immediate GC; which is OK */
|
|
|
|
res->call_recursion_depth = 0;
|
|
res->call_recursion_limit = DUK_HEAP_DEFAULT_CALL_RECURSION_LIMIT;
|
|
|
|
/* XXX: use the pointer as a seed for now: mix in time at least */
|
|
|
|
/* The casts through duk_intr_pt is to avoid the following GCC warning:
|
|
*
|
|
* warning: cast from pointer to integer of different size [-Wpointer-to-int-cast]
|
|
*
|
|
* This still generates a /Wp64 warning on VS2010 when compiling for x86.
|
|
*/
|
|
res->hash_seed = (duk_uint32_t) (duk_intptr_t) res;
|
|
res->rnd_state = (duk_uint32_t) (duk_intptr_t) res;
|
|
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
/* zero value causes an interrupt before executing first instruction */
|
|
DUK_ASSERT(res->interrupt_counter == 0);
|
|
DUK_ASSERT(res->interrupt_init == 0);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
res->lj.jmpbuf_ptr = NULL;
|
|
#endif
|
|
DUK_ASSERT(res->lj.type == DUK_LJ_TYPE_UNKNOWN); /* zero */
|
|
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&res->lj.value1);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&res->lj.value2);
|
|
|
|
#if (DUK_STRTAB_INITIAL_SIZE < DUK_UTIL_MIN_HASH_PRIME)
|
|
#error initial heap stringtable size is defined incorrectly
|
|
#endif
|
|
|
|
/*
|
|
* Init stringtable: fixed variant
|
|
*/
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
DUK_MEMZERO(res->strtable, sizeof(duk_strtab_entry) * DUK_STRTAB_CHAIN_SIZE);
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
{
|
|
duk_small_uint_t i;
|
|
for (i = 0; i < DUK_STRTAB_CHAIN_SIZE; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
res->strtable[i].u.str16 = res->heapptr_null16;
|
|
#else
|
|
res->strtable[i].u.str = NULL;
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* DUK_USE_EXPLICIT_NULL_INIT */
|
|
#endif /* DUK_USE_STRTAB_CHAIN */
|
|
|
|
/*
|
|
* Init stringtable: probe variant
|
|
*/
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
res->strtable16 = (duk_uint16_t *) alloc_func(heap_udata, sizeof(duk_uint16_t) * DUK_STRTAB_INITIAL_SIZE);
|
|
if (!res->strtable16) {
|
|
goto error;
|
|
}
|
|
#else /* DUK_USE_HEAPPTR16 */
|
|
res->strtable = (duk_hstring **) alloc_func(heap_udata, sizeof(duk_hstring *) * DUK_STRTAB_INITIAL_SIZE);
|
|
if (!res->strtable) {
|
|
goto error;
|
|
}
|
|
#endif /* DUK_USE_HEAPPTR16 */
|
|
res->st_size = DUK_STRTAB_INITIAL_SIZE;
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
{
|
|
duk_small_uint_t i;
|
|
DUK_ASSERT(res->st_size == DUK_STRTAB_INITIAL_SIZE);
|
|
for (i = 0; i < DUK_STRTAB_INITIAL_SIZE; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
res->strtable16[i] = res->heapptr_null16;
|
|
#else
|
|
res->strtable[i] = NULL;
|
|
#endif
|
|
}
|
|
}
|
|
#else /* DUK_USE_EXPLICIT_NULL_INIT */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_MEMZERO(res->strtable16, sizeof(duk_uint16_t) * DUK_STRTAB_INITIAL_SIZE);
|
|
#else
|
|
DUK_MEMZERO(res->strtable, sizeof(duk_hstring *) * DUK_STRTAB_INITIAL_SIZE);
|
|
#endif
|
|
#endif /* DUK_USE_EXPLICIT_NULL_INIT */
|
|
#endif /* DUK_USE_STRTAB_PROBE */
|
|
|
|
/*
|
|
* Init stringcache
|
|
*/
|
|
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
{
|
|
duk_small_uint_t i;
|
|
for (i = 0; i < DUK_HEAP_STRCACHE_SIZE; i++) {
|
|
res->strcache[i].h = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* XXX: error handling is incomplete. It would be cleanest if
|
|
* there was a setjmp catchpoint, so that all init code could
|
|
* freely throw errors. If that were the case, the return code
|
|
* passing here could be removed.
|
|
*/
|
|
|
|
/*
|
|
* Init built-in strings
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("HEAP: INIT STRINGS"));
|
|
if (!duk__init_heap_strings(res)) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Init the heap thread
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("HEAP: INIT HEAP THREAD"));
|
|
if (!duk__init_heap_thread(res)) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Init the heap object
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("HEAP: INIT HEAP OBJECT"));
|
|
DUK_ASSERT(res->heap_thread != NULL);
|
|
res->heap_object = duk_hobject_alloc(res, DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT));
|
|
if (!res->heap_object) {
|
|
goto error;
|
|
}
|
|
DUK_HOBJECT_INCREF(res->heap_thread, res->heap_object);
|
|
|
|
/*
|
|
* Init log buffer
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("HEAP: INIT LOG BUFFER"));
|
|
res->log_buffer = (duk_hbuffer_dynamic *) duk_hbuffer_alloc(res,
|
|
DUK_BI_LOGGER_SHORT_MSG_LIMIT,
|
|
DUK_BUF_FLAG_DYNAMIC /*flags*/);
|
|
if (!res->log_buffer) {
|
|
goto error;
|
|
}
|
|
DUK_HBUFFER_INCREF(res->heap_thread, res->log_buffer);
|
|
|
|
/*
|
|
* All done
|
|
*/
|
|
|
|
DUK_D(DUK_DPRINT("allocated heap: %p", (void *) res));
|
|
return res;
|
|
|
|
error:
|
|
DUK_D(DUK_DPRINT("heap allocation failed"));
|
|
|
|
if (res) {
|
|
/* assumes that allocated pointers and alloc funcs are valid
|
|
* if res exists
|
|
*/
|
|
DUK_ASSERT(res->alloc_func != NULL);
|
|
DUK_ASSERT(res->realloc_func != NULL);
|
|
DUK_ASSERT(res->free_func != NULL);
|
|
duk_heap_free(res);
|
|
}
|
|
return NULL;
|
|
}
|
|
#line 1 "duk_heap_hashstring.c"
|
|
/*
|
|
* String hash computation (interning).
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* constants for duk_hashstring() */
|
|
#define DUK__STRHASH_SHORTSTRING 4096L
|
|
#define DUK__STRHASH_MEDIUMSTRING (256L * 1024L)
|
|
#define DUK__STRHASH_BLOCKSIZE 256L
|
|
|
|
DUK_INTERNAL duk_uint32_t duk_heap_hashstring(duk_heap *heap, const duk_uint8_t *str, duk_size_t len) {
|
|
duk_uint32_t hash;
|
|
|
|
/*
|
|
* Sampling long strings by byte skipping (like Lua does) is potentially
|
|
* a cache problem. Here we do 'block skipping' instead for long strings:
|
|
* hash an initial part, and then sample the rest of the string with
|
|
* reasonably sized chunks.
|
|
*
|
|
* Skip should depend on length and bound the total time to roughly
|
|
* logarithmic.
|
|
*
|
|
* With current values:
|
|
*
|
|
* 1M string => 256 * 241 = 61696 bytes (0.06M) of hashing
|
|
* 1G string => 256 * 16321 = 4178176 bytes (3.98M) of hashing
|
|
*
|
|
* After an initial part has been hashed, an offset is applied before
|
|
* starting the sampling. The initial offset is computed from the
|
|
* hash of the initial part of the string. The idea is to avoid the
|
|
* case that all long strings have certain offset ranges that are never
|
|
* sampled.
|
|
*/
|
|
|
|
/* note: mixing len into seed improves hashing when skipping */
|
|
duk_uint32_t str_seed = heap->hash_seed ^ ((duk_uint32_t) len);
|
|
|
|
if (len <= DUK__STRHASH_SHORTSTRING) {
|
|
hash = duk_util_hashbytes(str, len, str_seed);
|
|
} else {
|
|
duk_size_t off;
|
|
duk_size_t skip;
|
|
|
|
if (len <= DUK__STRHASH_MEDIUMSTRING) {
|
|
skip = (duk_size_t) (16 * DUK__STRHASH_BLOCKSIZE + DUK__STRHASH_BLOCKSIZE);
|
|
} else {
|
|
skip = (duk_size_t) (256 * DUK__STRHASH_BLOCKSIZE + DUK__STRHASH_BLOCKSIZE);
|
|
}
|
|
|
|
hash = duk_util_hashbytes(str, (duk_size_t) DUK__STRHASH_SHORTSTRING, str_seed);
|
|
off = DUK__STRHASH_SHORTSTRING + (skip * (hash % 256)) / 256;
|
|
|
|
/* XXX: inefficient loop */
|
|
while (off < len) {
|
|
duk_size_t left = len - off;
|
|
duk_size_t now = (duk_size_t) (left > DUK__STRHASH_BLOCKSIZE ? DUK__STRHASH_BLOCKSIZE : left);
|
|
hash ^= duk_util_hashbytes(str + off, now, str_seed);
|
|
off += skip;
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_STRHASH16)
|
|
/* Truncate to 16 bits here, so that a computed hash can be compared
|
|
* against a hash stored in a 16-bit field.
|
|
*/
|
|
hash &= 0x0000ffffUL;
|
|
#endif
|
|
return hash;
|
|
}
|
|
#line 1 "duk_heap_markandsweep.c"
|
|
/*
|
|
* Mark-and-sweep garbage collection.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
|
|
DUK_LOCAL_DECL void duk__mark_heaphdr(duk_heap *heap, duk_heaphdr *h);
|
|
DUK_LOCAL_DECL void duk__mark_tval(duk_heap *heap, duk_tval *tv);
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
|
|
/* Select a thread for mark-and-sweep use.
|
|
*
|
|
* XXX: This needs to change later.
|
|
*/
|
|
DUK_LOCAL duk_hthread *duk__get_temp_hthread(duk_heap *heap) {
|
|
if (heap->curr_thread) {
|
|
return heap->curr_thread;
|
|
}
|
|
return heap->heap_thread; /* may be NULL, too */
|
|
}
|
|
|
|
/*
|
|
* Marking functions for heap types: mark children recursively
|
|
*/
|
|
|
|
DUK_LOCAL void duk__mark_hstring(duk_heap *heap, duk_hstring *h) {
|
|
DUK_UNREF(heap);
|
|
DUK_UNREF(h);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__mark_hstring: %p", (void *) h));
|
|
DUK_ASSERT(h);
|
|
|
|
/* nothing to process */
|
|
}
|
|
|
|
DUK_LOCAL void duk__mark_hobject(duk_heap *heap, duk_hobject *h) {
|
|
duk_uint_fast32_t i;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__mark_hobject: %p", (void *) h));
|
|
|
|
DUK_ASSERT(h);
|
|
|
|
/* XXX: use advancing pointers instead of index macros -> faster and smaller? */
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(h); i++) {
|
|
duk_hstring *key = DUK_HOBJECT_E_GET_KEY(heap, h, i);
|
|
if (!key) {
|
|
continue;
|
|
}
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) key);
|
|
if (DUK_HOBJECT_E_SLOT_IS_ACCESSOR(heap, h, i)) {
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) DUK_HOBJECT_E_GET_VALUE_PTR(heap, h, i)->a.get);
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) DUK_HOBJECT_E_GET_VALUE_PTR(heap, h, i)->a.set);
|
|
} else {
|
|
duk__mark_tval(heap, &DUK_HOBJECT_E_GET_VALUE_PTR(heap, h, i)->v);
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ASIZE(h); i++) {
|
|
duk__mark_tval(heap, DUK_HOBJECT_A_GET_VALUE_PTR(heap, h, i));
|
|
}
|
|
|
|
/* hash part is a 'weak reference' and does not contribute */
|
|
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) DUK_HOBJECT_GET_PROTOTYPE(heap, h));
|
|
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
duk_hcompiledfunction *f = (duk_hcompiledfunction *) h;
|
|
duk_tval *tv, *tv_end;
|
|
duk_hobject **funcs, **funcs_end;
|
|
|
|
/* 'data' is reachable through every compiled function which
|
|
* contains a reference.
|
|
*/
|
|
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) DUK_HCOMPILEDFUNCTION_GET_DATA(heap, f));
|
|
|
|
tv = DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(heap, f);
|
|
tv_end = DUK_HCOMPILEDFUNCTION_GET_CONSTS_END(heap, f);
|
|
while (tv < tv_end) {
|
|
duk__mark_tval(heap, tv);
|
|
tv++;
|
|
}
|
|
|
|
funcs = DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(heap, f);
|
|
funcs_end = DUK_HCOMPILEDFUNCTION_GET_FUNCS_END(heap, f);
|
|
while (funcs < funcs_end) {
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) *funcs);
|
|
funcs++;
|
|
}
|
|
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
duk_hnativefunction *f = (duk_hnativefunction *) h;
|
|
DUK_UNREF(f);
|
|
/* nothing to mark */
|
|
} else if (DUK_HOBJECT_IS_THREAD(h)) {
|
|
duk_hthread *t = (duk_hthread *) h;
|
|
duk_tval *tv;
|
|
|
|
tv = t->valstack;
|
|
while (tv < t->valstack_end) {
|
|
duk__mark_tval(heap, tv);
|
|
tv++;
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) t->callstack_top; i++) {
|
|
duk_activation *act = t->callstack + i;
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) DUK_ACT_GET_FUNC(act));
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) act->var_env);
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) act->lex_env);
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) act->prev_caller);
|
|
#endif
|
|
}
|
|
|
|
#if 0 /* nothing now */
|
|
for (i = 0; i < (duk_uint_fast32_t) t->catchstack_top; i++) {
|
|
duk_catcher *cat = t->catchstack + i;
|
|
}
|
|
#endif
|
|
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) t->resumer);
|
|
|
|
/* XXX: duk_small_uint_t would be enough for this loop */
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) t->builtins[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* recursion tracking happens here only */
|
|
DUK_LOCAL void duk__mark_heaphdr(duk_heap *heap, duk_heaphdr *h) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__mark_heaphdr %p, type %ld",
|
|
(void *) h,
|
|
(h != NULL ? (long) DUK_HEAPHDR_GET_TYPE(h) : (long) -1)));
|
|
if (!h) {
|
|
return;
|
|
}
|
|
|
|
if (DUK_HEAPHDR_HAS_REACHABLE(h)) {
|
|
DUK_DDD(DUK_DDDPRINT("already marked reachable, skip"));
|
|
return;
|
|
}
|
|
DUK_HEAPHDR_SET_REACHABLE(h);
|
|
|
|
if (heap->mark_and_sweep_recursion_depth >= DUK_HEAP_MARK_AND_SWEEP_RECURSION_LIMIT) {
|
|
/* log this with a normal debug level because this should be relatively rare */
|
|
DUK_D(DUK_DPRINT("mark-and-sweep recursion limit reached, marking as temproot: %p", (void *) h));
|
|
DUK_HEAP_SET_MARKANDSWEEP_RECLIMIT_REACHED(heap);
|
|
DUK_HEAPHDR_SET_TEMPROOT(h);
|
|
return;
|
|
}
|
|
|
|
heap->mark_and_sweep_recursion_depth++;
|
|
|
|
switch ((int) DUK_HEAPHDR_GET_TYPE(h)) {
|
|
case DUK_HTYPE_STRING:
|
|
duk__mark_hstring(heap, (duk_hstring *) h);
|
|
break;
|
|
case DUK_HTYPE_OBJECT:
|
|
duk__mark_hobject(heap, (duk_hobject *) h);
|
|
break;
|
|
case DUK_HTYPE_BUFFER:
|
|
/* nothing to mark */
|
|
break;
|
|
default:
|
|
DUK_D(DUK_DPRINT("attempt to mark heaphdr %p with invalid htype %ld", (void *) h, (long) DUK_HEAPHDR_GET_TYPE(h)));
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
heap->mark_and_sweep_recursion_depth--;
|
|
}
|
|
|
|
DUK_LOCAL void duk__mark_tval(duk_heap *heap, duk_tval *tv) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__mark_tval %p", (void *) tv));
|
|
if (!tv) {
|
|
return;
|
|
}
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk__mark_heaphdr(heap, DUK_TVAL_GET_HEAPHDR(tv));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark the heap.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__mark_roots_heap(duk_heap *heap) {
|
|
duk_small_uint_t i;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__mark_roots_heap: %p", (void *) heap));
|
|
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) heap->heap_thread);
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) heap->heap_object);
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) heap->log_buffer);
|
|
|
|
for (i = 0; i < DUK_HEAP_NUM_STRINGS; i++) {
|
|
duk_hstring *h = DUK_HEAP_GET_STRING(heap, i);
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) h);
|
|
}
|
|
|
|
duk__mark_tval(heap, &heap->lj.value1);
|
|
duk__mark_tval(heap, &heap->lj.value2);
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
for (i = 0; i < heap->dbg_breakpoint_count; i++) {
|
|
duk__mark_heaphdr(heap, (duk_heaphdr *) heap->dbg_breakpoints[i].filename);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Mark refzero_list objects.
|
|
*
|
|
* Objects on the refzero_list have no inbound references. They might have
|
|
* outbound references to objects that we might free, which would invalidate
|
|
* any references held by the refzero objects. A refzero object might also
|
|
* be rescued by refcount finalization. Refzero objects are treated as
|
|
* reachability roots to ensure they (or anything they point to) are not
|
|
* freed in mark-and-sweep.
|
|
*/
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_LOCAL void duk__mark_refzero_list(duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__mark_refzero_list: %p", (void *) heap));
|
|
|
|
hdr = heap->refzero_list;
|
|
while (hdr) {
|
|
duk__mark_heaphdr(heap, hdr);
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Mark unreachable, finalizable objects.
|
|
*
|
|
* Such objects will be moved aside and their finalizers run later. They have
|
|
* to be treated as reachability roots for their properties etc to remain
|
|
* allocated. This marking is only done for unreachable values which would
|
|
* be swept later (refzero_list is thus excluded).
|
|
*
|
|
* Objects are first marked FINALIZABLE and only then marked as reachability
|
|
* roots; otherwise circular references might be handled inconsistently.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__mark_finalizable(duk_heap *heap) {
|
|
duk_hthread *thr;
|
|
duk_heaphdr *hdr;
|
|
duk_size_t count_finalizable = 0;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__mark_finalizable: %p", (void *) heap));
|
|
|
|
thr = duk__get_temp_hthread(heap);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
hdr = heap->heap_allocated;
|
|
while (hdr) {
|
|
/* A finalizer is looked up from the object and up its prototype chain
|
|
* (which allows inherited finalizers). A prototype loop must not cause
|
|
* an error to be thrown here; duk_hobject_hasprop_raw() will ignore a
|
|
* prototype loop silently and indicate that the property doesn't exist.
|
|
*/
|
|
|
|
if (!DUK_HEAPHDR_HAS_REACHABLE(hdr) &&
|
|
DUK_HEAPHDR_GET_TYPE(hdr) == DUK_HTYPE_OBJECT &&
|
|
!DUK_HEAPHDR_HAS_FINALIZED(hdr) &&
|
|
duk_hobject_hasprop_raw(thr, (duk_hobject *) hdr, DUK_HTHREAD_STRING_INT_FINALIZER(thr))) {
|
|
|
|
/* heaphdr:
|
|
* - is not reachable
|
|
* - is an object
|
|
* - is not a finalized object
|
|
* - has a finalizer
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("unreachable heap object will be "
|
|
"finalized -> mark as finalizable "
|
|
"and treat as a reachability root: %p",
|
|
(void *) hdr));
|
|
DUK_HEAPHDR_SET_FINALIZABLE(hdr);
|
|
count_finalizable ++;
|
|
}
|
|
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
|
|
if (count_finalizable == 0) {
|
|
return;
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("marked %ld heap objects as finalizable, now mark them reachable",
|
|
(long) count_finalizable));
|
|
|
|
hdr = heap->heap_allocated;
|
|
while (hdr) {
|
|
if (DUK_HEAPHDR_HAS_FINALIZABLE(hdr)) {
|
|
duk__mark_heaphdr(heap, hdr);
|
|
}
|
|
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
|
|
/* Caller will finish the marking process if we hit a recursion limit. */
|
|
}
|
|
|
|
/*
|
|
* Mark objects on finalize_list.
|
|
*
|
|
*/
|
|
|
|
DUK_LOCAL void duk__mark_finalize_list(duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count_finalize_list = 0;
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__mark_finalize_list: %p", (void *) heap));
|
|
|
|
hdr = heap->finalize_list;
|
|
while (hdr) {
|
|
duk__mark_heaphdr(heap, hdr);
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
#ifdef DUK_USE_DEBUG
|
|
count_finalize_list++;
|
|
#endif
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
if (count_finalize_list > 0) {
|
|
DUK_D(DUK_DPRINT("marked %ld objects on the finalize_list as reachable (previous finalizer run skipped)",
|
|
(long) count_finalize_list));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Fallback marking handler if recursion limit is reached.
|
|
*
|
|
* Iterates 'temproots' until recursion limit is no longer hit. Note
|
|
* that temproots may reside either in heap allocated list or the
|
|
* refzero work list. This is a slow scan, but guarantees that we
|
|
* finish with a bounded C stack.
|
|
*
|
|
* Note that nodes may have been marked as temproots before this
|
|
* scan begun, OR they may have been marked during the scan (as
|
|
* we process nodes recursively also during the scan). This is
|
|
* intended behavior.
|
|
*/
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_LOCAL void duk__handle_temproot(duk_heap *heap, duk_heaphdr *hdr, duk_size_t *count) {
|
|
#else
|
|
DUK_LOCAL void duk__handle_temproot(duk_heap *heap, duk_heaphdr *hdr) {
|
|
#endif
|
|
if (!DUK_HEAPHDR_HAS_TEMPROOT(hdr)) {
|
|
DUK_DDD(DUK_DDDPRINT("not a temp root: %p", (void *) hdr));
|
|
return;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("found a temp root: %p", (void *) hdr));
|
|
DUK_HEAPHDR_CLEAR_TEMPROOT(hdr);
|
|
DUK_HEAPHDR_CLEAR_REACHABLE(hdr); /* done so that duk__mark_heaphdr() works correctly */
|
|
duk__mark_heaphdr(heap, hdr);
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
(*count)++;
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL void duk__mark_temproots_by_heap_scan(duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count;
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__mark_temproots_by_heap_scan: %p", (void *) heap));
|
|
|
|
while (DUK_HEAP_HAS_MARKANDSWEEP_RECLIMIT_REACHED(heap)) {
|
|
DUK_DD(DUK_DDPRINT("recursion limit reached, doing heap scan to continue from temproots"));
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
count = 0;
|
|
#endif
|
|
DUK_HEAP_CLEAR_MARKANDSWEEP_RECLIMIT_REACHED(heap);
|
|
|
|
hdr = heap->heap_allocated;
|
|
while (hdr) {
|
|
#ifdef DUK_USE_DEBUG
|
|
duk__handle_temproot(heap, hdr, &count);
|
|
#else
|
|
duk__handle_temproot(heap, hdr);
|
|
#endif
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
|
|
/* must also check refzero_list */
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
hdr = heap->refzero_list;
|
|
while (hdr) {
|
|
#ifdef DUK_USE_DEBUG
|
|
duk__handle_temproot(heap, hdr, &count);
|
|
#else
|
|
duk__handle_temproot(heap, hdr);
|
|
#endif
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_DD(DUK_DDPRINT("temproot mark heap scan processed %ld temp roots", (long) count));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Finalize refcounts for heap elements just about to be freed.
|
|
* This must be done for all objects before freeing to avoid any
|
|
* stale pointer dereferences.
|
|
*
|
|
* Note that this must deduce the set of objects to be freed
|
|
* identically to duk__sweep_heap().
|
|
*/
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_LOCAL void duk__finalize_refcounts(duk_heap *heap) {
|
|
duk_hthread *thr;
|
|
duk_heaphdr *hdr;
|
|
|
|
thr = duk__get_temp_hthread(heap);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__finalize_refcounts: heap=%p, hthread=%p",
|
|
(void *) heap, (void *) thr));
|
|
|
|
hdr = heap->heap_allocated;
|
|
while (hdr) {
|
|
if (!DUK_HEAPHDR_HAS_REACHABLE(hdr)) {
|
|
/*
|
|
* Unreachable object about to be swept. Finalize target refcounts
|
|
* (objects which the unreachable object points to) without doing
|
|
* refzero processing. Recursive decrefs are also prevented when
|
|
* refzero processing is disabled.
|
|
*
|
|
* Value cannot be a finalizable object, as they have been made
|
|
* temporarily reachable for this round.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("unreachable object, refcount finalize before sweeping: %p", (void *) hdr));
|
|
duk_heaphdr_refcount_finalize(thr, hdr);
|
|
}
|
|
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
|
|
/*
|
|
* Clear (reachable) flags of refzero work list.
|
|
*/
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_LOCAL void duk__clear_refzero_list_flags(duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__clear_refzero_list_flags: %p", (void *) heap));
|
|
|
|
hdr = heap->refzero_list;
|
|
while (hdr) {
|
|
DUK_HEAPHDR_CLEAR_REACHABLE(hdr);
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZED(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_TEMPROOT(hdr));
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
|
|
/*
|
|
* Clear (reachable) flags of finalize_list
|
|
*
|
|
* We could mostly do in the sweep phase when we move objects from the
|
|
* heap into the finalize_list. However, if a finalizer run is skipped
|
|
* during a mark-and-sweep, the objects on the finalize_list will be marked
|
|
* reachable during the next mark-and-sweep. Since they're already on the
|
|
* finalize_list, no-one will be clearing their REACHABLE flag so we do it
|
|
* here. (This now overlaps with the sweep handling in a harmless way.)
|
|
*/
|
|
|
|
DUK_LOCAL void duk__clear_finalize_list_flags(duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__clear_finalize_list_flags: %p", (void *) heap));
|
|
|
|
hdr = heap->finalize_list;
|
|
while (hdr) {
|
|
DUK_HEAPHDR_CLEAR_REACHABLE(hdr);
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZED(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_TEMPROOT(hdr));
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Sweep stringtable
|
|
*/
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
|
|
/* XXX: skip count_free w/o debug? */
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL void duk__sweep_string_chain16(duk_heap *heap, duk_uint16_t *slot, duk_size_t *count_keep, duk_size_t *count_free) {
|
|
duk_uint16_t h16 = *slot;
|
|
duk_hstring *h;
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
|
|
if (h16 == null16) {
|
|
/* nop */
|
|
return;
|
|
}
|
|
h = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, h16);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (DUK_HEAPHDR_HAS_REACHABLE((duk_heaphdr *) h)) {
|
|
DUK_HEAPHDR_CLEAR_REACHABLE((duk_heaphdr *) h);
|
|
(*count_keep)++;
|
|
} else {
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) h) == 0);
|
|
#endif
|
|
/* deal with weak references first */
|
|
duk_heap_strcache_string_remove(heap, (duk_hstring *) h);
|
|
*slot = null16;
|
|
|
|
/* free inner references (these exist e.g. when external
|
|
* strings are enabled)
|
|
*/
|
|
duk_free_hstring_inner(heap, h);
|
|
DUK_FREE(heap, h);
|
|
(*count_free)++;
|
|
}
|
|
}
|
|
#else /* DUK_USE_HEAPPTR16 */
|
|
DUK_LOCAL void duk__sweep_string_chain(duk_heap *heap, duk_hstring **slot, duk_size_t *count_keep, duk_size_t *count_free) {
|
|
duk_hstring *h = *slot;
|
|
|
|
if (h == NULL) {
|
|
/* nop */
|
|
return;
|
|
}
|
|
|
|
if (DUK_HEAPHDR_HAS_REACHABLE((duk_heaphdr *) h)) {
|
|
DUK_HEAPHDR_CLEAR_REACHABLE((duk_heaphdr *) h);
|
|
(*count_keep)++;
|
|
} else {
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) h) == 0);
|
|
#endif
|
|
/* deal with weak references first */
|
|
duk_heap_strcache_string_remove(heap, (duk_hstring *) h);
|
|
*slot = NULL;
|
|
|
|
/* free inner references (these exist e.g. when external
|
|
* strings are enabled)
|
|
*/
|
|
duk_free_hstring_inner(heap, h);
|
|
DUK_FREE(heap, h);
|
|
(*count_free)++;
|
|
}
|
|
}
|
|
#endif /* DUK_USE_HEAPPTR16 */
|
|
|
|
DUK_LOCAL void duk__sweep_stringtable_chain(duk_heap *heap, duk_size_t *out_count_keep) {
|
|
duk_strtab_entry *e;
|
|
duk_uint_fast32_t i;
|
|
duk_size_t count_free = 0;
|
|
duk_size_t count_keep = 0;
|
|
duk_size_t j, n;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *lst;
|
|
#else
|
|
duk_hstring **lst;
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__sweep_stringtable: %p", (void *) heap));
|
|
|
|
/* Non-zero refcounts should not happen for unreachable strings,
|
|
* because we refcount finalize all unreachable objects which
|
|
* should have decreased unreachable string refcounts to zero
|
|
* (even for cycles).
|
|
*/
|
|
|
|
for (i = 0; i < DUK_STRTAB_CHAIN_SIZE; i++) {
|
|
e = heap->strtable + i;
|
|
if (e->listlen == 0) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk__sweep_string_chain16(heap, &e->u.str16, &count_keep, &count_free);
|
|
#else
|
|
duk__sweep_string_chain(heap, &e->u.str, &count_keep, &count_free);
|
|
#endif
|
|
} else {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
#else
|
|
lst = e->u.strlist;
|
|
#endif
|
|
for (j = 0, n = e->listlen; j < n; j++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk__sweep_string_chain16(heap, lst + j, &count_keep, &count_free);
|
|
#else
|
|
duk__sweep_string_chain(heap, lst + j, &count_keep, &count_free);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("mark-and-sweep sweep stringtable: %ld freed, %ld kept",
|
|
(long) count_free, (long) count_keep));
|
|
*out_count_keep = count_keep;
|
|
}
|
|
#endif /* DUK_USE_STRTAB_CHAIN */
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
DUK_LOCAL void duk__sweep_stringtable_probe(duk_heap *heap, duk_size_t *out_count_keep) {
|
|
duk_hstring *h;
|
|
duk_uint_fast32_t i;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count_free = 0;
|
|
#endif
|
|
duk_size_t count_keep = 0;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__sweep_stringtable: %p", (void *) heap));
|
|
|
|
for (i = 0; i < heap->st_size; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->strtable16[i]);
|
|
#else
|
|
h = heap->strtable[i];
|
|
#endif
|
|
if (h == NULL || h == DUK_STRTAB_DELETED_MARKER(heap)) {
|
|
continue;
|
|
} else if (DUK_HEAPHDR_HAS_REACHABLE((duk_heaphdr *) h)) {
|
|
DUK_HEAPHDR_CLEAR_REACHABLE((duk_heaphdr *) h);
|
|
count_keep++;
|
|
continue;
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
count_free++;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
/* Non-zero refcounts should not happen for unreachable strings,
|
|
* because we refcount finalize all unreachable objects which
|
|
* should have decreased unreachable string refcounts to zero
|
|
* (even for cycles).
|
|
*/
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT((duk_heaphdr *) h) == 0);
|
|
#endif
|
|
|
|
DUK_DDD(DUK_DDDPRINT("sweep string, not reachable: %p", (void *) h));
|
|
|
|
/* deal with weak references first */
|
|
duk_heap_strcache_string_remove(heap, (duk_hstring *) h);
|
|
|
|
/* remove the string (mark DELETED), could also call
|
|
* duk_heap_string_remove() but that would be slow and
|
|
* pointless because we already know the slot.
|
|
*/
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
heap->strtable16[i] = heap->heapptr_deleted16;
|
|
#else
|
|
heap->strtable[i] = DUK_STRTAB_DELETED_MARKER(heap);
|
|
#endif
|
|
|
|
/* free inner references (these exist e.g. when external
|
|
* strings are enabled)
|
|
*/
|
|
duk_free_hstring_inner(heap, (duk_hstring *) h);
|
|
|
|
/* finally free the struct itself */
|
|
DUK_FREE(heap, h);
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_D(DUK_DPRINT("mark-and-sweep sweep stringtable: %ld freed, %ld kept",
|
|
(long) count_free, (long) count_keep));
|
|
#endif
|
|
*out_count_keep = count_keep;
|
|
}
|
|
#endif /* DUK_USE_STRTAB_PROBE */
|
|
|
|
/*
|
|
* Sweep heap
|
|
*/
|
|
|
|
DUK_LOCAL void duk__sweep_heap(duk_heap *heap, duk_int_t flags, duk_size_t *out_count_keep) {
|
|
duk_heaphdr *prev; /* last element that was left in the heap */
|
|
duk_heaphdr *curr;
|
|
duk_heaphdr *next;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count_free = 0;
|
|
duk_size_t count_finalize = 0;
|
|
duk_size_t count_rescue = 0;
|
|
#endif
|
|
duk_size_t count_keep = 0;
|
|
|
|
DUK_UNREF(flags);
|
|
DUK_DD(DUK_DDPRINT("duk__sweep_heap: %p", (void *) heap));
|
|
|
|
prev = NULL;
|
|
curr = heap->heap_allocated;
|
|
heap->heap_allocated = NULL;
|
|
while (curr) {
|
|
/* strings are never placed on the heap allocated list */
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(curr) != DUK_HTYPE_STRING);
|
|
|
|
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
|
|
if (DUK_HEAPHDR_HAS_REACHABLE(curr)) {
|
|
/*
|
|
* Reachable object, keep
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("sweep, reachable: %p", (void *) curr));
|
|
|
|
if (DUK_HEAPHDR_HAS_FINALIZABLE(curr)) {
|
|
/*
|
|
* If object has been marked finalizable, move it to the
|
|
* "to be finalized" work list. It will be collected on
|
|
* the next mark-and-sweep if it is still unreachable
|
|
* after running the finalizer.
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZED(curr));
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(curr) == DUK_HTYPE_OBJECT);
|
|
DUK_DDD(DUK_DDDPRINT("object has finalizer, move to finalization work list: %p", (void *) curr));
|
|
|
|
#ifdef DUK_USE_DOUBLE_LINKED_HEAP
|
|
if (heap->finalize_list) {
|
|
DUK_HEAPHDR_SET_PREV(heap, heap->finalize_list, curr);
|
|
}
|
|
DUK_HEAPHDR_SET_PREV(heap, curr, NULL);
|
|
#endif
|
|
DUK_HEAPHDR_SET_NEXT(heap, curr, heap->finalize_list);
|
|
heap->finalize_list = curr;
|
|
#ifdef DUK_USE_DEBUG
|
|
count_finalize++;
|
|
#endif
|
|
} else {
|
|
/*
|
|
* Object will be kept; queue object back to heap_allocated (to tail)
|
|
*/
|
|
|
|
if (DUK_HEAPHDR_HAS_FINALIZED(curr)) {
|
|
/*
|
|
* Object's finalizer was executed on last round, and
|
|
* object has been happily rescued.
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(curr));
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(curr) == DUK_HTYPE_OBJECT);
|
|
DUK_DD(DUK_DDPRINT("object rescued during mark-and-sweep finalization: %p", (void *) curr));
|
|
#ifdef DUK_USE_DEBUG
|
|
count_rescue++;
|
|
#endif
|
|
} else {
|
|
/*
|
|
* Plain, boring reachable object.
|
|
*/
|
|
count_keep++;
|
|
}
|
|
|
|
if (!heap->heap_allocated) {
|
|
heap->heap_allocated = curr;
|
|
}
|
|
if (prev) {
|
|
DUK_HEAPHDR_SET_NEXT(heap, prev, curr);
|
|
}
|
|
#ifdef DUK_USE_DOUBLE_LINKED_HEAP
|
|
DUK_HEAPHDR_SET_PREV(heap, curr, prev);
|
|
#endif
|
|
prev = curr;
|
|
}
|
|
|
|
DUK_HEAPHDR_CLEAR_REACHABLE(curr);
|
|
DUK_HEAPHDR_CLEAR_FINALIZED(curr);
|
|
DUK_HEAPHDR_CLEAR_FINALIZABLE(curr);
|
|
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_REACHABLE(curr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZED(curr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(curr));
|
|
|
|
curr = next;
|
|
} else {
|
|
/*
|
|
* Unreachable object, free
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("sweep, not reachable: %p", (void *) curr));
|
|
|
|
#if defined(DUK_USE_REFERENCE_COUNTING)
|
|
/* Non-zero refcounts should not happen because we refcount
|
|
* finalize all unreachable objects which should cancel out
|
|
* refcounts (even for cycles).
|
|
*/
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(curr) == 0);
|
|
#endif
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(curr));
|
|
|
|
if (DUK_HEAPHDR_HAS_FINALIZED(curr)) {
|
|
DUK_DDD(DUK_DDDPRINT("finalized object not rescued: %p", (void *) curr));
|
|
}
|
|
|
|
/* Note: object cannot be a finalizable unreachable object, as
|
|
* they have been marked temporarily reachable for this round,
|
|
* and are handled above.
|
|
*/
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
count_free++;
|
|
#endif
|
|
|
|
/* weak refs should be handled here, but no weak refs for
|
|
* any non-string objects exist right now.
|
|
*/
|
|
|
|
/* free object and all auxiliary (non-heap) allocs */
|
|
duk_heap_free_heaphdr_raw(heap, curr);
|
|
|
|
curr = next;
|
|
}
|
|
}
|
|
if (prev) {
|
|
DUK_HEAPHDR_SET_NEXT(heap, prev, NULL);
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_D(DUK_DPRINT("mark-and-sweep sweep objects (non-string): %ld freed, %ld kept, %ld rescued, %ld queued for finalization",
|
|
(long) count_free, (long) count_keep, (long) count_rescue, (long) count_finalize));
|
|
#endif
|
|
*out_count_keep = count_keep;
|
|
}
|
|
|
|
/*
|
|
* Run (object) finalizers in the "to be finalized" work list.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__run_object_finalizers(duk_heap *heap) {
|
|
duk_heaphdr *curr;
|
|
duk_heaphdr *next;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count = 0;
|
|
#endif
|
|
duk_hthread *thr;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__run_object_finalizers: %p", (void *) heap));
|
|
|
|
thr = duk__get_temp_hthread(heap);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
curr = heap->finalize_list;
|
|
while (curr) {
|
|
DUK_DDD(DUK_DDDPRINT("mark-and-sweep finalize: %p", (void *) curr));
|
|
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(curr) == DUK_HTYPE_OBJECT); /* only objects have finalizers */
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_REACHABLE(curr)); /* flags have been already cleared */
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_TEMPROOT(curr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(curr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZED(curr));
|
|
|
|
/* run the finalizer */
|
|
duk_hobject_run_finalizer(thr, (duk_hobject *) curr); /* must never longjmp */
|
|
|
|
/* mark FINALIZED, for next mark-and-sweep (will collect unless has become reachable;
|
|
* prevent running finalizer again if reachable)
|
|
*/
|
|
DUK_HEAPHDR_SET_FINALIZED(curr);
|
|
|
|
/* queue back to heap_allocated */
|
|
next = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
DUK_HEAP_INSERT_INTO_HEAP_ALLOCATED(heap, curr);
|
|
|
|
curr = next;
|
|
#ifdef DUK_USE_DEBUG
|
|
count++;
|
|
#endif
|
|
}
|
|
|
|
/* finalize_list will always be processed completely */
|
|
heap->finalize_list = NULL;
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_D(DUK_DPRINT("mark-and-sweep finalize objects: %ld finalizers called", (long) count));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Object compaction.
|
|
*
|
|
* Compaction is assumed to never throw an error.
|
|
*/
|
|
|
|
DUK_LOCAL int duk__protected_compact_object(duk_context *ctx) {
|
|
/* XXX: for threads, compact value stack, call stack, catch stack? */
|
|
|
|
duk_hobject *obj = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(obj != NULL);
|
|
duk_hobject_compact_props((duk_hthread *) ctx, obj);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_LOCAL void duk__compact_object_list(duk_heap *heap, duk_hthread *thr, duk_heaphdr *start, duk_size_t *p_count_check, duk_size_t *p_count_compact, duk_size_t *p_count_bytes_saved) {
|
|
#else
|
|
DUK_LOCAL void duk__compact_object_list(duk_heap *heap, duk_hthread *thr, duk_heaphdr *start) {
|
|
#endif
|
|
duk_heaphdr *curr;
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t old_size, new_size;
|
|
#endif
|
|
duk_hobject *obj;
|
|
|
|
DUK_UNREF(heap);
|
|
|
|
curr = start;
|
|
while (curr) {
|
|
DUK_DDD(DUK_DDDPRINT("mark-and-sweep compact: %p", (void *) curr));
|
|
|
|
if (DUK_HEAPHDR_GET_TYPE(curr) != DUK_HTYPE_OBJECT) {
|
|
goto next;
|
|
}
|
|
obj = (duk_hobject *) curr;
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
old_size = DUK_HOBJECT_P_COMPUTE_SIZE(DUK_HOBJECT_GET_ESIZE(obj),
|
|
DUK_HOBJECT_GET_ASIZE(obj),
|
|
DUK_HOBJECT_GET_HSIZE(obj));
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("compact object: %p", (void *) obj));
|
|
duk_push_hobject((duk_context *) thr, obj);
|
|
/* XXX: disable error handlers for duration of compaction? */
|
|
duk_safe_call((duk_context *) thr, duk__protected_compact_object, 1, 0);
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
new_size = DUK_HOBJECT_P_COMPUTE_SIZE(DUK_HOBJECT_GET_ESIZE(obj),
|
|
DUK_HOBJECT_GET_ASIZE(obj),
|
|
DUK_HOBJECT_GET_HSIZE(obj));
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
(*p_count_compact)++;
|
|
(*p_count_bytes_saved) += (duk_size_t) (old_size - new_size);
|
|
#endif
|
|
|
|
next:
|
|
curr = DUK_HEAPHDR_GET_NEXT(heap, curr);
|
|
#ifdef DUK_USE_DEBUG
|
|
(*p_count_check)++;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__compact_objects(duk_heap *heap) {
|
|
/* XXX: which lists should participate? to be finalized? */
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_size_t count_check = 0;
|
|
duk_size_t count_compact = 0;
|
|
duk_size_t count_bytes_saved = 0;
|
|
#endif
|
|
duk_hthread *thr;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__compact_objects: %p", (void *) heap));
|
|
|
|
thr = duk__get_temp_hthread(heap);
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
duk__compact_object_list(heap, thr, heap->heap_allocated, &count_check, &count_compact, &count_bytes_saved);
|
|
duk__compact_object_list(heap, thr, heap->finalize_list, &count_check, &count_compact, &count_bytes_saved);
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk__compact_object_list(heap, thr, heap->refzero_list, &count_check, &count_compact, &count_bytes_saved);
|
|
#endif
|
|
#else
|
|
duk__compact_object_list(heap, thr, heap->heap_allocated);
|
|
duk__compact_object_list(heap, thr, heap->finalize_list);
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk__compact_object_list(heap, thr, heap->refzero_list);
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_D(DUK_DPRINT("mark-and-sweep compact objects: %ld checked, %ld compaction attempts, %ld bytes saved by compaction",
|
|
(long) count_check, (long) count_compact, (long) count_bytes_saved));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Assertion helpers.
|
|
*/
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
DUK_LOCAL void duk__assert_heaphdr_flags(duk_heap *heap) {
|
|
duk_heaphdr *hdr;
|
|
|
|
hdr = heap->heap_allocated;
|
|
while (hdr) {
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_REACHABLE(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_TEMPROOT(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(hdr));
|
|
/* may have FINALIZED */
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
hdr = heap->refzero_list;
|
|
while (hdr) {
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_REACHABLE(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_TEMPROOT(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZABLE(hdr));
|
|
DUK_ASSERT(!DUK_HEAPHDR_HAS_FINALIZED(hdr));
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
}
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_LOCAL void duk__assert_valid_refcounts(duk_heap *heap) {
|
|
duk_heaphdr *hdr = heap->heap_allocated;
|
|
while (hdr) {
|
|
if (DUK_HEAPHDR_GET_REFCOUNT(hdr) == 0 &&
|
|
DUK_HEAPHDR_HAS_FINALIZED(hdr)) {
|
|
/* An object may be in heap_allocated list with a zero
|
|
* refcount if it has just been finalized and is waiting
|
|
* to be collected by the next cycle.
|
|
*/
|
|
} else if (DUK_HEAPHDR_GET_REFCOUNT(hdr) == 0) {
|
|
/* An object may be in heap_allocated list with a zero
|
|
* refcount also if it is a temporary object created by
|
|
* a finalizer; because finalization now runs inside
|
|
* mark-and-sweep, such objects will not be queued to
|
|
* refzero_list and will thus appear here with refcount
|
|
* zero.
|
|
*/
|
|
#if 0 /* this case can no longer occur because refcount is unsigned */
|
|
} else if (DUK_HEAPHDR_GET_REFCOUNT(hdr) < 0) {
|
|
DUK_D(DUK_DPRINT("invalid refcount: %ld, %p -> %!O",
|
|
(hdr != NULL ? (long) DUK_HEAPHDR_GET_REFCOUNT(hdr) : (long) 0),
|
|
(void *) hdr, (duk_heaphdr *) hdr));
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(hdr) > 0);
|
|
#endif
|
|
}
|
|
hdr = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
#endif /* DUK_USE_ASSERTIONS */
|
|
|
|
/*
|
|
* Main mark-and-sweep function.
|
|
*
|
|
* 'flags' represents the features requested by the caller. The current
|
|
* heap->mark_and_sweep_base_flags is ORed automatically into the flags;
|
|
* the base flags mask typically prevents certain mark-and-sweep operations
|
|
* to avoid trouble.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_heap_mark_and_sweep(duk_heap *heap, duk_small_uint_t flags) {
|
|
duk_hthread *thr;
|
|
duk_size_t count_keep_obj;
|
|
duk_size_t count_keep_str;
|
|
#ifdef DUK_USE_VOLUNTARY_GC
|
|
duk_size_t tmp;
|
|
#endif
|
|
|
|
/* XXX: thread selection for mark-and-sweep is currently a hack.
|
|
* If we don't have a thread, the entire mark-and-sweep is now
|
|
* skipped (although we could just skip finalizations).
|
|
*/
|
|
thr = duk__get_temp_hthread(heap);
|
|
if (thr == NULL) {
|
|
DUK_D(DUK_DPRINT("temporary hack: gc skipped because we don't have a temp thread"));
|
|
|
|
/* reset voluntary gc trigger count */
|
|
#ifdef DUK_USE_VOLUNTARY_GC
|
|
heap->mark_and_sweep_trigger_counter = DUK_HEAP_MARK_AND_SWEEP_TRIGGER_SKIP;
|
|
#endif
|
|
return 0; /* OK */
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("garbage collect (mark-and-sweep) starting, requested flags: 0x%08lx, effective flags: 0x%08lx",
|
|
(unsigned long) flags, (unsigned long) (flags | heap->mark_and_sweep_base_flags)));
|
|
|
|
flags |= heap->mark_and_sweep_base_flags;
|
|
|
|
/*
|
|
* Assertions before
|
|
*/
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
DUK_ASSERT(!DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap));
|
|
DUK_ASSERT(!DUK_HEAP_HAS_MARKANDSWEEP_RECLIMIT_REACHED(heap));
|
|
DUK_ASSERT(heap->mark_and_sweep_recursion_depth == 0);
|
|
duk__assert_heaphdr_flags(heap);
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
/* Note: DUK_HEAP_HAS_REFZERO_FREE_RUNNING(heap) may be true; a refcount
|
|
* finalizer may trigger a mark-and-sweep.
|
|
*/
|
|
duk__assert_valid_refcounts(heap);
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
#endif /* DUK_USE_ASSERTIONS */
|
|
|
|
/*
|
|
* Begin
|
|
*/
|
|
|
|
DUK_HEAP_SET_MARKANDSWEEP_RUNNING(heap);
|
|
|
|
/*
|
|
* Mark roots, hoping that recursion limit is not normally hit.
|
|
* If recursion limit is hit, run additional reachability rounds
|
|
* starting from "temproots" until marking is complete.
|
|
*
|
|
* Marking happens in two phases: first we mark actual reachability
|
|
* roots (and run "temproots" to complete the process). Then we
|
|
* check which objects are unreachable and are finalizable; such
|
|
* objects are marked as FINALIZABLE and marked as reachability
|
|
* (and "temproots" is run again to complete the process).
|
|
*
|
|
* The heap finalize_list must also be marked as a reachability root.
|
|
* There may be objects on the list from a previous round if the
|
|
* previous run had finalizer skip flag.
|
|
*/
|
|
|
|
duk__mark_roots_heap(heap); /* main reachability roots */
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk__mark_refzero_list(heap); /* refzero_list treated as reachability roots */
|
|
#endif
|
|
duk__mark_temproots_by_heap_scan(heap); /* temproots */
|
|
|
|
duk__mark_finalizable(heap); /* mark finalizable as reachability roots */
|
|
duk__mark_finalize_list(heap); /* mark finalizer work list as reachability roots */
|
|
duk__mark_temproots_by_heap_scan(heap); /* temproots */
|
|
|
|
/*
|
|
* Sweep garbage and remove marking flags, and move objects with
|
|
* finalizers to the finalizer work list.
|
|
*
|
|
* Objects to be swept need to get their refcounts finalized before
|
|
* they are swept. In other words, their target object refcounts
|
|
* need to be decreased. This has to be done before freeing any
|
|
* objects to avoid decref'ing dangling pointers (which may happen
|
|
* even without bugs, e.g. with reference loops)
|
|
*
|
|
* Because strings don't point to other heap objects, similar
|
|
* finalization is not necessary for strings.
|
|
*/
|
|
|
|
/* XXX: more emergency behavior, e.g. find smaller hash sizes etc */
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk__finalize_refcounts(heap);
|
|
#endif
|
|
duk__sweep_heap(heap, flags, &count_keep_obj);
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
duk__sweep_stringtable_chain(heap, &count_keep_str);
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
duk__sweep_stringtable_probe(heap, &count_keep_str);
|
|
#else
|
|
#error internal error, invalid strtab options
|
|
#endif
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk__clear_refzero_list_flags(heap);
|
|
#endif
|
|
duk__clear_finalize_list_flags(heap);
|
|
|
|
/*
|
|
* Object compaction (emergency only).
|
|
*
|
|
* Object compaction is a separate step after sweeping, as there is
|
|
* more free memory for it to work with. Also, currently compaction
|
|
* may insert new objects into the heap allocated list and the string
|
|
* table which we don't want to do during a sweep (the reachability
|
|
* flags of such objects would be incorrect). The objects inserted
|
|
* are currently:
|
|
*
|
|
* - a temporary duk_hbuffer for a new properties allocation
|
|
* - if array part is abandoned, string keys are interned
|
|
*
|
|
* The object insertions go to the front of the list, so they do not
|
|
* cause an infinite loop (they are not compacted).
|
|
*/
|
|
|
|
if ((flags & DUK_MS_FLAG_EMERGENCY) &&
|
|
!(flags & DUK_MS_FLAG_NO_OBJECT_COMPACTION)) {
|
|
duk__compact_objects(heap);
|
|
}
|
|
|
|
/*
|
|
* String table resize check.
|
|
*
|
|
* Note: this may silently (and safely) fail if GC is caused by an
|
|
* allocation call in stringtable resize_hash(). Resize_hash()
|
|
* will prevent a recursive call to itself by setting the
|
|
* DUK_MS_FLAG_NO_STRINGTABLE_RESIZE in heap->mark_and_sweep_base_flags.
|
|
*/
|
|
|
|
/* XXX: stringtable emergency compaction? */
|
|
|
|
#if defined(DUK_USE_MS_STRINGTABLE_RESIZE)
|
|
if (!(flags & DUK_MS_FLAG_NO_STRINGTABLE_RESIZE)) {
|
|
DUK_DD(DUK_DDPRINT("resize stringtable: %p", (void *) heap));
|
|
duk_heap_force_strtab_resize(heap);
|
|
} else {
|
|
DUK_D(DUK_DPRINT("stringtable resize skipped because DUK_MS_FLAG_NO_STRINGTABLE_RESIZE is set"));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Finalize objects in the finalization work list. Finalized
|
|
* objects are queued back to heap_allocated with FINALIZED set.
|
|
*
|
|
* Since finalizers may cause arbitrary side effects, they are
|
|
* prevented during string table and object property allocation
|
|
* resizing using the DUK_MS_FLAG_NO_FINALIZERS flag in
|
|
* heap->mark_and_sweep_base_flags. In this case the objects
|
|
* remain in the finalization work list after mark-and-sweep
|
|
* exits and they may be finalized on the next pass.
|
|
*
|
|
* Finalization currently happens inside "MARKANDSWEEP_RUNNING"
|
|
* protection (no mark-and-sweep may be triggered by the
|
|
* finalizers). As a side effect:
|
|
*
|
|
* 1) an out-of-memory error inside a finalizer will not
|
|
* cause a mark-and-sweep and may cause the finalizer
|
|
* to fail unnecessarily
|
|
*
|
|
* 2) any temporary objects whose refcount decreases to zero
|
|
* during finalization will not be put into refzero_list;
|
|
* they can only be collected by another mark-and-sweep
|
|
*
|
|
* This is not optimal, but since the sweep for this phase has
|
|
* already happened, this is probably good enough for now.
|
|
*/
|
|
|
|
if (!(flags & DUK_MS_FLAG_NO_FINALIZERS)) {
|
|
duk__run_object_finalizers(heap);
|
|
} else {
|
|
DUK_D(DUK_DPRINT("finalizer run skipped because DUK_MS_FLAG_NO_FINALIZERS is set"));
|
|
}
|
|
|
|
/*
|
|
* Finish
|
|
*/
|
|
|
|
DUK_HEAP_CLEAR_MARKANDSWEEP_RUNNING(heap);
|
|
|
|
/*
|
|
* Assertions after
|
|
*/
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
DUK_ASSERT(!DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap));
|
|
DUK_ASSERT(!DUK_HEAP_HAS_MARKANDSWEEP_RECLIMIT_REACHED(heap));
|
|
DUK_ASSERT(heap->mark_and_sweep_recursion_depth == 0);
|
|
duk__assert_heaphdr_flags(heap);
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
/* Note: DUK_HEAP_HAS_REFZERO_FREE_RUNNING(heap) may be true; a refcount
|
|
* finalizer may trigger a mark-and-sweep.
|
|
*/
|
|
duk__assert_valid_refcounts(heap);
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
#endif /* DUK_USE_ASSERTIONS */
|
|
|
|
/*
|
|
* Reset trigger counter
|
|
*/
|
|
|
|
#ifdef DUK_USE_VOLUNTARY_GC
|
|
tmp = (count_keep_obj + count_keep_str) / 256;
|
|
heap->mark_and_sweep_trigger_counter = (duk_int_t) (
|
|
(tmp * DUK_HEAP_MARK_AND_SWEEP_TRIGGER_MULT) +
|
|
DUK_HEAP_MARK_AND_SWEEP_TRIGGER_ADD);
|
|
DUK_D(DUK_DPRINT("garbage collect (mark-and-sweep) finished: %ld objects kept, %ld strings kept, trigger reset to %ld",
|
|
(long) count_keep_obj, (long) count_keep_str, (long) heap->mark_and_sweep_trigger_counter));
|
|
#else
|
|
DUK_D(DUK_DPRINT("garbage collect (mark-and-sweep) finished: %ld objects kept, %ld strings kept, no voluntary trigger",
|
|
(long) count_keep_obj, (long) count_keep_str));
|
|
#endif
|
|
|
|
return 0; /* OK */
|
|
}
|
|
|
|
#else /* DUK_USE_MARK_AND_SWEEP */
|
|
|
|
/* no mark-and-sweep gc */
|
|
|
|
#endif /* DUK_USE_MARK_AND_SWEEP */
|
|
#line 1 "duk_heap_memory.c"
|
|
/*
|
|
* Memory allocation handling.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Helpers
|
|
*
|
|
* The fast path checks are done within a macro to ensure "inlining"
|
|
* while the slow path actions use a helper (which won't typically be
|
|
* inlined in size optimized builds).
|
|
*/
|
|
|
|
#if defined(DUK_USE_MARK_AND_SWEEP) && defined(DUK_USE_VOLUNTARY_GC)
|
|
#define DUK__VOLUNTARY_PERIODIC_GC(heap) do { \
|
|
(heap)->mark_and_sweep_trigger_counter--; \
|
|
if ((heap)->mark_and_sweep_trigger_counter <= 0) { \
|
|
duk__run_voluntary_gc(heap); \
|
|
} \
|
|
} while (0)
|
|
|
|
DUK_LOCAL void duk__run_voluntary_gc(duk_heap *heap) {
|
|
if (DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_DD(DUK_DDPRINT("mark-and-sweep in progress -> skip voluntary mark-and-sweep now"));
|
|
} else {
|
|
duk_small_uint_t flags;
|
|
duk_bool_t rc;
|
|
|
|
DUK_D(DUK_DPRINT("triggering voluntary mark-and-sweep"));
|
|
flags = 0;
|
|
rc = duk_heap_mark_and_sweep(heap, flags);
|
|
DUK_UNREF(rc);
|
|
}
|
|
}
|
|
#else
|
|
#define DUK__VOLUNTARY_PERIODIC_GC(heap) /* no voluntary gc */
|
|
#endif /* DUK_USE_MARK_AND_SWEEP && DUK_USE_VOLUNTARY_GC */
|
|
|
|
/*
|
|
* Allocate memory with garbage collection
|
|
*/
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_INTERNAL void *duk_heap_mem_alloc(duk_heap *heap, duk_size_t size) {
|
|
void *res;
|
|
duk_bool_t rc;
|
|
duk_small_int_t i;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT_DISABLE(size >= 0);
|
|
|
|
/*
|
|
* Voluntary periodic GC (if enabled)
|
|
*/
|
|
|
|
DUK__VOLUNTARY_PERIODIC_GC(heap);
|
|
|
|
/*
|
|
* First attempt
|
|
*/
|
|
|
|
#ifdef DUK_USE_GC_TORTURE
|
|
/* simulate alloc failure on every alloc (except when mark-and-sweep is running) */
|
|
if (!DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_DDD(DUK_DDDPRINT("gc torture enabled, pretend that first alloc attempt fails"));
|
|
res = NULL;
|
|
DUK_UNREF(res);
|
|
goto skip_attempt;
|
|
}
|
|
#endif
|
|
res = heap->alloc_func(heap->heap_udata, size);
|
|
if (res || size == 0) {
|
|
/* for zero size allocations NULL is allowed */
|
|
return res;
|
|
}
|
|
#ifdef DUK_USE_GC_TORTURE
|
|
skip_attempt:
|
|
#endif
|
|
|
|
DUK_D(DUK_DPRINT("first alloc attempt failed, attempt to gc and retry"));
|
|
|
|
/*
|
|
* Avoid a GC if GC is already running. This can happen at a late
|
|
* stage in a GC when we try to e.g. resize the stringtable
|
|
* or compact objects.
|
|
*/
|
|
|
|
if (DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_alloc() failed, gc in progress (gc skipped), alloc size %ld", (long) size));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Retry with several GC attempts. Initial attempts are made without
|
|
* emergency mode; later attempts use emergency mode which minimizes
|
|
* memory allocations forcibly.
|
|
*/
|
|
|
|
for (i = 0; i < DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_LIMIT; i++) {
|
|
duk_small_uint_t flags;
|
|
|
|
flags = 0;
|
|
if (i >= DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_EMERGENCY_LIMIT - 1) {
|
|
flags |= DUK_MS_FLAG_EMERGENCY;
|
|
}
|
|
|
|
rc = duk_heap_mark_and_sweep(heap, flags);
|
|
DUK_UNREF(rc);
|
|
|
|
res = heap->alloc_func(heap->heap_udata, size);
|
|
if (res) {
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_alloc() succeeded after gc (pass %ld), alloc size %ld",
|
|
(long) (i + 1), (long) size));
|
|
return res;
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_alloc() failed even after gc, alloc size %ld", (long) size));
|
|
return NULL;
|
|
}
|
|
#else /* DUK_USE_MARK_AND_SWEEP */
|
|
/*
|
|
* Compared to a direct macro expansion this wrapper saves a few
|
|
* instructions because no heap dereferencing is required.
|
|
*/
|
|
DUK_INTERNAL void *duk_heap_mem_alloc(duk_heap *heap, duk_size_t size) {
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT_DISABLE(size >= 0);
|
|
|
|
return heap->alloc_func(heap->heap_udata, size);
|
|
}
|
|
#endif /* DUK_USE_MARK_AND_SWEEP */
|
|
|
|
DUK_INTERNAL void *duk_heap_mem_alloc_zeroed(duk_heap *heap, duk_size_t size) {
|
|
void *res;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT_DISABLE(size >= 0);
|
|
|
|
res = DUK_ALLOC(heap, size);
|
|
if (res) {
|
|
/* assume memset with zero size is OK */
|
|
DUK_MEMZERO(res, size);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Reallocate memory with garbage collection
|
|
*/
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_INTERNAL void *duk_heap_mem_realloc(duk_heap *heap, void *ptr, duk_size_t newsize) {
|
|
void *res;
|
|
duk_bool_t rc;
|
|
duk_small_int_t i;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
/* ptr may be NULL */
|
|
DUK_ASSERT_DISABLE(newsize >= 0);
|
|
|
|
/*
|
|
* Voluntary periodic GC (if enabled)
|
|
*/
|
|
|
|
DUK__VOLUNTARY_PERIODIC_GC(heap);
|
|
|
|
/*
|
|
* First attempt
|
|
*/
|
|
|
|
#ifdef DUK_USE_GC_TORTURE
|
|
/* simulate alloc failure on every realloc (except when mark-and-sweep is running) */
|
|
if (!DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_DDD(DUK_DDDPRINT("gc torture enabled, pretend that first realloc attempt fails"));
|
|
res = NULL;
|
|
DUK_UNREF(res);
|
|
goto skip_attempt;
|
|
}
|
|
#endif
|
|
res = heap->realloc_func(heap->heap_udata, ptr, newsize);
|
|
if (res || newsize == 0) {
|
|
/* for zero size allocations NULL is allowed */
|
|
return res;
|
|
}
|
|
#ifdef DUK_USE_GC_TORTURE
|
|
skip_attempt:
|
|
#endif
|
|
|
|
DUK_D(DUK_DPRINT("first realloc attempt failed, attempt to gc and retry"));
|
|
|
|
/*
|
|
* Avoid a GC if GC is already running. See duk_heap_mem_alloc().
|
|
*/
|
|
|
|
if (DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_realloc() failed, gc in progress (gc skipped), alloc size %ld", (long) newsize));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Retry with several GC attempts. Initial attempts are made without
|
|
* emergency mode; later attempts use emergency mode which minimizes
|
|
* memory allocations forcibly.
|
|
*/
|
|
|
|
for (i = 0; i < DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_LIMIT; i++) {
|
|
duk_small_uint_t flags;
|
|
|
|
flags = 0;
|
|
if (i >= DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_EMERGENCY_LIMIT - 1) {
|
|
flags |= DUK_MS_FLAG_EMERGENCY;
|
|
}
|
|
|
|
rc = duk_heap_mark_and_sweep(heap, flags);
|
|
DUK_UNREF(rc);
|
|
|
|
res = heap->realloc_func(heap->heap_udata, ptr, newsize);
|
|
if (res || newsize == 0) {
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_realloc() succeeded after gc (pass %ld), alloc size %ld",
|
|
(long) (i + 1), (long) newsize));
|
|
return res;
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_realloc() failed even after gc, alloc size %ld", (long) newsize));
|
|
return NULL;
|
|
}
|
|
#else /* DUK_USE_MARK_AND_SWEEP */
|
|
/* saves a few instructions to have this wrapper (see comment on duk_heap_mem_alloc) */
|
|
DUK_INTERNAL void *duk_heap_mem_realloc(duk_heap *heap, void *ptr, duk_size_t newsize) {
|
|
DUK_ASSERT(heap != NULL);
|
|
/* ptr may be NULL */
|
|
DUK_ASSERT_DISABLE(newsize >= 0);
|
|
|
|
return heap->realloc_func(heap->heap_udata, ptr, newsize);
|
|
}
|
|
#endif /* DUK_USE_MARK_AND_SWEEP */
|
|
|
|
/*
|
|
* Reallocate memory with garbage collection, using a callback to provide
|
|
* the current allocated pointer. This variant is used when a mark-and-sweep
|
|
* (e.g. finalizers) might change the original pointer.
|
|
*/
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_INTERNAL void *duk_heap_mem_realloc_indirect(duk_heap *heap, duk_mem_getptr cb, void *ud, duk_size_t newsize) {
|
|
void *res;
|
|
duk_bool_t rc;
|
|
duk_small_int_t i;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT_DISABLE(newsize >= 0);
|
|
|
|
/*
|
|
* Voluntary periodic GC (if enabled)
|
|
*/
|
|
|
|
DUK__VOLUNTARY_PERIODIC_GC(heap);
|
|
|
|
/*
|
|
* First attempt
|
|
*/
|
|
|
|
#ifdef DUK_USE_GC_TORTURE
|
|
/* simulate alloc failure on every realloc (except when mark-and-sweep is running) */
|
|
if (!DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_DDD(DUK_DDDPRINT("gc torture enabled, pretend that first indirect realloc attempt fails"));
|
|
res = NULL;
|
|
DUK_UNREF(res);
|
|
goto skip_attempt;
|
|
}
|
|
#endif
|
|
res = heap->realloc_func(heap->heap_udata, cb(heap, ud), newsize);
|
|
if (res || newsize == 0) {
|
|
/* for zero size allocations NULL is allowed */
|
|
return res;
|
|
}
|
|
#ifdef DUK_USE_GC_TORTURE
|
|
skip_attempt:
|
|
#endif
|
|
|
|
DUK_D(DUK_DPRINT("first indirect realloc attempt failed, attempt to gc and retry"));
|
|
|
|
/*
|
|
* Avoid a GC if GC is already running. See duk_heap_mem_alloc().
|
|
*/
|
|
|
|
if (DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_realloc_indirect() failed, gc in progress (gc skipped), alloc size %ld", (long) newsize));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Retry with several GC attempts. Initial attempts are made without
|
|
* emergency mode; later attempts use emergency mode which minimizes
|
|
* memory allocations forcibly.
|
|
*/
|
|
|
|
for (i = 0; i < DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_LIMIT; i++) {
|
|
duk_small_uint_t flags;
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
void *ptr_pre; /* ptr before mark-and-sweep */
|
|
void *ptr_post;
|
|
#endif
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
ptr_pre = cb(heap, ud);
|
|
#endif
|
|
flags = 0;
|
|
if (i >= DUK_HEAP_ALLOC_FAIL_MARKANDSWEEP_EMERGENCY_LIMIT - 1) {
|
|
flags |= DUK_MS_FLAG_EMERGENCY;
|
|
}
|
|
|
|
rc = duk_heap_mark_and_sweep(heap, flags);
|
|
DUK_UNREF(rc);
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
ptr_post = cb(heap, ud);
|
|
if (ptr_pre != ptr_post) {
|
|
/* useful for debugging */
|
|
DUK_DD(DUK_DDPRINT("note: base pointer changed by mark-and-sweep: %p -> %p",
|
|
(void *) ptr_pre, (void *) ptr_post));
|
|
}
|
|
#endif
|
|
|
|
/* Note: key issue here is to re-lookup the base pointer on every attempt.
|
|
* The pointer being reallocated may change after every mark-and-sweep.
|
|
*/
|
|
|
|
res = heap->realloc_func(heap->heap_udata, cb(heap, ud), newsize);
|
|
if (res || newsize == 0) {
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_realloc_indirect() succeeded after gc (pass %ld), alloc size %ld",
|
|
(long) (i + 1), (long) newsize));
|
|
return res;
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("duk_heap_mem_realloc_indirect() failed even after gc, alloc size %ld", (long) newsize));
|
|
return NULL;
|
|
}
|
|
#else /* DUK_USE_MARK_AND_SWEEP */
|
|
/* saves a few instructions to have this wrapper (see comment on duk_heap_mem_alloc) */
|
|
DUK_INTERNAL void *duk_heap_mem_realloc_indirect(duk_heap *heap, duk_mem_getptr cb, void *ud, duk_size_t newsize) {
|
|
return heap->realloc_func(heap->heap_udata, cb(heap, ud), newsize);
|
|
}
|
|
#endif /* DUK_USE_MARK_AND_SWEEP */
|
|
|
|
/*
|
|
* Free memory
|
|
*/
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_INTERNAL void duk_heap_mem_free(duk_heap *heap, void *ptr) {
|
|
DUK_ASSERT(heap != NULL);
|
|
/* ptr may be NULL */
|
|
|
|
/* Must behave like a no-op with NULL and any pointer returned from
|
|
* malloc/realloc with zero size.
|
|
*/
|
|
heap->free_func(heap->heap_udata, ptr);
|
|
|
|
/* Count free operations toward triggering a GC but never actually trigger
|
|
* a GC from a free. Otherwise code which frees internal structures would
|
|
* need to put in NULLs at every turn to ensure the object is always in
|
|
* consistent state for a mark-and-sweep.
|
|
*/
|
|
#ifdef DUK_USE_VOLUNTARY_GC
|
|
heap->mark_and_sweep_trigger_counter--;
|
|
#endif
|
|
}
|
|
#else
|
|
/* saves a few instructions to have this wrapper (see comment on duk_heap_mem_alloc) */
|
|
DUK_INTERNAL void duk_heap_mem_free(duk_heap *heap, void *ptr) {
|
|
DUK_ASSERT(heap != NULL);
|
|
/* ptr may be NULL */
|
|
|
|
/* Note: must behave like a no-op with NULL and any pointer
|
|
* returned from malloc/realloc with zero size.
|
|
*/
|
|
heap->free_func(heap->heap_udata, ptr);
|
|
}
|
|
#endif
|
|
#line 1 "duk_heap_misc.c"
|
|
/*
|
|
* Support functions for duk_heap.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_DOUBLE_LINKED_HEAP) && defined(DUK_USE_REFERENCE_COUNTING)
|
|
/* arbitrary remove only works with double linked heap, and is only required by
|
|
* reference counting so far.
|
|
*/
|
|
DUK_INTERNAL void duk_heap_remove_any_from_heap_allocated(duk_heap *heap, duk_heaphdr *hdr) {
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(hdr) != DUK_HTYPE_STRING);
|
|
|
|
if (DUK_HEAPHDR_GET_PREV(heap, hdr)) {
|
|
DUK_HEAPHDR_SET_NEXT(heap, DUK_HEAPHDR_GET_PREV(heap, hdr), DUK_HEAPHDR_GET_NEXT(heap, hdr));
|
|
} else {
|
|
heap->heap_allocated = DUK_HEAPHDR_GET_NEXT(heap, hdr);
|
|
}
|
|
if (DUK_HEAPHDR_GET_NEXT(heap, hdr)) {
|
|
DUK_HEAPHDR_SET_PREV(heap, DUK_HEAPHDR_GET_NEXT(heap, hdr), DUK_HEAPHDR_GET_PREV(heap, hdr));
|
|
} else {
|
|
;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL void duk_heap_insert_into_heap_allocated(duk_heap *heap, duk_heaphdr *hdr) {
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(hdr) != DUK_HTYPE_STRING);
|
|
|
|
#ifdef DUK_USE_DOUBLE_LINKED_HEAP
|
|
if (heap->heap_allocated) {
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_PREV(heap, heap->heap_allocated) == NULL);
|
|
DUK_HEAPHDR_SET_PREV(heap, heap->heap_allocated, hdr);
|
|
}
|
|
DUK_HEAPHDR_SET_PREV(heap, hdr, NULL);
|
|
#endif
|
|
DUK_HEAPHDR_SET_NEXT(heap, hdr, heap->heap_allocated);
|
|
heap->heap_allocated = hdr;
|
|
}
|
|
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
DUK_INTERNAL void duk_heap_switch_thread(duk_heap *heap, duk_hthread *new_thr) {
|
|
/* Copy currently active interrupt counter from the active thread
|
|
* back to the heap structure. It doesn't need to be copied to
|
|
* the target thread, as the bytecode executor does that when it
|
|
* resumes execution for a new thread.
|
|
*/
|
|
if (heap->curr_thread != NULL) {
|
|
heap->interrupt_counter = heap->curr_thread->interrupt_counter;
|
|
}
|
|
heap->curr_thread = new_thr; /* may be NULL */
|
|
}
|
|
#endif /* DUK_USE_INTERRUPT_COUNTER */
|
|
#line 1 "duk_heap_refcount.c"
|
|
/*
|
|
* Reference counting implementation.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
|
|
#ifndef DUK_USE_DOUBLE_LINKED_HEAP
|
|
#error internal error, reference counting requires a double linked heap
|
|
#endif
|
|
|
|
/*
|
|
* Misc
|
|
*/
|
|
|
|
DUK_LOCAL void duk__queue_refzero(duk_heap *heap, duk_heaphdr *hdr) {
|
|
/* tail insert: don't disturb head in case refzero is running */
|
|
|
|
if (heap->refzero_list != NULL) {
|
|
duk_heaphdr *hdr_prev;
|
|
|
|
hdr_prev = heap->refzero_list_tail;
|
|
DUK_ASSERT(hdr_prev != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_NEXT(heap, hdr_prev) == NULL);
|
|
|
|
DUK_HEAPHDR_SET_NEXT(heap, hdr, NULL);
|
|
DUK_HEAPHDR_SET_PREV(heap, hdr, hdr_prev);
|
|
DUK_HEAPHDR_SET_NEXT(heap, hdr_prev, hdr);
|
|
heap->refzero_list_tail = hdr;
|
|
} else {
|
|
DUK_ASSERT(heap->refzero_list_tail == NULL);
|
|
DUK_HEAPHDR_SET_NEXT(heap, hdr, NULL);
|
|
DUK_HEAPHDR_SET_PREV(heap, hdr, NULL);
|
|
heap->refzero_list = hdr;
|
|
heap->refzero_list_tail = hdr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Heap object refcount finalization.
|
|
*
|
|
* When an object is about to be freed, all other objects it refers to must
|
|
* be decref'd. Refcount finalization does NOT free the object or its inner
|
|
* allocations (mark-and-sweep shares these helpers), it just manipulates
|
|
* the refcounts.
|
|
*
|
|
* Note that any of the decref's may cause a refcount to drop to zero, BUT
|
|
* it will not be processed inline; instead, because refzero is already
|
|
* running, the objects will just be queued to refzero list and processed
|
|
* later. This eliminates C recursion.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__refcount_finalize_hobject(duk_hthread *thr, duk_hobject *h) {
|
|
duk_uint_fast32_t i;
|
|
|
|
DUK_ASSERT(h);
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE((duk_heaphdr *) h) == DUK_HTYPE_OBJECT);
|
|
|
|
/* XXX: better to get base and walk forwards? */
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(h); i++) {
|
|
duk_hstring *key = DUK_HOBJECT_E_GET_KEY(thr->heap, h, i);
|
|
if (!key) {
|
|
continue;
|
|
}
|
|
duk_heaphdr_decref(thr, (duk_heaphdr *) key);
|
|
if (DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, h, i)) {
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) DUK_HOBJECT_E_GET_VALUE_GETTER(thr->heap, h, i));
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, h, i));
|
|
} else {
|
|
duk_tval_decref(thr, DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, h, i));
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ASIZE(h); i++) {
|
|
duk_tval_decref(thr, DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, h, i));
|
|
}
|
|
|
|
/* hash part is a 'weak reference' and does not contribute */
|
|
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h));
|
|
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(h)) {
|
|
duk_hcompiledfunction *f = (duk_hcompiledfunction *) h;
|
|
duk_tval *tv, *tv_end;
|
|
duk_hobject **funcs, **funcs_end;
|
|
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, f) != NULL); /* compiled functions must be created 'atomically' */
|
|
|
|
tv = DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(thr->heap, f);
|
|
tv_end = DUK_HCOMPILEDFUNCTION_GET_CONSTS_END(thr->heap, f);
|
|
while (tv < tv_end) {
|
|
duk_tval_decref(thr, tv);
|
|
tv++;
|
|
}
|
|
|
|
funcs = DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(thr->heap, f);
|
|
funcs_end = DUK_HCOMPILEDFUNCTION_GET_FUNCS_END(thr->heap, f);
|
|
while (funcs < funcs_end) {
|
|
duk_heaphdr_decref(thr, (duk_heaphdr *) *funcs);
|
|
funcs++;
|
|
}
|
|
|
|
duk_heaphdr_decref(thr, (duk_heaphdr *) DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, f));
|
|
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(h)) {
|
|
duk_hnativefunction *f = (duk_hnativefunction *) h;
|
|
DUK_UNREF(f);
|
|
/* nothing to finalize */
|
|
} else if (DUK_HOBJECT_IS_THREAD(h)) {
|
|
duk_hthread *t = (duk_hthread *) h;
|
|
duk_tval *tv;
|
|
|
|
tv = t->valstack;
|
|
while (tv < t->valstack_end) {
|
|
duk_tval_decref(thr, tv);
|
|
tv++;
|
|
}
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) t->callstack_top; i++) {
|
|
duk_activation *act = t->callstack + i;
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) DUK_ACT_GET_FUNC(act));
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) act->var_env);
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) act->lex_env);
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) act->prev_caller);
|
|
#endif
|
|
}
|
|
|
|
#if 0 /* nothing now */
|
|
for (i = 0; i < (duk_uint_fast32_t) t->catchstack_top; i++) {
|
|
duk_catcher *cat = t->catchstack + i;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) t->builtins[i]);
|
|
}
|
|
|
|
duk_heaphdr_decref_allownull(thr, (duk_heaphdr *) t->resumer);
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_heaphdr_refcount_finalize(duk_hthread *thr, duk_heaphdr *hdr) {
|
|
DUK_ASSERT(hdr);
|
|
|
|
switch ((int) DUK_HEAPHDR_GET_TYPE(hdr)) {
|
|
case DUK_HTYPE_OBJECT:
|
|
duk__refcount_finalize_hobject(thr, (duk_hobject *) hdr);
|
|
break;
|
|
case DUK_HTYPE_BUFFER:
|
|
/* nothing to finalize */
|
|
break;
|
|
case DUK_HTYPE_STRING:
|
|
/* cannot happen: strings are not put into refzero list (they don't even have the next/prev pointers) */
|
|
default:
|
|
DUK_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Refcount memory freeing loop.
|
|
*
|
|
* Frees objects in the refzero_pending list until the list becomes
|
|
* empty. When an object is freed, its references get decref'd and
|
|
* may cause further objects to be queued for freeing.
|
|
*
|
|
* This could be expanded to allow incremental freeing: just bail out
|
|
* early and resume at a future alloc/decref/refzero.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__refzero_free_pending(duk_hthread *thr) {
|
|
duk_heaphdr *h1, *h2;
|
|
duk_heap *heap;
|
|
duk_int_t count = 0;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
heap = thr->heap;
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
/*
|
|
* Detect recursive invocation
|
|
*/
|
|
|
|
if (DUK_HEAP_HAS_REFZERO_FREE_RUNNING(heap)) {
|
|
DUK_DDD(DUK_DDDPRINT("refzero free running, skip run"));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Churn refzero_list until empty
|
|
*/
|
|
|
|
DUK_HEAP_SET_REFZERO_FREE_RUNNING(heap);
|
|
while (heap->refzero_list) {
|
|
duk_hobject *obj;
|
|
duk_bool_t rescued = 0;
|
|
|
|
/*
|
|
* Pick an object from the head (don't remove yet).
|
|
*/
|
|
|
|
h1 = heap->refzero_list;
|
|
obj = (duk_hobject *) h1;
|
|
DUK_DD(DUK_DDPRINT("refzero processing %p: %!O", (void *) h1, (duk_heaphdr *) h1));
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_PREV(heap, h1) == NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_TYPE(h1) == DUK_HTYPE_OBJECT); /* currently, always the case */
|
|
|
|
/*
|
|
* Finalizer check.
|
|
*
|
|
* Note: running a finalizer may have arbitrary side effects, e.g.
|
|
* queue more objects on refzero_list (tail), or even trigger a
|
|
* mark-and-sweep.
|
|
*
|
|
* Note: quick reject check should match vast majority of
|
|
* objects and must be safe (not throw any errors, ever).
|
|
*/
|
|
|
|
/* XXX: If object has FINALIZED, it was finalized by mark-and-sweep on
|
|
* its previous run. Any point in running finalizer again here? If
|
|
* finalization semantics is changed so that finalizer is only run once,
|
|
* checking for FINALIZED would happen here.
|
|
*/
|
|
|
|
/* A finalizer is looked up from the object and up its prototype chain
|
|
* (which allows inherited finalizers).
|
|
*/
|
|
if (duk_hobject_hasprop_raw(thr, obj, DUK_HTHREAD_STRING_INT_FINALIZER(thr))) {
|
|
DUK_DDD(DUK_DDDPRINT("object has a finalizer, run it"));
|
|
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(h1) == 0);
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(h1); /* bump refcount to prevent refzero during finalizer processing */
|
|
|
|
duk_hobject_run_finalizer(thr, obj); /* must never longjmp */
|
|
|
|
DUK_HEAPHDR_PREDEC_REFCOUNT(h1); /* remove artificial bump */
|
|
DUK_ASSERT_DISABLE(h1->h_refcount >= 0); /* refcount is unsigned, so always true */
|
|
|
|
if (DUK_HEAPHDR_GET_REFCOUNT(h1) != 0) {
|
|
DUK_DDD(DUK_DDDPRINT("-> object refcount after finalization non-zero, object will be rescued"));
|
|
rescued = 1;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("-> object refcount still zero after finalization, object will be freed"));
|
|
}
|
|
}
|
|
|
|
/* Refzero head is still the same. This is the case even if finalizer
|
|
* inserted more refzero objects; they are inserted to the tail.
|
|
*/
|
|
DUK_ASSERT(h1 == heap->refzero_list);
|
|
|
|
/*
|
|
* Remove the object from the refzero list. This cannot be done
|
|
* before a possible finalizer has been executed; the finalizer
|
|
* may trigger a mark-and-sweep, and mark-and-sweep must be able
|
|
* to traverse a complete refzero_list.
|
|
*/
|
|
|
|
h2 = DUK_HEAPHDR_GET_NEXT(heap, h1);
|
|
if (h2) {
|
|
DUK_HEAPHDR_SET_PREV(heap, h2, NULL); /* not strictly necessary */
|
|
heap->refzero_list = h2;
|
|
} else {
|
|
heap->refzero_list = NULL;
|
|
heap->refzero_list_tail = NULL;
|
|
}
|
|
|
|
/*
|
|
* Rescue or free.
|
|
*/
|
|
|
|
if (rescued) {
|
|
/* yes -> move back to heap allocated */
|
|
DUK_DD(DUK_DDPRINT("object rescued during refcount finalization: %p", (void *) h1));
|
|
DUK_HEAPHDR_SET_PREV(heap, h1, NULL);
|
|
DUK_HEAPHDR_SET_NEXT(heap, h1, heap->heap_allocated);
|
|
heap->heap_allocated = h1;
|
|
} else {
|
|
/* no -> decref members, then free */
|
|
duk__refcount_finalize_hobject(thr, obj);
|
|
duk_heap_free_heaphdr_raw(heap, h1);
|
|
}
|
|
|
|
count++;
|
|
}
|
|
DUK_HEAP_CLEAR_REFZERO_FREE_RUNNING(heap);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("refzero processed %ld objects", (long) count));
|
|
|
|
/*
|
|
* Once the whole refzero cascade has been freed, check for
|
|
* a voluntary mark-and-sweep.
|
|
*/
|
|
|
|
#if defined(DUK_USE_MARK_AND_SWEEP) && defined(DUK_USE_VOLUNTARY_GC)
|
|
/* 'count' is more or less comparable to normal trigger counter update
|
|
* which happens in memory block (re)allocation.
|
|
*/
|
|
heap->mark_and_sweep_trigger_counter -= count;
|
|
if (heap->mark_and_sweep_trigger_counter <= 0) {
|
|
duk_bool_t rc;
|
|
duk_small_uint_t flags = 0; /* not emergency */
|
|
DUK_D(DUK_DPRINT("refcount triggering mark-and-sweep"));
|
|
rc = duk_heap_mark_and_sweep(heap, flags);
|
|
DUK_UNREF(rc);
|
|
DUK_D(DUK_DPRINT("refcount triggered mark-and-sweep => rc %ld", (long) rc));
|
|
}
|
|
#endif /* DUK_USE_MARK_AND_SWEEP && DUK_USE_VOLUNTARY_GC */
|
|
}
|
|
|
|
/*
|
|
* Incref and decref functions.
|
|
*
|
|
* Decref may trigger immediate refzero handling, which may free and finalize
|
|
* an arbitrary number of objects.
|
|
*
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_heaphdr_refzero(duk_hthread *thr, duk_heaphdr *h) {
|
|
duk_heap *heap;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
heap = thr->heap;
|
|
DUK_DDD(DUK_DDDPRINT("refzero %p: %!O", (void *) h, (duk_heaphdr *) h));
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
/*
|
|
* If mark-and-sweep is running, don't process 'refzero' situations at all.
|
|
* They may happen because mark-and-sweep needs to finalize refcounts for
|
|
* each object it sweeps. Otherwise the target objects of swept objects
|
|
* would have incorrect refcounts.
|
|
*
|
|
* Note: mark-and-sweep could use a separate decref handler to avoid coming
|
|
* here at all. However, mark-and-sweep may also call finalizers, which
|
|
* can do arbitrary operations and would use this decref variant anyway.
|
|
*/
|
|
if (DUK_HEAP_HAS_MARKANDSWEEP_RUNNING(heap)) {
|
|
DUK_DDD(DUK_DDDPRINT("refzero handling suppressed when mark-and-sweep running, object: %p", (void *) h));
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
switch ((duk_small_int_t) DUK_HEAPHDR_GET_TYPE(h)) {
|
|
case DUK_HTYPE_STRING:
|
|
/*
|
|
* Strings have no internal references but do have "weak"
|
|
* references in the string cache. Also note that strings
|
|
* are not on the heap_allocated list like other heap
|
|
* elements.
|
|
*/
|
|
|
|
duk_heap_strcache_string_remove(heap, (duk_hstring *) h);
|
|
duk_heap_string_remove(heap, (duk_hstring *) h);
|
|
duk_heap_free_heaphdr_raw(heap, h);
|
|
break;
|
|
|
|
case DUK_HTYPE_OBJECT:
|
|
/*
|
|
* Objects have internal references. Must finalize through
|
|
* the "refzero" work list.
|
|
*/
|
|
|
|
duk_heap_remove_any_from_heap_allocated(heap, h);
|
|
duk__queue_refzero(heap, h);
|
|
duk__refzero_free_pending(thr);
|
|
break;
|
|
|
|
case DUK_HTYPE_BUFFER:
|
|
/*
|
|
* Buffers have no internal references. However, a dynamic
|
|
* buffer has a separate allocation for the buffer. This is
|
|
* freed by duk_heap_free_heaphdr_raw().
|
|
*/
|
|
|
|
duk_heap_remove_any_from_heap_allocated(heap, h);
|
|
duk_heap_free_heaphdr_raw(heap, h);
|
|
break;
|
|
|
|
default:
|
|
DUK_D(DUK_DPRINT("invalid heap type in decref: %ld", (long) DUK_HEAPHDR_GET_TYPE(h)));
|
|
DUK_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
#if !defined(DUK_USE_FAST_REFCOUNT_DEFAULT)
|
|
DUK_INTERNAL void duk_tval_incref(duk_tval *tv) {
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk_heaphdr *h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
DUK_ASSERT_DISABLE(h->h_refcount >= 0);
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(h);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL void duk_tval_incref_allownull(duk_tval *tv) {
|
|
if (tv == NULL) {
|
|
return;
|
|
}
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk_heaphdr *h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
DUK_ASSERT_DISABLE(h->h_refcount >= 0);
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(h);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL void duk_tval_decref(duk_hthread *thr, duk_tval *tv) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk_heaphdr *h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
duk_heaphdr_decref(thr, h);
|
|
}
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL void duk_tval_decref_allownull(duk_hthread *thr, duk_tval *tv) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (tv == NULL) {
|
|
return;
|
|
}
|
|
if (DUK_TVAL_IS_HEAP_ALLOCATED(tv)) {
|
|
duk_heaphdr *h = DUK_TVAL_GET_HEAPHDR(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
duk_heaphdr_decref(thr, h);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if !defined(DUK_USE_FAST_REFCOUNT_DEFAULT)
|
|
DUK_INTERNAL void duk_heaphdr_incref(duk_heaphdr *h) {
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
DUK_ASSERT_DISABLE(DUK_HEAPHDR_GET_REFCOUNT(h) >= 0);
|
|
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(h);
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL void duk_heaphdr_incref_allownull(duk_heaphdr *h) {
|
|
if (h == NULL) {
|
|
return;
|
|
}
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
DUK_ASSERT_DISABLE(DUK_HEAPHDR_GET_REFCOUNT(h) >= 0);
|
|
|
|
DUK_HEAPHDR_PREINC_REFCOUNT(h);
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL void duk_heaphdr_decref(duk_hthread *thr, duk_heaphdr *h) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(h) >= 1);
|
|
|
|
if (DUK_HEAPHDR_PREDEC_REFCOUNT(h) != 0) {
|
|
return;
|
|
}
|
|
duk_heaphdr_refzero(thr, h);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_heaphdr_decref_allownull(duk_hthread *thr, duk_heaphdr *h) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
|
|
if (h == NULL) {
|
|
return;
|
|
}
|
|
|
|
DUK_ASSERT(DUK_HEAPHDR_HTYPE_VALID(h));
|
|
DUK_ASSERT(DUK_HEAPHDR_GET_REFCOUNT(h) >= 1);
|
|
|
|
if (DUK_HEAPHDR_PREDEC_REFCOUNT(h) != 0) {
|
|
return;
|
|
}
|
|
duk_heaphdr_refzero(thr, h);
|
|
}
|
|
|
|
#else
|
|
|
|
/* no refcounting */
|
|
|
|
#endif /* DUK_USE_REFERENCE_COUNTING */
|
|
#line 1 "duk_heap_stringcache.c"
|
|
/*
|
|
* String cache.
|
|
*
|
|
* Provides a cache to optimize indexed string lookups. The cache keeps
|
|
* track of (byte offset, char offset) states for a fixed number of strings.
|
|
* Otherwise we'd need to scan from either end of the string, as we store
|
|
* strings in (extended) UTF-8.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Delete references to given hstring from the heap string cache.
|
|
*
|
|
* String cache references are 'weak': they are not counted towards
|
|
* reference counts, nor serve as roots for mark-and-sweep. When an
|
|
* object is about to be freed, such references need to be removed.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_heap_strcache_string_remove(duk_heap *heap, duk_hstring *h) {
|
|
duk_small_int_t i;
|
|
for (i = 0; i < DUK_HEAP_STRCACHE_SIZE; i++) {
|
|
duk_strcache *c = heap->strcache + i;
|
|
if (c->h == h) {
|
|
DUK_DD(DUK_DDPRINT("deleting weak strcache reference to hstring %p from heap %p",
|
|
(void *) h, (void *) heap));
|
|
c->h = NULL;
|
|
|
|
/* XXX: the string shouldn't appear twice, but we now loop to the
|
|
* end anyway; if fixed, add a looping assertion to ensure there
|
|
* is no duplicate.
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* String scanning helpers
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint8_t *duk__scan_forwards(duk_uint8_t *p, duk_uint8_t *q, duk_uint_fast32_t n) {
|
|
while (n > 0) {
|
|
for (;;) {
|
|
p++;
|
|
if (p >= q) {
|
|
return NULL;
|
|
}
|
|
if ((*p & 0xc0) != 0x80) {
|
|
break;
|
|
}
|
|
}
|
|
n--;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
DUK_LOCAL duk_uint8_t *duk__scan_backwards(duk_uint8_t *p, duk_uint8_t *q, duk_uint_fast32_t n) {
|
|
while (n > 0) {
|
|
for (;;) {
|
|
p--;
|
|
if (p < q) {
|
|
return NULL;
|
|
}
|
|
if ((*p & 0xc0) != 0x80) {
|
|
break;
|
|
}
|
|
}
|
|
n--;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
* Convert char offset to byte offset
|
|
*
|
|
* Avoid using the string cache if possible: for ASCII strings byte and
|
|
* char offsets are equal and for short strings direct scanning may be
|
|
* better than using the string cache (which may evict a more important
|
|
* entry).
|
|
*
|
|
* Typing now assumes 32-bit string byte/char offsets (duk_uint_fast32_t).
|
|
* Better typing might be to use duk_size_t.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_uint_fast32_t duk_heap_strcache_offset_char2byte(duk_hthread *thr, duk_hstring *h, duk_uint_fast32_t char_offset) {
|
|
duk_heap *heap;
|
|
duk_strcache *sce;
|
|
duk_uint_fast32_t byte_offset;
|
|
duk_small_int_t i;
|
|
duk_bool_t use_cache;
|
|
duk_uint_fast32_t dist_start, dist_end, dist_sce;
|
|
duk_uint8_t *p_start;
|
|
duk_uint8_t *p_end;
|
|
duk_uint8_t *p_found;
|
|
|
|
if (char_offset > DUK_HSTRING_GET_CHARLEN(h)) {
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* For ASCII strings, the answer is simple.
|
|
*/
|
|
|
|
if (DUK_HSTRING_IS_ASCII(h)) {
|
|
/* clen == blen -> pure ascii */
|
|
return char_offset;
|
|
}
|
|
|
|
/*
|
|
* For non-ASCII strings, we need to scan forwards or backwards
|
|
* from some starting point. The starting point may be the start
|
|
* or end of the string, or some cached midpoint in the string
|
|
* cache.
|
|
*
|
|
* For "short" strings we simply scan without checking or updating
|
|
* the cache. For longer strings we check and update the cache as
|
|
* necessary, inserting a new cache entry if none exists.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("non-ascii string %p, char_offset=%ld, clen=%ld, blen=%ld",
|
|
(void *) h, (long) char_offset,
|
|
(long) DUK_HSTRING_GET_CHARLEN(h),
|
|
(long) DUK_HSTRING_GET_BYTELEN(h)));
|
|
|
|
heap = thr->heap;
|
|
sce = NULL;
|
|
use_cache = (DUK_HSTRING_GET_CHARLEN(h) > DUK_HEAP_STRINGCACHE_NOCACHE_LIMIT);
|
|
|
|
if (use_cache) {
|
|
#ifdef DUK_USE_DDDPRINT
|
|
DUK_DDD(DUK_DDDPRINT("stringcache before char2byte (using cache):"));
|
|
for (i = 0; i < DUK_HEAP_STRCACHE_SIZE; i++) {
|
|
duk_strcache *c = heap->strcache + i;
|
|
DUK_DDD(DUK_DDDPRINT(" [%ld] -> h=%p, cidx=%ld, bidx=%ld",
|
|
(long) i, (void *) c->h, (long) c->cidx, (long) c->bidx));
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < DUK_HEAP_STRCACHE_SIZE; i++) {
|
|
duk_strcache *c = heap->strcache + i;
|
|
|
|
if (c->h == h) {
|
|
sce = c;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan from shortest distance:
|
|
* - start of string
|
|
* - end of string
|
|
* - cache entry (if exists)
|
|
*/
|
|
|
|
DUK_ASSERT(DUK_HSTRING_GET_CHARLEN(h) >= char_offset);
|
|
dist_start = char_offset;
|
|
dist_end = DUK_HSTRING_GET_CHARLEN(h) - char_offset;
|
|
dist_sce = 0; DUK_UNREF(dist_sce); /* initialize for debug prints, needed if sce==NULL */
|
|
|
|
p_start = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h);
|
|
p_end = (duk_uint8_t *) (p_start + DUK_HSTRING_GET_BYTELEN(h));
|
|
p_found = NULL;
|
|
|
|
if (sce) {
|
|
if (char_offset >= sce->cidx) {
|
|
dist_sce = char_offset - sce->cidx;
|
|
if ((dist_sce <= dist_start) && (dist_sce <= dist_end)) {
|
|
DUK_DDD(DUK_DDDPRINT("non-ascii string, use_cache=%ld, sce=%p:%ld:%ld, "
|
|
"dist_start=%ld, dist_end=%ld, dist_sce=%ld => "
|
|
"scan forwards from sce",
|
|
(long) use_cache, (void *) (sce ? sce->h : NULL),
|
|
(sce ? (long) sce->cidx : (long) -1),
|
|
(sce ? (long) sce->bidx : (long) -1),
|
|
(long) dist_start, (long) dist_end, (long) dist_sce));
|
|
|
|
p_found = duk__scan_forwards(p_start + sce->bidx,
|
|
p_end,
|
|
dist_sce);
|
|
goto scan_done;
|
|
}
|
|
} else {
|
|
dist_sce = sce->cidx - char_offset;
|
|
if ((dist_sce <= dist_start) && (dist_sce <= dist_end)) {
|
|
DUK_DDD(DUK_DDDPRINT("non-ascii string, use_cache=%ld, sce=%p:%ld:%ld, "
|
|
"dist_start=%ld, dist_end=%ld, dist_sce=%ld => "
|
|
"scan backwards from sce",
|
|
(long) use_cache, (void *) (sce ? sce->h : NULL),
|
|
(sce ? (long) sce->cidx : (long) -1),
|
|
(sce ? (long) sce->bidx : (long) -1),
|
|
(long) dist_start, (long) dist_end, (long) dist_sce));
|
|
|
|
p_found = duk__scan_backwards(p_start + sce->bidx,
|
|
p_start,
|
|
dist_sce);
|
|
goto scan_done;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* no sce, or sce scan not best */
|
|
|
|
if (dist_start <= dist_end) {
|
|
DUK_DDD(DUK_DDDPRINT("non-ascii string, use_cache=%ld, sce=%p:%ld:%ld, "
|
|
"dist_start=%ld, dist_end=%ld, dist_sce=%ld => "
|
|
"scan forwards from string start",
|
|
(long) use_cache, (void *) (sce ? sce->h : NULL),
|
|
(sce ? (long) sce->cidx : (long) -1),
|
|
(sce ? (long) sce->bidx : (long) -1),
|
|
(long) dist_start, (long) dist_end, (long) dist_sce));
|
|
|
|
p_found = duk__scan_forwards(p_start,
|
|
p_end,
|
|
dist_start);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("non-ascii string, use_cache=%ld, sce=%p:%ld:%ld, "
|
|
"dist_start=%ld, dist_end=%ld, dist_sce=%ld => "
|
|
"scan backwards from string end",
|
|
(long) use_cache, (void *) (sce ? sce->h : NULL),
|
|
(sce ? (long) sce->cidx : (long) -1),
|
|
(sce ? (long) sce->bidx : (long) -1),
|
|
(long) dist_start, (long) dist_end, (long) dist_sce));
|
|
|
|
p_found = duk__scan_backwards(p_end,
|
|
p_start,
|
|
dist_end);
|
|
}
|
|
|
|
scan_done:
|
|
|
|
if (!p_found) {
|
|
/* Scan error: this shouldn't normally happen; it could happen if
|
|
* string is not valid UTF-8 data, and clen/blen are not consistent
|
|
* with the scanning algorithm.
|
|
*/
|
|
goto error;
|
|
}
|
|
|
|
DUK_ASSERT(p_found >= p_start);
|
|
DUK_ASSERT(p_found <= p_end); /* may be equal */
|
|
byte_offset = (duk_uint32_t) (p_found - p_start);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> string %p, cidx %ld -> bidx %ld",
|
|
(void *) h, (long) char_offset, (long) byte_offset));
|
|
|
|
/*
|
|
* Update cache entry (allocating if necessary), and move the
|
|
* cache entry to the first place (in an "LRU" policy).
|
|
*/
|
|
|
|
if (use_cache) {
|
|
/* update entry, allocating if necessary */
|
|
if (!sce) {
|
|
sce = heap->strcache + DUK_HEAP_STRCACHE_SIZE - 1; /* take last entry */
|
|
sce->h = h;
|
|
}
|
|
DUK_ASSERT(sce != NULL);
|
|
sce->bidx = (duk_uint32_t) (p_found - p_start);
|
|
sce->cidx = (duk_uint32_t) char_offset;
|
|
|
|
/* LRU: move our entry to first */
|
|
if (sce > &heap->strcache[0]) {
|
|
/*
|
|
* A C
|
|
* B A
|
|
* C <- sce ==> B
|
|
* D D
|
|
*/
|
|
duk_strcache tmp;
|
|
|
|
tmp = *sce;
|
|
DUK_MEMMOVE((void *) (&heap->strcache[1]),
|
|
(void *) (&heap->strcache[0]),
|
|
(size_t) (((char *) sce) - ((char *) &heap->strcache[0])));
|
|
heap->strcache[0] = tmp;
|
|
|
|
/* 'sce' points to the wrong entry here, but is no longer used */
|
|
}
|
|
#ifdef DUK_USE_DDDPRINT
|
|
DUK_DDD(DUK_DDDPRINT("stringcache after char2byte (using cache):"));
|
|
for (i = 0; i < DUK_HEAP_STRCACHE_SIZE; i++) {
|
|
duk_strcache *c = heap->strcache + i;
|
|
DUK_DDD(DUK_DDDPRINT(" [%ld] -> h=%p, cidx=%ld, bidx=%ld",
|
|
(long) i, (void *) c->h, (long) c->cidx, (long) c->bidx));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return byte_offset;
|
|
|
|
error:
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "string scan error");
|
|
return 0;
|
|
}
|
|
#line 1 "duk_heap_stringtable.c"
|
|
/*
|
|
* Heap stringtable handling, string interning.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
#define DUK__HASH_INITIAL(hash,h_size) DUK_STRTAB_HASH_INITIAL((hash),(h_size))
|
|
#define DUK__HASH_PROBE_STEP(hash) DUK_STRTAB_HASH_PROBE_STEP((hash))
|
|
#define DUK__DELETED_MARKER(heap) DUK_STRTAB_DELETED_MARKER((heap))
|
|
#endif
|
|
|
|
/*
|
|
* Create a hstring and insert into the heap. The created object
|
|
* is directly garbage collectable with reference count zero.
|
|
*
|
|
* The caller must place the interned string into the stringtable
|
|
* immediately (without chance of a longjmp); otherwise the string
|
|
* is lost.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_hstring *duk__alloc_init_hstring(duk_heap *heap,
|
|
const duk_uint8_t *str,
|
|
duk_uint32_t blen,
|
|
duk_uint32_t strhash,
|
|
const duk_uint8_t *extdata) {
|
|
duk_hstring *res = NULL;
|
|
duk_uint8_t *data;
|
|
duk_size_t alloc_size;
|
|
duk_uarridx_t dummy;
|
|
duk_uint32_t clen;
|
|
|
|
#if defined(DUK_USE_STRLEN16)
|
|
/* If blen <= 0xffffUL, clen is also guaranteed to be <= 0xffffUL. */
|
|
if (blen > 0xffffUL) {
|
|
DUK_D(DUK_DPRINT("16-bit string blen/clen active and blen over 16 bits, reject intern"));
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
if (extdata) {
|
|
alloc_size = (duk_size_t) sizeof(duk_hstring_external);
|
|
res = (duk_hstring *) DUK_ALLOC(heap, alloc_size);
|
|
if (!res) {
|
|
goto alloc_error;
|
|
}
|
|
DUK_MEMZERO(res, sizeof(duk_hstring_external));
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
DUK_HEAPHDR_STRING_INIT_NULLS(&res->hdr);
|
|
#endif
|
|
DUK_HEAPHDR_SET_TYPE_AND_FLAGS(&res->hdr, DUK_HTYPE_STRING, DUK_HSTRING_FLAG_EXTDATA);
|
|
|
|
((duk_hstring_external *) res)->extdata = extdata;
|
|
} else {
|
|
/* NUL terminate for convenient C access */
|
|
alloc_size = (duk_size_t) (sizeof(duk_hstring) + blen + 1);
|
|
res = (duk_hstring *) DUK_ALLOC(heap, alloc_size);
|
|
if (!res) {
|
|
goto alloc_error;
|
|
}
|
|
DUK_MEMZERO(res, sizeof(duk_hstring));
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
DUK_HEAPHDR_STRING_INIT_NULLS(&res->hdr);
|
|
#endif
|
|
DUK_HEAPHDR_SET_TYPE_AND_FLAGS(&res->hdr, DUK_HTYPE_STRING, 0);
|
|
|
|
data = (duk_uint8_t *) (res + 1);
|
|
DUK_MEMCPY(data, str, blen);
|
|
data[blen] = (duk_uint8_t) 0;
|
|
}
|
|
|
|
if (duk_js_to_arrayindex_raw_string(str, blen, &dummy)) {
|
|
DUK_HSTRING_SET_ARRIDX(res);
|
|
}
|
|
|
|
/* All strings beginning with 0xff are treated as "internal",
|
|
* even strings interned by the user. This allows user code to
|
|
* create internal properties too, and makes behavior consistent
|
|
* in case user code happens to use a string also used by Duktape
|
|
* (such as string has already been interned and has the 'internal'
|
|
* flag set).
|
|
*/
|
|
if (blen > 0 && str[0] == (duk_uint8_t) 0xff) {
|
|
DUK_HSTRING_SET_INTERNAL(res);
|
|
}
|
|
|
|
DUK_HSTRING_SET_HASH(res, strhash);
|
|
DUK_HSTRING_SET_BYTELEN(res, blen);
|
|
clen = (duk_uint32_t) duk_unicode_unvalidated_utf8_length(str, (duk_size_t) blen);
|
|
DUK_ASSERT(clen <= blen);
|
|
DUK_HSTRING_SET_CHARLEN(res, clen);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("interned string, hash=0x%08lx, blen=%ld, clen=%ld, has_arridx=%ld, has_extdata=%ld",
|
|
(unsigned long) DUK_HSTRING_GET_HASH(res),
|
|
(long) DUK_HSTRING_GET_BYTELEN(res),
|
|
(long) DUK_HSTRING_GET_CHARLEN(res),
|
|
(long) DUK_HSTRING_HAS_ARRIDX(res) ? 1 : 0,
|
|
(long) DUK_HSTRING_HAS_EXTDATA(res) ? 1 : 0));
|
|
|
|
return res;
|
|
|
|
alloc_error:
|
|
DUK_FREE(heap, res);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* String table algorithm: fixed size string table with array chaining
|
|
*
|
|
* The top level string table has a fixed size, with each slot holding
|
|
* either NULL, string pointer, or pointer to a separately allocated
|
|
* string pointer list.
|
|
*
|
|
* This is good for low memory environments using a pool allocator: the
|
|
* top level allocation has a fixed size and the pointer lists have quite
|
|
* small allocation size, which further matches the typical pool sizes
|
|
* needed by objects, strings, property tables, etc.
|
|
*/
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL duk_bool_t duk__insert_hstring_chain(duk_heap *heap, duk_hstring *h) {
|
|
duk_small_uint_t slotidx;
|
|
duk_strtab_entry *e;
|
|
duk_uint16_t *lst;
|
|
duk_uint16_t *new_lst;
|
|
duk_size_t i, n;
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
duk_uint16_t h16 = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
slotidx = DUK_HSTRING_GET_HASH(h) % DUK_STRTAB_CHAIN_SIZE;
|
|
DUK_ASSERT(slotidx < DUK_STRTAB_CHAIN_SIZE);
|
|
|
|
e = heap->strtable + slotidx;
|
|
if (e->listlen == 0) {
|
|
if (e->u.str16 == null16) {
|
|
e->u.str16 = h16;
|
|
} else {
|
|
/* Now two entries in the same slot, alloc list */
|
|
lst = (duk_uint16_t *) DUK_ALLOC(heap, sizeof(duk_uint16_t) * 2);
|
|
if (lst == NULL) {
|
|
return 1; /* fail */
|
|
}
|
|
lst[0] = e->u.str16;
|
|
lst[1] = h16;
|
|
e->u.strlist16 = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) lst);
|
|
e->listlen = 2;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(e->u.strlist16 != null16);
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
DUK_ASSERT(lst != NULL);
|
|
for (i = 0, n = e->listlen; i < n; i++) {
|
|
if (lst[i] == null16) {
|
|
lst[i] = h16;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (e->listlen + 1 == 0) {
|
|
/* Overflow, relevant mainly when listlen is 16 bits. */
|
|
return 1; /* fail */
|
|
}
|
|
|
|
new_lst = (duk_uint16_t *) DUK_REALLOC(heap, lst, sizeof(duk_uint16_t) * (e->listlen + 1));
|
|
if (new_lst == NULL) {
|
|
return 1; /* fail */
|
|
}
|
|
new_lst[e->listlen++] = h16;
|
|
e->u.strlist16 = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) new_lst);
|
|
}
|
|
return 0;
|
|
}
|
|
#else /* DUK_USE_HEAPPTR16 */
|
|
DUK_LOCAL duk_bool_t duk__insert_hstring_chain(duk_heap *heap, duk_hstring *h) {
|
|
duk_small_uint_t slotidx;
|
|
duk_strtab_entry *e;
|
|
duk_hstring **lst;
|
|
duk_hstring **new_lst;
|
|
duk_size_t i, n;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
slotidx = DUK_HSTRING_GET_HASH(h) % DUK_STRTAB_CHAIN_SIZE;
|
|
DUK_ASSERT(slotidx < DUK_STRTAB_CHAIN_SIZE);
|
|
|
|
e = heap->strtable + slotidx;
|
|
if (e->listlen == 0) {
|
|
if (e->u.str == NULL) {
|
|
e->u.str = h;
|
|
} else {
|
|
/* Now two entries in the same slot, alloc list */
|
|
lst = (duk_hstring **) DUK_ALLOC(heap, sizeof(duk_hstring *) * 2);
|
|
if (lst == NULL) {
|
|
return 1; /* fail */
|
|
}
|
|
lst[0] = e->u.str;
|
|
lst[1] = h;
|
|
e->u.strlist = lst;
|
|
e->listlen = 2;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(e->u.strlist != NULL);
|
|
lst = e->u.strlist;
|
|
for (i = 0, n = e->listlen; i < n; i++) {
|
|
if (lst[i] == NULL) {
|
|
lst[i] = h;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (e->listlen + 1 == 0) {
|
|
/* Overflow, relevant mainly when listlen is 16 bits. */
|
|
return 1; /* fail */
|
|
}
|
|
|
|
new_lst = (duk_hstring **) DUK_REALLOC(heap, e->u.strlist, sizeof(duk_hstring *) * (e->listlen + 1));
|
|
if (new_lst == NULL) {
|
|
return 1; /* fail */
|
|
}
|
|
new_lst[e->listlen++] = h;
|
|
e->u.strlist = new_lst;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* DUK_USE_HEAPPTR16 */
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL duk_hstring *duk__find_matching_string_chain(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen, duk_uint32_t strhash) {
|
|
duk_small_uint_t slotidx;
|
|
duk_strtab_entry *e;
|
|
duk_uint16_t *lst;
|
|
duk_size_t i, n;
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
slotidx = strhash % DUK_STRTAB_CHAIN_SIZE;
|
|
DUK_ASSERT(slotidx < DUK_STRTAB_CHAIN_SIZE);
|
|
|
|
e = heap->strtable + slotidx;
|
|
if (e->listlen == 0) {
|
|
if (e->u.str16 != null16) {
|
|
duk_hstring *h = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.str16);
|
|
DUK_ASSERT(h != NULL);
|
|
if (DUK_HSTRING_GET_BYTELEN(h) == blen &&
|
|
DUK_MEMCMP(str, DUK_HSTRING_GET_DATA(h), blen) == 0) {
|
|
return h;
|
|
}
|
|
}
|
|
} else {
|
|
DUK_ASSERT(e->u.strlist16 != null16);
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
DUK_ASSERT(lst != NULL);
|
|
for (i = 0, n = e->listlen; i < n; i++) {
|
|
if (lst[i] != null16) {
|
|
duk_hstring *h = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, lst[i]);
|
|
DUK_ASSERT(h != NULL);
|
|
if (DUK_HSTRING_GET_BYTELEN(h) == blen &&
|
|
DUK_MEMCMP(str, DUK_HSTRING_GET_DATA(h), blen) == 0) {
|
|
return h;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#else /* DUK_USE_HEAPPTR16 */
|
|
DUK_LOCAL duk_hstring *duk__find_matching_string_chain(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen, duk_uint32_t strhash) {
|
|
duk_small_uint_t slotidx;
|
|
duk_strtab_entry *e;
|
|
duk_hstring **lst;
|
|
duk_size_t i, n;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
slotidx = strhash % DUK_STRTAB_CHAIN_SIZE;
|
|
DUK_ASSERT(slotidx < DUK_STRTAB_CHAIN_SIZE);
|
|
|
|
e = heap->strtable + slotidx;
|
|
if (e->listlen == 0) {
|
|
if (e->u.str != NULL &&
|
|
DUK_HSTRING_GET_BYTELEN(e->u.str) == blen &&
|
|
DUK_MEMCMP(str, DUK_HSTRING_GET_DATA(e->u.str), blen) == 0) {
|
|
return e->u.str;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(e->u.strlist != NULL);
|
|
lst = e->u.strlist;
|
|
for (i = 0, n = e->listlen; i < n; i++) {
|
|
if (lst[i] != NULL &&
|
|
DUK_HSTRING_GET_BYTELEN(lst[i]) == blen &&
|
|
DUK_MEMCMP(str, DUK_HSTRING_GET_DATA(lst[i]), blen) == 0) {
|
|
return lst[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#endif /* DUK_USE_HEAPPTR16 */
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL void duk__remove_matching_hstring_chain(duk_heap *heap, duk_hstring *h) {
|
|
duk_small_uint_t slotidx;
|
|
duk_strtab_entry *e;
|
|
duk_uint16_t *lst;
|
|
duk_size_t i, n;
|
|
duk_uint16_t h16;
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
slotidx = DUK_HSTRING_GET_HASH(h) % DUK_STRTAB_CHAIN_SIZE;
|
|
DUK_ASSERT(slotidx < DUK_STRTAB_CHAIN_SIZE);
|
|
|
|
DUK_ASSERT(h != NULL);
|
|
h16 = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
|
|
|
|
e = heap->strtable + slotidx;
|
|
if (e->listlen == 0) {
|
|
if (e->u.str16 == h16) {
|
|
e->u.str16 = null16;
|
|
return;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(e->u.strlist16 != null16);
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
DUK_ASSERT(lst != NULL);
|
|
for (i = 0, n = e->listlen; i < n; i++) {
|
|
if (lst[i] == h16) {
|
|
lst[i] = null16;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("failed to find string that should be in stringtable"));
|
|
DUK_UNREACHABLE();
|
|
return;
|
|
}
|
|
#else /* DUK_USE_HEAPPTR16 */
|
|
DUK_LOCAL void duk__remove_matching_hstring_chain(duk_heap *heap, duk_hstring *h) {
|
|
duk_small_uint_t slotidx;
|
|
duk_strtab_entry *e;
|
|
duk_hstring **lst;
|
|
duk_size_t i, n;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
slotidx = DUK_HSTRING_GET_HASH(h) % DUK_STRTAB_CHAIN_SIZE;
|
|
DUK_ASSERT(slotidx < DUK_STRTAB_CHAIN_SIZE);
|
|
|
|
e = heap->strtable + slotidx;
|
|
if (e->listlen == 0) {
|
|
DUK_ASSERT(h != NULL);
|
|
if (e->u.str == h) {
|
|
e->u.str = NULL;
|
|
return;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(e->u.strlist != NULL);
|
|
lst = e->u.strlist;
|
|
for (i = 0, n = e->listlen; i < n; i++) {
|
|
DUK_ASSERT(h != NULL);
|
|
if (lst[i] == h) {
|
|
lst[i] = NULL;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("failed to find string that should be in stringtable"));
|
|
DUK_UNREACHABLE();
|
|
return;
|
|
}
|
|
#endif /* DUK_USE_HEAPPTR16 */
|
|
|
|
#if defined(DUK_USE_DEBUG)
|
|
DUK_INTERNAL void duk_heap_dump_strtab(duk_heap *heap) {
|
|
duk_strtab_entry *e;
|
|
duk_small_uint_t i;
|
|
duk_size_t j, n, used;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *lst;
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
#else
|
|
duk_hstring **lst;
|
|
#endif
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
for (i = 0; i < DUK_STRTAB_CHAIN_SIZE; i++) {
|
|
e = heap->strtable + i;
|
|
|
|
if (e->listlen == 0) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_DD(DUK_DDPRINT("[%03d] -> plain %d", (int) i, (int) (e->u.str16 != null16 ? 1 : 0)));
|
|
#else
|
|
DUK_DD(DUK_DDPRINT("[%03d] -> plain %d", (int) i, (int) (e->u.str ? 1 : 0)));
|
|
#endif
|
|
} else {
|
|
used = 0;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
#else
|
|
lst = e->u.strlist;
|
|
#endif
|
|
DUK_ASSERT(lst != NULL);
|
|
for (j = 0, n = e->listlen; j < n; j++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
if (lst[j] != null16) {
|
|
#else
|
|
if (lst[j] != NULL) {
|
|
#endif
|
|
used++;
|
|
}
|
|
}
|
|
DUK_DD(DUK_DDPRINT("[%03d] -> array %d/%d", (int) i, (int) used, (int) e->listlen));
|
|
}
|
|
}
|
|
}
|
|
#endif /* DUK_USE_DEBUG */
|
|
|
|
#endif /* DUK_USE_STRTAB_CHAIN */
|
|
|
|
/*
|
|
* String table algorithm: closed hashing with a probe sequence
|
|
*
|
|
* This is the default algorithm and works fine for environments with
|
|
* minimal memory constraints.
|
|
*/
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
|
|
/* Count actually used (non-NULL, non-DELETED) entries. */
|
|
DUK_LOCAL duk_int_t duk__count_used_probe(duk_heap *heap) {
|
|
duk_int_t res = 0;
|
|
duk_uint_fast32_t i, n;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
duk_uint16_t deleted16 = heap->heapptr_deleted16;
|
|
#endif
|
|
|
|
n = (duk_uint_fast32_t) heap->st_size;
|
|
for (i = 0; i < n; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
if (heap->strtable16[i] != null16 && heap->strtable16[i] != deleted16) {
|
|
#else
|
|
if (heap->strtable[i] != NULL && heap->strtable[i] != DUK__DELETED_MARKER(heap)) {
|
|
#endif
|
|
res++;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL void duk__insert_hstring_probe(duk_heap *heap, duk_uint16_t *entries16, duk_uint32_t size, duk_uint32_t *p_used, duk_hstring *h) {
|
|
#else
|
|
DUK_LOCAL void duk__insert_hstring_probe(duk_heap *heap, duk_hstring **entries, duk_uint32_t size, duk_uint32_t *p_used, duk_hstring *h) {
|
|
#endif
|
|
duk_uint32_t i;
|
|
duk_uint32_t step;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
duk_uint16_t deleted16 = heap->heapptr_deleted16;
|
|
#endif
|
|
|
|
DUK_ASSERT(size > 0);
|
|
|
|
i = DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(h), size);
|
|
step = DUK__HASH_PROBE_STEP(DUK_HSTRING_GET_HASH(h));
|
|
for (;;) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t e16 = entries16[i];
|
|
#else
|
|
duk_hstring *e = entries[i];
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* XXX: could check for e16 == 0 because NULL is guaranteed to
|
|
* encode to zero.
|
|
*/
|
|
if (e16 == null16) {
|
|
#else
|
|
if (e == NULL) {
|
|
#endif
|
|
DUK_DDD(DUK_DDDPRINT("insert hit (null): %ld", (long) i));
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
entries16[i] = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
|
|
#else
|
|
entries[i] = h;
|
|
#endif
|
|
(*p_used)++;
|
|
break;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
} else if (e16 == deleted16) {
|
|
#else
|
|
} else if (e == DUK__DELETED_MARKER(heap)) {
|
|
#endif
|
|
/* st_used remains the same, DELETED is counted as used */
|
|
DUK_DDD(DUK_DDDPRINT("insert hit (deleted): %ld", (long) i));
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
entries16[i] = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
|
|
#else
|
|
entries[i] = h;
|
|
#endif
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("insert miss: %ld", (long) i));
|
|
i = (i + step) % size;
|
|
|
|
/* looping should never happen */
|
|
DUK_ASSERT(i != DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(h), size));
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL duk_hstring *duk__find_matching_string_probe(duk_heap *heap, duk_uint16_t *entries16, duk_uint32_t size, const duk_uint8_t *str, duk_uint32_t blen, duk_uint32_t strhash) {
|
|
#else
|
|
DUK_LOCAL duk_hstring *duk__find_matching_string_probe(duk_heap *heap, duk_hstring **entries, duk_uint32_t size, const duk_uint8_t *str, duk_uint32_t blen, duk_uint32_t strhash) {
|
|
#endif
|
|
duk_uint32_t i;
|
|
duk_uint32_t step;
|
|
|
|
DUK_ASSERT(size > 0);
|
|
|
|
i = DUK__HASH_INITIAL(strhash, size);
|
|
step = DUK__HASH_PROBE_STEP(strhash);
|
|
for (;;) {
|
|
duk_hstring *e;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
e = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, entries16[i]);
|
|
#else
|
|
e = entries[i];
|
|
#endif
|
|
|
|
if (!e) {
|
|
return NULL;
|
|
}
|
|
if (e != DUK__DELETED_MARKER(heap) && DUK_HSTRING_GET_BYTELEN(e) == blen) {
|
|
if (DUK_MEMCMP(str, DUK_HSTRING_GET_DATA(e), blen) == 0) {
|
|
DUK_DDD(DUK_DDDPRINT("find matching hit: %ld (step %ld, size %ld)",
|
|
(long) i, (long) step, (long) size));
|
|
return e;
|
|
}
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("find matching miss: %ld (step %ld, size %ld)",
|
|
(long) i, (long) step, (long) size));
|
|
i = (i + step) % size;
|
|
|
|
/* looping should never happen */
|
|
DUK_ASSERT(i != DUK__HASH_INITIAL(strhash, size));
|
|
}
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_LOCAL void duk__remove_matching_hstring_probe(duk_heap *heap, duk_uint16_t *entries16, duk_uint32_t size, duk_hstring *h) {
|
|
#else
|
|
DUK_LOCAL void duk__remove_matching_hstring_probe(duk_heap *heap, duk_hstring **entries, duk_uint32_t size, duk_hstring *h) {
|
|
#endif
|
|
duk_uint32_t i;
|
|
duk_uint32_t step;
|
|
duk_uint32_t hash;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
duk_uint16_t h16 = DUK_USE_HEAPPTR_ENC16(heap->heap_udata, (void *) h);
|
|
#endif
|
|
|
|
DUK_ASSERT(size > 0);
|
|
|
|
hash = DUK_HSTRING_GET_HASH(h);
|
|
i = DUK__HASH_INITIAL(hash, size);
|
|
step = DUK__HASH_PROBE_STEP(hash);
|
|
for (;;) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t e16 = entries16[i];
|
|
#else
|
|
duk_hstring *e = entries[i];
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
if (e16 == null16) {
|
|
#else
|
|
if (!e) {
|
|
#endif
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
if (e16 == h16) {
|
|
#else
|
|
if (e == h) {
|
|
#endif
|
|
/* st_used remains the same, DELETED is counted as used */
|
|
DUK_DDD(DUK_DDDPRINT("free matching hit: %ld", (long) i));
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
entries16[i] = heap->heapptr_deleted16;
|
|
#else
|
|
entries[i] = DUK__DELETED_MARKER(heap);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("free matching miss: %ld", (long) i));
|
|
i = (i + step) % size;
|
|
|
|
/* looping should never happen */
|
|
DUK_ASSERT(i != DUK__HASH_INITIAL(hash, size));
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__resize_strtab_raw_probe(duk_heap *heap, duk_uint32_t new_size) {
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
duk_small_uint_t prev_mark_and_sweep_base_flags;
|
|
#endif
|
|
#ifdef DUK_USE_DEBUG
|
|
duk_uint32_t old_used = heap->st_used;
|
|
#endif
|
|
duk_uint32_t old_size = heap->st_size;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *old_entries = heap->strtable16;
|
|
duk_uint16_t *new_entries = NULL;
|
|
#else
|
|
duk_hstring **old_entries = heap->strtable;
|
|
duk_hstring **new_entries = NULL;
|
|
#endif
|
|
duk_uint32_t new_used = 0;
|
|
duk_uint32_t i;
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
DUK_UNREF(old_used); /* unused with some debug level combinations */
|
|
#endif
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
DUK_DDD(DUK_DDDPRINT("attempt to resize stringtable: %ld entries, %ld bytes, %ld used, %ld%% load -> %ld entries, %ld bytes, %ld used, %ld%% load",
|
|
(long) old_size, (long) (sizeof(duk_hstring *) * old_size), (long) old_used,
|
|
(long) (((double) old_used) / ((double) old_size) * 100.0),
|
|
(long) new_size, (long) (sizeof(duk_hstring *) * new_size), (long) duk__count_used_probe(heap),
|
|
(long) (((double) duk__count_used_probe(heap)) / ((double) new_size) * 100.0)));
|
|
#endif
|
|
|
|
DUK_ASSERT(new_size > (duk_uint32_t) duk__count_used_probe(heap)); /* required for rehash to succeed, equality not that useful */
|
|
DUK_ASSERT(old_entries);
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
DUK_ASSERT((heap->mark_and_sweep_base_flags & DUK_MS_FLAG_NO_STRINGTABLE_RESIZE) == 0);
|
|
#endif
|
|
|
|
/*
|
|
* The attempt to allocate may cause a GC. Such a GC must not attempt to resize
|
|
* the stringtable (though it can be swept); finalizer execution and object
|
|
* compaction must also be postponed to avoid the pressure to add strings to the
|
|
* string table.
|
|
*/
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
prev_mark_and_sweep_base_flags = heap->mark_and_sweep_base_flags;
|
|
heap->mark_and_sweep_base_flags |= \
|
|
DUK_MS_FLAG_NO_STRINGTABLE_RESIZE | /* avoid recursive call here */
|
|
DUK_MS_FLAG_NO_FINALIZERS | /* avoid pressure to add/remove strings */
|
|
DUK_MS_FLAG_NO_OBJECT_COMPACTION; /* avoid array abandoning which interns strings */
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
new_entries = (duk_uint16_t *) DUK_ALLOC(heap, sizeof(duk_uint16_t) * new_size);
|
|
#else
|
|
new_entries = (duk_hstring **) DUK_ALLOC(heap, sizeof(duk_hstring *) * new_size);
|
|
#endif
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
heap->mark_and_sweep_base_flags = prev_mark_and_sweep_base_flags;
|
|
#endif
|
|
|
|
if (!new_entries) {
|
|
goto resize_error;
|
|
}
|
|
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
for (i = 0; i < new_size; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
new_entries[i] = heap->heapptr_null16;
|
|
#else
|
|
new_entries[i] = NULL;
|
|
#endif
|
|
}
|
|
#else
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* Relies on NULL encoding to zero. */
|
|
DUK_MEMZERO(new_entries, sizeof(duk_uint16_t) * new_size);
|
|
#else
|
|
DUK_MEMZERO(new_entries, sizeof(duk_hstring *) * new_size);
|
|
#endif
|
|
#endif
|
|
|
|
/* Because new_size > duk__count_used_probe(heap), guaranteed to work */
|
|
for (i = 0; i < old_size; i++) {
|
|
duk_hstring *e;
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
e = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, old_entries[i]);
|
|
#else
|
|
e = old_entries[i];
|
|
#endif
|
|
if (e == NULL || e == DUK__DELETED_MARKER(heap)) {
|
|
continue;
|
|
}
|
|
/* checking for DUK__DELETED_MARKER is not necessary here, but helper does it now */
|
|
duk__insert_hstring_probe(heap, new_entries, new_size, &new_used, e);
|
|
}
|
|
|
|
#ifdef DUK_USE_DDPRINT
|
|
DUK_DD(DUK_DDPRINT("resized stringtable: %ld entries, %ld bytes, %ld used, %ld%% load -> %ld entries, %ld bytes, %ld used, %ld%% load",
|
|
(long) old_size, (long) (sizeof(duk_hstring *) * old_size), (long) old_used,
|
|
(long) (((double) old_used) / ((double) old_size) * 100.0),
|
|
(long) new_size, (long) (sizeof(duk_hstring *) * new_size), (long) new_used,
|
|
(long) (((double) new_used) / ((double) new_size) * 100.0)));
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_FREE(heap, heap->strtable16);
|
|
heap->strtable16 = new_entries;
|
|
#else
|
|
DUK_FREE(heap, heap->strtable);
|
|
heap->strtable = new_entries;
|
|
#endif
|
|
heap->st_size = new_size;
|
|
heap->st_used = new_used; /* may be less, since DELETED entries are NULLed by rehash */
|
|
|
|
return 0; /* OK */
|
|
|
|
resize_error:
|
|
DUK_FREE(heap, new_entries);
|
|
return 1; /* FAIL */
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__resize_strtab_probe(duk_heap *heap) {
|
|
duk_uint32_t new_size;
|
|
duk_bool_t ret;
|
|
|
|
new_size = (duk_uint32_t) duk__count_used_probe(heap);
|
|
if (new_size >= 0x80000000UL) {
|
|
new_size = DUK_STRTAB_HIGHEST_32BIT_PRIME;
|
|
} else {
|
|
new_size = duk_util_get_hash_prime(DUK_STRTAB_GROW_ST_SIZE(new_size));
|
|
new_size = duk_util_get_hash_prime(new_size);
|
|
}
|
|
DUK_ASSERT(new_size > 0);
|
|
|
|
/* rehash even if old and new sizes are the same to get rid of
|
|
* DELETED entries.
|
|
*/
|
|
|
|
ret = duk__resize_strtab_raw_probe(heap, new_size);
|
|
|
|
return ret;
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__recheck_strtab_size_probe(duk_heap *heap, duk_uint32_t new_used) {
|
|
duk_uint32_t new_free;
|
|
duk_uint32_t tmp1;
|
|
duk_uint32_t tmp2;
|
|
|
|
DUK_ASSERT(new_used <= heap->st_size); /* grow by at most one */
|
|
new_free = heap->st_size - new_used; /* unsigned intentionally */
|
|
|
|
/* new_free / size <= 1 / DIV <=> new_free <= size / DIV */
|
|
/* new_used / size <= 1 / DIV <=> new_used <= size / DIV */
|
|
|
|
tmp1 = heap->st_size / DUK_STRTAB_MIN_FREE_DIVISOR;
|
|
tmp2 = heap->st_size / DUK_STRTAB_MIN_USED_DIVISOR;
|
|
|
|
if (new_free <= tmp1 || new_used <= tmp2) {
|
|
/* load factor too low or high, count actually used entries and resize */
|
|
return duk__resize_strtab_probe(heap);
|
|
} else {
|
|
return 0; /* OK */
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUG)
|
|
DUK_INTERNAL void duk_heap_dump_strtab(duk_heap *heap) {
|
|
duk_uint32_t i;
|
|
duk_hstring *h;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_ASSERT(heap->strtable16 != NULL);
|
|
#else
|
|
DUK_ASSERT(heap->strtable != NULL);
|
|
#endif
|
|
DUK_UNREF(h);
|
|
|
|
for (i = 0; i < heap->st_size; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->strtable16[i]);
|
|
#else
|
|
h = heap->strtable[i];
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("[%03d] -> %p", (int) i, (void *) h));
|
|
}
|
|
}
|
|
#endif /* DUK_USE_DEBUG */
|
|
|
|
#endif /* DUK_USE_STRTAB_PROBE */
|
|
|
|
/*
|
|
* Raw intern and lookup
|
|
*/
|
|
|
|
DUK_LOCAL duk_hstring *duk__do_intern(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen, duk_uint32_t strhash) {
|
|
duk_hstring *res;
|
|
const duk_uint8_t *extdata;
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
if (duk__recheck_strtab_size_probe(heap, heap->st_used + 1)) {
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/* For manual testing only. */
|
|
#if 0
|
|
{
|
|
duk_size_t i;
|
|
DUK_PRINTF("INTERN: \"");
|
|
for (i = 0; i < blen; i++) {
|
|
duk_uint8_t x = str[i];
|
|
if (x >= 0x20 && x <= 0x7e && x != '"' && x != '\\') {
|
|
DUK_PRINTF("%c", (int) x); /* char: use int cast */
|
|
} else {
|
|
DUK_PRINTF("\\x%02lx", (long) x);
|
|
}
|
|
}
|
|
DUK_PRINTF("\"\n");
|
|
}
|
|
#endif
|
|
|
|
#if defined(DUK_USE_HSTRING_EXTDATA) && defined(DUK_USE_EXTSTR_INTERN_CHECK)
|
|
extdata = (const duk_uint8_t *) DUK_USE_EXTSTR_INTERN_CHECK(heap->heap_udata, (void *) str, (duk_size_t) blen);
|
|
#else
|
|
extdata = (const duk_uint8_t *) NULL;
|
|
#endif
|
|
res = duk__alloc_init_hstring(heap, str, blen, strhash, extdata);
|
|
if (!res) {
|
|
return NULL;
|
|
}
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
if (duk__insert_hstring_chain(heap, res)) {
|
|
/* failed */
|
|
DUK_FREE(heap, res);
|
|
return NULL;
|
|
}
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
/* guaranteed to succeed */
|
|
duk__insert_hstring_probe(heap,
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
heap->strtable16,
|
|
#else
|
|
heap->strtable,
|
|
#endif
|
|
heap->st_size,
|
|
&heap->st_used,
|
|
res);
|
|
#else
|
|
#error internal error, invalid strtab options
|
|
#endif
|
|
|
|
/* Note: hstring is in heap but has refcount zero and is not strongly reachable.
|
|
* Caller should increase refcount and make the hstring reachable before any
|
|
* operations which require allocation (and possible gc).
|
|
*/
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_LOCAL duk_hstring *duk__do_lookup(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen, duk_uint32_t *out_strhash) {
|
|
duk_hstring *res;
|
|
|
|
DUK_ASSERT(out_strhash);
|
|
|
|
*out_strhash = duk_heap_hashstring(heap, str, (duk_size_t) blen);
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
res = duk__find_matching_string_chain(heap, str, blen, *out_strhash);
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
res = duk__find_matching_string_probe(heap,
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
heap->strtable16,
|
|
#else
|
|
heap->strtable,
|
|
#endif
|
|
heap->st_size,
|
|
str,
|
|
blen,
|
|
*out_strhash);
|
|
#else
|
|
#error internal error, invalid strtab options
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Exposed calls
|
|
*/
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_hstring *duk_heap_string_lookup(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen) {
|
|
duk_uint32_t strhash; /* dummy */
|
|
return duk__do_lookup(heap, str, blen, &strhash);
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL duk_hstring *duk_heap_string_intern(duk_heap *heap, const duk_uint8_t *str, duk_uint32_t blen) {
|
|
duk_hstring *res;
|
|
duk_uint32_t strhash;
|
|
|
|
/* caller is responsible for ensuring this */
|
|
DUK_ASSERT(blen <= DUK_HSTRING_MAX_BYTELEN);
|
|
|
|
res = duk__do_lookup(heap, str, blen, &strhash);
|
|
if (res) {
|
|
return res;
|
|
}
|
|
|
|
res = duk__do_intern(heap, str, blen, strhash);
|
|
return res; /* may be NULL */
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_heap_string_intern_checked(duk_hthread *thr, const duk_uint8_t *str, duk_uint32_t blen) {
|
|
duk_hstring *res = duk_heap_string_intern(thr->heap, str, blen);
|
|
if (!res) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, "failed to intern string");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL duk_hstring *duk_heap_string_lookup_u32(duk_heap *heap, duk_uint32_t val) {
|
|
char buf[DUK_STRTAB_U32_MAX_STRLEN+1];
|
|
DUK_SNPRINTF(buf, sizeof(buf), "%lu", (unsigned long) val);
|
|
buf[sizeof(buf) - 1] = (char) 0;
|
|
DUK_ASSERT(DUK_STRLEN(buf) <= DUK_UINT32_MAX); /* formatted result limited */
|
|
return duk_heap_string_lookup(heap, (const duk_uint8_t *) buf, (duk_uint32_t) DUK_STRLEN(buf));
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL duk_hstring *duk_heap_string_intern_u32(duk_heap *heap, duk_uint32_t val) {
|
|
char buf[DUK_STRTAB_U32_MAX_STRLEN+1];
|
|
DUK_SNPRINTF(buf, sizeof(buf), "%lu", (unsigned long) val);
|
|
buf[sizeof(buf) - 1] = (char) 0;
|
|
DUK_ASSERT(DUK_STRLEN(buf) <= DUK_UINT32_MAX); /* formatted result limited */
|
|
return duk_heap_string_intern(heap, (const duk_uint8_t *) buf, (duk_uint32_t) DUK_STRLEN(buf));
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_heap_string_intern_u32_checked(duk_hthread *thr, duk_uint32_t val) {
|
|
duk_hstring *res = duk_heap_string_intern_u32(thr->heap, val);
|
|
if (!res) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, "failed to intern string");
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* find and remove string from stringtable; caller must free the string itself */
|
|
DUK_INTERNAL void duk_heap_string_remove(duk_heap *heap, duk_hstring *h) {
|
|
DUK_DDD(DUK_DDDPRINT("remove string from stringtable: %!O", (duk_heaphdr *) h));
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
duk__remove_matching_hstring_chain(heap, h);
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
duk__remove_matching_hstring_probe(heap,
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
heap->strtable16,
|
|
#else
|
|
heap->strtable,
|
|
#endif
|
|
heap->st_size,
|
|
h);
|
|
#else
|
|
#error internal error, invalid strtab options
|
|
#endif
|
|
}
|
|
|
|
#if defined(DUK_USE_MARK_AND_SWEEP) && defined(DUK_USE_MS_STRINGTABLE_RESIZE)
|
|
DUK_INTERNAL void duk_heap_force_strtab_resize(duk_heap *heap) {
|
|
/* Force a resize so that DELETED entries are eliminated.
|
|
* Another option would be duk__recheck_strtab_size_probe();
|
|
* but since that happens on every intern anyway, this whole
|
|
* check can now be disabled.
|
|
*/
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
DUK_UNREF(heap);
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
duk__resize_strtab_probe(heap);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
DUK_INTERNAL void duk_heap_free_strtab(duk_heap *heap) {
|
|
/* Free strings in the stringtable and any allocations needed
|
|
* by the stringtable itself.
|
|
*/
|
|
duk_uint_fast32_t i, j;
|
|
duk_strtab_entry *e;
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
duk_uint16_t *lst;
|
|
duk_uint16_t null16 = heap->heapptr_null16;
|
|
#else
|
|
duk_hstring **lst;
|
|
#endif
|
|
duk_hstring *h;
|
|
|
|
for (i = 0; i < DUK_STRTAB_CHAIN_SIZE; i++) {
|
|
e = heap->strtable + i;
|
|
if (e->listlen > 0) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
lst = (duk_uint16_t *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.strlist16);
|
|
#else
|
|
lst = e->u.strlist;
|
|
#endif
|
|
DUK_ASSERT(lst != NULL);
|
|
|
|
for (j = 0; j < e->listlen; j++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = DUK_USE_HEAPPTR_DEC16(heap->heap_udata, lst[j]);
|
|
lst[j] = null16;
|
|
#else
|
|
h = lst[j];
|
|
lst[j] = NULL;
|
|
#endif
|
|
/* strings may have inner refs (extdata) in some cases */
|
|
if (h != NULL) {
|
|
duk_free_hstring_inner(heap, h);
|
|
DUK_FREE(heap, h);
|
|
}
|
|
}
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
e->u.strlist16 = null16;
|
|
#else
|
|
e->u.strlist = NULL;
|
|
#endif
|
|
DUK_FREE(heap, lst);
|
|
} else {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = DUK_USE_HEAPPTR_DEC16(heap->heap_udata, e->u.str16);
|
|
e->u.str16 = null16;
|
|
#else
|
|
h = e->u.str;
|
|
e->u.str = NULL;
|
|
#endif
|
|
if (h != NULL) {
|
|
duk_free_hstring_inner(heap, h);
|
|
DUK_FREE(heap, h);
|
|
}
|
|
}
|
|
e->listlen = 0;
|
|
}
|
|
}
|
|
#endif /* DUK_USE_STRTAB_CHAIN */
|
|
|
|
#if defined(DUK_USE_STRTAB_PROBE)
|
|
DUK_INTERNAL void duk_heap_free_strtab(duk_heap *heap) {
|
|
duk_uint_fast32_t i;
|
|
duk_hstring *h;
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
if (heap->strtable16) {
|
|
#else
|
|
if (heap->strtable) {
|
|
#endif
|
|
for (i = 0; i < (duk_uint_fast32_t) heap->st_size; i++) {
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
h = (duk_hstring *) DUK_USE_HEAPPTR_DEC16(heap->heap_udata, heap->strtable16[i]);
|
|
#else
|
|
h = heap->strtable[i];
|
|
#endif
|
|
if (h == NULL || h == DUK_STRTAB_DELETED_MARKER(heap)) {
|
|
continue;
|
|
}
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* strings may have inner refs (extdata) in some cases */
|
|
duk_free_hstring_inner(heap, h);
|
|
DUK_FREE(heap, h);
|
|
#if 0 /* not strictly necessary */
|
|
heap->strtable[i] = NULL;
|
|
#endif
|
|
}
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
DUK_FREE(heap, heap->strtable16);
|
|
#else
|
|
DUK_FREE(heap, heap->strtable);
|
|
#endif
|
|
#if 0 /* not strictly necessary */
|
|
heap->strtable = NULL;
|
|
#endif
|
|
}
|
|
}
|
|
#endif /* DUK_USE_STRTAB_PROBE */
|
|
|
|
/* Undefine local defines */
|
|
#undef DUK__HASH_INITIAL
|
|
#undef DUK__HASH_PROBE_STEP
|
|
#undef DUK__DELETED_MARKER
|
|
#line 1 "duk_hobject_alloc.c"
|
|
/*
|
|
* Hobject allocation.
|
|
*
|
|
* Provides primitive allocation functions for all object types (plain object,
|
|
* compiled function, native function, thread). The object return is not yet
|
|
* in "heap allocated" list and has a refcount of zero, so caller must careful.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_LOCAL void duk__init_object_parts(duk_heap *heap, duk_hobject *obj, duk_uint_t hobject_flags) {
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
DUK_HOBJECT_SET_PROPS(heap, obj, NULL);
|
|
#endif
|
|
|
|
/* XXX: macro? sets both heaphdr and object flags */
|
|
obj->hdr.h_flags = hobject_flags;
|
|
DUK_HEAPHDR_SET_TYPE(&obj->hdr, DUK_HTYPE_OBJECT); /* also goes into flags */
|
|
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
/* Zero encoded pointer is required to match NULL */
|
|
DUK_HEAPHDR_SET_NEXT(heap, &obj->hdr, NULL);
|
|
#if defined(DUK_USE_DOUBLE_LINKED_HEAP)
|
|
DUK_HEAPHDR_SET_PREV(heap, &obj->hdr, NULL);
|
|
#endif
|
|
#endif
|
|
DUK_HEAP_INSERT_INTO_HEAP_ALLOCATED(heap, &obj->hdr);
|
|
|
|
/*
|
|
* obj->props is intentionally left as NULL, and duk_hobject_props.c must deal
|
|
* with this properly. This is intentional: empty objects consume a minimum
|
|
* amount of memory. Further, an initial allocation might fail and cause
|
|
* 'obj' to "leak" (require a mark-and-sweep) since it is not reachable yet.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* Allocate an duk_hobject.
|
|
*
|
|
* The allocated object has no allocation for properties; the caller may
|
|
* want to force a resize if a desired size is known.
|
|
*
|
|
* The allocated object has zero reference count and is not reachable.
|
|
* The caller MUST make the object reachable and increase its reference
|
|
* count before invoking any operation that might require memory allocation.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_hobject *duk_hobject_alloc(duk_heap *heap, duk_uint_t hobject_flags) {
|
|
duk_hobject *res;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
|
|
/* different memory layout, alloc size, and init */
|
|
DUK_ASSERT((hobject_flags & DUK_HOBJECT_FLAG_COMPILEDFUNCTION) == 0);
|
|
DUK_ASSERT((hobject_flags & DUK_HOBJECT_FLAG_NATIVEFUNCTION) == 0);
|
|
DUK_ASSERT((hobject_flags & DUK_HOBJECT_FLAG_THREAD) == 0);
|
|
|
|
res = (duk_hobject *) DUK_ALLOC(heap, sizeof(duk_hobject));
|
|
if (!res) {
|
|
return NULL;
|
|
}
|
|
DUK_MEMZERO(res, sizeof(duk_hobject));
|
|
|
|
duk__init_object_parts(heap, res, hobject_flags);
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hcompiledfunction *duk_hcompiledfunction_alloc(duk_heap *heap, duk_uint_t hobject_flags) {
|
|
duk_hcompiledfunction *res;
|
|
|
|
res = (duk_hcompiledfunction *) DUK_ALLOC(heap, sizeof(duk_hcompiledfunction));
|
|
if (!res) {
|
|
return NULL;
|
|
}
|
|
DUK_MEMZERO(res, sizeof(duk_hcompiledfunction));
|
|
|
|
duk__init_object_parts(heap, &res->obj, hobject_flags);
|
|
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
#ifdef DUK_USE_HEAPPTR16
|
|
/* NULL pointer is required to encode to zero, so memset is enough. */
|
|
#else
|
|
res->data = NULL;
|
|
res->funcs = NULL;
|
|
res->bytecode = NULL;
|
|
#endif
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hnativefunction *duk_hnativefunction_alloc(duk_heap *heap, duk_uint_t hobject_flags) {
|
|
duk_hnativefunction *res;
|
|
|
|
res = (duk_hnativefunction *) DUK_ALLOC(heap, sizeof(duk_hnativefunction));
|
|
if (!res) {
|
|
return NULL;
|
|
}
|
|
DUK_MEMZERO(res, sizeof(duk_hnativefunction));
|
|
|
|
duk__init_object_parts(heap, &res->obj, hobject_flags);
|
|
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
res->func = NULL;
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Allocate a new thread.
|
|
*
|
|
* Leaves the built-ins array uninitialized. The caller must either
|
|
* initialize a new global context or share existing built-ins from
|
|
* another thread.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_hthread *duk_hthread_alloc(duk_heap *heap, duk_uint_t hobject_flags) {
|
|
duk_hthread *res;
|
|
|
|
res = (duk_hthread *) DUK_ALLOC(heap, sizeof(duk_hthread));
|
|
if (!res) {
|
|
return NULL;
|
|
}
|
|
DUK_MEMZERO(res, sizeof(duk_hthread));
|
|
|
|
duk__init_object_parts(heap, &res->obj, hobject_flags);
|
|
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
res->heap = NULL;
|
|
res->valstack = NULL;
|
|
res->valstack_end = NULL;
|
|
res->valstack_bottom = NULL;
|
|
res->valstack_top = NULL;
|
|
res->callstack = NULL;
|
|
res->catchstack = NULL;
|
|
res->resumer = NULL;
|
|
res->compile_ctx = NULL,
|
|
#ifdef DUK_USE_HEAPPTR16
|
|
res->strs16 = NULL;
|
|
#else
|
|
res->strs = NULL;
|
|
#endif
|
|
{
|
|
int i;
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
res->builtins[i] = NULL;
|
|
}
|
|
}
|
|
#endif
|
|
/* when nothing is running, API calls are in non-strict mode */
|
|
DUK_ASSERT(res->strict == 0);
|
|
|
|
res->heap = heap;
|
|
res->valstack_max = DUK_VALSTACK_DEFAULT_MAX;
|
|
res->callstack_max = DUK_CALLSTACK_DEFAULT_MAX;
|
|
res->catchstack_max = DUK_CATCHSTACK_DEFAULT_MAX;
|
|
|
|
return res;
|
|
}
|
|
|
|
#if 0 /* unused now */
|
|
DUK_INTERNAL duk_hobject *duk_hobject_alloc_checked(duk_hthread *thr, duk_uint_t hobject_flags) {
|
|
duk_hobject *res = duk_hobject_alloc(thr->heap, hobject_flags);
|
|
if (!res) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, "failed to allocate an object");
|
|
}
|
|
return res;
|
|
}
|
|
#endif
|
|
#line 1 "duk_hobject_enum.c"
|
|
/*
|
|
* Hobject enumeration support.
|
|
*
|
|
* Creates an internal enumeration state object to be used e.g. with for-in
|
|
* enumeration. The state object contains a snapshot of target object keys
|
|
* and internal control state for enumeration. Enumerator flags allow caller
|
|
* to e.g. request internal/non-enumerable properties, and to enumerate only
|
|
* "own" properties.
|
|
*
|
|
* Also creates the result value for e.g. Object.keys() based on the same
|
|
* internal structure.
|
|
*
|
|
* This snapshot-based enumeration approach is used to simplify enumeration:
|
|
* non-snapshot-based approaches are difficult to reconcile with mutating
|
|
* the enumeration target, running multiple long-lived enumerators at the
|
|
* same time, garbage collection details, etc. The downside is that the
|
|
* enumerator object is memory inefficient especially for iterating arrays.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* XXX: identify enumeration target with an object index (not top of stack) */
|
|
|
|
/* must match exactly the number of internal properties inserted to enumerator */
|
|
#define DUK__ENUM_START_INDEX 2
|
|
|
|
/*
|
|
* Helper to sort array index keys. The keys are in the enumeration object
|
|
* entry part, starting from DUK__ENUM_START_INDEX, and the entry part is dense.
|
|
*
|
|
* We use insertion sort because it is simple (leading to compact code,)
|
|
* works nicely in-place, and minimizes operations if data is already sorted
|
|
* or nearly sorted (which is a very common case here). It also minimizes
|
|
* the use of element comparisons in general. This is nice because element
|
|
* comparisons here involve re-parsing the string keys into numbers each
|
|
* time, which is naturally very expensive.
|
|
*
|
|
* Note that the entry part values are all "true", e.g.
|
|
*
|
|
* "1" -> true, "3" -> true, "2" -> true
|
|
*
|
|
* so it suffices to only work in the key part without exchanging any keys,
|
|
* simplifying the sort.
|
|
*
|
|
* http://en.wikipedia.org/wiki/Insertion_sort
|
|
*
|
|
* (Compiles to about 160 bytes now as a stand-alone function.)
|
|
*/
|
|
|
|
DUK_LOCAL void duk__sort_array_indices(duk_hthread *thr, duk_hobject *h_obj) {
|
|
duk_hstring **keys;
|
|
duk_hstring **p_curr, **p_insert, **p_end;
|
|
duk_hstring *h_curr;
|
|
duk_uarridx_t val_highest, val_curr, val_insert;
|
|
|
|
DUK_ASSERT(h_obj != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_ENEXT(h_obj) >= 2); /* control props */
|
|
DUK_UNREF(thr);
|
|
|
|
if (DUK_HOBJECT_GET_ENEXT(h_obj) <= 1 + DUK__ENUM_START_INDEX) {
|
|
return;
|
|
}
|
|
|
|
keys = DUK_HOBJECT_E_GET_KEY_BASE(thr->heap, h_obj);
|
|
p_end = keys + DUK_HOBJECT_GET_ENEXT(h_obj);
|
|
keys += DUK__ENUM_START_INDEX;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("keys=%p, p_end=%p (after skipping enum props)",
|
|
(void *) keys, (void *) p_end));
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
{
|
|
duk_uint_fast32_t i;
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(h_obj); i++) {
|
|
DUK_DDD(DUK_DDDPRINT("initial: %ld %p -> %!O",
|
|
(long) i,
|
|
(void *) DUK_HOBJECT_E_GET_KEY_PTR(thr->heap, h_obj, i),
|
|
(duk_heaphdr *) DUK_HOBJECT_E_GET_KEY(thr->heap, h_obj, i)));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
val_highest = DUK_HSTRING_GET_ARRIDX_SLOW(keys[0]);
|
|
for (p_curr = keys + 1; p_curr < p_end; p_curr++) {
|
|
DUK_ASSERT(*p_curr != NULL);
|
|
val_curr = DUK_HSTRING_GET_ARRIDX_SLOW(*p_curr);
|
|
|
|
if (val_curr >= val_highest) {
|
|
DUK_DDD(DUK_DDDPRINT("p_curr=%p, p_end=%p, val_highest=%ld, val_curr=%ld -> "
|
|
"already in correct order, next",
|
|
(void *) p_curr, (void *) p_end, (long) val_highest, (long) val_curr));
|
|
val_highest = val_curr;
|
|
continue;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("p_curr=%p, p_end=%p, val_highest=%ld, val_curr=%ld -> "
|
|
"needs to be inserted",
|
|
(void *) p_curr, (void *) p_end, (long) val_highest, (long) val_curr));
|
|
|
|
/* Needs to be inserted; scan backwards, since we optimize
|
|
* for the case where elements are nearly in order.
|
|
*/
|
|
|
|
p_insert = p_curr - 1;
|
|
for (;;) {
|
|
val_insert = DUK_HSTRING_GET_ARRIDX_SLOW(*p_insert);
|
|
if (val_insert < val_curr) {
|
|
DUK_DDD(DUK_DDDPRINT("p_insert=%p, val_insert=%ld, val_curr=%ld -> insert after this",
|
|
(void *) p_insert, (long) val_insert, (long) val_curr));
|
|
p_insert++;
|
|
break;
|
|
}
|
|
if (p_insert == keys) {
|
|
DUK_DDD(DUK_DDDPRINT("p_insert=%p -> out of keys, insert to beginning", (void *) p_insert));
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("p_insert=%p, val_insert=%ld, val_curr=%ld -> search backwards",
|
|
(void *) p_insert, (long) val_insert, (long) val_curr));
|
|
p_insert--;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final p_insert=%p", (void *) p_insert));
|
|
|
|
/* .-- p_insert .-- p_curr
|
|
* v v
|
|
* | ... | insert | ... | curr
|
|
*/
|
|
|
|
h_curr = *p_curr;
|
|
DUK_DDD(DUK_DDDPRINT("memmove: dest=%p, src=%p, size=%ld, h_curr=%p",
|
|
(void *) (p_insert + 1), (void *) p_insert,
|
|
(long) (p_curr - p_insert), (void *) h_curr));
|
|
|
|
DUK_MEMMOVE((void *) (p_insert + 1),
|
|
(void *) p_insert,
|
|
(size_t) ((p_curr - p_insert) * sizeof(duk_hstring *)));
|
|
*p_insert = h_curr;
|
|
/* keep val_highest */
|
|
}
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
{
|
|
duk_uint_fast32_t i;
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(h_obj); i++) {
|
|
DUK_DDD(DUK_DDDPRINT("final: %ld %p -> %!O",
|
|
(long) i,
|
|
(void *) DUK_HOBJECT_E_GET_KEY_PTR(thr->heap, h_obj, i),
|
|
(duk_heaphdr *) DUK_HOBJECT_E_GET_KEY(thr->heap, h_obj, i)));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Create an internal enumerator object E, which has its keys ordered
|
|
* to match desired enumeration ordering. Also initialize internal control
|
|
* properties for enumeration.
|
|
*
|
|
* Note: if an array was used to hold enumeration keys instead, an array
|
|
* scan would be needed to eliminate duplicates found in the prototype chain.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_enumerator_create(duk_context *ctx, duk_small_uint_t enum_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *enum_target;
|
|
duk_hobject *curr;
|
|
duk_hobject *res;
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
duk_hobject *h_proxy_target;
|
|
duk_hobject *h_proxy_handler;
|
|
duk_hobject *h_trap_result;
|
|
#endif
|
|
duk_uint_fast32_t i, len; /* used for array, stack, and entry indices */
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("create enumerator, stack top: %ld", (long) duk_get_top(ctx)));
|
|
|
|
enum_target = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(enum_target != NULL);
|
|
|
|
duk_push_object_internal(ctx);
|
|
res = duk_require_hobject(ctx, -1);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created internal object"));
|
|
|
|
/* [enum_target res] */
|
|
|
|
/* Target must be stored so that we can recheck whether or not
|
|
* keys still exist when we enumerate. This is not done if the
|
|
* enumeration result comes from a proxy trap as there is no
|
|
* real object to check against.
|
|
*/
|
|
duk_push_hobject(ctx, enum_target);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_INT_TARGET);
|
|
|
|
/* Initialize index so that we skip internal control keys. */
|
|
duk_push_int(ctx, DUK__ENUM_START_INDEX);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_INT_NEXT);
|
|
|
|
/*
|
|
* Proxy object handling
|
|
*/
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
if (DUK_LIKELY((enum_flags & DUK_ENUM_NO_PROXY_BEHAVIOR) != 0)) {
|
|
goto skip_proxy;
|
|
}
|
|
if (DUK_LIKELY(!duk_hobject_proxy_check(thr,
|
|
enum_target,
|
|
&h_proxy_target,
|
|
&h_proxy_handler))) {
|
|
goto skip_proxy;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("proxy enumeration"));
|
|
duk_push_hobject(ctx, h_proxy_handler);
|
|
if (!duk_get_prop_stridx(ctx, -1, DUK_STRIDX_ENUMERATE)) {
|
|
/* No need to replace the 'enum_target' value in stack, only the
|
|
* enum_target reference. This also ensures that the original
|
|
* enum target is reachable, which keeps the proxy and the proxy
|
|
* target reachable. We do need to replace the internal _Target.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("no enumerate trap, enumerate proxy target instead"));
|
|
DUK_DDD(DUK_DDDPRINT("h_proxy_target=%!O", (duk_heaphdr *) h_proxy_target));
|
|
enum_target = h_proxy_target;
|
|
|
|
duk_push_hobject(ctx, enum_target); /* -> [ ... enum_target res handler undefined target ] */
|
|
duk_put_prop_stridx(ctx, -4, DUK_STRIDX_INT_TARGET);
|
|
|
|
duk_pop_2(ctx); /* -> [ ... enum_target res ] */
|
|
goto skip_proxy;
|
|
}
|
|
|
|
/* [ ... enum_target res handler trap ] */
|
|
duk_insert(ctx, -2);
|
|
duk_push_hobject(ctx, h_proxy_target); /* -> [ ... enum_target res trap handler target ] */
|
|
duk_call_method(ctx, 1 /*nargs*/); /* -> [ ... enum_target res trap_result ] */
|
|
h_trap_result = duk_require_hobject(ctx, -1);
|
|
DUK_UNREF(h_trap_result);
|
|
|
|
/* Copy trap result keys into the enumerator object. */
|
|
len = (duk_uint_fast32_t) duk_get_length(ctx, -1);
|
|
for (i = 0; i < len; i++) {
|
|
/* XXX: not sure what the correct semantic details are here,
|
|
* e.g. handling of missing values (gaps), handling of non-array
|
|
* trap results, etc.
|
|
*
|
|
* For keys, we simply skip non-string keys which seems to be
|
|
* consistent with how e.g. Object.keys() will process proxy trap
|
|
* results (ES6 draft, Section 19.1.2.14).
|
|
*/
|
|
if (duk_get_prop_index(ctx, -1, i) && duk_is_string(ctx, -1)) {
|
|
/* [ ... enum_target res trap_result val ] */
|
|
duk_push_true(ctx);
|
|
/* [ ... enum_target res trap_result val true ] */
|
|
duk_put_prop(ctx, -4);
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
/* [ ... enum_target res trap_result ] */
|
|
duk_pop(ctx);
|
|
duk_remove(ctx, -2);
|
|
|
|
/* [ ... res ] */
|
|
|
|
/* The internal _Target property is kept pointing to the original
|
|
* enumeration target (the proxy object), so that the enumerator
|
|
* 'next' operation can read property values if so requested. The
|
|
* fact that the _Target is a proxy disables key existence check
|
|
* during enumeration.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("proxy enumeration, final res: %!O", (duk_heaphdr *) res));
|
|
goto compact_and_return;
|
|
|
|
skip_proxy:
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
curr = enum_target;
|
|
while (curr) {
|
|
/*
|
|
* Virtual properties.
|
|
*
|
|
* String and buffer indices are virtual and always enumerable,
|
|
* 'length' is virtual and non-enumerable. Array and arguments
|
|
* object props have special behavior but are concrete.
|
|
*/
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(curr) ||
|
|
DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(curr)) {
|
|
/* String and buffer enumeration behavior is identical now,
|
|
* so use shared handler.
|
|
*/
|
|
if (DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(curr)) {
|
|
duk_hstring *h_val;
|
|
h_val = duk_hobject_get_internal_value_string(thr->heap, curr);
|
|
DUK_ASSERT(h_val != NULL); /* string objects must not created without internal value */
|
|
len = (duk_uint_fast32_t) DUK_HSTRING_GET_CHARLEN(h_val);
|
|
} else {
|
|
duk_hbuffer *h_val;
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(curr));
|
|
h_val = duk_hobject_get_internal_value_buffer(thr->heap, curr);
|
|
DUK_ASSERT(h_val != NULL); /* buffer objects must not created without internal value */
|
|
len = (duk_uint_fast32_t) DUK_HBUFFER_GET_SIZE(h_val);
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
duk_hstring *k;
|
|
|
|
k = duk_heap_string_intern_u32_checked(thr, i);
|
|
DUK_ASSERT(k);
|
|
duk_push_hstring(ctx, k);
|
|
duk_push_true(ctx);
|
|
|
|
/* [enum_target res key true] */
|
|
duk_put_prop(ctx, -3);
|
|
|
|
/* [enum_target res] */
|
|
}
|
|
|
|
/* 'length' property is not enumerable, but is included if
|
|
* non-enumerable properties are requested.
|
|
*/
|
|
|
|
if (enum_flags & DUK_ENUM_INCLUDE_NONENUMERABLE) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LENGTH);
|
|
duk_push_true(ctx);
|
|
duk_put_prop(ctx, -3);
|
|
}
|
|
} else if (DUK_HOBJECT_HAS_EXOTIC_DUKFUNC(curr)) {
|
|
if (enum_flags & DUK_ENUM_INCLUDE_NONENUMERABLE) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LENGTH);
|
|
duk_push_true(ctx);
|
|
duk_put_prop(ctx, -3);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Array part
|
|
*
|
|
* Note: ordering between array and entry part must match 'abandon array'
|
|
* behavior in duk_hobject_props.c: key order after an array is abandoned
|
|
* must be the same.
|
|
*/
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ASIZE(curr); i++) {
|
|
duk_hstring *k;
|
|
duk_tval *tv;
|
|
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, curr, i);
|
|
if (DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
continue;
|
|
}
|
|
k = duk_heap_string_intern_u32_checked(thr, i);
|
|
DUK_ASSERT(k);
|
|
|
|
duk_push_hstring(ctx, k);
|
|
duk_push_true(ctx);
|
|
|
|
/* [enum_target res key true] */
|
|
duk_put_prop(ctx, -3);
|
|
|
|
/* [enum_target res] */
|
|
}
|
|
|
|
/*
|
|
* Entries part
|
|
*/
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(curr); i++) {
|
|
duk_hstring *k;
|
|
|
|
k = DUK_HOBJECT_E_GET_KEY(thr->heap, curr, i);
|
|
if (!k) {
|
|
continue;
|
|
}
|
|
if (!DUK_HOBJECT_E_SLOT_IS_ENUMERABLE(thr->heap, curr, i) &&
|
|
!(enum_flags & DUK_ENUM_INCLUDE_NONENUMERABLE)) {
|
|
continue;
|
|
}
|
|
if (DUK_HSTRING_HAS_INTERNAL(k) &&
|
|
!(enum_flags & DUK_ENUM_INCLUDE_INTERNAL)) {
|
|
continue;
|
|
}
|
|
if ((enum_flags & DUK_ENUM_ARRAY_INDICES_ONLY) &&
|
|
(DUK_HSTRING_GET_ARRIDX_SLOW(k) == DUK_HSTRING_NO_ARRAY_INDEX)) {
|
|
continue;
|
|
}
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, curr, i) ||
|
|
!DUK_TVAL_IS_UNDEFINED_UNUSED(&DUK_HOBJECT_E_GET_VALUE_PTR(thr->heap, curr, i)->v));
|
|
|
|
duk_push_hstring(ctx, k);
|
|
duk_push_true(ctx);
|
|
|
|
/* [enum_target res key true] */
|
|
duk_put_prop(ctx, -3);
|
|
|
|
/* [enum_target res] */
|
|
}
|
|
|
|
if (enum_flags & DUK_ENUM_OWN_PROPERTIES_ONLY) {
|
|
break;
|
|
}
|
|
|
|
curr = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, curr);
|
|
}
|
|
|
|
/* [enum_target res] */
|
|
|
|
duk_remove(ctx, -2);
|
|
|
|
/* [res] */
|
|
|
|
if ((enum_flags & (DUK_ENUM_ARRAY_INDICES_ONLY | DUK_ENUM_SORT_ARRAY_INDICES)) ==
|
|
(DUK_ENUM_ARRAY_INDICES_ONLY | DUK_ENUM_SORT_ARRAY_INDICES)) {
|
|
/*
|
|
* Some E5/E5.1 algorithms require that array indices are iterated
|
|
* in a strictly ascending order. This is the case for e.g.
|
|
* Array.prototype.forEach() and JSON.stringify() PropertyList
|
|
* handling.
|
|
*
|
|
* To ensure this property for arrays with an array part (and
|
|
* arbitrary objects too, since e.g. forEach() can be applied
|
|
* to an array), the caller can request that we sort the keys
|
|
* here.
|
|
*/
|
|
|
|
/* XXX: avoid this at least when enum_target is an Array, it has an
|
|
* array part, and no ancestor properties were included? Not worth
|
|
* it for JSON, but maybe worth it for forEach().
|
|
*/
|
|
|
|
/* XXX: may need a 'length' filter for forEach()
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("sort array indices by caller request"));
|
|
duk__sort_array_indices(thr, res);
|
|
}
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
compact_and_return:
|
|
#endif
|
|
/* compact; no need to seal because object is internal */
|
|
duk_hobject_compact_props(thr, res);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created enumerator object: %!iT", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
}
|
|
|
|
/*
|
|
* Returns non-zero if a key and/or value was enumerated, and:
|
|
*
|
|
* [enum] -> [key] (get_value == 0)
|
|
* [enum] -> [key value] (get_value == 1)
|
|
*
|
|
* Returns zero without pushing anything on the stack otherwise.
|
|
*/
|
|
DUK_INTERNAL duk_bool_t duk_hobject_enumerator_next(duk_context *ctx, duk_bool_t get_value) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *e;
|
|
duk_hobject *enum_target;
|
|
duk_hstring *res = NULL;
|
|
duk_uint_fast32_t idx;
|
|
duk_bool_t check_existence;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* [... enum] */
|
|
|
|
e = duk_require_hobject(ctx, -1);
|
|
|
|
/* XXX use get tval ptr, more efficient */
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_NEXT);
|
|
idx = (duk_uint_fast32_t) duk_require_uint(ctx, -1);
|
|
duk_pop(ctx);
|
|
DUK_DDD(DUK_DDDPRINT("enumeration: index is: %ld", (long) idx));
|
|
|
|
/* Enumeration keys are checked against the enumeration target (to see
|
|
* that they still exist). In the proxy enumeration case _Target will
|
|
* be the proxy, and checking key existence against the proxy is not
|
|
* required (or sensible, as the keys may be fully virtual).
|
|
*/
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_TARGET);
|
|
enum_target = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(enum_target != NULL);
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
check_existence = (!DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(enum_target));
|
|
#else
|
|
check_existence = 1;
|
|
#endif
|
|
duk_pop(ctx); /* still reachable */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("getting next enum value, enum_target=%!iO, enumerator=%!iT",
|
|
(duk_heaphdr *) enum_target, (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* no array part */
|
|
for (;;) {
|
|
duk_hstring *k;
|
|
|
|
if (idx >= DUK_HOBJECT_GET_ENEXT(e)) {
|
|
DUK_DDD(DUK_DDDPRINT("enumeration: ran out of elements"));
|
|
break;
|
|
}
|
|
|
|
/* we know these because enum objects are internally created */
|
|
k = DUK_HOBJECT_E_GET_KEY(thr->heap, e, idx);
|
|
DUK_ASSERT(k != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, e, idx));
|
|
DUK_ASSERT(!DUK_TVAL_IS_UNDEFINED_UNUSED(&DUK_HOBJECT_E_GET_VALUE(thr->heap, e, idx).v));
|
|
|
|
idx++;
|
|
|
|
/* recheck that the property still exists */
|
|
if (check_existence && !duk_hobject_hasprop_raw(thr, enum_target, k)) {
|
|
DUK_DDD(DUK_DDDPRINT("property deleted during enumeration, skip"));
|
|
continue;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("enumeration: found element, key: %!O", (duk_heaphdr *) k));
|
|
res = k;
|
|
break;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("enumeration: updating next index to %ld", (long) idx));
|
|
|
|
duk_push_u32(ctx, (duk_uint32_t) idx);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_INT_NEXT);
|
|
|
|
/* [... enum] */
|
|
|
|
if (res) {
|
|
duk_push_hstring(ctx, res);
|
|
if (get_value) {
|
|
duk_push_hobject(ctx, enum_target);
|
|
duk_dup(ctx, -2); /* -> [... enum key enum_target key] */
|
|
duk_get_prop(ctx, -2); /* -> [... enum key enum_target val] */
|
|
duk_remove(ctx, -2); /* -> [... enum key val] */
|
|
duk_remove(ctx, -3); /* -> [... key val] */
|
|
} else {
|
|
duk_remove(ctx, -2); /* -> [... key] */
|
|
}
|
|
return 1;
|
|
} else {
|
|
duk_pop(ctx); /* -> [...] */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get enumerated keys in an Ecmascript array. Matches Object.keys() behavior
|
|
* described in E5 Section 15.2.3.14.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_hobject_get_enumerated_keys(duk_context *ctx, duk_small_uint_t enum_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *e;
|
|
duk_uint_fast32_t i;
|
|
duk_uint_fast32_t idx;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(duk_get_hobject(ctx, -1) != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
/* Create a temporary enumerator to get the (non-duplicated) key list;
|
|
* the enumerator state is initialized without being needed, but that
|
|
* has little impact.
|
|
*/
|
|
|
|
duk_hobject_enumerator_create(ctx, enum_flags);
|
|
duk_push_array(ctx);
|
|
|
|
/* [enum_target enum res] */
|
|
|
|
e = duk_require_hobject(ctx, -2);
|
|
DUK_ASSERT(e != NULL);
|
|
|
|
idx = 0;
|
|
for (i = DUK__ENUM_START_INDEX; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(e); i++) {
|
|
duk_hstring *k;
|
|
|
|
k = DUK_HOBJECT_E_GET_KEY(thr->heap, e, i);
|
|
DUK_ASSERT(k); /* enumerator must have no keys deleted */
|
|
|
|
/* [enum_target enum res] */
|
|
duk_push_hstring(ctx, k);
|
|
duk_put_prop_index(ctx, -2, idx);
|
|
idx++;
|
|
}
|
|
|
|
/* [enum_target enum res] */
|
|
duk_remove(ctx, -2);
|
|
|
|
/* [enum_target res] */
|
|
|
|
return 1; /* return 1 to allow callers to tail call */
|
|
}
|
|
#line 1 "duk_hobject_finalizer.c"
|
|
/*
|
|
* Run an duk_hobject finalizer. Used for both reference counting
|
|
* and mark-and-sweep algorithms. Must never throw an error.
|
|
*
|
|
* There is no return value. Any return value or error thrown by
|
|
* the finalizer is ignored (although errors are debug logged).
|
|
*
|
|
* Notes:
|
|
*
|
|
* - The thread used for calling the finalizer is the same as the
|
|
* 'thr' argument. This may need to change later.
|
|
*
|
|
* - The finalizer thread 'top' assertions are there because it is
|
|
* critical that strict stack policy is observed (i.e. no cruft
|
|
* left on the finalizer stack).
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_LOCAL duk_ret_t duk__finalize_helper(duk_context *ctx) {
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("protected finalization helper running"));
|
|
|
|
/* [... obj] */
|
|
|
|
/* XXX: Finalizer lookup should traverse the prototype chain (to allow
|
|
* inherited finalizers) but should not invoke accessors or proxy object
|
|
* behavior. At the moment this lookup will invoke proxy behavior, so
|
|
* caller must ensure that this function is not called if the target is
|
|
* a Proxy.
|
|
*/
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_FINALIZER); /* -> [... obj finalizer] */
|
|
if (!duk_is_callable(ctx, -1)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> no finalizer or finalizer not callable"));
|
|
return 0;
|
|
}
|
|
duk_dup(ctx, -2); /* -> [... obj finalizer obj] */
|
|
DUK_DDD(DUK_DDDPRINT("-> finalizer found, calling finalizer"));
|
|
duk_call(ctx, 1); /* -> [... obj retval] */
|
|
DUK_DDD(DUK_DDDPRINT("finalizer finished successfully"));
|
|
return 0;
|
|
|
|
/* Note: we rely on duk_safe_call() to fix up the stack for the caller,
|
|
* so we don't need to pop stuff here. There is no return value;
|
|
* caller determines rescued status based on object refcount.
|
|
*/
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hobject_run_finalizer(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_ret_t rc;
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_idx_t entry_top;
|
|
#endif
|
|
|
|
DUK_DDD(DUK_DDDPRINT("running object finalizer for object: %p", (void *) obj));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, 1);
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
entry_top = duk_get_top(ctx);
|
|
#endif
|
|
/*
|
|
* Get and call the finalizer. All of this must be wrapped
|
|
* in a protected call, because even getting the finalizer
|
|
* may trigger an error (getter may throw one, for instance).
|
|
*/
|
|
|
|
/* XXX: use a NULL error handler for the finalizer call? */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> finalizer found, calling wrapped finalize helper"));
|
|
duk_push_hobject(ctx, obj); /* this also increases refcount by one */
|
|
rc = duk_safe_call(ctx, duk__finalize_helper, 0 /*nargs*/, 1 /*nrets*/); /* -> [... obj retval/error] */
|
|
DUK_ASSERT_TOP(ctx, entry_top + 2); /* duk_safe_call discipline */
|
|
|
|
if (rc != DUK_EXEC_SUCCESS) {
|
|
/* Note: we ask for one return value from duk_safe_call to get this
|
|
* error debugging here.
|
|
*/
|
|
DUK_D(DUK_DPRINT("wrapped finalizer call failed for object %p (ignored); error: %!T",
|
|
(void *) obj, (duk_tval *) duk_get_tval(ctx, -1)));
|
|
}
|
|
duk_pop_2(ctx); /* -> [...] */
|
|
|
|
DUK_ASSERT_TOP(ctx, entry_top);
|
|
}
|
|
#line 1 "duk_hobject_misc.c"
|
|
/*
|
|
* Misc support functions
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_prototype_chain_contains(duk_hthread *thr, duk_hobject *h, duk_hobject *p, duk_bool_t ignore_loop) {
|
|
duk_uint_t sanity;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
/* allow 'p' to be NULL; then the result is always false */
|
|
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
do {
|
|
if (h == p) {
|
|
return 1;
|
|
}
|
|
|
|
if (sanity-- == 0) {
|
|
if (ignore_loop) {
|
|
break;
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_PROTOTYPE_CHAIN_LIMIT);
|
|
}
|
|
}
|
|
h = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h);
|
|
} while (h);
|
|
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hobject_set_prototype(duk_hthread *thr, duk_hobject *h, duk_hobject *p) {
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk_hobject *tmp;
|
|
|
|
DUK_ASSERT(h);
|
|
tmp = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, h);
|
|
DUK_HOBJECT_SET_PROTOTYPE(thr->heap, h, p);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, p); /* avoid problems if p == h->prototype */
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
#else
|
|
DUK_ASSERT(h);
|
|
DUK_UNREF(thr);
|
|
DUK_HOBJECT_SET_PROTOTYPE(thr->heap, h, p);
|
|
#endif
|
|
}
|
|
#line 1 "duk_hobject_pc2line.c"
|
|
/*
|
|
* Helpers for creating and querying pc2line debug data, which
|
|
* converts a bytecode program counter to a source line number.
|
|
*
|
|
* The run-time pc2line data is bit-packed, and documented in:
|
|
*
|
|
* doc/function-objects.txt
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_PC2LINE)
|
|
|
|
/* Generate pc2line data for an instruction sequence, leaving a buffer on stack top. */
|
|
DUK_INTERNAL void duk_hobject_pc2line_pack(duk_hthread *thr, duk_compiler_instr *instrs, duk_uint_fast32_t length) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hbuffer_dynamic *h_buf;
|
|
duk_bitencoder_ctx be_ctx_alloc;
|
|
duk_bitencoder_ctx *be_ctx = &be_ctx_alloc;
|
|
duk_uint32_t *hdr;
|
|
duk_size_t new_size;
|
|
duk_uint_fast32_t num_header_entries;
|
|
duk_uint_fast32_t curr_offset;
|
|
duk_int_fast32_t curr_line, next_line, diff_line;
|
|
duk_uint_fast32_t curr_pc;
|
|
duk_uint_fast32_t hdr_index;
|
|
|
|
DUK_ASSERT(length <= DUK_COMPILER_MAX_BYTECODE_LENGTH);
|
|
|
|
/* XXX: add proper spare handling to dynamic buffer, to minimize
|
|
* reallocs; currently there is no spare at all.
|
|
*/
|
|
|
|
num_header_entries = (length + DUK_PC2LINE_SKIP - 1) / DUK_PC2LINE_SKIP;
|
|
curr_offset = (duk_uint_fast32_t) (sizeof(duk_uint32_t) + num_header_entries * sizeof(duk_uint32_t) * 2);
|
|
|
|
duk_push_dynamic_buffer(ctx, (duk_size_t) curr_offset);
|
|
h_buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(h_buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h_buf));
|
|
|
|
hdr = (duk_uint32_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, h_buf);
|
|
DUK_ASSERT(hdr != NULL);
|
|
hdr[0] = (duk_uint32_t) length; /* valid pc range is [0, length[ */
|
|
|
|
curr_pc = 0U;
|
|
while (curr_pc < length) {
|
|
new_size = (duk_size_t) (curr_offset + DUK_PC2LINE_MAX_DIFF_LENGTH);
|
|
duk_hbuffer_resize(thr, h_buf, new_size, new_size);
|
|
|
|
hdr = (duk_uint32_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, h_buf);
|
|
DUK_ASSERT(hdr != NULL);
|
|
DUK_ASSERT(curr_pc < length);
|
|
hdr_index = 1 + (curr_pc / DUK_PC2LINE_SKIP) * 2;
|
|
curr_line = (duk_int_fast32_t) instrs[curr_pc].line;
|
|
hdr[hdr_index + 0] = (duk_uint32_t) curr_line;
|
|
hdr[hdr_index + 1] = (duk_uint32_t) curr_offset;
|
|
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("hdr[%ld]: pc=%ld line=%ld offset=%ld",
|
|
(long) (curr_pc / DUK_PC2LINE_SKIP),
|
|
(long) curr_pc,
|
|
(long) hdr[hdr_index + 0],
|
|
(long) hdr[hdr_index + 1]));
|
|
#endif
|
|
|
|
DUK_MEMZERO(be_ctx, sizeof(*be_ctx));
|
|
be_ctx->data = ((duk_uint8_t *) hdr) + curr_offset;
|
|
be_ctx->length = (duk_size_t) DUK_PC2LINE_MAX_DIFF_LENGTH;
|
|
|
|
for (;;) {
|
|
curr_pc++;
|
|
if ( ((curr_pc % DUK_PC2LINE_SKIP) == 0) || /* end of diff run */
|
|
(curr_pc >= length) ) { /* end of bytecode */
|
|
break;
|
|
}
|
|
DUK_ASSERT(curr_pc < length);
|
|
next_line = (duk_int32_t) instrs[curr_pc].line;
|
|
diff_line = next_line - curr_line;
|
|
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("curr_line=%ld, next_line=%ld -> diff_line=%ld",
|
|
(long) curr_line, (long) next_line, (long) diff_line));
|
|
#endif
|
|
|
|
if (diff_line == 0) {
|
|
/* 0 */
|
|
duk_be_encode(be_ctx, 0, 1);
|
|
} else if (diff_line >= 1 && diff_line <= 4) {
|
|
/* 1 0 <2 bits> */
|
|
duk_be_encode(be_ctx, (0x02 << 2) + (diff_line - 1), 4);
|
|
} else if (diff_line >= -0x80 && diff_line <= 0x7f) {
|
|
/* 1 1 0 <8 bits> */
|
|
DUK_ASSERT(diff_line + 0x80 >= 0 && diff_line + 0x80 <= 0xff);
|
|
duk_be_encode(be_ctx, (0x06 << 8) + (diff_line + 0x80), 11);
|
|
} else {
|
|
/* 1 1 1 <32 bits>
|
|
* Encode in two parts to avoid bitencode 24-bit limitation
|
|
*/
|
|
duk_be_encode(be_ctx, (0x07 << 16) + ((next_line >> 16) & 0xffffU), 19);
|
|
duk_be_encode(be_ctx, next_line & 0xffffU, 16);
|
|
}
|
|
|
|
curr_line = next_line;
|
|
}
|
|
|
|
duk_be_finish(be_ctx);
|
|
DUK_ASSERT(!be_ctx->truncated);
|
|
|
|
/* be_ctx->offset == length of encoded bitstream */
|
|
curr_offset += (duk_uint_fast32_t) be_ctx->offset;
|
|
}
|
|
|
|
/* compact */
|
|
new_size = (duk_size_t) curr_offset;
|
|
duk_hbuffer_resize(thr, h_buf, new_size, new_size);
|
|
|
|
(void) duk_to_fixed_buffer(ctx, -1, NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final pc2line data: pc_limit=%ld, length=%ld, %lf bits/opcode --> %!ixT",
|
|
(long) length, (long) new_size, (double) new_size * 8.0 / (double) length,
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
}
|
|
|
|
/* PC is unsigned. If caller does PC arithmetic and gets a negative result,
|
|
* it will map to a large PC which is out of bounds and causes a zero to be
|
|
* returned.
|
|
*/
|
|
DUK_LOCAL duk_uint_fast32_t duk__hobject_pc2line_query_raw(duk_hthread *thr, duk_hbuffer_fixed *buf, duk_uint_fast32_t pc) {
|
|
duk_bitdecoder_ctx bd_ctx_alloc;
|
|
duk_bitdecoder_ctx *bd_ctx = &bd_ctx_alloc;
|
|
duk_uint32_t *hdr;
|
|
duk_uint_fast32_t start_offset;
|
|
duk_uint_fast32_t pc_limit;
|
|
duk_uint_fast32_t hdr_index;
|
|
duk_uint_fast32_t pc_base;
|
|
duk_uint_fast32_t n;
|
|
duk_uint_fast32_t curr_line;
|
|
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(!DUK_HBUFFER_HAS_DYNAMIC((duk_hbuffer *) buf));
|
|
DUK_UNREF(thr);
|
|
|
|
/*
|
|
* Use the index in the header to find the right starting point
|
|
*/
|
|
|
|
hdr_index = pc / DUK_PC2LINE_SKIP;
|
|
pc_base = hdr_index * DUK_PC2LINE_SKIP;
|
|
n = pc - pc_base;
|
|
|
|
if (DUK_HBUFFER_FIXED_GET_SIZE(buf) <= sizeof(duk_uint32_t)) {
|
|
DUK_DD(DUK_DDPRINT("pc2line lookup failed: buffer is smaller than minimal header"));
|
|
goto error;
|
|
}
|
|
|
|
hdr = (duk_uint32_t *) DUK_HBUFFER_FIXED_GET_DATA_PTR(thr->heap, buf);
|
|
pc_limit = hdr[0];
|
|
if (pc >= pc_limit) {
|
|
/* Note: pc is unsigned and cannot be negative */
|
|
DUK_DD(DUK_DDPRINT("pc2line lookup failed: pc out of bounds (pc=%ld, limit=%ld)",
|
|
(long) pc, (long) pc_limit));
|
|
goto error;
|
|
}
|
|
|
|
curr_line = hdr[1 + hdr_index * 2];
|
|
start_offset = hdr[1 + hdr_index * 2 + 1];
|
|
if ((duk_size_t) start_offset > DUK_HBUFFER_FIXED_GET_SIZE(buf)) {
|
|
DUK_DD(DUK_DDPRINT("pc2line lookup failed: start_offset out of bounds (start_offset=%ld, buffer_size=%ld)",
|
|
(long) start_offset, (long) DUK_HBUFFER_GET_SIZE((duk_hbuffer *) buf)));
|
|
goto error;
|
|
}
|
|
|
|
/*
|
|
* Iterate the bitstream (line diffs) until PC is reached
|
|
*/
|
|
|
|
DUK_MEMZERO(bd_ctx, sizeof(*bd_ctx));
|
|
bd_ctx->data = ((duk_uint8_t *) hdr) + start_offset;
|
|
bd_ctx->length = (duk_size_t) (DUK_HBUFFER_FIXED_GET_SIZE(buf) - start_offset);
|
|
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("pc2line lookup: pc=%ld -> hdr_index=%ld, pc_base=%ld, n=%ld, start_offset=%ld",
|
|
(long) pc, (long) hdr_index, (long) pc_base, (long) n, (long) start_offset));
|
|
#endif
|
|
|
|
while (n > 0) {
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("lookup: n=%ld, curr_line=%ld", (long) n, (long) curr_line));
|
|
#endif
|
|
|
|
if (duk_bd_decode_flag(bd_ctx)) {
|
|
if (duk_bd_decode_flag(bd_ctx)) {
|
|
if (duk_bd_decode_flag(bd_ctx)) {
|
|
/* 1 1 1 <32 bits> */
|
|
duk_uint_fast32_t t;
|
|
t = duk_bd_decode(bd_ctx, 16); /* workaround: max nbits = 24 now */
|
|
t = (t << 16) + duk_bd_decode(bd_ctx, 16);
|
|
curr_line = t;
|
|
} else {
|
|
/* 1 1 0 <8 bits> */
|
|
duk_uint_fast32_t t;
|
|
t = duk_bd_decode(bd_ctx, 8);
|
|
curr_line = curr_line + t - 0x80;
|
|
}
|
|
} else {
|
|
/* 1 0 <2 bits> */
|
|
duk_uint_fast32_t t;
|
|
t = duk_bd_decode(bd_ctx, 2);
|
|
curr_line = curr_line + t + 1;
|
|
}
|
|
} else {
|
|
/* 0: no change */
|
|
}
|
|
|
|
n--;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("pc2line lookup result: pc %ld -> line %ld", (long) pc, (long) curr_line));
|
|
return curr_line;
|
|
|
|
error:
|
|
DUK_D(DUK_DPRINT("pc2line conversion failed for pc=%ld", (long) pc));
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL duk_uint_fast32_t duk_hobject_pc2line_query(duk_context *ctx, duk_idx_t idx_func, duk_uint_fast32_t pc) {
|
|
duk_hbuffer_fixed *pc2line;
|
|
duk_uint_fast32_t line;
|
|
|
|
/* XXX: now that pc2line is used by the debugger quite heavily in
|
|
* checked execution, this should be optimized to avoid value stack
|
|
* and perhaps also implement some form of pc2line caching (see
|
|
* future work in debugger.rst).
|
|
*/
|
|
|
|
duk_get_prop_stridx(ctx, idx_func, DUK_STRIDX_INT_PC2LINE);
|
|
pc2line = (duk_hbuffer_fixed *) duk_get_hbuffer(ctx, -1);
|
|
if (pc2line != NULL) {
|
|
DUK_ASSERT(!DUK_HBUFFER_HAS_DYNAMIC((duk_hbuffer *) pc2line));
|
|
line = duk__hobject_pc2line_query_raw((duk_hthread *) ctx, pc2line, (duk_uint_fast32_t) pc);
|
|
} else {
|
|
line = 0;
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
return line;
|
|
}
|
|
|
|
#endif /* DUK_USE_PC2LINE */
|
|
#line 1 "duk_hobject_props.c"
|
|
/*
|
|
* Hobject property set/get functionality.
|
|
*
|
|
* This is very central functionality for size, performance, and compliance.
|
|
* It is also rather intricate; see hobject-algorithms.txt for discussion on
|
|
* the algorithms and memory-management.txt for discussion on refcounts and
|
|
* side effect issues.
|
|
*
|
|
* Notes:
|
|
*
|
|
* - It might be tempting to assert "refcount nonzero" for objects
|
|
* being operated on, but that's not always correct: objects with
|
|
* a zero refcount may be operated on by the refcount implementation
|
|
* (finalization) for instance. Hence, no refcount assertions are made.
|
|
*
|
|
* - Many operations (memory allocation, identifier operations, etc)
|
|
* may cause arbitrary side effects (e.g. through GC and finalization).
|
|
* These side effects may invalidate duk_tval pointers which point to
|
|
* areas subject to reallocation (like value stack). Heap objects
|
|
* themselves have stable pointers. Holding heap object pointers or
|
|
* duk_tval copies is not problematic with respect to side effects;
|
|
* care must be taken when holding and using argument duk_tval pointers.
|
|
*
|
|
* - If a finalizer is executed, it may operate on the the same object
|
|
* we're currently dealing with. For instance, the finalizer might
|
|
* delete a certain property which has already been looked up and
|
|
* confirmed to exist. Ideally finalizers would be disabled if GC
|
|
* happens during property access. At the moment property table realloc
|
|
* disables finalizers, and all DECREFs may cause arbitrary changes so
|
|
* handle DECREF carefully.
|
|
*
|
|
* - The order of operations for a DECREF matters. When DECREF is executed,
|
|
* the entire object graph must be consistent; note that a refzero may
|
|
* lead to a mark-and-sweep through a refcount finalizer.
|
|
*/
|
|
|
|
/*
|
|
* XXX: array indices are mostly typed as duk_uint32_t here; duk_uarridx_t
|
|
* might be more appropriate.
|
|
*/
|
|
|
|
/*
|
|
* XXX: duk_uint_fast32_t should probably be used in many places here.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Local defines
|
|
*/
|
|
|
|
#define DUK__NO_ARRAY_INDEX DUK_HSTRING_NO_ARRAY_INDEX
|
|
|
|
/* hash probe sequence */
|
|
#define DUK__HASH_INITIAL(hash,h_size) DUK_HOBJECT_HASH_INITIAL((hash),(h_size))
|
|
#define DUK__HASH_PROBE_STEP(hash) DUK_HOBJECT_HASH_PROBE_STEP((hash))
|
|
|
|
/* marker values for hash part */
|
|
#define DUK__HASH_UNUSED DUK_HOBJECT_HASHIDX_UNUSED
|
|
#define DUK__HASH_DELETED DUK_HOBJECT_HASHIDX_DELETED
|
|
|
|
/* valstack space that suffices for all local calls, including recursion
|
|
* of other than Duktape calls (getters etc)
|
|
*/
|
|
#define DUK__VALSTACK_SPACE 10
|
|
|
|
/* valstack space allocated especially for proxy lookup which does a
|
|
* recursive property lookup
|
|
*/
|
|
#define DUK__VALSTACK_PROXY_LOOKUP 20
|
|
|
|
/*
|
|
* Local prototypes
|
|
*/
|
|
|
|
#define DUK__DESC_FLAG_PUSH_VALUE (1 << 0) /* push value to stack */
|
|
#define DUK__DESC_FLAG_IGNORE_PROTOLOOP (1 << 1) /* don't throw for prototype loop */
|
|
|
|
DUK_LOCAL_DECL duk_bool_t duk__check_arguments_map_for_get(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *temp_desc);
|
|
DUK_LOCAL_DECL void duk__check_arguments_map_for_put(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *temp_desc, duk_bool_t throw_flag);
|
|
DUK_LOCAL_DECL void duk__check_arguments_map_for_delete(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *temp_desc);
|
|
|
|
DUK_LOCAL_DECL duk_bool_t duk__handle_put_array_length_smaller(duk_hthread *thr, duk_hobject *obj, duk_uint32_t old_len, duk_uint32_t new_len, duk_bool_t force_flag, duk_uint32_t *out_result_len);
|
|
DUK_LOCAL_DECL duk_bool_t duk__handle_put_array_length(duk_hthread *thr, duk_hobject *obj);
|
|
|
|
DUK_LOCAL_DECL duk_bool_t duk__get_property_desc(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *out_desc, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL duk_bool_t duk__get_own_property_desc_raw(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_uint32_t arr_idx, duk_propdesc *out_desc, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL duk_bool_t duk__get_own_property_desc(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *out_desc, duk_small_uint_t flags);
|
|
|
|
/*
|
|
* Misc helpers
|
|
*/
|
|
|
|
/* Convert a duk_tval number (caller checks) to a 32-bit index. Returns
|
|
* DUK__NO_ARRAY_INDEX if the number is not whole or not a valid array
|
|
* index.
|
|
*/
|
|
/* XXX: for fastints, could use a variant which assumes a double duk_tval
|
|
* (and doesn't need to check for fastint again).
|
|
*/
|
|
DUK_LOCAL duk_uint32_t duk__tval_number_to_arr_idx(duk_tval *tv) {
|
|
duk_double_t dbl;
|
|
duk_uint32_t idx;
|
|
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
|
|
dbl = DUK_TVAL_GET_NUMBER(tv);
|
|
idx = (duk_uint32_t) dbl;
|
|
if ((duk_double_t) idx == dbl) {
|
|
/* Is whole and within 32 bit range. If the value happens to be 0xFFFFFFFF,
|
|
* it's not a valid array index but will then match DUK__NO_ARRAY_INDEX.
|
|
*/
|
|
return idx;
|
|
}
|
|
return DUK__NO_ARRAY_INDEX;
|
|
}
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Convert a duk_tval fastint (caller checks) to a 32-bit index. */
|
|
DUK_LOCAL duk_uint32_t duk__tval_fastint_to_arr_idx(duk_tval *tv) {
|
|
duk_int64_t t;
|
|
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_FASTINT(tv));
|
|
|
|
t = DUK_TVAL_GET_FASTINT(tv);
|
|
if ((t & ~0xffffffffULL) != 0) {
|
|
/* Catches >0x100000000 and negative values. */
|
|
return DUK__NO_ARRAY_INDEX;
|
|
}
|
|
|
|
/* If the value happens to be 0xFFFFFFFF, it's not a valid array index
|
|
* but will then match DUK__NO_ARRAY_INDEX.
|
|
*/
|
|
return (duk_uint32_t) t;
|
|
}
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
/* Push an arbitrary duk_tval to the stack, coerce it to string, and return
|
|
* both a duk_hstring pointer and an array index (or DUK__NO_ARRAY_INDEX).
|
|
*/
|
|
DUK_LOCAL duk_uint32_t duk__push_tval_to_hstring_arr_idx(duk_context *ctx, duk_tval *tv, duk_hstring **out_h) {
|
|
duk_uint32_t arr_idx;
|
|
duk_hstring *h;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(out_h != NULL);
|
|
|
|
duk_push_tval(ctx, tv);
|
|
duk_to_string(ctx, -1);
|
|
h = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
*out_h = h;
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_FAST(h);
|
|
return arr_idx;
|
|
}
|
|
|
|
/* String is an own (virtual) property of a lightfunc. */
|
|
DUK_LOCAL duk_bool_t duk__key_is_lightfunc_ownprop(duk_hthread *thr, duk_hstring *key) {
|
|
return (key == DUK_HTHREAD_STRING_LENGTH(thr) ||
|
|
key == DUK_HTHREAD_STRING_NAME(thr));
|
|
}
|
|
|
|
/*
|
|
* Helpers for managing property storage size
|
|
*/
|
|
|
|
/* Get default hash part size for a certain entry part size. */
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
DUK_LOCAL duk_uint32_t duk__get_default_h_size(duk_uint32_t e_size) {
|
|
DUK_ASSERT(e_size <= DUK_HOBJECT_MAX_PROPERTIES);
|
|
|
|
if (e_size >= DUK_HOBJECT_E_USE_HASH_LIMIT) {
|
|
duk_uint32_t res;
|
|
|
|
/* result: hash_prime(floor(1.2 * e_size)) */
|
|
res = duk_util_get_hash_prime(e_size + e_size / DUK_HOBJECT_H_SIZE_DIVISOR);
|
|
|
|
/* if fails, e_size will be zero = not an issue, except performance-wise */
|
|
DUK_ASSERT(res == 0 || res > e_size);
|
|
return res;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* USE_PROP_HASH_PART */
|
|
|
|
/* Get minimum entry part growth for a certain size. */
|
|
DUK_LOCAL duk_uint32_t duk__get_min_grow_e(duk_uint32_t e_size) {
|
|
duk_uint32_t res;
|
|
|
|
DUK_ASSERT(e_size <= DUK_HOBJECT_MAX_PROPERTIES);
|
|
|
|
res = (e_size + DUK_HOBJECT_E_MIN_GROW_ADD) / DUK_HOBJECT_E_MIN_GROW_DIVISOR;
|
|
DUK_ASSERT(res >= 1); /* important for callers */
|
|
return res;
|
|
}
|
|
|
|
/* Get minimum array part growth for a certain size. */
|
|
DUK_LOCAL duk_uint32_t duk__get_min_grow_a(duk_uint32_t a_size) {
|
|
duk_uint32_t res;
|
|
|
|
DUK_ASSERT((duk_size_t) a_size <= DUK_HOBJECT_MAX_PROPERTIES);
|
|
|
|
res = (a_size + DUK_HOBJECT_A_MIN_GROW_ADD) / DUK_HOBJECT_A_MIN_GROW_DIVISOR;
|
|
DUK_ASSERT(res >= 1); /* important for callers */
|
|
return res;
|
|
}
|
|
|
|
/* Count actually used entry part entries (non-NULL keys). */
|
|
DUK_LOCAL duk_uint32_t duk__count_used_e_keys(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_uint_fast32_t i;
|
|
duk_uint_fast32_t n = 0;
|
|
duk_hstring **e;
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
e = DUK_HOBJECT_E_GET_KEY_BASE(thr->heap, obj);
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
if (*e++) {
|
|
n++;
|
|
}
|
|
}
|
|
return (duk_uint32_t) n;
|
|
}
|
|
|
|
/* Count actually used array part entries and array minimum size.
|
|
* NOTE: 'out_min_size' can be computed much faster by starting from the
|
|
* end and breaking out early when finding first used entry, but this is
|
|
* not needed now.
|
|
*/
|
|
DUK_LOCAL void duk__compute_a_stats(duk_hthread *thr, duk_hobject *obj, duk_uint32_t *out_used, duk_uint32_t *out_min_size) {
|
|
duk_uint_fast32_t i;
|
|
duk_uint_fast32_t used = 0;
|
|
duk_uint_fast32_t highest_idx = (duk_uint_fast32_t) -1; /* see below */
|
|
duk_tval *a;
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(out_used != NULL);
|
|
DUK_ASSERT(out_min_size != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
a = DUK_HOBJECT_A_GET_BASE(thr->heap, obj);
|
|
for (i = 0; i < DUK_HOBJECT_GET_ASIZE(obj); i++) {
|
|
duk_tval *tv = a++;
|
|
if (!DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
used++;
|
|
highest_idx = i;
|
|
}
|
|
}
|
|
|
|
/* Initial value for highest_idx is -1 coerced to unsigned. This
|
|
* is a bit odd, but (highest_idx + 1) will then wrap to 0 below
|
|
* for out_min_size as intended.
|
|
*/
|
|
|
|
*out_used = used;
|
|
*out_min_size = highest_idx + 1; /* 0 if no used entries */
|
|
}
|
|
|
|
/* Check array density and indicate whether or not the array part should be abandoned. */
|
|
DUK_LOCAL duk_bool_t duk__abandon_array_density_check(duk_uint32_t a_used, duk_uint32_t a_size) {
|
|
/*
|
|
* Array abandon check; abandon if:
|
|
*
|
|
* new_used / new_size < limit
|
|
* new_used < limit * new_size || limit is 3 bits fixed point
|
|
* new_used < limit' / 8 * new_size || *8
|
|
* 8*new_used < limit' * new_size || :8
|
|
* new_used < limit' * (new_size / 8)
|
|
*
|
|
* Here, new_used = a_used, new_size = a_size.
|
|
*
|
|
* Note: some callers use approximate values for a_used and/or a_size
|
|
* (e.g. dropping a '+1' term). This doesn't affect the usefulness
|
|
* of the check, but may confuse debugging.
|
|
*/
|
|
|
|
return (a_used < DUK_HOBJECT_A_ABANDON_LIMIT * (a_size >> 3));
|
|
}
|
|
|
|
/* Fast check for extending array: check whether or not a slow density check is required. */
|
|
DUK_LOCAL duk_bool_t duk__abandon_array_slow_check_required(duk_uint32_t arr_idx, duk_uint32_t old_size) {
|
|
/*
|
|
* In a fast check we assume old_size equals old_used (i.e., existing
|
|
* array is fully dense).
|
|
*
|
|
* Slow check if:
|
|
*
|
|
* (new_size - old_size) / old_size > limit
|
|
* new_size - old_size > limit * old_size
|
|
* new_size > (1 + limit) * old_size || limit' is 3 bits fixed point
|
|
* new_size > (1 + (limit' / 8)) * old_size || * 8
|
|
* 8 * new_size > (8 + limit') * old_size || : 8
|
|
* new_size > (8 + limit') * (old_size / 8)
|
|
* new_size > limit'' * (old_size / 8) || limit'' = 9 -> max 25% increase
|
|
* arr_idx + 1 > limit'' * (old_size / 8)
|
|
*
|
|
* This check doesn't work well for small values, so old_size is rounded
|
|
* up for the check (and the '+ 1' of arr_idx can be ignored in practice):
|
|
*
|
|
* arr_idx > limit'' * ((old_size + 7) / 8)
|
|
*/
|
|
|
|
return (arr_idx > DUK_HOBJECT_A_FAST_RESIZE_LIMIT * ((old_size + 7) >> 3));
|
|
}
|
|
|
|
/*
|
|
* Proxy helpers
|
|
*/
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
DUK_INTERNAL duk_bool_t duk_hobject_proxy_check(duk_hthread *thr, duk_hobject *obj, duk_hobject **out_target, duk_hobject **out_handler) {
|
|
duk_tval *tv_target;
|
|
duk_tval *tv_handler;
|
|
duk_hobject *h_target;
|
|
duk_hobject *h_handler;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(out_target != NULL);
|
|
DUK_ASSERT(out_handler != NULL);
|
|
|
|
/* Caller doesn't need to check exotic proxy behavior (but does so for
|
|
* some fast paths).
|
|
*/
|
|
if (DUK_LIKELY(!DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(obj))) {
|
|
return 0;
|
|
}
|
|
|
|
tv_handler = duk_hobject_find_existing_entry_tval_ptr(thr->heap, obj, DUK_HTHREAD_STRING_INT_HANDLER(thr));
|
|
if (!tv_handler) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REVOKED);
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv_handler));
|
|
h_handler = DUK_TVAL_GET_OBJECT(tv_handler);
|
|
DUK_ASSERT(h_handler != NULL);
|
|
*out_handler = h_handler;
|
|
tv_handler = NULL; /* avoid issues with relocation */
|
|
|
|
tv_target = duk_hobject_find_existing_entry_tval_ptr(thr->heap, obj, DUK_HTHREAD_STRING_INT_TARGET(thr));
|
|
if (!tv_target) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REVOKED);
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv_target));
|
|
h_target = DUK_TVAL_GET_OBJECT(tv_target);
|
|
DUK_ASSERT(h_target != NULL);
|
|
*out_target = h_target;
|
|
tv_target = NULL; /* avoid issues with relocation */
|
|
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
DUK_LOCAL duk_bool_t duk__proxy_check_prop(duk_hthread *thr, duk_hobject *obj, duk_small_uint_t stridx_trap, duk_tval *tv_key, duk_hobject **out_target) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *h_handler;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(tv_key != NULL);
|
|
DUK_ASSERT(out_target != NULL);
|
|
|
|
if (!duk_hobject_proxy_check(thr, obj, out_target, &h_handler)) {
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(*out_target != NULL);
|
|
DUK_ASSERT(h_handler != NULL);
|
|
|
|
/* XXX: At the moment Duktape accesses internal keys like _Finalizer using a
|
|
* normal property set/get which would allow a proxy handler to interfere with
|
|
* such behavior and to get access to internal key strings. This is not a problem
|
|
* as such because internal key strings can be created in other ways too (e.g.
|
|
* through buffers). The best fix is to change Duktape internal lookups to
|
|
* skip proxy behavior. Until that, internal property accesses bypass the
|
|
* proxy and are applied to the target (as if the handler did not exist).
|
|
* This has some side effects, see test-bi-proxy-internal-keys.js.
|
|
*/
|
|
|
|
if (DUK_TVAL_IS_STRING(tv_key)) {
|
|
duk_hstring *h_key = (duk_hstring *) DUK_TVAL_GET_STRING(tv_key);
|
|
DUK_ASSERT(h_key != NULL);
|
|
if (DUK_HSTRING_HAS_INTERNAL(h_key)) {
|
|
DUK_DDD(DUK_DDDPRINT("internal key, skip proxy handler and apply to target"));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* The handler is looked up with a normal property lookup; it may be an
|
|
* accessor or the handler object itself may be a proxy object. If the
|
|
* handler is a proxy, we need to extend the valstack as we make a
|
|
* recursive proxy check without a function call in between (in fact
|
|
* there is no limit to the potential recursion here).
|
|
*
|
|
* (For sanity, proxy creation rejects another proxy object as either
|
|
* the handler or the target at the moment so recursive proxy cases
|
|
* are not realized now.)
|
|
*/
|
|
|
|
/* XXX: C recursion limit if proxies are allowed as handler/target values */
|
|
|
|
duk_require_stack(ctx, DUK__VALSTACK_PROXY_LOOKUP);
|
|
duk_push_hobject(ctx, h_handler);
|
|
if (duk_get_prop_stridx(ctx, -1, stridx_trap)) {
|
|
/* -> [ ... handler trap ] */
|
|
duk_insert(ctx, -2); /* -> [ ... trap handler ] */
|
|
|
|
/* stack prepped for func call: [ ... trap handler ] */
|
|
return 1;
|
|
} else {
|
|
duk_pop_2(ctx);
|
|
return 0;
|
|
}
|
|
}
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
/*
|
|
* Reallocate property allocation, moving properties to the new allocation.
|
|
*
|
|
* Includes key compaction, rehashing, and can also optionally abandoning
|
|
* the array part, 'migrating' array entries into the beginning of the
|
|
* new entry part. Arguments are not validated here, so e.g. new_h_size
|
|
* MUST be a valid prime.
|
|
*
|
|
* There is no support for in-place reallocation or just compacting keys
|
|
* without resizing the property allocation. This is intentional to keep
|
|
* code size minimal.
|
|
*
|
|
* The implementation is relatively straightforward, except for the array
|
|
* abandonment process. Array abandonment requires that new string keys
|
|
* are interned, which may trigger GC. All keys interned so far must be
|
|
* reachable for GC at all times; valstack is used for that now.
|
|
*
|
|
* Also, a GC triggered during this reallocation process must not interfere
|
|
* with the object being resized. This is currently controlled by using
|
|
* heap->mark_and_sweep_base_flags to indicate that no finalizers will be
|
|
* executed (as they can affect ANY object) and no objects are compacted
|
|
* (it would suffice to protect this particular object only, though).
|
|
*
|
|
* Note: a non-checked variant would be nice but is a bit tricky to
|
|
* implement for the array abandonment process. It's easy for
|
|
* everything else.
|
|
*
|
|
* Note: because we need to potentially resize the valstack (as part
|
|
* of abandoning the array part), any tval pointers to the valstack
|
|
* will become invalid after this call.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__realloc_props(duk_hthread *thr,
|
|
duk_hobject *obj,
|
|
duk_uint32_t new_e_size,
|
|
duk_uint32_t new_a_size,
|
|
duk_uint32_t new_h_size,
|
|
duk_bool_t abandon_array) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
duk_small_uint_t prev_mark_and_sweep_base_flags;
|
|
#endif
|
|
duk_uint32_t new_alloc_size;
|
|
duk_uint32_t new_e_size_adjusted;
|
|
duk_uint8_t *new_p;
|
|
duk_hstring **new_e_k;
|
|
duk_propvalue *new_e_pv;
|
|
duk_uint8_t *new_e_f;
|
|
duk_tval *new_a;
|
|
duk_uint32_t *new_h;
|
|
duk_uint32_t new_e_next;
|
|
duk_uint_fast32_t i;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(!abandon_array || new_a_size == 0); /* if abandon_array, new_a_size must be 0 */
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROPS(thr->heap, obj) != NULL || (DUK_HOBJECT_GET_ESIZE(obj) == 0 && DUK_HOBJECT_GET_ASIZE(obj) == 0));
|
|
DUK_ASSERT(new_h_size == 0 || new_h_size >= new_e_size); /* required to guarantee success of rehashing,
|
|
* intentionally use unadjusted new_e_size
|
|
*/
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/*
|
|
* Pre resize assertions.
|
|
*/
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
/* XXX: pre-checks (such as no duplicate keys) */
|
|
#endif
|
|
|
|
/*
|
|
* For property layout 1, tweak e_size to ensure that the whole entry
|
|
* part (key + val + flags) is a suitable multiple for alignment
|
|
* (platform specific).
|
|
*
|
|
* Property layout 2 does not require this tweaking and is preferred
|
|
* on low RAM platforms requiring alignment.
|
|
*/
|
|
|
|
#if defined(DUK_USE_HOBJECT_LAYOUT_2) || defined(DUK_USE_HOBJECT_LAYOUT_3)
|
|
DUK_DDD(DUK_DDDPRINT("using layout 2 or 3, no need to pad e_size: %ld", (long) new_e_size));
|
|
new_e_size_adjusted = new_e_size;
|
|
#elif defined(DUK_USE_HOBJECT_LAYOUT_1) && (DUK_HOBJECT_ALIGN_TARGET == 1)
|
|
DUK_DDD(DUK_DDDPRINT("using layout 1, but no need to pad e_size: %ld", (long) new_e_size));
|
|
new_e_size_adjusted = new_e_size;
|
|
#elif defined(DUK_USE_HOBJECT_LAYOUT_1) && ((DUK_HOBJECT_ALIGN_TARGET == 4) || (DUK_HOBJECT_ALIGN_TARGET == 8))
|
|
new_e_size_adjusted = (new_e_size + DUK_HOBJECT_ALIGN_TARGET - 1) & (~(DUK_HOBJECT_ALIGN_TARGET - 1));
|
|
DUK_DDD(DUK_DDDPRINT("using layout 1, and alignment target is %ld, adjusted e_size: %ld -> %ld",
|
|
(long) DUK_HOBJECT_ALIGN_TARGET, (long) new_e_size, (long) new_e_size_adjusted));
|
|
DUK_ASSERT(new_e_size_adjusted >= new_e_size);
|
|
#else
|
|
#error invalid hobject layout defines
|
|
#endif
|
|
|
|
/*
|
|
* Debug logging after adjustment.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("attempt to resize hobject %p props (%ld -> %ld bytes), from {p=%p,e_size=%ld,e_next=%ld,a_size=%ld,h_size=%ld} to "
|
|
"{e_size=%ld,a_size=%ld,h_size=%ld}, abandon_array=%ld, unadjusted new_e_size=%ld",
|
|
(void *) obj,
|
|
(long) DUK_HOBJECT_P_COMPUTE_SIZE(DUK_HOBJECT_GET_ESIZE(obj),
|
|
DUK_HOBJECT_GET_ASIZE(obj),
|
|
DUK_HOBJECT_GET_HSIZE(obj)),
|
|
(long) DUK_HOBJECT_P_COMPUTE_SIZE(new_e_size_adjusted, new_a_size, new_h_size),
|
|
(void *) DUK_HOBJECT_GET_PROPS(thr->heap, obj),
|
|
(long) DUK_HOBJECT_GET_ESIZE(obj),
|
|
(long) DUK_HOBJECT_GET_ENEXT(obj),
|
|
(long) DUK_HOBJECT_GET_ASIZE(obj),
|
|
(long) DUK_HOBJECT_GET_HSIZE(obj),
|
|
(long) new_e_size_adjusted,
|
|
(long) new_a_size,
|
|
(long) new_h_size,
|
|
(long) abandon_array,
|
|
(long) new_e_size));
|
|
|
|
/*
|
|
* Property count check. This is the only point where we ensure that
|
|
* we don't get more (allocated) property space that we can handle.
|
|
* There aren't hard limits as such, but some algorithms fail (e.g.
|
|
* finding next higher prime, selecting hash part size) if we get too
|
|
* close to the 4G property limit.
|
|
*
|
|
* Since this works based on allocation size (not actually used size),
|
|
* the limit is a bit approximate but good enough in practice.
|
|
*/
|
|
|
|
if (new_e_size_adjusted + new_a_size > DUK_HOBJECT_MAX_PROPERTIES) {
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_OBJECT_PROPERTY_LIMIT);
|
|
}
|
|
|
|
/*
|
|
* Compute new alloc size and alloc new area.
|
|
*
|
|
* The new area is allocated as a dynamic buffer and placed into the
|
|
* valstack for reachability. The actual buffer is then detached at
|
|
* the end.
|
|
*
|
|
* Note: heap_mark_and_sweep_base_flags are altered here to ensure
|
|
* no-one touches this object while we're resizing and rehashing it.
|
|
* The flags must be reset on every exit path after it. Finalizers
|
|
* and compaction is prevented currently for all objects while it
|
|
* would be enough to restrict it only for the current object.
|
|
*/
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
prev_mark_and_sweep_base_flags = thr->heap->mark_and_sweep_base_flags;
|
|
thr->heap->mark_and_sweep_base_flags |=
|
|
DUK_MS_FLAG_NO_FINALIZERS | /* avoid attempts to add/remove object keys */
|
|
DUK_MS_FLAG_NO_OBJECT_COMPACTION; /* avoid attempt to compact the current object */
|
|
#endif
|
|
|
|
new_alloc_size = DUK_HOBJECT_P_COMPUTE_SIZE(new_e_size_adjusted, new_a_size, new_h_size);
|
|
DUK_DDD(DUK_DDDPRINT("new hobject allocation size is %ld", (long) new_alloc_size));
|
|
if (new_alloc_size == 0) {
|
|
/* for zero size, don't push anything on valstack */
|
|
DUK_ASSERT(new_e_size_adjusted == 0);
|
|
DUK_ASSERT(new_a_size == 0);
|
|
DUK_ASSERT(new_h_size == 0);
|
|
new_p = NULL;
|
|
} else {
|
|
/* This may trigger mark-and-sweep with arbitrary side effects,
|
|
* including an attempted resize of the object we're resizing,
|
|
* executing a finalizer which may add or remove properties of
|
|
* the object we're resizing etc.
|
|
*/
|
|
|
|
/* Note: buffer is dynamic so that we can 'steal' the actual
|
|
* allocation later.
|
|
*/
|
|
|
|
new_p = (duk_uint8_t *) duk_push_dynamic_buffer(ctx, new_alloc_size); /* errors out if out of memory */
|
|
DUK_ASSERT(new_p != NULL); /* since new_alloc_size > 0 */
|
|
}
|
|
|
|
/* Set up pointers to the new property area: this is hidden behind a macro
|
|
* because it is memory layout specific.
|
|
*/
|
|
DUK_HOBJECT_P_SET_REALLOC_PTRS(new_p, new_e_k, new_e_pv, new_e_f, new_a, new_h,
|
|
new_e_size_adjusted, new_a_size, new_h_size);
|
|
DUK_UNREF(new_h); /* happens when hash part dropped */
|
|
new_e_next = 0;
|
|
|
|
/* if new_p == NULL, all of these pointers are NULL */
|
|
DUK_ASSERT((new_p != NULL) ||
|
|
(new_e_k == NULL && new_e_pv == NULL && new_e_f == NULL &&
|
|
new_a == NULL && new_h == NULL));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("new alloc size %ld, new_e_k=%p, new_e_pv=%p, new_e_f=%p, new_a=%p, new_h=%p",
|
|
(long) new_alloc_size, (void *) new_e_k, (void *) new_e_pv, (void *) new_e_f,
|
|
(void *) new_a, (void *) new_h));
|
|
|
|
/*
|
|
* Migrate array to start of entries if requested.
|
|
*
|
|
* Note: from an enumeration perspective the order of entry keys matters.
|
|
* Array keys should appear wherever they appeared before the array abandon
|
|
* operation.
|
|
*/
|
|
|
|
if (abandon_array) {
|
|
/*
|
|
* Note: assuming new_a_size == 0, and that entry part contains
|
|
* no conflicting keys, refcounts do not need to be adjusted for
|
|
* the values, as they remain exactly the same.
|
|
*
|
|
* The keys, however, need to be interned, incref'd, and be
|
|
* reachable for GC. Any intern attempt may trigger a GC and
|
|
* claim any non-reachable strings, so every key must be reachable
|
|
* at all times.
|
|
*
|
|
* A longjmp must not occur here, as the new_p allocation would
|
|
* be freed without these keys being decref'd, hence the messy
|
|
* decref handling if intern fails.
|
|
*/
|
|
DUK_ASSERT(new_a_size == 0);
|
|
|
|
for (i = 0; i < DUK_HOBJECT_GET_ASIZE(obj); i++) {
|
|
duk_tval *tv1;
|
|
duk_tval *tv2;
|
|
duk_hstring *key;
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROPS(thr->heap, obj) != NULL);
|
|
|
|
tv1 = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, i);
|
|
if (DUK_TVAL_IS_UNDEFINED_UNUSED(tv1)) {
|
|
continue;
|
|
}
|
|
|
|
DUK_ASSERT(new_p != NULL && new_e_k != NULL &&
|
|
new_e_pv != NULL && new_e_f != NULL);
|
|
|
|
/*
|
|
* Intern key via the valstack to ensure reachability behaves
|
|
* properly. We must avoid longjmp's here so use non-checked
|
|
* primitives.
|
|
*
|
|
* Note: duk_check_stack() potentially reallocs the valstack,
|
|
* invalidating any duk_tval pointers to valstack. Callers
|
|
* must be careful.
|
|
*/
|
|
|
|
/* never shrinks; auto-adds DUK_VALSTACK_INTERNAL_EXTRA, which is generous */
|
|
if (!duk_check_stack(ctx, 1)) {
|
|
goto abandon_error;
|
|
}
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, 1);
|
|
key = duk_heap_string_intern_u32(thr->heap, i);
|
|
if (!key) {
|
|
goto abandon_error;
|
|
}
|
|
duk_push_hstring(ctx, key); /* keep key reachable for GC etc; guaranteed not to fail */
|
|
|
|
/* key is now reachable in the valstack */
|
|
|
|
DUK_HSTRING_INCREF(thr, key); /* second incref for the entry reference */
|
|
new_e_k[new_e_next] = key;
|
|
tv2 = &new_e_pv[new_e_next].v; /* array entries are all plain values */
|
|
DUK_TVAL_SET_TVAL(tv2, tv1);
|
|
new_e_f[new_e_next] = DUK_PROPDESC_FLAG_WRITABLE |
|
|
DUK_PROPDESC_FLAG_ENUMERABLE |
|
|
DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
new_e_next++;
|
|
|
|
/* Note: new_e_next matches pushed temp key count, and nothing can
|
|
* fail above between the push and this point.
|
|
*/
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("abandon array: pop %ld key temps from valstack", (long) new_e_next));
|
|
duk_pop_n(ctx, new_e_next);
|
|
}
|
|
|
|
/*
|
|
* Copy keys and values in the entry part (compacting them at the same time).
|
|
*/
|
|
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
duk_hstring *key;
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROPS(thr->heap, obj) != NULL);
|
|
|
|
key = DUK_HOBJECT_E_GET_KEY(thr->heap, obj, i);
|
|
if (!key) {
|
|
continue;
|
|
}
|
|
|
|
DUK_ASSERT(new_p != NULL && new_e_k != NULL &&
|
|
new_e_pv != NULL && new_e_f != NULL);
|
|
|
|
new_e_k[new_e_next] = key;
|
|
new_e_pv[new_e_next] = DUK_HOBJECT_E_GET_VALUE(thr->heap, obj, i);
|
|
new_e_f[new_e_next] = DUK_HOBJECT_E_GET_FLAGS(thr->heap, obj, i);
|
|
new_e_next++;
|
|
}
|
|
/* the entries [new_e_next, new_e_size_adjusted[ are left uninitialized on purpose (ok, not gc reachable) */
|
|
|
|
/*
|
|
* Copy array elements to new array part.
|
|
*/
|
|
|
|
if (new_a_size > DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
/* copy existing entries as is */
|
|
DUK_ASSERT(new_p != NULL && new_a != NULL);
|
|
if (DUK_HOBJECT_GET_ASIZE(obj) > 0) {
|
|
/* Avoid zero copy with an invalid pointer. If obj->p is NULL,
|
|
* the 'new_a' pointer will be invalid which is not allowed even
|
|
* when copy size is zero.
|
|
*/
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROPS(thr->heap, obj) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_ASIZE(obj) > 0);
|
|
DUK_MEMCPY((void *) new_a, (void *) DUK_HOBJECT_A_GET_BASE(thr->heap, obj), sizeof(duk_tval) * DUK_HOBJECT_GET_ASIZE(obj));
|
|
}
|
|
|
|
/* fill new entries with -unused- (required, gc reachable) */
|
|
for (i = DUK_HOBJECT_GET_ASIZE(obj); i < new_a_size; i++) {
|
|
duk_tval *tv = &new_a[i];
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
}
|
|
} else {
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
/* caller must have decref'd values above new_a_size (if that is necessary) */
|
|
if (!abandon_array) {
|
|
for (i = new_a_size; i < DUK_HOBJECT_GET_ASIZE(obj); i++) {
|
|
duk_tval *tv;
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, i);
|
|
|
|
/* current assertion is quite strong: decref's and set to unused */
|
|
DUK_ASSERT(DUK_TVAL_IS_UNDEFINED_UNUSED(tv));
|
|
}
|
|
}
|
|
#endif
|
|
if (new_a_size > 0) {
|
|
/* Avoid zero copy with an invalid pointer. If obj->p is NULL,
|
|
* the 'new_a' pointer will be invalid which is not allowed even
|
|
* when copy size is zero.
|
|
*/
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROPS(thr->heap, obj) != NULL);
|
|
DUK_ASSERT(new_a_size > 0);
|
|
DUK_MEMCPY((void *) new_a, (void *) DUK_HOBJECT_A_GET_BASE(thr->heap, obj), sizeof(duk_tval) * new_a_size);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Rebuild the hash part always from scratch (guaranteed to finish).
|
|
*
|
|
* Any resize of hash part requires rehashing. In addition, by rehashing
|
|
* get rid of any elements marked deleted (DUK__HASH_DELETED) which is critical
|
|
* to ensuring the hash part never fills up.
|
|
*/
|
|
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
if (DUK_UNLIKELY(new_h_size > 0)) {
|
|
DUK_ASSERT(new_h != NULL);
|
|
|
|
/* fill new_h with u32 0xff = UNUSED */
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROPS(thr->heap, obj) != NULL);
|
|
DUK_ASSERT(new_h_size > 0);
|
|
DUK_MEMSET(new_h, 0xff, sizeof(duk_uint32_t) * new_h_size);
|
|
|
|
DUK_ASSERT(new_e_next <= new_h_size); /* equality not actually possible */
|
|
for (i = 0; i < new_e_next; i++) {
|
|
duk_hstring *key = new_e_k[i];
|
|
duk_uint32_t j, step;
|
|
|
|
DUK_ASSERT(key != NULL);
|
|
j = DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(key), new_h_size);
|
|
step = DUK__HASH_PROBE_STEP(DUK_HSTRING_GET_HASH(key));
|
|
|
|
for (;;) {
|
|
DUK_ASSERT(new_h[j] != DUK__HASH_DELETED); /* should never happen */
|
|
if (new_h[j] == DUK__HASH_UNUSED) {
|
|
DUK_DDD(DUK_DDDPRINT("rebuild hit %ld -> %ld", (long) j, (long) i));
|
|
new_h[j] = i;
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("rebuild miss %ld, step %ld", (long) j, (long) step));
|
|
j = (j + step) % new_h_size;
|
|
|
|
/* guaranteed to finish */
|
|
DUK_ASSERT(j != (duk_uint32_t) DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(key), new_h_size));
|
|
}
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("no hash part, no rehash"));
|
|
}
|
|
#endif /* DUK_USE_HOBJECT_HASH_PART */
|
|
|
|
/*
|
|
* Nice debug log.
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("resized hobject %p props (%ld -> %ld bytes), from {p=%p,e_size=%ld,e_next=%ld,a_size=%ld,h_size=%ld} to "
|
|
"{p=%p,e_size=%ld,e_next=%ld,a_size=%ld,h_size=%ld}, abandon_array=%ld, unadjusted new_e_size=%ld",
|
|
(void *) obj,
|
|
(long) DUK_HOBJECT_P_COMPUTE_SIZE(DUK_HOBJECT_GET_ESIZE(obj),
|
|
DUK_HOBJECT_GET_ASIZE(obj),
|
|
DUK_HOBJECT_GET_HSIZE(obj)),
|
|
(long) new_alloc_size,
|
|
(void *) DUK_HOBJECT_GET_PROPS(thr->heap, obj),
|
|
(long) DUK_HOBJECT_GET_ESIZE(obj),
|
|
(long) DUK_HOBJECT_GET_ENEXT(obj),
|
|
(long) DUK_HOBJECT_GET_ASIZE(obj),
|
|
(long) DUK_HOBJECT_GET_HSIZE(obj),
|
|
(void *) new_p,
|
|
(long) new_e_size_adjusted,
|
|
(long) new_e_next,
|
|
(long) new_a_size,
|
|
(long) new_h_size,
|
|
(long) abandon_array,
|
|
(long) new_e_size));
|
|
|
|
/*
|
|
* All done, switch properties ('p') allocation to new one.
|
|
*/
|
|
|
|
DUK_FREE(thr->heap, DUK_HOBJECT_GET_PROPS(thr->heap, obj)); /* NULL obj->p is OK */
|
|
DUK_HOBJECT_SET_PROPS(thr->heap, obj, new_p);
|
|
DUK_HOBJECT_SET_ESIZE(obj, new_e_size_adjusted);
|
|
DUK_HOBJECT_SET_ENEXT(obj, new_e_next);
|
|
DUK_HOBJECT_SET_ASIZE(obj, new_a_size);
|
|
DUK_HOBJECT_SET_HSIZE(obj, new_h_size);
|
|
|
|
if (new_p) {
|
|
/*
|
|
* Detach actual buffer from dynamic buffer in valstack, and
|
|
* pop it from the stack.
|
|
*
|
|
* XXX: the buffer object is certainly not reachable at this point,
|
|
* so it would be nice to free it forcibly even with only
|
|
* mark-and-sweep enabled. Not a big issue though.
|
|
*/
|
|
duk_hbuffer_dynamic *buf;
|
|
DUK_ASSERT(new_alloc_size > 0);
|
|
DUK_ASSERT(duk_is_buffer(ctx, -1));
|
|
buf = (duk_hbuffer_dynamic *) duk_require_hbuffer(ctx, -1);
|
|
DUK_ASSERT(buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(buf));
|
|
DUK_HBUFFER_DYNAMIC_SET_DATA_PTR_NULL(thr->heap, buf);
|
|
DUK_HBUFFER_DYNAMIC_SET_SIZE(buf, 0); /* these size resets are not strictly necessary, but nice for consistency */
|
|
DUK_HBUFFER_DYNAMIC_SET_ALLOC_SIZE(buf, 0);
|
|
duk_pop(ctx);
|
|
} else {
|
|
DUK_ASSERT(new_alloc_size == 0);
|
|
/* no need to pop, nothing was pushed */
|
|
}
|
|
|
|
/* clear array part flag only after switching */
|
|
if (abandon_array) {
|
|
DUK_HOBJECT_CLEAR_ARRAY_PART(obj);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("resize result: %!O", (duk_heaphdr *) obj));
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
thr->heap->mark_and_sweep_base_flags = prev_mark_and_sweep_base_flags;
|
|
#endif
|
|
|
|
/*
|
|
* Post resize assertions.
|
|
*/
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
/* XXX: post-checks (such as no duplicate keys) */
|
|
#endif
|
|
return;
|
|
|
|
/*
|
|
* Abandon array failed, need to decref keys already inserted
|
|
* into the beginning of new_e_k before unwinding valstack.
|
|
*/
|
|
|
|
abandon_error:
|
|
DUK_D(DUK_DPRINT("hobject resize failed during abandon array, decref keys"));
|
|
i = new_e_next;
|
|
while (i > 0) {
|
|
i--;
|
|
DUK_ASSERT(new_e_k != NULL);
|
|
DUK_ASSERT(new_e_k[i] != NULL);
|
|
DUK_HSTRING_DECREF(thr, new_e_k[i]);
|
|
}
|
|
|
|
#ifdef DUK_USE_MARK_AND_SWEEP
|
|
thr->heap->mark_and_sweep_base_flags = prev_mark_and_sweep_base_flags;
|
|
#endif
|
|
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_OBJECT_RESIZE_FAILED);
|
|
}
|
|
|
|
/*
|
|
* Helpers to resize properties allocation on specific needs.
|
|
*/
|
|
|
|
/* Grow entry part allocation for one additional entry. */
|
|
DUK_LOCAL void duk__grow_props_for_new_entry_item(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_uint32_t old_e_used; /* actually used, non-NULL entries */
|
|
duk_uint32_t new_e_size;
|
|
duk_uint32_t new_a_size;
|
|
duk_uint32_t new_h_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
/* Duktape 0.11.0 and prior tried to optimize the resize by not
|
|
* counting the number of actually used keys prior to the resize.
|
|
* This worked mostly well but also caused weird leak-like behavior
|
|
* as in: test-bug-object-prop-alloc-unbounded.js. So, now we count
|
|
* the keys explicitly to compute the new entry part size.
|
|
*/
|
|
|
|
old_e_used = duk__count_used_e_keys(thr, obj);
|
|
new_e_size = old_e_used + duk__get_min_grow_e(old_e_used);
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
new_h_size = duk__get_default_h_size(new_e_size);
|
|
#else
|
|
new_h_size = 0;
|
|
#endif
|
|
new_a_size = DUK_HOBJECT_GET_ASIZE(obj);
|
|
DUK_ASSERT(new_e_size >= old_e_used + 1); /* duk__get_min_grow_e() is always >= 1 */
|
|
|
|
duk__realloc_props(thr, obj, new_e_size, new_a_size, new_h_size, 0);
|
|
}
|
|
|
|
/* Grow array part for a new highest array index. */
|
|
DUK_LOCAL void duk__grow_props_for_array_item(duk_hthread *thr, duk_hobject *obj, duk_uint32_t highest_arr_idx) {
|
|
duk_uint32_t new_e_size;
|
|
duk_uint32_t new_a_size;
|
|
duk_uint32_t new_h_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(highest_arr_idx >= DUK_HOBJECT_GET_ASIZE(obj));
|
|
|
|
/* minimum new length is highest_arr_idx + 1 */
|
|
|
|
new_e_size = DUK_HOBJECT_GET_ESIZE(obj);
|
|
new_h_size = DUK_HOBJECT_GET_HSIZE(obj);
|
|
new_a_size = highest_arr_idx + duk__get_min_grow_a(highest_arr_idx);
|
|
DUK_ASSERT(new_a_size >= highest_arr_idx + 1); /* duk__get_min_grow_a() is always >= 1 */
|
|
|
|
duk__realloc_props(thr, obj, new_e_size, new_a_size, new_h_size, 0);
|
|
}
|
|
|
|
/* Abandon array part, moving array entries into entries part.
|
|
* This requires a props resize, which is a heavy operation.
|
|
* We also compact the entries part while we're at it, although
|
|
* this is not strictly required.
|
|
*/
|
|
DUK_LOCAL void duk__abandon_array_checked(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_uint32_t new_e_size;
|
|
duk_uint32_t new_a_size;
|
|
duk_uint32_t new_h_size;
|
|
duk_uint32_t e_used; /* actually used, non-NULL keys */
|
|
duk_uint32_t a_used;
|
|
duk_uint32_t a_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
e_used = duk__count_used_e_keys(thr, obj);
|
|
duk__compute_a_stats(thr, obj, &a_used, &a_size);
|
|
|
|
/*
|
|
* Must guarantee all actually used array entries will fit into
|
|
* new entry part. Add one growth step to ensure we don't run out
|
|
* of space right away.
|
|
*/
|
|
|
|
new_e_size = e_used + a_used;
|
|
new_e_size = new_e_size + duk__get_min_grow_e(new_e_size);
|
|
new_a_size = 0;
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
new_h_size = duk__get_default_h_size(new_e_size);
|
|
#else
|
|
new_h_size = 0;
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("abandon array part for hobject %p, "
|
|
"array stats before: e_used=%ld, a_used=%ld, a_size=%ld; "
|
|
"resize to e_size=%ld, a_size=%ld, h_size=%ld",
|
|
(void *) obj, (long) e_used, (long) a_used, (long) a_size,
|
|
(long) new_e_size, (long) new_a_size, (long) new_h_size));
|
|
|
|
duk__realloc_props(thr, obj, new_e_size, new_a_size, new_h_size, 1);
|
|
}
|
|
|
|
/*
|
|
* Compact an object. Minimizes allocation size for objects which are
|
|
* not likely to be extended. This is useful for internal and non-
|
|
* extensible objects, but can also be called for non-extensible objects.
|
|
* May abandon the array part if it is computed to be too sparse.
|
|
*
|
|
* This call is relatively expensive, as it needs to scan both the
|
|
* entries and the array part.
|
|
*
|
|
* The call may fail due to allocation error.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_compact_props(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_uint32_t e_size; /* currently used -> new size */
|
|
duk_uint32_t a_size; /* currently required */
|
|
duk_uint32_t a_used; /* actually used */
|
|
duk_uint32_t h_size;
|
|
duk_bool_t abandon_array;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
e_size = duk__count_used_e_keys(thr, obj);
|
|
duk__compute_a_stats(thr, obj, &a_used, &a_size);
|
|
|
|
DUK_DD(DUK_DDPRINT("compacting hobject, used e keys %ld, used a keys %ld, min a size %ld, "
|
|
"resized array density would be: %ld/%ld = %lf",
|
|
(long) e_size, (long) a_used, (long) a_size,
|
|
(long) a_used, (long) a_size,
|
|
(double) a_used / (double) a_size));
|
|
|
|
if (duk__abandon_array_density_check(a_used, a_size)) {
|
|
DUK_DD(DUK_DDPRINT("decided to abandon array during compaction, a_used=%ld, a_size=%ld",
|
|
(long) a_used, (long) a_size));
|
|
abandon_array = 1;
|
|
e_size += a_used;
|
|
a_size = 0;
|
|
} else {
|
|
DUK_DD(DUK_DDPRINT("decided to keep array during compaction"));
|
|
abandon_array = 0;
|
|
}
|
|
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
if (e_size >= DUK_HOBJECT_E_USE_HASH_LIMIT) {
|
|
h_size = duk__get_default_h_size(e_size);
|
|
} else {
|
|
h_size = 0;
|
|
}
|
|
#else
|
|
h_size = 0;
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("compacting hobject -> new e_size %ld, new a_size=%ld, new h_size=%ld, abandon_array=%ld",
|
|
(long) e_size, (long) a_size, (long) h_size, (long) abandon_array));
|
|
|
|
duk__realloc_props(thr, obj, e_size, a_size, h_size, abandon_array);
|
|
}
|
|
|
|
/*
|
|
* Find an existing key from entry part either by linear scan or by
|
|
* using the hash index (if it exists).
|
|
*
|
|
* Sets entry index (and possibly the hash index) to output variables,
|
|
* which allows the caller to update the entry and hash entries in-place.
|
|
* If entry is not found, both values are set to -1. If entry is found
|
|
* but there is no hash part, h_idx is set to -1.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_find_existing_entry(duk_heap *heap, duk_hobject *obj, duk_hstring *key, duk_int_t *e_idx, duk_int_t *h_idx) {
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(e_idx != NULL);
|
|
DUK_ASSERT(h_idx != NULL);
|
|
DUK_UNREF(heap);
|
|
|
|
if (DUK_LIKELY(DUK_HOBJECT_GET_HSIZE(obj) == 0))
|
|
{
|
|
/* Linear scan: more likely because most objects are small.
|
|
* This is an important fast path.
|
|
*
|
|
* XXX: this might be worth inlining for property lookups.
|
|
*/
|
|
duk_uint_fast32_t i;
|
|
duk_uint_fast32_t n;
|
|
duk_hstring **h_keys_base;
|
|
DUK_DDD(DUK_DDDPRINT("duk_hobject_find_existing_entry() using linear scan for lookup"));
|
|
|
|
h_keys_base = DUK_HOBJECT_E_GET_KEY_BASE(heap, obj);
|
|
n = DUK_HOBJECT_GET_ENEXT(obj);
|
|
for (i = 0; i < n; i++) {
|
|
if (h_keys_base[i] == key) {
|
|
*e_idx = i;
|
|
*h_idx = -1;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
else
|
|
{
|
|
/* hash lookup */
|
|
duk_uint32_t n;
|
|
duk_uint32_t i, step;
|
|
duk_uint32_t *h_base;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk_hobject_find_existing_entry() using hash part for lookup"));
|
|
|
|
h_base = DUK_HOBJECT_H_GET_BASE(heap, obj);
|
|
n = DUK_HOBJECT_GET_HSIZE(obj);
|
|
i = DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(key), n);
|
|
step = DUK__HASH_PROBE_STEP(DUK_HSTRING_GET_HASH(key));
|
|
|
|
for (;;) {
|
|
duk_uint32_t t;
|
|
|
|
DUK_ASSERT_DISABLE(i >= 0); /* unsigned */
|
|
DUK_ASSERT(i < DUK_HOBJECT_GET_HSIZE(obj));
|
|
t = h_base[i];
|
|
DUK_ASSERT(t == DUK__HASH_UNUSED || t == DUK__HASH_DELETED ||
|
|
(t < DUK_HOBJECT_GET_ESIZE(obj))); /* t >= 0 always true, unsigned */
|
|
|
|
if (t == DUK__HASH_UNUSED) {
|
|
break;
|
|
} else if (t == DUK__HASH_DELETED) {
|
|
DUK_DDD(DUK_DDDPRINT("lookup miss (deleted) i=%ld, t=%ld",
|
|
(long) i, (long) t));
|
|
} else {
|
|
DUK_ASSERT(t < DUK_HOBJECT_GET_ESIZE(obj));
|
|
if (DUK_HOBJECT_E_GET_KEY(heap, obj, t) == key) {
|
|
DUK_DDD(DUK_DDDPRINT("lookup hit i=%ld, t=%ld -> key %p",
|
|
(long) i, (long) t, (void *) key));
|
|
*e_idx = t;
|
|
*h_idx = i;
|
|
return;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("lookup miss i=%ld, t=%ld",
|
|
(long) i, (long) t));
|
|
}
|
|
i = (i + step) % n;
|
|
|
|
/* guaranteed to finish, as hash is never full */
|
|
DUK_ASSERT(i != (duk_uint32_t) DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(key), n));
|
|
}
|
|
}
|
|
#endif /* DUK_USE_HOBJECT_HASH_PART */
|
|
|
|
/* not found */
|
|
*e_idx = -1;
|
|
*h_idx = -1;
|
|
}
|
|
|
|
/* For internal use: get non-accessor entry value */
|
|
DUK_INTERNAL duk_tval *duk_hobject_find_existing_entry_tval_ptr(duk_heap *heap, duk_hobject *obj, duk_hstring *key) {
|
|
duk_int_t e_idx;
|
|
duk_int_t h_idx;
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_UNREF(heap);
|
|
|
|
duk_hobject_find_existing_entry(heap, obj, key, &e_idx, &h_idx);
|
|
if (e_idx >= 0 && !DUK_HOBJECT_E_SLOT_IS_ACCESSOR(heap, obj, e_idx)) {
|
|
return DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(heap, obj, e_idx);
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* For internal use: get non-accessor entry value and attributes */
|
|
DUK_INTERNAL duk_tval *duk_hobject_find_existing_entry_tval_ptr_and_attrs(duk_heap *heap, duk_hobject *obj, duk_hstring *key, duk_int_t *out_attrs) {
|
|
duk_int_t e_idx;
|
|
duk_int_t h_idx;
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(out_attrs != NULL);
|
|
DUK_UNREF(heap);
|
|
|
|
duk_hobject_find_existing_entry(heap, obj, key, &e_idx, &h_idx);
|
|
if (e_idx >= 0 && !DUK_HOBJECT_E_SLOT_IS_ACCESSOR(heap, obj, e_idx)) {
|
|
*out_attrs = DUK_HOBJECT_E_GET_FLAGS(heap, obj, e_idx);
|
|
return DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(heap, obj, e_idx);
|
|
} else {
|
|
*out_attrs = 0;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
/* For internal use: get array part value */
|
|
DUK_INTERNAL duk_tval *duk_hobject_find_existing_array_entry_tval_ptr(duk_heap *heap, duk_hobject *obj, duk_uarridx_t i) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_UNREF(heap);
|
|
|
|
if (!DUK_HOBJECT_HAS_ARRAY_PART(obj)) {
|
|
return NULL;
|
|
}
|
|
if (i >= DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
return NULL;
|
|
}
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(heap, obj, i);
|
|
return tv;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize a new entry, resizing the properties allocation
|
|
* if necessary. Returns entry index (e_idx) or throws an error if alloc fails.
|
|
*
|
|
* Sets the key of the entry (increasing the key's refcount), and updates
|
|
* the hash part if it exists. Caller must set value and flags, and update
|
|
* the entry value refcount. A decref for the previous value is not necessary.
|
|
*/
|
|
|
|
DUK_LOCAL duk_bool_t duk__alloc_entry_checked(duk_hthread *thr, duk_hobject *obj, duk_hstring *key) {
|
|
duk_uint32_t idx;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_ENEXT(obj) <= DUK_HOBJECT_GET_ESIZE(obj));
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
/* key must not already exist in entry part */
|
|
{
|
|
duk_uint_fast32_t i;
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
DUK_ASSERT(DUK_HOBJECT_E_GET_KEY(thr->heap, obj, i) != key);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (DUK_HOBJECT_GET_ENEXT(obj) >= DUK_HOBJECT_GET_ESIZE(obj)) {
|
|
/* only need to guarantee 1 more slot, but allocation growth is in chunks */
|
|
DUK_DDD(DUK_DDDPRINT("entry part full, allocate space for one more entry"));
|
|
duk__grow_props_for_new_entry_item(thr, obj);
|
|
}
|
|
DUK_ASSERT(DUK_HOBJECT_GET_ENEXT(obj) < DUK_HOBJECT_GET_ESIZE(obj));
|
|
idx = DUK_HOBJECT_POSTINC_ENEXT(obj);
|
|
|
|
/* previous value is assumed to be garbage, so don't touch it */
|
|
DUK_HOBJECT_E_SET_KEY(thr->heap, obj, idx, key);
|
|
DUK_HSTRING_INCREF(thr, key);
|
|
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
if (DUK_UNLIKELY(DUK_HOBJECT_GET_HSIZE(obj) > 0)) {
|
|
duk_uint32_t n;
|
|
duk_uint32_t i, step;
|
|
duk_uint32_t *h_base = DUK_HOBJECT_H_GET_BASE(thr->heap, obj);
|
|
|
|
n = DUK_HOBJECT_GET_HSIZE(obj);
|
|
i = DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(key), n);
|
|
step = DUK__HASH_PROBE_STEP(DUK_HSTRING_GET_HASH(key));
|
|
|
|
for (;;) {
|
|
duk_uint32_t t = h_base[i];
|
|
if (t == DUK__HASH_UNUSED || t == DUK__HASH_DELETED) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__alloc_entry_checked() inserted key into hash part, %ld -> %ld",
|
|
(long) i, (long) idx));
|
|
DUK_ASSERT_DISABLE(i >= 0); /* unsigned */
|
|
DUK_ASSERT(i < DUK_HOBJECT_GET_HSIZE(obj));
|
|
DUK_ASSERT_DISABLE(idx >= 0);
|
|
DUK_ASSERT(idx < DUK_HOBJECT_GET_ESIZE(obj));
|
|
h_base[i] = idx;
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("duk__alloc_entry_checked() miss %ld", (long) i));
|
|
i = (i + step) % n;
|
|
|
|
/* guaranteed to find an empty slot */
|
|
DUK_ASSERT(i != (duk_uint32_t) DUK__HASH_INITIAL(DUK_HSTRING_GET_HASH(key), DUK_HOBJECT_GET_HSIZE(obj)));
|
|
}
|
|
}
|
|
#endif /* DUK_USE_HOBJECT_HASH_PART */
|
|
|
|
/* Note: we could return the hash index here too, but it's not
|
|
* needed right now.
|
|
*/
|
|
|
|
DUK_ASSERT_DISABLE(idx >= 0);
|
|
DUK_ASSERT(idx < DUK_HOBJECT_GET_ESIZE(obj));
|
|
DUK_ASSERT(idx < DUK_HOBJECT_GET_ENEXT(obj));
|
|
return idx;
|
|
}
|
|
|
|
/*
|
|
* Object internal value
|
|
*
|
|
* Returned value is guaranteed to be reachable / incref'd, caller does not need
|
|
* to incref OR decref. No proxies or accessors are invoked, no prototype walk.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_get_internal_value(duk_heap *heap, duk_hobject *obj, duk_tval *tv_out) {
|
|
duk_int_t e_idx;
|
|
duk_int_t h_idx;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(tv_out != NULL);
|
|
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv_out);
|
|
|
|
/* always in entry part, no need to look up parents etc */
|
|
duk_hobject_find_existing_entry(heap, obj, DUK_HEAP_STRING_INT_VALUE(heap), &e_idx, &h_idx);
|
|
if (e_idx >= 0) {
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(heap, obj, e_idx));
|
|
DUK_TVAL_SET_TVAL(tv_out, DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(heap, obj, e_idx));
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hstring *duk_hobject_get_internal_value_string(duk_heap *heap, duk_hobject *obj) {
|
|
duk_tval tv;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
if (duk_hobject_get_internal_value(heap, obj, &tv)) {
|
|
duk_hstring *h;
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(&tv));
|
|
h = DUK_TVAL_GET_STRING(&tv);
|
|
return h;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
DUK_INTERNAL duk_hbuffer *duk_hobject_get_internal_value_buffer(duk_heap *heap, duk_hobject *obj) {
|
|
duk_tval tv;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
if (duk_hobject_get_internal_value(heap, obj, &tv)) {
|
|
duk_hbuffer *h;
|
|
DUK_ASSERT(DUK_TVAL_IS_BUFFER(&tv));
|
|
h = DUK_TVAL_GET_BUFFER(&tv);
|
|
return h;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Arguments handling helpers (argument map mainly).
|
|
*
|
|
* An arguments object has exotic behavior for some numeric indices.
|
|
* Accesses may translate to identifier operations which may have
|
|
* arbitrary side effects (potentially invalidating any duk_tval
|
|
* pointers).
|
|
*/
|
|
|
|
/* Lookup 'key' from arguments internal 'map', perform a variable lookup
|
|
* if mapped, and leave the result on top of stack (and return non-zero).
|
|
* Used in E5 Section 10.6 algorithms [[Get]] and [[GetOwnProperty]].
|
|
*/
|
|
DUK_LOCAL
|
|
duk_bool_t duk__lookup_arguments_map(duk_hthread *thr,
|
|
duk_hobject *obj,
|
|
duk_hstring *key,
|
|
duk_propdesc *temp_desc,
|
|
duk_hobject **out_map,
|
|
duk_hobject **out_varenv) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *map;
|
|
duk_hobject *varenv;
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arguments map lookup: thr=%p, obj=%p, key=%p, temp_desc=%p "
|
|
"(obj -> %!O, key -> %!O)",
|
|
(void *) thr, (void *) obj, (void *) key, (void *) temp_desc,
|
|
(duk_heaphdr *) obj, (duk_heaphdr *) key));
|
|
|
|
if (!duk__get_own_property_desc(thr, obj, DUK_HTHREAD_STRING_INT_MAP(thr), temp_desc, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> no 'map'"));
|
|
return 0;
|
|
}
|
|
|
|
map = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(map != NULL);
|
|
duk_pop(ctx); /* map is reachable through obj */
|
|
|
|
if (!duk__get_own_property_desc(thr, map, key, temp_desc, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> 'map' exists, but key not in map"));
|
|
return 0;
|
|
}
|
|
|
|
/* [... varname] */
|
|
DUK_DDD(DUK_DDDPRINT("-> 'map' exists, and contains key, key is mapped to argument/variable binding %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
DUK_ASSERT(duk_is_string(ctx, -1)); /* guaranteed when building arguments */
|
|
|
|
/* get varenv for varname (callee's declarative lexical environment) */
|
|
rc = duk__get_own_property_desc(thr, obj, DUK_HTHREAD_STRING_INT_VARENV(thr), temp_desc, DUK__DESC_FLAG_PUSH_VALUE);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0); /* arguments MUST have an initialized lexical environment reference */
|
|
varenv = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(varenv != NULL);
|
|
duk_pop(ctx); /* varenv remains reachable through 'obj' */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arguments varenv is: %!dO", (duk_heaphdr *) varenv));
|
|
|
|
/* success: leave varname in stack */
|
|
*out_map = map;
|
|
*out_varenv = varenv;
|
|
return 1; /* [... varname] */
|
|
}
|
|
|
|
/* Lookup 'key' from arguments internal 'map', and leave replacement value
|
|
* on stack top if mapped (and return non-zero).
|
|
* Used in E5 Section 10.6 algorithm for [[GetOwnProperty]] (used by [[Get]]).
|
|
*/
|
|
DUK_LOCAL duk_bool_t duk__check_arguments_map_for_get(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *temp_desc) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *map;
|
|
duk_hobject *varenv;
|
|
duk_hstring *varname;
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
if (!duk__lookup_arguments_map(thr, obj, key, temp_desc, &map, &varenv)) {
|
|
DUK_DDD(DUK_DDDPRINT("arguments: key not mapped, no exotic get behavior"));
|
|
return 0;
|
|
}
|
|
|
|
/* [... varname] */
|
|
|
|
varname = duk_require_hstring(ctx, -1);
|
|
DUK_ASSERT(varname != NULL);
|
|
duk_pop(ctx); /* varname is still reachable */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arguments object automatic getvar for a bound variable; "
|
|
"key=%!O, varname=%!O",
|
|
(duk_heaphdr *) key,
|
|
(duk_heaphdr *) varname));
|
|
|
|
(void) duk_js_getvar_envrec(thr, varenv, varname, 1 /*throw*/);
|
|
|
|
/* [... value this_binding] */
|
|
|
|
duk_pop(ctx);
|
|
|
|
/* leave result on stack top */
|
|
return 1;
|
|
}
|
|
|
|
/* Lookup 'key' from arguments internal 'map', perform a variable write if mapped.
|
|
* Used in E5 Section 10.6 algorithm for [[DefineOwnProperty]] (used by [[Put]]).
|
|
* Assumes stack top contains 'put' value (which is NOT popped).
|
|
*/
|
|
DUK_LOCAL void duk__check_arguments_map_for_put(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *temp_desc, duk_bool_t throw_flag) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *map;
|
|
duk_hobject *varenv;
|
|
duk_hstring *varname;
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
if (!duk__lookup_arguments_map(thr, obj, key, temp_desc, &map, &varenv)) {
|
|
DUK_DDD(DUK_DDDPRINT("arguments: key not mapped, no exotic put behavior"));
|
|
return;
|
|
}
|
|
|
|
/* [... put_value varname] */
|
|
|
|
varname = duk_require_hstring(ctx, -1);
|
|
DUK_ASSERT(varname != NULL);
|
|
duk_pop(ctx); /* varname is still reachable */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arguments object automatic putvar for a bound variable; "
|
|
"key=%!O, varname=%!O, value=%!T",
|
|
(duk_heaphdr *) key,
|
|
(duk_heaphdr *) varname,
|
|
(duk_tval *) duk_require_tval(ctx, -1)));
|
|
|
|
/* [... put_value] */
|
|
|
|
/*
|
|
* Note: although arguments object variable mappings are only established
|
|
* for non-strict functions (and a call to a non-strict function created
|
|
* the arguments object in question), an inner strict function may be doing
|
|
* the actual property write. Hence the throw_flag applied here comes from
|
|
* the property write call.
|
|
*/
|
|
|
|
duk_js_putvar_envrec(thr, varenv, varname, duk_require_tval(ctx, -1), throw_flag);
|
|
|
|
/* [... put_value] */
|
|
}
|
|
|
|
/* Lookup 'key' from arguments internal 'map', delete mapping if found.
|
|
* Used in E5 Section 10.6 algorithm for [[Delete]]. Note that the
|
|
* variable/argument itself (where the map points) is not deleted.
|
|
*/
|
|
DUK_LOCAL void duk__check_arguments_map_for_delete(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *temp_desc) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *map;
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
if (!duk__get_own_property_desc(thr, obj, DUK_HTHREAD_STRING_INT_MAP(thr), temp_desc, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
DUK_DDD(DUK_DDDPRINT("arguments: key not mapped, no exotic delete behavior"));
|
|
return;
|
|
}
|
|
|
|
map = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(map != NULL);
|
|
duk_pop(ctx); /* map is reachable through obj */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> have 'map', delete key %!O from map (if exists)); ignore result",
|
|
(duk_heaphdr *) key));
|
|
|
|
/* Note: no recursion issue, we can trust 'map' to behave */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_BEHAVIOR(map));
|
|
DUK_DDD(DUK_DDDPRINT("map before deletion: %!O", (duk_heaphdr *) map));
|
|
(void) duk_hobject_delprop_raw(thr, map, key, 0); /* ignore result */
|
|
DUK_DDD(DUK_DDDPRINT("map after deletion: %!O", (duk_heaphdr *) map));
|
|
}
|
|
|
|
/*
|
|
* Ecmascript compliant [[GetOwnProperty]](P), for internal use only.
|
|
*
|
|
* If property is found:
|
|
* - Fills descriptor fields to 'out_desc'
|
|
* - If DUK__DESC_FLAG_PUSH_VALUE is set, pushes a value related to the
|
|
* property onto the stack ('undefined' for accessor properties).
|
|
* - Returns non-zero
|
|
*
|
|
* If property is not found:
|
|
* - 'out_desc' is left in untouched state (possibly garbage)
|
|
* - Nothing is pushed onto the stack (not even with DUK__DESC_FLAG_PUSH_VALUE
|
|
* set)
|
|
* - Returns zero
|
|
*
|
|
* Notes:
|
|
*
|
|
* - Getting a property descriptor may cause an allocation (and hence
|
|
* GC) to take place, hence reachability and refcount of all related
|
|
* values matter. Reallocation of value stack, properties, etc may
|
|
* invalidate many duk_tval pointers (concretely, those which reside
|
|
* in memory areas subject to reallocation). However, heap object
|
|
* pointers are never affected (heap objects have stable pointers).
|
|
*
|
|
* - The value of a plain property is always reachable and has a non-zero
|
|
* reference count.
|
|
*
|
|
* - The value of a virtual property is not necessarily reachable from
|
|
* elsewhere and may have a refcount of zero. Hence we push it onto
|
|
* the valstack for the caller, which ensures it remains reachable
|
|
* while it is needed.
|
|
*
|
|
* - There are no virtual accessor properties. Hence, all getters and
|
|
* setters are always related to concretely stored properties, which
|
|
* ensures that the get/set functions in the resulting descriptor are
|
|
* reachable and have non-zero refcounts. Should there be virtual
|
|
* accessor properties later, this would need to change.
|
|
*/
|
|
|
|
DUK_LOCAL duk_bool_t duk__get_own_property_desc_raw(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_uint32_t arr_idx, duk_propdesc *out_desc, duk_small_uint_t flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval *tv;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_own_property_desc: thr=%p, obj=%p, key=%p, out_desc=%p, flags=%lx, "
|
|
"arr_idx=%ld (obj -> %!O, key -> %!O)",
|
|
(void *) thr, (void *) obj, (void *) key, (void *) out_desc,
|
|
(long) flags, (long) arr_idx,
|
|
(duk_heaphdr *) obj, (duk_heaphdr *) key));
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(out_desc != NULL);
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/* XXX: optimize this filling behavior later */
|
|
out_desc->flags = 0;
|
|
out_desc->get = NULL;
|
|
out_desc->set = NULL;
|
|
out_desc->e_idx = -1;
|
|
out_desc->h_idx = -1;
|
|
out_desc->a_idx = -1;
|
|
|
|
/*
|
|
* Array part
|
|
*/
|
|
|
|
if (DUK_HOBJECT_HAS_ARRAY_PART(obj) && arr_idx != DUK__NO_ARRAY_INDEX) {
|
|
if (arr_idx < DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, arr_idx);
|
|
if (!DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> found in array part"));
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_push_tval(ctx, tv);
|
|
}
|
|
/* implicit attributes */
|
|
out_desc->flags = DUK_PROPDESC_FLAG_WRITABLE |
|
|
DUK_PROPDESC_FLAG_CONFIGURABLE |
|
|
DUK_PROPDESC_FLAG_ENUMERABLE;
|
|
out_desc->a_idx = arr_idx;
|
|
goto prop_found;
|
|
}
|
|
}
|
|
/* assume array part is comprehensive (contains all array indexed elements
|
|
* or none of them); hence no need to check the entries part here.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("-> not found as a concrete property (has array part, "
|
|
"should be there if present)"));
|
|
goto prop_not_found_concrete;
|
|
}
|
|
|
|
/*
|
|
* Entries part
|
|
*/
|
|
|
|
duk_hobject_find_existing_entry(thr->heap, obj, key, &out_desc->e_idx, &out_desc->h_idx);
|
|
if (out_desc->e_idx >= 0) {
|
|
duk_int_t e_idx = out_desc->e_idx;
|
|
out_desc->flags = DUK_HOBJECT_E_GET_FLAGS(thr->heap, obj, e_idx);
|
|
if (out_desc->flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
DUK_DDD(DUK_DDDPRINT("-> found accessor property in entry part"));
|
|
out_desc->get = DUK_HOBJECT_E_GET_VALUE_GETTER(thr->heap, obj, e_idx);
|
|
out_desc->set = DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, obj, e_idx);
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
/* a dummy undefined value is pushed to make valstack
|
|
* behavior uniform for caller
|
|
*/
|
|
duk_push_undefined(ctx);
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("-> found plain property in entry part"));
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, e_idx);
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_push_tval(ctx, tv);
|
|
}
|
|
}
|
|
goto prop_found;
|
|
}
|
|
|
|
/*
|
|
* Not found as a concrete property, check whether a String object
|
|
* virtual property matches.
|
|
*/
|
|
|
|
prop_not_found_concrete:
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(obj)) {
|
|
DUK_DDD(DUK_DDDPRINT("string object exotic property get for key: %!O, arr_idx: %ld",
|
|
(duk_heaphdr *) key, (long) arr_idx));
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX) {
|
|
duk_hstring *h_val;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array index exists"));
|
|
|
|
h_val = duk_hobject_get_internal_value_string(thr->heap, obj);
|
|
DUK_ASSERT(h_val);
|
|
if (arr_idx < DUK_HSTRING_GET_CHARLEN(h_val)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> found, array index inside string"));
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_push_hstring(ctx, h_val);
|
|
duk_substring(ctx, -1, arr_idx, arr_idx + 1); /* [str] -> [substr] */
|
|
}
|
|
out_desc->flags = DUK_PROPDESC_FLAG_ENUMERABLE | /* E5 Section 15.5.5.2 */
|
|
DUK_PROPDESC_FLAG_VIRTUAL;
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj));
|
|
return 1; /* cannot be e.g. arguments exotic, since exotic 'traits' are mutually exclusive */
|
|
} else {
|
|
/* index is above internal string length -> property is fully normal */
|
|
DUK_DDD(DUK_DDDPRINT("array index outside string -> normal property"));
|
|
}
|
|
} else if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
duk_hstring *h_val;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> found, key is 'length', length exotic behavior"));
|
|
|
|
h_val = duk_hobject_get_internal_value_string(thr->heap, obj);
|
|
DUK_ASSERT(h_val != NULL);
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HSTRING_GET_CHARLEN(h_val));
|
|
}
|
|
out_desc->flags = DUK_PROPDESC_FLAG_VIRTUAL; /* E5 Section 15.5.5.1 */
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj));
|
|
return 1; /* cannot be arguments exotic */
|
|
}
|
|
} else if (DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(obj)) {
|
|
DUK_DDD(DUK_DDDPRINT("buffer object exotic property get for key: %!O, arr_idx: %ld",
|
|
(duk_heaphdr *) key, (long) arr_idx));
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX) {
|
|
duk_hbuffer *h_val;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array index exists"));
|
|
|
|
h_val = duk_hobject_get_internal_value_buffer(thr->heap, obj);
|
|
DUK_ASSERT(h_val);
|
|
/* SCANBUILD: h_val is known to be non-NULL but scan-build cannot
|
|
* know it, so it produces NULL pointer dereference warnings for
|
|
* 'h_val'.
|
|
*/
|
|
|
|
if (arr_idx < DUK_HBUFFER_GET_SIZE(h_val)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> found, array index inside buffer"));
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_push_int(ctx, ((duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h_val))[arr_idx]);
|
|
}
|
|
out_desc->flags = DUK_PROPDESC_FLAG_WRITABLE |
|
|
DUK_PROPDESC_FLAG_ENUMERABLE |
|
|
DUK_PROPDESC_FLAG_VIRTUAL;
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj));
|
|
return 1; /* cannot be e.g. arguments exotic, since exotic 'traits' are mutually exclusive */
|
|
} else {
|
|
/* index is above internal buffer length -> property is fully normal */
|
|
DUK_DDD(DUK_DDDPRINT("array index outside buffer -> normal property"));
|
|
}
|
|
} else if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
duk_hbuffer *h_val;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> found, key is 'length', length exotic behavior"));
|
|
|
|
/* XXX: buffer length should be writable and have exotic behavior
|
|
* like arrays. For now, make it read-only and use explicit methods
|
|
* to operate on buffer length.
|
|
*/
|
|
|
|
h_val = duk_hobject_get_internal_value_buffer(thr->heap, obj);
|
|
DUK_ASSERT(h_val != NULL);
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HBUFFER_GET_SIZE(h_val));
|
|
}
|
|
out_desc->flags = DUK_PROPDESC_FLAG_VIRTUAL;
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj));
|
|
return 1; /* cannot be arguments exotic */
|
|
}
|
|
} else if (DUK_HOBJECT_HAS_EXOTIC_DUKFUNC(obj)) {
|
|
DUK_DDD(DUK_DDDPRINT("duktape/c object exotic property get for key: %!O, arr_idx: %ld",
|
|
(duk_heaphdr *) key, (long) arr_idx));
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> found, key is 'length', length exotic behavior"));
|
|
|
|
if (flags & DUK__DESC_FLAG_PUSH_VALUE) {
|
|
duk_int16_t func_nargs = ((duk_hnativefunction *) obj)->nargs;
|
|
duk_push_int(ctx, func_nargs == DUK_HNATIVEFUNCTION_NARGS_VARARGS ? 0 : func_nargs);
|
|
}
|
|
out_desc->flags = DUK_PROPDESC_FLAG_VIRTUAL; /* not enumerable */
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj));
|
|
return 1; /* cannot be arguments exotic */
|
|
}
|
|
}
|
|
|
|
/* Array properties have exotic behavior but they are concrete,
|
|
* so no special handling here.
|
|
*
|
|
* Arguments exotic behavior (E5 Section 10.6, [[GetOwnProperty]]
|
|
* is only relevant as a post-check implemented below; hence no
|
|
* check here.
|
|
*/
|
|
|
|
/*
|
|
* Not found as concrete or virtual
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> not found (virtual, entry part, or array part)"));
|
|
return 0;
|
|
|
|
/*
|
|
* Found
|
|
*
|
|
* Arguments object has exotic post-processing, see E5 Section 10.6,
|
|
* description of [[GetOwnProperty]] variant for arguments.
|
|
*/
|
|
|
|
prop_found:
|
|
DUK_DDD(DUK_DDDPRINT("-> property found, checking for arguments exotic post-behavior"));
|
|
|
|
/* Notes:
|
|
* - only numbered indices are relevant, so arr_idx fast reject is good
|
|
* (this is valid unless there are more than 4**32-1 arguments).
|
|
* - since variable lookup has no side effects, this can be skipped if
|
|
* DUK__DESC_FLAG_PUSH_VALUE is not set.
|
|
*/
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj) &&
|
|
arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
(flags & DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
duk_propdesc temp_desc;
|
|
|
|
/* Magically bound variable cannot be an accessor. However,
|
|
* there may be an accessor property (or a plain property) in
|
|
* place with magic behavior removed. This happens e.g. when
|
|
* a magic property is redefined with defineProperty().
|
|
* Cannot assert for "not accessor" here.
|
|
*/
|
|
|
|
/* replaces top of stack with new value if necessary */
|
|
DUK_ASSERT((flags & DUK__DESC_FLAG_PUSH_VALUE) != 0);
|
|
|
|
if (duk__check_arguments_map_for_get(thr, obj, key, &temp_desc)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> arguments exotic behavior overrides result: %!T -> %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
/* [... old_result result] -> [... result] */
|
|
duk_remove(ctx, -2);
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__get_own_property_desc(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *out_desc, duk_small_uint_t flags) {
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(out_desc != NULL);
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
return duk__get_own_property_desc_raw(thr, obj, key, DUK_HSTRING_GET_ARRIDX_SLOW(key), out_desc, flags);
|
|
}
|
|
|
|
/*
|
|
* Ecmascript compliant [[GetProperty]](P), for internal use only.
|
|
*
|
|
* If property is found:
|
|
* - Fills descriptor fields to 'out_desc'
|
|
* - If DUK__DESC_FLAG_PUSH_VALUE is set, pushes a value related to the
|
|
* property onto the stack ('undefined' for accessor properties).
|
|
* - Returns non-zero
|
|
*
|
|
* If property is not found:
|
|
* - 'out_desc' is left in untouched state (possibly garbage)
|
|
* - Nothing is pushed onto the stack (not even with DUK__DESC_FLAG_PUSH_VALUE
|
|
* set)
|
|
* - Returns zero
|
|
*
|
|
* May cause arbitrary side effects and invalidate (most) duk_tval
|
|
* pointers.
|
|
*/
|
|
|
|
DUK_LOCAL duk_bool_t duk__get_property_desc(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_propdesc *out_desc, duk_small_uint_t flags) {
|
|
duk_hobject *curr;
|
|
duk_uint32_t arr_idx;
|
|
duk_uint_t sanity;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(out_desc != NULL);
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_FAST(key);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_property_desc: thr=%p, obj=%p, key=%p, out_desc=%p, flags=%lx, "
|
|
"arr_idx=%ld (obj -> %!O, key -> %!O)",
|
|
(void *) thr, (void *) obj, (void *) key, (void *) out_desc,
|
|
(long) flags, (long) arr_idx,
|
|
(duk_heaphdr *) obj, (duk_heaphdr *) key));
|
|
|
|
curr = obj;
|
|
DUK_ASSERT(curr != NULL);
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
do {
|
|
if (duk__get_own_property_desc_raw(thr, curr, key, arr_idx, out_desc, flags)) {
|
|
/* stack contains value (if requested), 'out_desc' is set */
|
|
return 1;
|
|
}
|
|
|
|
/* not found in 'curr', next in prototype chain; impose max depth */
|
|
if (sanity-- == 0) {
|
|
if (flags & DUK__DESC_FLAG_IGNORE_PROTOLOOP) {
|
|
/* treat like property not found */
|
|
break;
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_PROTOTYPE_CHAIN_LIMIT);
|
|
}
|
|
}
|
|
curr = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, curr);
|
|
} while (curr);
|
|
|
|
/* out_desc is left untouched (possibly garbage), caller must use return
|
|
* value to determine whether out_desc can be looked up
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Shallow fast path checks for accessing array elements with numeric
|
|
* indices. The goal is to try to avoid coercing an array index to an
|
|
* (interned) string for the most common lookups, in particular, for
|
|
* standard Array objects.
|
|
*
|
|
* Interning is avoided but only for a very narrow set of cases:
|
|
* - Object has array part, index is within array allocation, and
|
|
* value is not unused (= key exists)
|
|
* - Object has no interfering exotic behavior (e.g. arguments or
|
|
* string object exotic behaviors interfere, array exotic
|
|
* behavior does not).
|
|
*
|
|
* Current shortcoming: if key does not exist (even if it is within
|
|
* the array allocation range) a slow path lookup with interning is
|
|
* always required. This can probably be fixed so that there is a
|
|
* quick fast path for non-existent elements as well, at least for
|
|
* standard Array objects.
|
|
*/
|
|
|
|
#if 0 /* XXX: unused now */
|
|
DUK_LOCAL duk_tval *duk__shallow_fast_path_array_check_u32(duk_hobject *obj, duk_uint32_t key_idx) {
|
|
duk_tval *tv;
|
|
|
|
if ((!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj)) &&
|
|
(!DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(obj)) &&
|
|
(!DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(obj)) &&
|
|
(!DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(obj)) &&
|
|
(DUK_HOBJECT_HAS_ARRAY_PART(obj)) &&
|
|
(key_idx < obj->a_size)) {
|
|
/* technically required to check, but obj->a_size check covers this */
|
|
DUK_ASSERT(key_idx != 0xffffffffUL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("fast path attempt (key is an array index, no exotic "
|
|
"string/arguments/buffer behavior, object has array part, key "
|
|
"inside array size)"));
|
|
|
|
DUK_ASSERT(obj->a_size > 0); /* true even for key_idx == 0 */
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(obj, key_idx);
|
|
if (!DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> fast path successful"));
|
|
return tv;
|
|
}
|
|
|
|
/*
|
|
* Not found, fall back to slow path.
|
|
*
|
|
* Note: this approach has the unfortunate side effect that accesses
|
|
* to undefined entries (or entries outside valid array range) cause
|
|
* a string intern operation.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("fast path attempt failed, fall back to slow path"));
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL duk_tval *duk__shallow_fast_path_array_check_tval(duk_hthread *thr, duk_hobject *obj, duk_tval *key_tv) {
|
|
duk_tval *tv;
|
|
duk_uint32_t idx;
|
|
|
|
DUK_UNREF(thr);
|
|
|
|
if (!(DUK_HOBJECT_HAS_ARRAY_PART(obj) &&
|
|
!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj) &&
|
|
!DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(obj) &&
|
|
!DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(obj) &&
|
|
!DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(obj))) {
|
|
/* Must have array part and no conflicting exotic behaviors.
|
|
* Doesn't need to have array special behavior, e.g. Arguments
|
|
* object has array part.
|
|
*/
|
|
return NULL;
|
|
}
|
|
|
|
/* Arrays never have other exotic behaviors. */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("fast path attempt (no exotic string/arguments/buffer "
|
|
"behavior, object has array part)"));
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(key_tv)) {
|
|
idx = duk__tval_fastint_to_arr_idx(key_tv);
|
|
} else
|
|
#endif
|
|
if (DUK_TVAL_IS_NUMBER(key_tv)) {
|
|
idx = duk__tval_number_to_arr_idx(key_tv);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("key is not a number"));
|
|
return NULL;
|
|
}
|
|
|
|
if (idx != DUK__NO_ARRAY_INDEX) {
|
|
/* Note: idx is not necessarily a valid array index (0xffffffffUL is not valid) */
|
|
DUK_ASSERT_DISABLE(idx >= 0); /* disabled because idx is duk_uint32_t so always true */
|
|
DUK_ASSERT_DISABLE(idx <= 0xffffffffUL); /* same */
|
|
|
|
if (idx < DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
/* technically required to check, but obj->a_size check covers this */
|
|
DUK_ASSERT(idx != 0xffffffffUL);
|
|
|
|
/* XXX: for array instances we could take a shortcut here and assume
|
|
* Array.prototype doesn't contain an array index property.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("key is a valid array index and inside array part"));
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, idx);
|
|
if (!DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> fast path successful"));
|
|
return tv;
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("key is outside array part"));
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("key is not a valid array index"));
|
|
}
|
|
|
|
/*
|
|
* Not found in array part, use slow path.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("fast path attempt failed, fall back to slow path"));
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* GETPROP: Ecmascript property read.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_getprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_obj_copy;
|
|
duk_tval tv_key_copy;
|
|
duk_hobject *curr = NULL;
|
|
duk_hstring *key = NULL;
|
|
duk_uint32_t arr_idx = DUK__NO_ARRAY_INDEX;
|
|
duk_propdesc desc;
|
|
duk_uint_t sanity;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("getprop: thr=%p, obj=%p, key=%p (obj -> %!T, key -> %!T)",
|
|
(void *) thr, (void *) tv_obj, (void *) tv_key,
|
|
(duk_tval *) tv_obj, (duk_tval *) tv_key));
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(tv_obj != NULL);
|
|
DUK_ASSERT(tv_key != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/*
|
|
* Make a copy of tv_obj, tv_key, and tv_val to avoid any issues of
|
|
* them being invalidated by a valstack resize.
|
|
*
|
|
* XXX: this is now an overkill for many fast paths. Rework this
|
|
* to be faster (although switching to a valstack discipline might
|
|
* be a better solution overall).
|
|
*/
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_obj_copy, tv_obj);
|
|
DUK_TVAL_SET_TVAL(&tv_key_copy, tv_key);
|
|
tv_obj = &tv_obj_copy;
|
|
tv_key = &tv_key_copy;
|
|
|
|
/*
|
|
* Coercion and fast path processing
|
|
*/
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv_obj)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL: {
|
|
/* Note: unconditional throw */
|
|
DUK_DDD(DUK_DDDPRINT("base object is undefined or null -> reject"));
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_BASE);
|
|
return 0;
|
|
}
|
|
|
|
case DUK_TAG_BOOLEAN: {
|
|
DUK_DDD(DUK_DDDPRINT("base object is a boolean, start lookup from boolean prototype"));
|
|
curr = thr->builtins[DUK_BIDX_BOOLEAN_PROTOTYPE];
|
|
break;
|
|
}
|
|
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv_obj);
|
|
duk_int_t pop_count;
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_key)) {
|
|
arr_idx = duk__tval_fastint_to_arr_idx(tv_key);
|
|
DUK_DDD(DUK_DDDPRINT("base object string, key is a fast-path fastint; arr_idx %ld", (long) arr_idx));
|
|
pop_count = 0;
|
|
} else
|
|
#endif
|
|
if (DUK_TVAL_IS_NUMBER(tv_key)) {
|
|
arr_idx = duk__tval_number_to_arr_idx(tv_key);
|
|
DUK_DDD(DUK_DDDPRINT("base object string, key is a fast-path number; arr_idx %ld", (long) arr_idx));
|
|
pop_count = 0;
|
|
} else {
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("base object string, key is a non-fast-path number; after "
|
|
"coercion key is %!T, arr_idx %ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) arr_idx));
|
|
pop_count = 1;
|
|
}
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HSTRING_GET_CHARLEN(h)) {
|
|
duk_pop_n(ctx, pop_count);
|
|
duk_push_hstring(ctx, h);
|
|
duk_substring(ctx, -1, arr_idx, arr_idx + 1); /* [str] -> [substr] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (base is string, key is an index inside string length "
|
|
"after coercion -> return char)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 1;
|
|
}
|
|
|
|
if (pop_count == 0) {
|
|
/* This is a pretty awkward control flow, but we need to recheck the
|
|
* key coercion here.
|
|
*/
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("base object string, key is a non-fast-path number; after "
|
|
"coercion key is %!T, arr_idx %ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) arr_idx));
|
|
}
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
duk_pop(ctx); /* [key] -> [] */
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HSTRING_GET_CHARLEN(h)); /* [] -> [res] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (base is string, key is 'length' after coercion -> "
|
|
"return string length)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 1;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("base object is a string, start lookup from string prototype"));
|
|
curr = thr->builtins[DUK_BIDX_STRING_PROTOTYPE];
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
|
|
case DUK_TAG_OBJECT: {
|
|
duk_tval *tmp;
|
|
|
|
curr = DUK_TVAL_GET_OBJECT(tv_obj);
|
|
DUK_ASSERT(curr != NULL);
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
if (DUK_UNLIKELY(DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(curr))) {
|
|
duk_hobject *h_target;
|
|
|
|
if (duk__proxy_check_prop(thr, curr, DUK_STRIDX_GET, tv_key, &h_target)) {
|
|
/* -> [ ... trap handler ] */
|
|
DUK_DDD(DUK_DDDPRINT("-> proxy object 'get' for key %!T", (duk_tval *) tv_key));
|
|
duk_push_hobject(ctx, h_target); /* target */
|
|
duk_push_tval(ctx, tv_key); /* P */
|
|
duk_push_tval(ctx, tv_obj); /* Receiver: Proxy object */
|
|
duk_call_method(ctx, 3 /*nargs*/);
|
|
|
|
/* Target object must be checked for a conflicting
|
|
* non-configurable property.
|
|
*/
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (duk__get_own_property_desc_raw(thr, h_target, key, arr_idx, &desc, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
duk_tval *tv_hook = duk_require_tval(ctx, -3); /* value from hook */
|
|
duk_tval *tv_targ = duk_require_tval(ctx, -1); /* value from target */
|
|
duk_bool_t datadesc_reject;
|
|
duk_bool_t accdesc_reject;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("proxy 'get': target has matching property %!O, check for "
|
|
"conflicting property; tv_hook=%!T, tv_targ=%!T, desc.flags=0x%08lx, "
|
|
"desc.get=%p, desc.set=%p",
|
|
(duk_heaphdr *) key, (duk_tval *) tv_hook, (duk_tval *) tv_targ,
|
|
(unsigned long) desc.flags,
|
|
(void *) desc.get, (void *) desc.set));
|
|
|
|
datadesc_reject = !(desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) &&
|
|
!(desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) &&
|
|
!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE) &&
|
|
!duk_js_samevalue(tv_hook, tv_targ);
|
|
accdesc_reject = (desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) &&
|
|
!(desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) &&
|
|
(desc.get == NULL) &&
|
|
!DUK_TVAL_IS_UNDEFINED(tv_hook);
|
|
if (datadesc_reject || accdesc_reject) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REJECTED);
|
|
}
|
|
|
|
duk_pop_2(ctx);
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
return 1; /* return value */
|
|
}
|
|
|
|
curr = h_target; /* resume lookup from target */
|
|
DUK_TVAL_SET_OBJECT(tv_obj, curr);
|
|
}
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
tmp = duk__shallow_fast_path_array_check_tval(thr, curr, tv_key);
|
|
if (tmp) {
|
|
duk_push_tval(ctx, tmp);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (base is object, key is a number, array part "
|
|
"fast path)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 1;
|
|
}
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(curr)) {
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (duk__check_arguments_map_for_get(thr, curr, key, &desc)) {
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (base is object with arguments exotic behavior, "
|
|
"key matches magically bound property -> skip standard "
|
|
"Get with replacement value)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* no need for 'caller' post-check, because 'key' must be an array index */
|
|
|
|
duk_remove(ctx, -2); /* [key result] -> [result] */
|
|
return 1;
|
|
}
|
|
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Buffer has virtual properties similar to string, but indexed values
|
|
* are numbers, not 1-byte buffers/strings which would perform badly.
|
|
*/
|
|
case DUK_TAG_BUFFER: {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv_obj);
|
|
duk_int_t pop_count;
|
|
|
|
/*
|
|
* Because buffer values are often looped over, a number fast path
|
|
* is important.
|
|
*/
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_key)) {
|
|
arr_idx = duk__tval_fastint_to_arr_idx(tv_key);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a fast-path fastint; arr_idx %ld", (long) arr_idx));
|
|
pop_count = 0;
|
|
}
|
|
else
|
|
#endif
|
|
if (DUK_TVAL_IS_NUMBER(tv_key)) {
|
|
arr_idx = duk__tval_number_to_arr_idx(tv_key);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a fast-path number; arr_idx %ld", (long) arr_idx));
|
|
pop_count = 0;
|
|
} else {
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a non-fast-path number; after "
|
|
"coercion key is %!T, arr_idx %ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) arr_idx));
|
|
pop_count = 1;
|
|
}
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HBUFFER_GET_SIZE(h)) {
|
|
duk_pop_n(ctx, pop_count);
|
|
duk_push_int(ctx, ((duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h))[arr_idx]);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (base is buffer, key is an index inside buffer length "
|
|
"after coercion -> return byte as number)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 1;
|
|
}
|
|
|
|
if (pop_count == 0) {
|
|
/* This is a pretty awkward control flow, but we need to recheck the
|
|
* key coercion here.
|
|
*/
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a non-fast-path number; after "
|
|
"coercion key is %!T, arr_idx %ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) arr_idx));
|
|
}
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
duk_pop(ctx); /* [key] -> [] */
|
|
duk_push_uint(ctx, (duk_uint_t) DUK_HBUFFER_GET_SIZE(h)); /* [] -> [res] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (base is buffer, key is 'length' after coercion -> "
|
|
"return buffer length)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 1;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("base object is a buffer, start lookup from buffer prototype"));
|
|
curr = thr->builtins[DUK_BIDX_BUFFER_PROTOTYPE];
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
|
|
case DUK_TAG_POINTER: {
|
|
DUK_DDD(DUK_DDDPRINT("base object is a pointer, start lookup from pointer prototype"));
|
|
curr = thr->builtins[DUK_BIDX_POINTER_PROTOTYPE];
|
|
break;
|
|
}
|
|
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
duk_int_t lf_flags = DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv_obj);
|
|
|
|
/* Must coerce key: if key is an object, it may coerce to e.g. 'length'. */
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
duk_int_t lf_len = DUK_LFUNC_FLAGS_GET_LENGTH(lf_flags);
|
|
duk_pop(ctx);
|
|
duk_push_int(ctx, lf_len);
|
|
return 1;
|
|
} else if (key == DUK_HTHREAD_STRING_NAME(thr)) {
|
|
duk_pop(ctx);
|
|
duk_push_lightfunc_name(ctx, tv_obj);
|
|
return 1;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("base object is a lightfunc, start lookup from function prototype"));
|
|
curr = thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE];
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
DUK_DDD(DUK_DDDPRINT("base object is a number, start lookup from number prototype"));
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_obj));
|
|
curr = thr->builtins[DUK_BIDX_NUMBER_PROTOTYPE];
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* key coercion (unless already coerced above) */
|
|
DUK_ASSERT(key == NULL);
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
/*
|
|
* Property lookup
|
|
*/
|
|
|
|
lookup:
|
|
/* [key] (coerced) */
|
|
DUK_ASSERT(curr != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
do {
|
|
if (!duk__get_own_property_desc_raw(thr, curr, key, arr_idx, &desc, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
goto next_in_chain;
|
|
}
|
|
|
|
if (desc.get != NULL) {
|
|
/* accessor with defined getter */
|
|
DUK_ASSERT((desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) != 0);
|
|
|
|
duk_pop(ctx); /* [key undefined] -> [key] */
|
|
duk_push_hobject(ctx, desc.get);
|
|
duk_push_tval(ctx, tv_obj); /* note: original, uncoerced base */
|
|
#ifdef DUK_USE_NONSTD_GETTER_KEY_ARGUMENT
|
|
duk_dup(ctx, -3);
|
|
duk_call_method(ctx, 1); /* [key getter this key] -> [key retval] */
|
|
#else
|
|
duk_call_method(ctx, 0); /* [key getter this] -> [key retval] */
|
|
#endif
|
|
} else {
|
|
/* [key value] or [key undefined] */
|
|
|
|
/* data property or accessor without getter */
|
|
DUK_ASSERT(((desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) == 0) ||
|
|
(desc.get == NULL));
|
|
|
|
/* if accessor without getter, return value is undefined */
|
|
DUK_ASSERT(((desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) == 0) ||
|
|
duk_is_undefined(ctx, -1));
|
|
|
|
/* Note: for an accessor without getter, falling through to
|
|
* check for "caller" exotic behavior is unnecessary as
|
|
* "undefined" will never activate the behavior. But it does
|
|
* no harm, so we'll do it anyway.
|
|
*/
|
|
}
|
|
|
|
goto found; /* [key result] */
|
|
|
|
next_in_chain:
|
|
/* XXX: option to pretend property doesn't exist if sanity limit is
|
|
* hit might be useful.
|
|
*/
|
|
if (sanity-- == 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_PROTOTYPE_CHAIN_LIMIT);
|
|
}
|
|
curr = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, curr);
|
|
} while (curr);
|
|
|
|
/*
|
|
* Not found
|
|
*/
|
|
|
|
duk_to_undefined(ctx, -1); /* [key] -> [undefined] (default value) */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (not found)", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 0;
|
|
|
|
/*
|
|
* Found; post-processing (Function and arguments objects)
|
|
*/
|
|
|
|
found:
|
|
/* [key result] */
|
|
|
|
#if !defined(DUK_USE_NONSTD_FUNC_CALLER_PROPERTY)
|
|
/* Special behavior for 'caller' property of (non-bound) function objects
|
|
* and non-strict Arguments objects: if 'caller' -value- (!) is a strict
|
|
* mode function, throw a TypeError (E5 Sections 15.3.5.4, 10.6).
|
|
* Quite interestingly, a non-strict function with no formal arguments
|
|
* will get an arguments object -without- special 'caller' behavior!
|
|
*
|
|
* The E5.1 spec is a bit ambiguous if this special behavior applies when
|
|
* a bound function is the base value (not the 'caller' value): Section
|
|
* 15.3.4.5 (describing bind()) states that [[Get]] for bound functions
|
|
* matches that of Section 15.3.5.4 ([[Get]] for Function instances).
|
|
* However, Section 13.3.5.4 has "NOTE: Function objects created using
|
|
* Function.prototype.bind use the default [[Get]] internal method."
|
|
* The current implementation assumes this means that bound functions
|
|
* should not have the special [[Get]] behavior.
|
|
*
|
|
* The E5.1 spec is also a bit unclear if the TypeError throwing is
|
|
* applied if the 'caller' value is a strict bound function. The
|
|
* current implementation will throw even for both strict non-bound
|
|
* and strict bound functions.
|
|
*
|
|
* See test-dev-strict-func-as-caller-prop-value.js for quite extensive
|
|
* tests.
|
|
*
|
|
* This exotic behavior is disabled when the non-standard 'caller' property
|
|
* is enabled, as it conflicts with the free use of 'caller'.
|
|
*/
|
|
if (key == DUK_HTHREAD_STRING_CALLER(thr) &&
|
|
DUK_TVAL_IS_OBJECT(tv_obj)) {
|
|
duk_hobject *orig = DUK_TVAL_GET_OBJECT(tv_obj);
|
|
DUK_ASSERT(orig != NULL);
|
|
|
|
if (DUK_HOBJECT_IS_NONBOUND_FUNCTION(orig) ||
|
|
DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(orig)) {
|
|
duk_hobject *h;
|
|
|
|
/* XXX: The TypeError is currently not applied to bound
|
|
* functions because the 'strict' flag is not copied by
|
|
* bind(). This may or may not be correct, the specification
|
|
* only refers to the value being a "strict mode Function
|
|
* object" which is ambiguous.
|
|
*/
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(orig));
|
|
|
|
h = duk_get_hobject(ctx, -1); /* NULL if not an object */
|
|
if (h &&
|
|
DUK_HOBJECT_IS_FUNCTION(h) &&
|
|
DUK_HOBJECT_HAS_STRICT(h)) {
|
|
/* XXX: sufficient to check 'strict', assert for 'is function' */
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_STRICT_CALLER_READ);
|
|
}
|
|
}
|
|
}
|
|
#endif /* !DUK_USE_NONSTD_FUNC_CALLER_PROPERTY */
|
|
|
|
duk_remove(ctx, -2); /* [key result] -> [result] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("-> %!T (found)", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* HASPROP: Ecmascript property existence check ("in" operator).
|
|
*
|
|
* Interestingly, the 'in' operator does not do any coercion of
|
|
* the target object.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_hasprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_key_copy;
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
duk_uint32_t arr_idx;
|
|
duk_bool_t rc;
|
|
duk_propdesc desc;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("hasprop: thr=%p, obj=%p, key=%p (obj -> %!T, key -> %!T)",
|
|
(void *) thr, (void *) tv_obj, (void *) tv_key,
|
|
(duk_tval *) tv_obj, (duk_tval *) tv_key));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(tv_obj != NULL);
|
|
DUK_ASSERT(tv_key != NULL);
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_key_copy, tv_key);
|
|
tv_key = &tv_key_copy;
|
|
|
|
/*
|
|
* The 'in' operator requires an object as its right hand side,
|
|
* throwing a TypeError unconditionally if this is not the case.
|
|
*
|
|
* However, lightfuncs need to behave like fully fledged objects
|
|
* here to be maximally transparent, so we need to handle them
|
|
* here.
|
|
*/
|
|
|
|
/* XXX: Refactor key coercion so that it's only called once. It can't
|
|
* be trivially lifted here because the object must be type checked
|
|
* first.
|
|
*/
|
|
|
|
if (DUK_TVAL_IS_OBJECT(tv_obj)) {
|
|
obj = DUK_TVAL_GET_OBJECT(tv_obj);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv_obj)) {
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
if (duk__key_is_lightfunc_ownprop(thr, key)) {
|
|
/* FOUND */
|
|
rc = 1;
|
|
goto pop_and_return;
|
|
}
|
|
|
|
/* If not found, resume existence check from Function.prototype.
|
|
* We can just substitute the value in this case; nothing will
|
|
* need the original base value (as would be the case with e.g.
|
|
* setters/getters.
|
|
*/
|
|
obj = thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE];
|
|
} else {
|
|
/* Note: unconditional throw */
|
|
DUK_DDD(DUK_DDDPRINT("base object is not an object -> reject"));
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_BASE);
|
|
}
|
|
|
|
/* XXX: fast path for arrays? */
|
|
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_UNREF(arr_idx);
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
if (DUK_UNLIKELY(DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(obj))) {
|
|
duk_hobject *h_target;
|
|
duk_bool_t tmp_bool;
|
|
|
|
/* XXX: the key in 'key in obj' is string coerced before we're called
|
|
* (which is the required behavior in E5/E5.1/E6) so the key is a string
|
|
* here already.
|
|
*/
|
|
|
|
if (duk__proxy_check_prop(thr, obj, DUK_STRIDX_HAS, tv_key, &h_target)) {
|
|
/* [ ... key trap handler ] */
|
|
DUK_DDD(DUK_DDDPRINT("-> proxy object 'has' for key %!T", (duk_tval *) tv_key));
|
|
duk_push_hobject(ctx, h_target); /* target */
|
|
duk_push_tval(ctx, tv_key); /* P */
|
|
duk_call_method(ctx, 2 /*nargs*/);
|
|
tmp_bool = duk_to_boolean(ctx, -1);
|
|
if (!tmp_bool) {
|
|
/* Target object must be checked for a conflicting
|
|
* non-configurable property.
|
|
*/
|
|
|
|
if (duk__get_own_property_desc_raw(thr, h_target, key, arr_idx, &desc, 0 /*flags*/)) { /* don't push value */
|
|
DUK_DDD(DUK_DDDPRINT("proxy 'has': target has matching property %!O, check for "
|
|
"conflicting property; desc.flags=0x%08lx, "
|
|
"desc.get=%p, desc.set=%p",
|
|
(duk_heaphdr *) key, (unsigned long) desc.flags,
|
|
(void *) desc.get, (void *) desc.set));
|
|
/* XXX: Extensibility check for target uses IsExtensible(). If we
|
|
* implemented the isExtensible trap and didn't reject proxies as
|
|
* proxy targets, it should be respected here.
|
|
*/
|
|
if (!((desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) && /* property is configurable and */
|
|
DUK_HOBJECT_HAS_EXTENSIBLE(h_target))) { /* ... target is extensible */
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REJECTED);
|
|
}
|
|
}
|
|
}
|
|
|
|
duk_pop_2(ctx); /* [ key trap_result ] -> [] */
|
|
return tmp_bool;
|
|
}
|
|
|
|
obj = h_target; /* resume check from proxy target */
|
|
}
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
/* XXX: inline into a prototype walking loop? */
|
|
|
|
rc = duk__get_property_desc(thr, obj, key, &desc, 0 /*flags*/); /* don't push value */
|
|
/* fall through */
|
|
|
|
pop_and_return:
|
|
duk_pop(ctx); /* [ key ] -> [] */
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* HASPROP variant used internally.
|
|
*
|
|
* This primitive must never throw an error, callers rely on this.
|
|
* In particular, don't throw an error for prototype loops; instead,
|
|
* pretend like the property doesn't exist if a prototype sanity limit
|
|
* is reached.
|
|
*
|
|
* Does not implement proxy behavior: if applied to a proxy object,
|
|
* returns key existence on the proxy object itself.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_hasprop_raw(duk_hthread *thr, duk_hobject *obj, duk_hstring *key) {
|
|
duk_propdesc dummy;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
return duk__get_property_desc(thr, obj, key, &dummy, DUK__DESC_FLAG_IGNORE_PROTOLOOP); /* don't push value */
|
|
}
|
|
|
|
/*
|
|
* Helper: handle Array object 'length' write which automatically
|
|
* deletes properties, see E5 Section 15.4.5.1, step 3. This is
|
|
* quite tricky to get right.
|
|
*
|
|
* Used by duk_hobject_putprop().
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint32_t duk__get_old_array_length(duk_hthread *thr, duk_hobject *obj, duk_propdesc *temp_desc) {
|
|
duk_bool_t rc;
|
|
duk_tval *tv;
|
|
duk_uint32_t res;
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/* This function is only called for objects with array exotic behavior.
|
|
* The [[DefineOwnProperty]] algorithm for arrays requires that
|
|
* 'length' can never have a value outside the unsigned 32-bit range,
|
|
* attempt to write such a value is a RangeError. Here we can thus
|
|
* assert for this. When Duktape internals go around the official
|
|
* property write interface (doesn't happen often) this assumption is
|
|
* easy to accidentally break, so such code must be written carefully.
|
|
* See test-bi-array-push-maxlen.js.
|
|
*/
|
|
|
|
rc = duk__get_own_property_desc_raw(thr, obj, DUK_HTHREAD_STRING_LENGTH(thr), DUK__NO_ARRAY_INDEX, temp_desc, 0 /*flags*/); /* don't push value */
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0); /* arrays MUST have a 'length' property */
|
|
DUK_ASSERT(temp_desc->e_idx >= 0);
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, temp_desc->e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv)); /* array 'length' is always a number, as we coerce it */
|
|
DUK_ASSERT(DUK_TVAL_GET_NUMBER(tv) >= 0.0);
|
|
DUK_ASSERT(DUK_TVAL_GET_NUMBER(tv) <= (double) 0xffffffffUL);
|
|
DUK_ASSERT((duk_double_t) (duk_uint32_t) DUK_TVAL_GET_NUMBER(tv) == DUK_TVAL_GET_NUMBER(tv));
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Downgrade checks are not made everywhere, so 'length' is not always
|
|
* a fastint (it is a number though). This can be removed once length
|
|
* is always guaranteed to be a fastint.
|
|
*/
|
|
DUK_ASSERT(DUK_TVAL_IS_FASTINT(tv) || DUK_TVAL_IS_DOUBLE(tv));
|
|
if (DUK_TVAL_IS_FASTINT(tv)) {
|
|
res = (duk_uint32_t) DUK_TVAL_GET_FASTINT_U32(tv);
|
|
} else {
|
|
res = (duk_uint32_t) DUK_TVAL_GET_DOUBLE(tv);
|
|
}
|
|
#else
|
|
res = (duk_uint32_t) DUK_TVAL_GET_NUMBER(tv);
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__to_new_array_length_checked(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint32_t res;
|
|
duk_double_t d;
|
|
|
|
/* Input value should be on stack top and will be coerced and
|
|
* popped. Refuse to update an Array's 'length' to a value
|
|
* outside the 32-bit range. Negative zero is accepted as zero.
|
|
*/
|
|
|
|
/* XXX: fastint */
|
|
|
|
d = duk_to_number(ctx, -1);
|
|
res = (duk_uint32_t) d;
|
|
if ((duk_double_t) res != d) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_INVALID_ARRAY_LENGTH);
|
|
}
|
|
duk_pop(ctx);
|
|
return res;
|
|
}
|
|
|
|
/* Delete elements required by a smaller length, taking into account
|
|
* potentially non-configurable elements. Returns non-zero if all
|
|
* elements could be deleted, and zero if all or some elements could
|
|
* not be deleted. Also writes final "target length" to 'out_result_len'.
|
|
* This is the length value that should go into the 'length' property
|
|
* (must be set by the caller). Never throws an error.
|
|
*/
|
|
DUK_LOCAL
|
|
duk_bool_t duk__handle_put_array_length_smaller(duk_hthread *thr,
|
|
duk_hobject *obj,
|
|
duk_uint32_t old_len,
|
|
duk_uint32_t new_len,
|
|
duk_bool_t force_flag,
|
|
duk_uint32_t *out_result_len) {
|
|
duk_uint32_t target_len;
|
|
duk_uint_fast32_t i;
|
|
duk_uint32_t arr_idx;
|
|
duk_hstring *key;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_bool_t rc;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("new array length smaller than old (%ld -> %ld), "
|
|
"probably need to remove elements",
|
|
(long) old_len, (long) new_len));
|
|
|
|
/*
|
|
* New length is smaller than old length, need to delete properties above
|
|
* the new length.
|
|
*
|
|
* If array part exists, this is straightforward: array entries cannot
|
|
* be non-configurable so this is guaranteed to work.
|
|
*
|
|
* If array part does not exist, array-indexed values are scattered
|
|
* in the entry part, and some may not be configurable (preventing length
|
|
* from becoming lower than their index + 1). To handle the algorithm
|
|
* in E5 Section 15.4.5.1, step l correctly, we scan the entire property
|
|
* set twice.
|
|
*/
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(new_len < old_len);
|
|
DUK_ASSERT(out_result_len != NULL);
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
if (DUK_HOBJECT_HAS_ARRAY_PART(obj)) {
|
|
/*
|
|
* All defined array-indexed properties are in the array part
|
|
* (we assume the array part is comprehensive), and all array
|
|
* entries are writable, configurable, and enumerable. Thus,
|
|
* nothing can prevent array entries from being deleted.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("have array part, easy case"));
|
|
|
|
if (old_len < DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
/* XXX: assertion that entries >= old_len are already unused */
|
|
i = old_len;
|
|
} else {
|
|
i = DUK_HOBJECT_GET_ASIZE(obj);
|
|
}
|
|
DUK_ASSERT(i <= DUK_HOBJECT_GET_ASIZE(obj));
|
|
|
|
while (i > new_len) {
|
|
i--;
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, i);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
}
|
|
|
|
*out_result_len = new_len;
|
|
return 1;
|
|
} else {
|
|
/*
|
|
* Entries part is a bit more complex
|
|
*/
|
|
|
|
/* Stage 1: find highest preventing non-configurable entry (if any).
|
|
* When forcing, ignore non-configurability.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("no array part, slow case"));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array length write, no array part, stage 1: find target_len "
|
|
"(highest preventing non-configurable entry (if any))"));
|
|
|
|
target_len = new_len;
|
|
if (force_flag) {
|
|
DUK_DDD(DUK_DDDPRINT("array length write, no array part; force flag -> skip stage 1"));
|
|
goto skip_stage1;
|
|
}
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
key = DUK_HOBJECT_E_GET_KEY(thr->heap, obj, i);
|
|
if (!key) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: null key", (long) i));
|
|
continue;
|
|
}
|
|
if (!DUK_HSTRING_HAS_ARRIDX(key)) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: key not an array index", (long) i));
|
|
continue;
|
|
}
|
|
|
|
DUK_ASSERT(DUK_HSTRING_HAS_ARRIDX(key)); /* XXX: macro checks for array index flag, which is unnecessary here */
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_SLOW(key);
|
|
DUK_ASSERT(arr_idx != DUK__NO_ARRAY_INDEX);
|
|
DUK_ASSERT(arr_idx < old_len); /* consistency requires this */
|
|
|
|
if (arr_idx < new_len) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: key is array index %ld, below new_len",
|
|
(long) i, (long) arr_idx));
|
|
continue;
|
|
}
|
|
if (DUK_HOBJECT_E_SLOT_IS_CONFIGURABLE(thr->heap, obj, i)) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: key is a relevant array index %ld, but configurable",
|
|
(long) i, (long) arr_idx));
|
|
continue;
|
|
}
|
|
|
|
/* relevant array index is non-configurable, blocks write */
|
|
if (arr_idx >= target_len) {
|
|
DUK_DDD(DUK_DDDPRINT("entry at index %ld has arr_idx %ld, is not configurable, "
|
|
"update target_len %ld -> %ld",
|
|
(long) i, (long) arr_idx, (long) target_len,
|
|
(long) (arr_idx + 1)));
|
|
target_len = arr_idx + 1;
|
|
}
|
|
}
|
|
skip_stage1:
|
|
|
|
/* stage 2: delete configurable entries above target length */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("old_len=%ld, new_len=%ld, target_len=%ld",
|
|
(long) old_len, (long) new_len, (long) target_len));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array length write, no array part, stage 2: remove "
|
|
"entries >= target_len"));
|
|
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
key = DUK_HOBJECT_E_GET_KEY(thr->heap, obj, i);
|
|
if (!key) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: null key", (long) i));
|
|
continue;
|
|
}
|
|
if (!DUK_HSTRING_HAS_ARRIDX(key)) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: key not an array index", (long) i));
|
|
continue;
|
|
}
|
|
|
|
DUK_ASSERT(DUK_HSTRING_HAS_ARRIDX(key)); /* XXX: macro checks for array index flag, which is unnecessary here */
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_SLOW(key);
|
|
DUK_ASSERT(arr_idx != DUK__NO_ARRAY_INDEX);
|
|
DUK_ASSERT(arr_idx < old_len); /* consistency requires this */
|
|
|
|
if (arr_idx < target_len) {
|
|
DUK_DDD(DUK_DDDPRINT("skip entry index %ld: key is array index %ld, below target_len",
|
|
(long) i, (long) arr_idx));
|
|
continue;
|
|
}
|
|
DUK_ASSERT(force_flag || DUK_HOBJECT_E_SLOT_IS_CONFIGURABLE(thr->heap, obj, i)); /* stage 1 guarantees */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delete entry index %ld: key is array index %ld",
|
|
(long) i, (long) arr_idx));
|
|
|
|
/*
|
|
* Slow delete, but we don't care as we're already in a very slow path.
|
|
* The delete always succeeds: key has no exotic behavior, property
|
|
* is configurable, and no resize occurs.
|
|
*/
|
|
rc = duk_hobject_delprop_raw(thr, obj, key, force_flag ? DUK_DELPROP_FLAG_FORCE : 0);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
}
|
|
|
|
/* stage 3: update length (done by caller), decide return code */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array length write, no array part, stage 3: update length (done by caller)"));
|
|
|
|
*out_result_len = target_len;
|
|
|
|
if (target_len == new_len) {
|
|
DUK_DDD(DUK_DDDPRINT("target_len matches new_len, return success"));
|
|
return 1;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("target_len does not match new_len (some entry prevented "
|
|
"full length adjustment), return error"));
|
|
return 0;
|
|
}
|
|
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/* XXX: is valstack top best place for argument? */
|
|
DUK_LOCAL duk_bool_t duk__handle_put_array_length(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_propdesc desc;
|
|
duk_uint32_t old_len;
|
|
duk_uint32_t new_len;
|
|
duk_uint32_t result_len;
|
|
duk_tval *tv;
|
|
duk_bool_t rc;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("handling a put operation to array 'length' exotic property, "
|
|
"new val: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
DUK_ASSERT(duk_is_valid_index(ctx, -1));
|
|
|
|
/*
|
|
* Get old and new length
|
|
*/
|
|
|
|
old_len = duk__get_old_array_length(thr, obj, &desc);
|
|
duk_dup(ctx, -1); /* [in_val in_val] */
|
|
new_len = duk__to_new_array_length_checked(thr); /* -> [in_val] */
|
|
DUK_DDD(DUK_DDDPRINT("old_len=%ld, new_len=%ld", (long) old_len, (long) new_len));
|
|
|
|
/*
|
|
* Writability check
|
|
*/
|
|
|
|
if (!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
DUK_DDD(DUK_DDDPRINT("length is not writable, fail"));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* New length not lower than old length => no changes needed
|
|
* (not even array allocation).
|
|
*/
|
|
|
|
if (new_len >= old_len) {
|
|
DUK_DDD(DUK_DDDPRINT("new length is higher than old length, just update length, no deletions"));
|
|
|
|
DUK_ASSERT(desc.e_idx >= 0);
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, desc.e_idx));
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, desc.e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
/* no decref needed for a number */
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_FASTINT_U32(tv, new_len);
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) new_len);
|
|
#endif
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
return 1;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("new length is lower than old length, probably must delete entries"));
|
|
|
|
/*
|
|
* New length lower than old length => delete elements, then
|
|
* update length.
|
|
*
|
|
* Note: even though a bunch of elements have been deleted, the 'desc' is
|
|
* still valid as properties haven't been resized (and entries compacted).
|
|
*/
|
|
|
|
rc = duk__handle_put_array_length_smaller(thr, obj, old_len, new_len, 0 /*force_flag*/, &result_len);
|
|
DUK_ASSERT(result_len >= new_len && result_len <= old_len);
|
|
|
|
DUK_ASSERT(desc.e_idx >= 0);
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, desc.e_idx));
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, desc.e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
/* no decref needed for a number */
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_FASTINT_U32(tv, result_len);
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) result_len);
|
|
#endif
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
|
|
/* XXX: shrink array allocation or entries compaction here? */
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* PUTPROP: Ecmascript property write.
|
|
*
|
|
* Unlike Ecmascript primitive which returns nothing, returns 1 to indicate
|
|
* success and 0 to indicate failure (assuming throw is not set).
|
|
*
|
|
* This is an extremely tricky function. Some examples:
|
|
*
|
|
* * Currently a decref may trigger a GC, which may compact an object's
|
|
* property allocation. Consequently, any entry indices (e_idx) will
|
|
* be potentially invalidated by a decref.
|
|
*
|
|
* * Exotic behaviors (strings, arrays, arguments object) require,
|
|
* among other things:
|
|
*
|
|
* - Preprocessing before and postprocessing after an actual property
|
|
* write. For example, array index write requires pre-checking the
|
|
* array 'length' property for access control, and may require an
|
|
* array 'length' update after the actual write has succeeded (but
|
|
* not if it fails).
|
|
*
|
|
* - Deletion of multiple entries, as a result of array 'length' write.
|
|
*
|
|
* * Input values are taken as pointers which may point to the valstack.
|
|
* If valstack is resized because of the put (this may happen at least
|
|
* when the array part is abandoned), the pointers can be invalidated.
|
|
* (We currently make a copy of all of the input values to avoid issues.)
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_putprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key, duk_tval *tv_val, duk_bool_t throw_flag) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_obj_copy;
|
|
duk_tval tv_key_copy;
|
|
duk_tval tv_val_copy;
|
|
duk_hobject *orig = NULL; /* NULL if tv_obj is primitive */
|
|
duk_hobject *curr;
|
|
duk_hstring *key = NULL;
|
|
duk_propdesc desc;
|
|
duk_tval *tv;
|
|
duk_uint32_t arr_idx;
|
|
duk_bool_t rc;
|
|
duk_int_t e_idx;
|
|
duk_uint_t sanity;
|
|
duk_uint32_t new_array_length = 0; /* 0 = no update */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("putprop: thr=%p, obj=%p, key=%p, val=%p, throw=%ld "
|
|
"(obj -> %!T, key -> %!T, val -> %!T)",
|
|
(void *) thr, (void *) tv_obj, (void *) tv_key, (void *) tv_val,
|
|
(long) throw_flag, (duk_tval *) tv_obj, (duk_tval *) tv_key, (duk_tval *) tv_val));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv_obj != NULL);
|
|
DUK_ASSERT(tv_key != NULL);
|
|
DUK_ASSERT(tv_val != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/*
|
|
* Make a copy of tv_obj, tv_key, and tv_val to avoid any issues of
|
|
* them being invalidated by a valstack resize.
|
|
*
|
|
* XXX: this is an overkill for some paths, so optimize this later
|
|
* (or maybe switch to a stack arguments model entirely).
|
|
*/
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_obj_copy, tv_obj);
|
|
DUK_TVAL_SET_TVAL(&tv_key_copy, tv_key);
|
|
DUK_TVAL_SET_TVAL(&tv_val_copy, tv_val);
|
|
tv_obj = &tv_obj_copy;
|
|
tv_key = &tv_key_copy;
|
|
tv_val = &tv_val_copy;
|
|
|
|
/*
|
|
* Coercion and fast path processing.
|
|
*/
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv_obj)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL: {
|
|
/* Note: unconditional throw */
|
|
DUK_DDD(DUK_DDDPRINT("base object is undefined or null -> reject (object=%!iT)",
|
|
(duk_tval *) tv_obj));
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_BASE);
|
|
return 0;
|
|
}
|
|
|
|
case DUK_TAG_BOOLEAN: {
|
|
DUK_DDD(DUK_DDDPRINT("base object is a boolean, start lookup from boolean prototype"));
|
|
curr = thr->builtins[DUK_BIDX_BOOLEAN_PROTOTYPE];
|
|
break;
|
|
}
|
|
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv_obj);
|
|
|
|
/*
|
|
* Note: currently no fast path for array index writes.
|
|
* They won't be possible anyway as strings are immutable.
|
|
*/
|
|
|
|
DUK_ASSERT(key == NULL);
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
goto fail_not_writable;
|
|
}
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HSTRING_GET_CHARLEN(h)) {
|
|
goto fail_not_writable;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("base object is a string, start lookup from string prototype"));
|
|
curr = thr->builtins[DUK_BIDX_STRING_PROTOTYPE];
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
|
|
case DUK_TAG_OBJECT: {
|
|
orig = DUK_TVAL_GET_OBJECT(tv_obj);
|
|
DUK_ASSERT(orig != NULL);
|
|
|
|
/* The fast path for array property put is not fully compliant:
|
|
* If one places conflicting number-indexed properties into
|
|
* Array.prototype (for example, a non-writable Array.prototype[7])
|
|
* the fast path will incorrectly ignore them.
|
|
*
|
|
* This fast path could be made compliant by falling through
|
|
* to the slow path if the previous value was UNDEFINED_UNUSED.
|
|
* This would also remove the need to check for extensibility.
|
|
* Right now a non-extensible array is slower than an extensible
|
|
* one as far as writes are concerned.
|
|
*
|
|
* The fast path behavior is documented in more detail here:
|
|
* ecmascript-testcases/test-misc-array-fast-write.js
|
|
*/
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARRAY(orig) &&
|
|
DUK_HOBJECT_HAS_ARRAY_PART(orig) &&
|
|
DUK_HOBJECT_HAS_EXTENSIBLE(orig) &&
|
|
DUK_TVAL_IS_NUMBER(tv_key)) {
|
|
arr_idx = duk__tval_number_to_arr_idx(tv_key);
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HOBJECT_GET_ASIZE(orig)) { /* for resizing of array part, use slow path */
|
|
duk_tval tv_tmp;
|
|
duk_uint32_t old_len, new_len;
|
|
|
|
DUK_ASSERT(arr_idx < DUK_HOBJECT_GET_ASIZE(orig));
|
|
|
|
old_len = duk__get_old_array_length(thr, orig, &desc);
|
|
|
|
if (arr_idx >= old_len) {
|
|
DUK_DDD(DUK_DDDPRINT("write new array entry requires length update "
|
|
"(arr_idx=%ld, old_len=%ld)",
|
|
(long) arr_idx, (long) old_len));
|
|
if (!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
DUK_DD(DUK_DDPRINT("attempt to extend array, but array 'length' is not writable"));
|
|
goto fail_not_writable;
|
|
}
|
|
new_len = arr_idx + 1;
|
|
|
|
/* No resize has occurred so desc.e_idx is still OK */
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, orig, desc.e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_FASTINT_U32(tv, new_len); /* no need for decref/incref because value is a number */
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) new_len); /* no need for decref/incref because value is a number */
|
|
#endif
|
|
} else {
|
|
;
|
|
}
|
|
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, orig, arr_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_TVAL(tv, tv_val);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* note: may trigger gc and props compaction, must be last */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array fast path success for index %ld", (long) arr_idx));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
if (DUK_UNLIKELY(DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(orig))) {
|
|
duk_hobject *h_target;
|
|
duk_bool_t tmp_bool;
|
|
|
|
if (duk__proxy_check_prop(thr, orig, DUK_STRIDX_SET, tv_key, &h_target)) {
|
|
/* -> [ ... trap handler ] */
|
|
DUK_DDD(DUK_DDDPRINT("-> proxy object 'set' for key %!T", (duk_tval *) tv_key));
|
|
duk_push_hobject(ctx, h_target); /* target */
|
|
duk_push_tval(ctx, tv_key); /* P */
|
|
duk_push_tval(ctx, tv_val); /* V */
|
|
duk_push_tval(ctx, tv_obj); /* Receiver: Proxy object */
|
|
duk_call_method(ctx, 4 /*nargs*/);
|
|
tmp_bool = duk_to_boolean(ctx, -1);
|
|
duk_pop(ctx);
|
|
if (!tmp_bool) {
|
|
goto fail_proxy_rejected;
|
|
}
|
|
|
|
/* Target object must be checked for a conflicting
|
|
* non-configurable property.
|
|
*/
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (duk__get_own_property_desc_raw(thr, h_target, key, arr_idx, &desc, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
duk_tval *tv_targ = duk_require_tval(ctx, -1);
|
|
duk_bool_t datadesc_reject;
|
|
duk_bool_t accdesc_reject;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("proxy 'set': target has matching property %!O, check for "
|
|
"conflicting property; tv_val=%!T, tv_targ=%!T, desc.flags=0x%08lx, "
|
|
"desc.get=%p, desc.set=%p",
|
|
(duk_heaphdr *) key, (duk_tval *) tv_val, (duk_tval *) tv_targ,
|
|
(unsigned long) desc.flags,
|
|
(void *) desc.get, (void *) desc.set));
|
|
|
|
datadesc_reject = !(desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) &&
|
|
!(desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) &&
|
|
!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE) &&
|
|
!duk_js_samevalue(tv_val, tv_targ);
|
|
accdesc_reject = (desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) &&
|
|
!(desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) &&
|
|
(desc.set == NULL);
|
|
if (datadesc_reject || accdesc_reject) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REJECTED);
|
|
}
|
|
|
|
duk_pop_2(ctx);
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
return 1; /* success */
|
|
}
|
|
|
|
orig = h_target; /* resume write to target */
|
|
DUK_TVAL_SET_OBJECT(tv_obj, orig);
|
|
}
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
curr = orig;
|
|
break;
|
|
}
|
|
|
|
case DUK_TAG_BUFFER: {
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv_obj);
|
|
duk_int_t pop_count = 0;
|
|
|
|
/*
|
|
* Because buffer values may be looped over and read/written
|
|
* from, an array index fast path is important.
|
|
*/
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_key)) {
|
|
arr_idx = duk__tval_fastint_to_arr_idx(tv_key);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a fast-path fastint; arr_idx %ld", (long) arr_idx));
|
|
pop_count = 0;
|
|
} else
|
|
#endif
|
|
if (DUK_TVAL_IS_NUMBER(tv_key)) {
|
|
arr_idx = duk__tval_number_to_arr_idx(tv_key);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a fast-path number; arr_idx %ld", (long) arr_idx));
|
|
pop_count = 0;
|
|
} else {
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a non-fast-path number; after "
|
|
"coercion key is %!T, arr_idx %ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) arr_idx));
|
|
pop_count = 1;
|
|
}
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HBUFFER_GET_SIZE(h)) {
|
|
duk_uint8_t *data;
|
|
DUK_DDD(DUK_DDDPRINT("writing to buffer data at index %ld", (long) arr_idx));
|
|
data = (duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h);
|
|
|
|
/* XXX: duk_to_int() ensures we'll get 8 lowest bits as
|
|
* as input is within duk_int_t range (capped outside it).
|
|
*/
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Buffer writes are often integers. */
|
|
if (DUK_TVAL_IS_FASTINT(tv_val)) {
|
|
data[arr_idx] = (duk_uint8_t) DUK_TVAL_GET_FASTINT_U32(tv_val);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
duk_push_tval(ctx, tv_val);
|
|
data[arr_idx] = (duk_uint8_t) duk_to_int(ctx, -1);
|
|
pop_count++;
|
|
}
|
|
|
|
duk_pop_n(ctx, pop_count);
|
|
DUK_DDD(DUK_DDDPRINT("result: success (buffer data write)"));
|
|
return 1;
|
|
}
|
|
|
|
if (pop_count == 0) {
|
|
/* This is a pretty awkward control flow, but we need to recheck the
|
|
* key coercion here.
|
|
*/
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("base object buffer, key is a non-fast-path number; after "
|
|
"coercion key is %!T, arr_idx %ld",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) arr_idx));
|
|
}
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
goto fail_not_writable;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("base object is a buffer, start lookup from buffer prototype"));
|
|
curr = thr->builtins[DUK_BIDX_BUFFER_PROTOTYPE];
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
|
|
case DUK_TAG_POINTER: {
|
|
DUK_DDD(DUK_DDDPRINT("base object is a pointer, start lookup from pointer prototype"));
|
|
curr = thr->builtins[DUK_BIDX_POINTER_PROTOTYPE];
|
|
break;
|
|
}
|
|
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
/* All lightfunc own properties are non-writable and the lightfunc
|
|
* is considered non-extensible. However, the write may be captured
|
|
* by an inherited setter which means we can't stop the lookup here.
|
|
*/
|
|
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
|
|
if (duk__key_is_lightfunc_ownprop(thr, key)) {
|
|
goto fail_not_writable;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("base object is a lightfunc, start lookup from function prototype"));
|
|
curr = thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE];
|
|
goto lookup; /* avoid double coercion */
|
|
}
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
DUK_DDD(DUK_DDDPRINT("base object is a number, start lookup from number prototype"));
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_obj));
|
|
curr = thr->builtins[DUK_BIDX_NUMBER_PROTOTYPE];
|
|
break;
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(key == NULL);
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
lookup:
|
|
|
|
/*
|
|
* Check whether the property already exists in the prototype chain.
|
|
* Note that the actual write goes into the original base object
|
|
* (except if an accessor property captures the write).
|
|
*/
|
|
|
|
/* [key] */
|
|
|
|
DUK_ASSERT(curr != NULL);
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
do {
|
|
if (!duk__get_own_property_desc_raw(thr, curr, key, arr_idx, &desc, 0 /*flags*/)) { /* don't push value */
|
|
goto next_in_chain;
|
|
}
|
|
|
|
if (desc.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
/*
|
|
* Found existing accessor property (own or inherited).
|
|
* Call setter with 'this' set to orig, and value as the only argument.
|
|
*
|
|
* Note: no exotic arguments object behavior, because [[Put]] never
|
|
* calls [[DefineOwnProperty]] (E5 Section 8.12.5, step 5.b).
|
|
*/
|
|
|
|
duk_hobject *setter;
|
|
|
|
DUK_DD(DUK_DDPRINT("put to an own or inherited accessor, calling setter"));
|
|
|
|
setter = DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, curr, desc.e_idx);
|
|
if (!setter) {
|
|
goto fail_no_setter;
|
|
}
|
|
duk_push_hobject(ctx, setter);
|
|
duk_push_tval(ctx, tv_obj); /* note: original, uncoerced base */
|
|
duk_push_tval(ctx, tv_val); /* [key setter this val] */
|
|
#ifdef DUK_USE_NONSTD_SETTER_KEY_ARGUMENT
|
|
duk_dup(ctx, -4);
|
|
duk_call_method(ctx, 2); /* [key setter this val key] -> [key retval] */
|
|
#else
|
|
duk_call_method(ctx, 1); /* [key setter this val] -> [key retval] */
|
|
#endif
|
|
duk_pop(ctx); /* ignore retval -> [key] */
|
|
goto success_no_arguments_exotic;
|
|
}
|
|
|
|
if (orig == NULL) {
|
|
/*
|
|
* Found existing own or inherited plain property, but original
|
|
* base is a primitive value.
|
|
*/
|
|
DUK_DD(DUK_DDPRINT("attempt to create a new property in a primitive base object"));
|
|
goto fail_base_primitive;
|
|
}
|
|
|
|
if (curr != orig) {
|
|
/*
|
|
* Found existing inherited plain property.
|
|
* Do an access control check, and if OK, write
|
|
* new property to 'orig'.
|
|
*/
|
|
if (!DUK_HOBJECT_HAS_EXTENSIBLE(orig)) {
|
|
DUK_DD(DUK_DDPRINT("found existing inherited plain property, but original object is not extensible"));
|
|
goto fail_not_extensible;
|
|
}
|
|
if (!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
DUK_DD(DUK_DDPRINT("found existing inherited plain property, original object is extensible, but inherited property is not writable"));
|
|
goto fail_not_writable;
|
|
}
|
|
DUK_DD(DUK_DDPRINT("put to new property, object extensible, inherited property found and is writable"));
|
|
goto create_new;
|
|
} else {
|
|
/*
|
|
* Found existing own (non-inherited) plain property.
|
|
* Do an access control check and update in place.
|
|
*/
|
|
|
|
if (!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
DUK_DD(DUK_DDPRINT("found existing own (non-inherited) plain property, but property is not writable"));
|
|
goto fail_not_writable;
|
|
}
|
|
if (desc.flags & DUK_PROPDESC_FLAG_VIRTUAL) {
|
|
DUK_DD(DUK_DDPRINT("found existing own (non-inherited) virtual property, property is writable"));
|
|
if (DUK_HOBJECT_HAS_EXOTIC_BUFFEROBJ(curr)) {
|
|
duk_hbuffer *h;
|
|
|
|
DUK_DD(DUK_DDPRINT("writable virtual property is in buffer object"));
|
|
h = duk_hobject_get_internal_value_buffer(thr->heap, curr);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HBUFFER_GET_SIZE(h)) {
|
|
duk_uint8_t *data;
|
|
DUK_DDD(DUK_DDDPRINT("writing to buffer data at index %ld", (long) arr_idx));
|
|
data = (duk_uint8_t *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h);
|
|
duk_push_tval(ctx, tv_val);
|
|
/* XXX: duk_to_int() ensures we'll get 8 lowest bits as
|
|
* as input is within duk_int_t range (capped outside it).
|
|
*/
|
|
data[arr_idx] = (duk_uint8_t) duk_to_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
goto success_no_arguments_exotic;
|
|
}
|
|
}
|
|
|
|
goto fail_internal; /* should not happen */
|
|
}
|
|
DUK_DD(DUK_DDPRINT("put to existing own plain property, property is writable"));
|
|
goto update_old;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
|
|
next_in_chain:
|
|
/* XXX: option to pretend property doesn't exist if sanity limit is
|
|
* hit might be useful.
|
|
*/
|
|
if (sanity-- == 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_PROTOTYPE_CHAIN_LIMIT);
|
|
}
|
|
curr = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, curr);
|
|
} while (curr);
|
|
|
|
/*
|
|
* Property not found in prototype chain.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("property not found in prototype chain"));
|
|
|
|
if (orig == NULL) {
|
|
DUK_DD(DUK_DDPRINT("attempt to create a new property in a primitive base object"));
|
|
goto fail_base_primitive;
|
|
}
|
|
|
|
if (!DUK_HOBJECT_HAS_EXTENSIBLE(orig)) {
|
|
DUK_DD(DUK_DDPRINT("put to a new property (not found in prototype chain), but original object not extensible"));
|
|
goto fail_not_extensible;
|
|
}
|
|
|
|
goto create_new;
|
|
|
|
update_old:
|
|
|
|
/*
|
|
* Update an existing property of the base object.
|
|
*/
|
|
|
|
/* [key] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("update an existing property of the original object"));
|
|
|
|
DUK_ASSERT(orig != NULL);
|
|
|
|
/* Although there are writable virtual properties (e.g. plain buffer
|
|
* and buffer object number indices), they are handled before we come
|
|
* here.
|
|
*/
|
|
DUK_ASSERT((desc.flags & DUK_PROPDESC_FLAG_VIRTUAL) == 0);
|
|
DUK_ASSERT(desc.a_idx >= 0 || desc.e_idx >= 0);
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARRAY(orig) &&
|
|
key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
/*
|
|
* Write to 'length' of an array is a very complex case
|
|
* handled in a helper which updates both the array elements
|
|
* and writes the new 'length'. The write may result in an
|
|
* unconditional RangeError or a partial write (indicated
|
|
* by a return code).
|
|
*
|
|
* Note: the helper has an unnecessary writability check
|
|
* for 'length', we already know it is writable.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("writing existing 'length' property to array exotic, invoke complex helper"));
|
|
|
|
/* XXX: the helper currently assumes stack top contains new
|
|
* 'length' value and the whole calling convention is not very
|
|
* compatible with what we need.
|
|
*/
|
|
|
|
duk_push_tval(ctx, tv_val); /* [key val] */
|
|
rc = duk__handle_put_array_length(thr, orig);
|
|
duk_pop(ctx); /* [key val] -> [key] */
|
|
if (!rc) {
|
|
goto fail_array_length_partial;
|
|
}
|
|
|
|
/* key is 'length', cannot match argument exotic behavior */
|
|
goto success_no_arguments_exotic;
|
|
}
|
|
|
|
if (desc.e_idx >= 0) {
|
|
duk_tval tv_tmp;
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, orig, desc.e_idx);
|
|
DUK_DDD(DUK_DDDPRINT("previous entry value: %!iT", (duk_tval *) tv));
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_TVAL(tv, tv_val);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* note: may trigger gc and props compaction, must be last */
|
|
/* don't touch property attributes or hash part */
|
|
DUK_DD(DUK_DDPRINT("put to an existing entry at index %ld -> new value %!iT",
|
|
(long) desc.e_idx, (duk_tval *) tv));
|
|
} else {
|
|
/* Note: array entries are always writable, so the writability check
|
|
* above is pointless for them. The check could be avoided with some
|
|
* refactoring but is probably not worth it.
|
|
*/
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_ASSERT(desc.a_idx >= 0);
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, orig, desc.a_idx);
|
|
DUK_DDD(DUK_DDDPRINT("previous array value: %!iT", (duk_tval *) tv));
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_TVAL(tv, tv_val);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* note: may trigger gc and props compaction, must be last */
|
|
DUK_DD(DUK_DDPRINT("put to an existing array entry at index %ld -> new value %!iT",
|
|
(long) desc.a_idx, (duk_tval *) tv));
|
|
}
|
|
|
|
/* Regardless of whether property is found in entry or array part,
|
|
* it may have arguments exotic behavior (array indices may reside
|
|
* in entry part for abandoned / non-existent array parts).
|
|
*/
|
|
goto success_with_arguments_exotic;
|
|
|
|
create_new:
|
|
|
|
/*
|
|
* Create a new property in the original object.
|
|
*
|
|
* Exotic properties need to be reconsidered here from a write
|
|
* perspective (not just property attributes perspective).
|
|
* However, the property does not exist in the object already,
|
|
* so this limits the kind of exotic properties that apply.
|
|
*/
|
|
|
|
/* [key] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("create new property to original object"));
|
|
|
|
DUK_ASSERT(orig != NULL);
|
|
|
|
/* Not possible because array object 'length' is present
|
|
* from its creation and cannot be deleted, and is thus
|
|
* caught as an existing property above.
|
|
*/
|
|
DUK_ASSERT(!(DUK_HOBJECT_HAS_EXOTIC_ARRAY(orig) &&
|
|
key == DUK_HTHREAD_STRING_LENGTH(thr)));
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARRAY(orig) &&
|
|
arr_idx != DUK__NO_ARRAY_INDEX) {
|
|
/* automatic length update */
|
|
duk_uint32_t old_len;
|
|
|
|
old_len = duk__get_old_array_length(thr, orig, &desc);
|
|
|
|
if (arr_idx >= old_len) {
|
|
DUK_DDD(DUK_DDDPRINT("write new array entry requires length update "
|
|
"(arr_idx=%ld, old_len=%ld)",
|
|
(long) arr_idx, (long) old_len));
|
|
|
|
if (!(desc.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
DUK_DD(DUK_DDPRINT("attempt to extend array, but array 'length' is not writable"));
|
|
goto fail_not_writable;
|
|
}
|
|
|
|
/* Note: actual update happens once write has been completed
|
|
* without error below. The write should always succeed
|
|
* from a specification viewpoint, but we may e.g. run out
|
|
* of memory. It's safer in this order.
|
|
*/
|
|
|
|
DUK_ASSERT(arr_idx != 0xffffffffUL);
|
|
new_array_length = arr_idx + 1; /* flag for later write */
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("write new array entry does not require length update "
|
|
"(arr_idx=%ld, old_len=%ld)",
|
|
(long) arr_idx, (long) old_len));
|
|
}
|
|
}
|
|
|
|
/* write_to_array_part: */
|
|
|
|
/*
|
|
* Write to array part?
|
|
*
|
|
* Note: array abandonding requires a property resize which uses
|
|
* 'rechecks' valstack for temporaries and may cause any existing
|
|
* valstack pointers to be invalidated. To protect against this,
|
|
* tv_obj, tv_key, and tv_val are copies of the original inputs.
|
|
*/
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
DUK_HOBJECT_HAS_ARRAY_PART(orig)) {
|
|
if (arr_idx < DUK_HOBJECT_GET_ASIZE(orig)) {
|
|
goto no_array_growth;
|
|
}
|
|
|
|
/*
|
|
* Array needs to grow, but we don't want it becoming too sparse.
|
|
* If it were to become sparse, abandon array part, moving all
|
|
* array entries into the entries part (for good).
|
|
*
|
|
* Since we don't keep track of actual density (used vs. size) of
|
|
* the array part, we need to estimate somehow. The check is made
|
|
* in two parts:
|
|
*
|
|
* - Check whether the resize need is small compared to the
|
|
* current size (relatively); if so, resize without further
|
|
* checking (essentially we assume that the original part is
|
|
* "dense" so that the result would be dense enough).
|
|
*
|
|
* - Otherwise, compute the resize using an actual density
|
|
* measurement based on counting the used array entries.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("write to new array requires array resize, decide whether to do a "
|
|
"fast resize without abandon check (arr_idx=%ld, old_size=%ld)",
|
|
(long) arr_idx, (long) DUK_HOBJECT_GET_ASIZE(orig)));
|
|
|
|
if (duk__abandon_array_slow_check_required(arr_idx, DUK_HOBJECT_GET_ASIZE(orig))) {
|
|
duk_uint32_t old_used;
|
|
duk_uint32_t old_size;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("=> fast check is NOT OK, do slow check for array abandon"));
|
|
|
|
duk__compute_a_stats(thr, orig, &old_used, &old_size);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("abandon check, array stats: old_used=%ld, old_size=%ld, arr_idx=%ld",
|
|
(long) old_used, (long) old_size, (long) arr_idx));
|
|
|
|
/* Note: intentionally use approximations to shave a few instructions:
|
|
* a_used = old_used (accurate: old_used + 1)
|
|
* a_size = arr_idx (accurate: arr_idx + 1)
|
|
*/
|
|
if (duk__abandon_array_density_check(old_used, arr_idx)) {
|
|
DUK_DD(DUK_DDPRINT("write to new array entry beyond current length, "
|
|
"decided to abandon array part (would become too sparse)"));
|
|
|
|
/* abandoning requires a props allocation resize and
|
|
* 'rechecks' the valstack, invalidating any existing
|
|
* valstack value pointers!
|
|
*/
|
|
duk__abandon_array_checked(thr, orig);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_ARRAY_PART(orig));
|
|
|
|
goto write_to_entry_part;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("=> decided to keep array part"));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("=> fast resize is OK"));
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("write to new array entry beyond current length, "
|
|
"decided to extend current allocation"));
|
|
|
|
duk__grow_props_for_array_item(thr, orig, arr_idx);
|
|
|
|
no_array_growth:
|
|
|
|
/* Note: assume array part is comprehensive, so that either
|
|
* the write goes to the array part, or we've abandoned the
|
|
* array above (and will not come here).
|
|
*/
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_ARRAY_PART(orig));
|
|
DUK_ASSERT(arr_idx < DUK_HOBJECT_GET_ASIZE(orig));
|
|
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, orig, arr_idx);
|
|
/* prev value must be unused, no decref */
|
|
DUK_ASSERT(DUK_TVAL_IS_UNDEFINED_UNUSED(tv));
|
|
DUK_TVAL_SET_TVAL(tv, tv_val);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_DD(DUK_DDPRINT("put to new array entry: %ld -> %!T",
|
|
(long) arr_idx, (duk_tval *) tv));
|
|
|
|
/* Note: array part values are [[Writable]], [[Enumerable]],
|
|
* and [[Configurable]] which matches the required attributes
|
|
* here.
|
|
*/
|
|
goto entry_updated;
|
|
}
|
|
|
|
write_to_entry_part:
|
|
|
|
/*
|
|
* Write to entry part
|
|
*/
|
|
|
|
/* entry allocation updates hash part and increases the key
|
|
* refcount; may need a props allocation resize but doesn't
|
|
* 'recheck' the valstack.
|
|
*/
|
|
e_idx = duk__alloc_entry_checked(thr, orig, key);
|
|
DUK_ASSERT(e_idx >= 0);
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, orig, e_idx);
|
|
/* prev value can be garbage, no decref */
|
|
DUK_TVAL_SET_TVAL(tv, tv_val);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, orig, e_idx, DUK_PROPDESC_FLAGS_WEC);
|
|
goto entry_updated;
|
|
|
|
entry_updated:
|
|
|
|
/*
|
|
* Possible pending array length update, which must only be done
|
|
* if the actual entry write succeeded.
|
|
*/
|
|
|
|
if (new_array_length > 0) {
|
|
/*
|
|
* Note: zero works as a "no update" marker because the new length
|
|
* can never be zero after a new property is written.
|
|
*
|
|
* Note: must re-lookup because calls above (e.g. duk__alloc_entry_checked())
|
|
* may realloc and compact properties and hence change e_idx.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("write successful, pending array length update to: %ld",
|
|
(long) new_array_length));
|
|
|
|
rc = duk__get_own_property_desc_raw(thr, orig, DUK_HTHREAD_STRING_LENGTH(thr), DUK__NO_ARRAY_INDEX, &desc, 0 /*flags*/); /* don't push value */
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
DUK_ASSERT(desc.e_idx >= 0);
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, orig, desc.e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
/* no need for decref/incref because value is a number */
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_FASTINT_U32(tv, new_array_length);
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv, (duk_double_t) new_array_length);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Arguments exotic behavior not possible for new properties: all
|
|
* magically bound properties are initially present in the arguments
|
|
* object, and if they are deleted, the binding is also removed from
|
|
* parameter map.
|
|
*/
|
|
|
|
goto success_no_arguments_exotic;
|
|
|
|
success_with_arguments_exotic:
|
|
|
|
/*
|
|
* Arguments objects have exotic [[DefineOwnProperty]] which updates
|
|
* the internal 'map' of arguments for writes to currently mapped
|
|
* arguments. More conretely, writes to mapped arguments generate
|
|
* a write to a bound variable.
|
|
*
|
|
* The [[Put]] algorithm invokes [[DefineOwnProperty]] for existing
|
|
* data properties and new properties, but not for existing accessors.
|
|
* Hence, in E5 Section 10.6 ([[DefinedOwnProperty]] algorithm), we
|
|
* have a Desc with 'Value' (and possibly other properties too), and
|
|
* we end up in step 5.b.i.
|
|
*/
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(orig)) {
|
|
/* Note: only numbered indices are relevant, so arr_idx fast reject
|
|
* is good (this is valid unless there are more than 4**32-1 arguments).
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("putprop successful, arguments exotic behavior needed"));
|
|
|
|
/* Note: we can reuse 'desc' here */
|
|
|
|
/* XXX: top of stack must contain value, which helper doesn't touch,
|
|
* rework to use tv_val directly?
|
|
*/
|
|
|
|
duk_push_tval(ctx, tv_val);
|
|
(void) duk__check_arguments_map_for_put(thr, orig, key, &desc, throw_flag);
|
|
duk_pop(ctx);
|
|
}
|
|
/* fall thru */
|
|
|
|
success_no_arguments_exotic:
|
|
/* shared exit path now */
|
|
DUK_DDD(DUK_DDDPRINT("result: success"));
|
|
duk_pop(ctx); /* remove key */
|
|
return 1;
|
|
|
|
fail_proxy_rejected:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, proxy rejects"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REJECTED);
|
|
}
|
|
/* Note: no key on stack */
|
|
return 0;
|
|
|
|
fail_base_primitive:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, base primitive"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_BASE);
|
|
}
|
|
duk_pop(ctx); /* remove key */
|
|
return 0;
|
|
|
|
fail_not_extensible:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, not extensible"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_EXTENSIBLE);
|
|
}
|
|
duk_pop(ctx); /* remove key */
|
|
return 0;
|
|
|
|
fail_not_writable:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, not writable"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_WRITABLE);
|
|
}
|
|
duk_pop(ctx); /* remove key */
|
|
return 0;
|
|
|
|
fail_array_length_partial:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, array length write only partially successful"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_ARRAY_LENGTH_WRITE_FAILED);
|
|
}
|
|
duk_pop(ctx); /* remove key */
|
|
return 0;
|
|
|
|
fail_no_setter:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, accessor property without setter"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_SETTER_UNDEFINED);
|
|
}
|
|
duk_pop(ctx); /* remove key */
|
|
return 0;
|
|
|
|
fail_internal:
|
|
DUK_DDD(DUK_DDDPRINT("result: error, internal"));
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
}
|
|
duk_pop(ctx); /* remove key */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Ecmascript compliant [[Delete]](P, Throw).
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_delprop_raw(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_small_uint_t flags) {
|
|
duk_propdesc desc;
|
|
duk_tval *tv;
|
|
duk_tval tv_tmp;
|
|
duk_uint32_t arr_idx;
|
|
duk_bool_t throw_flag;
|
|
duk_bool_t force_flag;
|
|
|
|
throw_flag = (flags & DUK_DELPROP_FLAG_THROW);
|
|
force_flag = (flags & DUK_DELPROP_FLAG_FORCE);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delprop_raw: thr=%p, obj=%p, key=%p, throw=%ld, force=%ld (obj -> %!O, key -> %!O)",
|
|
(void *) thr, (void *) obj, (void *) key, (long) throw_flag, (long) force_flag,
|
|
(duk_heaphdr *) obj, (duk_heaphdr *) key));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_FAST(key);
|
|
|
|
/* 0 = don't push current value */
|
|
if (!duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &desc, 0 /*flags*/)) { /* don't push value */
|
|
DUK_DDD(DUK_DDDPRINT("property not found, succeed always"));
|
|
goto success;
|
|
}
|
|
|
|
if ((desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) == 0 && !force_flag) {
|
|
goto fail_not_configurable;
|
|
}
|
|
if (desc.a_idx < 0 && desc.e_idx < 0) {
|
|
/* Currently there are no deletable virtual properties, but
|
|
* with force_flag we might attempt to delete one.
|
|
*/
|
|
goto fail_virtual;
|
|
}
|
|
|
|
if (desc.a_idx >= 0) {
|
|
DUK_ASSERT(desc.e_idx < 0);
|
|
|
|
tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, desc.a_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
goto success;
|
|
} else {
|
|
DUK_ASSERT(desc.a_idx < 0);
|
|
|
|
/* remove hash entry (no decref) */
|
|
#if defined(DUK_USE_HOBJECT_HASH_PART)
|
|
if (desc.h_idx >= 0) {
|
|
duk_uint32_t *h_base = DUK_HOBJECT_H_GET_BASE(thr->heap, obj);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("removing hash entry at h_idx %ld", (long) desc.h_idx));
|
|
DUK_ASSERT(DUK_HOBJECT_GET_HSIZE(obj) > 0);
|
|
DUK_ASSERT((duk_uint32_t) desc.h_idx < DUK_HOBJECT_GET_HSIZE(obj));
|
|
h_base[desc.h_idx] = DUK__HASH_DELETED;
|
|
} else {
|
|
DUK_ASSERT(DUK_HOBJECT_GET_HSIZE(obj) == 0);
|
|
}
|
|
#else
|
|
DUK_ASSERT(DUK_HOBJECT_GET_HSIZE(obj) == 0);
|
|
#endif
|
|
|
|
/* remove value */
|
|
DUK_DDD(DUK_DDDPRINT("before removing value, e_idx %ld, key %p, key at slot %p",
|
|
(long) desc.e_idx, (void *) key, (void *) DUK_HOBJECT_E_GET_KEY(thr->heap, obj, desc.e_idx)));
|
|
DUK_DDD(DUK_DDDPRINT("removing value at e_idx %ld", (long) desc.e_idx));
|
|
if (DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, desc.e_idx)) {
|
|
duk_hobject *tmp;
|
|
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_GETTER(thr->heap, obj, desc.e_idx);
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, obj, desc.e_idx, NULL);
|
|
DUK_UNREF(tmp);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, obj, desc.e_idx);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, obj, desc.e_idx, NULL);
|
|
DUK_UNREF(tmp);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
} else {
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, desc.e_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
}
|
|
/* this is not strictly necessary because if key == NULL, value MUST be ignored */
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, obj, desc.e_idx, 0);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, desc.e_idx));
|
|
|
|
/* remove key */
|
|
DUK_DDD(DUK_DDDPRINT("before removing key, e_idx %ld, key %p, key at slot %p",
|
|
(long) desc.e_idx, (void *) key, (void *) DUK_HOBJECT_E_GET_KEY(thr->heap, obj, desc.e_idx)));
|
|
DUK_DDD(DUK_DDDPRINT("removing key at e_idx %ld", (long) desc.e_idx));
|
|
DUK_ASSERT(key == DUK_HOBJECT_E_GET_KEY(thr->heap, obj, desc.e_idx));
|
|
DUK_HOBJECT_E_SET_KEY(thr->heap, obj, desc.e_idx, NULL);
|
|
DUK_HSTRING_DECREF(thr, key);
|
|
goto success;
|
|
}
|
|
|
|
DUK_UNREACHABLE();
|
|
|
|
success:
|
|
/*
|
|
* Argument exotic [[Delete]] behavior (E5 Section 10.6) is
|
|
* a post-check, keeping arguments internal 'map' in sync with
|
|
* any successful deletes (note that property does not need to
|
|
* exist for delete to 'succeed').
|
|
*
|
|
* Delete key from 'map'. Since 'map' only contains array index
|
|
* keys, we can use arr_idx for a fast skip.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delete successful, check for arguments exotic behavior"));
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX && DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj)) {
|
|
/* Note: only numbered indices are relevant, so arr_idx fast reject
|
|
* is good (this is valid unless there are more than 4**32-1 arguments).
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delete successful, arguments exotic behavior needed"));
|
|
|
|
/* Note: we can reuse 'desc' here */
|
|
(void) duk__check_arguments_map_for_delete(thr, obj, key, &desc);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delete successful"));
|
|
return 1;
|
|
|
|
fail_virtual:
|
|
DUK_DDD(DUK_DDDPRINT("delete failed: property found, force flag, but virtual"));
|
|
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROPERTY_IS_VIRTUAL);
|
|
}
|
|
return 0;
|
|
|
|
fail_not_configurable:
|
|
DUK_DDD(DUK_DDDPRINT("delete failed: property found, not configurable"));
|
|
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CONFIGURABLE);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* DELPROP: Ecmascript property deletion.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_delprop(duk_hthread *thr, duk_tval *tv_obj, duk_tval *tv_key, duk_bool_t throw_flag) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *key = NULL;
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
duk_propdesc desc;
|
|
#endif
|
|
duk_int_t entry_top;
|
|
duk_uint32_t arr_idx = DUK__NO_ARRAY_INDEX;
|
|
duk_bool_t rc;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delprop: thr=%p, obj=%p, key=%p (obj -> %!T, key -> %!T)",
|
|
(void *) thr, (void *) tv_obj, (void *) tv_key,
|
|
(duk_tval *) tv_obj, (duk_tval *) tv_key));
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(tv_obj != NULL);
|
|
DUK_ASSERT(tv_key != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/* Storing the entry top is cheaper here to ensure stack is correct at exit,
|
|
* as there are several paths out.
|
|
*/
|
|
entry_top = duk_get_top(ctx);
|
|
|
|
if (DUK_TVAL_IS_UNDEFINED(tv_obj) ||
|
|
DUK_TVAL_IS_NULL(tv_obj)) {
|
|
DUK_DDD(DUK_DDDPRINT("base object is undefined or null -> reject"));
|
|
goto fail_invalid_base_uncond;
|
|
}
|
|
|
|
duk_push_tval(ctx, tv_obj);
|
|
duk_push_tval(ctx, tv_key);
|
|
|
|
tv_obj = duk_get_tval(ctx, -2);
|
|
if (DUK_TVAL_IS_OBJECT(tv_obj)) {
|
|
duk_hobject *obj = DUK_TVAL_GET_OBJECT(tv_obj);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
#if defined(DUK_USE_ES6_PROXY)
|
|
if (DUK_UNLIKELY(DUK_HOBJECT_HAS_EXOTIC_PROXYOBJ(obj))) {
|
|
duk_hobject *h_target;
|
|
duk_bool_t tmp_bool;
|
|
|
|
/* Note: proxy handling must happen before key is string coerced. */
|
|
|
|
if (duk__proxy_check_prop(thr, obj, DUK_STRIDX_DELETE_PROPERTY, tv_key, &h_target)) {
|
|
/* -> [ ... trap handler ] */
|
|
DUK_DDD(DUK_DDDPRINT("-> proxy object 'deleteProperty' for key %!T", (duk_tval *) tv_key));
|
|
duk_push_hobject(ctx, h_target); /* target */
|
|
duk_push_tval(ctx, tv_key); /* P */
|
|
duk_call_method(ctx, 2 /*nargs*/);
|
|
tmp_bool = duk_to_boolean(ctx, -1);
|
|
duk_pop(ctx);
|
|
if (!tmp_bool) {
|
|
goto fail_proxy_rejected; /* retval indicates delete failed */
|
|
}
|
|
|
|
/* Target object must be checked for a conflicting
|
|
* non-configurable property.
|
|
*/
|
|
arr_idx = duk__push_tval_to_hstring_arr_idx(ctx, tv_key, &key);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (duk__get_own_property_desc_raw(thr, h_target, key, arr_idx, &desc, 0 /*flags*/)) { /* don't push value */
|
|
int desc_reject;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("proxy 'deleteProperty': target has matching property %!O, check for "
|
|
"conflicting property; desc.flags=0x%08lx, "
|
|
"desc.get=%p, desc.set=%p",
|
|
(duk_heaphdr *) key, (unsigned long) desc.flags,
|
|
(void *) desc.get, (void *) desc.set));
|
|
|
|
desc_reject = !(desc.flags & DUK_PROPDESC_FLAG_CONFIGURABLE);
|
|
if (desc_reject) {
|
|
/* unconditional */
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REJECTED);
|
|
}
|
|
}
|
|
rc = 1; /* success */
|
|
goto done_rc;
|
|
}
|
|
|
|
obj = h_target; /* resume delete to target */
|
|
}
|
|
#endif /* DUK_USE_ES6_PROXY */
|
|
|
|
duk_to_string(ctx, -1);
|
|
key = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
rc = duk_hobject_delprop_raw(thr, obj, key, throw_flag ? DUK_DELPROP_FLAG_THROW : 0);
|
|
goto done_rc;
|
|
} else if (DUK_TVAL_IS_STRING(tv_obj)) {
|
|
/* XXX: unnecessary string coercion for array indices,
|
|
* intentional to keep small.
|
|
*/
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv_obj);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
duk_to_string(ctx, -1);
|
|
key = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
goto fail_not_configurable;
|
|
}
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_FAST(key);
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HSTRING_GET_CHARLEN(h)) {
|
|
goto fail_not_configurable;
|
|
}
|
|
} else if (DUK_TVAL_IS_BUFFER(tv_obj)) {
|
|
/* XXX: unnecessary string coercion for array indices,
|
|
* intentional to keep small; some overlap with string
|
|
* handling.
|
|
*/
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv_obj);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
duk_to_string(ctx, -1);
|
|
key = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
goto fail_not_configurable;
|
|
}
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_FAST(key);
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
arr_idx < DUK_HBUFFER_GET_SIZE(h)) {
|
|
goto fail_not_configurable;
|
|
}
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv_obj)) {
|
|
/* Lightfunc virtual properties are non-configurable, so
|
|
* reject if match any of them.
|
|
*/
|
|
|
|
duk_to_string(ctx, -1);
|
|
key = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
if (duk__key_is_lightfunc_ownprop(thr, key)) {
|
|
goto fail_not_configurable;
|
|
}
|
|
}
|
|
|
|
/* non-object base, no offending virtual property */
|
|
rc = 1;
|
|
goto done_rc;
|
|
|
|
done_rc:
|
|
duk_set_top(ctx, entry_top);
|
|
return rc;
|
|
|
|
fail_invalid_base_uncond:
|
|
/* Note: unconditional throw */
|
|
DUK_ASSERT(duk_get_top(ctx) == entry_top);
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_BASE);
|
|
return 0;
|
|
|
|
fail_proxy_rejected:
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROXY_REJECTED);
|
|
}
|
|
duk_set_top(ctx, entry_top);
|
|
return 0;
|
|
|
|
fail_not_configurable:
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CONFIGURABLE);
|
|
}
|
|
duk_set_top(ctx, entry_top);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Internal helper to define a property with specific flags, ignoring
|
|
* normal semantics such as extensibility, write protection etc.
|
|
* Overwrites any existing value and attributes unless caller requests
|
|
* that value only be updated if it doesn't already exists.
|
|
*
|
|
* Does not support:
|
|
* - virtual properties (error if write attempted)
|
|
* - getter/setter properties (error if write attempted)
|
|
* - non-default (!= WEC) attributes for array entries (error if attempted)
|
|
* - array abandoning: if array part exists, it is always extended
|
|
* - array 'length' updating
|
|
*
|
|
* Stack: [... in_val] -> []
|
|
*
|
|
* Used for e.g. built-in initialization and environment record
|
|
* operations.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_define_property_internal(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_small_uint_t flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_propdesc desc;
|
|
duk_uint32_t arr_idx;
|
|
duk_int_t e_idx;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1 = NULL;
|
|
duk_tval *tv2 = NULL;
|
|
duk_small_uint_t propflags = flags & DUK_PROPDESC_FLAGS_MASK; /* mask out flags not actually stored */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("define new property (internal): thr=%p, obj=%!O, key=%!O, flags=0x%02lx, val=%!T",
|
|
(void *) thr, (duk_heaphdr *) obj, (duk_heaphdr *) key,
|
|
(unsigned long) flags, (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
DUK_ASSERT(duk_is_valid_index(ctx, -1)); /* contains value */
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_SLOW(key);
|
|
|
|
if (duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &desc, 0 /*flags*/)) { /* don't push value */
|
|
if (desc.e_idx >= 0) {
|
|
if (flags & DUK_PROPDESC_FLAG_NO_OVERWRITE) {
|
|
DUK_DDD(DUK_DDDPRINT("property already exists in the entry part -> skip as requested"));
|
|
goto pop_exit;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("property already exists in the entry part -> update value and attributes"));
|
|
if (DUK_UNLIKELY(DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, desc.e_idx))) {
|
|
DUK_D(DUK_DPRINT("existing property is an accessor, not supported"));
|
|
goto error_internal;
|
|
}
|
|
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, obj, desc.e_idx, propflags);
|
|
tv1 = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, desc.e_idx);
|
|
} else if (desc.a_idx >= 0) {
|
|
if (flags & DUK_PROPDESC_FLAG_NO_OVERWRITE) {
|
|
DUK_DDD(DUK_DDDPRINT("property already exists in the array part -> skip as requested"));
|
|
goto pop_exit;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("property already exists in the array part -> update value (assert attributes)"));
|
|
if (propflags != DUK_PROPDESC_FLAGS_WEC) {
|
|
DUK_D(DUK_DPRINT("existing property in array part, but propflags not WEC (0x%02lx)",
|
|
(unsigned long) propflags));
|
|
goto error_internal;
|
|
}
|
|
|
|
tv1 = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, desc.a_idx);
|
|
} else {
|
|
if (flags & DUK_PROPDESC_FLAG_NO_OVERWRITE) {
|
|
DUK_DDD(DUK_DDDPRINT("property already exists but is virtual -> skip as requested"));
|
|
goto pop_exit;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("property already exists but is virtual -> failure"));
|
|
goto error_virtual;
|
|
}
|
|
|
|
goto write_value;
|
|
}
|
|
|
|
if (DUK_HOBJECT_HAS_ARRAY_PART(obj)) {
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX) {
|
|
DUK_DDD(DUK_DDDPRINT("property does not exist, object has array part -> possibly extend array part and write value (assert attributes)"));
|
|
DUK_ASSERT(propflags == DUK_PROPDESC_FLAGS_WEC);
|
|
|
|
/* always grow the array, no sparse / abandon support here */
|
|
if (arr_idx >= DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
duk__grow_props_for_array_item(thr, obj, arr_idx);
|
|
}
|
|
|
|
DUK_ASSERT(arr_idx < DUK_HOBJECT_GET_ASIZE(obj));
|
|
tv1 = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, arr_idx);
|
|
goto write_value;
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("property does not exist, object belongs in entry part -> allocate new entry and write value and attributes"));
|
|
e_idx = duk__alloc_entry_checked(thr, obj, key); /* increases key refcount */
|
|
DUK_ASSERT(e_idx >= 0);
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, obj, e_idx, propflags);
|
|
tv1 = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, e_idx);
|
|
/* new entry: previous value is garbage; set to undefined to share write_value */
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv1);
|
|
goto write_value;
|
|
|
|
write_value:
|
|
/* tv1 points to value storage */
|
|
|
|
tv2 = duk_require_tval(ctx, -1); /* late lookup, avoid side effects */
|
|
DUK_DDD(DUK_DDDPRINT("writing/updating value: %!T -> %!T",
|
|
(duk_tval *) tv1, (duk_tval *) tv2));
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
goto pop_exit;
|
|
|
|
pop_exit:
|
|
duk_pop(ctx); /* remove in_val */
|
|
return;
|
|
|
|
error_internal:
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
return;
|
|
|
|
error_virtual:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_REDEFINE_VIRT_PROP);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Fast path for defining array indexed values without interning the key.
|
|
* This is used by e.g. code for Array prototype and traceback creation so
|
|
* must avoid interning.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_define_property_internal_arridx(duk_hthread *thr, duk_hobject *obj, duk_uarridx_t arr_idx, duk_small_uint_t flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *key;
|
|
duk_tval *tv1, *tv2;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("define new property (internal) arr_idx fast path: thr=%p, obj=%!O, "
|
|
"arr_idx=%ld, flags=0x%02lx, val=%!T",
|
|
(void *) thr, obj, (long) arr_idx, (unsigned long) flags,
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
if (DUK_HOBJECT_HAS_ARRAY_PART(obj) &&
|
|
arr_idx != DUK__NO_ARRAY_INDEX &&
|
|
flags == DUK_PROPDESC_FLAGS_WEC) {
|
|
DUK_ASSERT((flags & DUK_PROPDESC_FLAG_NO_OVERWRITE) == 0); /* covered by comparison */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("define property to array part (property may or may not exist yet)"));
|
|
|
|
/* always grow the array, no sparse / abandon support here */
|
|
if (arr_idx >= DUK_HOBJECT_GET_ASIZE(obj)) {
|
|
duk__grow_props_for_array_item(thr, obj, arr_idx);
|
|
}
|
|
|
|
DUK_ASSERT(arr_idx < DUK_HOBJECT_GET_ASIZE(obj));
|
|
tv1 = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, arr_idx);
|
|
tv2 = duk_require_tval(ctx, -1);
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
duk_pop(ctx); /* [ ...val ] -> [ ... ] */
|
|
return;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("define property fast path didn't work, use slow path"));
|
|
|
|
duk_push_uint(ctx, (duk_uint_t) arr_idx);
|
|
key = duk_to_hstring(ctx, -1);
|
|
DUK_ASSERT(key != NULL);
|
|
duk_insert(ctx, -2); /* [ ... val key ] -> [ ... key val ] */
|
|
|
|
duk_hobject_define_property_internal(thr, obj, key, flags);
|
|
|
|
duk_pop(ctx); /* [ ... key ] -> [ ... ] */
|
|
}
|
|
|
|
/*
|
|
* Internal helper for defining an accessor property, ignoring
|
|
* normal semantics such as extensibility, write protection etc.
|
|
* Overwrites any existing value and attributes. This is called
|
|
* very rarely, so the implementation first sets a value to undefined
|
|
* and then changes the entry to an accessor (this is to save code space).
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_define_accessor_internal(duk_hthread *thr, duk_hobject *obj, duk_hstring *key, duk_hobject *getter, duk_hobject *setter, duk_small_uint_t propflags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_int_t e_idx;
|
|
duk_int_t h_idx;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("define new accessor (internal): thr=%p, obj=%!O, key=%!O, "
|
|
"getter=%!O, setter=%!O, flags=0x%02lx",
|
|
(void *) thr, (duk_heaphdr *) obj, (duk_heaphdr *) key,
|
|
(duk_heaphdr *) getter, (duk_heaphdr *) setter,
|
|
(unsigned long) propflags));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
DUK_ASSERT((propflags & ~DUK_PROPDESC_FLAGS_MASK) == 0);
|
|
/* setter and/or getter may be NULL */
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/* force the property to 'undefined' to create a slot for it */
|
|
duk_push_undefined(ctx);
|
|
duk_hobject_define_property_internal(thr, obj, key, propflags);
|
|
duk_hobject_find_existing_entry(thr->heap, obj, key, &e_idx, &h_idx);
|
|
DUK_DDD(DUK_DDDPRINT("accessor slot: e_idx=%ld, h_idx=%ld", (long) e_idx, (long) h_idx));
|
|
DUK_ASSERT(e_idx >= 0);
|
|
DUK_ASSERT((duk_uint32_t) e_idx < DUK_HOBJECT_GET_ENEXT(obj));
|
|
|
|
/* no need to decref, as previous value is 'undefined' */
|
|
DUK_HOBJECT_E_SLOT_SET_ACCESSOR(thr->heap, obj, e_idx);
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, obj, e_idx, getter);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, obj, e_idx, setter);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, getter);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, setter);
|
|
}
|
|
|
|
/*
|
|
* Internal helpers for managing object 'length'
|
|
*/
|
|
|
|
/* XXX: awkward helpers */
|
|
|
|
DUK_INTERNAL void duk_hobject_set_length(duk_hthread *thr, duk_hobject *obj, duk_uint32_t length) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_push_hobject(ctx, obj);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LENGTH);
|
|
duk_push_u32(ctx, length);
|
|
(void) duk_hobject_putprop(thr, duk_get_tval(ctx, -3), duk_get_tval(ctx, -2), duk_get_tval(ctx, -1), 0);
|
|
duk_pop_n(ctx, 3);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hobject_set_length_zero(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_hobject_set_length(thr, obj, 0);
|
|
}
|
|
|
|
DUK_INTERNAL duk_uint32_t duk_hobject_get_length(duk_hthread *thr, duk_hobject *obj) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_double_t val;
|
|
duk_push_hobject(ctx, obj);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LENGTH);
|
|
(void) duk_hobject_getprop(thr, duk_get_tval(ctx, -2), duk_get_tval(ctx, -1));
|
|
val = duk_to_number(ctx, -1);
|
|
duk_pop_n(ctx, 3);
|
|
if (val >= 0.0 && val < DUK_DOUBLE_2TO32) {
|
|
return (duk_uint32_t) val;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Object.getOwnPropertyDescriptor() (E5 Sections 15.2.3.3, 8.10.4)
|
|
*
|
|
* This is an actual function call.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_ret_t duk_hobject_object_get_own_property_descriptor(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hobject *obj;
|
|
duk_hstring *key;
|
|
duk_propdesc pd;
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
|
|
obj = duk_require_hobject_or_lfunc_coerce(ctx, 0);
|
|
(void) duk_to_string(ctx, 1);
|
|
key = duk_require_hstring(ctx, 1);
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
rc = duk__get_own_property_desc(thr, obj, key, &pd, DUK__DESC_FLAG_PUSH_VALUE);
|
|
if (!rc) {
|
|
duk_push_undefined(ctx);
|
|
|
|
/* [obj key undefined] */
|
|
return 1;
|
|
}
|
|
|
|
duk_push_object(ctx);
|
|
|
|
/* [obj key value desc] */
|
|
|
|
if (DUK_PROPDESC_IS_ACCESSOR(&pd)) {
|
|
/* If a setter/getter is missing (undefined), the descriptor must
|
|
* still have the property present with the value 'undefined'.
|
|
*/
|
|
if (pd.get) {
|
|
duk_push_hobject(ctx, pd.get);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_GET);
|
|
if (pd.set) {
|
|
duk_push_hobject(ctx, pd.set);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_SET);
|
|
} else {
|
|
duk_dup(ctx, -2); /* [obj key value desc value] */
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_VALUE);
|
|
duk_push_boolean(ctx, DUK_PROPDESC_IS_WRITABLE(&pd));
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_WRITABLE);
|
|
|
|
/* [obj key value desc] */
|
|
}
|
|
duk_push_boolean(ctx, DUK_PROPDESC_IS_ENUMERABLE(&pd));
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_ENUMERABLE);
|
|
duk_push_boolean(ctx, DUK_PROPDESC_IS_CONFIGURABLE(&pd));
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_CONFIGURABLE);
|
|
|
|
/* [obj key value desc] */
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* NormalizePropertyDescriptor() related helper.
|
|
*
|
|
* Internal helper which validates and normalizes a property descriptor
|
|
* represented as an Ecmascript object (e.g. argument to defineProperty()).
|
|
* The output of this conversion is a set of defprop_flags and possibly
|
|
* some values pushed on the value stack; some subset of: property value,
|
|
* getter, setter. Caller must manage stack top carefully because the
|
|
* number of values pushed depends on the input property descriptor.
|
|
*
|
|
* The original descriptor object must not be altered in the process.
|
|
*/
|
|
|
|
/* XXX: very basic optimization -> duk_get_prop_stridx_top */
|
|
|
|
DUK_INTERNAL
|
|
void duk_hobject_prepare_property_descriptor(duk_context *ctx,
|
|
duk_idx_t idx_in,
|
|
duk_uint_t *out_defprop_flags,
|
|
duk_idx_t *out_idx_value,
|
|
duk_hobject **out_getter,
|
|
duk_hobject **out_setter) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_idx_t idx_value = -1;
|
|
duk_hobject *getter = NULL;
|
|
duk_hobject *setter = NULL;
|
|
duk_bool_t is_data_desc = 0;
|
|
duk_bool_t is_acc_desc = 0;
|
|
duk_uint_t defprop_flags = 0;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(out_defprop_flags != NULL);
|
|
DUK_ASSERT(out_idx_value != NULL);
|
|
DUK_ASSERT(out_getter != NULL);
|
|
DUK_ASSERT(out_setter != NULL);
|
|
|
|
/* Must be an object, otherwise TypeError (E5.1 Section 8.10.5, step 1). */
|
|
idx_in = duk_require_normalize_index(ctx, idx_in);
|
|
(void) duk_require_hobject(ctx, idx_in);
|
|
|
|
/* The coercion order must match the ToPropertyDescriptor() algorithm
|
|
* so that side effects in coercion happen in the correct order.
|
|
* (This order also happens to be compatible with duk_def_prop(),
|
|
* although it doesn't matter in practice.)
|
|
*/
|
|
|
|
if (duk_get_prop_stridx(ctx, idx_in, DUK_STRIDX_VALUE)) {
|
|
is_data_desc = 1;
|
|
defprop_flags |= DUK_DEFPROP_HAVE_VALUE;
|
|
idx_value = duk_get_top_index(ctx);
|
|
/* Leave 'value' on stack */
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
if (duk_get_prop_stridx(ctx, idx_in, DUK_STRIDX_WRITABLE)) {
|
|
is_data_desc = 1;
|
|
if (duk_to_boolean(ctx, -1)) {
|
|
defprop_flags |= DUK_DEFPROP_HAVE_WRITABLE | DUK_DEFPROP_WRITABLE;
|
|
} else {
|
|
defprop_flags |= DUK_DEFPROP_HAVE_WRITABLE;
|
|
}
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
if (duk_get_prop_stridx(ctx, idx_in, DUK_STRIDX_GET)) {
|
|
duk_tval *tv = duk_require_tval(ctx, -1);
|
|
duk_hobject *h_get;
|
|
|
|
if (DUK_TVAL_IS_UNDEFINED(tv)) {
|
|
/* undefined is accepted */
|
|
DUK_ASSERT(getter == NULL);
|
|
} else {
|
|
/* NOTE: lightfuncs are coerced to full functions because
|
|
* lightfuncs don't fit into a property value slot. This
|
|
* has some side effects, see test-dev-lightfunc-accessor.js.
|
|
*/
|
|
h_get = duk_get_hobject_or_lfunc_coerce(ctx, -1);
|
|
if (h_get == NULL || !DUK_HOBJECT_IS_CALLABLE(h_get)) {
|
|
goto type_error;
|
|
}
|
|
getter = h_get;
|
|
}
|
|
is_acc_desc = 1;
|
|
defprop_flags |= DUK_DEFPROP_HAVE_GETTER;
|
|
/* Leave 'getter' on stack */
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
if (duk_get_prop_stridx(ctx, idx_in, DUK_STRIDX_SET)) {
|
|
duk_tval *tv = duk_require_tval(ctx, -1);
|
|
duk_hobject *h_set;
|
|
|
|
is_acc_desc = 1;
|
|
if (DUK_TVAL_IS_UNDEFINED(tv)) {
|
|
/* undefined is accepted */
|
|
DUK_ASSERT(setter == NULL);
|
|
} else {
|
|
/* NOTE: lightfuncs are coerced to full functions because
|
|
* lightfuncs don't fit into a property value slot. This
|
|
* has some side effects, see test-dev-lightfunc-accessor.js.
|
|
*/
|
|
h_set = duk_get_hobject_or_lfunc_coerce(ctx, -1);
|
|
if (h_set == NULL || !DUK_HOBJECT_IS_CALLABLE(h_set)) {
|
|
goto type_error;
|
|
}
|
|
setter = h_set;
|
|
}
|
|
is_acc_desc = 1;
|
|
defprop_flags |= DUK_DEFPROP_HAVE_SETTER;
|
|
/* Leave 'setter' on stack */
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
if (duk_get_prop_stridx(ctx, idx_in, DUK_STRIDX_ENUMERABLE)) {
|
|
if (duk_to_boolean(ctx, -1)) {
|
|
defprop_flags |= DUK_DEFPROP_HAVE_ENUMERABLE | DUK_DEFPROP_ENUMERABLE;
|
|
} else {
|
|
defprop_flags |= DUK_DEFPROP_HAVE_ENUMERABLE;
|
|
}
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
if (duk_get_prop_stridx(ctx, idx_in, DUK_STRIDX_CONFIGURABLE)) {
|
|
if (duk_to_boolean(ctx, -1)) {
|
|
defprop_flags |= DUK_DEFPROP_HAVE_CONFIGURABLE | DUK_DEFPROP_CONFIGURABLE;
|
|
} else {
|
|
defprop_flags |= DUK_DEFPROP_HAVE_CONFIGURABLE;
|
|
}
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
if (is_data_desc && is_acc_desc) {
|
|
goto type_error;
|
|
}
|
|
|
|
*out_defprop_flags = defprop_flags;
|
|
*out_idx_value = idx_value;
|
|
*out_getter = getter;
|
|
*out_setter = setter;
|
|
|
|
/* [ ... value? getter? setter? ] */
|
|
return;
|
|
|
|
type_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_INVALID_DESCRIPTOR);
|
|
}
|
|
|
|
/*
|
|
* Object.defineProperty() related helper (E5 Section 15.2.3.6)
|
|
*
|
|
* Inlines all [[DefineOwnProperty]] exotic behaviors.
|
|
*
|
|
* Note: Ecmascript compliant [[DefineOwnProperty]](P, Desc, Throw) is not
|
|
* implemented directly, but Object.defineProperty() serves its purpose.
|
|
* We don't need the [[DefineOwnProperty]] internally and we don't have a
|
|
* property descriptor with 'missing values' so it's easier to avoid it
|
|
* entirely.
|
|
*
|
|
* Note: this is only called for actual objects, not primitive values.
|
|
* This must support virtual properties for full objects (e.g. Strings)
|
|
* but not for plain values (e.g. strings). Lightfuncs, even though
|
|
* primitive in a sense, are treated like objects and accepted as target
|
|
* values.
|
|
*/
|
|
|
|
/* XXX: this is a major target for size optimization */
|
|
DUK_INTERNAL
|
|
void duk_hobject_define_property_helper(duk_context *ctx,
|
|
duk_uint_t defprop_flags,
|
|
duk_hobject *obj,
|
|
duk_hstring *key,
|
|
duk_idx_t idx_value,
|
|
duk_hobject *get,
|
|
duk_hobject *set) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_uint32_t arr_idx;
|
|
duk_tval tv;
|
|
duk_bool_t has_enumerable;
|
|
duk_bool_t has_configurable;
|
|
duk_bool_t has_writable;
|
|
duk_bool_t has_value;
|
|
duk_bool_t has_get;
|
|
duk_bool_t has_set;
|
|
duk_bool_t is_enumerable;
|
|
duk_bool_t is_configurable;
|
|
duk_bool_t is_writable;
|
|
duk_bool_t throw_flag;
|
|
duk_bool_t force_flag;
|
|
duk_small_uint_t new_flags;
|
|
duk_propdesc curr;
|
|
duk_uint32_t arridx_new_array_length; /* != 0 => post-update for array 'length' (used when key is an array index) */
|
|
duk_uint32_t arrlen_old_len;
|
|
duk_uint32_t arrlen_new_len;
|
|
duk_bool_t pending_write_protect;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_ASSERT(key != NULL);
|
|
/* idx_value may be < 0 (no value), set and get may be NULL */
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/* All the flags fit in 16 bits, so will fit into duk_bool_t. */
|
|
|
|
has_writable = (defprop_flags & DUK_DEFPROP_HAVE_WRITABLE);
|
|
has_enumerable = (defprop_flags & DUK_DEFPROP_HAVE_ENUMERABLE);
|
|
has_configurable = (defprop_flags & DUK_DEFPROP_HAVE_CONFIGURABLE);
|
|
has_value = (defprop_flags & DUK_DEFPROP_HAVE_VALUE);
|
|
has_get = (defprop_flags & DUK_DEFPROP_HAVE_GETTER);
|
|
has_set = (defprop_flags & DUK_DEFPROP_HAVE_SETTER);
|
|
is_writable = (defprop_flags & DUK_DEFPROP_WRITABLE);
|
|
is_enumerable = (defprop_flags & DUK_DEFPROP_ENUMERABLE);
|
|
is_configurable = (defprop_flags & DUK_DEFPROP_CONFIGURABLE);
|
|
throw_flag = 1; /* Object.defineProperty() calls [[DefineOwnProperty]] with Throw=true */
|
|
force_flag = (defprop_flags & DUK_DEFPROP_FORCE);
|
|
|
|
arr_idx = DUK_HSTRING_GET_ARRIDX_SLOW(key);
|
|
|
|
arridx_new_array_length = 0;
|
|
pending_write_protect = 0;
|
|
arrlen_old_len = 0;
|
|
arrlen_new_len = 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("has_enumerable=%ld is_enumerable=%ld "
|
|
"has_configurable=%ld is_configurable=%ld "
|
|
"has_writable=%ld is_writable=%ld "
|
|
"has_value=%ld value=%!T "
|
|
"has_get=%ld get=%p=%!O "
|
|
"has_set=%ld set=%p=%!O "
|
|
"arr_idx=%ld",
|
|
(long) has_enumerable, (long) is_enumerable,
|
|
(long) has_configurable, (long) is_configurable,
|
|
(long) has_writable, (long) is_writable,
|
|
(long) has_value, (duk_tval *) (idx_value >= 0 ? duk_get_tval(ctx, idx_value) : NULL),
|
|
(long) has_get, (void *) get, (duk_heaphdr *) get,
|
|
(long) has_set, (void *) set, (duk_heaphdr *) set,
|
|
(long) arr_idx));
|
|
|
|
/*
|
|
* Array exotic behaviors can be implemented at this point. The local variables
|
|
* are essentially a 'value copy' of the input descriptor (Desc), which is modified
|
|
* by the Array [[DefineOwnProperty]] (E5 Section 15.4.5.1).
|
|
*/
|
|
|
|
if (!DUK_HOBJECT_HAS_EXOTIC_ARRAY(obj)) {
|
|
goto skip_array_exotic;
|
|
}
|
|
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr)) {
|
|
/* E5 Section 15.4.5.1, step 3, steps a - i are implemented here, j - n at the end */
|
|
if (!has_value) {
|
|
DUK_DDD(DUK_DDDPRINT("exotic array behavior for 'length', but no value in descriptor -> normal behavior"));
|
|
goto skip_array_exotic;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("exotic array behavior for 'length', value present in descriptor -> exotic behavior"));
|
|
|
|
/*
|
|
* Get old and new length
|
|
*/
|
|
|
|
/* Note: reuse 'curr' as a temp propdesc */
|
|
arrlen_old_len = duk__get_old_array_length(thr, obj, &curr);
|
|
|
|
duk_dup(ctx, idx_value);
|
|
arrlen_new_len = duk__to_new_array_length_checked(thr);
|
|
duk_push_u32(ctx, arrlen_new_len);
|
|
duk_replace(ctx, idx_value); /* step 3.e: replace 'Desc.[[Value]]' */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("old_len=%ld, new_len=%ld", (long) arrlen_old_len, (long) arrlen_new_len));
|
|
|
|
if (arrlen_new_len >= arrlen_old_len) {
|
|
/* standard behavior, step 3.f.i */
|
|
DUK_DDD(DUK_DDDPRINT("new length is same or higher as previous => standard behavior"));
|
|
goto skip_array_exotic;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("new length is smaller than previous => exotic post behavior"));
|
|
|
|
/* XXX: consolidated algorithm step 15.f -> redundant? */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_WRITABLE) && !force_flag) {
|
|
/* Note: 'curr' refers to 'length' propdesc */
|
|
goto fail_not_writable_array_length;
|
|
}
|
|
|
|
/* steps 3.h and 3.i */
|
|
if (has_writable && !is_writable) {
|
|
DUK_DDD(DUK_DDDPRINT("desc writable is false, force it back to true, and flag pending write protect"));
|
|
is_writable = 1;
|
|
pending_write_protect = 1;
|
|
}
|
|
|
|
/* remaining actual steps are carried out if standard DefineOwnProperty succeeds */
|
|
} else if (arr_idx != DUK__NO_ARRAY_INDEX) {
|
|
/* XXX: any chance of unifying this with the 'length' key handling? */
|
|
|
|
/* E5 Section 15.4.5.1, step 4 */
|
|
duk_uint32_t old_len;
|
|
|
|
/* Note: use 'curr' as a temp propdesc */
|
|
old_len = duk__get_old_array_length(thr, obj, &curr);
|
|
|
|
if (arr_idx >= old_len) {
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty requires array length update "
|
|
"(arr_idx=%ld, old_len=%ld)",
|
|
(long) arr_idx, (long) old_len));
|
|
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
/* Note: 'curr' refers to 'length' propdesc */
|
|
goto fail_not_writable_array_length;
|
|
}
|
|
|
|
/* actual update happens once write has been completed without
|
|
* error below.
|
|
*/
|
|
DUK_ASSERT(arr_idx != 0xffffffffUL);
|
|
arridx_new_array_length = arr_idx + 1;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty does not require length update "
|
|
"(arr_idx=%ld, old_len=%ld) -> standard behavior",
|
|
(long) arr_idx, (long) old_len));
|
|
}
|
|
}
|
|
skip_array_exotic:
|
|
|
|
/* XXX: There is currently no support for writing buffer object
|
|
* indexed elements here. Attempt to do so will succeed and
|
|
* write a concrete property into the buffer object. This should
|
|
* be fixed at some point but because buffers are a custom feature
|
|
* anyway, this is relatively unimportant.
|
|
*/
|
|
|
|
/*
|
|
* Actual Object.defineProperty() default algorithm.
|
|
*/
|
|
|
|
/*
|
|
* First check whether property exists; if not, simple case. This covers
|
|
* steps 1-4.
|
|
*/
|
|
|
|
if (!duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &curr, DUK__DESC_FLAG_PUSH_VALUE)) {
|
|
DUK_DDD(DUK_DDDPRINT("property does not exist"));
|
|
|
|
if (!DUK_HOBJECT_HAS_EXTENSIBLE(obj) && !force_flag) {
|
|
goto fail_not_extensible;
|
|
}
|
|
|
|
/* XXX: share final setting code for value and flags? difficult because
|
|
* refcount code is different. Share entry allocation? But can't allocate
|
|
* until array index checked.
|
|
*/
|
|
|
|
/* steps 4.a and 4.b are tricky */
|
|
if (has_set || has_get) {
|
|
duk_int_t e_idx;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("create new accessor property"));
|
|
|
|
DUK_ASSERT(has_set || set == NULL);
|
|
DUK_ASSERT(has_get || get == NULL);
|
|
DUK_ASSERT(!has_value);
|
|
DUK_ASSERT(!has_writable);
|
|
|
|
new_flags = DUK_PROPDESC_FLAG_ACCESSOR; /* defaults, E5 Section 8.6.1, Table 7 */
|
|
if (has_enumerable && is_enumerable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_ENUMERABLE;
|
|
}
|
|
if (has_configurable && is_configurable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
}
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX && DUK_HOBJECT_HAS_ARRAY_PART(obj)) {
|
|
DUK_DDD(DUK_DDDPRINT("accessor cannot go to array part, abandon array"));
|
|
duk__abandon_array_checked(thr, obj);
|
|
}
|
|
|
|
/* write to entry part */
|
|
e_idx = duk__alloc_entry_checked(thr, obj, key);
|
|
DUK_ASSERT(e_idx >= 0);
|
|
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, obj, e_idx, get);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, obj, e_idx, set);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, get);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, set);
|
|
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, obj, e_idx, new_flags);
|
|
goto success_exotics;
|
|
} else {
|
|
duk_int_t e_idx;
|
|
duk_tval *tv2;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("create new data property"));
|
|
|
|
DUK_ASSERT(!has_set);
|
|
DUK_ASSERT(!has_get);
|
|
|
|
new_flags = 0; /* defaults, E5 Section 8.6.1, Table 7 */
|
|
if (has_writable && is_writable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_WRITABLE;
|
|
}
|
|
if (has_enumerable && is_enumerable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_ENUMERABLE;
|
|
}
|
|
if (has_configurable && is_configurable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
}
|
|
if (has_value) {
|
|
duk_tval *tv_tmp = duk_require_tval(ctx, idx_value);
|
|
DUK_TVAL_SET_TVAL(&tv, tv_tmp);
|
|
} else {
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(&tv); /* default value */
|
|
}
|
|
|
|
if (arr_idx != DUK__NO_ARRAY_INDEX && DUK_HOBJECT_HAS_ARRAY_PART(obj)) {
|
|
if (new_flags == DUK_PROPDESC_FLAGS_WEC) {
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("new data property attributes match array defaults, attempt to write to array part"));
|
|
/* may become sparse...*/
|
|
#endif
|
|
/* XXX: handling for array part missing now; this doesn't affect
|
|
* compliance but causes array entry writes using defineProperty()
|
|
* to always abandon array part.
|
|
*/
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("new data property cannot go to array part, abandon array"));
|
|
duk__abandon_array_checked(thr, obj);
|
|
/* fall through */
|
|
}
|
|
|
|
/* write to entry part */
|
|
e_idx = duk__alloc_entry_checked(thr, obj, key);
|
|
DUK_ASSERT(e_idx >= 0);
|
|
tv2 = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, e_idx);
|
|
DUK_TVAL_SET_TVAL(tv2, &tv);
|
|
DUK_TVAL_INCREF(thr, tv2);
|
|
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, obj, e_idx, new_flags);
|
|
goto success_exotics;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/* we currently assume virtual properties are not configurable (as none of them are) */
|
|
DUK_ASSERT((curr.e_idx >= 0 || curr.a_idx >= 0) || !(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE));
|
|
|
|
/* [obj key desc value get set curr_value] */
|
|
|
|
/*
|
|
* Property already exists. Steps 5-6 detect whether any changes need
|
|
* to be made.
|
|
*/
|
|
|
|
if (has_enumerable) {
|
|
if (is_enumerable) {
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_ENUMERABLE)) {
|
|
goto need_check;
|
|
}
|
|
} else {
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ENUMERABLE) {
|
|
goto need_check;
|
|
}
|
|
}
|
|
}
|
|
if (has_configurable) {
|
|
if (is_configurable) {
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE)) {
|
|
goto need_check;
|
|
}
|
|
} else {
|
|
if (curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) {
|
|
goto need_check;
|
|
}
|
|
}
|
|
}
|
|
if (has_value) {
|
|
duk_tval *tmp1;
|
|
duk_tval *tmp2;
|
|
|
|
/* attempt to change from accessor to data property */
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
goto need_check;
|
|
}
|
|
|
|
tmp1 = duk_require_tval(ctx, -1); /* curr value */
|
|
tmp2 = duk_require_tval(ctx, idx_value); /* new value */
|
|
if (!duk_js_samevalue(tmp1, tmp2)) {
|
|
goto need_check;
|
|
}
|
|
}
|
|
if (has_writable) {
|
|
/* attempt to change from accessor to data property */
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
goto need_check;
|
|
}
|
|
|
|
if (is_writable) {
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
goto need_check;
|
|
}
|
|
} else {
|
|
if (curr.flags & DUK_PROPDESC_FLAG_WRITABLE) {
|
|
goto need_check;
|
|
}
|
|
}
|
|
}
|
|
if (has_set) {
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
if (set != curr.set) {
|
|
goto need_check;
|
|
}
|
|
} else {
|
|
goto need_check;
|
|
}
|
|
}
|
|
if (has_get) {
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
if (get != curr.get) {
|
|
goto need_check;
|
|
}
|
|
} else {
|
|
goto need_check;
|
|
}
|
|
}
|
|
|
|
/* property exists, either 'desc' is empty, or all values
|
|
* match (SameValue)
|
|
*/
|
|
goto success_no_exotics;
|
|
|
|
need_check:
|
|
|
|
/*
|
|
* Some change(s) need to be made. Steps 7-11.
|
|
*/
|
|
|
|
/* shared checks for all descriptor types */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) && !force_flag) {
|
|
if (has_configurable && is_configurable) {
|
|
goto fail_not_configurable;
|
|
}
|
|
if (has_enumerable) {
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ENUMERABLE) {
|
|
if (!is_enumerable) {
|
|
goto fail_not_configurable;
|
|
}
|
|
} else {
|
|
if (is_enumerable) {
|
|
goto fail_not_configurable;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reject attempt to change virtual properties: not part of the
|
|
* standard algorithm, applies currently to e.g. virtual index
|
|
* properties of buffer objects (which are virtual but writable).
|
|
* (Cannot "force" modification of a virtual property.)
|
|
*/
|
|
if (curr.flags & DUK_PROPDESC_FLAG_VIRTUAL) {
|
|
goto fail_virtual;
|
|
}
|
|
|
|
/* descriptor type specific checks */
|
|
if (has_set || has_get) {
|
|
/* IsAccessorDescriptor(desc) == true */
|
|
DUK_ASSERT(!has_writable);
|
|
DUK_ASSERT(!has_value);
|
|
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
/* curr and desc are accessors */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) && !force_flag) {
|
|
if (has_set && set != curr.set) {
|
|
goto fail_not_configurable;
|
|
}
|
|
if (has_get && get != curr.get) {
|
|
goto fail_not_configurable;
|
|
}
|
|
}
|
|
} else {
|
|
duk_bool_t rc;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
/* curr is data, desc is accessor */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) && !force_flag) {
|
|
goto fail_not_configurable;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("convert property to accessor property"));
|
|
if (curr.a_idx >= 0) {
|
|
DUK_DDD(DUK_DDDPRINT("property to convert is stored in an array entry, abandon array and re-lookup"));
|
|
duk__abandon_array_checked(thr, obj);
|
|
duk_pop(ctx); /* remove old value */
|
|
rc = duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &curr, DUK__DESC_FLAG_PUSH_VALUE);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
DUK_ASSERT(curr.e_idx >= 0 && curr.a_idx < 0);
|
|
}
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, curr.e_idx));
|
|
|
|
tv1 = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, curr.e_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, obj, curr.e_idx, NULL);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, obj, curr.e_idx, NULL);
|
|
DUK_HOBJECT_E_SLOT_CLEAR_WRITABLE(thr->heap, obj, curr.e_idx);
|
|
DUK_HOBJECT_E_SLOT_SET_ACCESSOR(thr->heap, obj, curr.e_idx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("flags after data->accessor conversion: 0x%02lx",
|
|
(unsigned long) DUK_HOBJECT_E_GET_FLAGS(thr->heap, obj, curr.e_idx)));
|
|
|
|
/* re-lookup to update curr.flags
|
|
* XXX: would be faster to update directly
|
|
*/
|
|
duk_pop(ctx); /* remove old value */
|
|
rc = duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &curr, DUK__DESC_FLAG_PUSH_VALUE);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
}
|
|
} else if (has_value || has_writable) {
|
|
/* IsDataDescriptor(desc) == true */
|
|
DUK_ASSERT(!has_set);
|
|
DUK_ASSERT(!has_get);
|
|
|
|
if (curr.flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
duk_bool_t rc;
|
|
duk_hobject *tmp;
|
|
|
|
/* curr is accessor, desc is data */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) && !force_flag) {
|
|
goto fail_not_configurable;
|
|
}
|
|
|
|
/* curr is accessor -> cannot be in array part */
|
|
DUK_ASSERT(curr.e_idx >= 0 && curr.a_idx < 0);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("convert property to data property"));
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, curr.e_idx));
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_GETTER(thr->heap, obj, curr.e_idx);
|
|
DUK_UNREF(tmp);
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, obj, curr.e_idx, NULL);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, obj, curr.e_idx);
|
|
DUK_UNREF(tmp);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, obj, curr.e_idx, NULL);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, curr.e_idx));
|
|
DUK_HOBJECT_E_SLOT_CLEAR_WRITABLE(thr->heap, obj, curr.e_idx);
|
|
DUK_HOBJECT_E_SLOT_CLEAR_ACCESSOR(thr->heap, obj, curr.e_idx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("flags after accessor->data conversion: 0x%02lx",
|
|
(unsigned long) DUK_HOBJECT_E_GET_FLAGS(thr->heap, obj, curr.e_idx)));
|
|
|
|
/* re-lookup to update curr.flags
|
|
* XXX: would be faster to update directly
|
|
*/
|
|
duk_pop(ctx); /* remove old value */
|
|
rc = duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &curr, DUK__DESC_FLAG_PUSH_VALUE);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
} else {
|
|
/* curr and desc are data */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_CONFIGURABLE) && !force_flag) {
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_WRITABLE) && has_writable && is_writable) {
|
|
goto fail_not_configurable;
|
|
}
|
|
/* Note: changing from writable to non-writable is OK */
|
|
if (!(curr.flags & DUK_PROPDESC_FLAG_WRITABLE) && has_value) {
|
|
duk_tval *tmp1 = duk_require_tval(ctx, -1); /* curr value */
|
|
duk_tval *tmp2 = duk_require_tval(ctx, idx_value); /* new value */
|
|
if (!duk_js_samevalue(tmp1, tmp2)) {
|
|
goto fail_not_configurable;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
/* IsGenericDescriptor(desc) == true; this means in practice that 'desc'
|
|
* only has [[Enumerable]] or [[Configurable]] flag updates, which are
|
|
* allowed at this point.
|
|
*/
|
|
|
|
DUK_ASSERT(!has_value && !has_writable && !has_get && !has_set);
|
|
}
|
|
|
|
/*
|
|
* Start doing property attributes updates. Steps 12-13.
|
|
*
|
|
* Start by computing new attribute flags without writing yet.
|
|
* Property type conversion is done above if necessary.
|
|
*/
|
|
|
|
new_flags = curr.flags;
|
|
|
|
if (has_enumerable) {
|
|
if (is_enumerable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_ENUMERABLE;
|
|
} else {
|
|
new_flags &= ~DUK_PROPDESC_FLAG_ENUMERABLE;
|
|
}
|
|
}
|
|
if (has_configurable) {
|
|
if (is_configurable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
} else {
|
|
new_flags &= ~DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
}
|
|
}
|
|
if (has_writable) {
|
|
if (is_writable) {
|
|
new_flags |= DUK_PROPDESC_FLAG_WRITABLE;
|
|
} else {
|
|
new_flags &= ~DUK_PROPDESC_FLAG_WRITABLE;
|
|
}
|
|
}
|
|
|
|
/* XXX: write protect after flag? -> any chance of handling it here? */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("new flags that we want to write: 0x%02lx",
|
|
(unsigned long) new_flags));
|
|
|
|
/*
|
|
* Check whether we need to abandon an array part (if it exists)
|
|
*/
|
|
|
|
if (curr.a_idx >= 0) {
|
|
duk_bool_t rc;
|
|
|
|
DUK_ASSERT(curr.e_idx < 0);
|
|
|
|
if (new_flags == DUK_PROPDESC_FLAGS_WEC) {
|
|
duk_tval *tv1, *tv2;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array index, new property attributes match array defaults, update in-place"));
|
|
|
|
DUK_ASSERT(curr.flags == DUK_PROPDESC_FLAGS_WEC); /* must have been, since in array part */
|
|
DUK_ASSERT(!has_set);
|
|
DUK_ASSERT(!has_get);
|
|
|
|
tv2 = duk_require_tval(ctx, idx_value);
|
|
tv1 = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, curr.a_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
goto success_exotics;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array index, new property attributes do not match array defaults, abandon array and re-lookup"));
|
|
duk__abandon_array_checked(thr, obj);
|
|
duk_pop(ctx); /* remove old value */
|
|
rc = duk__get_own_property_desc_raw(thr, obj, key, arr_idx, &curr, DUK__DESC_FLAG_PUSH_VALUE);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
DUK_ASSERT(curr.e_idx >= 0 && curr.a_idx < 0);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("updating existing property in entry part"));
|
|
|
|
/* array case is handled comprehensively above */
|
|
DUK_ASSERT(curr.e_idx >= 0 && curr.a_idx < 0);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("update existing property attributes"));
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, obj, curr.e_idx, new_flags);
|
|
|
|
if (has_set) {
|
|
duk_hobject *tmp;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("update existing property setter"));
|
|
DUK_ASSERT(DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, curr.e_idx));
|
|
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, obj, curr.e_idx);
|
|
DUK_UNREF(tmp);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, obj, curr.e_idx, set);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, set);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
}
|
|
if (has_get) {
|
|
duk_hobject *tmp;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("update existing property getter"));
|
|
DUK_ASSERT(DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, curr.e_idx));
|
|
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_GETTER(thr->heap, obj, curr.e_idx);
|
|
DUK_UNREF(tmp);
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, obj, curr.e_idx, get);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, get);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
}
|
|
if (has_value) {
|
|
duk_tval *tv1, *tv2;
|
|
duk_tval tv_tmp;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("update existing property value"));
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, curr.e_idx));
|
|
|
|
tv2 = duk_require_tval(ctx, idx_value);
|
|
tv1 = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, curr.e_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
}
|
|
|
|
/*
|
|
* Standard algorithm succeeded without errors, check for exotic post-behaviors.
|
|
*
|
|
* Arguments exotic behavior in E5 Section 10.6 occurs after the standard
|
|
* [[DefineOwnProperty]] has completed successfully.
|
|
*
|
|
* Array exotic behavior in E5 Section 15.4.5.1 is implemented partly
|
|
* prior to the default [[DefineOwnProperty]], but:
|
|
* - for an array index key (e.g. "10") the final 'length' update occurs here
|
|
* - for 'length' key the element deletion and 'length' update occurs here
|
|
*/
|
|
|
|
success_exotics:
|
|
|
|
/* [obj key desc value get set curr_value] */
|
|
|
|
if (DUK_HOBJECT_HAS_EXOTIC_ARRAY(obj)) {
|
|
if (arridx_new_array_length > 0) {
|
|
duk_tval *tmp;
|
|
duk_bool_t rc;
|
|
|
|
/*
|
|
* Note: zero works as a "no update" marker because the new length
|
|
* can never be zero after a new property is written.
|
|
*/
|
|
|
|
/* E5 Section 15.4.5.1, steps 4.e.i - 4.e.ii */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty successful, pending array length update to: %ld",
|
|
(long) arridx_new_array_length));
|
|
|
|
/* Note: reuse 'curr' */
|
|
rc = duk__get_own_property_desc_raw(thr, obj, DUK_HTHREAD_STRING_LENGTH(thr), DUK__NO_ARRAY_INDEX, &curr, 0 /*flags*/); /* don't push value */
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
DUK_ASSERT(curr.e_idx >= 0);
|
|
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, curr.e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tmp));
|
|
/* no need for decref/incref because value is a number */
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_FASTINT_U32(tmp, arridx_new_array_length);
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tmp, (duk_double_t) arridx_new_array_length);
|
|
#endif
|
|
}
|
|
if (key == DUK_HTHREAD_STRING_LENGTH(thr) && arrlen_new_len < arrlen_old_len) {
|
|
/*
|
|
* E5 Section 15.4.5.1, steps 3.k - 3.n. The order at the end combines
|
|
* the error case 3.l.iii and the success case 3.m-3.n.
|
|
*
|
|
* Note: 'length' is always in entries part, so no array abandon issues for
|
|
* 'writable' update.
|
|
*/
|
|
|
|
/* XXX: investigate whether write protect can be handled above, if we
|
|
* just update length here while ignoring its protected status
|
|
*/
|
|
|
|
duk_tval *tmp;
|
|
duk_uint32_t result_len;
|
|
duk_bool_t rc;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty successful, key is 'length', exotic array behavior, "
|
|
"doing array element deletion and length update"));
|
|
|
|
rc = duk__handle_put_array_length_smaller(thr, obj, arrlen_old_len, arrlen_new_len, force_flag, &result_len);
|
|
|
|
/* update length (curr points to length, and we assume it's still valid) */
|
|
DUK_ASSERT(result_len >= arrlen_new_len && result_len <= arrlen_old_len);
|
|
|
|
DUK_ASSERT(curr.e_idx >= 0);
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, obj, curr.e_idx));
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, obj, curr.e_idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tmp));
|
|
/* no decref needed for a number */
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_FASTINT_U32(tmp, result_len);
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tmp, (duk_double_t) result_len);
|
|
#endif
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tmp));
|
|
|
|
if (pending_write_protect) {
|
|
DUK_DDD(DUK_DDDPRINT("setting array length non-writable (pending writability update)"));
|
|
DUK_HOBJECT_E_SLOT_CLEAR_WRITABLE(thr->heap, obj, curr.e_idx);
|
|
}
|
|
|
|
/*
|
|
* XXX: shrink array allocation or entries compaction here?
|
|
*/
|
|
|
|
if (!rc) {
|
|
goto fail_array_length_partial;
|
|
}
|
|
}
|
|
} else if (arr_idx != DUK__NO_ARRAY_INDEX && DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(obj)) {
|
|
duk_hobject *map;
|
|
duk_hobject *varenv;
|
|
|
|
DUK_ASSERT(arridx_new_array_length == 0);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARRAY(obj)); /* traits are separate; in particular, arguments not an array */
|
|
|
|
map = NULL;
|
|
varenv = NULL;
|
|
if (!duk__lookup_arguments_map(thr, obj, key, &curr, &map, &varenv)) {
|
|
goto success_no_exotics;
|
|
}
|
|
DUK_ASSERT(map != NULL);
|
|
DUK_ASSERT(varenv != NULL);
|
|
|
|
/* [obj key desc value get set curr_value varname] */
|
|
|
|
if (has_set || has_get) {
|
|
/* = IsAccessorDescriptor(Desc) */
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty successful, key mapped to arguments 'map' "
|
|
"changed to an accessor, delete arguments binding"));
|
|
|
|
(void) duk_hobject_delprop_raw(thr, map, key, 0); /* ignore result */
|
|
} else {
|
|
/* Note: this order matters (final value before deleting map entry must be done) */
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty successful, key mapped to arguments 'map', "
|
|
"check for value update / binding deletion"));
|
|
|
|
if (has_value) {
|
|
duk_hstring *varname;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty successful, key mapped to arguments 'map', "
|
|
"update bound value (variable/argument)"));
|
|
|
|
varname = duk_require_hstring(ctx, -1);
|
|
DUK_ASSERT(varname != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arguments object automatic putvar for a bound variable; "
|
|
"key=%!O, varname=%!O, value=%!T",
|
|
(duk_heaphdr *) key,
|
|
(duk_heaphdr *) varname,
|
|
(duk_tval *) duk_require_tval(ctx, idx_value)));
|
|
|
|
/* strict flag for putvar comes from our caller (currently: fixed) */
|
|
duk_js_putvar_envrec(thr, varenv, varname, duk_require_tval(ctx, idx_value), throw_flag);
|
|
}
|
|
if (has_writable && !is_writable) {
|
|
DUK_DDD(DUK_DDDPRINT("defineProperty successful, key mapped to arguments 'map', "
|
|
"changed to non-writable, delete arguments binding"));
|
|
|
|
(void) duk_hobject_delprop_raw(thr, map, key, 0); /* ignore result */
|
|
}
|
|
}
|
|
|
|
/* 'varname' is in stack in this else branch, leaving an unbalanced stack below,
|
|
* but this doesn't matter now.
|
|
*/
|
|
}
|
|
|
|
success_no_exotics:
|
|
return;
|
|
|
|
fail_virtual:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_PROPERTY_IS_VIRTUAL);
|
|
return;
|
|
|
|
fail_not_writable_array_length:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_ARRAY_LENGTH_NOT_WRITABLE);
|
|
return;
|
|
|
|
fail_not_extensible:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_EXTENSIBLE);
|
|
return;
|
|
|
|
fail_not_configurable:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CONFIGURABLE);
|
|
return;
|
|
|
|
fail_array_length_partial:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_ARRAY_LENGTH_WRITE_FAILED);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Object.prototype.hasOwnProperty() and Object.prototype.propertyIsEnumerable().
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_object_ownprop_helper(duk_context *ctx, duk_small_uint_t required_desc_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_v;
|
|
duk_hobject *h_obj;
|
|
duk_propdesc desc;
|
|
duk_bool_t ret;
|
|
|
|
/* coercion order matters */
|
|
h_v = duk_to_hstring(ctx, 0);
|
|
DUK_ASSERT(h_v != NULL);
|
|
|
|
h_obj = duk_push_this_coercible_to_object(ctx);
|
|
DUK_ASSERT(h_obj != NULL);
|
|
|
|
ret = duk__get_own_property_desc(thr, h_obj, h_v, &desc, 0 /*flags*/); /* don't push value */
|
|
|
|
duk_push_boolean(ctx, ret && ((desc.flags & required_desc_flags) == required_desc_flags));
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Object.seal() and Object.freeze() (E5 Sections 15.2.3.8 and 15.2.3.9)
|
|
*
|
|
* Since the algorithms are similar, a helper provides both functions.
|
|
* Freezing is essentially sealing + making plain properties non-writable.
|
|
*
|
|
* Note: virtual (non-concrete) properties which are non-configurable but
|
|
* writable would pose some problems, but such properties do not currently
|
|
* exist (all virtual properties are non-configurable and non-writable).
|
|
* If they did exist, the non-configurability does NOT prevent them from
|
|
* becoming non-writable. However, this change should be recorded somehow
|
|
* so that it would turn up (e.g. when getting the property descriptor),
|
|
* requiring some additional flags in the object.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hobject_object_seal_freeze_helper(duk_hthread *thr, duk_hobject *obj, duk_bool_t is_freeze) {
|
|
duk_uint_fast32_t i;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->heap != NULL);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
DUK_ASSERT_VALSTACK_SPACE(thr, DUK__VALSTACK_SPACE);
|
|
|
|
/*
|
|
* Abandon array part because all properties must become non-configurable.
|
|
* Note that this is now done regardless of whether this is always the case
|
|
* (skips check, but performance problem if caller would do this many times
|
|
* for the same object; not likely).
|
|
*/
|
|
|
|
duk__abandon_array_checked(thr, obj);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_ASIZE(obj) == 0);
|
|
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
duk_uint8_t *fp;
|
|
|
|
/* since duk__abandon_array_checked() causes a resize, there should be no gaps in keys */
|
|
DUK_ASSERT(DUK_HOBJECT_E_GET_KEY(thr->heap, obj, i) != NULL);
|
|
|
|
/* avoid multiple computations of flags address; bypasses macros */
|
|
fp = DUK_HOBJECT_E_GET_FLAGS_PTR(thr->heap, obj, i);
|
|
if (is_freeze && !((*fp) & DUK_PROPDESC_FLAG_ACCESSOR)) {
|
|
*fp &= ~(DUK_PROPDESC_FLAG_WRITABLE | DUK_PROPDESC_FLAG_CONFIGURABLE);
|
|
} else {
|
|
*fp &= ~DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
}
|
|
}
|
|
|
|
DUK_HOBJECT_CLEAR_EXTENSIBLE(obj);
|
|
|
|
/* no need to compact since we already did that in duk__abandon_array_checked()
|
|
* (regardless of whether an array part existed or not.
|
|
*/
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Object.isSealed() and Object.isFrozen() (E5 Sections 15.2.3.11, 15.2.3.13)
|
|
*
|
|
* Since the algorithms are similar, a helper provides both functions.
|
|
* Freezing is essentially sealing + making plain properties non-writable.
|
|
*
|
|
* Note: all virtual (non-concrete) properties are currently non-configurable
|
|
* and non-writable (and there are no accessor virtual properties), so they don't
|
|
* need to be considered here now.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hobject_object_is_sealed_frozen_helper(duk_hthread *thr, duk_hobject *obj, duk_bool_t is_frozen) {
|
|
duk_uint_fast32_t i;
|
|
|
|
DUK_ASSERT(obj != NULL);
|
|
DUK_UNREF(thr);
|
|
|
|
/* Note: no allocation pressure, no need to check refcounts etc */
|
|
|
|
/* must not be extensible */
|
|
if (DUK_HOBJECT_HAS_EXTENSIBLE(obj)) {
|
|
return 0;
|
|
}
|
|
|
|
/* all virtual properties are non-configurable and non-writable */
|
|
|
|
/* entry part must not contain any configurable properties, or
|
|
* writable properties (if is_frozen).
|
|
*/
|
|
for (i = 0; i < DUK_HOBJECT_GET_ENEXT(obj); i++) {
|
|
duk_small_uint_t flags;
|
|
|
|
if (!DUK_HOBJECT_E_GET_KEY(thr->heap, obj, i)) {
|
|
continue;
|
|
}
|
|
|
|
/* avoid multiple computations of flags address; bypasses macros */
|
|
flags = (duk_small_uint_t) DUK_HOBJECT_E_GET_FLAGS(thr->heap, obj, i);
|
|
|
|
if (flags & DUK_PROPDESC_FLAG_CONFIGURABLE) {
|
|
return 0;
|
|
}
|
|
if (is_frozen &&
|
|
!(flags & DUK_PROPDESC_FLAG_ACCESSOR) &&
|
|
(flags & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* array part must not contain any non-unused properties, as they would
|
|
* be configurable and writable.
|
|
*/
|
|
for (i = 0; i < DUK_HOBJECT_GET_ASIZE(obj); i++) {
|
|
duk_tval *tv = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, obj, i);
|
|
if (!DUK_TVAL_IS_UNDEFINED_UNUSED(tv)) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Object.preventExtensions() and Object.isExtensible() (E5 Sections 15.2.3.10, 15.2.3.13)
|
|
*
|
|
* Not needed, implemented by macros DUK_HOBJECT_{HAS,CLEAR,SET}_EXTENSIBLE
|
|
* and the Object built-in bindings.
|
|
*/
|
|
|
|
/* Undefine local defines */
|
|
|
|
#undef DUK__NO_ARRAY_INDEX
|
|
#undef DUK__HASH_INITIAL
|
|
#undef DUK__HASH_PROBE_STEP
|
|
#undef DUK__HASH_UNUSED
|
|
#undef DUK__HASH_DELETED
|
|
#undef DUK__VALSTACK_SPACE
|
|
#line 1 "duk_hstring_misc.c"
|
|
/*
|
|
* Misc support functions
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL duk_ucodepoint_t duk_hstring_char_code_at_raw(duk_hthread *thr, duk_hstring *h, duk_uint_t pos) {
|
|
duk_uint32_t boff;
|
|
const duk_uint8_t *p, *p_start, *p_end;
|
|
duk_ucodepoint_t cp;
|
|
|
|
/* Caller must check character offset to be inside the string. */
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT_DISABLE(pos >= 0); /* unsigned */
|
|
DUK_ASSERT(pos < (duk_uint_t) DUK_HSTRING_GET_CHARLEN(h));
|
|
|
|
boff = duk_heap_strcache_offset_char2byte(thr, h, (duk_uint32_t) pos);
|
|
DUK_DDD(DUK_DDDPRINT("charCodeAt: pos=%ld -> boff=%ld, str=%!O",
|
|
(long) pos, (long) boff, (duk_heaphdr *) h));
|
|
DUK_ASSERT_DISABLE(boff >= 0);
|
|
DUK_ASSERT(boff < DUK_HSTRING_GET_BYTELEN(h));
|
|
|
|
p_start = DUK_HSTRING_GET_DATA(h);
|
|
p_end = p_start + DUK_HSTRING_GET_BYTELEN(h);
|
|
p = p_start + boff;
|
|
DUK_DDD(DUK_DDDPRINT("p_start=%p, p_end=%p, p=%p",
|
|
(void *) p_start, (void *) p_end, (void *) p));
|
|
|
|
/* This may throw an error though not for valid E5 strings. */
|
|
cp = duk_unicode_decode_xutf8_checked(thr, &p, p_start, p_end);
|
|
return cp;
|
|
}
|
|
#line 1 "duk_hthread_alloc.c"
|
|
/*
|
|
* duk_hthread allocation and freeing.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Allocate initial stacks for a thread. Note that 'thr' must be reachable
|
|
* as a garbage collection may be triggered by the allocation attempts.
|
|
* Returns zero (without leaking memory) if init fails.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_hthread_init_stacks(duk_heap *heap, duk_hthread *thr) {
|
|
duk_size_t alloc_size;
|
|
duk_size_t i;
|
|
|
|
DUK_ASSERT(heap != NULL);
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->valstack == NULL);
|
|
DUK_ASSERT(thr->valstack_end == NULL);
|
|
DUK_ASSERT(thr->valstack_bottom == NULL);
|
|
DUK_ASSERT(thr->valstack_top == NULL);
|
|
DUK_ASSERT(thr->callstack == NULL);
|
|
DUK_ASSERT(thr->catchstack == NULL);
|
|
|
|
/* valstack */
|
|
alloc_size = sizeof(duk_tval) * DUK_VALSTACK_INITIAL_SIZE;
|
|
thr->valstack = (duk_tval *) DUK_ALLOC(heap, alloc_size);
|
|
if (!thr->valstack) {
|
|
goto fail;
|
|
}
|
|
DUK_MEMZERO(thr->valstack, alloc_size);
|
|
thr->valstack_end = thr->valstack + DUK_VALSTACK_INITIAL_SIZE;
|
|
thr->valstack_bottom = thr->valstack;
|
|
thr->valstack_top = thr->valstack;
|
|
|
|
for (i = 0; i < DUK_VALSTACK_INITIAL_SIZE; i++) {
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->valstack[i]);
|
|
}
|
|
|
|
/* callstack */
|
|
alloc_size = sizeof(duk_activation) * DUK_CALLSTACK_INITIAL_SIZE;
|
|
thr->callstack = (duk_activation *) DUK_ALLOC(heap, alloc_size);
|
|
if (!thr->callstack) {
|
|
goto fail;
|
|
}
|
|
DUK_MEMZERO(thr->callstack, alloc_size);
|
|
thr->callstack_size = DUK_CALLSTACK_INITIAL_SIZE;
|
|
DUK_ASSERT(thr->callstack_top == 0);
|
|
|
|
/* catchstack */
|
|
alloc_size = sizeof(duk_catcher) * DUK_CATCHSTACK_INITIAL_SIZE;
|
|
thr->catchstack = (duk_catcher *) DUK_ALLOC(heap, alloc_size);
|
|
if (!thr->catchstack) {
|
|
goto fail;
|
|
}
|
|
DUK_MEMZERO(thr->catchstack, alloc_size);
|
|
thr->catchstack_size = DUK_CATCHSTACK_INITIAL_SIZE;
|
|
DUK_ASSERT(thr->catchstack_top == 0);
|
|
|
|
return 1;
|
|
|
|
fail:
|
|
DUK_FREE(heap, thr->valstack);
|
|
DUK_FREE(heap, thr->callstack);
|
|
DUK_FREE(heap, thr->catchstack);
|
|
|
|
thr->valstack = NULL;
|
|
thr->callstack = NULL;
|
|
thr->catchstack = NULL;
|
|
return 0;
|
|
}
|
|
|
|
/* For indirect allocs. */
|
|
|
|
DUK_INTERNAL void *duk_hthread_get_valstack_ptr(duk_heap *heap, void *ud) {
|
|
duk_hthread *thr = (duk_hthread *) ud;
|
|
DUK_UNREF(heap);
|
|
return (void *) thr->valstack;
|
|
}
|
|
|
|
DUK_INTERNAL void *duk_hthread_get_callstack_ptr(duk_heap *heap, void *ud) {
|
|
duk_hthread *thr = (duk_hthread *) ud;
|
|
DUK_UNREF(heap);
|
|
return (void *) thr->callstack;
|
|
}
|
|
|
|
DUK_INTERNAL void *duk_hthread_get_catchstack_ptr(duk_heap *heap, void *ud) {
|
|
duk_hthread *thr = (duk_hthread *) ud;
|
|
DUK_UNREF(heap);
|
|
return (void *) thr->catchstack;
|
|
}
|
|
#line 1 "duk_hthread_builtins.c"
|
|
/*
|
|
* Initialize built-in objects. Current thread must have a valstack
|
|
* and initialization errors may longjmp, so a setjmp() catch point
|
|
* must exist.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Encoding constants, must match genbuiltins.py
|
|
*/
|
|
|
|
#define DUK__CLASS_BITS 5
|
|
#define DUK__BIDX_BITS 6
|
|
#define DUK__STRIDX_BITS 9 /* XXX: try to optimize to 8 */
|
|
#define DUK__NATIDX_BITS 8
|
|
#define DUK__NUM_NORMAL_PROPS_BITS 6
|
|
#define DUK__NUM_FUNC_PROPS_BITS 6
|
|
#define DUK__PROP_FLAGS_BITS 3
|
|
#define DUK__STRING_LENGTH_BITS 8
|
|
#define DUK__STRING_CHAR_BITS 7
|
|
#define DUK__LENGTH_PROP_BITS 3
|
|
#define DUK__NARGS_BITS 3
|
|
#define DUK__PROP_TYPE_BITS 3
|
|
#define DUK__MAGIC_BITS 16
|
|
|
|
#define DUK__NARGS_VARARGS_MARKER 0x07
|
|
#define DUK__NO_CLASS_MARKER 0x00 /* 0 = DUK_HOBJECT_CLASS_UNUSED */
|
|
#define DUK__NO_BIDX_MARKER 0x3f
|
|
#define DUK__NO_STRIDX_MARKER 0xff
|
|
|
|
#define DUK__PROP_TYPE_DOUBLE 0
|
|
#define DUK__PROP_TYPE_STRING 1
|
|
#define DUK__PROP_TYPE_STRIDX 2
|
|
#define DUK__PROP_TYPE_BUILTIN 3
|
|
#define DUK__PROP_TYPE_UNDEFINED 4
|
|
#define DUK__PROP_TYPE_BOOLEAN_TRUE 5
|
|
#define DUK__PROP_TYPE_BOOLEAN_FALSE 6
|
|
#define DUK__PROP_TYPE_ACCESSOR 7
|
|
|
|
/*
|
|
* Create built-in objects by parsing an init bitstream generated
|
|
* by genbuiltins.py.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_hthread_create_builtin_objects(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bitdecoder_ctx bd_ctx;
|
|
duk_bitdecoder_ctx *bd = &bd_ctx; /* convenience */
|
|
duk_hobject *h;
|
|
duk_small_uint_t i, j;
|
|
|
|
DUK_D(DUK_DPRINT("INITBUILTINS BEGIN"));
|
|
|
|
DUK_MEMZERO(&bd_ctx, sizeof(bd_ctx));
|
|
bd->data = (const duk_uint8_t *) duk_builtins_data;
|
|
bd->length = (duk_size_t) DUK_BUILTINS_DATA_LENGTH;
|
|
|
|
/*
|
|
* First create all built-in bare objects on the empty valstack.
|
|
* During init, their indices will correspond to built-in indices.
|
|
*
|
|
* Built-ins will be reachable from both valstack and thr->builtins.
|
|
*/
|
|
|
|
/* XXX: there is no need to resize valstack because builtin count
|
|
* is much less than the default space; assert for it.
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("create empty built-ins"));
|
|
DUK_ASSERT_TOP(ctx, 0);
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
duk_small_uint_t class_num;
|
|
duk_small_int_t len = -1; /* must be signed */
|
|
|
|
class_num = (duk_small_uint_t) duk_bd_decode(bd, DUK__CLASS_BITS);
|
|
len = (duk_small_int_t) duk_bd_decode_flagged(bd, DUK__LENGTH_PROP_BITS, (duk_int32_t) -1 /*def_value*/);
|
|
|
|
if (class_num == DUK_HOBJECT_CLASS_FUNCTION) {
|
|
duk_small_uint_t natidx;
|
|
duk_small_uint_t stridx;
|
|
duk_int_t c_nargs; /* must hold DUK_VARARGS */
|
|
duk_c_function c_func;
|
|
duk_int16_t magic;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("len=%ld", (long) len));
|
|
DUK_ASSERT(len >= 0);
|
|
|
|
natidx = (duk_small_uint_t) duk_bd_decode(bd, DUK__NATIDX_BITS);
|
|
stridx = (duk_small_uint_t) duk_bd_decode(bd, DUK__STRIDX_BITS);
|
|
c_func = duk_bi_native_functions[natidx];
|
|
|
|
c_nargs = (duk_small_uint_t) duk_bd_decode_flagged(bd, DUK__NARGS_BITS, len /*def_value*/);
|
|
if (c_nargs == DUK__NARGS_VARARGS_MARKER) {
|
|
c_nargs = DUK_VARARGS;
|
|
}
|
|
|
|
/* XXX: set magic directly here? (it could share the c_nargs arg) */
|
|
duk_push_c_function_noexotic(ctx, c_func, c_nargs);
|
|
|
|
h = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
/* Currently all built-in native functions are strict.
|
|
* duk_push_c_function() now sets strict flag, so
|
|
* assert for it.
|
|
*/
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_STRICT(h));
|
|
|
|
/* XXX: function properties */
|
|
|
|
duk_push_hstring_stridx(ctx, stridx);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_NAME, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* Almost all global level Function objects are constructable
|
|
* but not all: Function.prototype is a non-constructable,
|
|
* callable Function.
|
|
*/
|
|
if (duk_bd_decode_flag(bd)) {
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_CONSTRUCTABLE(h));
|
|
} else {
|
|
DUK_HOBJECT_CLEAR_CONSTRUCTABLE(h);
|
|
}
|
|
|
|
/* Cast converts magic to 16-bit signed value */
|
|
magic = (duk_int16_t) duk_bd_decode_flagged(bd, DUK__MAGIC_BITS, 0 /*def_value*/);
|
|
((duk_hnativefunction *) h)->magic = magic;
|
|
} else {
|
|
/* XXX: ARRAY_PART for Array prototype? */
|
|
|
|
duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE,
|
|
-1); /* no prototype or class yet */
|
|
|
|
h = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
}
|
|
|
|
DUK_HOBJECT_SET_CLASS_NUMBER(h, class_num);
|
|
|
|
thr->builtins[i] = h;
|
|
DUK_HOBJECT_INCREF(thr, &h->hdr);
|
|
|
|
if (len >= 0) {
|
|
/*
|
|
* For top-level objects, 'length' property has the following
|
|
* default attributes: non-writable, non-enumerable, non-configurable
|
|
* (E5 Section 15).
|
|
*
|
|
* However, 'length' property for Array.prototype has attributes
|
|
* expected of an Array instance which are different: writable,
|
|
* non-enumerable, non-configurable (E5 Section 15.4.5.2).
|
|
*
|
|
* This is currently determined implicitly based on class; there are
|
|
* no attribute flags in the init data.
|
|
*/
|
|
|
|
duk_push_int(ctx, len);
|
|
duk_xdef_prop_stridx(ctx,
|
|
-2,
|
|
DUK_STRIDX_LENGTH,
|
|
(class_num == DUK_HOBJECT_CLASS_ARRAY ? /* only Array.prototype matches */
|
|
DUK_PROPDESC_FLAGS_W : DUK_PROPDESC_FLAGS_NONE));
|
|
}
|
|
|
|
/* enable exotic behaviors last */
|
|
|
|
if (class_num == DUK_HOBJECT_CLASS_ARRAY) {
|
|
DUK_HOBJECT_SET_EXOTIC_ARRAY(h);
|
|
}
|
|
if (class_num == DUK_HOBJECT_CLASS_STRING) {
|
|
DUK_HOBJECT_SET_EXOTIC_STRINGOBJ(h);
|
|
}
|
|
|
|
/* some assertions */
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXTENSIBLE(h));
|
|
/* DUK_HOBJECT_FLAG_CONSTRUCTABLE varies */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(h));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_COMPILEDFUNCTION(h));
|
|
/* DUK_HOBJECT_FLAG_NATIVEFUNCTION varies */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_THREAD(h));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_ARRAY_PART(h)); /* currently, even for Array.prototype */
|
|
/* DUK_HOBJECT_FLAG_STRICT varies */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NATIVEFUNCTION(h) || /* all native functions have NEWENV */
|
|
DUK_HOBJECT_HAS_NEWENV(h));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NAMEBINDING(h));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_CREATEARGS(h));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_ENVRECCLOSED(h));
|
|
/* DUK_HOBJECT_FLAG_EXOTIC_ARRAY varies */
|
|
/* DUK_HOBJECT_FLAG_EXOTIC_STRINGOBJ varies */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(h));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created built-in %ld, class=%ld, length=%ld", (long) i, (long) class_num, (long) len));
|
|
}
|
|
|
|
/*
|
|
* Then decode the builtins init data (see genbuiltins.py) to
|
|
* init objects
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("initialize built-in object properties"));
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
duk_small_uint_t t;
|
|
duk_small_uint_t num;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("initializing built-in object at index %ld", (long) i));
|
|
h = thr->builtins[i];
|
|
|
|
t = (duk_small_uint_t) duk_bd_decode(bd, DUK__BIDX_BITS);
|
|
if (t != DUK__NO_BIDX_MARKER) {
|
|
DUK_DDD(DUK_DDDPRINT("set internal prototype: built-in %ld", (long) t));
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, h, thr->builtins[t]);
|
|
}
|
|
|
|
t = (duk_small_uint_t) duk_bd_decode(bd, DUK__BIDX_BITS);
|
|
if (t != DUK__NO_BIDX_MARKER) {
|
|
/* 'prototype' property for all built-in objects (which have it) has attributes:
|
|
* [[Writable]] = false,
|
|
* [[Enumerable]] = false,
|
|
* [[Configurable]] = false
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("set external prototype: built-in %ld", (long) t));
|
|
duk_xdef_prop_stridx_builtin(ctx, i, DUK_STRIDX_PROTOTYPE, t, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
|
|
t = (duk_small_uint_t) duk_bd_decode(bd, DUK__BIDX_BITS);
|
|
if (t != DUK__NO_BIDX_MARKER) {
|
|
/* 'constructor' property for all built-in objects (which have it) has attributes:
|
|
* [[Writable]] = true,
|
|
* [[Enumerable]] = false,
|
|
* [[Configurable]] = true
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("set external constructor: built-in %ld", (long) t));
|
|
duk_xdef_prop_stridx_builtin(ctx, i, DUK_STRIDX_CONSTRUCTOR, t, DUK_PROPDESC_FLAGS_WC);
|
|
}
|
|
|
|
/* normal valued properties */
|
|
num = (duk_small_uint_t) duk_bd_decode(bd, DUK__NUM_NORMAL_PROPS_BITS);
|
|
DUK_DDD(DUK_DDDPRINT("built-in object %ld, %ld normal valued properties", (long) i, (long) num));
|
|
for (j = 0; j < num; j++) {
|
|
duk_small_uint_t stridx;
|
|
duk_small_uint_t prop_flags;
|
|
|
|
stridx = (duk_small_uint_t) duk_bd_decode(bd, DUK__STRIDX_BITS);
|
|
|
|
/*
|
|
* Property attribute defaults are defined in E5 Section 15 (first
|
|
* few pages); there is a default for all properties and a special
|
|
* default for 'length' properties. Variation from the defaults is
|
|
* signaled using a single flag bit in the bitstream.
|
|
*/
|
|
|
|
if (duk_bd_decode_flag(bd)) {
|
|
prop_flags = (duk_small_uint_t) duk_bd_decode(bd, DUK__PROP_FLAGS_BITS);
|
|
} else {
|
|
if (stridx == DUK_STRIDX_LENGTH) {
|
|
prop_flags = DUK_PROPDESC_FLAGS_NONE;
|
|
} else {
|
|
prop_flags = DUK_PROPDESC_FLAGS_WC;
|
|
}
|
|
}
|
|
|
|
t = (duk_small_uint_t) duk_bd_decode(bd, DUK__PROP_TYPE_BITS);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("built-in %ld, normal-valued property %ld, stridx %ld, flags 0x%02lx, type %ld",
|
|
(long) i, (long) j, (long) stridx, (unsigned long) prop_flags, (long) t));
|
|
|
|
switch (t) {
|
|
case DUK__PROP_TYPE_DOUBLE: {
|
|
duk_double_union du;
|
|
duk_small_uint_t k;
|
|
|
|
for (k = 0; k < 8; k++) {
|
|
/* Encoding endianness must match target memory layout,
|
|
* build scripts and genbuiltins.py must ensure this.
|
|
*/
|
|
du.uc[k] = (duk_uint8_t) duk_bd_decode(bd, 8);
|
|
}
|
|
|
|
duk_push_number(ctx, du.d); /* push operation normalizes NaNs */
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_STRING: {
|
|
duk_small_uint_t n;
|
|
duk_small_uint_t k;
|
|
duk_uint8_t *p;
|
|
|
|
n = (duk_small_uint_t) duk_bd_decode(bd, DUK__STRING_LENGTH_BITS);
|
|
p = (duk_uint8_t *) duk_push_fixed_buffer(ctx, n);
|
|
for (k = 0; k < n; k++) {
|
|
*p++ = (duk_uint8_t) duk_bd_decode(bd, DUK__STRING_CHAR_BITS);
|
|
}
|
|
|
|
duk_to_string(ctx, -1);
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_STRIDX: {
|
|
duk_small_uint_t n;
|
|
|
|
n = (duk_small_uint_t) duk_bd_decode(bd, DUK__STRIDX_BITS);
|
|
DUK_ASSERT_DISABLE(n >= 0); /* unsigned */
|
|
DUK_ASSERT(n < DUK_HEAP_NUM_STRINGS);
|
|
duk_push_hstring_stridx(ctx, n);
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_BUILTIN: {
|
|
duk_small_uint_t bidx;
|
|
|
|
bidx = (duk_small_uint_t) duk_bd_decode(bd, DUK__BIDX_BITS);
|
|
DUK_ASSERT(bidx != DUK__NO_BIDX_MARKER);
|
|
duk_dup(ctx, (duk_idx_t) bidx);
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_UNDEFINED: {
|
|
duk_push_undefined(ctx);
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_BOOLEAN_TRUE: {
|
|
duk_push_true(ctx);
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_BOOLEAN_FALSE: {
|
|
duk_push_false(ctx);
|
|
break;
|
|
}
|
|
case DUK__PROP_TYPE_ACCESSOR: {
|
|
duk_small_uint_t natidx_getter = (duk_small_uint_t) duk_bd_decode(bd, DUK__NATIDX_BITS);
|
|
duk_small_uint_t natidx_setter = (duk_small_uint_t) duk_bd_decode(bd, DUK__NATIDX_BITS);
|
|
duk_c_function c_func_getter;
|
|
duk_c_function c_func_setter;
|
|
|
|
/* XXX: this is a bit awkward because there is no exposed helper
|
|
* in the API style, only this internal helper.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("built-in accessor property: objidx=%ld, stridx=%ld, getteridx=%ld, setteridx=%ld, flags=0x%04lx",
|
|
(long) i, (long) stridx, (long) natidx_getter, (long) natidx_setter, (unsigned long) prop_flags));
|
|
|
|
c_func_getter = duk_bi_native_functions[natidx_getter];
|
|
c_func_setter = duk_bi_native_functions[natidx_setter];
|
|
duk_push_c_function_noconstruct_noexotic(ctx, c_func_getter, 0); /* always 0 args */
|
|
duk_push_c_function_noconstruct_noexotic(ctx, c_func_setter, 1); /* always 1 arg */
|
|
|
|
/* XXX: magic for getter/setter? */
|
|
|
|
prop_flags |= DUK_PROPDESC_FLAG_ACCESSOR; /* accessor flag not encoded explicitly */
|
|
duk_hobject_define_accessor_internal(thr,
|
|
duk_require_hobject(ctx, i),
|
|
DUK_HTHREAD_GET_STRING(thr, stridx),
|
|
duk_require_hobject(ctx, -2),
|
|
duk_require_hobject(ctx, -1),
|
|
prop_flags);
|
|
duk_pop_2(ctx); /* getter and setter, now reachable through object */
|
|
goto skip_value;
|
|
}
|
|
default: {
|
|
/* exhaustive */
|
|
DUK_UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT((prop_flags & DUK_PROPDESC_FLAG_ACCESSOR) == 0);
|
|
duk_xdef_prop_stridx(ctx, i, stridx, prop_flags);
|
|
|
|
skip_value:
|
|
continue; /* avoid empty label at the end of a compound statement */
|
|
}
|
|
|
|
/* native function properties */
|
|
num = (duk_small_uint_t) duk_bd_decode(bd, DUK__NUM_FUNC_PROPS_BITS);
|
|
DUK_DDD(DUK_DDDPRINT("built-in object %ld, %ld function valued properties", (long) i, (long) num));
|
|
for (j = 0; j < num; j++) {
|
|
duk_small_uint_t stridx;
|
|
duk_small_uint_t natidx;
|
|
duk_int_t c_nargs; /* must hold DUK_VARARGS */
|
|
duk_small_uint_t c_length;
|
|
duk_int16_t magic;
|
|
duk_c_function c_func;
|
|
duk_hnativefunction *h_func;
|
|
#if defined(DUK_USE_LIGHTFUNC_BUILTINS)
|
|
duk_small_int_t lightfunc_eligible;
|
|
#endif
|
|
|
|
stridx = (duk_small_uint_t) duk_bd_decode(bd, DUK__STRIDX_BITS);
|
|
natidx = (duk_small_uint_t) duk_bd_decode(bd, DUK__NATIDX_BITS);
|
|
|
|
c_length = (duk_small_uint_t) duk_bd_decode(bd, DUK__LENGTH_PROP_BITS);
|
|
c_nargs = (duk_int_t) duk_bd_decode_flagged(bd, DUK__NARGS_BITS, (duk_int32_t) c_length /*def_value*/);
|
|
if (c_nargs == DUK__NARGS_VARARGS_MARKER) {
|
|
c_nargs = DUK_VARARGS;
|
|
}
|
|
|
|
c_func = duk_bi_native_functions[natidx];
|
|
|
|
DUK_DDD(DUK_DDDPRINT("built-in %ld, function-valued property %ld, stridx %ld, natidx %ld, length %ld, nargs %ld",
|
|
(long) i, (long) j, (long) stridx, (long) natidx, (long) c_length,
|
|
(c_nargs == DUK_VARARGS ? (long) -1 : (long) c_nargs)));
|
|
|
|
/* Cast converts magic to 16-bit signed value */
|
|
magic = (duk_int16_t) duk_bd_decode_flagged(bd, DUK__MAGIC_BITS, 0);
|
|
|
|
#if defined(DUK_USE_LIGHTFUNC_BUILTINS)
|
|
lightfunc_eligible =
|
|
((c_nargs >= DUK_LFUNC_NARGS_MIN && c_nargs <= DUK_LFUNC_NARGS_MAX) || (c_nargs == DUK_VARARGS)) &&
|
|
(c_length <= DUK_LFUNC_LENGTH_MAX) &&
|
|
(magic >= DUK_LFUNC_MAGIC_MIN && magic <= DUK_LFUNC_MAGIC_MAX);
|
|
if (stridx == DUK_STRIDX_EVAL ||
|
|
stridx == DUK_STRIDX_YIELD ||
|
|
stridx == DUK_STRIDX_RESUME ||
|
|
stridx == DUK_STRIDX_REQUIRE) {
|
|
/* These functions have trouble working as lightfuncs.
|
|
* Some of them have specific asserts and some may have
|
|
* additional properties (e.g. 'require.id' may be written).
|
|
*/
|
|
DUK_D(DUK_DPRINT("reject as lightfunc: stridx=%d, i=%d, j=%d", (int) stridx, (int) i, (int) j));
|
|
lightfunc_eligible = 0;
|
|
}
|
|
|
|
if (lightfunc_eligible) {
|
|
duk_tval tv_lfunc;
|
|
duk_small_uint_t lf_nargs = (c_nargs == DUK_VARARGS ? DUK_LFUNC_NARGS_VARARGS : c_nargs);
|
|
duk_small_uint_t lf_flags = DUK_LFUNC_FLAGS_PACK(magic, c_length, lf_nargs);
|
|
DUK_TVAL_SET_LIGHTFUNC(&tv_lfunc, c_func, lf_flags);
|
|
duk_push_tval(ctx, &tv_lfunc);
|
|
DUK_D(DUK_DPRINT("built-in function eligible as light function: i=%d, j=%d c_length=%ld, c_nargs=%ld, magic=%ld -> %!iT", (int) i, (int) j, (long) c_length, (long) c_nargs, (long) magic, duk_get_tval(ctx, -1)));
|
|
goto lightfunc_skip;
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("built-in function NOT ELIGIBLE as light function: i=%d, j=%d c_length=%ld, c_nargs=%ld, magic=%ld", (int) i, (int) j, (long) c_length, (long) c_nargs, (long) magic));
|
|
#endif /* DUK_USE_LIGHTFUNC_BUILTINS */
|
|
|
|
/* [ (builtin objects) ] */
|
|
|
|
duk_push_c_function_noconstruct_noexotic(ctx, c_func, c_nargs);
|
|
h_func = duk_require_hnativefunction(ctx, -1);
|
|
DUK_UNREF(h_func);
|
|
|
|
/* Currently all built-in native functions are strict.
|
|
* This doesn't matter for many functions, but e.g.
|
|
* String.prototype.charAt (and other string functions)
|
|
* rely on being strict so that their 'this' binding is
|
|
* not automatically coerced.
|
|
*/
|
|
DUK_HOBJECT_SET_STRICT((duk_hobject *) h_func);
|
|
|
|
/* No built-in functions are constructable except the top
|
|
* level ones (Number, etc).
|
|
*/
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_CONSTRUCTABLE((duk_hobject *) h_func));
|
|
|
|
/* XXX: any way to avoid decoding magic bit; there are quite
|
|
* many function properties and relatively few with magic values.
|
|
*/
|
|
h_func->magic = magic;
|
|
|
|
/* [ (builtin objects) func ] */
|
|
|
|
duk_push_int(ctx, c_length);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
duk_push_hstring_stridx(ctx, stridx);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_NAME, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* XXX: other properties of function instances; 'arguments', 'caller'. */
|
|
|
|
DUK_DD(DUK_DDPRINT("built-in object %ld, function property %ld -> %!T",
|
|
(long) i, (long) j, (duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [ (builtin objects) func ] */
|
|
|
|
/*
|
|
* The default property attributes are correct for all
|
|
* function valued properties of built-in objects now.
|
|
*/
|
|
|
|
#if defined(DUK_USE_LIGHTFUNC_BUILTINS)
|
|
lightfunc_skip:
|
|
#endif
|
|
|
|
duk_xdef_prop_stridx(ctx, i, stridx, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
/* [ (builtin objects) ] */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Special post-tweaks, for cases not covered by the init data format.
|
|
*
|
|
* - Set Date.prototype.toGMTString to Date.prototype.toUTCString.
|
|
* toGMTString is required to have the same Function object as
|
|
* toUTCString in E5 Section B.2.6. Note that while Smjs respects
|
|
* this, V8 does not (the Function objects are distinct).
|
|
*
|
|
* - Make DoubleError non-extensible.
|
|
*
|
|
* - Add info about most important effective compile options to Duktape.
|
|
*
|
|
* - Possibly remove some properties (values or methods) which are not
|
|
* desirable with current feature options but are not currently
|
|
* conditional in init data.
|
|
*/
|
|
|
|
duk_get_prop_stridx(ctx, DUK_BIDX_DATE_PROTOTYPE, DUK_STRIDX_TO_UTC_STRING);
|
|
duk_xdef_prop_stridx(ctx, DUK_BIDX_DATE_PROTOTYPE, DUK_STRIDX_TO_GMT_STRING, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
h = duk_require_hobject(ctx, DUK_BIDX_DOUBLE_ERROR);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_HOBJECT_CLEAR_EXTENSIBLE(h);
|
|
|
|
#if !defined(DUK_USE_ES6_OBJECT_PROTO_PROPERTY)
|
|
DUK_DD(DUK_DDPRINT("delete Object.prototype.__proto__ built-in which is not enabled in features"));
|
|
(void) duk_hobject_delprop_raw(thr, thr->builtins[DUK_BIDX_OBJECT_PROTOTYPE], DUK_HTHREAD_STRING___PROTO__(thr), DUK_DELPROP_FLAG_THROW);
|
|
#endif
|
|
|
|
#if !defined(DUK_USE_ES6_OBJECT_SETPROTOTYPEOF)
|
|
DUK_DD(DUK_DDPRINT("delete Object.setPrototypeOf built-in which is not enabled in features"));
|
|
(void) duk_hobject_delprop_raw(thr, thr->builtins[DUK_BIDX_OBJECT_CONSTRUCTOR], DUK_HTHREAD_STRING_SET_PROTOTYPE_OF(thr), DUK_DELPROP_FLAG_THROW);
|
|
#endif
|
|
|
|
duk_push_string(ctx,
|
|
/* Endianness indicator */
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
"l"
|
|
#elif defined(DUK_USE_INTEGER_BE)
|
|
"b"
|
|
#elif defined(DUK_USE_INTEGER_ME) /* integer mixed endian not really used now */
|
|
"m"
|
|
#else
|
|
"?"
|
|
#endif
|
|
#if defined(DUK_USE_DOUBLE_LE)
|
|
"l"
|
|
#elif defined(DUK_USE_DOUBLE_BE)
|
|
"b"
|
|
#elif defined(DUK_USE_DOUBLE_ME)
|
|
"m"
|
|
#else
|
|
"?"
|
|
#endif
|
|
#if defined(DUK_USE_BYTEORDER_FORCED)
|
|
"f"
|
|
#endif
|
|
" "
|
|
/* Packed or unpacked tval */
|
|
#if defined(DUK_USE_PACKED_TVAL)
|
|
"p"
|
|
#else
|
|
"u"
|
|
#endif
|
|
#if defined(DUK_USE_FASTINT)
|
|
"f"
|
|
#endif
|
|
" "
|
|
/* Low memory options */
|
|
#if defined(DUK_USE_STRTAB_CHAIN)
|
|
"c" /* chain */
|
|
#elif defined(DUK_USE_STRTAB_PROBE)
|
|
"p" /* probe */
|
|
#else
|
|
"?"
|
|
#endif
|
|
#if !defined(DUK_USE_HEAPPTR16) && !defined(DUK_DATAPTR16) && !defined(DUK_FUNCPTR16)
|
|
"n"
|
|
#endif
|
|
#if defined(DUK_USE_HEAPPTR16)
|
|
"h"
|
|
#endif
|
|
#if defined(DUK_USE_DATAPTR16)
|
|
"d"
|
|
#endif
|
|
#if defined(DUK_USE_FUNCPTR16)
|
|
"f"
|
|
#endif
|
|
#if defined(DUK_USE_REFCOUNT16)
|
|
"R"
|
|
#endif
|
|
#if defined(DUK_USE_STRHASH16)
|
|
"H"
|
|
#endif
|
|
#if defined(DUK_USE_STRLEN16)
|
|
"S"
|
|
#endif
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
"B"
|
|
#endif
|
|
#if defined(DUK_USE_OBJSIZES16)
|
|
"O"
|
|
#endif
|
|
#if defined(DUK_USE_LIGHTFUNC_BUILTINS)
|
|
"L"
|
|
#endif
|
|
" "
|
|
/* Object property allocation layout */
|
|
#if defined(DUK_USE_HOBJECT_LAYOUT_1)
|
|
"p1"
|
|
#elif defined(DUK_USE_HOBJECT_LAYOUT_2)
|
|
"p2"
|
|
#elif defined(DUK_USE_HOBJECT_LAYOUT_3)
|
|
"p3"
|
|
#else
|
|
"p?"
|
|
#endif
|
|
" "
|
|
/* Alignment guarantee */
|
|
#if defined(DUK_USE_ALIGN_4)
|
|
"a4"
|
|
#elif defined(DUK_USE_ALIGN_8)
|
|
"a8"
|
|
#else
|
|
"a1"
|
|
#endif
|
|
" "
|
|
/* Architecture, OS, and compiler strings */
|
|
DUK_USE_ARCH_STRING
|
|
" "
|
|
DUK_USE_OS_STRING
|
|
" "
|
|
DUK_USE_COMPILER_STRING);
|
|
duk_xdef_prop_stridx(ctx, DUK_BIDX_DUKTAPE, DUK_STRIDX_ENV, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
/*
|
|
* InitJS code - Ecmascript code evaluated from a built-in source
|
|
* which provides e.g. backward compatibility. User can also provide
|
|
* JS code to be evaluated at startup.
|
|
*/
|
|
|
|
#ifdef DUK_USE_BUILTIN_INITJS
|
|
/* XXX: compression */
|
|
DUK_DD(DUK_DDPRINT("running built-in initjs"));
|
|
duk_eval_string(ctx, (const char *) duk_initjs_data); /* initjs data is NUL terminated */
|
|
duk_pop(ctx);
|
|
#endif /* DUK_USE_BUILTIN_INITJS */
|
|
|
|
#ifdef DUK_USE_USER_INITJS
|
|
/* XXX: compression (as an option) */
|
|
DUK_DD(DUK_DDPRINT("running user initjs"));
|
|
duk_eval_string_noresult(ctx, (const char *) DUK_USE_USER_INITJS);
|
|
#endif /* DUK_USE_USER_INITJS */
|
|
|
|
/*
|
|
* Since built-ins are not often extended, compact them.
|
|
*/
|
|
|
|
DUK_DD(DUK_DDPRINT("compact built-ins"));
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
duk_hobject_compact_props(thr, thr->builtins[i]);
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("INITBUILTINS END"));
|
|
|
|
#ifdef DUK_USE_DDPRINT
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
DUK_DD(DUK_DDPRINT("built-in object %ld after initialization and compacting: %!@iO",
|
|
(long) i, (duk_heaphdr *) thr->builtins[i]));
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Pop built-ins from stack: they are now INCREF'd and
|
|
* reachable from the builtins[] array.
|
|
*/
|
|
|
|
duk_pop_n(ctx, DUK_NUM_BUILTINS);
|
|
DUK_ASSERT_TOP(ctx, 0);
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hthread_copy_builtin_objects(duk_hthread *thr_from, duk_hthread *thr_to) {
|
|
duk_small_uint_t i;
|
|
|
|
for (i = 0; i < DUK_NUM_BUILTINS; i++) {
|
|
thr_to->builtins[i] = thr_from->builtins[i];
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr_to, thr_to->builtins[i]); /* side effect free */
|
|
}
|
|
}
|
|
#line 1 "duk_hthread_misc.c"
|
|
/*
|
|
* Thread support.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL void duk_hthread_terminate(duk_hthread *thr) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
/* Order of unwinding is important */
|
|
|
|
duk_hthread_catchstack_unwind(thr, 0);
|
|
|
|
duk_hthread_callstack_unwind(thr, 0); /* side effects, possibly errors */
|
|
|
|
thr->valstack_bottom = thr->valstack;
|
|
duk_set_top((duk_context *) thr, 0); /* unwinds valstack, updating refcounts */
|
|
|
|
thr->state = DUK_HTHREAD_STATE_TERMINATED;
|
|
|
|
/* Here we could remove references to built-ins, but it may not be
|
|
* worth the effort because built-ins are quite likely to be shared
|
|
* with another (unterminated) thread, and terminated threads are also
|
|
* usually garbage collected quite quickly. Also, doing DECREFs
|
|
* could trigger finalization, which would run on the current thread
|
|
* and have access to only some of the built-ins. Garbage collection
|
|
* deals with this correctly already.
|
|
*/
|
|
|
|
/* XXX: Shrink the stacks to minimize memory usage? May not
|
|
* be worth the effort because terminated threads are usually
|
|
* garbage collected quite soon.
|
|
*/
|
|
}
|
|
|
|
DUK_INTERNAL duk_activation *duk_hthread_get_current_activation(duk_hthread *thr) {
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
if (thr->callstack_top > 0) {
|
|
return thr->callstack + thr->callstack_top - 1;
|
|
} else {
|
|
return NULL;
|
|
}
|
|
}
|
|
#line 1 "duk_hthread_stacks.c"
|
|
/*
|
|
* Manipulation of thread stacks (valstack, callstack, catchstack).
|
|
*
|
|
* Ideally unwinding of stacks should have no side effects, which would
|
|
* then favor separate unwinding and shrink check primitives for each
|
|
* stack type. A shrink check may realloc and thus have side effects.
|
|
*
|
|
* However, currently callstack unwinding itself has side effects, as it
|
|
* needs to DECREF multiple objects, close environment records, etc.
|
|
* Stacks must thus be unwound in the correct order by the caller.
|
|
*
|
|
* (XXX: This should be probably reworked so that there is a shared
|
|
* unwind primitive which handles all stacks as requested, and knows
|
|
* the proper order for unwinding.)
|
|
*
|
|
* Valstack entries above 'top' are always kept initialized to
|
|
* "undefined unused". Callstack and catchstack entries above 'top'
|
|
* are not zeroed and are left as garbage.
|
|
*
|
|
* Value stack handling is mostly a part of the API implementation.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* check that there is space for at least one new entry */
|
|
DUK_INTERNAL void duk_hthread_callstack_grow(duk_hthread *thr) {
|
|
duk_activation *new_ptr;
|
|
duk_size_t old_size;
|
|
duk_size_t new_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0); /* avoid warning (unsigned) */
|
|
DUK_ASSERT(thr->callstack_size >= thr->callstack_top);
|
|
|
|
if (thr->callstack_top < thr->callstack_size) {
|
|
return;
|
|
}
|
|
|
|
old_size = thr->callstack_size;
|
|
new_size = old_size + DUK_CALLSTACK_GROW_STEP;
|
|
|
|
/* this is a bit approximate (errors out before max is reached); this is OK */
|
|
if (new_size >= thr->callstack_max) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_CALLSTACK_LIMIT);
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("growing callstack %ld -> %ld", (long) old_size, (long) new_size));
|
|
|
|
/*
|
|
* Note: must use indirect variant of DUK_REALLOC() because underlying
|
|
* pointer may be changed by mark-and-sweep.
|
|
*/
|
|
|
|
DUK_ASSERT(new_size > 0);
|
|
new_ptr = (duk_activation *) DUK_REALLOC_INDIRECT(thr->heap, duk_hthread_get_callstack_ptr, (void *) thr, sizeof(duk_activation) * new_size);
|
|
if (!new_ptr) {
|
|
/* No need for a NULL/zero-size check because new_size > 0) */
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_REALLOC_FAILED);
|
|
}
|
|
thr->callstack = new_ptr;
|
|
thr->callstack_size = new_size;
|
|
|
|
/* note: any entries above the callstack top are garbage and not zeroed */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hthread_callstack_shrink_check(duk_hthread *thr) {
|
|
duk_size_t new_size;
|
|
duk_activation *p;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->callstack_top >= 0); /* avoid warning (unsigned) */
|
|
DUK_ASSERT(thr->callstack_size >= thr->callstack_top);
|
|
|
|
if (thr->callstack_size - thr->callstack_top < DUK_CALLSTACK_SHRINK_THRESHOLD) {
|
|
return;
|
|
}
|
|
|
|
new_size = thr->callstack_top + DUK_CALLSTACK_SHRINK_SPARE;
|
|
DUK_ASSERT(new_size >= thr->callstack_top);
|
|
|
|
DUK_DD(DUK_DDPRINT("shrinking callstack %ld -> %ld", (long) thr->callstack_size, (long) new_size));
|
|
|
|
/*
|
|
* Note: must use indirect variant of DUK_REALLOC() because underlying
|
|
* pointer may be changed by mark-and-sweep.
|
|
*/
|
|
|
|
/* shrink failure is not fatal */
|
|
p = (duk_activation *) DUK_REALLOC_INDIRECT(thr->heap, duk_hthread_get_callstack_ptr, (void *) thr, sizeof(duk_activation) * new_size);
|
|
if (p) {
|
|
thr->callstack = p;
|
|
thr->callstack_size = new_size;
|
|
} else {
|
|
/* Because new_size != 0, if condition doesn't need to be
|
|
* (p != NULL || new_size == 0).
|
|
*/
|
|
DUK_ASSERT(new_size != 0);
|
|
DUK_D(DUK_DPRINT("callstack shrink failed, ignoring"));
|
|
}
|
|
|
|
/* note: any entries above the callstack top are garbage and not zeroed */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hthread_callstack_unwind(duk_hthread *thr, duk_size_t new_top) {
|
|
duk_size_t idx;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("unwind callstack top of thread %p from %ld to %ld",
|
|
(void *) thr,
|
|
(thr != NULL ? (long) thr->callstack_top : (long) -1),
|
|
(long) new_top));
|
|
|
|
DUK_ASSERT(thr);
|
|
DUK_ASSERT(thr->heap);
|
|
DUK_ASSERT_DISABLE(new_top >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_size_t) new_top <= thr->callstack_top); /* cannot grow */
|
|
|
|
/*
|
|
* The loop below must avoid issues with potential callstack
|
|
* reallocations. A resize (and other side effects) may happen
|
|
* e.g. due to finalizer/errhandler calls caused by a refzero or
|
|
* mark-and-sweep. Arbitrary finalizers may run, because when
|
|
* an environment record is refzero'd, it may refer to arbitrary
|
|
* values which also become refzero'd.
|
|
*
|
|
* So, the pointer 'p' is re-looked-up below whenever a side effect
|
|
* might have changed it.
|
|
*/
|
|
|
|
idx = thr->callstack_top;
|
|
while (idx > new_top) {
|
|
duk_activation *act;
|
|
duk_hobject *func;
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
duk_hobject *tmp;
|
|
#endif
|
|
#ifdef DUK_USE_DEBUGGER_SUPPORT
|
|
duk_heap *heap;
|
|
#endif
|
|
|
|
idx--;
|
|
DUK_ASSERT_DISABLE(idx >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_size_t) idx < thr->callstack_size); /* true, despite side effect resizes */
|
|
|
|
act = thr->callstack + idx;
|
|
/* With lightfuncs, act 'func' may be NULL */
|
|
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
/*
|
|
* Restore 'caller' property for non-strict callee functions.
|
|
*/
|
|
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
if (func != NULL && !DUK_HOBJECT_HAS_STRICT(func)) {
|
|
duk_tval *tv_caller;
|
|
duk_tval tv_tmp;
|
|
duk_hobject *h_tmp;
|
|
|
|
tv_caller = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_CALLER(thr));
|
|
|
|
/* The act->prev_caller should only be set if the entry for 'caller'
|
|
* exists (as it is only set in that case, and the property is not
|
|
* configurable), but handle all the cases anyway.
|
|
*/
|
|
|
|
if (tv_caller) {
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_caller);
|
|
if (act->prev_caller) {
|
|
/* Just transfer the refcount from act->prev_caller to tv_caller,
|
|
* so no need for a refcount update. This is the expected case.
|
|
*/
|
|
DUK_TVAL_SET_OBJECT(tv_caller, act->prev_caller);
|
|
act->prev_caller = NULL;
|
|
} else {
|
|
DUK_TVAL_SET_NULL(tv_caller); /* no incref needed */
|
|
DUK_ASSERT(act->prev_caller == NULL);
|
|
}
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
} else {
|
|
h_tmp = act->prev_caller;
|
|
if (h_tmp) {
|
|
act->prev_caller = NULL;
|
|
DUK_HOBJECT_DECREF(thr, h_tmp); /* side effects */
|
|
}
|
|
}
|
|
act = thr->callstack + idx; /* avoid side effects */
|
|
DUK_ASSERT(act->prev_caller == NULL);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Unwind debugger state. If we unwind while stepping
|
|
* (either step over or step into), pause execution.
|
|
*/
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
heap = thr->heap;
|
|
if (heap->dbg_step_thread == thr &&
|
|
heap->dbg_step_csindex == idx) {
|
|
/* Pause for all step types: step into, step over, step out.
|
|
* This is the only place explicitly handling a step out.
|
|
*/
|
|
DUK_HEAP_SET_PAUSED(heap);
|
|
DUK_ASSERT(heap->dbg_step_thread == NULL);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Close environment record(s) if they exist.
|
|
*
|
|
* Only variable environments are closed. If lex_env != var_env, it
|
|
* cannot currently contain any register bound declarations.
|
|
*
|
|
* Only environments created for a NEWENV function are closed. If an
|
|
* environment is created for e.g. an eval call, it must not be closed.
|
|
*/
|
|
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
if (func != NULL && !DUK_HOBJECT_HAS_NEWENV(func)) {
|
|
DUK_DDD(DUK_DDDPRINT("skip closing environments, envs not owned by this activation"));
|
|
goto skip_env_close;
|
|
}
|
|
/* func is NULL for lightfunc */
|
|
|
|
DUK_ASSERT(act->lex_env == act->var_env);
|
|
if (act->var_env != NULL) {
|
|
DUK_DDD(DUK_DDDPRINT("closing var_env record %p -> %!O",
|
|
(void *) act->var_env, (duk_heaphdr *) act->var_env));
|
|
duk_js_close_environment_record(thr, act->var_env, func, act->idx_bottom);
|
|
act = thr->callstack + idx; /* avoid side effect issues */
|
|
}
|
|
|
|
#if 0
|
|
if (act->lex_env != NULL) {
|
|
if (act->lex_env == act->var_env) {
|
|
/* common case, already closed, so skip */
|
|
DUK_DD(DUK_DDPRINT("lex_env and var_env are the same and lex_env "
|
|
"already closed -> skip closing lex_env"));
|
|
;
|
|
} else {
|
|
DUK_DD(DUK_DDPRINT("closing lex_env record %p -> %!O",
|
|
(void *) act->lex_env, (duk_heaphdr *) act->lex_env));
|
|
duk_js_close_environment_record(thr, act->lex_env, DUK_ACT_GET_FUNC(act), act->idx_bottom);
|
|
act = thr->callstack + idx; /* avoid side effect issues */
|
|
}
|
|
}
|
|
#endif
|
|
|
|
DUK_ASSERT((act->lex_env == NULL) ||
|
|
((duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->lex_env, DUK_HTHREAD_STRING_INT_CALLEE(thr)) == NULL) &&
|
|
(duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->lex_env, DUK_HTHREAD_STRING_INT_VARMAP(thr)) == NULL) &&
|
|
(duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->lex_env, DUK_HTHREAD_STRING_INT_THREAD(thr)) == NULL) &&
|
|
(duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->lex_env, DUK_HTHREAD_STRING_INT_REGBASE(thr)) == NULL)));
|
|
|
|
DUK_ASSERT((act->var_env == NULL) ||
|
|
((duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->var_env, DUK_HTHREAD_STRING_INT_CALLEE(thr)) == NULL) &&
|
|
(duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->var_env, DUK_HTHREAD_STRING_INT_VARMAP(thr)) == NULL) &&
|
|
(duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->var_env, DUK_HTHREAD_STRING_INT_THREAD(thr)) == NULL) &&
|
|
(duk_hobject_find_existing_entry_tval_ptr(thr->heap, act->var_env, DUK_HTHREAD_STRING_INT_REGBASE(thr)) == NULL)));
|
|
|
|
skip_env_close:
|
|
|
|
/*
|
|
* Update preventcount
|
|
*/
|
|
|
|
if (act->flags & DUK_ACT_FLAG_PREVENT_YIELD) {
|
|
DUK_ASSERT(thr->callstack_preventcount >= 1);
|
|
thr->callstack_preventcount--;
|
|
}
|
|
|
|
/*
|
|
* Reference count updates
|
|
*
|
|
* Note: careful manipulation of refcounts. The top is
|
|
* not updated yet, so all the activations are reachable
|
|
* for mark-and-sweep (which may be triggered by decref).
|
|
* However, the pointers are NULL so this is not an issue.
|
|
*/
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
tmp = act->var_env;
|
|
#endif
|
|
act->var_env = NULL;
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
act = thr->callstack + idx; /* avoid side effect issues */
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
tmp = act->lex_env;
|
|
#endif
|
|
act->lex_env = NULL;
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
act = thr->callstack + idx; /* avoid side effect issues */
|
|
#endif
|
|
|
|
/* Note: this may cause a corner case situation where a finalizer
|
|
* may see a currently reachable activation whose 'func' is NULL.
|
|
*/
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
tmp = DUK_ACT_GET_FUNC(act);
|
|
#endif
|
|
act->func = NULL;
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
act = thr->callstack + idx; /* avoid side effect issues */
|
|
DUK_UNREF(act);
|
|
#endif
|
|
}
|
|
|
|
thr->callstack_top = new_top;
|
|
|
|
/*
|
|
* We could clear the book-keeping variables for the topmost activation,
|
|
* but don't do so now.
|
|
*/
|
|
#if 0
|
|
if (thr->callstack_top > 0) {
|
|
duk_activation *act = thr->callstack + thr->callstack_top - 1;
|
|
act->idx_retval = 0;
|
|
}
|
|
#endif
|
|
|
|
/* Note: any entries above the callstack top are garbage and not zeroed.
|
|
* Also topmost activation idx_retval is garbage (not zeroed), and must
|
|
* be ignored.
|
|
*/
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hthread_catchstack_grow(duk_hthread *thr) {
|
|
duk_catcher *new_ptr;
|
|
duk_size_t old_size;
|
|
duk_size_t new_size;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->catchstack_top); /* avoid warning (unsigned) */
|
|
DUK_ASSERT(thr->catchstack_size >= thr->catchstack_top);
|
|
|
|
if (thr->catchstack_top < thr->catchstack_size) {
|
|
return;
|
|
}
|
|
|
|
old_size = thr->catchstack_size;
|
|
new_size = old_size + DUK_CATCHSTACK_GROW_STEP;
|
|
|
|
/* this is a bit approximate (errors out before max is reached); this is OK */
|
|
if (new_size >= thr->catchstack_max) {
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_CATCHSTACK_LIMIT);
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("growing catchstack %ld -> %ld", (long) old_size, (long) new_size));
|
|
|
|
/*
|
|
* Note: must use indirect variant of DUK_REALLOC() because underlying
|
|
* pointer may be changed by mark-and-sweep.
|
|
*/
|
|
|
|
DUK_ASSERT(new_size > 0);
|
|
new_ptr = (duk_catcher *) DUK_REALLOC_INDIRECT(thr->heap, duk_hthread_get_catchstack_ptr, (void *) thr, sizeof(duk_catcher) * new_size);
|
|
if (!new_ptr) {
|
|
/* No need for a NULL/zero-size check because new_size > 0) */
|
|
DUK_ERROR(thr, DUK_ERR_ALLOC_ERROR, DUK_STR_REALLOC_FAILED);
|
|
}
|
|
thr->catchstack = new_ptr;
|
|
thr->catchstack_size = new_size;
|
|
|
|
/* note: any entries above the catchstack top are garbage and not zeroed */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hthread_catchstack_shrink_check(duk_hthread *thr) {
|
|
duk_size_t new_size;
|
|
duk_catcher *p;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(thr->catchstack_top >= 0); /* avoid warning (unsigned) */
|
|
DUK_ASSERT(thr->catchstack_size >= thr->catchstack_top);
|
|
|
|
if (thr->catchstack_size - thr->catchstack_top < DUK_CATCHSTACK_SHRINK_THRESHOLD) {
|
|
return;
|
|
}
|
|
|
|
new_size = thr->catchstack_top + DUK_CATCHSTACK_SHRINK_SPARE;
|
|
DUK_ASSERT(new_size >= thr->catchstack_top);
|
|
|
|
DUK_DD(DUK_DDPRINT("shrinking catchstack %ld -> %ld", (long) thr->catchstack_size, (long) new_size));
|
|
|
|
/*
|
|
* Note: must use indirect variant of DUK_REALLOC() because underlying
|
|
* pointer may be changed by mark-and-sweep.
|
|
*/
|
|
|
|
/* shrink failure is not fatal */
|
|
p = (duk_catcher *) DUK_REALLOC_INDIRECT(thr->heap, duk_hthread_get_catchstack_ptr, (void *) thr, sizeof(duk_catcher) * new_size);
|
|
if (p) {
|
|
thr->catchstack = p;
|
|
thr->catchstack_size = new_size;
|
|
} else {
|
|
/* Because new_size != 0, if condition doesn't need to be
|
|
* (p != NULL || new_size == 0).
|
|
*/
|
|
DUK_ASSERT(new_size != 0);
|
|
DUK_D(DUK_DPRINT("catchstack shrink failed, ignoring"));
|
|
}
|
|
|
|
/* note: any entries above the catchstack top are garbage and not zeroed */
|
|
}
|
|
|
|
DUK_INTERNAL void duk_hthread_catchstack_unwind(duk_hthread *thr, duk_size_t new_top) {
|
|
duk_size_t idx;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("unwind catchstack top of thread %p from %ld to %ld",
|
|
(void *) thr,
|
|
(thr != NULL ? (long) thr->catchstack_top : (long) -1),
|
|
(long) new_top));
|
|
|
|
DUK_ASSERT(thr);
|
|
DUK_ASSERT(thr->heap);
|
|
DUK_ASSERT_DISABLE(new_top >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_size_t) new_top <= thr->catchstack_top); /* cannot grow */
|
|
|
|
/*
|
|
* Since there are no references in the catcher structure,
|
|
* unwinding is quite simple. The only thing we need to
|
|
* look out for is popping a possible lexical environment
|
|
* established for an active catch clause.
|
|
*/
|
|
|
|
idx = thr->catchstack_top;
|
|
while (idx > new_top) {
|
|
duk_catcher *p;
|
|
duk_activation *act;
|
|
duk_hobject *env;
|
|
|
|
idx--;
|
|
DUK_ASSERT_DISABLE(idx >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_size_t) idx < thr->catchstack_size);
|
|
|
|
p = thr->catchstack + idx;
|
|
|
|
if (DUK_CAT_HAS_LEXENV_ACTIVE(p)) {
|
|
DUK_DDD(DUK_DDDPRINT("unwinding catchstack idx %ld, callstack idx %ld, callstack top %ld: lexical environment active",
|
|
(long) idx, (long) p->callstack_index, (long) thr->callstack_top));
|
|
|
|
/* XXX: Here we have a nasty dependency: the need to manipulate
|
|
* the callstack means that catchstack must always be unwound by
|
|
* the caller before unwinding the callstack. This should be fixed
|
|
* later.
|
|
*/
|
|
|
|
/* Note that multiple catchstack entries may refer to the same
|
|
* callstack entry.
|
|
*/
|
|
act = thr->callstack + p->callstack_index;
|
|
DUK_ASSERT(act >= thr->callstack);
|
|
DUK_ASSERT(act < thr->callstack + thr->callstack_top);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("catchstack_index=%ld, callstack_index=%ld, lex_env=%!iO",
|
|
(long) idx, (long) p->callstack_index,
|
|
(duk_heaphdr *) act->lex_env));
|
|
|
|
env = act->lex_env; /* current lex_env of the activation (created for catcher) */
|
|
DUK_ASSERT(env != NULL); /* must be, since env was created when catcher was created */
|
|
act->lex_env = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, env); /* prototype is lex_env before catcher created */
|
|
DUK_HOBJECT_DECREF(thr, env);
|
|
|
|
/* There is no need to decref anything else than 'env': if 'env'
|
|
* becomes unreachable, refzero will handle decref'ing its prototype.
|
|
*/
|
|
}
|
|
}
|
|
|
|
thr->catchstack_top = new_top;
|
|
|
|
/* note: any entries above the catchstack top are garbage and not zeroed */
|
|
}
|
|
#line 1 "duk_js_call.c"
|
|
/*
|
|
* Call handling.
|
|
*
|
|
* The main work horse functions are:
|
|
* - duk_handle_call(): call to a C/Ecmascript functions
|
|
* - duk_handle_safe_call(): make a protected C call within current activation
|
|
* - duk_handle_ecma_call_setup(): Ecmascript-to-Ecmascript calls, including
|
|
* tail calls and coroutine resume
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Arguments object creation.
|
|
*
|
|
* Creating arguments objects is a bit finicky, see E5 Section 10.6 for the
|
|
* specific requirements. Much of the arguments object exotic behavior is
|
|
* implemented in duk_hobject_props.c, and is enabled by the object flag
|
|
* DUK_HOBJECT_FLAG_EXOTIC_ARGUMENTS.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__create_arguments_object(duk_hthread *thr,
|
|
duk_hobject *func,
|
|
duk_hobject *varenv,
|
|
duk_idx_t idx_argbase, /* idx of first argument on stack */
|
|
duk_idx_t num_stack_args) { /* num args starting from idx_argbase */
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *arg; /* 'arguments' */
|
|
duk_hobject *formals; /* formals for 'func' (may be NULL if func is a C function) */
|
|
duk_idx_t i_arg;
|
|
duk_idx_t i_map;
|
|
duk_idx_t i_mappednames;
|
|
duk_idx_t i_formals;
|
|
duk_idx_t i_argbase;
|
|
duk_idx_t n_formals;
|
|
duk_idx_t idx;
|
|
duk_bool_t need_map;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("creating arguments object for func=%!iO, varenv=%!iO, "
|
|
"idx_argbase=%ld, num_stack_args=%ld",
|
|
(duk_heaphdr *) func, (duk_heaphdr *) varenv,
|
|
(long) idx_argbase, (long) num_stack_args));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_NONBOUND_FUNCTION(func));
|
|
DUK_ASSERT(varenv != NULL);
|
|
DUK_ASSERT(idx_argbase >= 0); /* assumed to bottom relative */
|
|
DUK_ASSERT(num_stack_args >= 0);
|
|
|
|
need_map = 0;
|
|
|
|
i_argbase = idx_argbase;
|
|
DUK_ASSERT(i_argbase >= 0);
|
|
|
|
duk_push_hobject(ctx, func);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_FORMALS);
|
|
formals = duk_get_hobject(ctx, -1);
|
|
n_formals = 0;
|
|
if (formals) {
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_LENGTH);
|
|
n_formals = (duk_idx_t) duk_require_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
}
|
|
duk_remove(ctx, -2); /* leave formals on stack for later use */
|
|
i_formals = duk_require_top_index(ctx);
|
|
|
|
DUK_ASSERT(n_formals >= 0);
|
|
DUK_ASSERT(formals != NULL || n_formals == 0);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("func=%!O, formals=%!O, n_formals=%ld",
|
|
(duk_heaphdr *) func, (duk_heaphdr *) formals,
|
|
(long) n_formals));
|
|
|
|
/* [ ... formals ] */
|
|
|
|
/*
|
|
* Create required objects:
|
|
* - 'arguments' object: array-like, but not an array
|
|
* - 'map' object: internal object, tied to 'arguments'
|
|
* - 'mappedNames' object: temporary value used during construction
|
|
*/
|
|
|
|
i_arg = duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_FLAG_ARRAY_PART |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_ARGUMENTS),
|
|
DUK_BIDX_OBJECT_PROTOTYPE);
|
|
DUK_ASSERT(i_arg >= 0);
|
|
arg = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(arg != NULL);
|
|
|
|
i_map = duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
-1); /* no prototype */
|
|
DUK_ASSERT(i_map >= 0);
|
|
|
|
i_mappednames = duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJECT),
|
|
-1); /* no prototype */
|
|
DUK_ASSERT(i_mappednames >= 0);
|
|
|
|
/* [... formals arguments map mappedNames] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created arguments related objects: "
|
|
"arguments at index %ld -> %!O "
|
|
"map at index %ld -> %!O "
|
|
"mappednames at index %ld -> %!O",
|
|
(long) i_arg, (duk_heaphdr *) duk_get_hobject(ctx, i_arg),
|
|
(long) i_map, (duk_heaphdr *) duk_get_hobject(ctx, i_map),
|
|
(long) i_mappednames, (duk_heaphdr *) duk_get_hobject(ctx, i_mappednames)));
|
|
|
|
/*
|
|
* Init arguments properties, map, etc.
|
|
*/
|
|
|
|
duk_push_int(ctx, num_stack_args);
|
|
duk_xdef_prop_stridx(ctx, i_arg, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
/*
|
|
* Init argument related properties
|
|
*/
|
|
|
|
/* step 11 */
|
|
idx = num_stack_args - 1;
|
|
while (idx >= 0) {
|
|
DUK_DDD(DUK_DDDPRINT("arg idx %ld, argbase=%ld, argidx=%ld",
|
|
(long) idx, (long) i_argbase, (long) (i_argbase + idx)));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("define arguments[%ld]=arg", (long) idx));
|
|
duk_dup(ctx, i_argbase + idx);
|
|
duk_xdef_prop_index_wec(ctx, i_arg, (duk_uarridx_t) idx);
|
|
DUK_DDD(DUK_DDDPRINT("defined arguments[%ld]=arg", (long) idx));
|
|
|
|
/* step 11.c is relevant only if non-strict (checked in 11.c.ii) */
|
|
if (!DUK_HOBJECT_HAS_STRICT(func) && idx < n_formals) {
|
|
DUK_ASSERT(formals != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("strict function, index within formals (%ld < %ld)",
|
|
(long) idx, (long) n_formals));
|
|
|
|
duk_get_prop_index(ctx, i_formals, idx);
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
|
|
duk_dup(ctx, -1); /* [... name name] */
|
|
|
|
if (!duk_has_prop(ctx, i_mappednames)) {
|
|
/* steps 11.c.ii.1 - 11.c.ii.4, but our internal book-keeping
|
|
* differs from the reference model
|
|
*/
|
|
|
|
/* [... name] */
|
|
|
|
need_map = 1;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("set mappednames[%s]=%ld",
|
|
(const char *) duk_get_string(ctx, -1),
|
|
(long) idx));
|
|
duk_dup(ctx, -1); /* name */
|
|
duk_push_uint(ctx, (duk_uint_t) idx); /* index */
|
|
duk_to_string(ctx, -1);
|
|
duk_xdef_prop_wec(ctx, i_mappednames); /* out of spec, must be configurable */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("set map[%ld]=%s",
|
|
(long) idx,
|
|
duk_get_string(ctx, -1)));
|
|
duk_dup(ctx, -1); /* name */
|
|
duk_xdef_prop_index_wec(ctx, i_map, (duk_uarridx_t) idx); /* out of spec, must be configurable */
|
|
} else {
|
|
/* duk_has_prop() popped the second 'name' */
|
|
}
|
|
|
|
/* [... name] */
|
|
duk_pop(ctx); /* pop 'name' */
|
|
}
|
|
|
|
idx--;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("actual arguments processed"));
|
|
|
|
/* step 12 */
|
|
if (need_map) {
|
|
DUK_DDD(DUK_DDDPRINT("adding 'map' and 'varenv' to arguments object"));
|
|
|
|
/* should never happen for a strict callee */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_STRICT(func));
|
|
|
|
duk_dup(ctx, i_map);
|
|
duk_xdef_prop_stridx(ctx, i_arg, DUK_STRIDX_INT_MAP, DUK_PROPDESC_FLAGS_NONE); /* out of spec, don't care */
|
|
|
|
/* The variable environment for magic variable bindings needs to be
|
|
* given by the caller and recorded in the arguments object.
|
|
*
|
|
* See E5 Section 10.6, the creation of setters/getters.
|
|
*
|
|
* The variable environment also provides access to the callee, so
|
|
* an explicit (internal) callee property is not needed.
|
|
*/
|
|
|
|
duk_push_hobject(ctx, varenv);
|
|
duk_xdef_prop_stridx(ctx, i_arg, DUK_STRIDX_INT_VARENV, DUK_PROPDESC_FLAGS_NONE); /* out of spec, don't care */
|
|
}
|
|
|
|
/* steps 13-14 */
|
|
if (DUK_HOBJECT_HAS_STRICT(func)) {
|
|
/*
|
|
* Note: callee/caller are throwers and are not deletable etc.
|
|
* They could be implemented as virtual properties, but currently
|
|
* there is no support for virtual properties which are accessors
|
|
* (only plain virtual properties). This would not be difficult
|
|
* to change in duk_hobject_props, but we can make the throwers
|
|
* normal, concrete properties just as easily.
|
|
*
|
|
* Note that the specification requires that the *same* thrower
|
|
* built-in object is used here! See E5 Section 10.6 main
|
|
* algoritm, step 14, and Section 13.2.3 which describes the
|
|
* thrower. See test case test-arguments-throwers.js.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("strict function, setting caller/callee to throwers"));
|
|
|
|
duk_xdef_prop_stridx_thrower(ctx, i_arg, DUK_STRIDX_CALLER, DUK_PROPDESC_FLAGS_NONE);
|
|
duk_xdef_prop_stridx_thrower(ctx, i_arg, DUK_STRIDX_CALLEE, DUK_PROPDESC_FLAGS_NONE);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("non-strict function, setting callee to actual value"));
|
|
duk_push_hobject(ctx, func);
|
|
duk_xdef_prop_stridx(ctx, i_arg, DUK_STRIDX_CALLEE, DUK_PROPDESC_FLAGS_WC);
|
|
}
|
|
|
|
/* set exotic behavior only after we're done */
|
|
if (need_map) {
|
|
/*
|
|
* Note: exotic behaviors are only enabled for arguments
|
|
* objects which have a parameter map (see E5 Section 10.6
|
|
* main algorithm, step 12).
|
|
*
|
|
* In particular, a non-strict arguments object with no
|
|
* mapped formals does *NOT* get exotic behavior, even
|
|
* for e.g. "caller" property. This seems counterintuitive
|
|
* but seems to be the case.
|
|
*/
|
|
|
|
/* cannot be strict (never mapped variables) */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_STRICT(func));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("enabling exotic behavior for arguments object"));
|
|
DUK_HOBJECT_SET_EXOTIC_ARGUMENTS(arg);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("not enabling exotic behavior for arguments object"));
|
|
}
|
|
|
|
/* nice log */
|
|
DUK_DDD(DUK_DDDPRINT("final arguments related objects: "
|
|
"arguments at index %ld -> %!O "
|
|
"map at index %ld -> %!O "
|
|
"mappednames at index %ld -> %!O",
|
|
(long) i_arg, (duk_heaphdr *) duk_get_hobject(ctx, i_arg),
|
|
(long) i_map, (duk_heaphdr *) duk_get_hobject(ctx, i_map),
|
|
(long) i_mappednames, (duk_heaphdr *) duk_get_hobject(ctx, i_mappednames)));
|
|
|
|
/* [args(n) [crud] formals arguments map mappednames] -> [args [crud] arguments] */
|
|
duk_pop_2(ctx);
|
|
duk_remove(ctx, -2);
|
|
}
|
|
|
|
/* Helper for creating the arguments object and adding it to the env record
|
|
* on top of the value stack. This helper has a very strict dependency on
|
|
* the shape of the input stack.
|
|
*/
|
|
DUK_LOCAL
|
|
void duk__handle_createargs_for_call(duk_hthread *thr,
|
|
duk_hobject *func,
|
|
duk_hobject *env,
|
|
duk_idx_t num_stack_args) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("creating arguments object for function call"));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_CREATEARGS(func));
|
|
DUK_ASSERT(duk_get_top(ctx) >= num_stack_args + 1);
|
|
|
|
/* [... arg1 ... argN envobj] */
|
|
|
|
duk__create_arguments_object(thr,
|
|
func,
|
|
env,
|
|
duk_get_top(ctx) - num_stack_args - 1, /* idx_argbase */
|
|
num_stack_args);
|
|
|
|
/* [... arg1 ... argN envobj argobj] */
|
|
|
|
duk_xdef_prop_stridx(ctx,
|
|
-2,
|
|
DUK_STRIDX_LC_ARGUMENTS,
|
|
DUK_HOBJECT_HAS_STRICT(func) ? DUK_PROPDESC_FLAGS_E : /* strict: non-deletable, non-writable */
|
|
DUK_PROPDESC_FLAGS_WE); /* non-strict: non-deletable, writable */
|
|
/* [... arg1 ... argN envobj] */
|
|
}
|
|
|
|
/*
|
|
* Helper for handling a "bound function" chain when a call is being made.
|
|
*
|
|
* Follows the bound function chain until a non-bound function is found.
|
|
* Prepends the bound arguments to the value stack (at idx_func + 2),
|
|
* updating 'num_stack_args' in the process. The 'this' binding is also
|
|
* updated if necessary (at idx_func + 1). Note that for constructor calls
|
|
* the 'this' binding is never updated by [[BoundThis]].
|
|
*
|
|
* XXX: bound function chains could be collapsed at bound function creation
|
|
* time so that each bound function would point directly to a non-bound
|
|
* function. This would make call time handling much easier.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__handle_bound_chain_for_call(duk_hthread *thr,
|
|
duk_idx_t idx_func,
|
|
duk_idx_t *p_num_stack_args, /* may be changed by call */
|
|
duk_bool_t is_constructor_call) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_idx_t num_stack_args;
|
|
duk_tval *tv_func;
|
|
duk_hobject *func;
|
|
duk_uint_t sanity;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(p_num_stack_args != NULL);
|
|
|
|
/* On entry, item at idx_func is a bound, non-lightweight function,
|
|
* but we don't rely on that below.
|
|
*/
|
|
|
|
num_stack_args = *p_num_stack_args;
|
|
|
|
sanity = DUK_HOBJECT_BOUND_CHAIN_SANITY;
|
|
do {
|
|
duk_idx_t i, len;
|
|
|
|
tv_func = duk_require_tval(ctx, idx_func);
|
|
DUK_ASSERT(tv_func != NULL);
|
|
|
|
if (DUK_TVAL_IS_LIGHTFUNC(tv_func)) {
|
|
/* Lightweight function: never bound, so terminate. */
|
|
break;
|
|
} else if (DUK_TVAL_IS_OBJECT(tv_func)) {
|
|
func = DUK_TVAL_GET_OBJECT(tv_func);
|
|
if (!DUK_HOBJECT_HAS_BOUND(func)) {
|
|
/* Normal non-bound function. */
|
|
break;
|
|
}
|
|
} else {
|
|
/* Function.prototype.bind() should never let this happen,
|
|
* ugly error message is enough.
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_GET_OBJECT(tv_func) != NULL);
|
|
|
|
/* XXX: this could be more compact by accessing the internal properties
|
|
* directly as own properties (they cannot be inherited, and are not
|
|
* externally visible).
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("bound function encountered, ptr=%p, num_stack_args=%ld: %!T",
|
|
(void *) DUK_TVAL_GET_OBJECT(tv_func), (long) num_stack_args, tv_func));
|
|
|
|
/* [ ... func this arg1 ... argN ] */
|
|
|
|
if (is_constructor_call) {
|
|
/* See: ecmascript-testcases/test-spec-bound-constructor.js */
|
|
DUK_DDD(DUK_DDDPRINT("constructor call: don't update this binding"));
|
|
} else {
|
|
duk_get_prop_stridx(ctx, idx_func, DUK_STRIDX_INT_THIS);
|
|
duk_replace(ctx, idx_func + 1); /* idx_this = idx_func + 1 */
|
|
}
|
|
|
|
/* [ ... func this arg1 ... argN ] */
|
|
|
|
/* XXX: duk_get_length? */
|
|
duk_get_prop_stridx(ctx, idx_func, DUK_STRIDX_INT_ARGS); /* -> [ ... func this arg1 ... argN _Args ] */
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_LENGTH); /* -> [ ... func this arg1 ... argN _Args length ] */
|
|
len = (duk_idx_t) duk_require_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
for (i = 0; i < len; i++) {
|
|
/* XXX: very slow - better to bulk allocate a gap, and copy
|
|
* from args_array directly (we know it has a compact array
|
|
* part, etc).
|
|
*/
|
|
|
|
/* [ ... func this <some bound args> arg1 ... argN _Args ] */
|
|
duk_get_prop_index(ctx, -1, i);
|
|
duk_insert(ctx, idx_func + 2 + i); /* idx_args = idx_func + 2 */
|
|
}
|
|
num_stack_args += len; /* must be updated to work properly (e.g. creation of 'arguments') */
|
|
duk_pop(ctx);
|
|
|
|
/* [ ... func this <bound args> arg1 ... argN ] */
|
|
|
|
duk_get_prop_stridx(ctx, idx_func, DUK_STRIDX_INT_TARGET);
|
|
duk_replace(ctx, idx_func); /* replace in stack */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("bound function handled, num_stack_args=%ld, idx_func=%ld, curr func=%!T",
|
|
(long) num_stack_args, (long) idx_func, duk_get_tval(ctx, idx_func)));
|
|
} while (--sanity > 0);
|
|
|
|
if (sanity == 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_BOUND_CHAIN_LIMIT);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final non-bound function is: %!T", duk_get_tval(ctx, idx_func)));
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
tv_func = duk_require_tval(ctx, idx_func);
|
|
DUK_ASSERT(DUK_TVAL_IS_LIGHTFUNC(tv_func) || DUK_TVAL_IS_OBJECT(tv_func));
|
|
if (DUK_TVAL_IS_OBJECT(tv_func)) {
|
|
func = DUK_TVAL_GET_OBJECT(tv_func);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_COMPILEDFUNCTION(func) ||
|
|
DUK_HOBJECT_HAS_NATIVEFUNCTION(func));
|
|
}
|
|
#endif
|
|
|
|
/* write back */
|
|
*p_num_stack_args = num_stack_args;
|
|
}
|
|
|
|
/*
|
|
* Helper for setting up var_env and lex_env of an activation,
|
|
* assuming it does NOT have the DUK_HOBJECT_FLAG_NEWENV flag.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__handle_oldenv_for_call(duk_hthread *thr,
|
|
duk_hobject *func,
|
|
duk_activation *act) {
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(act != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NEWENV(func));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_CREATEARGS(func));
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_INT_LEXENV(thr));
|
|
if (tv) {
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
DUK_ASSERT(DUK_HOBJECT_IS_ENV(DUK_TVAL_GET_OBJECT(tv)));
|
|
act->lex_env = DUK_TVAL_GET_OBJECT(tv);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_INT_VARENV(thr));
|
|
if (tv) {
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
DUK_ASSERT(DUK_HOBJECT_IS_ENV(DUK_TVAL_GET_OBJECT(tv)));
|
|
act->var_env = DUK_TVAL_GET_OBJECT(tv);
|
|
} else {
|
|
act->var_env = act->lex_env;
|
|
}
|
|
} else {
|
|
act->lex_env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
act->var_env = act->lex_env;
|
|
}
|
|
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, act->lex_env);
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, act->var_env);
|
|
}
|
|
|
|
/*
|
|
* Helper for updating callee 'caller' property.
|
|
*/
|
|
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
DUK_LOCAL void duk__update_func_caller_prop(duk_hthread *thr, duk_hobject *func) {
|
|
duk_tval *tv_caller;
|
|
duk_hobject *h_tmp;
|
|
duk_activation *act_callee;
|
|
duk_activation *act_caller;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func)); /* bound chain resolved */
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
|
|
if (DUK_HOBJECT_HAS_STRICT(func)) {
|
|
/* Strict functions don't get their 'caller' updated. */
|
|
return;
|
|
}
|
|
|
|
act_callee = thr->callstack + thr->callstack_top - 1;
|
|
act_caller = (thr->callstack_top >= 2 ? act_callee - 1 : NULL);
|
|
|
|
/* Backup 'caller' property and update its value. */
|
|
tv_caller = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_CALLER(thr));
|
|
if (tv_caller) {
|
|
/* If caller is global/eval code, 'caller' should be set to
|
|
* 'null'.
|
|
*
|
|
* XXX: there is no exotic flag to infer this correctly now.
|
|
* The NEWENV flag is used now which works as intended for
|
|
* everything (global code, non-strict eval code, and functions)
|
|
* except strict eval code. Bound functions are never an issue
|
|
* because 'func' has been resolved to a non-bound function.
|
|
*/
|
|
|
|
if (act_caller) {
|
|
/* act_caller->func may be NULL in some finalization cases,
|
|
* just treat like we don't know the caller.
|
|
*/
|
|
if (act_caller->func && !DUK_HOBJECT_HAS_NEWENV(act_caller->func)) {
|
|
/* Setting to NULL causes 'caller' to be set to
|
|
* 'null' as desired.
|
|
*/
|
|
act_caller = NULL;
|
|
}
|
|
}
|
|
|
|
if (DUK_TVAL_IS_OBJECT(tv_caller)) {
|
|
h_tmp = DUK_TVAL_GET_OBJECT(tv_caller);
|
|
DUK_ASSERT(h_tmp != NULL);
|
|
act_callee->prev_caller = h_tmp;
|
|
|
|
/* Previous value doesn't need refcount changes because its ownership
|
|
* is transferred to prev_caller.
|
|
*/
|
|
|
|
if (act_caller) {
|
|
DUK_ASSERT(act_caller->func != NULL);
|
|
DUK_TVAL_SET_OBJECT(tv_caller, act_caller->func);
|
|
DUK_TVAL_INCREF(thr, tv_caller);
|
|
} else {
|
|
DUK_TVAL_SET_NULL(tv_caller); /* no incref */
|
|
}
|
|
} else {
|
|
/* 'caller' must only take on 'null' or function value */
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_caller));
|
|
DUK_ASSERT(act_callee->prev_caller == NULL);
|
|
if (act_caller && act_caller->func) {
|
|
/* Tolerate act_caller->func == NULL which happens in
|
|
* some finalization cases; treat like unknown caller.
|
|
*/
|
|
DUK_TVAL_SET_OBJECT(tv_caller, act_caller->func);
|
|
DUK_TVAL_INCREF(thr, tv_caller);
|
|
} else {
|
|
DUK_TVAL_SET_NULL(tv_caller); /* no incref */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif /* DUK_USE_NONSTD_FUNC_CALLER_PROPERTY */
|
|
|
|
/*
|
|
* Determine the effective 'this' binding and coerce the current value
|
|
* on the valstack to the effective one (in-place, at idx_this).
|
|
*
|
|
* The current this value in the valstack (at idx_this) represents either:
|
|
* - the caller's requested 'this' binding; or
|
|
* - a 'this' binding accumulated from the bound function chain
|
|
*
|
|
* The final 'this' binding for the target function may still be
|
|
* different, and is determined as described in E5 Section 10.4.3.
|
|
*
|
|
* For global and eval code (E5 Sections 10.4.1 and 10.4.2), we assume
|
|
* that the caller has provided the correct 'this' binding explicitly
|
|
* when calling, i.e.:
|
|
*
|
|
* - global code: this=global object
|
|
* - direct eval: this=copy from eval() caller's this binding
|
|
* - other eval: this=global object
|
|
*
|
|
* Note: this function may cause a recursive function call with arbitrary
|
|
* side effects, because ToObject() may be called.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__coerce_effective_this_binding(duk_hthread *thr,
|
|
duk_hobject *func,
|
|
duk_idx_t idx_this) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_int_t strict;
|
|
|
|
if (func) {
|
|
strict = DUK_HOBJECT_HAS_STRICT(func);
|
|
} else {
|
|
/* Lightfuncs are always considered strict. */
|
|
strict = 1;
|
|
}
|
|
|
|
if (strict) {
|
|
DUK_DDD(DUK_DDDPRINT("this binding: strict -> use directly"));
|
|
} else {
|
|
duk_tval *tv_this = duk_require_tval(ctx, idx_this);
|
|
duk_hobject *obj_global;
|
|
|
|
if (DUK_TVAL_IS_OBJECT(tv_this)) {
|
|
DUK_DDD(DUK_DDDPRINT("this binding: non-strict, object -> use directly"));
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv_this)) {
|
|
/* Lightfuncs are treated like objects and not coerced. */
|
|
DUK_DDD(DUK_DDDPRINT("this binding: non-strict, lightfunc -> use directly"));
|
|
} else if (DUK_TVAL_IS_UNDEFINED(tv_this) || DUK_TVAL_IS_NULL(tv_this)) {
|
|
DUK_DDD(DUK_DDDPRINT("this binding: non-strict, undefined/null -> use global object"));
|
|
obj_global = thr->builtins[DUK_BIDX_GLOBAL];
|
|
if (obj_global) {
|
|
duk_push_hobject(ctx, obj_global);
|
|
} else {
|
|
/*
|
|
* This may only happen if built-ins are being "torn down".
|
|
* This behavior is out of specification scope.
|
|
*/
|
|
DUK_D(DUK_DPRINT("this binding: wanted to use global object, but it is NULL -> using undefined instead"));
|
|
duk_push_undefined(ctx);
|
|
}
|
|
duk_replace(ctx, idx_this);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("this binding: non-strict, not object/undefined/null -> use ToObject(value)"));
|
|
duk_to_object(ctx, idx_this); /* may have side effects */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shared helper for non-bound func lookup.
|
|
*
|
|
* Returns duk_hobject * to the final non-bound function (NULL for lightfunc).
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_hobject *duk__nonbound_func_lookup(duk_context *ctx,
|
|
duk_idx_t idx_func,
|
|
duk_idx_t *out_num_stack_args,
|
|
duk_tval **out_tv_func,
|
|
duk_small_uint_t call_flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_tval *tv_func;
|
|
duk_hobject *func;
|
|
|
|
for (;;) {
|
|
/* Use loop to minimize code size of relookup after bound function case */
|
|
tv_func = duk_get_tval(ctx, idx_func);
|
|
DUK_ASSERT(tv_func != NULL);
|
|
|
|
if (DUK_TVAL_IS_OBJECT(tv_func)) {
|
|
func = DUK_TVAL_GET_OBJECT(tv_func);
|
|
if (!DUK_HOBJECT_IS_CALLABLE(func)) {
|
|
goto not_callable_error;
|
|
}
|
|
if (DUK_HOBJECT_HAS_BOUND(func)) {
|
|
duk__handle_bound_chain_for_call(thr, idx_func, out_num_stack_args, call_flags & DUK_CALL_FLAG_CONSTRUCTOR_CALL);
|
|
|
|
/* The final object may be a normal function or a lightfunc.
|
|
* We need to re-lookup tv_func because it may have changed
|
|
* (also value stack may have been resized). Loop again to
|
|
* do that; we're guaranteed not to come here again.
|
|
*/
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(duk_require_tval(ctx, idx_func)) ||
|
|
DUK_TVAL_IS_LIGHTFUNC(duk_require_tval(ctx, idx_func)));
|
|
continue;
|
|
}
|
|
} else if (DUK_TVAL_IS_LIGHTFUNC(tv_func)) {
|
|
func = NULL;
|
|
} else {
|
|
goto not_callable_error;
|
|
}
|
|
break;
|
|
}
|
|
|
|
DUK_ASSERT((DUK_TVAL_IS_OBJECT(tv_func) && DUK_HOBJECT_IS_CALLABLE(DUK_TVAL_GET_OBJECT(tv_func))) ||
|
|
DUK_TVAL_IS_LIGHTFUNC(tv_func));
|
|
DUK_ASSERT(func == NULL || !DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(func == NULL || (DUK_HOBJECT_IS_COMPILEDFUNCTION(func) ||
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(func)));
|
|
|
|
*out_tv_func = tv_func;
|
|
return func;
|
|
|
|
not_callable_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CALLABLE);
|
|
DUK_UNREACHABLE();
|
|
return NULL; /* never executed */
|
|
}
|
|
|
|
/*
|
|
* Value stack resize and stack top adjustment helper
|
|
*
|
|
* XXX: This should all be merged to duk_valstack_resize_raw().
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__adjust_valstack_and_top(duk_hthread *thr, duk_idx_t num_stack_args, duk_idx_t idx_args, duk_idx_t nregs, duk_idx_t nargs, duk_hobject *func) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_size_t vs_min_size;
|
|
duk_bool_t adjusted_top = 0;
|
|
|
|
vs_min_size = (thr->valstack_bottom - thr->valstack) + /* bottom of current func */
|
|
idx_args; /* bottom of new func */
|
|
|
|
if (nregs >= 0) {
|
|
DUK_ASSERT(nargs >= 0);
|
|
DUK_ASSERT(nregs >= nargs);
|
|
vs_min_size += nregs;
|
|
} else {
|
|
/* 'func' wants stack "as is" */
|
|
vs_min_size += num_stack_args; /* num entries of new func at entry */
|
|
}
|
|
if (func == NULL || DUK_HOBJECT_IS_NATIVEFUNCTION(func)) {
|
|
vs_min_size += DUK_VALSTACK_API_ENTRY_MINIMUM; /* Duktape/C API guaranteed entries (on top of args) */
|
|
}
|
|
vs_min_size += DUK_VALSTACK_INTERNAL_EXTRA; /* + spare */
|
|
|
|
/* XXX: Awkward fix for GH-107: we can't resize the value stack to
|
|
* a size smaller than the current top, so the order of the resize
|
|
* and adjusting the stack top depends on the current vs. final size
|
|
* of the value stack. Ideally duk_valstack_resize_raw() would have
|
|
* a combined algorithm to avoid this.
|
|
*/
|
|
|
|
if (vs_min_size < (duk_size_t) (thr->valstack_top - thr->valstack)) {
|
|
DUK_DDD(DUK_DDDPRINT(("final size smaller, set top before resize")));
|
|
|
|
DUK_ASSERT(nregs >= 0); /* can't happen when keeping current stack size */
|
|
duk_set_top(ctx, idx_args + nargs); /* clamp anything above nargs */
|
|
duk_set_top(ctx, idx_args + nregs); /* extend with undefined */
|
|
adjusted_top = 1;
|
|
}
|
|
|
|
(void) duk_valstack_resize_raw((duk_context *) thr,
|
|
vs_min_size,
|
|
DUK_VSRESIZE_FLAG_SHRINK | /* flags */
|
|
0 /* no compact */ |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
|
|
if (!adjusted_top) {
|
|
if (nregs >= 0) {
|
|
DUK_ASSERT(nregs >= nargs);
|
|
duk_set_top(ctx, idx_args + nargs); /* clamp anything above nargs */
|
|
duk_set_top(ctx, idx_args + nregs); /* extend with undefined */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper for making various kinds of calls.
|
|
*
|
|
* Call flags:
|
|
*
|
|
* DUK_CALL_FLAG_PROTECTED <--> protected call
|
|
* DUK_CALL_FLAG_IGNORE_RECLIMIT <--> ignore C recursion limit,
|
|
* for errhandler calls
|
|
* DUK_CALL_FLAG_CONSTRUCTOR_CALL <--> for 'new Foo()' calls
|
|
*
|
|
* Input stack:
|
|
*
|
|
* [ func this arg1 ... argN ]
|
|
*
|
|
* Output stack:
|
|
*
|
|
* [ retval ] (DUK_EXEC_SUCCESS)
|
|
* [ errobj ] (DUK_EXEC_ERROR (normal error), protected call)
|
|
*
|
|
* Even when executing a protected call an error may be thrown in rare cases.
|
|
* For instance, if we run out of memory when setting up the return stack
|
|
* after a caught error, the out of memory is propagated to the caller.
|
|
* Similarly, API errors (such as invalid input stack shape and invalid
|
|
* indices) cause an error to propagate out of this function. If there is
|
|
* no catchpoint for this error, the fatal error handler is called.
|
|
*
|
|
* See 'execution.txt'.
|
|
*
|
|
* The allowed thread states for making a call are:
|
|
* - thr matches heap->curr_thread, and thr is already RUNNING
|
|
* - thr does not match heap->curr_thread (may be NULL or other),
|
|
* and thr is INACTIVE (in this case, a setjmp() catchpoint is
|
|
* always used for thread book-keeping to work properly)
|
|
*
|
|
* Like elsewhere, gotos are used to keep indent level minimal and
|
|
* avoiding a dozen helpers with awkward plumbing.
|
|
*
|
|
* Note: setjmp() and local variables have a nasty interaction,
|
|
* see execution.txt; non-volatile locals modified after setjmp()
|
|
* call are not guaranteed to keep their value.
|
|
*/
|
|
|
|
DUK_INTERNAL
|
|
duk_int_t duk_handle_call(duk_hthread *thr,
|
|
duk_idx_t num_stack_args,
|
|
duk_small_uint_t call_flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_size_t entry_valstack_bottom_index;
|
|
duk_size_t entry_valstack_end;
|
|
duk_size_t entry_callstack_top;
|
|
duk_size_t entry_catchstack_top;
|
|
duk_int_t entry_call_recursion_depth;
|
|
duk_hthread *entry_curr_thread;
|
|
duk_uint_fast8_t entry_thread_state;
|
|
volatile duk_bool_t need_setjmp;
|
|
duk_jmpbuf * volatile old_jmpbuf_ptr = NULL; /* ptr is volatile (not the target) */
|
|
duk_idx_t idx_func; /* valstack index of 'func' and retval (relative to entry valstack_bottom) */
|
|
duk_idx_t idx_args; /* valstack index of start of args (arg1) (relative to entry valstack_bottom) */
|
|
duk_idx_t nargs; /* # argument registers target function wants (< 0 => "as is") */
|
|
duk_idx_t nregs; /* # total registers target function wants on entry (< 0 => "as is") */
|
|
duk_hobject *func; /* 'func' on stack (borrowed reference) */
|
|
duk_tval *tv_func; /* duk_tval ptr for 'func' on stack (borrowed reference) or tv_func_copy */
|
|
duk_tval tv_func_copy; /* to avoid relookups */
|
|
duk_activation *act;
|
|
duk_hobject *env;
|
|
duk_jmpbuf our_jmpbuf;
|
|
duk_tval tv_tmp;
|
|
duk_int_t retval = DUK_EXEC_ERROR;
|
|
duk_ret_t rc;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(num_stack_args >= 0);
|
|
|
|
/* XXX: currently NULL allocations are not supported; remove if later allowed */
|
|
DUK_ASSERT(thr->valstack != NULL);
|
|
DUK_ASSERT(thr->callstack != NULL);
|
|
DUK_ASSERT(thr->catchstack != NULL);
|
|
|
|
/*
|
|
* Preliminaries, required by setjmp() handler.
|
|
*
|
|
* Must be careful not to throw an unintended error here.
|
|
*
|
|
* Note: careful with indices like '-x'; if 'x' is zero, it
|
|
* refers to valstack_bottom.
|
|
*/
|
|
|
|
entry_valstack_bottom_index = (duk_size_t) (thr->valstack_bottom - thr->valstack);
|
|
entry_valstack_end = (duk_size_t) (thr->valstack_end - thr->valstack);
|
|
entry_callstack_top = thr->callstack_top;
|
|
entry_catchstack_top = thr->catchstack_top;
|
|
entry_call_recursion_depth = thr->heap->call_recursion_depth;
|
|
entry_curr_thread = thr->heap->curr_thread; /* Note: may be NULL if first call */
|
|
entry_thread_state = thr->state;
|
|
idx_func = duk_normalize_index(ctx, -num_stack_args - 2); /* idx_func must be valid, note: non-throwing! */
|
|
idx_args = idx_func + 2; /* idx_args is not necessarily valid if num_stack_args == 0 (idx_args then equals top) */
|
|
|
|
/* Need a setjmp() catchpoint if a protected call OR if we need to
|
|
* do mandatory cleanup.
|
|
*/
|
|
need_setjmp = ((call_flags & DUK_CALL_FLAG_PROTECTED) != 0) || (thr->heap->curr_thread != thr);
|
|
|
|
DUK_DD(DUK_DDPRINT("duk_handle_call: thr=%p, num_stack_args=%ld, "
|
|
"call_flags=0x%08lx (protected=%ld, ignorerec=%ld, constructor=%ld), need_setjmp=%ld, "
|
|
"valstack_top=%ld, idx_func=%ld, idx_args=%ld, rec_depth=%ld/%ld, "
|
|
"entry_valstack_bottom_index=%ld, entry_callstack_top=%ld, entry_catchstack_top=%ld, "
|
|
"entry_call_recursion_depth=%ld, entry_curr_thread=%p, entry_thread_state=%ld",
|
|
(void *) thr,
|
|
(long) num_stack_args,
|
|
(unsigned long) call_flags,
|
|
(long) ((call_flags & DUK_CALL_FLAG_PROTECTED) != 0 ? 1 : 0),
|
|
(long) ((call_flags & DUK_CALL_FLAG_IGNORE_RECLIMIT) != 0 ? 1 : 0),
|
|
(long) ((call_flags & DUK_CALL_FLAG_CONSTRUCTOR_CALL) != 0 ? 1 : 0),
|
|
(long) need_setjmp,
|
|
(long) duk_get_top(ctx),
|
|
(long) idx_func,
|
|
(long) idx_args,
|
|
(long) thr->heap->call_recursion_depth,
|
|
(long) thr->heap->call_recursion_limit,
|
|
(long) entry_valstack_bottom_index,
|
|
(long) entry_callstack_top,
|
|
(long) entry_catchstack_top,
|
|
(long) entry_call_recursion_depth,
|
|
(void *) entry_curr_thread,
|
|
(long) entry_thread_state));
|
|
|
|
/* XXX: Multiple tv_func lookups are now avoided by making a local
|
|
* copy of tv_func. Another approach would be to compute an offset
|
|
* for tv_func from valstack bottom and recomputing the tv_func
|
|
* pointer quickly as valstack + offset instead of calling duk_get_tval().
|
|
*/
|
|
|
|
if (idx_func < 0 || idx_args < 0) {
|
|
/*
|
|
* Since stack indices are not reliable, we can't do anything useful
|
|
* here. Invoke the existing setjmp catcher, or if it doesn't exist,
|
|
* call the fatal error handler.
|
|
*/
|
|
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
}
|
|
|
|
/*
|
|
* Setup a setjmp() catchpoint first because even the call setup
|
|
* may fail.
|
|
*/
|
|
|
|
if (!need_setjmp) {
|
|
DUK_DDD(DUK_DDDPRINT("don't need a setjmp catchpoint"));
|
|
goto handle_call;
|
|
}
|
|
|
|
old_jmpbuf_ptr = thr->heap->lj.jmpbuf_ptr;
|
|
thr->heap->lj.jmpbuf_ptr = &our_jmpbuf;
|
|
|
|
if (DUK_SETJMP(thr->heap->lj.jmpbuf_ptr->jb) == 0) {
|
|
DUK_DDD(DUK_DDDPRINT("setjmp catchpoint setup complete"));
|
|
goto handle_call;
|
|
}
|
|
|
|
/*
|
|
* Error during setup, call, or postprocessing of the call.
|
|
* The error value is in heap->lj.value1.
|
|
*
|
|
* Note: any local variables accessed here must have their value
|
|
* assigned *before* the setjmp() call, OR they must be declared
|
|
* volatile. Otherwise their value is not guaranteed to be correct.
|
|
*
|
|
* The following are such variables:
|
|
* - duk_handle_call() parameters
|
|
* - entry_*
|
|
* - idx_func
|
|
* - idx_args
|
|
*
|
|
* The very first thing we do is restore the previous setjmp catcher.
|
|
* This means that any error in error handling will propagate outwards
|
|
* instead of causing a setjmp() re-entry above. The *only* actual
|
|
* errors that should happen here are allocation errors.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("error caught during protected duk_handle_call(): %!T",
|
|
(duk_tval *) &thr->heap->lj.value1));
|
|
|
|
DUK_ASSERT(thr->heap->lj.type == DUK_LJ_TYPE_THROW);
|
|
DUK_ASSERT(thr->callstack_top >= entry_callstack_top);
|
|
DUK_ASSERT(thr->catchstack_top >= entry_catchstack_top);
|
|
|
|
/*
|
|
* Restore previous setjmp catchpoint
|
|
*/
|
|
|
|
/* Note: either pointer may be NULL (at entry), so don't assert */
|
|
DUK_DDD(DUK_DDDPRINT("restore jmpbuf_ptr: %p -> %p",
|
|
(void *) (thr && thr->heap ? thr->heap->lj.jmpbuf_ptr : NULL),
|
|
(void *) old_jmpbuf_ptr));
|
|
|
|
thr->heap->lj.jmpbuf_ptr = old_jmpbuf_ptr;
|
|
|
|
if (!(call_flags & DUK_CALL_FLAG_PROTECTED)) {
|
|
/*
|
|
* Caller did not request a protected call but a setjmp
|
|
* catchpoint was set up to allow cleanup. So, clean up
|
|
* and rethrow.
|
|
*
|
|
* We must restore curr_thread here to ensure that its
|
|
* current value doesn't end up pointing to a thread object
|
|
* which has been freed. This is now a problem because some
|
|
* call sites (namely duk_safe_call()) *first* unwind stacks
|
|
* and only then deal with curr_thread. If those call sites
|
|
* were fixed, this wouldn't matter here.
|
|
*
|
|
* Note: this case happens e.g. when heap->curr_thread is
|
|
* NULL on entry.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("call is not protected -> clean up and rethrow"));
|
|
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, entry_curr_thread); /* may be NULL */
|
|
thr->state = entry_thread_state;
|
|
DUK_ASSERT((thr->state == DUK_HTHREAD_STATE_INACTIVE && thr->heap->curr_thread == NULL) || /* first call */
|
|
(thr->state == DUK_HTHREAD_STATE_INACTIVE && thr->heap->curr_thread != NULL) || /* other call */
|
|
(thr->state == DUK_HTHREAD_STATE_RUNNING && thr->heap->curr_thread == thr)); /* current thread */
|
|
|
|
/* XXX: should setjmp catcher be responsible for this instead? */
|
|
thr->heap->call_recursion_depth = entry_call_recursion_depth;
|
|
duk_err_longjmp(thr);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
duk_hthread_catchstack_unwind(thr, entry_catchstack_top);
|
|
duk_hthread_callstack_unwind(thr, entry_callstack_top);
|
|
thr->valstack_bottom = thr->valstack + entry_valstack_bottom_index;
|
|
|
|
/* [ ... func this (crud) errobj ] */
|
|
|
|
/* XXX: is there space? better implementation: write directly over
|
|
* 'func' slot to avoid valstack grow issues.
|
|
*/
|
|
duk_push_tval(ctx, &thr->heap->lj.value1);
|
|
|
|
/* [ ... func this (crud) errobj ] */
|
|
|
|
duk_replace(ctx, idx_func);
|
|
duk_set_top(ctx, idx_func + 1);
|
|
|
|
/* [ ... errobj ] */
|
|
|
|
/* Ensure there is internal valstack spare before we exit; this may
|
|
* throw an alloc error. The same guaranteed size must be available
|
|
* as before the call. This is not optimal now: we store the valstack
|
|
* allocated size during entry; this value may be higher than the
|
|
* minimal guarantee for an application.
|
|
*/
|
|
|
|
(void) duk_valstack_resize_raw((duk_context *) thr,
|
|
entry_valstack_end, /* same as during entry */
|
|
DUK_VSRESIZE_FLAG_SHRINK | /* flags */
|
|
DUK_VSRESIZE_FLAG_COMPACT |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
|
|
/* Note: currently a second setjmp restoration is done at the target;
|
|
* this is OK, but could be refactored away.
|
|
*/
|
|
retval = DUK_EXEC_ERROR;
|
|
goto shrink_and_finished;
|
|
|
|
handle_call:
|
|
/*
|
|
* Thread state check and book-keeping.
|
|
*/
|
|
|
|
if (thr == thr->heap->curr_thread) {
|
|
/* same thread */
|
|
if (thr->state != DUK_HTHREAD_STATE_RUNNING) {
|
|
/* should actually never happen, but check anyway */
|
|
goto thread_state_error;
|
|
}
|
|
} else {
|
|
/* different thread */
|
|
DUK_ASSERT(thr->heap->curr_thread == NULL ||
|
|
thr->heap->curr_thread->state == DUK_HTHREAD_STATE_RUNNING);
|
|
if (thr->state != DUK_HTHREAD_STATE_INACTIVE) {
|
|
goto thread_state_error;
|
|
}
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, thr);
|
|
thr->state = DUK_HTHREAD_STATE_RUNNING;
|
|
|
|
/* Note: multiple threads may be simultaneously in the RUNNING
|
|
* state, but not in the same "resume chain".
|
|
*/
|
|
}
|
|
|
|
DUK_ASSERT(thr->heap->curr_thread == thr);
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING);
|
|
|
|
/*
|
|
* C call recursion depth check, which provides a reasonable upper
|
|
* bound on maximum C stack size (arbitrary C stack growth is only
|
|
* possible by recursive handle_call / handle_safe_call calls).
|
|
*/
|
|
|
|
DUK_ASSERT(thr->heap->call_recursion_depth >= 0);
|
|
DUK_ASSERT(thr->heap->call_recursion_depth <= thr->heap->call_recursion_limit);
|
|
|
|
if (call_flags & DUK_CALL_FLAG_IGNORE_RECLIMIT) {
|
|
DUK_DD(DUK_DDPRINT("ignoring reclimit for this call (probably an errhandler call)"));
|
|
} else {
|
|
if (thr->heap->call_recursion_depth >= thr->heap->call_recursion_limit) {
|
|
/* XXX: error message is a bit misleading: we reached a recursion
|
|
* limit which is also essentially the same as a C callstack limit
|
|
* (except perhaps with some relaxed threading assumptions).
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_C_CALLSTACK_LIMIT);
|
|
}
|
|
thr->heap->call_recursion_depth++;
|
|
}
|
|
|
|
/*
|
|
* Check the function type, handle bound function chains, and prepare
|
|
* parameters for the rest of the call handling. Also figure out the
|
|
* effective 'this' binding, which replaces the current value at
|
|
* idx_func + 1.
|
|
*
|
|
* If the target function is a 'bound' one, follow the chain of 'bound'
|
|
* functions until a non-bound function is found. During this process,
|
|
* bound arguments are 'prepended' to existing ones, and the "this"
|
|
* binding is overridden. See E5 Section 15.3.4.5.1.
|
|
*
|
|
* Lightfunc detection happens here too. Note that lightweight functions
|
|
* can be wrapped by (non-lightweight) bound functions so we must resolve
|
|
* the bound function chain first.
|
|
*/
|
|
|
|
func = duk__nonbound_func_lookup(ctx, idx_func, &num_stack_args, &tv_func, call_flags);
|
|
DUK_TVAL_SET_TVAL(&tv_func_copy, tv_func);
|
|
tv_func = &tv_func_copy; /* local copy to avoid relookups */
|
|
|
|
DUK_ASSERT(func == NULL || !DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(func == NULL || (DUK_HOBJECT_IS_COMPILEDFUNCTION(func) ||
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(func)));
|
|
|
|
duk__coerce_effective_this_binding(thr, func, idx_func + 1);
|
|
DUK_DDD(DUK_DDDPRINT("effective 'this' binding is: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, idx_func + 1)));
|
|
|
|
/* These base values are never used, but if the compiler doesn't know
|
|
* that DUK_ERROR() won't return, these are needed to silence warnings.
|
|
* On the other hand, scan-build will warn about the values not being
|
|
* used, so add a DUK_UNREF.
|
|
*/
|
|
nargs = 0; DUK_UNREF(nargs);
|
|
nregs = 0; DUK_UNREF(nregs);
|
|
|
|
if (func == NULL) {
|
|
duk_small_uint_t lf_flags;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("lightfunc call handling"));
|
|
DUK_ASSERT(DUK_TVAL_IS_LIGHTFUNC(tv_func));
|
|
lf_flags = DUK_TVAL_GET_LIGHTFUNC_FLAGS(tv_func);
|
|
nargs = DUK_LFUNC_FLAGS_GET_NARGS(lf_flags);
|
|
if (nargs == DUK_LFUNC_NARGS_VARARGS) {
|
|
nargs = -1; /* vararg */
|
|
}
|
|
nregs = nargs;
|
|
} else if (DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
nargs = ((duk_hcompiledfunction *) func)->nargs;
|
|
nregs = ((duk_hcompiledfunction *) func)->nregs;
|
|
DUK_ASSERT(nregs >= nargs);
|
|
} else if (DUK_HOBJECT_IS_NATIVEFUNCTION(func)) {
|
|
/* Note: nargs (and nregs) may be negative for a native,
|
|
* function, which indicates that the function wants the
|
|
* input stack "as is" (i.e. handles "vararg" arguments).
|
|
*/
|
|
nargs = ((duk_hnativefunction *) func)->nargs;
|
|
nregs = nargs;
|
|
} else {
|
|
/* XXX: this should be an assert */
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, DUK_STR_NOT_CALLABLE);
|
|
}
|
|
|
|
/* [ ... func this arg1 ... argN ] */
|
|
|
|
/*
|
|
* Setup a preliminary activation.
|
|
*
|
|
* Don't touch valstack_bottom or valstack_top yet so that Duktape API
|
|
* calls work normally.
|
|
*/
|
|
|
|
duk_hthread_callstack_grow(thr);
|
|
|
|
if (thr->callstack_top > 0) {
|
|
/*
|
|
* Update idx_retval of current activation.
|
|
*
|
|
* Although it might seem this is not necessary (bytecode executor
|
|
* does this for Ecmascript-to-Ecmascript calls; other calls are
|
|
* handled here), this turns out to be necessary for handling yield
|
|
* and resume. For them, an Ecmascript-to-native call happens, and
|
|
* the Ecmascript call's idx_retval must be set for things to work.
|
|
*/
|
|
|
|
(thr->callstack + thr->callstack_top - 1)->idx_retval = entry_valstack_bottom_index + idx_func;
|
|
}
|
|
|
|
DUK_ASSERT(thr->callstack_top < thr->callstack_size);
|
|
act = thr->callstack + thr->callstack_top;
|
|
thr->callstack_top++;
|
|
DUK_ASSERT(thr->callstack_top <= thr->callstack_size);
|
|
DUK_ASSERT(thr->valstack_top > thr->valstack_bottom); /* at least effective 'this' */
|
|
DUK_ASSERT(func == NULL || !DUK_HOBJECT_HAS_BOUND(func));
|
|
|
|
act->flags = 0;
|
|
if (func == NULL || DUK_HOBJECT_HAS_STRICT(func)) {
|
|
act->flags |= DUK_ACT_FLAG_STRICT;
|
|
}
|
|
if (call_flags & DUK_CALL_FLAG_CONSTRUCTOR_CALL) {
|
|
act->flags |= DUK_ACT_FLAG_CONSTRUCT;
|
|
/*act->flags |= DUK_ACT_FLAG_PREVENT_YIELD;*/
|
|
}
|
|
if (func == NULL || DUK_HOBJECT_IS_NATIVEFUNCTION(func)) {
|
|
/*act->flags |= DUK_ACT_FLAG_PREVENT_YIELD;*/
|
|
}
|
|
if (call_flags & DUK_CALL_FLAG_DIRECT_EVAL) {
|
|
act->flags |= DUK_ACT_FLAG_DIRECT_EVAL;
|
|
}
|
|
|
|
/* As a first approximation, all calls except Ecmascript-to-Ecmascript
|
|
* calls prevent a yield.
|
|
*/
|
|
act->flags |= DUK_ACT_FLAG_PREVENT_YIELD;
|
|
|
|
act->func = func; /* NULL for lightfunc */
|
|
act->var_env = NULL;
|
|
act->lex_env = NULL;
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
act->prev_caller = NULL;
|
|
#endif
|
|
act->pc = 0;
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
act->prev_line = 0;
|
|
#endif
|
|
act->idx_bottom = entry_valstack_bottom_index + idx_args;
|
|
#if 0 /* topmost activation idx_retval is considered garbage, no need to init */
|
|
act->idx_retval = 0;
|
|
#endif
|
|
DUK_TVAL_SET_TVAL(&act->tv_func, tv_func); /* borrowed, no refcount */
|
|
|
|
if (act->flags & DUK_ACT_FLAG_PREVENT_YIELD) {
|
|
/* duk_hthread_callstack_unwind() will decrease this on unwind */
|
|
thr->callstack_preventcount++;
|
|
}
|
|
|
|
/* XXX: Is this INCREF necessary? 'func' is always a borrowed
|
|
* reference reachable through the value stack? If changed, stack
|
|
* unwind code also needs to be fixed to match.
|
|
*/
|
|
DUK_HOBJECT_INCREF_ALLOWNULL(thr, func); /* act->func */
|
|
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
if (func) {
|
|
duk__update_func_caller_prop(thr, func);
|
|
}
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
#endif
|
|
|
|
/* [... func this arg1 ... argN] */
|
|
|
|
/*
|
|
* Environment record creation and 'arguments' object creation.
|
|
* Named function expression name binding is handled by the
|
|
* compiler; the compiled function's parent env will contain
|
|
* the (immutable) binding already.
|
|
*
|
|
* This handling is now identical for C and Ecmascript functions.
|
|
* C functions always have the 'NEWENV' flag set, so their
|
|
* environment record initialization is delayed (which is good).
|
|
*
|
|
* Delayed creation (on demand) is handled in duk_js_var.c.
|
|
*/
|
|
|
|
DUK_ASSERT(func == NULL || !DUK_HOBJECT_HAS_BOUND(func)); /* bound function chain has already been resolved */
|
|
|
|
if (func != NULL && !DUK_HOBJECT_HAS_NEWENV(func)) {
|
|
/* use existing env (e.g. for non-strict eval); cannot have
|
|
* an own 'arguments' object (but can refer to the existing one)
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_CREATEARGS(func));
|
|
|
|
duk__handle_oldenv_for_call(thr, func, act);
|
|
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
goto env_done;
|
|
}
|
|
|
|
DUK_ASSERT(func == NULL || DUK_HOBJECT_HAS_NEWENV(func));
|
|
|
|
if (func == NULL || !DUK_HOBJECT_HAS_CREATEARGS(func)) {
|
|
/* no need to create environment record now; leave as NULL */
|
|
DUK_ASSERT(act->lex_env == NULL);
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
goto env_done;
|
|
}
|
|
|
|
/* third arg: absolute index (to entire valstack) of idx_bottom of new activation */
|
|
env = duk_create_activation_environment_record(thr, func, act->idx_bottom);
|
|
DUK_ASSERT(env != NULL);
|
|
|
|
/* [... func this arg1 ... argN envobj] */
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_CREATEARGS(func));
|
|
duk__handle_createargs_for_call(thr, func, env, num_stack_args);
|
|
|
|
/* [... func this arg1 ... argN envobj] */
|
|
|
|
act->lex_env = env;
|
|
act->var_env = env;
|
|
DUK_HOBJECT_INCREF(thr, env);
|
|
DUK_HOBJECT_INCREF(thr, env); /* XXX: incref by count (2) directly */
|
|
duk_pop(ctx);
|
|
|
|
env_done:
|
|
/* [... func this arg1 ... argN] */
|
|
|
|
/*
|
|
* Setup value stack: clamp to 'nargs', fill up to 'nregs'
|
|
*
|
|
* Value stack may either grow or shrink, depending on the
|
|
* number of func registers and the number of actual arguments.
|
|
* If nregs >= 0, func wants args clamped to 'nargs'; else it
|
|
* wants all args (= 'num_stack_args').
|
|
*/
|
|
|
|
duk__adjust_valstack_and_top(thr,
|
|
num_stack_args,
|
|
idx_args,
|
|
nregs,
|
|
nargs,
|
|
func);
|
|
|
|
/*
|
|
* Determine call type; then setup activation and call
|
|
*/
|
|
|
|
if (func != NULL && DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
goto ecmascript_call;
|
|
} else {
|
|
goto native_call;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
|
|
/*
|
|
* Native (C) call
|
|
*/
|
|
|
|
native_call:
|
|
/*
|
|
* Shift to new valstack_bottom.
|
|
*/
|
|
|
|
thr->valstack_bottom = thr->valstack_bottom + idx_args;
|
|
/* keep current valstack_top */
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
DUK_ASSERT(func == NULL || ((duk_hnativefunction *) func)->func != NULL);
|
|
|
|
/* [... func this | arg1 ... argN] ('this' must precede new bottom) */
|
|
|
|
/*
|
|
* Actual function call and return value check.
|
|
*
|
|
* Return values:
|
|
* 0 success, no return value (default to 'undefined')
|
|
* 1 success, one return value on top of stack
|
|
* < 0 error, throw a "magic" error
|
|
* other invalid
|
|
*/
|
|
|
|
if (func) {
|
|
rc = ((duk_hnativefunction *) func)->func((duk_context *) thr);
|
|
} else {
|
|
duk_c_function funcptr = DUK_TVAL_GET_LIGHTFUNC_FUNCPTR(tv_func);
|
|
rc = funcptr((duk_context *) thr);
|
|
}
|
|
|
|
if (rc < 0) {
|
|
duk_error_throw_from_negative_rc(thr, rc);
|
|
DUK_UNREACHABLE();
|
|
} else if (rc > 1) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, "c function returned invalid rc");
|
|
}
|
|
DUK_ASSERT(rc == 0 || rc == 1);
|
|
|
|
/*
|
|
* Unwind stack(s) and shift back to old valstack_bottom.
|
|
*/
|
|
|
|
DUK_ASSERT(thr->catchstack_top == entry_catchstack_top);
|
|
DUK_ASSERT(thr->callstack_top == entry_callstack_top + 1);
|
|
|
|
#if 0 /* should be no need to unwind */
|
|
duk_hthread_catchstack_unwind(thr, entry_catchstack_top);
|
|
#endif
|
|
duk_hthread_callstack_unwind(thr, entry_callstack_top);
|
|
|
|
thr->valstack_bottom = thr->valstack + entry_valstack_bottom_index;
|
|
/* keep current valstack_top */
|
|
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
DUK_ASSERT(thr->valstack_top - thr->valstack_bottom >= idx_func + 1);
|
|
|
|
/*
|
|
* Manipulate value stack so that return value is on top
|
|
* (pushing an 'undefined' if necessary).
|
|
*/
|
|
|
|
/* XXX: should this happen in the callee's activation or after unwinding? */
|
|
if (rc == 0) {
|
|
duk_require_stack(ctx, 1);
|
|
duk_push_undefined(ctx);
|
|
}
|
|
/* [... func this (crud) retval] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("native call retval -> %!T (rc=%ld)",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) rc));
|
|
|
|
duk_replace(ctx, idx_func);
|
|
duk_set_top(ctx, idx_func + 1);
|
|
|
|
/* [... retval] */
|
|
|
|
/* Ensure there is internal valstack spare before we exit; this may
|
|
* throw an alloc error. The same guaranteed size must be available
|
|
* as before the call. This is not optimal now: we store the valstack
|
|
* allocated size during entry; this value may be higher than the
|
|
* minimal guarantee for an application.
|
|
*/
|
|
|
|
(void) duk_valstack_resize_raw((duk_context *) thr,
|
|
entry_valstack_end, /* same as during entry */
|
|
DUK_VSRESIZE_FLAG_SHRINK | /* flags */
|
|
DUK_VSRESIZE_FLAG_COMPACT |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
|
|
|
|
/*
|
|
* Shrink checks and return with success.
|
|
*/
|
|
|
|
retval = DUK_EXEC_SUCCESS;
|
|
goto shrink_and_finished;
|
|
|
|
/*
|
|
* Ecmascript call
|
|
*/
|
|
|
|
ecmascript_call:
|
|
|
|
/*
|
|
* Shift to new valstack_bottom.
|
|
*/
|
|
|
|
thr->valstack_bottom = thr->valstack_bottom + idx_args;
|
|
/* keep current valstack_top */
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
|
|
/* [... func this | arg1 ... argN] ('this' must precede new bottom) */
|
|
|
|
/*
|
|
* Bytecode executor call.
|
|
*
|
|
* Execute bytecode, handling any recursive function calls and
|
|
* thread resumptions. Returns when execution would return from
|
|
* the entry level activation. When the executor returns, a
|
|
* single return value is left on the stack top.
|
|
*
|
|
* The only possible longjmp() is an error (DUK_LJ_TYPE_THROW),
|
|
* other types are handled internally by the executor.
|
|
*
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("entering bytecode execution"));
|
|
duk_js_execute_bytecode(thr);
|
|
DUK_DDD(DUK_DDDPRINT("returned from bytecode execution"));
|
|
|
|
/*
|
|
* Unwind stack(s) and shift back to old valstack_bottom.
|
|
*/
|
|
|
|
DUK_ASSERT(thr->callstack_top == entry_callstack_top + 1);
|
|
|
|
duk_hthread_catchstack_unwind(thr, entry_catchstack_top);
|
|
duk_hthread_callstack_unwind(thr, entry_callstack_top);
|
|
|
|
thr->valstack_bottom = thr->valstack + entry_valstack_bottom_index;
|
|
/* keep current valstack_top */
|
|
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
DUK_ASSERT(thr->valstack_top - thr->valstack_bottom >= idx_func + 1);
|
|
|
|
/*
|
|
* Manipulate value stack so that return value is on top.
|
|
*/
|
|
|
|
/* [... func this (crud) retval] */
|
|
|
|
duk_replace(ctx, idx_func);
|
|
duk_set_top(ctx, idx_func + 1);
|
|
|
|
/* [... retval] */
|
|
|
|
/* Ensure there is internal valstack spare before we exit; this may
|
|
* throw an alloc error. The same guaranteed size must be available
|
|
* as before the call. This is not optimal now: we store the valstack
|
|
* allocated size during entry; this value may be higher than the
|
|
* minimal guarantee for an application.
|
|
*/
|
|
|
|
(void) duk_valstack_resize_raw((duk_context *) thr,
|
|
entry_valstack_end, /* same as during entry */
|
|
DUK_VSRESIZE_FLAG_SHRINK | /* flags */
|
|
DUK_VSRESIZE_FLAG_COMPACT |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
|
|
/*
|
|
* Shrink checks and return with success.
|
|
*/
|
|
|
|
retval = DUK_EXEC_SUCCESS;
|
|
goto shrink_and_finished;
|
|
|
|
shrink_and_finished:
|
|
#if defined(DUK_OPT_FASTINT)
|
|
/* Explicit check for fastint downgrade. */
|
|
{
|
|
duk_tval *tv_fi;
|
|
tv_fi = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv_fi != NULL);
|
|
DUK_TVAL_CHKFAST_INPLACE(tv_fi);
|
|
}
|
|
#endif
|
|
|
|
/* these are "soft" shrink checks, whose failures are ignored */
|
|
/* XXX: would be nice if fast path was inlined */
|
|
duk_hthread_catchstack_shrink_check(thr);
|
|
duk_hthread_callstack_shrink_check(thr);
|
|
goto finished;
|
|
|
|
finished:
|
|
if (need_setjmp) {
|
|
/* Note: either pointer may be NULL (at entry), so don't assert;
|
|
* this is now done potentially twice, which is OK
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("restore jmpbuf_ptr: %p -> %p (possibly already done)",
|
|
(void *) (thr && thr->heap ? thr->heap->lj.jmpbuf_ptr : NULL),
|
|
(void *) old_jmpbuf_ptr));
|
|
thr->heap->lj.jmpbuf_ptr = old_jmpbuf_ptr;
|
|
|
|
/* These are just convenience "wiping" of state */
|
|
thr->heap->lj.type = DUK_LJ_TYPE_UNKNOWN;
|
|
thr->heap->lj.iserror = 0;
|
|
|
|
/* Side effects should not be an issue here: tv_tmp is local and
|
|
* thr->heap (and thr->heap->lj) have a stable pointer. Finalizer
|
|
* runs etc capture even out-of-memory errors so nothing should
|
|
* throw here.
|
|
*/
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value1);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->heap->lj.value1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value2);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->heap->lj.value2);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("setjmp catchpoint torn down"));
|
|
}
|
|
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, entry_curr_thread); /* may be NULL */
|
|
thr->state = (duk_uint8_t) entry_thread_state;
|
|
|
|
DUK_ASSERT((thr->state == DUK_HTHREAD_STATE_INACTIVE && thr->heap->curr_thread == NULL) || /* first call */
|
|
(thr->state == DUK_HTHREAD_STATE_INACTIVE && thr->heap->curr_thread != NULL) || /* other call */
|
|
(thr->state == DUK_HTHREAD_STATE_RUNNING && thr->heap->curr_thread == thr)); /* current thread */
|
|
|
|
thr->heap->call_recursion_depth = entry_call_recursion_depth;
|
|
|
|
return retval;
|
|
|
|
thread_state_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "invalid thread state for call (%ld)", (long) thr->state);
|
|
DUK_UNREACHABLE();
|
|
return DUK_EXEC_ERROR; /* never executed */
|
|
}
|
|
|
|
/*
|
|
* Manipulate value stack so that exactly 'num_stack_rets' return
|
|
* values are at 'idx_retbase' in every case, assuming there are
|
|
* 'rc' return values on top of stack.
|
|
*
|
|
* This is a bit tricky, because the called C function operates in
|
|
* the same activation record and may have e.g. popped the stack
|
|
* empty (below idx_retbase).
|
|
*/
|
|
|
|
DUK_LOCAL void duk__safe_call_adjust_valstack(duk_hthread *thr, duk_idx_t idx_retbase, duk_idx_t num_stack_rets, duk_idx_t num_actual_rets) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_idx_t idx_rcbase;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(idx_retbase >= 0);
|
|
DUK_ASSERT(num_stack_rets >= 0);
|
|
DUK_ASSERT(num_actual_rets >= 0);
|
|
|
|
idx_rcbase = duk_get_top(ctx) - num_actual_rets; /* base of known return values */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("adjust valstack after func call: "
|
|
"num_stack_rets=%ld, num_actual_rets=%ld, stack_top=%ld, idx_retbase=%ld, idx_rcbase=%ld",
|
|
(long) num_stack_rets, (long) num_actual_rets, (long) duk_get_top(ctx),
|
|
(long) idx_retbase, (long) idx_rcbase));
|
|
|
|
DUK_ASSERT(idx_rcbase >= 0); /* caller must check */
|
|
|
|
/* ensure space for final configuration (idx_retbase + num_stack_rets) and
|
|
* intermediate configurations
|
|
*/
|
|
duk_require_stack_top(ctx,
|
|
(idx_rcbase > idx_retbase ? idx_rcbase : idx_retbase) +
|
|
num_stack_rets);
|
|
|
|
/* chop extra retvals away / extend with undefined */
|
|
duk_set_top(ctx, idx_rcbase + num_stack_rets);
|
|
|
|
if (idx_rcbase >= idx_retbase) {
|
|
duk_idx_t count = idx_rcbase - idx_retbase;
|
|
duk_idx_t i;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("elements at/after idx_retbase have enough to cover func retvals "
|
|
"(idx_retbase=%ld, idx_rcbase=%ld)", (long) idx_retbase, (long) idx_rcbase));
|
|
|
|
/* nuke values at idx_retbase to get the first retval (initially
|
|
* at idx_rcbase) to idx_retbase
|
|
*/
|
|
|
|
DUK_ASSERT(count >= 0);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
/* XXX: inefficient; block remove primitive */
|
|
duk_remove(ctx, idx_retbase);
|
|
}
|
|
} else {
|
|
duk_idx_t count = idx_retbase - idx_rcbase;
|
|
duk_idx_t i;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("not enough elements at/after idx_retbase to cover func retvals "
|
|
"(idx_retbase=%ld, idx_rcbase=%ld)", (long) idx_retbase, (long) idx_rcbase));
|
|
|
|
/* insert 'undefined' values at idx_rcbase to get the
|
|
* return values to idx_retbase
|
|
*/
|
|
|
|
DUK_ASSERT(count > 0);
|
|
|
|
for (i = 0; i < count; i++) {
|
|
/* XXX: inefficient; block insert primitive */
|
|
duk_push_undefined(ctx);
|
|
duk_insert(ctx, idx_rcbase);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Make a "C protected call" within the current activation.
|
|
*
|
|
* The allowed thread states for making a call are the same as for
|
|
* duk_handle_call().
|
|
*
|
|
* Note that like duk_handle_call(), even if this call is protected,
|
|
* there are a few situations where the current (pre-entry) setjmp
|
|
* catcher (or a fatal error handler if no such catcher exists) is
|
|
* invoked:
|
|
*
|
|
* - Blatant API argument errors (e.g. num_stack_args is invalid,
|
|
* so we can't form a reasonable return stack)
|
|
*
|
|
* - Errors during error handling, e.g. failure to reallocate
|
|
* space in the value stack due to an alloc error
|
|
*
|
|
* Such errors propagate outwards, ultimately to the fatal error
|
|
* handler if nothing else.
|
|
*/
|
|
|
|
/* XXX: bump preventcount by one for the duration of this call? */
|
|
|
|
DUK_INTERNAL
|
|
duk_int_t duk_handle_safe_call(duk_hthread *thr,
|
|
duk_safe_call_function func,
|
|
duk_idx_t num_stack_args,
|
|
duk_idx_t num_stack_rets) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_size_t entry_valstack_bottom_index;
|
|
duk_size_t entry_callstack_top;
|
|
duk_size_t entry_catchstack_top;
|
|
duk_int_t entry_call_recursion_depth;
|
|
duk_hthread *entry_curr_thread;
|
|
duk_uint_fast8_t entry_thread_state;
|
|
duk_jmpbuf *old_jmpbuf_ptr = NULL;
|
|
duk_jmpbuf our_jmpbuf;
|
|
duk_tval tv_tmp;
|
|
duk_idx_t idx_retbase;
|
|
duk_int_t retval;
|
|
duk_ret_t rc;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/* Note: careful with indices like '-x'; if 'x' is zero, it refers to bottom */
|
|
entry_valstack_bottom_index = (duk_size_t) (thr->valstack_bottom - thr->valstack);
|
|
entry_callstack_top = thr->callstack_top;
|
|
entry_catchstack_top = thr->catchstack_top;
|
|
entry_call_recursion_depth = thr->heap->call_recursion_depth;
|
|
entry_curr_thread = thr->heap->curr_thread; /* Note: may be NULL if first call */
|
|
entry_thread_state = thr->state;
|
|
idx_retbase = duk_get_top(ctx) - num_stack_args; /* Note: not a valid stack index if num_stack_args == 0 */
|
|
|
|
/* Note: cannot portably debug print a function pointer, hence 'func' not printed! */
|
|
DUK_DD(DUK_DDPRINT("duk_handle_safe_call: thr=%p, num_stack_args=%ld, num_stack_rets=%ld, "
|
|
"valstack_top=%ld, idx_retbase=%ld, rec_depth=%ld/%ld, "
|
|
"entry_valstack_bottom_index=%ld, entry_callstack_top=%ld, entry_catchstack_top=%ld, "
|
|
"entry_call_recursion_depth=%ld, entry_curr_thread=%p, entry_thread_state=%ld",
|
|
(void *) thr,
|
|
(long) num_stack_args,
|
|
(long) num_stack_rets,
|
|
(long) duk_get_top(ctx),
|
|
(long) idx_retbase,
|
|
(long) thr->heap->call_recursion_depth,
|
|
(long) thr->heap->call_recursion_limit,
|
|
(long) entry_valstack_bottom_index,
|
|
(long) entry_callstack_top,
|
|
(long) entry_catchstack_top,
|
|
(long) entry_call_recursion_depth,
|
|
(void *) entry_curr_thread,
|
|
(long) entry_thread_state));
|
|
|
|
if (idx_retbase < 0) {
|
|
/*
|
|
* Since stack indices are not reliable, we can't do anything useful
|
|
* here. Invoke the existing setjmp catcher, or if it doesn't exist,
|
|
* call the fatal error handler.
|
|
*/
|
|
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
}
|
|
|
|
/* setjmp catchpoint setup */
|
|
|
|
old_jmpbuf_ptr = thr->heap->lj.jmpbuf_ptr;
|
|
thr->heap->lj.jmpbuf_ptr = &our_jmpbuf;
|
|
|
|
if (DUK_SETJMP(thr->heap->lj.jmpbuf_ptr->jb) == 0) {
|
|
goto handle_call;
|
|
}
|
|
|
|
/*
|
|
* Error during call. The error value is at heap->lj.value1.
|
|
*
|
|
* Careful with variable accesses here; must be assigned to before
|
|
* setjmp() or be declared volatile. See duk_handle_call().
|
|
*
|
|
* The following are such variables:
|
|
* - duk_handle_safe_call() parameters
|
|
* - entry_*
|
|
* - idx_retbase
|
|
*
|
|
* The very first thing we do is restore the previous setjmp catcher.
|
|
* This means that any error in error handling will propagate outwards
|
|
* instead of causing a setjmp() re-entry above. The *only* actual
|
|
* errors that should happen here are allocation errors.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("error caught during protected duk_handle_safe_call()"));
|
|
|
|
DUK_ASSERT(thr->heap->lj.type == DUK_LJ_TYPE_THROW);
|
|
DUK_ASSERT(thr->callstack_top >= entry_callstack_top);
|
|
DUK_ASSERT(thr->catchstack_top >= entry_catchstack_top);
|
|
|
|
/* Note: either pointer may be NULL (at entry), so don't assert;
|
|
* these are now restored twice which is OK.
|
|
*/
|
|
thr->heap->lj.jmpbuf_ptr = old_jmpbuf_ptr;
|
|
|
|
duk_hthread_catchstack_unwind(thr, entry_catchstack_top);
|
|
duk_hthread_callstack_unwind(thr, entry_callstack_top);
|
|
thr->valstack_bottom = thr->valstack + entry_valstack_bottom_index;
|
|
|
|
/* [ ... | (crud) ] */
|
|
|
|
/* XXX: space in valstack? see discussion in duk_handle_call. */
|
|
duk_push_tval(ctx, &thr->heap->lj.value1);
|
|
|
|
/* [ ... | (crud) errobj ] */
|
|
|
|
DUK_ASSERT(duk_get_top(ctx) >= 1); /* at least errobj must be on stack */
|
|
|
|
/* check that the valstack has space for the final amount and any
|
|
* intermediate space needed; this is unoptimal but should be safe
|
|
*/
|
|
duk_require_stack_top(ctx, idx_retbase + num_stack_rets); /* final configuration */
|
|
duk_require_stack(ctx, num_stack_rets);
|
|
|
|
duk__safe_call_adjust_valstack(thr, idx_retbase, num_stack_rets, 1); /* 1 = num actual 'return values' */
|
|
|
|
/* [ ... | ] or [ ... | errobj (M * undefined)] where M = num_stack_rets - 1 */
|
|
|
|
retval = DUK_EXEC_ERROR;
|
|
goto shrink_and_finished;
|
|
|
|
/*
|
|
* Handle call (inside setjmp)
|
|
*/
|
|
|
|
handle_call:
|
|
|
|
DUK_DDD(DUK_DDDPRINT("safe_call setjmp catchpoint setup complete"));
|
|
|
|
/*
|
|
* Thread state check and book-keeping.
|
|
*/
|
|
|
|
if (thr == thr->heap->curr_thread) {
|
|
/* same thread */
|
|
if (thr->state != DUK_HTHREAD_STATE_RUNNING) {
|
|
/* should actually never happen, but check anyway */
|
|
goto thread_state_error;
|
|
}
|
|
} else {
|
|
/* different thread */
|
|
DUK_ASSERT(thr->heap->curr_thread == NULL ||
|
|
thr->heap->curr_thread->state == DUK_HTHREAD_STATE_RUNNING);
|
|
if (thr->state != DUK_HTHREAD_STATE_INACTIVE) {
|
|
goto thread_state_error;
|
|
}
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, thr);
|
|
thr->state = DUK_HTHREAD_STATE_RUNNING;
|
|
|
|
/* Note: multiple threads may be simultaneously in the RUNNING
|
|
* state, but not in the same "resume chain".
|
|
*/
|
|
}
|
|
|
|
DUK_ASSERT(thr->heap->curr_thread == thr);
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING);
|
|
|
|
/*
|
|
* Recursion limit check.
|
|
*
|
|
* Note: there is no need for an "ignore recursion limit" flag
|
|
* for duk_handle_safe_call now.
|
|
*/
|
|
|
|
DUK_ASSERT(thr->heap->call_recursion_depth >= 0);
|
|
DUK_ASSERT(thr->heap->call_recursion_depth <= thr->heap->call_recursion_limit);
|
|
if (thr->heap->call_recursion_depth >= thr->heap->call_recursion_limit) {
|
|
/* XXX: error message is a bit misleading: we reached a recursion
|
|
* limit which is also essentially the same as a C callstack limit
|
|
* (except perhaps with some relaxed threading assumptions).
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_C_CALLSTACK_LIMIT);
|
|
}
|
|
thr->heap->call_recursion_depth++;
|
|
|
|
/*
|
|
* Valstack spare check
|
|
*/
|
|
|
|
duk_require_stack(ctx, 0); /* internal spare */
|
|
|
|
/*
|
|
* Make the C call
|
|
*/
|
|
|
|
rc = func(ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("safe_call, func rc=%ld", (long) rc));
|
|
|
|
/*
|
|
* Valstack manipulation for results
|
|
*/
|
|
|
|
/* we're running inside the caller's activation, so no change in call/catch stack or valstack bottom */
|
|
DUK_ASSERT(thr->callstack_top == entry_callstack_top);
|
|
DUK_ASSERT(thr->catchstack_top == entry_catchstack_top);
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT((duk_size_t) (thr->valstack_bottom - thr->valstack) == entry_valstack_bottom_index);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
|
|
if (rc < 0) {
|
|
duk_error_throw_from_negative_rc(thr, rc);
|
|
}
|
|
DUK_ASSERT(rc >= 0);
|
|
|
|
if (duk_get_top(ctx) < rc) {
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, "not enough stack values for safe_call rc");
|
|
}
|
|
|
|
duk__safe_call_adjust_valstack(thr, idx_retbase, num_stack_rets, rc);
|
|
|
|
/* Note: no need from callstack / catchstack shrink check */
|
|
retval = DUK_EXEC_SUCCESS;
|
|
goto finished;
|
|
|
|
shrink_and_finished:
|
|
/* these are "soft" shrink checks, whose failures are ignored */
|
|
/* XXX: would be nice if fast path was inlined */
|
|
duk_hthread_catchstack_shrink_check(thr);
|
|
duk_hthread_callstack_shrink_check(thr);
|
|
goto finished;
|
|
|
|
finished:
|
|
/* Note: either pointer may be NULL (at entry), so don't assert */
|
|
thr->heap->lj.jmpbuf_ptr = old_jmpbuf_ptr;
|
|
|
|
/* These are just convenience "wiping" of state */
|
|
thr->heap->lj.type = DUK_LJ_TYPE_UNKNOWN;
|
|
thr->heap->lj.iserror = 0;
|
|
|
|
/* Side effects should not be an issue here: tv_tmp is local and
|
|
* thr->heap (and thr->heap->lj) have a stable pointer. Finalizer
|
|
* runs etc capture even out-of-memory errors so nothing should
|
|
* throw here.
|
|
*/
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value1);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->heap->lj.value1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value2);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->heap->lj.value2);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("setjmp catchpoint torn down"));
|
|
|
|
/* XXX: because we unwind stacks above, thr->heap->curr_thread is at
|
|
* risk of pointing to an already freed thread. This was indeed the
|
|
* case in test-bug-multithread-valgrind.c, until duk_handle_call()
|
|
* was fixed to restore thr->heap->curr_thread before rethrowing an
|
|
* uncaught error.
|
|
*/
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, entry_curr_thread); /* may be NULL */
|
|
thr->state = (duk_uint8_t) entry_thread_state;
|
|
|
|
DUK_ASSERT((thr->state == DUK_HTHREAD_STATE_INACTIVE && thr->heap->curr_thread == NULL) || /* first call */
|
|
(thr->state == DUK_HTHREAD_STATE_INACTIVE && thr->heap->curr_thread != NULL) || /* other call */
|
|
(thr->state == DUK_HTHREAD_STATE_RUNNING && thr->heap->curr_thread == thr)); /* current thread */
|
|
|
|
thr->heap->call_recursion_depth = entry_call_recursion_depth;
|
|
|
|
/* stack discipline consistency check */
|
|
DUK_ASSERT(duk_get_top(ctx) == idx_retbase + num_stack_rets);
|
|
|
|
return retval;
|
|
|
|
thread_state_error:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "invalid thread state for safe_call (%ld)", (long) thr->state);
|
|
DUK_UNREACHABLE();
|
|
return DUK_EXEC_ERROR; /* never executed */
|
|
}
|
|
|
|
/*
|
|
* Helper for handling an Ecmascript-to-Ecmascript call or an Ecmascript
|
|
* function (initial) Duktape.Thread.resume().
|
|
*
|
|
* Compared to normal calls handled by duk_handle_call(), there are a
|
|
* bunch of differences:
|
|
*
|
|
* - the call is never protected
|
|
* - there is no C recursion depth increase (hence an "ignore recursion
|
|
* limit" flag is not applicable)
|
|
* - instead of making the call, this helper just performs the thread
|
|
* setup and returns; the bytecode executor then restarts execution
|
|
* internally
|
|
* - ecmascript functions are never 'vararg' functions (they access
|
|
* varargs through the 'arguments' object)
|
|
*
|
|
* The callstack of the target contains an earlier Ecmascript call in case
|
|
* of an Ecmascript-to-Ecmascript call (whose idx_retval is updated), or
|
|
* is empty in case of an initial Duktape.Thread.resume().
|
|
*
|
|
* The first thing to do here is to figure out whether an ecma-to-ecma
|
|
* call is actually possible. It's not always the case if the target is
|
|
* a bound function; the final function may be native. In that case,
|
|
* return an error so caller can fall back to a normal call path.
|
|
*/
|
|
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_handle_ecma_call_setup(duk_hthread *thr,
|
|
duk_idx_t num_stack_args,
|
|
duk_small_uint_t call_flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_size_t entry_valstack_bottom_index;
|
|
duk_idx_t idx_func; /* valstack index of 'func' and retval (relative to entry valstack_bottom) */
|
|
duk_idx_t idx_args; /* valstack index of start of args (arg1) (relative to entry valstack_bottom) */
|
|
duk_idx_t nargs; /* # argument registers target function wants (< 0 => never for ecma calls) */
|
|
duk_idx_t nregs; /* # total registers target function wants on entry (< 0 => never for ecma calls) */
|
|
duk_hobject *func; /* 'func' on stack (borrowed reference) */
|
|
duk_tval *tv_func; /* duk_tval ptr for 'func' on stack (borrowed reference) */
|
|
duk_activation *act;
|
|
duk_hobject *env;
|
|
duk_bool_t use_tailcall;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(!((call_flags & DUK_CALL_FLAG_IS_RESUME) != 0 && (call_flags & DUK_CALL_FLAG_IS_TAILCALL) != 0));
|
|
|
|
/* XXX: assume these? */
|
|
DUK_ASSERT(thr->valstack != NULL);
|
|
DUK_ASSERT(thr->callstack != NULL);
|
|
DUK_ASSERT(thr->catchstack != NULL);
|
|
|
|
/* no need to handle thread state book-keeping here */
|
|
DUK_ASSERT((call_flags & DUK_CALL_FLAG_IS_RESUME) != 0 ||
|
|
(thr->state == DUK_HTHREAD_STATE_RUNNING &&
|
|
thr->heap->curr_thread == thr));
|
|
|
|
/* if a tailcall:
|
|
* - an Ecmascript activation must be on top of the callstack
|
|
* - there cannot be any active catchstack entries
|
|
*/
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
if (call_flags & DUK_CALL_FLAG_IS_TAILCALL) {
|
|
duk_size_t our_callstack_index;
|
|
duk_size_t i;
|
|
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
our_callstack_index = thr->callstack_top - 1;
|
|
DUK_ASSERT_DISABLE(our_callstack_index >= 0);
|
|
DUK_ASSERT(our_callstack_index < thr->callstack_size);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + our_callstack_index) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + our_callstack_index)));
|
|
|
|
/* No entry in the catchstack which would actually catch a
|
|
* throw can refer to the callstack entry being reused.
|
|
* There *can* be catchstack entries referring to the current
|
|
* callstack entry as long as they don't catch (e.g. label sites).
|
|
*/
|
|
|
|
for (i = 0; i < thr->catchstack_top; i++) {
|
|
DUK_ASSERT(thr->catchstack[i].callstack_index < our_callstack_index || /* refer to callstack entries below current */
|
|
DUK_CAT_GET_TYPE(thr->catchstack + i) == DUK_CAT_TYPE_LABEL); /* or a non-catching entry */
|
|
}
|
|
}
|
|
#endif /* DUK_USE_ASSERTIONS */
|
|
|
|
entry_valstack_bottom_index = (duk_size_t) (thr->valstack_bottom - thr->valstack);
|
|
idx_func = duk_normalize_index(thr, -num_stack_args - 2);
|
|
idx_args = idx_func + 2;
|
|
|
|
DUK_DD(DUK_DDPRINT("handle_ecma_call_setup: thr=%p, "
|
|
"num_stack_args=%ld, call_flags=0x%08lx (resume=%ld, tailcall=%ld), "
|
|
"idx_func=%ld, idx_args=%ld, entry_valstack_bottom_index=%ld",
|
|
(void *) thr,
|
|
(long) num_stack_args,
|
|
(unsigned long) call_flags,
|
|
(long) ((call_flags & DUK_CALL_FLAG_IS_RESUME) != 0 ? 1 : 0),
|
|
(long) ((call_flags & DUK_CALL_FLAG_IS_TAILCALL) != 0 ? 1 : 0),
|
|
(long) idx_func,
|
|
(long) idx_args,
|
|
(long) entry_valstack_bottom_index));
|
|
|
|
if (idx_func < 0 || idx_args < 0) {
|
|
/* XXX: assert? compiler is responsible for this never happening */
|
|
DUK_ERROR(thr, DUK_ERR_API_ERROR, DUK_STR_INVALID_CALL_ARGS);
|
|
}
|
|
|
|
/*
|
|
* Check the function type, handle bound function chains, and prepare
|
|
* parameters for the rest of the call handling. Also figure out the
|
|
* effective 'this' binding, which replaces the current value at
|
|
* idx_func + 1.
|
|
*
|
|
* If the target function is a 'bound' one, follow the chain of 'bound'
|
|
* functions until a non-bound function is found. During this process,
|
|
* bound arguments are 'prepended' to existing ones, and the "this"
|
|
* binding is overridden. See E5 Section 15.3.4.5.1.
|
|
*
|
|
* If the final target function cannot be handled by an ecma-to-ecma
|
|
* call, return to the caller with a return value indicating this case.
|
|
* The bound chain is resolved and the caller can resume with a plain
|
|
* function call.
|
|
*/
|
|
|
|
func = duk__nonbound_func_lookup(ctx, idx_func, &num_stack_args, &tv_func, call_flags);
|
|
if (func == NULL || !DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
DUK_DDD(DUK_DDDPRINT("final target is a lightfunc/nativefunc, cannot do ecma-to-ecma call"));
|
|
return 0;
|
|
}
|
|
/* XXX: tv_func is not actually needed */
|
|
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(func));
|
|
|
|
duk__coerce_effective_this_binding(thr, func, idx_func + 1);
|
|
DUK_DDD(DUK_DDDPRINT("effective 'this' binding is: %!T",
|
|
duk_get_tval(ctx, idx_func + 1)));
|
|
|
|
nargs = ((duk_hcompiledfunction *) func)->nargs;
|
|
nregs = ((duk_hcompiledfunction *) func)->nregs;
|
|
DUK_ASSERT(nregs >= nargs);
|
|
|
|
/* [ ... func this arg1 ... argN ] */
|
|
|
|
/*
|
|
* Preliminary activation record and valstack manipulation.
|
|
* The concrete actions depend on whether the we're dealing
|
|
* with a tailcall (reuse an existing activation), a resume,
|
|
* or a normal call.
|
|
*
|
|
* The basic actions, in varying order, are:
|
|
*
|
|
* - Check stack size for call handling
|
|
* - Grow call stack if necessary (non-tail-calls)
|
|
* - Update current activation (idx_retval) if necessary
|
|
* (non-tail, non-resume calls)
|
|
* - Move start of args (idx_args) to valstack bottom
|
|
* (tail calls)
|
|
*
|
|
* Don't touch valstack_bottom or valstack_top yet so that Duktape API
|
|
* calls work normally.
|
|
*/
|
|
|
|
/* XXX: some overlapping code; cleanup */
|
|
use_tailcall = call_flags & DUK_CALL_FLAG_IS_TAILCALL;
|
|
#if !defined(DUK_USE_TAILCALL)
|
|
DUK_ASSERT(use_tailcall == 0); /* compiler ensures this */
|
|
#endif
|
|
if (use_tailcall) {
|
|
/* tailcall cannot be flagged to resume calls, and a
|
|
* previous frame must exist
|
|
*/
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT((call_flags & DUK_CALL_FLAG_IS_RESUME) == 0);
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
if (act->flags & DUK_ACT_FLAG_PREVENT_YIELD) {
|
|
/* See: test-bug-tailcall-preventyield-assert.c. */
|
|
DUK_DDD(DUK_DDDPRINT("tailcall prevented by current activation having DUK_ACT_FLAG_PREVENTYIELD"));
|
|
use_tailcall = 0;
|
|
} else if (DUK_HOBJECT_HAS_NOTAIL(func)) {
|
|
DUK_D(DUK_DPRINT("tailcall prevented by function having a notail flag"));
|
|
use_tailcall = 0;
|
|
}
|
|
}
|
|
|
|
if (use_tailcall) {
|
|
duk_tval *tv1, *tv2;
|
|
duk_tval tv_tmp;
|
|
duk_size_t cs_index;
|
|
duk_int_t i_stk; /* must be signed for loop structure */
|
|
duk_idx_t i_arg;
|
|
|
|
/*
|
|
* Tailcall handling
|
|
*
|
|
* Although the callstack entry is reused, we need to explicitly unwind
|
|
* the current activation (or simulate an unwind). In particular, the
|
|
* current activation must be closed, otherwise something like
|
|
* test-bug-reduce-judofyr.js results. Also catchstack needs be unwound
|
|
* because there may be non-error-catching label entries in valid tailcalls.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("is tailcall, reusing activation at callstack top, at index %ld",
|
|
(long) (thr->callstack_top - 1)));
|
|
|
|
/* 'act' already set above */
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NATIVEFUNCTION(func));
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_COMPILEDFUNCTION(func));
|
|
DUK_ASSERT((act->flags & DUK_ACT_FLAG_PREVENT_YIELD) == 0);
|
|
|
|
/* Unwind catchstack entries referring to the callstack entry we're reusing */
|
|
cs_index = thr->callstack_top - 1;
|
|
DUK_ASSERT(thr->catchstack_top <= DUK_INT_MAX); /* catchstack limits */
|
|
for (i_stk = (duk_int_t) (thr->catchstack_top - 1); i_stk >= 0; i_stk--) {
|
|
duk_catcher *cat = thr->catchstack + i_stk;
|
|
if (cat->callstack_index != cs_index) {
|
|
/* 'i' is the first entry we'll keep */
|
|
break;
|
|
}
|
|
}
|
|
duk_hthread_catchstack_unwind(thr, i_stk + 1);
|
|
|
|
/* Unwind the topmost callstack entry before reusing it */
|
|
DUK_ASSERT(thr->callstack_top > 0);
|
|
duk_hthread_callstack_unwind(thr, thr->callstack_top - 1);
|
|
|
|
/* Then reuse the unwound activation; callstack was not shrunk so there is always space */
|
|
thr->callstack_top++;
|
|
DUK_ASSERT(thr->callstack_top <= thr->callstack_size);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
|
|
/* Start filling in the activation */
|
|
act->func = func; /* don't want an intermediate exposed state with func == NULL */
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
act->prev_caller = NULL;
|
|
#endif
|
|
act->pc = 0; /* don't want an intermediate exposed state with invalid pc */
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
act->prev_line = 0;
|
|
#endif
|
|
DUK_TVAL_SET_OBJECT(&act->tv_func, func); /* borrowed, no refcount */
|
|
#ifdef DUK_USE_REFERENCE_COUNTING
|
|
DUK_HOBJECT_INCREF(thr, func);
|
|
act = thr->callstack + thr->callstack_top - 1; /* side effects (currently none though) */
|
|
#endif
|
|
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
#ifdef DUK_USE_TAILCALL
|
|
#error incorrect options: tailcalls enabled with function caller property
|
|
#endif
|
|
/* XXX: this doesn't actually work properly for tail calls, so
|
|
* tail calls are disabled when DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
* is in use.
|
|
*/
|
|
duk__update_func_caller_prop(thr, func);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
#endif
|
|
|
|
act->flags = (DUK_HOBJECT_HAS_STRICT(func) ?
|
|
DUK_ACT_FLAG_STRICT | DUK_ACT_FLAG_TAILCALLED :
|
|
DUK_ACT_FLAG_TAILCALLED);
|
|
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(act) == func); /* already updated */
|
|
DUK_ASSERT(act->var_env == NULL); /* already NULLed (by unwind) */
|
|
DUK_ASSERT(act->lex_env == NULL); /* already NULLed (by unwind) */
|
|
DUK_ASSERT(act->pc == 0); /* already zeroed */
|
|
act->idx_bottom = entry_valstack_bottom_index; /* tail call -> reuse current "frame" */
|
|
DUK_ASSERT(nregs >= 0);
|
|
#if 0 /* topmost activation idx_retval is considered garbage, no need to init */
|
|
act->idx_retval = 0;
|
|
#endif
|
|
|
|
/*
|
|
* Manipulate valstack so that args are on the current bottom and the
|
|
* previous caller's 'this' binding (which is the value preceding the
|
|
* current bottom) is replaced with the new 'this' binding:
|
|
*
|
|
* [ ... this_old | (crud) func this_new arg1 ... argN ]
|
|
* --> [ ... this_new | arg1 ... argN ]
|
|
*
|
|
* For tailcalling to work properly, the valstack bottom must not grow
|
|
* here; otherwise crud would accumulate on the valstack.
|
|
*/
|
|
|
|
tv1 = thr->valstack_bottom - 1;
|
|
tv2 = thr->valstack_bottom + idx_func + 1;
|
|
DUK_ASSERT(tv1 >= thr->valstack && tv1 < thr->valstack_top); /* tv1 is -below- valstack_bottom */
|
|
DUK_ASSERT(tv2 >= thr->valstack_bottom && tv2 < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
for (i_arg = 0; i_arg < idx_args; i_arg++) {
|
|
/* XXX: block removal API primitive */
|
|
/* Note: 'func' is popped from valstack here, but it is
|
|
* already reachable from the activation.
|
|
*/
|
|
duk_remove(ctx, 0);
|
|
}
|
|
idx_func = 0; DUK_UNREF(idx_func); /* really 'not applicable' anymore, should not be referenced after this */
|
|
idx_args = 0;
|
|
|
|
/* [ ... this_new | arg1 ... argN ] */
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("not a tailcall, pushing a new activation to callstack, to index %ld",
|
|
(long) (thr->callstack_top)));
|
|
|
|
duk_hthread_callstack_grow(thr);
|
|
|
|
if (call_flags & DUK_CALL_FLAG_IS_RESUME) {
|
|
DUK_DDD(DUK_DDDPRINT("is resume -> no update to current activation (may not even exist)"));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("update to current activation idx_retval"));
|
|
DUK_ASSERT(thr->callstack_top < thr->callstack_size);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(act) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(act)));
|
|
act->idx_retval = entry_valstack_bottom_index + idx_func;
|
|
}
|
|
|
|
DUK_ASSERT(thr->callstack_top < thr->callstack_size);
|
|
act = thr->callstack + thr->callstack_top;
|
|
thr->callstack_top++;
|
|
DUK_ASSERT(thr->callstack_top <= thr->callstack_size);
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NATIVEFUNCTION(func));
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_COMPILEDFUNCTION(func));
|
|
|
|
act->flags = (DUK_HOBJECT_HAS_STRICT(func) ?
|
|
DUK_ACT_FLAG_STRICT :
|
|
0);
|
|
act->func = func;
|
|
act->var_env = NULL;
|
|
act->lex_env = NULL;
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
act->prev_caller = NULL;
|
|
#endif
|
|
act->pc = 0;
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
act->prev_line = 0;
|
|
#endif
|
|
act->idx_bottom = entry_valstack_bottom_index + idx_args;
|
|
DUK_ASSERT(nregs >= 0);
|
|
#if 0 /* topmost activation idx_retval is considered garbage, no need to init */
|
|
act->idx_retval = 0;
|
|
#endif
|
|
DUK_TVAL_SET_OBJECT(&act->tv_func, func); /* borrowed, no refcount */
|
|
|
|
DUK_HOBJECT_INCREF(thr, func); /* act->func */
|
|
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
duk__update_func_caller_prop(thr, func);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
#endif
|
|
}
|
|
|
|
/* [... func this arg1 ... argN] (not tail call)
|
|
* [this | arg1 ... argN] (tail call)
|
|
*
|
|
* idx_args updated to match
|
|
*/
|
|
|
|
/*
|
|
* Environment record creation and 'arguments' object creation.
|
|
* Named function expression name binding is handled by the
|
|
* compiler; the compiled function's parent env will contain
|
|
* the (immutable) binding already.
|
|
*
|
|
* Delayed creation (on demand) is handled in duk_js_var.c.
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func)); /* bound function chain has already been resolved */
|
|
|
|
if (!DUK_HOBJECT_HAS_NEWENV(func)) {
|
|
/* use existing env (e.g. for non-strict eval); cannot have
|
|
* an own 'arguments' object (but can refer to the existing one)
|
|
*/
|
|
|
|
duk__handle_oldenv_for_call(thr, func, act);
|
|
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
goto env_done;
|
|
}
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_NEWENV(func));
|
|
|
|
if (!DUK_HOBJECT_HAS_CREATEARGS(func)) {
|
|
/* no need to create environment record now; leave as NULL */
|
|
DUK_ASSERT(act->lex_env == NULL);
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
goto env_done;
|
|
}
|
|
|
|
/* third arg: absolute index (to entire valstack) of idx_bottom of new activation */
|
|
env = duk_create_activation_environment_record(thr, func, act->idx_bottom);
|
|
DUK_ASSERT(env != NULL);
|
|
|
|
/* [... arg1 ... argN envobj] */
|
|
|
|
/* original input stack before nargs/nregs handling must be
|
|
* intact for 'arguments' object
|
|
*/
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_CREATEARGS(func));
|
|
duk__handle_createargs_for_call(thr, func, env, num_stack_args);
|
|
|
|
/* [... arg1 ... argN envobj] */
|
|
|
|
act->lex_env = env;
|
|
act->var_env = env;
|
|
DUK_HOBJECT_INCREF(thr, act->lex_env);
|
|
DUK_HOBJECT_INCREF(thr, act->var_env);
|
|
duk_pop(ctx);
|
|
|
|
env_done:
|
|
/* [... arg1 ... argN] */
|
|
|
|
/*
|
|
* Setup value stack: clamp to 'nargs', fill up to 'nregs'
|
|
*/
|
|
|
|
duk__adjust_valstack_and_top(thr,
|
|
num_stack_args,
|
|
idx_args,
|
|
nregs,
|
|
nargs,
|
|
func);
|
|
|
|
/*
|
|
* Shift to new valstack_bottom.
|
|
*/
|
|
|
|
thr->valstack_bottom = thr->valstack_bottom + idx_args;
|
|
/* keep current valstack_top */
|
|
DUK_ASSERT(thr->valstack_bottom >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack_top >= thr->valstack_bottom);
|
|
DUK_ASSERT(thr->valstack_end >= thr->valstack_top);
|
|
|
|
/*
|
|
* Return to bytecode executor, which will resume execution from
|
|
* the topmost activation.
|
|
*/
|
|
|
|
return 1;
|
|
}
|
|
#line 1 "duk_js_compiler.c"
|
|
/*
|
|
* Ecmascript compiler.
|
|
*
|
|
* Parses an input string and generates a function template result.
|
|
* Compilation may happen in multiple contexts (global code, eval
|
|
* code, function code).
|
|
*
|
|
* The parser uses a traditional top-down recursive parsing for the
|
|
* statement level, and an operator precedence based top-down approach
|
|
* for the expression level. The attempt is to minimize the C stack
|
|
* depth. Bytecode is generated directly without an intermediate
|
|
* representation (tree), at the cost of needing two passes over each
|
|
* function.
|
|
*
|
|
* The top-down recursive parser functions are named "duk__parse_XXX".
|
|
*
|
|
* Recursion limits are in key functions to prevent arbitrary C recursion:
|
|
* function body parsing, statement parsing, and expression parsing.
|
|
*
|
|
* See doc/compiler.txt for discussion on the design.
|
|
*
|
|
* A few typing notes:
|
|
*
|
|
* - duk_regconst_t: unsigned, no marker value for "none"
|
|
* - duk_reg_t: signed, < 0 = none
|
|
* - PC values: duk_int_t, negative values used as markers
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* if highest bit of a register number is set, it refers to a constant instead */
|
|
#define DUK__CONST_MARKER DUK_JS_CONST_MARKER
|
|
|
|
/* for array and object literals */
|
|
#define DUK__MAX_ARRAY_INIT_VALUES 20
|
|
#define DUK__MAX_OBJECT_INIT_PAIRS 10
|
|
|
|
/* XXX: hack, remove when const lookup is not O(n) */
|
|
#define DUK__GETCONST_MAX_CONSTS_CHECK 256
|
|
|
|
/* These limits are based on bytecode limits. Max temps is limited
|
|
* by duk_hcompiledfunction nargs/nregs fields being 16 bits.
|
|
*/
|
|
#define DUK__MAX_CONSTS DUK_BC_BC_MAX
|
|
#define DUK__MAX_FUNCS DUK_BC_BC_MAX
|
|
#define DUK__MAX_TEMPS 0xffffL
|
|
|
|
#define DUK__RECURSION_INCREASE(comp_ctx,thr) do { \
|
|
DUK_DDD(DUK_DDDPRINT("RECURSION INCREASE: %s:%ld", (const char *) DUK_FILE_MACRO, (long) DUK_LINE_MACRO)); \
|
|
duk__recursion_increase((comp_ctx)); \
|
|
} while (0)
|
|
|
|
#define DUK__RECURSION_DECREASE(comp_ctx,thr) do { \
|
|
DUK_DDD(DUK_DDDPRINT("RECURSION DECREASE: %s:%ld", (const char *) DUK_FILE_MACRO, (long) DUK_LINE_MACRO)); \
|
|
duk__recursion_decrease((comp_ctx)); \
|
|
} while (0)
|
|
|
|
/* Value stack slot limits: these are quite approximate right now, and
|
|
* because they overlap in control flow, some could be eliminated.
|
|
*/
|
|
#define DUK__COMPILE_ENTRY_SLOTS 8
|
|
#define DUK__FUNCTION_INIT_REQUIRE_SLOTS 16
|
|
#define DUK__FUNCTION_BODY_REQUIRE_SLOTS 16
|
|
#define DUK__PARSE_STATEMENTS_SLOTS 16
|
|
#define DUK__PARSE_EXPR_SLOTS 16
|
|
|
|
/* Temporary structure used to pass a stack allocated region through
|
|
* duk_safe_call().
|
|
*/
|
|
typedef struct {
|
|
duk_small_uint_t flags;
|
|
duk_compiler_ctx comp_ctx_alloc;
|
|
duk_lexer_point lex_pt_alloc;
|
|
} duk__compiler_stkstate;
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
|
|
/* lexing */
|
|
DUK_LOCAL_DECL void duk__advance_helper(duk_compiler_ctx *comp_ctx, duk_small_int_t expect);
|
|
DUK_LOCAL_DECL void duk__advance_expect(duk_compiler_ctx *comp_ctx, duk_small_int_t expect);
|
|
DUK_LOCAL_DECL void duk__advance(duk_compiler_ctx *ctx);
|
|
|
|
/* function helpers */
|
|
DUK_LOCAL_DECL void duk__init_func_valstack_slots(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL void duk__reset_func_for_pass2(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL void duk__init_varmap_and_prologue_for_pass2(duk_compiler_ctx *comp_ctx, duk_reg_t *out_stmt_value_reg);
|
|
DUK_LOCAL_DECL void duk__convert_to_func_template(duk_compiler_ctx *comp_ctx, duk_bool_t force_no_namebind);
|
|
DUK_LOCAL_DECL duk_int_t duk__cleanup_varmap(duk_compiler_ctx *comp_ctx);
|
|
|
|
/* code emission */
|
|
DUK_LOCAL_DECL duk_int_t duk__get_current_pc(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL duk_compiler_instr *duk__get_instr_ptr(duk_compiler_ctx *comp_ctx, duk_int_t pc);
|
|
DUK_LOCAL_DECL void duk__emit(duk_compiler_ctx *comp_ctx, duk_instr_t ins);
|
|
#if 0 /* unused */
|
|
DUK_LOCAL_DECL void duk__emit_op_only(duk_compiler_ctx *comp_ctx, duk_small_uint_t op);
|
|
#endif
|
|
DUK_LOCAL_DECL void duk__emit_a_b_c(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a, duk_regconst_t b, duk_regconst_t c);
|
|
DUK_LOCAL_DECL void duk__emit_a_b(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a, duk_regconst_t b);
|
|
#if 0 /* unused */
|
|
DUK_LOCAL_DECL void duk__emit_a(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a);
|
|
#endif
|
|
DUK_LOCAL_DECL void duk__emit_a_bc(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a, duk_regconst_t bc);
|
|
DUK_LOCAL_DECL void duk__emit_abc(duk_compiler_ctx *comp_ctx, duk_small_uint_t op, duk_regconst_t abc);
|
|
DUK_LOCAL_DECL void duk__emit_extraop_b_c(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop_flags, duk_regconst_t b, duk_regconst_t c);
|
|
DUK_LOCAL_DECL void duk__emit_extraop_b(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop_flags, duk_regconst_t b);
|
|
DUK_LOCAL_DECL void duk__emit_extraop_bc(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop, duk_regconst_t bc);
|
|
DUK_LOCAL_DECL void duk__emit_extraop_only(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop_flags);
|
|
DUK_LOCAL_DECL void duk__emit_load_int32(duk_compiler_ctx *comp_ctx, duk_reg_t reg, duk_int32_t val);
|
|
DUK_LOCAL_DECL void duk__emit_load_int32_noshuffle(duk_compiler_ctx *comp_ctx, duk_reg_t reg, duk_int32_t val);
|
|
DUK_LOCAL_DECL void duk__emit_jump(duk_compiler_ctx *comp_ctx, duk_int_t target_pc);
|
|
DUK_LOCAL_DECL duk_int_t duk__emit_jump_empty(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL void duk__insert_jump_entry(duk_compiler_ctx *comp_ctx, duk_int_t jump_pc);
|
|
DUK_LOCAL_DECL void duk__patch_jump(duk_compiler_ctx *comp_ctx, duk_int_t jump_pc, duk_int_t target_pc);
|
|
DUK_LOCAL_DECL void duk__patch_jump_here(duk_compiler_ctx *comp_ctx, duk_int_t jump_pc);
|
|
DUK_LOCAL_DECL void duk__patch_trycatch(duk_compiler_ctx *comp_ctx, duk_int_t trycatch_pc, duk_regconst_t reg_catch, duk_regconst_t const_varname, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL void duk__emit_if_false_skip(duk_compiler_ctx *comp_ctx, duk_regconst_t regconst);
|
|
DUK_LOCAL_DECL void duk__emit_if_true_skip(duk_compiler_ctx *comp_ctx, duk_regconst_t regconst);
|
|
DUK_LOCAL_DECL void duk__emit_invalid(duk_compiler_ctx *comp_ctx);
|
|
|
|
/* ivalue/ispec helpers */
|
|
DUK_LOCAL_DECL void duk__copy_ispec(duk_compiler_ctx *comp_ctx, duk_ispec *src, duk_ispec *dst);
|
|
DUK_LOCAL_DECL void duk__copy_ivalue(duk_compiler_ctx *comp_ctx, duk_ivalue *src, duk_ivalue *dst);
|
|
DUK_LOCAL_DECL duk_bool_t duk__is_whole_get_int32(duk_double_t x, duk_int32_t *ival);
|
|
DUK_LOCAL_DECL duk_reg_t duk__alloctemps(duk_compiler_ctx *comp_ctx, duk_small_int_t num);
|
|
DUK_LOCAL_DECL duk_reg_t duk__alloctemp(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL void duk__settemp_checkmax(duk_compiler_ctx *comp_ctx, duk_reg_t temp_next);
|
|
DUK_LOCAL_DECL duk_regconst_t duk__getconst(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL
|
|
duk_regconst_t duk__ispec_toregconst_raw(duk_compiler_ctx *comp_ctx,
|
|
duk_ispec *x,
|
|
duk_reg_t forced_reg,
|
|
duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL void duk__ispec_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ispec *x, duk_reg_t forced_reg);
|
|
DUK_LOCAL_DECL void duk__ivalue_toplain_raw(duk_compiler_ctx *comp_ctx, duk_ivalue *x, duk_reg_t forced_reg);
|
|
DUK_LOCAL_DECL void duk__ivalue_toplain(duk_compiler_ctx *comp_ctx, duk_ivalue *x);
|
|
DUK_LOCAL_DECL void duk__ivalue_toplain_ignore(duk_compiler_ctx *comp_ctx, duk_ivalue *x);
|
|
DUK_LOCAL_DECL
|
|
duk_regconst_t duk__ivalue_toregconst_raw(duk_compiler_ctx *comp_ctx,
|
|
duk_ivalue *x,
|
|
duk_reg_t forced_reg,
|
|
duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL duk_reg_t duk__ivalue_toreg(duk_compiler_ctx *comp_ctx, duk_ivalue *x);
|
|
#if 0 /* unused */
|
|
DUK_LOCAL_DECL duk_reg_t duk__ivalue_totempreg(duk_compiler_ctx *comp_ctx, duk_ivalue *x);
|
|
#endif
|
|
DUK_LOCAL_DECL void duk__ivalue_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ivalue *x, duk_int_t forced_reg);
|
|
DUK_LOCAL_DECL duk_regconst_t duk__ivalue_toregconst(duk_compiler_ctx *comp_ctx, duk_ivalue *x);
|
|
|
|
/* identifier handling */
|
|
DUK_LOCAL_DECL duk_reg_t duk__lookup_active_register_binding(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL duk_bool_t duk__lookup_lhs(duk_compiler_ctx *ctx, duk_reg_t *out_reg_varbind, duk_regconst_t *out_rc_varname);
|
|
|
|
/* label handling */
|
|
DUK_LOCAL_DECL void duk__add_label(duk_compiler_ctx *comp_ctx, duk_hstring *h_label, duk_int_t pc_label, duk_int_t label_id);
|
|
DUK_LOCAL_DECL void duk__update_label_flags(duk_compiler_ctx *comp_ctx, duk_int_t label_id, duk_small_uint_t flags);
|
|
DUK_LOCAL_DECL void duk__lookup_active_label(duk_compiler_ctx *comp_ctx, duk_hstring *h_label, duk_bool_t is_break, duk_int_t *out_label_id, duk_int_t *out_label_catch_depth, duk_int_t *out_label_pc, duk_bool_t *out_is_closest);
|
|
DUK_LOCAL_DECL void duk__reset_labels_to_length(duk_compiler_ctx *comp_ctx, duk_int_t len);
|
|
|
|
/* top-down expression parser */
|
|
DUK_LOCAL_DECL void duk__expr_nud(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__expr_led(duk_compiler_ctx *comp_ctx, duk_ivalue *left, duk_ivalue *res);
|
|
DUK_LOCAL_DECL duk_small_uint_t duk__expr_lbp(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL duk_bool_t duk__expr_is_empty(duk_compiler_ctx *comp_ctx);
|
|
|
|
/* exprtop is the top level variant which resets nud/led counts */
|
|
DUK_LOCAL_DECL void duk__expr(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
DUK_LOCAL_DECL void duk__exprtop(duk_compiler_ctx *ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
|
|
/* convenience helpers */
|
|
DUK_LOCAL_DECL duk_reg_t duk__expr_toreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
#if 0 /* unused */
|
|
DUK_LOCAL_DECL duk_reg_t duk__expr_totempreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
#endif
|
|
DUK_LOCAL_DECL void duk__expr_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags, duk_reg_t forced_reg);
|
|
DUK_LOCAL_DECL duk_regconst_t duk__expr_toregconst(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
DUK_LOCAL_DECL void duk__expr_toplain(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
DUK_LOCAL_DECL void duk__expr_toplain_ignore(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
DUK_LOCAL_DECL duk_reg_t duk__exprtop_toreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
#if 0 /* unused */
|
|
DUK_LOCAL_DECL duk_reg_t duk__exprtop_totempreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
DUK_LOCAL_DECL void duk__exprtop_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags, duk_reg_t forced_reg);
|
|
#endif
|
|
DUK_LOCAL_DECL duk_regconst_t duk__exprtop_toregconst(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
#if 0 /* unused */
|
|
DUK_LOCAL_DECL void duk__exprtop_toplain_ignore(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags);
|
|
#endif
|
|
|
|
/* expression parsing helpers */
|
|
DUK_LOCAL_DECL duk_int_t duk__parse_arguments(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__nud_array_literal(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__nud_object_literal(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL duk_bool_t duk__nud_object_literal_key_check(duk_compiler_ctx *comp_ctx, duk_small_uint_t new_key_flags);
|
|
|
|
/* statement parsing */
|
|
DUK_LOCAL_DECL void duk__parse_var_decl(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t expr_flags, duk_reg_t *out_reg_varbind, duk_regconst_t *out_rc_varname);
|
|
DUK_LOCAL_DECL void duk__parse_var_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_for_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site);
|
|
DUK_LOCAL_DECL void duk__parse_switch_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site);
|
|
DUK_LOCAL_DECL void duk__parse_if_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_do_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site);
|
|
DUK_LOCAL_DECL void duk__parse_while_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site);
|
|
DUK_LOCAL_DECL void duk__parse_break_or_continue_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_return_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_throw_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_try_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_with_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res);
|
|
DUK_LOCAL_DECL void duk__parse_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_bool_t allow_source_elem);
|
|
DUK_LOCAL_DECL duk_int_t duk__stmt_label_site(duk_compiler_ctx *comp_ctx, duk_int_t label_id);
|
|
DUK_LOCAL_DECL void duk__parse_stmts(duk_compiler_ctx *comp_ctx, duk_bool_t allow_source_elem, duk_bool_t expect_eof);
|
|
|
|
DUK_LOCAL_DECL void duk__parse_func_body(duk_compiler_ctx *comp_ctx, duk_bool_t expect_eof, duk_bool_t implicit_return_value, duk_small_int_t expect_token);
|
|
DUK_LOCAL_DECL void duk__parse_func_formals(duk_compiler_ctx *comp_ctx);
|
|
DUK_LOCAL_DECL void duk__parse_func_like_raw(duk_compiler_ctx *comp_ctx, duk_bool_t is_decl, duk_bool_t is_setget);
|
|
DUK_LOCAL_DECL duk_int_t duk__parse_func_like_fnum(duk_compiler_ctx *comp_ctx, duk_bool_t is_decl, duk_bool_t is_setget);
|
|
|
|
/*
|
|
* Parser control values for tokens. The token table is ordered by the
|
|
* DUK_TOK_XXX defines.
|
|
*
|
|
* The binding powers are for lbp() use (i.e. for use in led() context).
|
|
* Binding powers are positive for typing convenience, and bits at the
|
|
* top should be reserved for flags. Binding power step must be higher
|
|
* than 1 so that binding power "lbp - 1" can be used for right associative
|
|
* operators. Currently a step of 2 is used (which frees one more bit for
|
|
* flags).
|
|
*/
|
|
|
|
/* XXX: actually single step levels would work just fine, clean up */
|
|
|
|
/* binding power "levels" (see doc/compiler.txt) */
|
|
#define DUK__BP_INVALID 0 /* always terminates led() */
|
|
#define DUK__BP_EOF 2
|
|
#define DUK__BP_CLOSING 4 /* token closes expression, e.g. ')', ']' */
|
|
#define DUK__BP_FOR_EXPR DUK__BP_CLOSING /* bp to use when parsing a top level Expression */
|
|
#define DUK__BP_COMMA 6
|
|
#define DUK__BP_ASSIGNMENT 8
|
|
#define DUK__BP_CONDITIONAL 10
|
|
#define DUK__BP_LOR 12
|
|
#define DUK__BP_LAND 14
|
|
#define DUK__BP_BOR 16
|
|
#define DUK__BP_BXOR 18
|
|
#define DUK__BP_BAND 20
|
|
#define DUK__BP_EQUALITY 22
|
|
#define DUK__BP_RELATIONAL 24
|
|
#define DUK__BP_SHIFT 26
|
|
#define DUK__BP_ADDITIVE 28
|
|
#define DUK__BP_MULTIPLICATIVE 30
|
|
#define DUK__BP_POSTFIX 32
|
|
#define DUK__BP_CALL 34
|
|
#define DUK__BP_MEMBER 36
|
|
|
|
#define DUK__TOKEN_LBP_BP_MASK 0x1f
|
|
#define DUK__TOKEN_LBP_FLAG_NO_REGEXP (1 << 5) /* regexp literal must not follow this token */
|
|
#define DUK__TOKEN_LBP_FLAG_TERMINATES (1 << 6) /* terminates expression; e.g. post-increment/-decrement */
|
|
#define DUK__TOKEN_LBP_FLAG_UNUSED (1 << 7) /* spare */
|
|
|
|
#define DUK__TOKEN_LBP_GET_BP(x) ((duk_small_uint_t) (((x) & DUK__TOKEN_LBP_BP_MASK) * 2))
|
|
|
|
#define DUK__MK_LBP(bp) ((bp) >> 1) /* bp is assumed to be even */
|
|
#define DUK__MK_LBP_FLAGS(bp,flags) (((bp) >> 1) | (flags))
|
|
|
|
DUK_LOCAL const duk_uint8_t duk__token_lbp[] = {
|
|
DUK__MK_LBP(DUK__BP_EOF), /* DUK_TOK_EOF */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_LINETERM */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_COMMENT */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_IDENTIFIER */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_BREAK */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_CASE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_CATCH */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_CONTINUE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_DEBUGGER */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_DEFAULT */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_DELETE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_DO */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_ELSE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_FINALLY */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_FOR */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_FUNCTION */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_IF */
|
|
DUK__MK_LBP(DUK__BP_RELATIONAL), /* DUK_TOK_IN */
|
|
DUK__MK_LBP(DUK__BP_RELATIONAL), /* DUK_TOK_INSTANCEOF */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_NEW */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_RETURN */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_SWITCH */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_THIS */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_THROW */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_TRY */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_TYPEOF */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_VAR */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_VOID */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_WHILE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_WITH */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_CLASS */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_CONST */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_ENUM */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_EXPORT */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_EXTENDS */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_IMPORT */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_SUPER */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_NULL */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_TRUE */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_FALSE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_GET */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_SET */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_IMPLEMENTS */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_INTERFACE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_LET */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_PACKAGE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_PRIVATE */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_PROTECTED */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_PUBLIC */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_STATIC */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_YIELD */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_LCURLY */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_RCURLY */
|
|
DUK__MK_LBP(DUK__BP_MEMBER), /* DUK_TOK_LBRACKET */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_CLOSING, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_RBRACKET */
|
|
DUK__MK_LBP(DUK__BP_CALL), /* DUK_TOK_LPAREN */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_CLOSING, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_RPAREN */
|
|
DUK__MK_LBP(DUK__BP_MEMBER), /* DUK_TOK_PERIOD */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_SEMICOLON */
|
|
DUK__MK_LBP(DUK__BP_COMMA), /* DUK_TOK_COMMA */
|
|
DUK__MK_LBP(DUK__BP_RELATIONAL), /* DUK_TOK_LT */
|
|
DUK__MK_LBP(DUK__BP_RELATIONAL), /* DUK_TOK_GT */
|
|
DUK__MK_LBP(DUK__BP_RELATIONAL), /* DUK_TOK_LE */
|
|
DUK__MK_LBP(DUK__BP_RELATIONAL), /* DUK_TOK_GE */
|
|
DUK__MK_LBP(DUK__BP_EQUALITY), /* DUK_TOK_EQ */
|
|
DUK__MK_LBP(DUK__BP_EQUALITY), /* DUK_TOK_NEQ */
|
|
DUK__MK_LBP(DUK__BP_EQUALITY), /* DUK_TOK_SEQ */
|
|
DUK__MK_LBP(DUK__BP_EQUALITY), /* DUK_TOK_SNEQ */
|
|
DUK__MK_LBP(DUK__BP_ADDITIVE), /* DUK_TOK_ADD */
|
|
DUK__MK_LBP(DUK__BP_ADDITIVE), /* DUK_TOK_SUB */
|
|
DUK__MK_LBP(DUK__BP_MULTIPLICATIVE), /* DUK_TOK_MUL */
|
|
DUK__MK_LBP(DUK__BP_MULTIPLICATIVE), /* DUK_TOK_DIV */
|
|
DUK__MK_LBP(DUK__BP_MULTIPLICATIVE), /* DUK_TOK_MOD */
|
|
DUK__MK_LBP(DUK__BP_POSTFIX), /* DUK_TOK_INCREMENT */
|
|
DUK__MK_LBP(DUK__BP_POSTFIX), /* DUK_TOK_DECREMENT */
|
|
DUK__MK_LBP(DUK__BP_SHIFT), /* DUK_TOK_ALSHIFT */
|
|
DUK__MK_LBP(DUK__BP_SHIFT), /* DUK_TOK_ARSHIFT */
|
|
DUK__MK_LBP(DUK__BP_SHIFT), /* DUK_TOK_RSHIFT */
|
|
DUK__MK_LBP(DUK__BP_BAND), /* DUK_TOK_BAND */
|
|
DUK__MK_LBP(DUK__BP_BOR), /* DUK_TOK_BOR */
|
|
DUK__MK_LBP(DUK__BP_BXOR), /* DUK_TOK_BXOR */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_LNOT */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_BNOT */
|
|
DUK__MK_LBP(DUK__BP_LAND), /* DUK_TOK_LAND */
|
|
DUK__MK_LBP(DUK__BP_LOR), /* DUK_TOK_LOR */
|
|
DUK__MK_LBP(DUK__BP_CONDITIONAL), /* DUK_TOK_QUESTION */
|
|
DUK__MK_LBP(DUK__BP_INVALID), /* DUK_TOK_COLON */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_EQUALSIGN */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_ADD_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_SUB_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_MUL_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_DIV_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_MOD_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_ALSHIFT_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_ARSHIFT_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_RSHIFT_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_BAND_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_BOR_EQ */
|
|
DUK__MK_LBP(DUK__BP_ASSIGNMENT), /* DUK_TOK_BXOR_EQ */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_NUMBER */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_STRING */
|
|
DUK__MK_LBP_FLAGS(DUK__BP_INVALID, DUK__TOKEN_LBP_FLAG_NO_REGEXP), /* DUK_TOK_REGEXP */
|
|
};
|
|
|
|
/*
|
|
* Misc helpers
|
|
*/
|
|
|
|
DUK_LOCAL void duk__recursion_increase(duk_compiler_ctx *comp_ctx) {
|
|
DUK_ASSERT(comp_ctx != NULL);
|
|
DUK_ASSERT(comp_ctx->recursion_depth >= 0);
|
|
if (comp_ctx->recursion_depth >= comp_ctx->recursion_limit) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_COMPILER_RECURSION_LIMIT);
|
|
}
|
|
comp_ctx->recursion_depth++;
|
|
}
|
|
|
|
DUK_LOCAL void duk__recursion_decrease(duk_compiler_ctx *comp_ctx) {
|
|
DUK_ASSERT(comp_ctx != NULL);
|
|
DUK_ASSERT(comp_ctx->recursion_depth > 0);
|
|
comp_ctx->recursion_depth--;
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__hstring_is_eval_or_arguments(duk_compiler_ctx *comp_ctx, duk_hstring *h) {
|
|
DUK_UNREF(comp_ctx);
|
|
DUK_ASSERT(h != NULL);
|
|
return DUK_HSTRING_HAS_EVAL_OR_ARGUMENTS(h);
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__hstring_is_eval_or_arguments_in_strict_mode(duk_compiler_ctx *comp_ctx, duk_hstring *h) {
|
|
DUK_ASSERT(h != NULL);
|
|
return (comp_ctx->curr_func.is_strict &&
|
|
DUK_HSTRING_HAS_EVAL_OR_ARGUMENTS(h));
|
|
}
|
|
|
|
/*
|
|
* Parser duk__advance() token eating functions
|
|
*/
|
|
|
|
/* XXX: valstack handling is awkward. Add a valstack helper which
|
|
* avoids dup():ing; valstack_copy(src, dst)?
|
|
*/
|
|
|
|
DUK_LOCAL void duk__advance_helper(duk_compiler_ctx *comp_ctx, duk_small_int_t expect) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bool_t regexp;
|
|
|
|
DUK_ASSERT(comp_ctx->curr_token.t >= 0 && comp_ctx->curr_token.t <= DUK_TOK_MAXVAL); /* MAXVAL is inclusive */
|
|
|
|
/*
|
|
* Use current token to decide whether a RegExp can follow.
|
|
*
|
|
* We can use either 't' or 't_nores'; the latter would not
|
|
* recognize keywords. Some keywords can be followed by a
|
|
* RegExp (e.g. "return"), so using 't' is better. This is
|
|
* not trivial, see doc/compiler.txt.
|
|
*/
|
|
|
|
regexp = 1;
|
|
if (duk__token_lbp[comp_ctx->curr_token.t] & DUK__TOKEN_LBP_FLAG_NO_REGEXP) {
|
|
regexp = 0;
|
|
}
|
|
if (comp_ctx->curr_func.reject_regexp_in_adv) {
|
|
comp_ctx->curr_func.reject_regexp_in_adv = 0;
|
|
regexp = 0;
|
|
}
|
|
|
|
if (expect >= 0 && comp_ctx->curr_token.t != expect) {
|
|
DUK_D(DUK_DPRINT("parse error: expect=%ld, got=%ld",
|
|
(long) expect, (long) comp_ctx->curr_token.t));
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_PARSE_ERROR);
|
|
}
|
|
|
|
/* make current token the previous; need to fiddle with valstack "backing store" */
|
|
DUK_MEMCPY(&comp_ctx->prev_token, &comp_ctx->curr_token, sizeof(duk_token));
|
|
duk_copy(ctx, comp_ctx->tok11_idx, comp_ctx->tok21_idx);
|
|
duk_copy(ctx, comp_ctx->tok12_idx, comp_ctx->tok22_idx);
|
|
|
|
/* parse new token */
|
|
duk_lexer_parse_js_input_element(&comp_ctx->lex,
|
|
&comp_ctx->curr_token,
|
|
comp_ctx->curr_func.is_strict,
|
|
regexp);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("advance: curr: tok=%ld/%ld,%ld,term=%ld,%!T,%!T "
|
|
"prev: tok=%ld/%ld,%ld,term=%ld,%!T,%!T",
|
|
(long) comp_ctx->curr_token.t,
|
|
(long) comp_ctx->curr_token.t_nores,
|
|
(long) comp_ctx->curr_token.start_line,
|
|
(long) comp_ctx->curr_token.lineterm,
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->tok11_idx),
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->tok12_idx),
|
|
(long) comp_ctx->prev_token.t,
|
|
(long) comp_ctx->prev_token.t_nores,
|
|
(long) comp_ctx->prev_token.start_line,
|
|
(long) comp_ctx->prev_token.lineterm,
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->tok21_idx),
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->tok22_idx)));
|
|
}
|
|
|
|
/* advance, expecting current token to be a specific token; parse next token in regexp context */
|
|
DUK_LOCAL void duk__advance_expect(duk_compiler_ctx *comp_ctx, duk_small_int_t expect) {
|
|
duk__advance_helper(comp_ctx, expect);
|
|
}
|
|
|
|
/* advance, whatever the current token is; parse next token in regexp context */
|
|
DUK_LOCAL void duk__advance(duk_compiler_ctx *comp_ctx) {
|
|
duk__advance_helper(comp_ctx, -1);
|
|
}
|
|
|
|
/*
|
|
* Helpers for duk_compiler_func.
|
|
*/
|
|
|
|
/* init function state: inits valstack allocations */
|
|
DUK_LOCAL void duk__init_func_valstack_slots(duk_compiler_ctx *comp_ctx) {
|
|
duk_compiler_func *func = &comp_ctx->curr_func;
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_idx_t entry_top;
|
|
|
|
entry_top = duk_get_top(ctx);
|
|
|
|
DUK_MEMZERO(func, sizeof(*func)); /* intentional overlap with earlier memzero */
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
func->h_name = NULL;
|
|
func->h_code = NULL;
|
|
func->h_consts = NULL;
|
|
func->h_funcs = NULL;
|
|
func->h_decls = NULL;
|
|
func->h_labelnames = NULL;
|
|
func->h_labelinfos = NULL;
|
|
func->h_argnames = NULL;
|
|
func->h_varmap = NULL;
|
|
#endif
|
|
|
|
duk_require_stack(ctx, DUK__FUNCTION_INIT_REQUIRE_SLOTS);
|
|
|
|
/* XXX: getter for dynamic buffer */
|
|
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
func->code_idx = entry_top + 0;
|
|
func->h_code = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, entry_top + 0);
|
|
DUK_ASSERT(func->h_code != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(func->h_code));
|
|
|
|
duk_push_array(ctx);
|
|
func->consts_idx = entry_top + 1;
|
|
func->h_consts = duk_get_hobject(ctx, entry_top + 1);
|
|
DUK_ASSERT(func->h_consts != NULL);
|
|
|
|
duk_push_array(ctx);
|
|
func->funcs_idx = entry_top + 2;
|
|
func->h_funcs = duk_get_hobject(ctx, entry_top + 2);
|
|
DUK_ASSERT(func->h_funcs != NULL);
|
|
DUK_ASSERT(func->fnum_next == 0);
|
|
|
|
duk_push_array(ctx);
|
|
func->decls_idx = entry_top + 3;
|
|
func->h_decls = duk_get_hobject(ctx, entry_top + 3);
|
|
DUK_ASSERT(func->h_decls != NULL);
|
|
|
|
duk_push_array(ctx);
|
|
func->labelnames_idx = entry_top + 4;
|
|
func->h_labelnames = duk_get_hobject(ctx, entry_top + 4);
|
|
DUK_ASSERT(func->h_labelnames != NULL);
|
|
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
func->labelinfos_idx = entry_top + 5;
|
|
func->h_labelinfos = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, entry_top + 5);
|
|
DUK_ASSERT(func->h_labelinfos != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(func->h_labelinfos));
|
|
|
|
duk_push_array(ctx);
|
|
func->argnames_idx = entry_top + 6;
|
|
func->h_argnames = duk_get_hobject(ctx, entry_top + 6);
|
|
DUK_ASSERT(func->h_argnames != NULL);
|
|
|
|
duk_push_object_internal(ctx);
|
|
func->varmap_idx = entry_top + 7;
|
|
func->h_varmap = duk_get_hobject(ctx, entry_top + 7);
|
|
DUK_ASSERT(func->h_varmap != NULL);
|
|
}
|
|
|
|
/* reset function state (prepare for pass 2) */
|
|
DUK_LOCAL void duk__reset_func_for_pass2(duk_compiler_ctx *comp_ctx) {
|
|
duk_compiler_func *func = &comp_ctx->curr_func;
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
|
|
/* XXX: reset buffers while keeping existing spare */
|
|
|
|
duk_hbuffer_reset(thr, func->h_code);
|
|
duk_hobject_set_length_zero(thr, func->h_consts);
|
|
/* keep func->h_funcs; inner functions are not reparsed to avoid O(depth^2) parsing */
|
|
func->fnum_next = 0;
|
|
/* duk_hobject_set_length_zero(thr, func->h_funcs); */
|
|
duk_hobject_set_length_zero(thr, func->h_labelnames);
|
|
duk_hbuffer_reset(thr, func->h_labelinfos);
|
|
/* keep func->h_argnames; it is fixed for all passes */
|
|
|
|
/* truncated in case pass 3 needed */
|
|
duk_push_object_internal(ctx);
|
|
duk_replace(ctx, func->varmap_idx);
|
|
func->h_varmap = duk_get_hobject(ctx, func->varmap_idx);
|
|
DUK_ASSERT(func->h_varmap != NULL);
|
|
}
|
|
|
|
/* cleanup varmap from any null entries, compact it, etc; returns number
|
|
* of final entries after cleanup.
|
|
*/
|
|
DUK_LOCAL duk_int_t duk__cleanup_varmap(duk_compiler_ctx *comp_ctx) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *h_varmap;
|
|
duk_hstring *h_key;
|
|
duk_tval *tv;
|
|
duk_uint32_t i, e_next;
|
|
duk_int_t ret;
|
|
|
|
/* [ ... varmap ] */
|
|
|
|
h_varmap = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h_varmap != NULL);
|
|
|
|
ret = 0;
|
|
e_next = DUK_HOBJECT_GET_ENEXT(h_varmap);
|
|
for (i = 0; i < e_next; i++) {
|
|
h_key = DUK_HOBJECT_E_GET_KEY(thr->heap, h_varmap, i);
|
|
if (!h_key) {
|
|
continue;
|
|
}
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, h_varmap, i));
|
|
|
|
/* The entries can either be register numbers or 'null' values.
|
|
* Thus, no need to DECREF them and get side effects. DECREF'ing
|
|
* the keys (strings) can cause memory to be freed but no side
|
|
* effects as strings don't have finalizers. This is why we can
|
|
* rely on the object properties not changing from underneath us.
|
|
*/
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, h_varmap, i);
|
|
if (!DUK_TVAL_IS_NUMBER(tv)) {
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv));
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_HOBJECT_E_SET_KEY(thr->heap, h_varmap, i, NULL);
|
|
DUK_HSTRING_DECREF(thr, h_key);
|
|
} else {
|
|
ret++;
|
|
}
|
|
}
|
|
|
|
duk_compact(ctx, -1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* convert duk_compiler_func into a function template, leaving the result
|
|
* on top of stack.
|
|
*/
|
|
/* XXX: awkward and bloated asm -- use faster internal accesses */
|
|
DUK_LOCAL void duk__convert_to_func_template(duk_compiler_ctx *comp_ctx, duk_bool_t force_no_namebind) {
|
|
duk_compiler_func *func = &comp_ctx->curr_func;
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hcompiledfunction *h_res;
|
|
duk_hbuffer_fixed *h_data;
|
|
duk_size_t consts_count;
|
|
duk_size_t funcs_count;
|
|
duk_size_t code_count;
|
|
duk_size_t code_size;
|
|
duk_size_t data_size;
|
|
duk_size_t i;
|
|
duk_tval *p_const;
|
|
duk_hobject **p_func;
|
|
duk_instr_t *p_instr;
|
|
duk_compiler_instr *q_instr;
|
|
duk_tval *tv;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("converting duk_compiler_func to function/template"));
|
|
DUK_DD(DUK_DDPRINT("code=%!xO consts=%!O funcs=%!O",
|
|
(duk_heaphdr *) func->h_code,
|
|
(duk_heaphdr *) func->h_consts,
|
|
(duk_heaphdr *) func->h_funcs));
|
|
|
|
/*
|
|
* Push result object and init its flags
|
|
*/
|
|
|
|
/* Valstack should suffice here, required on function valstack init */
|
|
|
|
(void) duk_push_compiledfunction(ctx);
|
|
h_res = (duk_hcompiledfunction *) duk_get_hobject(ctx, -1); /* XXX: specific getter */
|
|
DUK_ASSERT(h_res != NULL);
|
|
|
|
if (func->is_function) {
|
|
DUK_DDD(DUK_DDDPRINT("function -> set NEWENV"));
|
|
DUK_HOBJECT_SET_NEWENV((duk_hobject *) h_res);
|
|
|
|
if (!func->is_arguments_shadowed) {
|
|
/* arguments object would be accessible; note that shadowing
|
|
* bindings are arguments or function declarations, neither
|
|
* of which are deletable, so this is safe.
|
|
*/
|
|
|
|
if (func->id_access_arguments || func->may_direct_eval) {
|
|
DUK_DDD(DUK_DDDPRINT("function may access 'arguments' object directly or "
|
|
"indirectly -> set CREATEARGS"));
|
|
DUK_HOBJECT_SET_CREATEARGS((duk_hobject *) h_res);
|
|
}
|
|
}
|
|
} else if (func->is_eval && func->is_strict) {
|
|
DUK_DDD(DUK_DDDPRINT("strict eval code -> set NEWENV"));
|
|
DUK_HOBJECT_SET_NEWENV((duk_hobject *) h_res);
|
|
} else {
|
|
/* non-strict eval: env is caller's env or global env (direct vs. indirect call)
|
|
* global code: env is is global env
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("non-strict eval code or global code -> no NEWENV"));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NEWENV((duk_hobject *) h_res));
|
|
}
|
|
|
|
if (func->is_function && !func->is_decl && func->h_name != NULL && !force_no_namebind) {
|
|
/* Object literal set/get functions have a name (property
|
|
* name) but must not have a lexical name binding, see
|
|
* test-bug-getset-func-name.js.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("function expression with a name -> set NAMEBINDING"));
|
|
DUK_HOBJECT_SET_NAMEBINDING((duk_hobject *) h_res);
|
|
}
|
|
|
|
if (func->is_strict) {
|
|
DUK_DDD(DUK_DDDPRINT("function is strict -> set STRICT"));
|
|
DUK_HOBJECT_SET_STRICT((duk_hobject *) h_res);
|
|
}
|
|
|
|
if (func->is_notail) {
|
|
DUK_DDD(DUK_DDDPRINT("function is notail -> set NOTAIL"));
|
|
DUK_HOBJECT_SET_NOTAIL((duk_hobject *) h_res);
|
|
}
|
|
|
|
/*
|
|
* Build function fixed size 'data' buffer, which contains bytecode,
|
|
* constants, and inner function references.
|
|
*
|
|
* During the building phase 'data' is reachable but incomplete.
|
|
* Only incref's occur during building (no refzero or GC happens),
|
|
* so the building process is atomic.
|
|
*/
|
|
|
|
consts_count = duk_hobject_get_length(comp_ctx->thr, func->h_consts);
|
|
funcs_count = duk_hobject_get_length(comp_ctx->thr, func->h_funcs) / 3;
|
|
code_count = DUK_HBUFFER_GET_SIZE(func->h_code) / sizeof(duk_compiler_instr);
|
|
code_size = code_count * sizeof(duk_instr_t);
|
|
|
|
data_size = consts_count * sizeof(duk_tval) +
|
|
funcs_count * sizeof(duk_hobject *) +
|
|
code_size;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("consts_count=%ld, funcs_count=%ld, code_size=%ld -> "
|
|
"data_size=%ld*%ld + %ld*%ld + %ld = %ld",
|
|
(long) consts_count, (long) funcs_count, (long) code_size,
|
|
(long) consts_count, (long) sizeof(duk_tval),
|
|
(long) funcs_count, (long) sizeof(duk_hobject *),
|
|
(long) code_size, (long) data_size));
|
|
|
|
duk_push_fixed_buffer(ctx, data_size);
|
|
h_data = (duk_hbuffer_fixed *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(h_data != NULL);
|
|
|
|
DUK_HCOMPILEDFUNCTION_SET_DATA(thr->heap, h_res, (duk_hbuffer *) h_data);
|
|
DUK_HEAPHDR_INCREF(thr, h_data);
|
|
|
|
p_const = (duk_tval *) DUK_HBUFFER_FIXED_GET_DATA_PTR(thr->heap, h_data);
|
|
for (i = 0; i < consts_count; i++) {
|
|
DUK_ASSERT(i <= DUK_UARRIDX_MAX); /* const limits */
|
|
tv = duk_hobject_find_existing_array_entry_tval_ptr(thr->heap, func->h_consts, (duk_uarridx_t) i);
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_TVAL_SET_TVAL(p_const, tv);
|
|
p_const++;
|
|
DUK_TVAL_INCREF(thr, tv); /* may be a string constant */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("constant: %!T", (duk_tval *) tv));
|
|
}
|
|
|
|
p_func = (duk_hobject **) p_const;
|
|
DUK_HCOMPILEDFUNCTION_SET_FUNCS(thr->heap, h_res, p_func);
|
|
for (i = 0; i < funcs_count; i++) {
|
|
duk_hobject *h;
|
|
DUK_ASSERT(i * 3 <= DUK_UARRIDX_MAX); /* func limits */
|
|
tv = duk_hobject_find_existing_array_entry_tval_ptr(thr->heap, func->h_funcs, (duk_uarridx_t) (i * 3));
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
h = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(h));
|
|
*p_func++ = h;
|
|
DUK_HOBJECT_INCREF(thr, h);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("inner function: %p -> %!iO",
|
|
(void *) h, (duk_heaphdr *) h));
|
|
}
|
|
|
|
p_instr = (duk_instr_t *) p_func;
|
|
DUK_HCOMPILEDFUNCTION_SET_BYTECODE(thr->heap, h_res, p_instr);
|
|
|
|
/* copy bytecode instructions one at a time */
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(func->h_code));
|
|
q_instr = (duk_compiler_instr *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, func->h_code);
|
|
for (i = 0; i < code_count; i++) {
|
|
p_instr[i] = q_instr[i].ins;
|
|
}
|
|
/* Note: 'q_instr' is still used below */
|
|
|
|
DUK_ASSERT((duk_uint8_t *) (p_instr + code_count) == DUK_HBUFFER_FIXED_GET_DATA_PTR(thr->heap, h_data) + data_size);
|
|
|
|
duk_pop(ctx); /* 'data' (and everything in it) is reachable through h_res now */
|
|
|
|
/*
|
|
* Init object properties
|
|
*
|
|
* Properties should be added in decreasing order of access frequency.
|
|
* (Not very critical for function templates.)
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("init function properties"));
|
|
|
|
/* [ ... res ] */
|
|
|
|
/* _Varmap: omitted if function is guaranteed not to do slow path identifier
|
|
* accesses or if it would turn out to be empty of actual register mappings
|
|
* after a cleanup. When debugging is enabled, we always need the varmap to
|
|
* be able to lookup variables at any point.
|
|
*/
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
if (1) {
|
|
#else
|
|
if (func->id_access_slow || /* directly uses slow accesses */
|
|
func->may_direct_eval || /* may indirectly slow access through a direct eval */
|
|
funcs_count > 0) { /* has inner functions which may slow access (XXX: this can be optimized by looking at the inner functions) */
|
|
#endif
|
|
duk_int_t num_used;
|
|
duk_dup(ctx, func->varmap_idx);
|
|
num_used = duk__cleanup_varmap(comp_ctx);
|
|
DUK_DDD(DUK_DDDPRINT("cleaned up varmap: %!T (num_used=%ld)",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (long) num_used));
|
|
|
|
if (num_used > 0) {
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_VARMAP, DUK_PROPDESC_FLAGS_NONE);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("varmap is empty after cleanup -> no need to add"));
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
|
|
/* _Formals: omitted if function is guaranteed not to need a (non-strict) arguments object */
|
|
if (1) {
|
|
/* XXX: Add a proper condition. If formals list is omitted, recheck
|
|
* handling for 'length' in duk_js_push_closure(); it currently relies
|
|
* on _Formals being set. Removal may need to be conditional to debugging
|
|
* being enabled/disabled too.
|
|
*/
|
|
duk_dup(ctx, func->argnames_idx);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_FORMALS, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
|
|
/* name */
|
|
if (func->h_name) {
|
|
duk_push_hstring(ctx, func->h_name);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_NAME, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
|
|
/* _Source */
|
|
#if defined(DUK_USE_NONSTD_FUNC_SOURCE_PROPERTY)
|
|
if (0) {
|
|
/* XXX: Currently function source code is not stored, as it is not
|
|
* required by the standard. Source code should not be stored by
|
|
* default (user should enable it explicitly), and the source should
|
|
* probably be compressed with a trivial text compressor; average
|
|
* compression of 20-30% is quite easy to achieve even with a trivial
|
|
* compressor (RLE + backwards lookup).
|
|
*
|
|
* Debugging needs source code to be useful: sometimes input code is
|
|
* not found in files as it may be generated and then eval()'d, given
|
|
* by dynamic C code, etc.
|
|
*
|
|
* Other issues:
|
|
*
|
|
* - Need tokenizer indices for start and end to substring
|
|
* - Always normalize function declaration part?
|
|
* - If we keep _Formals, only need to store body
|
|
*/
|
|
|
|
/*
|
|
* For global or eval code this is straightforward. For functions
|
|
* created with the Function constructor we only get the source for
|
|
* the body and must manufacture the "function ..." part.
|
|
*
|
|
* For instance, for constructed functions (v8):
|
|
*
|
|
* > a = new Function("foo", "bar", "print(foo)");
|
|
* [Function]
|
|
* > a.toString()
|
|
* 'function anonymous(foo,bar) {\nprint(foo)\n}'
|
|
*
|
|
* Similarly for e.g. getters (v8):
|
|
*
|
|
* > x = { get a(foo,bar) { print(foo); } }
|
|
* { a: [Getter] }
|
|
* > Object.getOwnPropertyDescriptor(x, 'a').get.toString()
|
|
* 'function a(foo,bar) { print(foo); }'
|
|
*/
|
|
|
|
#if 0
|
|
duk_push_string(ctx, "XXX");
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_SOURCE, DUK_PROPDESC_FLAGS_NONE);
|
|
#endif
|
|
}
|
|
#endif /* DUK_USE_NONSTD_FUNC_SOURCE_PROPERTY */
|
|
|
|
/* _Pc2line */
|
|
#if defined(DUK_USE_PC2LINE)
|
|
if (1) {
|
|
/*
|
|
* Size-optimized pc->line mapping.
|
|
*/
|
|
|
|
DUK_ASSERT(code_count <= DUK_COMPILER_MAX_BYTECODE_LENGTH);
|
|
duk_hobject_pc2line_pack(thr, q_instr, (duk_uint_fast32_t) code_count); /* -> pushes fixed buffer */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_INT_PC2LINE, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* XXX: if assertions enabled, walk through all valid PCs
|
|
* and check line mapping.
|
|
*/
|
|
}
|
|
#endif /* DUK_USE_PC2LINE */
|
|
|
|
/* fileName */
|
|
if (comp_ctx->h_filename) {
|
|
/*
|
|
* Source filename (or equivalent), for identifying thrown errors.
|
|
*/
|
|
|
|
duk_push_hstring(ctx, comp_ctx->h_filename);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_FILE_NAME, DUK_PROPDESC_FLAGS_NONE);
|
|
}
|
|
|
|
/*
|
|
* Init remaining result fields
|
|
*
|
|
* 'nregs' controls how large a register frame is allocated.
|
|
*
|
|
* 'nargs' controls how many formal arguments are written to registers:
|
|
* r0, ... r(nargs-1). The remaining registers are initialized to
|
|
* undefined.
|
|
*/
|
|
|
|
DUK_ASSERT(func->temp_max >= 0);
|
|
h_res->nregs = func->temp_max;
|
|
h_res->nargs = duk_hobject_get_length(thr, func->h_argnames);
|
|
DUK_ASSERT(h_res->nregs >= h_res->nargs); /* pass2 allocation handles this */
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
h_res->start_line = (duk_uint32_t) func->min_line;
|
|
h_res->end_line = (duk_uint32_t) func->max_line;
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("converted function: %!ixT",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/*
|
|
* Compact the function template.
|
|
*/
|
|
|
|
duk_compact(ctx, -1);
|
|
|
|
/*
|
|
* Debug dumping
|
|
*/
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
{
|
|
duk_hcompiledfunction *h;
|
|
duk_instr_t *p, *p_start, *p_end;
|
|
|
|
h = (duk_hcompiledfunction *) duk_get_hobject(ctx, -1);
|
|
p_start = (duk_instr_t *) DUK_HCOMPILEDFUNCTION_GET_CODE_BASE(thr->heap, h);
|
|
p_end = (duk_instr_t *) DUK_HCOMPILEDFUNCTION_GET_CODE_END(thr->heap, h);
|
|
|
|
p = p_start;
|
|
while (p < p_end) {
|
|
DUK_DDD(DUK_DDDPRINT("BC %04ld: %!I ; 0x%08lx op=%ld (%!C) a=%ld b=%ld c=%ld",
|
|
(long) (p - p_start),
|
|
(duk_instr_t) (*p),
|
|
(unsigned long) (*p),
|
|
(long) DUK_DEC_OP(*p),
|
|
(long) DUK_DEC_OP(*p),
|
|
(long) DUK_DEC_A(*p),
|
|
(long) DUK_DEC_B(*p),
|
|
(long) DUK_DEC_C(*p)));
|
|
p++;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Code emission helpers
|
|
*
|
|
* Some emission helpers understand the range of target and source reg/const
|
|
* values and automatically emit shuffling code if necessary. This is the
|
|
* case when the slot in question (A, B, C) is used in the standard way and
|
|
* for opcodes the emission helpers explicitly understand (like DUK_OP_CALL).
|
|
*
|
|
* The standard way is that:
|
|
* - slot A is a target register
|
|
* - slot B is a source register/constant
|
|
* - slot C is a source register/constant
|
|
*
|
|
* If a slot is used in a non-standard way the caller must indicate this
|
|
* somehow. If a slot is used as a target instead of a source (or vice
|
|
* versa), this can be indicated with a flag to trigger proper shuffling
|
|
* (e.g. DUK__EMIT_FLAG_B_IS_TARGET). If the value in the slot is not
|
|
* register/const related at all, the caller must ensure that the raw value
|
|
* fits into the corresponding slot so as to not trigger shuffling. The
|
|
* caller must set a "no shuffle" flag to ensure compilation fails if
|
|
* shuffling were to be triggered because of an internal error.
|
|
*
|
|
* For slots B and C the raw slot size is 9 bits but one bit is reserved for
|
|
* the reg/const indicator. To use the full 9-bit range for a raw value,
|
|
* shuffling must be disabled with the DUK__EMIT_FLAG_NO_SHUFFLE_{B,C} flag.
|
|
* Shuffling is only done for A, B, and C slots, not the larger BC or ABC slots.
|
|
*
|
|
* There is call handling specific understanding in the A-B-C emitter to
|
|
* convert call setup and call instructions into indirect ones if necessary.
|
|
*/
|
|
|
|
/* Code emission flags, passed in the 'opcode' field. Opcode + flags
|
|
* fit into 16 bits for now, so use duk_small_uint.t.
|
|
*/
|
|
#define DUK__EMIT_FLAG_NO_SHUFFLE_A (1 << 8)
|
|
#define DUK__EMIT_FLAG_NO_SHUFFLE_B (1 << 9)
|
|
#define DUK__EMIT_FLAG_NO_SHUFFLE_C (1 << 10)
|
|
#define DUK__EMIT_FLAG_A_IS_SOURCE (1 << 11) /* slot A is a source (default: target) */
|
|
#define DUK__EMIT_FLAG_B_IS_TARGET (1 << 12) /* slot B is a target (default: source) */
|
|
#define DUK__EMIT_FLAG_C_IS_TARGET (1 << 13) /* slot C is a target (default: source) */
|
|
#define DUK__EMIT_FLAG_B_IS_TARGETSOURCE (1 << 14) /* slot B is both a target and a source (used by extraops like DUK_EXTRAOP_INSTOF */
|
|
#define DUK__EMIT_FLAG_RESERVE_JUMPSLOT (1 << 15) /* reserve a jumpslot after instr before target spilling, used for NEXTENUM */
|
|
|
|
/* XXX: clarify on when and where DUK__CONST_MARKER is allowed */
|
|
/* XXX: opcode specific assertions on when consts are allowed */
|
|
|
|
/* XXX: macro smaller than call? */
|
|
DUK_LOCAL duk_int_t duk__get_current_pc(duk_compiler_ctx *comp_ctx) {
|
|
return (duk_int_t) (DUK_HBUFFER_GET_SIZE(comp_ctx->curr_func.h_code) / sizeof(duk_compiler_instr));
|
|
}
|
|
|
|
DUK_LOCAL duk_compiler_instr *duk__get_instr_ptr(duk_compiler_ctx *comp_ctx, duk_int_t pc) {
|
|
duk_compiler_func *f = &comp_ctx->curr_func;
|
|
duk_uint8_t *p;
|
|
duk_compiler_instr *code_begin, *code_end;
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(comp_ctx->thr->heap, f->h_code);
|
|
code_begin = (duk_compiler_instr *) p;
|
|
code_end = (duk_compiler_instr *) (p + DUK_HBUFFER_GET_SIZE(f->h_code));
|
|
DUK_UNREF(code_end);
|
|
|
|
DUK_ASSERT(pc >= 0);
|
|
DUK_ASSERT((duk_size_t) pc < (duk_size_t) (code_end - code_begin));
|
|
|
|
return code_begin + pc;
|
|
}
|
|
|
|
/* emit instruction; could return PC but that's not needed in the majority
|
|
* of cases.
|
|
*/
|
|
DUK_LOCAL void duk__emit(duk_compiler_ctx *comp_ctx, duk_instr_t ins) {
|
|
duk_hbuffer_dynamic *h;
|
|
#if defined(DUK_USE_PC2LINE)
|
|
duk_int_t line;
|
|
#endif
|
|
duk_compiler_instr instr;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__emit: 0x%08lx curr_token.start_line=%ld prev_token.start_line=%ld pc=%ld --> %!I",
|
|
(unsigned long) ins,
|
|
(long) comp_ctx->curr_token.start_line,
|
|
(long) comp_ctx->prev_token.start_line,
|
|
(long) duk__get_current_pc(comp_ctx),
|
|
(duk_instr_t) ins));
|
|
|
|
h = comp_ctx->curr_func.h_code;
|
|
#if defined(DUK_USE_PC2LINE)
|
|
/* The line number tracking is a bit inconsistent right now, which
|
|
* affects debugger accuracy. Mostly call sites emit opcodes when
|
|
* they have parsed a token (say a terminating semicolon) and called
|
|
* duk__advance(). In this case the line number of the previous
|
|
* token is the most accurate one (except in prologue where
|
|
* prev_token.start_line is 0). This is probably not 100% correct
|
|
* right now.
|
|
*/
|
|
/* approximation, close enough */
|
|
line = comp_ctx->prev_token.start_line;
|
|
if (line == 0) {
|
|
line = comp_ctx->curr_token.start_line;
|
|
}
|
|
#endif
|
|
|
|
instr.ins = ins;
|
|
#if defined(DUK_USE_PC2LINE)
|
|
instr.line = line;
|
|
#endif
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
if (line < comp_ctx->curr_func.min_line) {
|
|
comp_ctx->curr_func.min_line = line;
|
|
}
|
|
if (line > comp_ctx->curr_func.max_line) {
|
|
comp_ctx->curr_func.max_line = line;
|
|
}
|
|
#endif
|
|
|
|
/* Limit checks for bytecode byte size and line number. */
|
|
#if defined(DUK_USE_PC2LINE) && defined(DUK_USE_ESBC_LIMITS)
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
/* Buffer length is bounded to 0xffff automatically, avoid compile warning. */
|
|
if (DUK_UNLIKELY(line > DUK_USE_ESBC_MAX_LINENUMBER)) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_BYTECODE_LIMIT);
|
|
}
|
|
#else
|
|
if (DUK_UNLIKELY(line > DUK_USE_ESBC_MAX_LINENUMBER ||
|
|
DUK_HBUFFER_GET_SIZE((duk_hbuffer *) h) > DUK_USE_ESBC_MAX_BYTES)) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_BYTECODE_LIMIT);
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
duk_hbuffer_append_bytes(comp_ctx->thr, h, (duk_uint8_t *) &instr, sizeof(instr));
|
|
}
|
|
|
|
/* Update function min/max line from current token. Needed to improve
|
|
* function line range information for debugging, so that e.g. opening
|
|
* curly brace is covered by line range even when no opcodes are emitted
|
|
* for the line containing the brace.
|
|
*/
|
|
DUK_LOCAL void duk__update_lineinfo_currtoken(duk_compiler_ctx *comp_ctx) {
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
duk_int_t line;
|
|
|
|
line = comp_ctx->curr_token.start_line;
|
|
if (line == 0) {
|
|
return;
|
|
}
|
|
if (line < comp_ctx->curr_func.min_line) {
|
|
comp_ctx->curr_func.min_line = line;
|
|
}
|
|
if (line > comp_ctx->curr_func.max_line) {
|
|
comp_ctx->curr_func.max_line = line;
|
|
}
|
|
#else
|
|
DUK_UNREF(comp_ctx);
|
|
#endif
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL void duk__emit_op_only(duk_compiler_ctx *comp_ctx, duk_small_uint_t op) {
|
|
duk__emit(comp_ctx, DUK_ENC_OP_ABC(op, 0));
|
|
}
|
|
#endif
|
|
|
|
/* Important main primitive. */
|
|
DUK_LOCAL void duk__emit_a_b_c(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a, duk_regconst_t b, duk_regconst_t c) {
|
|
duk_instr_t ins = 0;
|
|
duk_int_t a_out = -1;
|
|
duk_int_t b_out = -1;
|
|
duk_int_t c_out = -1;
|
|
duk_int_t tmp;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("emit: op_flags=%04lx, a=%ld, b=%ld, c=%ld",
|
|
(unsigned long) op_flags, (long) a, (long) b, (long) c));
|
|
|
|
/* We could rely on max temp/const checks: if they don't exceed BC
|
|
* limit, nothing here can either (just asserts would be enough).
|
|
* Currently we check for the limits, which provides additional
|
|
* protection against creating invalid bytecode due to compiler
|
|
* bugs.
|
|
*/
|
|
|
|
DUK_ASSERT_DISABLE((op_flags & 0xff) >= DUK_BC_OP_MIN); /* unsigned */
|
|
DUK_ASSERT((op_flags & 0xff) <= DUK_BC_OP_MAX);
|
|
|
|
/* Input shuffling happens before the actual operation, while output
|
|
* shuffling happens afterwards. Output shuffling decisions are still
|
|
* made at the same time to reduce branch clutter; output shuffle decisions
|
|
* are recorded into X_out variables.
|
|
*/
|
|
|
|
/* Slot A */
|
|
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
if (a <= DUK_BC_A_MAX && (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_A)) {
|
|
#else
|
|
if (a <= DUK_BC_A_MAX) {
|
|
#endif
|
|
;
|
|
} else if (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_A) {
|
|
DUK_D(DUK_DPRINT("out of regs: 'a' (reg) needs shuffling but shuffle prohibited, a: %ld", (long) a));
|
|
goto error_outofregs;
|
|
} else if (a <= DUK_BC_BC_MAX) {
|
|
comp_ctx->curr_func.needs_shuffle = 1;
|
|
tmp = comp_ctx->curr_func.shuffle1;
|
|
if (op_flags & DUK__EMIT_FLAG_A_IS_SOURCE) {
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_LDREG, tmp, a));
|
|
} else {
|
|
duk_small_int_t op = op_flags & 0xff;
|
|
if (op == DUK_OP_CSVAR || op == DUK_OP_CSREG || op == DUK_OP_CSPROP) {
|
|
/* Special handling for call setup instructions. The target
|
|
* is expressed indirectly, but there is no output shuffling.
|
|
*/
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_A_IS_SOURCE) == 0);
|
|
duk__emit_load_int32_noshuffle(comp_ctx, tmp, a);
|
|
DUK_ASSERT(DUK_OP_CSVARI == DUK_OP_CSVAR + 1);
|
|
DUK_ASSERT(DUK_OP_CSREGI == DUK_OP_CSREG + 1);
|
|
DUK_ASSERT(DUK_OP_CSPROPI == DUK_OP_CSPROP + 1);
|
|
op_flags++; /* indirect opcode follows direct */
|
|
} else {
|
|
/* Output shuffle needed after main operation */
|
|
a_out = a;
|
|
}
|
|
}
|
|
a = tmp;
|
|
} else {
|
|
DUK_D(DUK_DPRINT("out of regs: 'a' (reg) needs shuffling but does not fit into BC, a: %ld", (long) a));
|
|
goto error_outofregs;
|
|
}
|
|
|
|
/* Slot B */
|
|
|
|
if (b & DUK__CONST_MARKER) {
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_B) == 0);
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_B_IS_TARGET) == 0);
|
|
DUK_ASSERT((op_flags & 0xff) != DUK_OP_CALL);
|
|
DUK_ASSERT((op_flags & 0xff) != DUK_OP_NEW);
|
|
b = b & ~DUK__CONST_MARKER;
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
if (0) {
|
|
#else
|
|
if (b <= 0xff) {
|
|
#endif
|
|
ins |= DUK_ENC_OP_A_B_C(0, 0, 0x100, 0); /* const flag for B */
|
|
} else if (b <= DUK_BC_BC_MAX) {
|
|
comp_ctx->curr_func.needs_shuffle = 1;
|
|
tmp = comp_ctx->curr_func.shuffle2;
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_LDCONST, tmp, b));
|
|
b = tmp;
|
|
} else {
|
|
DUK_D(DUK_DPRINT("out of regs: 'b' (const) needs shuffling but does not fit into BC, b: %ld", (long) b));
|
|
goto error_outofregs;
|
|
}
|
|
} else {
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
if (b <= 0xff && (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_B)) {
|
|
#else
|
|
if (b <= 0xff) {
|
|
#endif
|
|
;
|
|
} else if (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_B) {
|
|
if (b > DUK_BC_B_MAX) {
|
|
/* Note: 0xff != DUK_BC_B_MAX */
|
|
DUK_D(DUK_DPRINT("out of regs: 'b' (reg) needs shuffling but shuffle prohibited, b: %ld", (long) b));
|
|
goto error_outofregs;
|
|
}
|
|
} else if (b <= DUK_BC_BC_MAX) {
|
|
comp_ctx->curr_func.needs_shuffle = 1;
|
|
tmp = comp_ctx->curr_func.shuffle2;
|
|
if (op_flags & DUK__EMIT_FLAG_B_IS_TARGET) {
|
|
/* Output shuffle needed after main operation */
|
|
b_out = b;
|
|
}
|
|
if (!(op_flags & DUK__EMIT_FLAG_B_IS_TARGET) || (op_flags & DUK__EMIT_FLAG_B_IS_TARGETSOURCE)) {
|
|
duk_small_int_t op = op_flags & 0xff;
|
|
if (op == DUK_OP_CALL || op == DUK_OP_NEW ||
|
|
op == DUK_OP_MPUTOBJ || op == DUK_OP_MPUTARR) {
|
|
/* Special handling for CALL/NEW/MPUTOBJ/MPUTARR shuffling.
|
|
* For each, slot B identifies the first register of a range
|
|
* of registers, so normal shuffling won't work. Instead,
|
|
* an indirect version of the opcode is used.
|
|
*/
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_B_IS_TARGET) == 0);
|
|
duk__emit_load_int32_noshuffle(comp_ctx, tmp, b);
|
|
DUK_ASSERT(DUK_OP_CALLI == DUK_OP_CALL + 1);
|
|
DUK_ASSERT(DUK_OP_NEWI == DUK_OP_NEW + 1);
|
|
DUK_ASSERT(DUK_OP_MPUTOBJI == DUK_OP_MPUTOBJ + 1);
|
|
DUK_ASSERT(DUK_OP_MPUTARRI == DUK_OP_MPUTARR + 1);
|
|
op_flags++; /* indirect opcode follows direct */
|
|
} else {
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_LDREG, tmp, b));
|
|
}
|
|
}
|
|
b = tmp;
|
|
} else {
|
|
DUK_D(DUK_DPRINT("out of regs: 'b' (reg) needs shuffling but does not fit into BC, b: %ld", (long) b));
|
|
goto error_outofregs;
|
|
}
|
|
}
|
|
|
|
/* Slot C */
|
|
|
|
if (c & DUK__CONST_MARKER) {
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_C) == 0);
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_C_IS_TARGET) == 0);
|
|
c = c & ~DUK__CONST_MARKER;
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
if (0) {
|
|
#else
|
|
if (c <= 0xff) {
|
|
#endif
|
|
ins |= DUK_ENC_OP_A_B_C(0, 0, 0, 0x100); /* const flag for C */
|
|
} else if (c <= DUK_BC_BC_MAX) {
|
|
comp_ctx->curr_func.needs_shuffle = 1;
|
|
tmp = comp_ctx->curr_func.shuffle3;
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_LDCONST, tmp, c));
|
|
c = tmp;
|
|
} else {
|
|
DUK_D(DUK_DPRINT("out of regs: 'c' (const) needs shuffling but does not fit into BC, c: %ld", (long) c));
|
|
goto error_outofregs;
|
|
}
|
|
} else {
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
if (c <= 0xff && (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_C)) {
|
|
#else
|
|
if (c <= 0xff) {
|
|
#endif
|
|
;
|
|
} else if (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_C) {
|
|
if (c > DUK_BC_C_MAX) {
|
|
/* Note: 0xff != DUK_BC_C_MAX */
|
|
DUK_D(DUK_DPRINT("out of regs: 'c' (reg) needs shuffling but shuffle prohibited, c: %ld", (long) c));
|
|
goto error_outofregs;
|
|
}
|
|
} else if (c <= DUK_BC_BC_MAX) {
|
|
comp_ctx->curr_func.needs_shuffle = 1;
|
|
tmp = comp_ctx->curr_func.shuffle3;
|
|
if (op_flags & DUK__EMIT_FLAG_C_IS_TARGET) {
|
|
/* Output shuffle needed after main operation */
|
|
c_out = c;
|
|
} else {
|
|
duk_small_int_t op = op_flags & 0xff;
|
|
if (op == DUK_OP_EXTRA &&
|
|
(a == DUK_EXTRAOP_INITGET || a == DUK_EXTRAOP_INITSET)) {
|
|
/* Special shuffling for INITGET/INITSET, where slot C
|
|
* identifies a register pair and cannot be shuffled
|
|
* normally. Use an indirect variant instead.
|
|
*/
|
|
DUK_ASSERT((op_flags & DUK__EMIT_FLAG_C_IS_TARGET) == 0);
|
|
duk__emit_load_int32_noshuffle(comp_ctx, tmp, c);
|
|
DUK_ASSERT(DUK_EXTRAOP_INITGETI == DUK_EXTRAOP_INITGET + 1);
|
|
DUK_ASSERT(DUK_EXTRAOP_INITSETI == DUK_EXTRAOP_INITSET + 1);
|
|
a++; /* indirect opcode follows direct */
|
|
} else {
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_LDREG, tmp, c));
|
|
}
|
|
}
|
|
c = tmp;
|
|
} else {
|
|
DUK_D(DUK_DPRINT("out of regs: 'c' (reg) needs shuffling but does not fit into BC, c: %ld", (long) c));
|
|
goto error_outofregs;
|
|
}
|
|
}
|
|
|
|
/* Main operation */
|
|
|
|
DUK_ASSERT_DISABLE(a >= DUK_BC_A_MIN); /* unsigned */
|
|
DUK_ASSERT(a <= DUK_BC_A_MAX);
|
|
DUK_ASSERT_DISABLE(b >= DUK_BC_B_MIN); /* unsigned */
|
|
DUK_ASSERT(b <= DUK_BC_B_MAX);
|
|
DUK_ASSERT_DISABLE(c >= DUK_BC_C_MIN); /* unsigned */
|
|
DUK_ASSERT(c <= DUK_BC_C_MAX);
|
|
|
|
ins |= DUK_ENC_OP_A_B_C(op_flags & 0xff, a, b, c);
|
|
duk__emit(comp_ctx, ins);
|
|
|
|
/* NEXTENUM needs a jump slot right after the main instruction.
|
|
* When the JUMP is taken, output spilling is not needed so this
|
|
* workaround is possible. The jump slot PC is exceptionally
|
|
* plumbed through comp_ctx to minimize call sites.
|
|
*/
|
|
if (op_flags & DUK__EMIT_FLAG_RESERVE_JUMPSLOT) {
|
|
comp_ctx->emit_jumpslot_pc = duk__get_current_pc(comp_ctx);
|
|
duk__emit_abc(comp_ctx, DUK_OP_JUMP, 0);
|
|
}
|
|
|
|
/* Output shuffling: only one output register is realistically possible.
|
|
*
|
|
* (Zero would normally be an OK marker value: if the target register
|
|
* was zero, it would never be shuffled. But with DUK_USE_SHUFFLE_TORTURE
|
|
* this is no longer true, so use -1 as a marker instead.)
|
|
*/
|
|
|
|
if (a_out >= 0) {
|
|
DUK_ASSERT(b_out < 0);
|
|
DUK_ASSERT(c_out < 0);
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_STREG, a, a_out));
|
|
} else if (b_out >= 0) {
|
|
DUK_ASSERT(a_out < 0);
|
|
DUK_ASSERT(c_out < 0);
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_STREG, b, b_out));
|
|
} else if (c_out >= 0) {
|
|
DUK_ASSERT(b_out < 0);
|
|
DUK_ASSERT(c_out < 0);
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_STREG, c, c_out));
|
|
}
|
|
|
|
return;
|
|
|
|
error_outofregs:
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_REG_LIMIT);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_a_b(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a, duk_regconst_t b) {
|
|
duk__emit_a_b_c(comp_ctx, op_flags | DUK__EMIT_FLAG_NO_SHUFFLE_C, a, b, 0);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL void duk__emit_a(duk_compiler_ctx *comp_ctx, int op_flags, int a) {
|
|
duk__emit_a_b_c(comp_ctx, op_flags | DUK__EMIT_FLAG_NO_SHUFFLE_B | DUK__EMIT_FLAG_NO_SHUFFLE_C, a, 0, 0);
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__emit_a_bc(duk_compiler_ctx *comp_ctx, duk_small_uint_t op_flags, duk_regconst_t a, duk_regconst_t bc) {
|
|
duk_instr_t ins;
|
|
duk_int_t tmp;
|
|
|
|
/* allow caller to give a const number with the DUK__CONST_MARKER */
|
|
bc = bc & (~DUK__CONST_MARKER);
|
|
|
|
DUK_ASSERT_DISABLE((op_flags & 0xff) >= DUK_BC_OP_MIN); /* unsigned */
|
|
DUK_ASSERT((op_flags & 0xff) <= DUK_BC_OP_MAX);
|
|
DUK_ASSERT_DISABLE(bc >= DUK_BC_BC_MIN); /* unsigned */
|
|
DUK_ASSERT(bc <= DUK_BC_BC_MAX);
|
|
DUK_ASSERT((bc & DUK__CONST_MARKER) == 0);
|
|
|
|
if (bc <= DUK_BC_BC_MAX) {
|
|
;
|
|
} else {
|
|
/* No BC shuffling now. */
|
|
goto error_outofregs;
|
|
}
|
|
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
if (a <= DUK_BC_A_MAX && (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_A)) {
|
|
#else
|
|
if (a <= DUK_BC_A_MAX) {
|
|
#endif
|
|
ins = DUK_ENC_OP_A_BC(op_flags & 0xff, a, bc);
|
|
duk__emit(comp_ctx, ins);
|
|
} else if (op_flags & DUK__EMIT_FLAG_NO_SHUFFLE_A) {
|
|
goto error_outofregs;
|
|
} else if (a <= DUK_BC_BC_MAX) {
|
|
comp_ctx->curr_func.needs_shuffle = 1;
|
|
tmp = comp_ctx->curr_func.shuffle1;
|
|
ins = DUK_ENC_OP_A_BC(op_flags & 0xff, tmp, bc);
|
|
if (op_flags & DUK__EMIT_FLAG_A_IS_SOURCE) {
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_LDREG, tmp, a));
|
|
duk__emit(comp_ctx, ins);
|
|
} else {
|
|
duk__emit(comp_ctx, ins);
|
|
duk__emit(comp_ctx, DUK_ENC_OP_A_BC(DUK_OP_STREG, tmp, a));
|
|
}
|
|
} else {
|
|
goto error_outofregs;
|
|
}
|
|
return;
|
|
|
|
error_outofregs:
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_REG_LIMIT);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_abc(duk_compiler_ctx *comp_ctx, duk_small_uint_t op, duk_regconst_t abc) {
|
|
duk_instr_t ins;
|
|
|
|
DUK_ASSERT_DISABLE(op >= DUK_BC_OP_MIN); /* unsigned */
|
|
DUK_ASSERT(op <= DUK_BC_OP_MAX);
|
|
DUK_ASSERT_DISABLE(abc >= DUK_BC_ABC_MIN); /* unsigned */
|
|
DUK_ASSERT(abc <= DUK_BC_ABC_MAX);
|
|
DUK_ASSERT((abc & DUK__CONST_MARKER) == 0);
|
|
|
|
if (abc <= DUK_BC_ABC_MAX) {
|
|
;
|
|
} else {
|
|
goto error_outofregs;
|
|
}
|
|
ins = DUK_ENC_OP_ABC(op, abc);
|
|
DUK_DDD(DUK_DDDPRINT("duk__emit_abc: 0x%08lx line=%ld pc=%ld op=%ld (%!C) abc=%ld (%!I)",
|
|
(unsigned long) ins, (long) comp_ctx->curr_token.start_line,
|
|
(long) duk__get_current_pc(comp_ctx), (long) op, (long) op,
|
|
(long) abc, (duk_instr_t) ins));
|
|
duk__emit(comp_ctx, ins);
|
|
return;
|
|
|
|
error_outofregs:
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_REG_LIMIT);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_extraop_b_c(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop_flags, duk_regconst_t b, duk_regconst_t c) {
|
|
DUK_ASSERT_DISABLE((extraop_flags & 0xff) >= DUK_BC_EXTRAOP_MIN); /* unsigned */
|
|
DUK_ASSERT((extraop_flags & 0xff) <= DUK_BC_EXTRAOP_MAX);
|
|
/* Setting "no shuffle A" is covered by the assert, but it's needed
|
|
* with DUK_USE_SHUFFLE_TORTURE.
|
|
*/
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_EXTRA | DUK__EMIT_FLAG_NO_SHUFFLE_A | (extraop_flags & ~0xff), /* transfer flags */
|
|
extraop_flags & 0xff,
|
|
b,
|
|
c);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_extraop_b(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop_flags, duk_regconst_t b) {
|
|
DUK_ASSERT_DISABLE((extraop_flags & 0xff) >= DUK_BC_EXTRAOP_MIN); /* unsigned */
|
|
DUK_ASSERT((extraop_flags & 0xff) <= DUK_BC_EXTRAOP_MAX);
|
|
/* Setting "no shuffle A" is covered by the assert, but it's needed
|
|
* with DUK_USE_SHUFFLE_TORTURE.
|
|
*/
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_EXTRA | DUK__EMIT_FLAG_NO_SHUFFLE_A | (extraop_flags & ~0xff), /* transfer flags */
|
|
extraop_flags & 0xff,
|
|
b,
|
|
0);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_extraop_bc(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop, duk_regconst_t bc) {
|
|
DUK_ASSERT_DISABLE(extraop >= DUK_BC_EXTRAOP_MIN); /* unsigned */
|
|
DUK_ASSERT(extraop <= DUK_BC_EXTRAOP_MAX);
|
|
/* Setting "no shuffle A" is covered by the assert, but it's needed
|
|
* with DUK_USE_SHUFFLE_TORTURE.
|
|
*/
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_EXTRA | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
extraop,
|
|
bc);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_extraop_only(duk_compiler_ctx *comp_ctx, duk_small_uint_t extraop_flags) {
|
|
DUK_ASSERT_DISABLE((extraop_flags & 0xff) >= DUK_BC_EXTRAOP_MIN); /* unsigned */
|
|
DUK_ASSERT((extraop_flags & 0xff) <= DUK_BC_EXTRAOP_MAX);
|
|
/* Setting "no shuffle A" is covered by the assert, but it's needed
|
|
* with DUK_USE_SHUFFLE_TORTURE.
|
|
*/
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_EXTRA | DUK__EMIT_FLAG_NO_SHUFFLE_A | DUK__EMIT_FLAG_NO_SHUFFLE_B |
|
|
DUK__EMIT_FLAG_NO_SHUFFLE_C | (extraop_flags & ~0xff), /* transfer flags */
|
|
extraop_flags & 0xff,
|
|
0,
|
|
0);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_load_int32_raw(duk_compiler_ctx *comp_ctx, duk_reg_t reg, duk_int32_t val, duk_small_uint_t op_flags) {
|
|
/* XXX: Shuffling support could be implemented here so that LDINT+LDINTX
|
|
* would only shuffle once (instead of twice). The current code works
|
|
* though, and has a smaller compiler footprint.
|
|
*/
|
|
|
|
if ((val >= (duk_int32_t) DUK_BC_BC_MIN - (duk_int32_t) DUK_BC_LDINT_BIAS) &&
|
|
(val <= (duk_int32_t) DUK_BC_BC_MAX - (duk_int32_t) DUK_BC_LDINT_BIAS)) {
|
|
DUK_DDD(DUK_DDDPRINT("emit LDINT to reg %ld for %ld", (long) reg, (long) val));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDINT | op_flags, reg, (duk_regconst_t) (val + (duk_int32_t) DUK_BC_LDINT_BIAS));
|
|
} else {
|
|
duk_int32_t hi = val >> DUK_BC_LDINTX_SHIFT;
|
|
duk_int32_t lo = val & ((((duk_int32_t) 1) << DUK_BC_LDINTX_SHIFT) - 1);
|
|
DUK_ASSERT(lo >= 0);
|
|
DUK_DDD(DUK_DDDPRINT("emit LDINT+LDINTX to reg %ld for %ld -> hi %ld, lo %ld",
|
|
(long) reg, (long) val, (long) hi, (long) lo));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDINT | op_flags, reg, (duk_regconst_t) (hi + (duk_int32_t) DUK_BC_LDINT_BIAS));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDINTX | op_flags, reg, (duk_regconst_t) lo);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_load_int32(duk_compiler_ctx *comp_ctx, duk_reg_t reg, duk_int32_t val) {
|
|
duk__emit_load_int32_raw(comp_ctx, reg, val, 0 /*op_flags*/);
|
|
}
|
|
|
|
#if defined(DUK_USE_SHUFFLE_TORTURE)
|
|
/* Used by duk__emit*() calls so that we don't shuffle the loadints that
|
|
* are needed to handle indirect opcodes.
|
|
*/
|
|
DUK_LOCAL void duk__emit_load_int32_noshuffle(duk_compiler_ctx *comp_ctx, duk_reg_t reg, duk_int32_t val) {
|
|
duk__emit_load_int32_raw(comp_ctx, reg, val, DUK__EMIT_FLAG_NO_SHUFFLE_A /*op_flags*/);
|
|
}
|
|
#else
|
|
DUK_LOCAL void duk__emit_load_int32_noshuffle(duk_compiler_ctx *comp_ctx, duk_reg_t reg, duk_int32_t val) {
|
|
/* When torture not enabled, can just use the same helper because
|
|
* 'reg' won't get spilled.
|
|
*/
|
|
DUK_ASSERT(reg <= DUK_BC_A_MAX);
|
|
duk__emit_load_int32(comp_ctx, reg, val);
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__emit_jump(duk_compiler_ctx *comp_ctx, duk_int_t target_pc) {
|
|
duk_hbuffer_dynamic *h;
|
|
duk_int_t curr_pc;
|
|
duk_int_t offset;
|
|
|
|
h = comp_ctx->curr_func.h_code;
|
|
curr_pc = (duk_int_t) (DUK_HBUFFER_GET_SIZE(h) / sizeof(duk_compiler_instr));
|
|
offset = (duk_int_t) target_pc - (duk_int_t) curr_pc - 1;
|
|
DUK_ASSERT(offset + DUK_BC_JUMP_BIAS >= DUK_BC_ABC_MIN);
|
|
DUK_ASSERT(offset + DUK_BC_JUMP_BIAS <= DUK_BC_ABC_MAX);
|
|
duk__emit_abc(comp_ctx, DUK_OP_JUMP, (duk_regconst_t) (offset + DUK_BC_JUMP_BIAS));
|
|
}
|
|
|
|
DUK_LOCAL duk_int_t duk__emit_jump_empty(duk_compiler_ctx *comp_ctx) {
|
|
duk_int_t ret;
|
|
|
|
ret = duk__get_current_pc(comp_ctx); /* useful for patching jumps later */
|
|
duk__emit_abc(comp_ctx, DUK_OP_JUMP, 0);
|
|
return ret;
|
|
}
|
|
|
|
/* Insert an empty jump in the middle of code emitted earlier. This is
|
|
* currently needed for compiling for-in.
|
|
*/
|
|
DUK_LOCAL void duk__insert_jump_entry(duk_compiler_ctx *comp_ctx, duk_int_t jump_pc) {
|
|
duk_hbuffer_dynamic *h;
|
|
#if defined(DUK_USE_PC2LINE)
|
|
duk_int_t line;
|
|
#endif
|
|
duk_compiler_instr instr;
|
|
duk_size_t offset;
|
|
|
|
h = comp_ctx->curr_func.h_code;
|
|
#if defined(DUK_USE_PC2LINE)
|
|
line = comp_ctx->curr_token.start_line; /* approximation, close enough */
|
|
#endif
|
|
|
|
instr.ins = DUK_ENC_OP_ABC(DUK_OP_JUMP, 0);
|
|
#if defined(DUK_USE_PC2LINE)
|
|
instr.line = line;
|
|
#endif
|
|
|
|
offset = jump_pc * sizeof(duk_compiler_instr);
|
|
|
|
duk_hbuffer_insert_bytes(comp_ctx->thr, h, offset, (duk_uint8_t *) &instr, sizeof(instr));
|
|
}
|
|
|
|
/* Does not assume that jump_pc contains a DUK_OP_JUMP previously; this is intentional
|
|
* to allow e.g. an INVALID opcode be overwritten with a JUMP (label management uses this).
|
|
*/
|
|
DUK_LOCAL void duk__patch_jump(duk_compiler_ctx *comp_ctx, duk_int_t jump_pc, duk_int_t target_pc) {
|
|
duk_compiler_instr *instr;
|
|
duk_int_t offset;
|
|
|
|
/* allow negative PCs, behave as a no-op */
|
|
if (jump_pc < 0) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__patch_jump(): nop call, jump_pc=%ld (<0), target_pc=%ld",
|
|
(long) jump_pc, (long) target_pc));
|
|
return;
|
|
}
|
|
DUK_ASSERT(jump_pc >= 0);
|
|
|
|
/* XXX: range assert */
|
|
instr = duk__get_instr_ptr(comp_ctx, jump_pc);
|
|
DUK_ASSERT(instr != NULL);
|
|
|
|
/* XXX: range assert */
|
|
offset = target_pc - jump_pc - 1;
|
|
|
|
instr->ins = DUK_ENC_OP_ABC(DUK_OP_JUMP, offset + DUK_BC_JUMP_BIAS);
|
|
DUK_DDD(DUK_DDDPRINT("duk__patch_jump(): jump_pc=%ld, target_pc=%ld, offset=%ld",
|
|
(long) jump_pc, (long) target_pc, (long) offset));
|
|
}
|
|
|
|
DUK_LOCAL void duk__patch_jump_here(duk_compiler_ctx *comp_ctx, duk_int_t jump_pc) {
|
|
duk__patch_jump(comp_ctx, jump_pc, duk__get_current_pc(comp_ctx));
|
|
}
|
|
|
|
DUK_LOCAL void duk__patch_trycatch(duk_compiler_ctx *comp_ctx, duk_int_t trycatch_pc, duk_regconst_t reg_catch, duk_regconst_t const_varname, duk_small_uint_t flags) {
|
|
duk_compiler_instr *instr;
|
|
|
|
instr = duk__get_instr_ptr(comp_ctx, trycatch_pc);
|
|
DUK_ASSERT(instr != NULL);
|
|
|
|
DUK_ASSERT_DISABLE(flags >= DUK_BC_A_MIN);
|
|
DUK_ASSERT(flags <= DUK_BC_A_MAX);
|
|
|
|
DUK_ASSERT((reg_catch & DUK__CONST_MARKER) == 0);
|
|
const_varname = const_varname & (~DUK__CONST_MARKER);
|
|
if (reg_catch > DUK_BC_B_MAX || const_varname > DUK_BC_C_MAX) {
|
|
/* Catch attempts to use out-of-range reg/const. Without this
|
|
* check Duktape 0.12.0 could generate invalid code which caused
|
|
* an assert failure on execution. This error is triggered e.g.
|
|
* for functions with a lot of constants and a try-catch statement.
|
|
* Shuffling or opcode semantics change is needed to fix the issue.
|
|
* See: test-bug-trycatch-many-constants.js.
|
|
*/
|
|
DUK_D(DUK_DPRINT("failed to patch trycatch: flags=%ld, reg_catch=%ld, const_varname=%ld (0x%08lx)",
|
|
(long) flags, (long) reg_catch, (long) const_varname, (long) const_varname));
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_REG_LIMIT);
|
|
}
|
|
|
|
instr->ins = DUK_ENC_OP_A_B_C(DUK_OP_TRYCATCH, flags, reg_catch, const_varname);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_if_false_skip(duk_compiler_ctx *comp_ctx, duk_regconst_t regconst) {
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_IF | DUK__EMIT_FLAG_NO_SHUFFLE_A | DUK__EMIT_FLAG_NO_SHUFFLE_C,
|
|
0 /*false*/,
|
|
regconst,
|
|
0 /*unused*/);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_if_true_skip(duk_compiler_ctx *comp_ctx, duk_regconst_t regconst) {
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_IF | DUK__EMIT_FLAG_NO_SHUFFLE_A | DUK__EMIT_FLAG_NO_SHUFFLE_C,
|
|
1 /*true*/,
|
|
regconst,
|
|
0 /*unused*/);
|
|
}
|
|
|
|
DUK_LOCAL void duk__emit_invalid(duk_compiler_ctx *comp_ctx) {
|
|
duk__emit_extraop_bc(comp_ctx, DUK_EXTRAOP_INVALID, 0);
|
|
}
|
|
|
|
/*
|
|
* Peephole optimizer for finished bytecode.
|
|
*
|
|
* Does not remove opcodes; currently only straightens out unconditional
|
|
* jump chains which are generated by several control structures.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__peephole_optimize_bytecode(duk_compiler_ctx *comp_ctx) {
|
|
duk_hbuffer_dynamic *h;
|
|
duk_compiler_instr *bc;
|
|
duk_small_uint_t iter;
|
|
duk_int_t i, n;
|
|
duk_int_t count_opt;
|
|
|
|
h = comp_ctx->curr_func.h_code;
|
|
DUK_ASSERT(h != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h));
|
|
|
|
bc = (duk_compiler_instr *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(comp_ctx->thr->heap, h);
|
|
#if defined(DUK_USE_BUFLEN16)
|
|
/* No need to assert, buffer size maximum is 0xffff. */
|
|
#else
|
|
DUK_ASSERT(DUK_HBUFFER_GET_SIZE(h) / sizeof(duk_compiler_instr) <= DUK_INT_MAX); /* bytecode limits */
|
|
#endif
|
|
n = (duk_int_t) (DUK_HBUFFER_GET_SIZE(h) / sizeof(duk_compiler_instr));
|
|
|
|
for (iter = 0; iter < DUK_COMPILER_PEEPHOLE_MAXITER; iter++) {
|
|
count_opt = 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
duk_instr_t ins;
|
|
duk_int_t target_pc1;
|
|
duk_int_t target_pc2;
|
|
|
|
ins = bc[i].ins;
|
|
if (DUK_DEC_OP(ins) != DUK_OP_JUMP) {
|
|
continue;
|
|
}
|
|
|
|
target_pc1 = i + 1 + DUK_DEC_ABC(ins) - DUK_BC_JUMP_BIAS;
|
|
DUK_DDD(DUK_DDDPRINT("consider jump at pc %ld; target_pc=%ld", (long) i, (long) target_pc1));
|
|
DUK_ASSERT(target_pc1 >= 0);
|
|
DUK_ASSERT(target_pc1 < n);
|
|
|
|
/* Note: if target_pc1 == i, we'll optimize a jump to itself.
|
|
* This does not need to be checked for explicitly; the case
|
|
* is rare and max iter breaks us out.
|
|
*/
|
|
|
|
ins = bc[target_pc1].ins;
|
|
if (DUK_DEC_OP(ins) != DUK_OP_JUMP) {
|
|
continue;
|
|
}
|
|
|
|
target_pc2 = target_pc1 + 1 + DUK_DEC_ABC(ins) - DUK_BC_JUMP_BIAS;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("optimizing jump at pc %ld; old target is %ld -> new target is %ld",
|
|
(long) i, (long) target_pc1, (long) target_pc2));
|
|
|
|
bc[i].ins = DUK_ENC_OP_ABC(DUK_OP_JUMP, target_pc2 - (i + 1) + DUK_BC_JUMP_BIAS);
|
|
|
|
count_opt++;
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("optimized %ld jumps on peephole round %ld", (long) count_opt, (long) (iter + 1)));
|
|
|
|
if (count_opt == 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Intermediate value helpers
|
|
*/
|
|
|
|
#define DUK__ISREG(comp_ctx,x) (((x) & DUK__CONST_MARKER) == 0)
|
|
#define DUK__ISCONST(comp_ctx,x) (((x) & DUK__CONST_MARKER) != 0)
|
|
#define DUK__ISTEMP(comp_ctx,x) (DUK__ISREG((comp_ctx), (x)) && (duk_regconst_t) (x) >= (duk_regconst_t) ((comp_ctx)->curr_func.temp_first))
|
|
#define DUK__GETTEMP(comp_ctx) ((comp_ctx)->curr_func.temp_next)
|
|
#define DUK__SETTEMP(comp_ctx,x) ((comp_ctx)->curr_func.temp_next = (x)) /* dangerous: must only lower (temp_max not updated) */
|
|
#define DUK__SETTEMP_CHECKMAX(comp_ctx,x) duk__settemp_checkmax((comp_ctx),(x))
|
|
#define DUK__ALLOCTEMP(comp_ctx) duk__alloctemp((comp_ctx))
|
|
#define DUK__ALLOCTEMPS(comp_ctx,count) duk__alloctemps((comp_ctx),(count))
|
|
|
|
/* Flags for intermediate value coercions. A flag for using a forced reg
|
|
* is not needed, the forced_reg argument suffices and generates better
|
|
* code (it is checked as it is used).
|
|
*/
|
|
#define DUK__IVAL_FLAG_ALLOW_CONST (1 << 0) /* allow a constant to be returned */
|
|
#define DUK__IVAL_FLAG_REQUIRE_TEMP (1 << 1) /* require a (mutable) temporary as a result */
|
|
#define DUK__IVAL_FLAG_REQUIRE_SHORT (1 << 2) /* require a short (8-bit) reg/const which fits into bytecode B/C slot */
|
|
|
|
/* XXX: some code might benefit from DUK__SETTEMP_IFTEMP(ctx,x) */
|
|
|
|
DUK_LOCAL void duk__copy_ispec(duk_compiler_ctx *comp_ctx, duk_ispec *src, duk_ispec *dst) {
|
|
duk_context *ctx = (duk_context *) comp_ctx->thr;
|
|
|
|
dst->t = src->t;
|
|
dst->regconst = src->regconst;
|
|
duk_copy(ctx, src->valstack_idx, dst->valstack_idx);
|
|
}
|
|
|
|
DUK_LOCAL void duk__copy_ivalue(duk_compiler_ctx *comp_ctx, duk_ivalue *src, duk_ivalue *dst) {
|
|
duk_context *ctx = (duk_context *) comp_ctx->thr;
|
|
|
|
dst->t = src->t;
|
|
dst->op = src->op;
|
|
dst->x1.t = src->x1.t;
|
|
dst->x1.regconst = src->x1.regconst;
|
|
dst->x2.t = src->x2.t;
|
|
dst->x2.regconst = src->x2.regconst;
|
|
duk_copy(ctx, src->x1.valstack_idx, dst->x1.valstack_idx);
|
|
duk_copy(ctx, src->x2.valstack_idx, dst->x2.valstack_idx);
|
|
}
|
|
|
|
/* XXX: to util */
|
|
DUK_LOCAL duk_bool_t duk__is_whole_get_int32(duk_double_t x, duk_int32_t *ival) {
|
|
duk_small_int_t c;
|
|
duk_int32_t t;
|
|
|
|
c = DUK_FPCLASSIFY(x);
|
|
if (c == DUK_FP_NORMAL || (c == DUK_FP_ZERO && !DUK_SIGNBIT(x))) {
|
|
/* Don't allow negative zero as it will cause trouble with
|
|
* LDINT+LDINTX. But positive zero is OK.
|
|
*/
|
|
t = (duk_int32_t) x;
|
|
if ((duk_double_t) t == x) {
|
|
*ival = t;
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL duk_reg_t duk__alloctemps(duk_compiler_ctx *comp_ctx, duk_small_int_t num) {
|
|
duk_reg_t res;
|
|
|
|
res = comp_ctx->curr_func.temp_next;
|
|
comp_ctx->curr_func.temp_next += num;
|
|
|
|
if (comp_ctx->curr_func.temp_next > DUK__MAX_TEMPS) { /* == DUK__MAX_TEMPS is OK */
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_TEMP_LIMIT);
|
|
}
|
|
|
|
/* maintain highest 'used' temporary, needed to figure out nregs of function */
|
|
if (comp_ctx->curr_func.temp_next > comp_ctx->curr_func.temp_max) {
|
|
comp_ctx->curr_func.temp_max = comp_ctx->curr_func.temp_next;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_LOCAL duk_reg_t duk__alloctemp(duk_compiler_ctx *comp_ctx) {
|
|
return duk__alloctemps(comp_ctx, 1);
|
|
}
|
|
|
|
DUK_LOCAL void duk__settemp_checkmax(duk_compiler_ctx *comp_ctx, duk_reg_t temp_next) {
|
|
comp_ctx->curr_func.temp_next = temp_next;
|
|
if (temp_next > comp_ctx->curr_func.temp_max) {
|
|
comp_ctx->curr_func.temp_max = temp_next;
|
|
}
|
|
}
|
|
|
|
/* get const for value at valstack top */
|
|
DUK_LOCAL duk_regconst_t duk__getconst(duk_compiler_ctx *comp_ctx) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_compiler_func *f = &comp_ctx->curr_func;
|
|
duk_tval *tv1;
|
|
duk_int_t i, n, n_check;
|
|
|
|
n = (duk_int_t) duk_get_length(ctx, f->consts_idx);
|
|
|
|
tv1 = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv1 != NULL);
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Explicit check for fastint downgrade. */
|
|
DUK_TVAL_CHKFAST_INPLACE(tv1);
|
|
#endif
|
|
|
|
/* Sanity workaround for handling functions with a large number of
|
|
* constants at least somewhat reasonably. Otherwise checking whether
|
|
* we already have the constant would grow very slow (as it is O(N^2)).
|
|
*/
|
|
n_check = (n > DUK__GETCONST_MAX_CONSTS_CHECK ? DUK__GETCONST_MAX_CONSTS_CHECK : n);
|
|
for (i = 0; i < n_check; i++) {
|
|
duk_tval *tv2 = DUK_HOBJECT_A_GET_VALUE_PTR(thr->heap, f->h_consts, i);
|
|
|
|
/* Strict equality is NOT enough, because we cannot use the same
|
|
* constant for e.g. +0 and -0.
|
|
*/
|
|
if (duk_js_samevalue(tv1, tv2)) {
|
|
DUK_DDD(DUK_DDDPRINT("reused existing constant for %!T -> const index %ld",
|
|
(duk_tval *) tv1, (long) i));
|
|
duk_pop(ctx);
|
|
return (duk_regconst_t) (i | DUK__CONST_MARKER);
|
|
}
|
|
}
|
|
|
|
if (n > DUK__MAX_CONSTS) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_CONST_LIMIT);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("allocating new constant for %!T -> const index %ld",
|
|
(duk_tval *) tv1, (long) n));
|
|
(void) duk_put_prop_index(ctx, f->consts_idx, n); /* invalidates tv1, tv2 */
|
|
return (duk_regconst_t) (n | DUK__CONST_MARKER);
|
|
}
|
|
|
|
/* Get the value represented by an duk_ispec to a register or constant.
|
|
* The caller can control the result by indicating whether or not:
|
|
*
|
|
* (1) a constant is allowed (sometimes the caller needs the result to
|
|
* be in a register)
|
|
*
|
|
* (2) a temporary register is required (usually when caller requires
|
|
* the register to be safely mutable; normally either a bound
|
|
* register or a temporary register are both OK)
|
|
*
|
|
* (3) a forced register target needs to be used
|
|
*
|
|
* Bytecode may be emitted to generate the necessary value. The return
|
|
* value is either a register or a constant.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_regconst_t duk__ispec_toregconst_raw(duk_compiler_ctx *comp_ctx,
|
|
duk_ispec *x,
|
|
duk_reg_t forced_reg,
|
|
duk_small_uint_t flags) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__ispec_toregconst_raw(): x={%ld:%ld:%!T}, "
|
|
"forced_reg=%ld, flags 0x%08lx: allow_const=%ld require_temp=%ld require_short=%ld",
|
|
(long) x->t,
|
|
(long) x->regconst,
|
|
(duk_tval *) duk_get_tval(ctx, x->valstack_idx),
|
|
(long) forced_reg,
|
|
(unsigned long) flags,
|
|
(long) ((flags & DUK__IVAL_FLAG_ALLOW_CONST) ? 1 : 0),
|
|
(long) ((flags & DUK__IVAL_FLAG_REQUIRE_TEMP) ? 1 : 0),
|
|
(long) ((flags & DUK__IVAL_FLAG_REQUIRE_SHORT) ? 1 : 0)));
|
|
|
|
switch (x->t) {
|
|
case DUK_ISPEC_VALUE: {
|
|
duk_tval *tv;
|
|
|
|
tv = duk_get_tval(ctx, x->valstack_idx);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED: {
|
|
/* Note: although there is no 'undefined' literal, undefined
|
|
* values can occur during compilation as a result of e.g.
|
|
* the 'void' operator.
|
|
*/
|
|
duk_reg_t dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_extraop_bc(comp_ctx, DUK_EXTRAOP_LDUNDEF, (duk_regconst_t) dest);
|
|
return (duk_regconst_t) dest;
|
|
}
|
|
case DUK_TAG_NULL: {
|
|
duk_reg_t dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_extraop_bc(comp_ctx, DUK_EXTRAOP_LDNULL, (duk_regconst_t) dest);
|
|
return (duk_regconst_t) dest;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
duk_reg_t dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
(DUK_TVAL_GET_BOOLEAN(tv) ? DUK_EXTRAOP_LDTRUE : DUK_EXTRAOP_LDFALSE),
|
|
(duk_regconst_t) dest);
|
|
return (duk_regconst_t) dest;
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h;
|
|
duk_reg_t dest;
|
|
duk_regconst_t constidx;
|
|
|
|
h = DUK_TVAL_GET_STRING(tv);
|
|
DUK_UNREF(h);
|
|
DUK_ASSERT(h != NULL);
|
|
|
|
#if 0 /* XXX: to be implemented? */
|
|
/* Use special opcodes to load short strings */
|
|
if (DUK_HSTRING_GET_BYTELEN(h) <= 2) {
|
|
/* Encode into a single opcode (18 bits can encode 1-2 bytes + length indicator) */
|
|
} else if (DUK_HSTRING_GET_BYTELEN(h) <= 6) {
|
|
/* Encode into a double constant (53 bits can encode 6*8 = 48 bits + 3-bit length */
|
|
}
|
|
#endif
|
|
duk_dup(ctx, x->valstack_idx);
|
|
constidx = duk__getconst(comp_ctx);
|
|
|
|
if (flags & DUK__IVAL_FLAG_ALLOW_CONST) {
|
|
return constidx;
|
|
}
|
|
|
|
dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDCONST, (duk_regconst_t) dest, constidx);
|
|
return (duk_regconst_t) dest;
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
duk_reg_t dest;
|
|
duk_regconst_t constidx;
|
|
duk_double_t dval;
|
|
duk_int32_t ival;
|
|
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
dval = DUK_TVAL_GET_NUMBER(tv);
|
|
|
|
if (!(flags & DUK__IVAL_FLAG_ALLOW_CONST)) {
|
|
/* A number can be loaded either through a constant, using
|
|
* LDINT, or using LDINT+LDINTX. LDINT is always a size win,
|
|
* LDINT+LDINTX is not if the constant is used multiple times.
|
|
* Currently always prefer LDINT+LDINTX over a double constant.
|
|
*/
|
|
|
|
if (duk__is_whole_get_int32(dval, &ival)) {
|
|
dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_load_int32(comp_ctx, dest, ival);
|
|
return (duk_regconst_t) dest;
|
|
}
|
|
}
|
|
|
|
duk_dup(ctx, x->valstack_idx);
|
|
constidx = duk__getconst(comp_ctx);
|
|
|
|
if (flags & DUK__IVAL_FLAG_ALLOW_CONST) {
|
|
return constidx;
|
|
} else {
|
|
dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDCONST, (duk_regconst_t) dest, constidx);
|
|
return (duk_regconst_t) dest;
|
|
}
|
|
}
|
|
} /* end switch */
|
|
}
|
|
case DUK_ISPEC_REGCONST: {
|
|
if ((x->regconst & DUK__CONST_MARKER) && !(flags & DUK__IVAL_FLAG_ALLOW_CONST)) {
|
|
duk_reg_t dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDCONST, (duk_regconst_t) dest, x->regconst);
|
|
return (duk_regconst_t) dest;
|
|
} else {
|
|
if (forced_reg >= 0) {
|
|
if (x->regconst != (duk_regconst_t) forced_reg) {
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDREG, forced_reg, x->regconst);
|
|
}
|
|
return (duk_regconst_t) forced_reg;
|
|
} else {
|
|
if ((flags & DUK__IVAL_FLAG_REQUIRE_TEMP) && !DUK__ISTEMP(comp_ctx, x->regconst)) {
|
|
duk_reg_t dest = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDREG, (duk_regconst_t) dest, x->regconst);
|
|
return (duk_regconst_t) dest;
|
|
} else {
|
|
return x->regconst;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL void duk__ispec_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ispec *x, duk_reg_t forced_reg) {
|
|
DUK_ASSERT(forced_reg >= 0);
|
|
(void) duk__ispec_toregconst_raw(comp_ctx, x, forced_reg, 0 /*flags*/);
|
|
}
|
|
|
|
/* Coerce an duk_ivalue to a 'plain' value by generating the necessary
|
|
* arithmetic operations, property access, or variable access bytecode.
|
|
* The duk_ivalue argument ('x') is converted into a plain value as a
|
|
* side effect.
|
|
*/
|
|
DUK_LOCAL void duk__ivalue_toplain_raw(duk_compiler_ctx *comp_ctx, duk_ivalue *x, duk_reg_t forced_reg) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__ivalue_toplain_raw(): x={t=%ld,op=%ld,x1={%ld:%ld:%!T},x2={%ld:%ld:%!T}}, "
|
|
"forced_reg=%ld",
|
|
(long) x->t, (long) x->op,
|
|
(long) x->x1.t, (long) x->x1.regconst,
|
|
(duk_tval *) duk_get_tval(ctx, x->x1.valstack_idx),
|
|
(long) x->x2.t, (long) x->x2.regconst,
|
|
(duk_tval *) duk_get_tval(ctx, x->x2.valstack_idx),
|
|
(long) forced_reg));
|
|
|
|
switch (x->t) {
|
|
case DUK_IVAL_PLAIN: {
|
|
return;
|
|
}
|
|
/* XXX: support unary arithmetic ivalues (useful?) */
|
|
case DUK_IVAL_ARITH:
|
|
case DUK_IVAL_ARITH_EXTRAOP: {
|
|
duk_regconst_t arg1;
|
|
duk_regconst_t arg2;
|
|
duk_reg_t dest;
|
|
duk_tval *tv1;
|
|
duk_tval *tv2;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arith to plain conversion"));
|
|
|
|
/* inline arithmetic check for constant values */
|
|
/* XXX: use the exactly same arithmetic function here as in executor */
|
|
if (x->x1.t == DUK_ISPEC_VALUE && x->x2.t == DUK_ISPEC_VALUE && x->t == DUK_IVAL_ARITH) {
|
|
tv1 = duk_get_tval(ctx, x->x1.valstack_idx);
|
|
tv2 = duk_get_tval(ctx, x->x2.valstack_idx);
|
|
DUK_ASSERT(tv1 != NULL);
|
|
DUK_ASSERT(tv2 != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arith: tv1=%!T, tv2=%!T",
|
|
(duk_tval *) tv1,
|
|
(duk_tval *) tv2));
|
|
|
|
if (DUK_TVAL_IS_NUMBER(tv1) && DUK_TVAL_IS_NUMBER(tv2)) {
|
|
duk_double_t d1 = DUK_TVAL_GET_NUMBER(tv1);
|
|
duk_double_t d2 = DUK_TVAL_GET_NUMBER(tv2);
|
|
duk_double_t d3;
|
|
duk_bool_t accept = 1;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("arith inline check: d1=%lf, d2=%lf, op=%ld",
|
|
(double) d1, (double) d2, (long) x->op));
|
|
switch (x->op) {
|
|
case DUK_OP_ADD: d3 = d1 + d2; break;
|
|
case DUK_OP_SUB: d3 = d1 - d2; break;
|
|
case DUK_OP_MUL: d3 = d1 * d2; break;
|
|
case DUK_OP_DIV: d3 = d1 / d2; break;
|
|
default: accept = 0; break;
|
|
}
|
|
|
|
if (accept) {
|
|
duk_double_union du;
|
|
du.d = d3;
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du);
|
|
d3 = du.d;
|
|
|
|
x->t = DUK_IVAL_PLAIN;
|
|
DUK_ASSERT(x->x1.t == DUK_ISPEC_VALUE);
|
|
DUK_TVAL_SET_NUMBER(tv1, d3); /* old value is number: no refcount */
|
|
return;
|
|
}
|
|
} else if (x->op == DUK_OP_ADD && DUK_TVAL_IS_STRING(tv1) && DUK_TVAL_IS_STRING(tv2)) {
|
|
/* inline string concatenation */
|
|
duk_dup(ctx, x->x1.valstack_idx);
|
|
duk_dup(ctx, x->x2.valstack_idx);
|
|
duk_concat(ctx, 2);
|
|
duk_replace(ctx, x->x1.valstack_idx);
|
|
x->t = DUK_IVAL_PLAIN;
|
|
DUK_ASSERT(x->x1.t == DUK_ISPEC_VALUE);
|
|
return;
|
|
}
|
|
}
|
|
|
|
arg1 = duk__ispec_toregconst_raw(comp_ctx, &x->x1, -1, DUK__IVAL_FLAG_ALLOW_CONST | DUK__IVAL_FLAG_REQUIRE_SHORT /*flags*/);
|
|
arg2 = duk__ispec_toregconst_raw(comp_ctx, &x->x2, -1, DUK__IVAL_FLAG_ALLOW_CONST | DUK__IVAL_FLAG_REQUIRE_SHORT /*flags*/);
|
|
|
|
/* If forced reg, use it as destination. Otherwise try to
|
|
* use either coerced ispec if it is a temporary.
|
|
*
|
|
* When using extraops, avoid reusing arg2 as dest because that
|
|
* would lead to an LDREG shuffle below. We still can't guarantee
|
|
* dest != arg2 because we may have a forced_reg.
|
|
*/
|
|
if (forced_reg >= 0) {
|
|
dest = forced_reg;
|
|
} else if (DUK__ISTEMP(comp_ctx, arg1)) {
|
|
dest = (duk_reg_t) arg1;
|
|
} else if (DUK__ISTEMP(comp_ctx, arg2) && x->t != DUK_IVAL_ARITH_EXTRAOP) {
|
|
dest = (duk_reg_t) arg2;
|
|
} else {
|
|
dest = DUK__ALLOCTEMP(comp_ctx);
|
|
}
|
|
|
|
/* Extraop arithmetic opcodes must have destination same as
|
|
* first source. If second source matches destination we need
|
|
* a temporary register to avoid clobbering the second source.
|
|
*
|
|
* XXX: change calling code to avoid this situation in most cases.
|
|
*/
|
|
|
|
if (x->t == DUK_IVAL_ARITH_EXTRAOP) {
|
|
if (!(DUK__ISREG(comp_ctx, arg1) && (duk_reg_t) arg1 == dest)) {
|
|
if (DUK__ISREG(comp_ctx, arg2) && (duk_reg_t) arg2 == dest) {
|
|
/* arg2 would be clobbered so reassign it to a temp. */
|
|
duk_reg_t tempreg;
|
|
tempreg = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDREG, tempreg, arg2);
|
|
arg2 = tempreg;
|
|
}
|
|
|
|
if (DUK__ISREG(comp_ctx, arg1)) {
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDREG, dest, arg1);
|
|
} else {
|
|
DUK_ASSERT(DUK__ISCONST(comp_ctx, arg1));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_LDCONST, dest, arg1);
|
|
}
|
|
}
|
|
|
|
/* Note: special DUK__EMIT_FLAG_B_IS_TARGETSOURCE
|
|
* used to indicate that B is both a source and a
|
|
* target register. When shuffled, it needs to be
|
|
* both input and output shuffled.
|
|
*/
|
|
DUK_ASSERT(DUK__ISREG(comp_ctx, dest));
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
x->op | DUK__EMIT_FLAG_B_IS_TARGET |
|
|
DUK__EMIT_FLAG_B_IS_TARGETSOURCE,
|
|
(duk_regconst_t) dest,
|
|
(duk_regconst_t) arg2);
|
|
|
|
} else {
|
|
DUK_ASSERT(DUK__ISREG(comp_ctx, dest));
|
|
duk__emit_a_b_c(comp_ctx, x->op, (duk_regconst_t) dest, arg1, arg2);
|
|
}
|
|
|
|
x->t = DUK_IVAL_PLAIN;
|
|
x->x1.t = DUK_ISPEC_REGCONST;
|
|
x->x1.regconst = (duk_regconst_t) dest;
|
|
return;
|
|
}
|
|
case DUK_IVAL_PROP: {
|
|
/* XXX: very similar to DUK_IVAL_ARITH - merge? */
|
|
duk_regconst_t arg1;
|
|
duk_regconst_t arg2;
|
|
duk_reg_t dest;
|
|
|
|
/* Need a short reg/const, does not have to be a mutable temp. */
|
|
arg1 = duk__ispec_toregconst_raw(comp_ctx, &x->x1, -1, DUK__IVAL_FLAG_ALLOW_CONST | DUK__IVAL_FLAG_REQUIRE_SHORT /*flags*/);
|
|
arg2 = duk__ispec_toregconst_raw(comp_ctx, &x->x2, -1, DUK__IVAL_FLAG_ALLOW_CONST | DUK__IVAL_FLAG_REQUIRE_SHORT /*flags*/);
|
|
|
|
/* Pick a destination register. If either base value or key
|
|
* happens to be a temp value, reuse it as the destination.
|
|
*
|
|
* XXX: The temp must be a "mutable" one, i.e. such that no
|
|
* other expression is using it anymore. Here this should be
|
|
* the case because the value of a property access expression
|
|
* is neither the base nor the key, but the lookup result.
|
|
*/
|
|
|
|
if (forced_reg >= 0) {
|
|
dest = forced_reg;
|
|
} else if (DUK__ISTEMP(comp_ctx, arg1)) {
|
|
dest = (duk_reg_t) arg1;
|
|
} else if (DUK__ISTEMP(comp_ctx, arg2)) {
|
|
dest = (duk_reg_t) arg2;
|
|
} else {
|
|
dest = DUK__ALLOCTEMP(comp_ctx);
|
|
}
|
|
|
|
duk__emit_a_b_c(comp_ctx, DUK_OP_GETPROP, (duk_regconst_t) dest, arg1, arg2);
|
|
|
|
x->t = DUK_IVAL_PLAIN;
|
|
x->x1.t = DUK_ISPEC_REGCONST;
|
|
x->x1.regconst = (duk_regconst_t) dest;
|
|
return;
|
|
}
|
|
case DUK_IVAL_VAR: {
|
|
/* x1 must be a string */
|
|
duk_reg_t dest;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
DUK_ASSERT(x->x1.t == DUK_ISPEC_VALUE);
|
|
|
|
duk_dup(ctx, x->x1.valstack_idx);
|
|
if (duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
x->t = DUK_IVAL_PLAIN;
|
|
x->x1.t = DUK_ISPEC_REGCONST;
|
|
x->x1.regconst = (duk_regconst_t) reg_varbind;
|
|
} else {
|
|
dest = (forced_reg >= 0 ? forced_reg : DUK__ALLOCTEMP(comp_ctx));
|
|
duk__emit_a_bc(comp_ctx, DUK_OP_GETVAR, (duk_regconst_t) dest, rc_varname);
|
|
x->t = DUK_IVAL_PLAIN;
|
|
x->x1.t = DUK_ISPEC_REGCONST;
|
|
x->x1.regconst = (duk_regconst_t) dest;
|
|
}
|
|
return;
|
|
}
|
|
case DUK_IVAL_NONE:
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
return;
|
|
}
|
|
|
|
/* evaluate to plain value, no forced register (temp/bound reg both ok) */
|
|
DUK_LOCAL void duk__ivalue_toplain(duk_compiler_ctx *comp_ctx, duk_ivalue *x) {
|
|
duk__ivalue_toplain_raw(comp_ctx, x, -1 /*forced_reg*/);
|
|
}
|
|
|
|
/* evaluate to final form (e.g. coerce GETPROP to code), throw away temp */
|
|
DUK_LOCAL void duk__ivalue_toplain_ignore(duk_compiler_ctx *comp_ctx, duk_ivalue *x) {
|
|
duk_reg_t temp;
|
|
|
|
/* If duk__ivalue_toplain_raw() allocates a temp, forget it and
|
|
* restore next temp state.
|
|
*/
|
|
temp = DUK__GETTEMP(comp_ctx);
|
|
duk__ivalue_toplain_raw(comp_ctx, x, -1 /*forced_reg*/);
|
|
DUK__SETTEMP(comp_ctx, temp);
|
|
}
|
|
|
|
/* Coerce an duk_ivalue to a register or constant; result register may
|
|
* be a temp or a bound register.
|
|
*
|
|
* The duk_ivalue argument ('x') is converted into a regconst as a
|
|
* side effect.
|
|
*/
|
|
DUK_LOCAL
|
|
duk_regconst_t duk__ivalue_toregconst_raw(duk_compiler_ctx *comp_ctx,
|
|
duk_ivalue *x,
|
|
duk_reg_t forced_reg,
|
|
duk_small_uint_t flags) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_regconst_t reg;
|
|
DUK_UNREF(thr);
|
|
DUK_UNREF(ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__ivalue_toregconst_raw(): x={t=%ld,op=%ld,x1={%ld:%ld:%!T},x2={%ld:%ld:%!T}}, "
|
|
"forced_reg=%ld, flags 0x%08lx: allow_const=%ld require_temp=%ld require_short=%ld",
|
|
(long) x->t, (long) x->op,
|
|
(long) x->x1.t, (long) x->x1.regconst,
|
|
(duk_tval *) duk_get_tval(ctx, x->x1.valstack_idx),
|
|
(long) x->x2.t, (long) x->x2.regconst,
|
|
(duk_tval *) duk_get_tval(ctx, x->x2.valstack_idx),
|
|
(long) forced_reg,
|
|
(unsigned long) flags,
|
|
(long) ((flags & DUK__IVAL_FLAG_ALLOW_CONST) ? 1 : 0),
|
|
(long) ((flags & DUK__IVAL_FLAG_REQUIRE_TEMP) ? 1 : 0),
|
|
(long) ((flags & DUK__IVAL_FLAG_REQUIRE_SHORT) ? 1 : 0)));
|
|
|
|
/* first coerce to a plain value */
|
|
duk__ivalue_toplain_raw(comp_ctx, x, forced_reg);
|
|
DUK_ASSERT(x->t == DUK_IVAL_PLAIN);
|
|
|
|
/* then to a register */
|
|
reg = duk__ispec_toregconst_raw(comp_ctx, &x->x1, forced_reg, flags);
|
|
x->x1.t = DUK_ISPEC_REGCONST;
|
|
x->x1.regconst = reg;
|
|
|
|
return reg;
|
|
}
|
|
|
|
DUK_LOCAL duk_reg_t duk__ivalue_toreg(duk_compiler_ctx *comp_ctx, duk_ivalue *x) {
|
|
return duk__ivalue_toregconst_raw(comp_ctx, x, -1, 0 /*flags*/);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL duk_reg_t duk__ivalue_totempreg(duk_compiler_ctx *comp_ctx, duk_ivalue *x) {
|
|
return duk__ivalue_toregconst_raw(comp_ctx, x, -1, DUK__IVAL_FLAG_REQUIRE_TEMP /*flags*/);
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__ivalue_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ivalue *x, duk_int_t forced_reg) {
|
|
DUK_ASSERT(forced_reg >= 0);
|
|
(void) duk__ivalue_toregconst_raw(comp_ctx, x, forced_reg, 0 /*flags*/);
|
|
}
|
|
|
|
DUK_LOCAL duk_regconst_t duk__ivalue_toregconst(duk_compiler_ctx *comp_ctx, duk_ivalue *x) {
|
|
return duk__ivalue_toregconst_raw(comp_ctx, x, -1, DUK__IVAL_FLAG_ALLOW_CONST /*flags*/);
|
|
}
|
|
|
|
/* The issues below can be solved with better flags */
|
|
|
|
/* XXX: many operations actually want toforcedtemp() -- brand new temp? */
|
|
/* XXX: need a toplain_ignore() which will only coerce a value to a temp
|
|
* register if it might have a side effect. Side-effect free values do not
|
|
* need to be coerced.
|
|
*/
|
|
|
|
/*
|
|
* Identifier handling
|
|
*/
|
|
|
|
DUK_LOCAL duk_reg_t duk__lookup_active_register_binding(duk_compiler_ctx *comp_ctx) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *h_varname;
|
|
duk_reg_t ret;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("resolving identifier reference to '%!T'",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/*
|
|
* Special name handling
|
|
*/
|
|
|
|
h_varname = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
if (h_varname == DUK_HTHREAD_STRING_LC_ARGUMENTS(thr)) {
|
|
DUK_DDD(DUK_DDDPRINT("flagging function as accessing 'arguments'"));
|
|
comp_ctx->curr_func.id_access_arguments = 1;
|
|
}
|
|
|
|
/*
|
|
* Inside one or more 'with' statements fall back to slow path always.
|
|
* (See e.g. test-stmt-with.js.)
|
|
*/
|
|
|
|
if (comp_ctx->curr_func.with_depth > 0) {
|
|
DUK_DDD(DUK_DDDPRINT("identifier lookup inside a 'with' -> fall back to slow path"));
|
|
goto slow_path;
|
|
}
|
|
|
|
/*
|
|
* Any catch bindings ("catch (e)") also affect identifier binding.
|
|
*
|
|
* Currently, the varmap is modified for the duration of the catch
|
|
* clause to ensure any identifier accesses with the catch variable
|
|
* name will use slow path.
|
|
*/
|
|
|
|
duk_get_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
if (duk_is_number(ctx, -1)) {
|
|
ret = duk_to_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
} else {
|
|
duk_pop(ctx);
|
|
goto slow_path;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("identifier lookup -> reg %ld", (long) ret));
|
|
return ret;
|
|
|
|
slow_path:
|
|
DUK_DDD(DUK_DDDPRINT("identifier lookup -> slow path"));
|
|
|
|
comp_ctx->curr_func.id_access_slow = 1;
|
|
return (duk_reg_t) -1;
|
|
}
|
|
|
|
/* Lookup an identifier name in the current varmap, indicating whether the
|
|
* identifier is register-bound and if not, allocating a constant for the
|
|
* identifier name. Returns 1 if register-bound, 0 otherwise. Caller can
|
|
* also check (out_reg_varbind >= 0) to check whether or not identifier is
|
|
* register bound. The caller must NOT use out_rc_varname at all unless
|
|
* return code is 0 or out_reg_varbind is < 0; this is becuase out_rc_varname
|
|
* is unsigned and doesn't have a "unused" / none value.
|
|
*/
|
|
DUK_LOCAL duk_bool_t duk__lookup_lhs(duk_compiler_ctx *comp_ctx, duk_reg_t *out_reg_varbind, duk_regconst_t *out_rc_varname) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
/* [ ... varname ] */
|
|
|
|
duk_dup_top(ctx);
|
|
reg_varbind = duk__lookup_active_register_binding(comp_ctx);
|
|
|
|
if (reg_varbind >= 0) {
|
|
*out_reg_varbind = reg_varbind;
|
|
*out_rc_varname = 0; /* duk_regconst_t is unsigned, so use 0 as dummy value (ignored by caller) */
|
|
duk_pop(ctx);
|
|
return 1;
|
|
} else {
|
|
rc_varname = duk__getconst(comp_ctx);
|
|
*out_reg_varbind = -1;
|
|
*out_rc_varname = rc_varname;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Label handling
|
|
*
|
|
* Labels are initially added with flags prohibiting both break and continue.
|
|
* When the statement type is finally uncovered (after potentially multiple
|
|
* labels), all the labels are updated to allow/prohibit break and continue.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__add_label(duk_compiler_ctx *comp_ctx, duk_hstring *h_label, duk_int_t pc_label, duk_int_t label_id) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_size_t n;
|
|
duk_size_t new_size;
|
|
duk_uint8_t *p;
|
|
duk_labelinfo *li_start, *li;
|
|
|
|
/* Duplicate (shadowing) labels are not allowed, except for the empty
|
|
* labels (which are used as default labels for switch and iteration
|
|
* statements).
|
|
*
|
|
* We could also allow shadowing of non-empty pending labels without any
|
|
* other issues than breaking the required label shadowing requirements
|
|
* of the E5 specification, see Section 12.12.
|
|
*/
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, comp_ctx->curr_func.h_labelinfos);
|
|
li_start = (duk_labelinfo *) p;
|
|
li = (duk_labelinfo *) (p + DUK_HBUFFER_GET_SIZE(comp_ctx->curr_func.h_labelinfos));
|
|
n = (duk_size_t) (li - li_start);
|
|
|
|
while (li > li_start) {
|
|
li--;
|
|
|
|
if (li->h_label == h_label && h_label != DUK_HTHREAD_STRING_EMPTY_STRING(thr)) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_DUPLICATE_LABEL);
|
|
}
|
|
}
|
|
|
|
duk_push_hstring(ctx, h_label);
|
|
DUK_ASSERT(n <= DUK_UARRIDX_MAX); /* label limits */
|
|
(void) duk_put_prop_index(ctx, comp_ctx->curr_func.labelnames_idx, (duk_uarridx_t) n);
|
|
|
|
new_size = (n + 1) * sizeof(duk_labelinfo);
|
|
duk_hbuffer_resize(thr, comp_ctx->curr_func.h_labelinfos, new_size, new_size);
|
|
/* XXX: spare handling, slow now */
|
|
|
|
/* relookup after possible realloc */
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, comp_ctx->curr_func.h_labelinfos);
|
|
li_start = (duk_labelinfo *) p;
|
|
DUK_UNREF(li_start); /* silence scan-build warning */
|
|
li = (duk_labelinfo *) (p + DUK_HBUFFER_GET_SIZE(comp_ctx->curr_func.h_labelinfos));
|
|
li--;
|
|
|
|
/* Labels can be used for iteration statements but also for other statements,
|
|
* in particular a label can be used for a block statement. All cases of a
|
|
* named label accept a 'break' so that flag is set here. Iteration statements
|
|
* also allow 'continue', so that flag is updated when we figure out the
|
|
* statement type.
|
|
*/
|
|
|
|
li->flags = DUK_LABEL_FLAG_ALLOW_BREAK;
|
|
li->label_id = label_id;
|
|
li->h_label = h_label;
|
|
li->catch_depth = comp_ctx->curr_func.catch_depth; /* catch depth from current func */
|
|
li->pc_label = pc_label;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("registered label: flags=0x%08lx, id=%ld, name=%!O, catch_depth=%ld, pc_label=%ld",
|
|
(unsigned long) li->flags, (long) li->label_id, (duk_heaphdr *) li->h_label,
|
|
(long) li->catch_depth, (long) li->pc_label));
|
|
}
|
|
|
|
/* Update all labels with matching label_id. */
|
|
DUK_LOCAL void duk__update_label_flags(duk_compiler_ctx *comp_ctx, duk_int_t label_id, duk_small_uint_t flags) {
|
|
duk_uint8_t *p;
|
|
duk_labelinfo *li_start, *li;
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(comp_ctx->thr->heap, comp_ctx->curr_func.h_labelinfos);
|
|
li_start = (duk_labelinfo *) p;
|
|
li = (duk_labelinfo *) (p + DUK_HBUFFER_GET_SIZE(comp_ctx->curr_func.h_labelinfos));
|
|
|
|
/* Match labels starting from latest; once label_id no longer matches, we can
|
|
* safely exit without checking the rest of the labels (only the topmost labels
|
|
* are ever updated).
|
|
*/
|
|
while (li > li_start) {
|
|
li--;
|
|
|
|
if (li->label_id != label_id) {
|
|
break;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("updating (overwriting) label flags for li=%p, label_id=%ld, flags=%ld",
|
|
(void *) li, (long) label_id, (long) flags));
|
|
|
|
li->flags = flags;
|
|
}
|
|
}
|
|
|
|
/* Lookup active label information. Break/continue distinction is necessary to handle switch
|
|
* statement related labels correctly: a switch will only catch a 'break', not a 'continue'.
|
|
*
|
|
* An explicit label cannot appear multiple times in the active set, but empty labels (unlabelled
|
|
* iteration and switch statements) can. A break will match the closest unlabelled or labelled
|
|
* statement. A continue will match the closest unlabelled or labelled iteration statement. It is
|
|
* a syntax error if a continue matches a labelled switch statement; because an explicit label cannot
|
|
* be duplicated, the continue cannot match any valid label outside the switch.
|
|
*
|
|
* A side effect of these rules is that a LABEL statement related to a switch should never actually
|
|
* catch a continue abrupt completion at run-time. Hence an INVALID opcode can be placed in the
|
|
* continue slot of the switch's LABEL statement.
|
|
*/
|
|
|
|
/* XXX: awkward, especially the bunch of separate output values -> output struct? */
|
|
DUK_LOCAL void duk__lookup_active_label(duk_compiler_ctx *comp_ctx, duk_hstring *h_label, duk_bool_t is_break, duk_int_t *out_label_id, duk_int_t *out_label_catch_depth, duk_int_t *out_label_pc, duk_bool_t *out_is_closest) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint8_t *p;
|
|
duk_labelinfo *li_start, *li_end, *li;
|
|
duk_bool_t match = 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("looking up active label: label='%!O', is_break=%ld",
|
|
(duk_heaphdr *) h_label, (long) is_break));
|
|
|
|
DUK_UNREF(ctx);
|
|
|
|
p = (duk_uint8_t *) DUK_HBUFFER_DYNAMIC_GET_DATA_PTR(thr->heap, comp_ctx->curr_func.h_labelinfos);
|
|
li_start = (duk_labelinfo *) p;
|
|
li_end = (duk_labelinfo *) (p + DUK_HBUFFER_GET_SIZE(comp_ctx->curr_func.h_labelinfos));
|
|
li = li_end;
|
|
|
|
/* Match labels starting from latest label because there can be duplicate empty
|
|
* labels in the label set.
|
|
*/
|
|
while (li > li_start) {
|
|
li--;
|
|
|
|
if (li->h_label != h_label) {
|
|
DUK_DDD(DUK_DDDPRINT("labelinfo[%ld] ->'%!O' != %!O",
|
|
(long) (li - li_start),
|
|
(duk_heaphdr *) li->h_label,
|
|
(duk_heaphdr *) h_label));
|
|
continue;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("labelinfo[%ld] -> '%!O' label name matches (still need to check type)",
|
|
(long) (li - li_start), (duk_heaphdr *) h_label));
|
|
|
|
/* currently all labels accept a break, so no explicit check for it now */
|
|
DUK_ASSERT(li->flags & DUK_LABEL_FLAG_ALLOW_BREAK);
|
|
|
|
if (is_break) {
|
|
/* break matches always */
|
|
match = 1;
|
|
break;
|
|
} else if (li->flags & DUK_LABEL_FLAG_ALLOW_CONTINUE) {
|
|
/* iteration statements allow continue */
|
|
match = 1;
|
|
break;
|
|
} else {
|
|
/* continue matched this label -- we can only continue if this is the empty
|
|
* label, for which duplication is allowed, and thus there is hope of
|
|
* finding a match deeper in the label stack.
|
|
*/
|
|
if (h_label != DUK_HTHREAD_STRING_EMPTY_STRING(thr)) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_LABEL);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("continue matched an empty label which does not "
|
|
"allow a continue -> continue lookup deeper in label stack"));
|
|
}
|
|
}
|
|
}
|
|
/* XXX: match flag is awkward, rework */
|
|
if (!match) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_LABEL);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("label match: %!O -> label_id %ld, catch_depth=%ld, pc_label=%ld",
|
|
(duk_heaphdr *) h_label, (long) li->label_id,
|
|
(long) li->catch_depth, (long) li->pc_label));
|
|
|
|
*out_label_id = li->label_id;
|
|
*out_label_catch_depth = li->catch_depth;
|
|
*out_label_pc = li->pc_label;
|
|
*out_is_closest = (li == li_end - 1);
|
|
}
|
|
|
|
DUK_LOCAL void duk__reset_labels_to_length(duk_compiler_ctx *comp_ctx, duk_int_t len) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_size_t new_size;
|
|
|
|
/* XXX: duk_set_length */
|
|
new_size = sizeof(duk_labelinfo) * (duk_size_t) len;
|
|
duk_push_int(ctx, len);
|
|
duk_put_prop_stridx(ctx, comp_ctx->curr_func.labelnames_idx, DUK_STRIDX_LENGTH);
|
|
duk_hbuffer_resize(thr, comp_ctx->curr_func.h_labelinfos, new_size, new_size); /* XXX: spare handling */
|
|
}
|
|
|
|
/*
|
|
* Expression parsing: duk__expr_nud(), duk__expr_led(), duk__expr_lbp(), and helpers.
|
|
*
|
|
* - duk__expr_nud(): ("null denotation"): process prev_token as a "start" of an expression (e.g. literal)
|
|
* - duk__expr_led(): ("left denotation"): process prev_token in the "middle" of an expression (e.g. operator)
|
|
* - duk__expr_lbp(): ("left-binding power"): return left-binding power of curr_token
|
|
*/
|
|
|
|
/* object literal key tracking flags */
|
|
#define DUK__OBJ_LIT_KEY_PLAIN (1 << 0) /* key encountered as a plain property */
|
|
#define DUK__OBJ_LIT_KEY_GET (1 << 1) /* key encountered as a getter */
|
|
#define DUK__OBJ_LIT_KEY_SET (1 << 2) /* key encountered as a setter */
|
|
|
|
DUK_LOCAL void duk__nud_array_literal(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_reg_t reg_obj; /* result reg */
|
|
duk_reg_t reg_temp; /* temp reg */
|
|
duk_reg_t temp_start; /* temp reg value for start of loop */
|
|
duk_small_uint_t max_init_values; /* max # of values initialized in one MPUTARR set */
|
|
duk_small_uint_t num_values; /* number of values in current MPUTARR set */
|
|
duk_uarridx_t curr_idx; /* current (next) array index */
|
|
duk_uarridx_t start_idx; /* start array index of current MPUTARR set */
|
|
duk_uarridx_t init_idx; /* last array index explicitly initialized, +1 */
|
|
duk_bool_t require_comma; /* next loop requires a comma */
|
|
|
|
/* DUK_TOK_LBRACKET already eaten, current token is right after that */
|
|
DUK_ASSERT(comp_ctx->prev_token.t == DUK_TOK_LBRACKET);
|
|
|
|
max_init_values = DUK__MAX_ARRAY_INIT_VALUES; /* XXX: depend on available temps? */
|
|
|
|
reg_obj = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
DUK_EXTRAOP_NEWARR | DUK__EMIT_FLAG_B_IS_TARGET,
|
|
reg_obj,
|
|
0); /* XXX: patch initial size afterwards? */
|
|
temp_start = DUK__GETTEMP(comp_ctx);
|
|
|
|
/*
|
|
* Emit initializers in sets of maximum max_init_values.
|
|
* Corner cases such as single value initializers do not have
|
|
* special handling now.
|
|
*
|
|
* Elided elements must not be emitted as 'undefined' values,
|
|
* because such values would be enumerable (which is incorrect).
|
|
* Also note that trailing elisions must be reflected in the
|
|
* length of the final array but cause no elements to be actually
|
|
* inserted.
|
|
*/
|
|
|
|
curr_idx = 0;
|
|
init_idx = 0; /* tracks maximum initialized index + 1 */
|
|
start_idx = 0;
|
|
require_comma = 0;
|
|
|
|
for (;;) {
|
|
num_values = 0;
|
|
DUK__SETTEMP(comp_ctx, temp_start);
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RBRACKET) {
|
|
break;
|
|
}
|
|
|
|
for (;;) {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RBRACKET) {
|
|
/* the outer loop will recheck and exit */
|
|
break;
|
|
}
|
|
|
|
/* comma check */
|
|
if (require_comma) {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_COMMA) {
|
|
/* comma after a value, expected */
|
|
duk__advance(comp_ctx);
|
|
require_comma = 0;
|
|
continue;
|
|
} else {
|
|
goto syntax_error;
|
|
}
|
|
} else {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_COMMA) {
|
|
/* elision - flush */
|
|
curr_idx++;
|
|
duk__advance(comp_ctx);
|
|
/* if num_values > 0, MPUTARR emitted by outer loop after break */
|
|
break;
|
|
}
|
|
}
|
|
/* else an array initializer element */
|
|
|
|
/* initial index */
|
|
if (num_values == 0) {
|
|
start_idx = curr_idx;
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_load_int32(comp_ctx, reg_temp, (duk_int32_t) start_idx);
|
|
}
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx); /* alloc temp just in case, to update max temp */
|
|
DUK__SETTEMP(comp_ctx, reg_temp);
|
|
duk__expr_toforcedreg(comp_ctx, res, DUK__BP_COMMA /*rbp_flags*/, reg_temp /*forced_reg*/);
|
|
DUK__SETTEMP(comp_ctx, reg_temp + 1);
|
|
|
|
num_values++;
|
|
curr_idx++;
|
|
require_comma = 1;
|
|
|
|
if (num_values >= max_init_values) {
|
|
/* MPUTARR emitted by outer loop */
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (num_values > 0) {
|
|
/* - A is a source register (it's not a write target, but used
|
|
* to identify the target object) but can be shuffled.
|
|
* - B cannot be shuffled normally because it identifies a range
|
|
* of registers, the emitter has special handling for this
|
|
* (the "no shuffle" flag must not be set).
|
|
* - C is a non-register number and cannot be shuffled, but
|
|
* never needs to be.
|
|
*/
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_MPUTARR |
|
|
DUK__EMIT_FLAG_NO_SHUFFLE_C |
|
|
DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) reg_obj,
|
|
(duk_regconst_t) temp_start,
|
|
(duk_regconst_t) num_values);
|
|
init_idx = start_idx + num_values;
|
|
|
|
/* num_values and temp_start reset at top of outer loop */
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(comp_ctx->curr_token.t == DUK_TOK_RBRACKET);
|
|
duk__advance(comp_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("array literal done, curridx=%ld, initidx=%ld",
|
|
(long) curr_idx, (long) init_idx));
|
|
|
|
/* trailing elisions? */
|
|
if (curr_idx > init_idx) {
|
|
/* yes, must set array length explicitly */
|
|
DUK_DDD(DUK_DDDPRINT("array literal has trailing elisions which affect its length"));
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_load_int32(comp_ctx, reg_temp, (duk_int_t) curr_idx);
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
DUK_EXTRAOP_SETALEN,
|
|
(duk_regconst_t) reg_obj,
|
|
(duk_regconst_t) reg_temp);
|
|
}
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_start);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_obj;
|
|
return;
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_ARRAY_LITERAL);
|
|
}
|
|
|
|
/* duplicate/invalid key checks; returns 1 if syntax error */
|
|
DUK_LOCAL duk_bool_t duk__nud_object_literal_key_check(duk_compiler_ctx *comp_ctx, duk_small_uint_t new_key_flags) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_t key_flags;
|
|
|
|
/* [ ... key_obj key ] */
|
|
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
|
|
/*
|
|
* 'key_obj' tracks keys encountered so far by associating an
|
|
* integer with flags with already encountered keys. The checks
|
|
* below implement E5 Section 11.1.5, step 4 for production:
|
|
*
|
|
* PropertyNameAndValueList: PropertyNameAndValueList , PropertyAssignment
|
|
*/
|
|
|
|
duk_dup(ctx, -1); /* [ ... key_obj key key ] */
|
|
duk_get_prop(ctx, -3); /* [ ... key_obj key val ] */
|
|
key_flags = duk_to_int(ctx, -1);
|
|
duk_pop(ctx); /* [ ... key_obj key ] */
|
|
|
|
if (new_key_flags & DUK__OBJ_LIT_KEY_PLAIN) {
|
|
if ((key_flags & DUK__OBJ_LIT_KEY_PLAIN) && comp_ctx->curr_func.is_strict) {
|
|
/* step 4.a */
|
|
DUK_DDD(DUK_DDDPRINT("duplicate key: plain key appears twice in strict mode"));
|
|
return 1;
|
|
}
|
|
if (key_flags & (DUK__OBJ_LIT_KEY_GET | DUK__OBJ_LIT_KEY_SET)) {
|
|
/* step 4.c */
|
|
DUK_DDD(DUK_DDDPRINT("duplicate key: plain key encountered after setter/getter"));
|
|
return 1;
|
|
}
|
|
} else {
|
|
if (key_flags & DUK__OBJ_LIT_KEY_PLAIN) {
|
|
/* step 4.b */
|
|
DUK_DDD(DUK_DDDPRINT("duplicate key: getter/setter encountered after plain key"));
|
|
return 1;
|
|
}
|
|
if (key_flags & new_key_flags) {
|
|
/* step 4.d */
|
|
DUK_DDD(DUK_DDDPRINT("duplicate key: getter/setter encountered twice"));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
new_key_flags |= key_flags;
|
|
DUK_DDD(DUK_DDDPRINT("setting/updating key %!T flags: 0x%08lx -> 0x%08lx",
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(unsigned long) key_flags,
|
|
(unsigned long) new_key_flags));
|
|
duk_dup(ctx, -1);
|
|
duk_push_int(ctx, new_key_flags); /* [ ... key_obj key key flags ] */
|
|
duk_put_prop(ctx, -4); /* [ ... key_obj key ] */
|
|
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL void duk__nud_object_literal(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_reg_t reg_obj; /* result reg */
|
|
duk_reg_t reg_key; /* temp reg for key literal */
|
|
duk_reg_t reg_temp; /* temp reg */
|
|
duk_reg_t temp_start; /* temp reg value for start of loop */
|
|
duk_small_uint_t max_init_pairs; /* max # of key-value pairs initialized in one MPUTOBJ set */
|
|
duk_small_uint_t num_pairs; /* number of pairs in current MPUTOBJ set */
|
|
duk_bool_t first; /* first value: comma must not precede the value */
|
|
duk_bool_t is_set, is_get; /* temps */
|
|
|
|
DUK_ASSERT(comp_ctx->prev_token.t == DUK_TOK_LCURLY);
|
|
|
|
max_init_pairs = DUK__MAX_OBJECT_INIT_PAIRS; /* XXX: depend on available temps? */
|
|
|
|
reg_obj = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
DUK_EXTRAOP_NEWOBJ | DUK__EMIT_FLAG_B_IS_TARGET,
|
|
reg_obj,
|
|
0); /* XXX: patch initial size afterwards? */
|
|
temp_start = DUK__GETTEMP(comp_ctx);
|
|
|
|
/* temp object for tracking / detecting duplicate keys */
|
|
duk_push_object(ctx);
|
|
|
|
/*
|
|
* Emit initializers in sets of maximum max_init_pairs keys.
|
|
* Setter/getter is handled separately and terminates the
|
|
* current set of initializer values. Corner cases such as
|
|
* single value initializers do not have special handling now.
|
|
*/
|
|
|
|
first = 1;
|
|
for (;;) {
|
|
num_pairs = 0;
|
|
DUK__SETTEMP(comp_ctx, temp_start);
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RCURLY) {
|
|
break;
|
|
}
|
|
|
|
for (;;) {
|
|
/*
|
|
* Three possible element formats:
|
|
* 1) PropertyName : AssignmentExpression
|
|
* 2) get PropertyName () { FunctionBody }
|
|
* 3) set PropertyName ( PropertySetParameterList ) { FunctionBody }
|
|
*
|
|
* PropertyName can be IdentifierName (includes reserved words), a string
|
|
* literal, or a number literal. Note that IdentifierName allows 'get' and
|
|
* 'set' too, so we need to look ahead to the next token to distinguish:
|
|
*
|
|
* { get : 1 }
|
|
*
|
|
* and
|
|
*
|
|
* { get foo() { return 1 } }
|
|
* { get get() { return 1 } } // 'get' as getter propertyname
|
|
*
|
|
* Finally, a trailing comma is allowed.
|
|
*
|
|
* Key name is coerced to string at compile time (and ends up as a
|
|
* a string constant) even for numeric keys (e.g. "{1:'foo'}").
|
|
* These could be emitted using e.g. LDINT, but that seems hardly
|
|
* worth the effort and would increase code size.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("object literal inner loop, curr_token->t = %ld",
|
|
(long) comp_ctx->curr_token.t));
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RCURLY) {
|
|
/* the outer loop will recheck and exit */
|
|
break;
|
|
}
|
|
if (num_pairs >= max_init_pairs) {
|
|
/* MPUTOBJ emitted by outer loop */
|
|
break;
|
|
}
|
|
|
|
if (first) {
|
|
first = 0;
|
|
} else {
|
|
if (comp_ctx->curr_token.t != DUK_TOK_COMMA) {
|
|
goto syntax_error;
|
|
}
|
|
duk__advance(comp_ctx);
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RCURLY) {
|
|
/* trailing comma followed by rcurly */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* advance to get one step of lookup */
|
|
duk__advance(comp_ctx);
|
|
|
|
/* NOTE: "get" and "set" are not officially ReservedWords and the lexer
|
|
* currently treats them always like ordinary identifiers (DUK_TOK_GET
|
|
* and DUK_TOK_SET are unused). They need to be detected based on the
|
|
* identifier string content.
|
|
*/
|
|
|
|
is_get = (comp_ctx->prev_token.t == DUK_TOK_IDENTIFIER &&
|
|
comp_ctx->prev_token.str1 == DUK_HTHREAD_STRING_GET(thr));
|
|
is_set = (comp_ctx->prev_token.t == DUK_TOK_IDENTIFIER &&
|
|
comp_ctx->prev_token.str1 == DUK_HTHREAD_STRING_SET(thr));
|
|
if ((is_get || is_set) && comp_ctx->curr_token.t != DUK_TOK_COLON) {
|
|
/* getter/setter */
|
|
duk_int_t fnum;
|
|
|
|
if (comp_ctx->curr_token.t_nores == DUK_TOK_IDENTIFIER ||
|
|
comp_ctx->curr_token.t_nores == DUK_TOK_STRING) {
|
|
/* same handling for identifiers and strings */
|
|
DUK_ASSERT(comp_ctx->curr_token.str1 != NULL);
|
|
duk_push_hstring(ctx, comp_ctx->curr_token.str1);
|
|
} else if (comp_ctx->curr_token.t == DUK_TOK_NUMBER) {
|
|
duk_push_number(ctx, comp_ctx->curr_token.num);
|
|
duk_to_string(ctx, -1);
|
|
} else {
|
|
goto syntax_error;
|
|
}
|
|
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
if (duk__nud_object_literal_key_check(comp_ctx,
|
|
(is_get ? DUK__OBJ_LIT_KEY_GET : DUK__OBJ_LIT_KEY_SET))) {
|
|
goto syntax_error;
|
|
}
|
|
reg_key = duk__getconst(comp_ctx);
|
|
|
|
if (num_pairs > 0) {
|
|
/* - A is a source register (it's not a write target, but used
|
|
* to identify the target object) but can be shuffled.
|
|
* - B cannot be shuffled normally because it identifies a range
|
|
* of registers, the emitter has special handling for this
|
|
* (the "no shuffle" flag must not be set).
|
|
* - C is a non-register number and cannot be shuffled, but
|
|
* never needs to be.
|
|
*/
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_MPUTOBJ |
|
|
DUK__EMIT_FLAG_NO_SHUFFLE_C |
|
|
DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
reg_obj,
|
|
temp_start,
|
|
num_pairs);
|
|
num_pairs = 0;
|
|
DUK__SETTEMP(comp_ctx, temp_start);
|
|
}
|
|
|
|
/* curr_token = get/set name */
|
|
fnum = duk__parse_func_like_fnum(comp_ctx, 0 /*is_decl*/, 1 /*is_setget*/);
|
|
|
|
DUK_ASSERT(DUK__GETTEMP(comp_ctx) == temp_start);
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_LDCONST,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_key);
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_CLOSURE,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) fnum);
|
|
|
|
/* Slot C is used in a non-standard fashion (range of regs),
|
|
* emitter code has special handling for it (must not set the
|
|
* "no shuffle" flag).
|
|
*/
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
(is_get ? DUK_EXTRAOP_INITGET : DUK_EXTRAOP_INITSET),
|
|
reg_obj,
|
|
temp_start); /* temp_start+0 = key, temp_start+1 = closure */
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_start);
|
|
} else {
|
|
/* normal key/value */
|
|
if (comp_ctx->prev_token.t_nores == DUK_TOK_IDENTIFIER ||
|
|
comp_ctx->prev_token.t_nores == DUK_TOK_STRING) {
|
|
/* same handling for identifiers and strings */
|
|
DUK_ASSERT(comp_ctx->prev_token.str1 != NULL);
|
|
duk_push_hstring(ctx, comp_ctx->prev_token.str1);
|
|
} else if (comp_ctx->prev_token.t == DUK_TOK_NUMBER) {
|
|
duk_push_number(ctx, comp_ctx->prev_token.num);
|
|
duk_to_string(ctx, -1);
|
|
} else {
|
|
goto syntax_error;
|
|
}
|
|
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
if (duk__nud_object_literal_key_check(comp_ctx, DUK__OBJ_LIT_KEY_PLAIN)) {
|
|
goto syntax_error;
|
|
}
|
|
reg_key = duk__getconst(comp_ctx);
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_LDCONST,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_key);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_COLON);
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx); /* alloc temp just in case, to update max temp */
|
|
DUK__SETTEMP(comp_ctx, reg_temp);
|
|
duk__expr_toforcedreg(comp_ctx, res, DUK__BP_COMMA /*rbp_flags*/, reg_temp /*forced_reg*/);
|
|
DUK__SETTEMP(comp_ctx, reg_temp + 1);
|
|
|
|
num_pairs++;
|
|
}
|
|
}
|
|
|
|
if (num_pairs > 0) {
|
|
/* See MPUTOBJ comments above. */
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_MPUTOBJ |
|
|
DUK__EMIT_FLAG_NO_SHUFFLE_C |
|
|
DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
reg_obj,
|
|
temp_start,
|
|
num_pairs);
|
|
|
|
/* num_pairs and temp_start reset at top of outer loop */
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(comp_ctx->curr_token.t == DUK_TOK_RCURLY);
|
|
duk__advance(comp_ctx);
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_start);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_obj;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final tracking object: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_pop(ctx);
|
|
return;
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_OBJECT_LITERAL);
|
|
}
|
|
|
|
/* Parse argument list. Arguments are written to temps starting from
|
|
* "next temp". Returns number of arguments parsed. Expects left paren
|
|
* to be already eaten, and eats the right paren before returning.
|
|
*/
|
|
DUK_LOCAL duk_int_t duk__parse_arguments(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_int_t nargs = 0;
|
|
duk_reg_t reg_temp;
|
|
|
|
/* Note: expect that caller has already eaten the left paren */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("start parsing arguments, prev_token.t=%ld, curr_token.t=%ld",
|
|
(long) comp_ctx->prev_token.t, (long) comp_ctx->curr_token.t));
|
|
|
|
for (;;) {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RPAREN) {
|
|
break;
|
|
}
|
|
if (nargs > 0) {
|
|
duk__advance_expect(comp_ctx, DUK_TOK_COMMA);
|
|
}
|
|
|
|
/* We want the argument expression value to go to "next temp"
|
|
* without additional moves. That should almost always be the
|
|
* case, but we double check after expression parsing.
|
|
*
|
|
* This is not the cleanest possible approach.
|
|
*/
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx); /* bump up "allocated" reg count, just in case */
|
|
DUK__SETTEMP(comp_ctx, reg_temp);
|
|
|
|
/* binding power must be high enough to NOT allow comma expressions directly */
|
|
duk__expr_toforcedreg(comp_ctx, res, DUK__BP_COMMA /*rbp_flags*/, reg_temp); /* always allow 'in', coerce to 'tr' just in case */
|
|
|
|
DUK__SETTEMP(comp_ctx, reg_temp + 1);
|
|
nargs++;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("argument #%ld written into reg %ld", (long) nargs, (long) reg_temp));
|
|
}
|
|
|
|
/* eat the right paren */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("end parsing arguments"));
|
|
|
|
return nargs;
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__expr_is_empty(duk_compiler_ctx *comp_ctx) {
|
|
/* empty expressions can be detected conveniently with nud/led counts */
|
|
return (comp_ctx->curr_func.nud_count == 0) &&
|
|
(comp_ctx->curr_func.led_count == 0);
|
|
}
|
|
|
|
DUK_LOCAL void duk__expr_nud(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_token *tk;
|
|
duk_reg_t temp_at_entry;
|
|
duk_small_int_t tok;
|
|
duk_uint32_t args; /* temp variable to pass constants and flags to shared code */
|
|
|
|
/*
|
|
* ctx->prev_token token to process with duk__expr_nud()
|
|
* ctx->curr_token updated by caller
|
|
*
|
|
* Note: the token in the switch below has already been eaten.
|
|
*/
|
|
|
|
temp_at_entry = DUK__GETTEMP(comp_ctx);
|
|
|
|
comp_ctx->curr_func.nud_count++;
|
|
|
|
tk = &comp_ctx->prev_token;
|
|
tok = tk->t;
|
|
res->t = DUK_IVAL_NONE;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__expr_nud(), prev_token.t=%ld, allow_in=%ld, paren_level=%ld",
|
|
(long) tk->t, (long) comp_ctx->curr_func.allow_in, (long) comp_ctx->curr_func.paren_level));
|
|
|
|
switch (tok) {
|
|
|
|
/* PRIMARY EXPRESSIONS */
|
|
|
|
case DUK_TOK_THIS: {
|
|
duk_reg_t reg_temp;
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_LDTHIS,
|
|
(duk_regconst_t) reg_temp);
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
}
|
|
case DUK_TOK_IDENTIFIER: {
|
|
res->t = DUK_IVAL_VAR;
|
|
res->x1.t = DUK_ISPEC_VALUE;
|
|
duk_push_hstring(ctx, tk->str1);
|
|
duk_replace(ctx, res->x1.valstack_idx);
|
|
return;
|
|
}
|
|
case DUK_TOK_NULL: {
|
|
duk_push_null(ctx);
|
|
goto plain_value;
|
|
}
|
|
case DUK_TOK_TRUE: {
|
|
duk_push_true(ctx);
|
|
goto plain_value;
|
|
}
|
|
case DUK_TOK_FALSE: {
|
|
duk_push_false(ctx);
|
|
goto plain_value;
|
|
}
|
|
case DUK_TOK_NUMBER: {
|
|
duk_push_number(ctx, tk->num);
|
|
goto plain_value;
|
|
}
|
|
case DUK_TOK_STRING: {
|
|
DUK_ASSERT(tk->str1 != NULL);
|
|
duk_push_hstring(ctx, tk->str1);
|
|
goto plain_value;
|
|
}
|
|
case DUK_TOK_REGEXP: {
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_reg_t reg_temp;
|
|
duk_regconst_t rc_re_bytecode; /* const */
|
|
duk_regconst_t rc_re_source; /* const */
|
|
|
|
DUK_ASSERT(tk->str1 != NULL);
|
|
DUK_ASSERT(tk->str2 != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("emitting regexp op, str1=%!O, str2=%!O",
|
|
(duk_heaphdr *) tk->str1,
|
|
(duk_heaphdr *) tk->str2));
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk_push_hstring(ctx, tk->str1);
|
|
duk_push_hstring(ctx, tk->str2);
|
|
|
|
/* [ ... pattern flags ] */
|
|
|
|
duk_regexp_compile(thr);
|
|
|
|
/* [ ... escaped_source bytecode ] */
|
|
|
|
rc_re_bytecode = duk__getconst(comp_ctx);
|
|
rc_re_source = duk__getconst(comp_ctx);
|
|
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_REGEXP,
|
|
(duk_regconst_t) reg_temp /*a*/,
|
|
rc_re_bytecode /*b*/,
|
|
rc_re_source /*c*/);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
goto syntax_error;
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
}
|
|
case DUK_TOK_LBRACKET: {
|
|
DUK_DDD(DUK_DDDPRINT("parsing array literal"));
|
|
duk__nud_array_literal(comp_ctx, res);
|
|
return;
|
|
}
|
|
case DUK_TOK_LCURLY: {
|
|
DUK_DDD(DUK_DDDPRINT("parsing object literal"));
|
|
duk__nud_object_literal(comp_ctx, res);
|
|
return;
|
|
}
|
|
case DUK_TOK_LPAREN: {
|
|
duk_bool_t prev_allow_in;
|
|
|
|
comp_ctx->curr_func.paren_level++;
|
|
prev_allow_in = comp_ctx->curr_func.allow_in;
|
|
comp_ctx->curr_func.allow_in = 1; /* reset 'allow_in' for parenthesized expression */
|
|
|
|
duk__expr(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/); /* Expression, terminates at a ')' */
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
comp_ctx->curr_func.allow_in = prev_allow_in;
|
|
comp_ctx->curr_func.paren_level--;
|
|
return;
|
|
}
|
|
|
|
/* MEMBER/NEW/CALL EXPRESSIONS */
|
|
|
|
case DUK_TOK_NEW: {
|
|
/*
|
|
* Parsing an expression starting with 'new' is tricky because
|
|
* there are multiple possible productions deriving from
|
|
* LeftHandSideExpression which begin with 'new'.
|
|
*
|
|
* We currently resort to one-token lookahead to distinguish the
|
|
* cases. Hopefully this is correct. The binding power must be
|
|
* such that parsing ends at an LPAREN (CallExpression) but not at
|
|
* a PERIOD or LBRACKET (MemberExpression).
|
|
*
|
|
* See doc/compiler.txt for discussion on the parsing approach,
|
|
* and testcases/test-dev-new.js for a bunch of documented tests.
|
|
*/
|
|
|
|
duk_reg_t reg_target;
|
|
duk_int_t nargs;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("begin parsing new expression"));
|
|
|
|
reg_target = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__expr_toforcedreg(comp_ctx, res, DUK__BP_CALL /*rbp_flags*/, reg_target /*forced_reg*/);
|
|
DUK__SETTEMP(comp_ctx, reg_target + 1);
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_LPAREN) {
|
|
/* 'new' MemberExpression Arguments */
|
|
DUK_DDD(DUK_DDDPRINT("new expression has argument list"));
|
|
duk__advance(comp_ctx);
|
|
nargs = duk__parse_arguments(comp_ctx, res); /* parse args starting from "next temp", reg_target + 1 */
|
|
/* right paren eaten */
|
|
} else {
|
|
/* 'new' MemberExpression */
|
|
DUK_DDD(DUK_DDDPRINT("new expression has no argument list"));
|
|
nargs = 0;
|
|
}
|
|
|
|
/* Opcode slot C is used in a non-standard way, so shuffling
|
|
* is not allowed.
|
|
*/
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_NEW | DUK__EMIT_FLAG_NO_SHUFFLE_A | DUK__EMIT_FLAG_NO_SHUFFLE_C,
|
|
0 /*unused*/,
|
|
reg_target /*target*/,
|
|
nargs /*num_args*/);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("end parsing new expression"));
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_target;
|
|
return;
|
|
}
|
|
|
|
/* FUNCTION EXPRESSIONS */
|
|
|
|
case DUK_TOK_FUNCTION: {
|
|
/* Function expression. Note that any statement beginning with 'function'
|
|
* is handled by the statement parser as a function declaration, or a
|
|
* non-standard function expression/statement (or a SyntaxError). We only
|
|
* handle actual function expressions (occurring inside an expression) here.
|
|
*
|
|
* O(depth^2) parse count for inner functions is handled by recording a
|
|
* lexer offset on the first compilation pass, so that the function can
|
|
* be efficiently skipped on the second pass. This is encapsulated into
|
|
* duk__parse_func_like_fnum().
|
|
*/
|
|
|
|
duk_reg_t reg_temp;
|
|
duk_int_t fnum;
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
|
|
/* curr_token follows 'function' */
|
|
fnum = duk__parse_func_like_fnum(comp_ctx, 0 /*is_decl*/, 0 /*is_setget*/);
|
|
DUK_DDD(DUK_DDDPRINT("parsed inner function -> fnum %ld", (long) fnum));
|
|
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_CLOSURE,
|
|
(duk_regconst_t) reg_temp /*a*/,
|
|
(duk_regconst_t) fnum /*bc*/);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
}
|
|
|
|
/* UNARY EXPRESSIONS */
|
|
|
|
case DUK_TOK_DELETE: {
|
|
/* Delete semantics are a bit tricky. The description in E5 specification
|
|
* is kind of confusing, because it distinguishes between resolvability of
|
|
* a reference (which is only known at runtime) seemingly at compile time
|
|
* (= SyntaxError throwing).
|
|
*/
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
if (res->t == DUK_IVAL_VAR) {
|
|
/* not allowed in strict mode, regardless of whether resolves;
|
|
* in non-strict mode DELVAR handles both non-resolving and
|
|
* resolving cases (the specification description is a bit confusing).
|
|
*/
|
|
|
|
duk_reg_t reg_temp;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
if (comp_ctx->curr_func.is_strict) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_CANNOT_DELETE_IDENTIFIER);
|
|
}
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_at_entry);
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
|
|
duk_dup(ctx, res->x1.valstack_idx);
|
|
if (duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
/* register bound variables are non-configurable -> always false */
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_LDFALSE,
|
|
(duk_regconst_t) reg_temp);
|
|
} else {
|
|
duk_dup(ctx, res->x1.valstack_idx);
|
|
rc_varname = duk__getconst(comp_ctx);
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_DELVAR,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) rc_varname);
|
|
}
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
} else if (res->t == DUK_IVAL_PROP) {
|
|
duk_reg_t reg_temp;
|
|
duk_reg_t reg_obj;
|
|
duk_regconst_t rc_key;
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_at_entry);
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
reg_obj = duk__ispec_toregconst_raw(comp_ctx, &res->x1, -1 /*forced_reg*/, 0 /*flags*/); /* don't allow const */
|
|
rc_key = duk__ispec_toregconst_raw(comp_ctx, &res->x2, -1 /*forced_reg*/, DUK__IVAL_FLAG_ALLOW_CONST /*flags*/);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_DELPROP,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_obj,
|
|
rc_key);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
} else {
|
|
/* non-Reference deletion is always 'true', even in strict mode */
|
|
duk_push_true(ctx);
|
|
goto plain_value;
|
|
}
|
|
return;
|
|
}
|
|
case DUK_TOK_VOID: {
|
|
duk__expr_toplain_ignore(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
duk_push_undefined(ctx);
|
|
goto plain_value;
|
|
}
|
|
case DUK_TOK_TYPEOF: {
|
|
/* 'typeof' must handle unresolvable references without throwing
|
|
* a ReferenceError (E5 Section 11.4.3). Register mapped values
|
|
* will never be unresolvable so special handling is only required
|
|
* when an identifier is a "slow path" one.
|
|
*/
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
|
|
if (res->t == DUK_IVAL_VAR) {
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
duk_reg_t reg_temp;
|
|
|
|
duk_dup(ctx, res->x1.valstack_idx);
|
|
if (!duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
DUK_DDD(DUK_DDDPRINT("typeof for an identifier name which could not be resolved "
|
|
"at compile time, need to use special run-time handling"));
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
DUK_EXTRAOP_TYPEOFID | DUK__EMIT_FLAG_B_IS_TARGET,
|
|
reg_temp,
|
|
rc_varname);
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
}
|
|
}
|
|
|
|
args = (DUK_EXTRAOP_TYPEOF << 8) + 0;
|
|
goto unary_extraop;
|
|
}
|
|
case DUK_TOK_INCREMENT: {
|
|
args = (DUK_OP_PREINCR << 8) + 0;
|
|
goto preincdec;
|
|
}
|
|
case DUK_TOK_DECREMENT: {
|
|
args = (DUK_OP_PREDECR << 8) + 0;
|
|
goto preincdec;
|
|
}
|
|
case DUK_TOK_ADD: {
|
|
/* unary plus */
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
if (res->t == DUK_IVAL_PLAIN && res->x1.t == DUK_ISPEC_VALUE &&
|
|
duk_is_number(ctx, res->x1.valstack_idx)) {
|
|
/* unary plus of a number is identity */
|
|
;
|
|
return;
|
|
}
|
|
args = (DUK_EXTRAOP_UNP << 8) + 0;
|
|
goto unary_extraop;
|
|
}
|
|
case DUK_TOK_SUB: {
|
|
/* unary minus */
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
if (res->t == DUK_IVAL_PLAIN && res->x1.t == DUK_ISPEC_VALUE &&
|
|
duk_is_number(ctx, res->x1.valstack_idx)) {
|
|
/* this optimization is important to handle negative literals (which are not directly
|
|
* provided by the lexical grammar
|
|
*/
|
|
duk_tval *tv_num = duk_get_tval(ctx, res->x1.valstack_idx);
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(tv_num != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_num));
|
|
du.d = DUK_TVAL_GET_NUMBER(tv_num);
|
|
du.d = -du.d;
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du);
|
|
DUK_TVAL_SET_NUMBER(tv_num, du.d);
|
|
return;
|
|
}
|
|
args = (DUK_EXTRAOP_UNM << 8) + 0;
|
|
goto unary_extraop;
|
|
}
|
|
case DUK_TOK_BNOT: {
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
args = (DUK_EXTRAOP_BNOT << 8) + 0;
|
|
goto unary_extraop;
|
|
}
|
|
case DUK_TOK_LNOT: {
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
if (res->t == DUK_IVAL_PLAIN && res->x1.t == DUK_ISPEC_VALUE) {
|
|
/* Very minimal inlining to handle common idioms '!0' and '!1',
|
|
* and also boolean arguments like '!false' and '!true'.
|
|
*/
|
|
duk_tval *tv_val = duk_get_tval(ctx, res->x1.valstack_idx);
|
|
|
|
DUK_ASSERT(tv_val != NULL);
|
|
if (DUK_TVAL_IS_NUMBER(tv_val)) {
|
|
duk_double_t d;
|
|
d = DUK_TVAL_GET_NUMBER(tv_val);
|
|
if (d == 0.0) {
|
|
/* Matches both +0 and -0 on purpose. */
|
|
DUK_DDD(DUK_DDDPRINT("inlined lnot: !0 -> true"));
|
|
DUK_TVAL_SET_BOOLEAN_TRUE(tv_val);
|
|
return;
|
|
} else if (d == 1.0) {
|
|
DUK_DDD(DUK_DDDPRINT("inlined lnot: !1 -> false"));
|
|
DUK_TVAL_SET_BOOLEAN_FALSE(tv_val);
|
|
return;
|
|
}
|
|
} else if (DUK_TVAL_IS_BOOLEAN(tv_val)) {
|
|
duk_small_int_t v;
|
|
v = DUK_TVAL_GET_BOOLEAN(tv_val);
|
|
DUK_DDD(DUK_DDDPRINT("inlined lnot boolean: %ld", (long) v));
|
|
DUK_ASSERT(v == 0 || v == 1);
|
|
DUK_TVAL_SET_BOOLEAN(tv_val, v ^ 0x01);
|
|
return;
|
|
}
|
|
}
|
|
args = (DUK_EXTRAOP_LNOT << 8) + 0;
|
|
goto unary_extraop;
|
|
}
|
|
|
|
} /* end switch */
|
|
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_PARSE_ERROR);
|
|
return;
|
|
|
|
unary_extraop:
|
|
{
|
|
/* Note: must coerce to a (writable) temp register, so that e.g. "!x" where x
|
|
* is a reg-mapped variable works correctly (does not mutate the variable register).
|
|
*/
|
|
|
|
duk_reg_t reg_temp;
|
|
reg_temp = duk__ivalue_toregconst_raw(comp_ctx, res, -1 /*forced_reg*/, DUK__IVAL_FLAG_REQUIRE_TEMP /*flags*/);
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
(args >> 8),
|
|
(duk_regconst_t) reg_temp);
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
}
|
|
|
|
preincdec:
|
|
{
|
|
/* preincrement and predecrement */
|
|
duk_reg_t reg_res;
|
|
duk_small_uint_t args_op = args >> 8;
|
|
|
|
/* Specific assumptions for opcode numbering. */
|
|
DUK_ASSERT(DUK_OP_PREINCR + 4 == DUK_OP_PREINCV);
|
|
DUK_ASSERT(DUK_OP_PREDECR + 4 == DUK_OP_PREDECV);
|
|
DUK_ASSERT(DUK_OP_PREINCR + 8 == DUK_OP_PREINCP);
|
|
DUK_ASSERT(DUK_OP_PREDECR + 8 == DUK_OP_PREDECP);
|
|
|
|
reg_res = DUK__ALLOCTEMP(comp_ctx);
|
|
|
|
duk__expr(comp_ctx, res, DUK__BP_MULTIPLICATIVE /*rbp_flags*/); /* UnaryExpression */
|
|
if (res->t == DUK_IVAL_VAR) {
|
|
duk_hstring *h_varname;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
h_varname = duk_get_hstring(ctx, res->x1.valstack_idx);
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
if (duk__hstring_is_eval_or_arguments_in_strict_mode(comp_ctx, h_varname)) {
|
|
goto syntax_error;
|
|
}
|
|
|
|
duk_dup(ctx, res->x1.valstack_idx);
|
|
if (duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
duk__emit_a_bc(comp_ctx,
|
|
args_op, /* e.g. DUK_OP_PREINCR */
|
|
(duk_regconst_t) reg_res,
|
|
(duk_regconst_t) reg_varbind);
|
|
} else {
|
|
duk__emit_a_bc(comp_ctx,
|
|
args_op + 4, /* e.g. DUK_OP_PREINCV */
|
|
(duk_regconst_t) reg_res,
|
|
rc_varname);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("preincdec to '%!O' -> reg_varbind=%ld, rc_varname=%ld",
|
|
(duk_heaphdr *) h_varname, (long) reg_varbind, (long) rc_varname));
|
|
} else if (res->t == DUK_IVAL_PROP) {
|
|
duk_reg_t reg_obj; /* allocate to reg only (not const) */
|
|
duk_regconst_t rc_key;
|
|
reg_obj = duk__ispec_toregconst_raw(comp_ctx, &res->x1, -1 /*forced_reg*/, 0 /*flags*/); /* don't allow const */
|
|
rc_key = duk__ispec_toregconst_raw(comp_ctx, &res->x2, -1 /*forced_reg*/, DUK__IVAL_FLAG_ALLOW_CONST /*flags*/);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
args_op + 8, /* e.g. DUK_OP_PREINCP */
|
|
(duk_regconst_t) reg_res,
|
|
(duk_regconst_t) reg_obj,
|
|
rc_key);
|
|
} else {
|
|
/* Technically return value is not needed because INVLHS will
|
|
* unconditially throw a ReferenceError. Coercion is necessary
|
|
* for proper semantics (consider ToNumber() called for an object).
|
|
* Use DUK_EXTRAOP_UNP with a dummy register to get ToNumber().
|
|
*/
|
|
|
|
duk__ivalue_toforcedreg(comp_ctx, res, reg_res);
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_UNP,
|
|
reg_res); /* for side effects, result ignored */
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_INVLHS);
|
|
}
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_res;
|
|
DUK__SETTEMP(comp_ctx, reg_res + 1);
|
|
return;
|
|
}
|
|
|
|
plain_value:
|
|
{
|
|
/* Stack top contains plain value */
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_VALUE;
|
|
duk_replace(ctx, res->x1.valstack_idx);
|
|
return;
|
|
}
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_EXPRESSION);
|
|
}
|
|
|
|
/* XXX: add flag to indicate whether caller cares about return value; this
|
|
* affects e.g. handling of assignment expressions. This change needs API
|
|
* changes elsewhere too.
|
|
*/
|
|
DUK_LOCAL void duk__expr_led(duk_compiler_ctx *comp_ctx, duk_ivalue *left, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_token *tk;
|
|
duk_small_int_t tok;
|
|
duk_uint32_t args; /* temp variable to pass constants and flags to shared code */
|
|
|
|
/*
|
|
* ctx->prev_token token to process with duk__expr_led()
|
|
* ctx->curr_token updated by caller
|
|
*/
|
|
|
|
comp_ctx->curr_func.led_count++;
|
|
|
|
/* The token in the switch has already been eaten here */
|
|
tk = &comp_ctx->prev_token;
|
|
tok = tk->t;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__expr_led(), prev_token.t=%ld, allow_in=%ld, paren_level=%ld",
|
|
(long) tk->t, (long) comp_ctx->curr_func.allow_in, (long) comp_ctx->curr_func.paren_level));
|
|
|
|
/* XXX: default priority for infix operators is duk__expr_lbp(tok) -> get it here? */
|
|
|
|
switch (tok) {
|
|
|
|
/* PRIMARY EXPRESSIONS */
|
|
|
|
case DUK_TOK_PERIOD: {
|
|
/* Property access expressions are critical for correct LHS ordering,
|
|
* see comments in duk__expr()!
|
|
*/
|
|
|
|
/* XXX: this now coerces an identifier into a GETVAR to a temp, which
|
|
* causes an extra LDREG in call setup. It's sufficient to coerce to a
|
|
* unary ivalue?
|
|
*/
|
|
duk__ivalue_toplain(comp_ctx, left);
|
|
|
|
/* NB: must accept reserved words as property name */
|
|
if (comp_ctx->curr_token.t_nores != DUK_TOK_IDENTIFIER) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_EXPECTED_IDENTIFIER);
|
|
}
|
|
|
|
res->t = DUK_IVAL_PROP;
|
|
duk__copy_ispec(comp_ctx, &left->x1, &res->x1); /* left.x1 -> res.x1 */
|
|
DUK_ASSERT(comp_ctx->curr_token.str1 != NULL);
|
|
duk_push_hstring(ctx, comp_ctx->curr_token.str1);
|
|
duk_replace(ctx, res->x2.valstack_idx);
|
|
res->x2.t = DUK_ISPEC_VALUE;
|
|
|
|
/* special RegExp literal handling after IdentifierName */
|
|
comp_ctx->curr_func.reject_regexp_in_adv = 1;
|
|
|
|
duk__advance(comp_ctx);
|
|
return;
|
|
}
|
|
case DUK_TOK_LBRACKET: {
|
|
/* Property access expressions are critical for correct LHS ordering,
|
|
* see comments in duk__expr()!
|
|
*/
|
|
|
|
/* XXX: optimize temp reg use */
|
|
/* XXX: similar coercion issue as in DUK_TOK_PERIOD */
|
|
|
|
/* XXX: coerce to regs? it might be better for enumeration use, where the
|
|
* same PROP ivalue is used multiple times. Or perhaps coerce PROP further
|
|
* there?
|
|
*/
|
|
|
|
duk__ivalue_toplain(comp_ctx, left);
|
|
duk__expr_toplain(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/); /* Expression, ']' terminates */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RBRACKET);
|
|
|
|
res->t = DUK_IVAL_PROP;
|
|
duk__copy_ispec(comp_ctx, &res->x1, &res->x2); /* res.x1 -> res.x2 */
|
|
duk__copy_ispec(comp_ctx, &left->x1, &res->x1); /* left.x1 -> res.x1 */
|
|
return;
|
|
}
|
|
case DUK_TOK_LPAREN: {
|
|
/* function call */
|
|
duk_reg_t reg_cs = DUK__ALLOCTEMPS(comp_ctx, 2);
|
|
duk_int_t nargs;
|
|
duk_small_uint_t call_flags = 0;
|
|
|
|
/*
|
|
* XXX: attempt to get the call result to "next temp" whenever
|
|
* possible to avoid unnecessary register shuffles.
|
|
*
|
|
* XXX: CSPROP (and CSREG) can overwrite the call target register, and save one temp,
|
|
* if the call target is a temporary register and at the top of the temp reg "stack".
|
|
*/
|
|
|
|
/*
|
|
* Setup call: target and 'this' binding. Three cases:
|
|
*
|
|
* 1. Identifier base (e.g. "foo()")
|
|
* 2. Property base (e.g. "foo.bar()")
|
|
* 3. Register base (e.g. "foo()()"; i.e. when a return value is a function)
|
|
*/
|
|
|
|
if (left->t == DUK_IVAL_VAR) {
|
|
duk_hstring *h_varname;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("function call with identifier base"));
|
|
|
|
h_varname = duk_get_hstring(ctx, left->x1.valstack_idx);
|
|
DUK_ASSERT(h_varname != NULL);
|
|
if (h_varname == DUK_HTHREAD_STRING_EVAL(thr)) {
|
|
/* Potential direct eval call detected, flag the CALL
|
|
* so that a run-time "direct eval" check is made and
|
|
* special behavior may be triggered. Note that this
|
|
* does not prevent 'eval' from being register bound.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("function call with identifier 'eval' "
|
|
"-> enabling EVALCALL flag, marking function "
|
|
"as may_direct_eval"));
|
|
call_flags |= DUK_BC_CALL_FLAG_EVALCALL;
|
|
|
|
comp_ctx->curr_func.may_direct_eval = 1;
|
|
}
|
|
|
|
duk_dup(ctx, left->x1.valstack_idx);
|
|
if (duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_CSREG,
|
|
(duk_regconst_t) (reg_cs + 0),
|
|
(duk_regconst_t) reg_varbind);
|
|
} else {
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_CSVAR,
|
|
(duk_regconst_t) (reg_cs + 0),
|
|
rc_varname);
|
|
}
|
|
} else if (left->t == DUK_IVAL_PROP) {
|
|
DUK_DDD(DUK_DDDPRINT("function call with property base"));
|
|
|
|
duk__ispec_toforcedreg(comp_ctx, &left->x1, reg_cs + 0); /* base */
|
|
duk__ispec_toforcedreg(comp_ctx, &left->x2, reg_cs + 1); /* key */
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_CSPROP,
|
|
(duk_regconst_t) (reg_cs + 0),
|
|
(duk_regconst_t) (reg_cs + 0),
|
|
(duk_regconst_t) (reg_cs + 1)); /* in-place setup */
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("function call with register base"));
|
|
|
|
duk__ivalue_toforcedreg(comp_ctx, left, reg_cs + 0);
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_CSREG,
|
|
(duk_regconst_t) (reg_cs + 0),
|
|
(duk_regconst_t) (reg_cs + 0)); /* in-place setup */
|
|
}
|
|
|
|
DUK__SETTEMP(comp_ctx, reg_cs + 2);
|
|
nargs = duk__parse_arguments(comp_ctx, res); /* parse args starting from "next temp" */
|
|
|
|
/* Tailcalls are handled by back-patching the TAILCALL flag to the
|
|
* already emitted instruction later (in return statement parser).
|
|
* Since A and C have a special meaning here, they cannot be "shuffled".
|
|
*/
|
|
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_CALL | DUK__EMIT_FLAG_NO_SHUFFLE_A | DUK__EMIT_FLAG_NO_SHUFFLE_C,
|
|
(duk_regconst_t) call_flags /*flags*/,
|
|
(duk_regconst_t) reg_cs /*basereg*/,
|
|
(duk_regconst_t) nargs /*numargs*/);
|
|
DUK__SETTEMP(comp_ctx, reg_cs + 1); /* result in csreg */
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_cs;
|
|
return;
|
|
}
|
|
|
|
/* POSTFIX EXPRESSION */
|
|
|
|
case DUK_TOK_INCREMENT: {
|
|
args = (DUK_OP_POSTINCR << 8) + 0;
|
|
goto postincdec;
|
|
}
|
|
case DUK_TOK_DECREMENT: {
|
|
args = (DUK_OP_POSTDECR << 8) + 0;
|
|
goto postincdec;
|
|
}
|
|
|
|
/* MULTIPLICATIVE EXPRESSION */
|
|
|
|
case DUK_TOK_MUL: {
|
|
args = (DUK_OP_MUL << 8) + DUK__BP_MULTIPLICATIVE; /* UnaryExpression */
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_DIV: {
|
|
args = (DUK_OP_DIV << 8) + DUK__BP_MULTIPLICATIVE; /* UnaryExpression */
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_MOD: {
|
|
args = (DUK_OP_MOD << 8) + DUK__BP_MULTIPLICATIVE; /* UnaryExpression */
|
|
goto binary;
|
|
}
|
|
|
|
/* ADDITIVE EXPRESSION */
|
|
|
|
case DUK_TOK_ADD: {
|
|
args = (DUK_OP_ADD << 8) + DUK__BP_ADDITIVE; /* MultiplicativeExpression */
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_SUB: {
|
|
args = (DUK_OP_SUB << 8) + DUK__BP_ADDITIVE; /* MultiplicativeExpression */
|
|
goto binary;
|
|
}
|
|
|
|
/* SHIFT EXPRESSION */
|
|
|
|
case DUK_TOK_ALSHIFT: {
|
|
/* << */
|
|
args = (DUK_OP_BASL << 8) + DUK__BP_SHIFT;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_ARSHIFT: {
|
|
/* >> */
|
|
args = (DUK_OP_BASR << 8) + DUK__BP_SHIFT;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_RSHIFT: {
|
|
/* >>> */
|
|
args = (DUK_OP_BLSR << 8) + DUK__BP_SHIFT;
|
|
goto binary;
|
|
}
|
|
|
|
/* RELATIONAL EXPRESSION */
|
|
|
|
case DUK_TOK_LT: {
|
|
/* < */
|
|
args = (DUK_OP_LT << 8) + DUK__BP_RELATIONAL;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_GT: {
|
|
args = (DUK_OP_GT << 8) + DUK__BP_RELATIONAL;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_LE: {
|
|
args = (DUK_OP_LE << 8) + DUK__BP_RELATIONAL;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_GE: {
|
|
args = (DUK_OP_GE << 8) + DUK__BP_RELATIONAL;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_INSTANCEOF: {
|
|
args = (1 << 16 /*is_extra*/) + (DUK_EXTRAOP_INSTOF << 8) + DUK__BP_RELATIONAL;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_IN: {
|
|
args = (1 << 16 /*is_extra*/) + (DUK_EXTRAOP_IN << 8) + DUK__BP_RELATIONAL;
|
|
goto binary;
|
|
}
|
|
|
|
/* EQUALITY EXPRESSION */
|
|
|
|
case DUK_TOK_EQ: {
|
|
args = (DUK_OP_EQ << 8) + DUK__BP_EQUALITY;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_NEQ: {
|
|
args = (DUK_OP_NEQ << 8) + DUK__BP_EQUALITY;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_SEQ: {
|
|
args = (DUK_OP_SEQ << 8) + DUK__BP_EQUALITY;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_SNEQ: {
|
|
args = (DUK_OP_SNEQ << 8) + DUK__BP_EQUALITY;
|
|
goto binary;
|
|
}
|
|
|
|
/* BITWISE EXPRESSIONS */
|
|
|
|
case DUK_TOK_BAND: {
|
|
args = (DUK_OP_BAND << 8) + DUK__BP_BAND;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_BXOR: {
|
|
args = (DUK_OP_BXOR << 8) + DUK__BP_BXOR;
|
|
goto binary;
|
|
}
|
|
case DUK_TOK_BOR: {
|
|
args = (DUK_OP_BOR << 8) + DUK__BP_BOR;
|
|
goto binary;
|
|
}
|
|
|
|
/* LOGICAL EXPRESSIONS */
|
|
|
|
case DUK_TOK_LAND: {
|
|
/* syntactically left-associative but parsed as right-associative */
|
|
args = (1 << 8) + DUK__BP_LAND - 1;
|
|
goto binary_logical;
|
|
}
|
|
case DUK_TOK_LOR: {
|
|
/* syntactically left-associative but parsed as right-associative */
|
|
args = (0 << 8) + DUK__BP_LOR - 1;
|
|
goto binary_logical;
|
|
}
|
|
|
|
/* CONDITIONAL EXPRESSION */
|
|
|
|
case DUK_TOK_QUESTION: {
|
|
/* XXX: common reg allocation need is to reuse a sub-expression's temp reg,
|
|
* but only if it really is a temp. Nothing fancy here now.
|
|
*/
|
|
duk_reg_t reg_temp;
|
|
duk_int_t pc_jump1;
|
|
duk_int_t pc_jump2;
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__ivalue_toforcedreg(comp_ctx, left, reg_temp);
|
|
duk__emit_if_true_skip(comp_ctx, reg_temp);
|
|
pc_jump1 = duk__emit_jump_empty(comp_ctx); /* jump to false */
|
|
duk__expr_toforcedreg(comp_ctx, res, DUK__BP_COMMA /*rbp_flags*/, reg_temp /*forced_reg*/); /* AssignmentExpression */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_COLON);
|
|
pc_jump2 = duk__emit_jump_empty(comp_ctx); /* jump to end */
|
|
duk__patch_jump_here(comp_ctx, pc_jump1);
|
|
duk__expr_toforcedreg(comp_ctx, res, DUK__BP_COMMA /*rbp_flags*/, reg_temp /*forced_reg*/); /* AssignmentExpression */
|
|
duk__patch_jump_here(comp_ctx, pc_jump2);
|
|
|
|
DUK__SETTEMP(comp_ctx, reg_temp + 1);
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
}
|
|
|
|
/* ASSIGNMENT EXPRESSION */
|
|
|
|
case DUK_TOK_EQUALSIGN: {
|
|
/*
|
|
* Assignments are right associative, allows e.g.
|
|
* a = 5;
|
|
* a += b = 9; // same as a += (b = 9)
|
|
* -> expression value 14, a = 14, b = 9
|
|
*
|
|
* Right associativiness is reflected in the BP for recursion,
|
|
* "-1" ensures assignment operations are allowed.
|
|
*
|
|
* XXX: just use DUK__BP_COMMA (i.e. no need for 2-step bp levels)?
|
|
*/
|
|
args = (DUK_OP_NONE << 8) + DUK__BP_ASSIGNMENT - 1; /* DUK_OP_NONE marks a 'plain' assignment */
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_ADD_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_ADD << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_SUB_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_SUB << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_MUL_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_MUL << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_DIV_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_DIV << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_MOD_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_MOD << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_ALSHIFT_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_BASL << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_ARSHIFT_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_BASR << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_RSHIFT_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_BLSR << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_BAND_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_BAND << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_BOR_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_BOR << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
case DUK_TOK_BXOR_EQ: {
|
|
/* right associative */
|
|
args = (DUK_OP_BXOR << 8) + DUK__BP_ASSIGNMENT - 1;
|
|
goto assign;
|
|
}
|
|
|
|
/* COMMA */
|
|
|
|
case DUK_TOK_COMMA: {
|
|
/* right associative */
|
|
|
|
duk__ivalue_toplain_ignore(comp_ctx, left); /* need side effects, not value */
|
|
duk__expr_toplain(comp_ctx, res, DUK__BP_COMMA - 1 /*rbp_flags*/);
|
|
|
|
/* return 'res' (of right part) as our result */
|
|
return;
|
|
}
|
|
|
|
default: {
|
|
break;
|
|
}
|
|
}
|
|
|
|
DUK_D(DUK_DPRINT("parse error: unexpected token: %ld", (long) tok));
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_PARSE_ERROR);
|
|
return;
|
|
|
|
#if 0
|
|
/* XXX: shared handling for 'duk__expr_lhs'? */
|
|
if (comp_ctx->curr_func.paren_level == 0 && XXX) {
|
|
comp_ctx->curr_func.duk__expr_lhs = 0;
|
|
}
|
|
#endif
|
|
|
|
binary:
|
|
/*
|
|
* Shared handling of binary operations
|
|
*
|
|
* args = (is_extraop << 16) + (opcode << 8) + rbp
|
|
*/
|
|
{
|
|
duk__ivalue_toplain(comp_ctx, left);
|
|
duk__expr_toplain(comp_ctx, res, args & 0xff /*rbp_flags*/);
|
|
|
|
/* combine left->x1 and res->x1 (right->x1, really) -> (left->x1 OP res->x1) */
|
|
DUK_ASSERT(left->t == DUK_IVAL_PLAIN);
|
|
DUK_ASSERT(res->t == DUK_IVAL_PLAIN);
|
|
|
|
res->t = (args >> 16) ? DUK_IVAL_ARITH_EXTRAOP : DUK_IVAL_ARITH;
|
|
res->op = (args >> 8) & 0xff;
|
|
|
|
res->x2.t = res->x1.t;
|
|
res->x2.regconst = res->x1.regconst;
|
|
duk_copy(ctx, res->x1.valstack_idx, res->x2.valstack_idx);
|
|
|
|
res->x1.t = left->x1.t;
|
|
res->x1.regconst = left->x1.regconst;
|
|
duk_copy(ctx, left->x1.valstack_idx, res->x1.valstack_idx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("binary op, res: t=%ld, x1.t=%ld, x1.regconst=0x%08lx, x2.t=%ld, x2.regconst=0x%08lx",
|
|
(long) res->t, (long) res->x1.t, (unsigned long) res->x1.regconst, (long) res->x2.t, (unsigned long) res->x2.regconst));
|
|
return;
|
|
}
|
|
|
|
binary_logical:
|
|
/*
|
|
* Shared handling for logical AND and logical OR.
|
|
*
|
|
* args = (truthval << 8) + rbp
|
|
*
|
|
* Truthval determines when to skip right-hand-side.
|
|
* For logical AND truthval=1, for logical OR truthval=0.
|
|
*
|
|
* See doc/compiler.txt for discussion on compiling logical
|
|
* AND and OR expressions. The approach here is very simplistic,
|
|
* generating extra jumps and multiple evaluations of truth values,
|
|
* but generates code on-the-fly with only local back-patching.
|
|
*
|
|
* Both logical AND and OR are syntactically left-associated.
|
|
* However, logical ANDs are compiled as right associative
|
|
* expressions, i.e. "A && B && C" as "A && (B && C)", to allow
|
|
* skip jumps to skip over the entire tail. Similarly for logical OR.
|
|
*/
|
|
|
|
{
|
|
duk_reg_t reg_temp;
|
|
duk_int_t pc_jump;
|
|
duk_small_uint_t args_truthval = args >> 8;
|
|
duk_small_uint_t args_rbp = args & 0xff;
|
|
|
|
/* XXX: unoptimal use of temps, resetting */
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
|
|
duk__ivalue_toforcedreg(comp_ctx, left, reg_temp);
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_IF | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
(duk_regconst_t) args_truthval,
|
|
(duk_regconst_t) reg_temp); /* skip jump conditionally */
|
|
pc_jump = duk__emit_jump_empty(comp_ctx);
|
|
duk__expr_toforcedreg(comp_ctx, res, args_rbp /*rbp_flags*/, reg_temp /*forced_reg*/);
|
|
duk__patch_jump_here(comp_ctx, pc_jump);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_temp;
|
|
return;
|
|
}
|
|
|
|
assign:
|
|
/*
|
|
* Shared assignment expression handling
|
|
*
|
|
* args = (opcode << 8) + rbp
|
|
*
|
|
* If 'opcode' is DUK_OP_NONE, plain assignment without arithmetic.
|
|
* Syntactically valid left-hand-side forms which are not accepted as
|
|
* left-hand-side values (e.g. as in "f() = 1") must NOT cause a
|
|
* SyntaxError, but rather a run-time ReferenceError.
|
|
*/
|
|
|
|
{
|
|
duk_small_uint_t args_op = args >> 8;
|
|
duk_small_uint_t args_rbp = args & 0xff;
|
|
|
|
/* XXX: here we need to know if 'left' is left-hand-side compatible.
|
|
* That information is no longer available from current expr parsing
|
|
* state; it would need to be carried into the 'left' ivalue or by
|
|
* some other means.
|
|
*/
|
|
|
|
if (left->t == DUK_IVAL_VAR) {
|
|
duk_hstring *h_varname;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
duk_regconst_t rc_res;
|
|
duk_reg_t reg_temp;
|
|
|
|
/* already in fluly evaluated form */
|
|
DUK_ASSERT(left->x1.t == DUK_ISPEC_VALUE);
|
|
|
|
duk__expr_toreg(comp_ctx, res, args_rbp /*rbp_flags*/);
|
|
DUK_ASSERT(res->t == DUK_IVAL_PLAIN && res->x1.t == DUK_ISPEC_REGCONST);
|
|
|
|
h_varname = duk_get_hstring(ctx, left->x1.valstack_idx);
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
/* E5 Section 11.13.1 (and others for other assignments), step 4 */
|
|
if (duk__hstring_is_eval_or_arguments_in_strict_mode(comp_ctx, h_varname)) {
|
|
goto syntax_error_lvalue;
|
|
}
|
|
|
|
duk_dup(ctx, left->x1.valstack_idx);
|
|
(void) duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("assign to '%!O' -> reg_varbind=%ld, rc_varname=%ld",
|
|
(duk_heaphdr *) h_varname, (long) reg_varbind, (long) rc_varname));
|
|
|
|
if (args_op == DUK_OP_NONE) {
|
|
rc_res = res->x1.regconst;
|
|
} else {
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
if (reg_varbind >= 0) {
|
|
duk__emit_a_b_c(comp_ctx,
|
|
args_op,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_varbind,
|
|
res->x1.regconst);
|
|
} else {
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_GETVAR,
|
|
(duk_regconst_t) reg_temp,
|
|
rc_varname);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
args_op,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_temp,
|
|
res->x1.regconst);
|
|
}
|
|
rc_res = (duk_regconst_t) reg_temp;
|
|
}
|
|
|
|
if (reg_varbind >= 0) {
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_LDREG,
|
|
(duk_regconst_t) reg_varbind,
|
|
rc_res);
|
|
} else {
|
|
/* Only a reg fits into 'A' and reg_res may be a const in
|
|
* straight assignment.
|
|
*
|
|
* XXX: here the current A/B/C split is suboptimal: we could
|
|
* just use 9 bits for reg_res (and support constants) and 17
|
|
* instead of 18 bits for the varname const index.
|
|
*/
|
|
if (DUK__ISCONST(comp_ctx, rc_res)) {
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_LDCONST,
|
|
(duk_regconst_t) reg_temp,
|
|
rc_res);
|
|
rc_res = (duk_regconst_t) reg_temp;
|
|
}
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_PUTVAR | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
rc_res,
|
|
rc_varname);
|
|
}
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = rc_res;
|
|
} else if (left->t == DUK_IVAL_PROP) {
|
|
/* E5 Section 11.13.1 (and others) step 4 never matches for prop writes -> no check */
|
|
duk_reg_t reg_obj;
|
|
duk_regconst_t rc_key;
|
|
duk_regconst_t rc_res;
|
|
duk_reg_t reg_temp;
|
|
|
|
/* Property access expressions ('a[b]') are critical to correct
|
|
* LHS evaluation ordering, see test-dev-assign-eval-order*.js.
|
|
* We must make sure that the LHS target slot (base object and
|
|
* key) don't change during RHS evaluation. The only concrete
|
|
* problem is a register reference to a variable-bound register
|
|
* (i.e., non-temp). Require temp regs for both key and base.
|
|
*
|
|
* Don't allow a constant for the object (even for a number
|
|
* etc), as it goes into the 'A' field of the opcode.
|
|
*/
|
|
|
|
reg_obj = duk__ispec_toregconst_raw(comp_ctx,
|
|
&left->x1,
|
|
-1 /*forced_reg*/,
|
|
DUK__IVAL_FLAG_REQUIRE_TEMP /*flags*/);
|
|
|
|
rc_key = duk__ispec_toregconst_raw(comp_ctx,
|
|
&left->x2,
|
|
-1 /*forced_reg*/,
|
|
DUK__IVAL_FLAG_REQUIRE_TEMP | DUK__IVAL_FLAG_ALLOW_CONST /*flags*/);
|
|
|
|
/* Evaluate RHS only when LHS is safe. */
|
|
duk__expr_toregconst(comp_ctx, res, args_rbp /*rbp_flags*/);
|
|
DUK_ASSERT(res->t == DUK_IVAL_PLAIN && res->x1.t == DUK_ISPEC_REGCONST);
|
|
|
|
if (args_op == DUK_OP_NONE) {
|
|
rc_res = res->x1.regconst;
|
|
} else {
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_GETPROP,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_obj,
|
|
rc_key);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
args_op,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) reg_temp,
|
|
res->x1.regconst);
|
|
rc_res = (duk_regconst_t) reg_temp;
|
|
}
|
|
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_PUTPROP | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) reg_obj,
|
|
rc_key,
|
|
rc_res);
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = rc_res;
|
|
} else {
|
|
/* No support for lvalues returned from new or function call expressions.
|
|
* However, these must NOT cause compile-time SyntaxErrors, but run-time
|
|
* ReferenceErrors. Both left and right sides of the assignment must be
|
|
* evaluated before throwing a ReferenceError. For instance:
|
|
*
|
|
* f() = g();
|
|
*
|
|
* must result in f() being evaluated, then g() being evaluated, and
|
|
* finally, a ReferenceError being thrown. See E5 Section 11.13.1.
|
|
*/
|
|
|
|
duk_regconst_t rc_res;
|
|
|
|
/* first evaluate LHS fully to ensure all side effects are out */
|
|
duk__ivalue_toplain_ignore(comp_ctx, left);
|
|
|
|
/* then evaluate RHS fully (its value becomes the expression value too) */
|
|
rc_res = duk__expr_toregconst(comp_ctx, res, args_rbp /*rbp_flags*/);
|
|
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_INVLHS);
|
|
|
|
/* XXX: this value is irrelevant because of INVLHS? */
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = rc_res;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
postincdec:
|
|
{
|
|
/*
|
|
* Post-increment/decrement will return the original value as its
|
|
* result value. However, even that value will be coerced using
|
|
* ToNumber() which is quite awkward. Specific bytecode opcodes
|
|
* are used to handle these semantics.
|
|
*
|
|
* Note that post increment/decrement has a "no LineTerminator here"
|
|
* restriction. This is handled by duk__expr_lbp(), which forcibly terminates
|
|
* the previous expression if a LineTerminator occurs before '++'/'--'.
|
|
*/
|
|
|
|
duk_reg_t reg_res;
|
|
duk_small_uint_t args_op = args >> 8;
|
|
|
|
/* Specific assumptions for opcode numbering. */
|
|
DUK_ASSERT(DUK_OP_POSTINCR + 4 == DUK_OP_POSTINCV);
|
|
DUK_ASSERT(DUK_OP_POSTDECR + 4 == DUK_OP_POSTDECV);
|
|
DUK_ASSERT(DUK_OP_POSTINCR + 8 == DUK_OP_POSTINCP);
|
|
DUK_ASSERT(DUK_OP_POSTDECR + 8 == DUK_OP_POSTDECP);
|
|
|
|
reg_res = DUK__ALLOCTEMP(comp_ctx);
|
|
|
|
if (left->t == DUK_IVAL_VAR) {
|
|
duk_hstring *h_varname;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
h_varname = duk_get_hstring(ctx, left->x1.valstack_idx);
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
if (duk__hstring_is_eval_or_arguments_in_strict_mode(comp_ctx, h_varname)) {
|
|
goto syntax_error;
|
|
}
|
|
|
|
duk_dup(ctx, left->x1.valstack_idx);
|
|
if (duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
duk__emit_a_bc(comp_ctx,
|
|
args_op, /* e.g. DUK_OP_POSTINCR */
|
|
(duk_regconst_t) reg_res,
|
|
(duk_regconst_t) reg_varbind);
|
|
} else {
|
|
duk__emit_a_bc(comp_ctx,
|
|
args_op + 4, /* e.g. DUK_OP_POSTINCV */
|
|
(duk_regconst_t) reg_res,
|
|
rc_varname);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("postincdec to '%!O' -> reg_varbind=%ld, rc_varname=%ld",
|
|
(duk_heaphdr *) h_varname, (long) reg_varbind, (long) rc_varname));
|
|
} else if (left->t == DUK_IVAL_PROP) {
|
|
duk_reg_t reg_obj; /* allocate to reg only (not const) */
|
|
duk_regconst_t rc_key;
|
|
|
|
reg_obj = duk__ispec_toregconst_raw(comp_ctx, &left->x1, -1 /*forced_reg*/, 0 /*flags*/); /* don't allow const */
|
|
rc_key = duk__ispec_toregconst_raw(comp_ctx, &left->x2, -1 /*forced_reg*/, DUK__IVAL_FLAG_ALLOW_CONST /*flags*/);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
args_op + 8, /* e.g. DUK_OP_POSTINCP */
|
|
(duk_regconst_t) reg_res,
|
|
(duk_regconst_t) reg_obj,
|
|
rc_key);
|
|
} else {
|
|
/* Technically return value is not needed because INVLHS will
|
|
* unconditially throw a ReferenceError. Coercion is necessary
|
|
* for proper semantics (consider ToNumber() called for an object).
|
|
* Use DUK_EXTRAOP_UNP with a dummy register to get ToNumber().
|
|
*/
|
|
duk__ivalue_toforcedreg(comp_ctx, left, reg_res);
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_UNP,
|
|
reg_res); /* for side effects, result ignored */
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_INVLHS);
|
|
}
|
|
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_REGCONST;
|
|
res->x1.regconst = (duk_regconst_t) reg_res;
|
|
DUK__SETTEMP(comp_ctx, reg_res + 1);
|
|
return;
|
|
}
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_EXPRESSION);
|
|
return;
|
|
|
|
syntax_error_lvalue:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_LVALUE);
|
|
return;
|
|
}
|
|
|
|
DUK_LOCAL duk_small_uint_t duk__expr_lbp(duk_compiler_ctx *comp_ctx) {
|
|
duk_small_int_t tok = comp_ctx->curr_token.t;
|
|
|
|
DUK_ASSERT(tok >= DUK_TOK_MINVAL && tok <= DUK_TOK_MAXVAL);
|
|
DUK_ASSERT(sizeof(duk__token_lbp) == DUK_TOK_MAXVAL + 1);
|
|
|
|
/* XXX: integrate support for this into led() instead?
|
|
* Similar issue as post-increment/post-decrement.
|
|
*/
|
|
|
|
/* prevent duk__expr_led() by using a binding power less than anything valid */
|
|
if (tok == DUK_TOK_IN && !comp_ctx->curr_func.allow_in) {
|
|
return 0;
|
|
}
|
|
|
|
if ((tok == DUK_TOK_DECREMENT || tok == DUK_TOK_INCREMENT) &&
|
|
(comp_ctx->curr_token.lineterm)) {
|
|
/* '++' or '--' in a post-increment/decrement position,
|
|
* and a LineTerminator occurs between the operator and
|
|
* the preceding expression. Force the previous expr
|
|
* to terminate, in effect treating e.g. "a,b\n++" as
|
|
* "a,b;++" (= SyntaxError).
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
return DUK__TOKEN_LBP_GET_BP(duk__token_lbp[tok]); /* format is bit packed */
|
|
}
|
|
|
|
/*
|
|
* Expression parsing.
|
|
*
|
|
* Upon entry to 'expr' and its variants, 'curr_tok' is assumed to be the
|
|
* first token of the expression. Upon exit, 'curr_tok' will be the first
|
|
* token not part of the expression (e.g. semicolon terminating an expression
|
|
* statement).
|
|
*/
|
|
|
|
#define DUK__EXPR_RBP_MASK 0xff
|
|
#define DUK__EXPR_FLAG_REJECT_IN (1 << 8)
|
|
#define DUK__EXPR_FLAG_ALLOW_EMPTY (1 << 9)
|
|
|
|
/* main expression parser function */
|
|
DUK_LOCAL void duk__expr(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_ivalue tmp_alloc; /* 'res' is used for "left", and 'tmp' for "right" */
|
|
duk_ivalue *tmp = &tmp_alloc;
|
|
duk_small_uint_t rbp;
|
|
|
|
DUK__RECURSION_INCREASE(comp_ctx, thr);
|
|
|
|
duk_require_stack(ctx, DUK__PARSE_EXPR_SLOTS);
|
|
|
|
/* filter out flags from exprtop rbp_flags here to save space */
|
|
rbp = rbp_flags & DUK__EXPR_RBP_MASK;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__expr(), rbp_flags=%ld, rbp=%ld, allow_in=%ld, paren_level=%ld",
|
|
(long) rbp_flags, (long) rbp, (long) comp_ctx->curr_func.allow_in,
|
|
(long) comp_ctx->curr_func.paren_level));
|
|
|
|
DUK_MEMZERO(&tmp_alloc, sizeof(tmp_alloc));
|
|
tmp->x1.valstack_idx = duk_get_top(ctx);
|
|
tmp->x2.valstack_idx = tmp->x1.valstack_idx + 1;
|
|
duk_push_undefined(ctx);
|
|
duk_push_undefined(ctx);
|
|
|
|
/* XXX: where to release temp regs in intermediate expressions?
|
|
* e.g. 1+2+3 -> don't inflate temp register count when parsing this.
|
|
* that particular expression temp regs can be forced here.
|
|
*/
|
|
|
|
/* XXX: increase ctx->expr_tokens here for every consumed token
|
|
* (this would be a nice statistic)?
|
|
*/
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_SEMICOLON || comp_ctx->curr_token.t == DUK_TOK_RPAREN) {
|
|
/* XXX: possibly incorrect handling of empty expression */
|
|
DUK_DDD(DUK_DDDPRINT("empty expression"));
|
|
if (!(rbp_flags & DUK__EXPR_FLAG_ALLOW_EMPTY)) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_EMPTY_EXPR_NOT_ALLOWED);
|
|
}
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_VALUE;
|
|
duk_push_undefined(ctx);
|
|
duk_replace(ctx, res->x1.valstack_idx);
|
|
goto cleanup;
|
|
}
|
|
|
|
duk__advance(comp_ctx);
|
|
duk__expr_nud(comp_ctx, res); /* reuse 'res' as 'left' */
|
|
while (rbp < duk__expr_lbp(comp_ctx)) {
|
|
duk__advance(comp_ctx);
|
|
duk__expr_led(comp_ctx, res, tmp);
|
|
duk__copy_ivalue(comp_ctx, tmp, res); /* tmp -> res */
|
|
}
|
|
|
|
cleanup:
|
|
/* final result is already in 'res' */
|
|
|
|
duk_pop_2(ctx);
|
|
|
|
DUK__RECURSION_DECREASE(comp_ctx, thr);
|
|
}
|
|
|
|
DUK_LOCAL void duk__exprtop(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
|
|
/* Note: these variables must reside in 'curr_func' instead of the global
|
|
* context: when parsing function expressions, expression parsing is nested.
|
|
*/
|
|
comp_ctx->curr_func.nud_count = 0;
|
|
comp_ctx->curr_func.led_count = 0;
|
|
comp_ctx->curr_func.paren_level = 0;
|
|
comp_ctx->curr_func.expr_lhs = 1;
|
|
comp_ctx->curr_func.allow_in = (rbp_flags & DUK__EXPR_FLAG_REJECT_IN ? 0 : 1);
|
|
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
|
|
if (!(rbp_flags & DUK__EXPR_FLAG_ALLOW_EMPTY) && duk__expr_is_empty(comp_ctx)) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_EMPTY_EXPR_NOT_ALLOWED);
|
|
}
|
|
}
|
|
|
|
/* A bunch of helpers (for size optimization) that combine duk__expr()/duk__exprtop()
|
|
* and result conversions.
|
|
*
|
|
* Each helper needs at least 2-3 calls to make it worth while to wrap.
|
|
*/
|
|
|
|
DUK_LOCAL duk_reg_t duk__expr_toreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
return duk__ivalue_toreg(comp_ctx, res);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL duk_reg_t duk__expr_totempreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
return duk__ivalue_totempreg(comp_ctx, res);
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__expr_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags, duk_reg_t forced_reg) {
|
|
DUK_ASSERT(forced_reg >= 0);
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
duk__ivalue_toforcedreg(comp_ctx, res, forced_reg);
|
|
}
|
|
|
|
DUK_LOCAL duk_regconst_t duk__expr_toregconst(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
return duk__ivalue_toregconst(comp_ctx, res);
|
|
}
|
|
|
|
DUK_LOCAL void duk__expr_toplain(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
duk__ivalue_toplain(comp_ctx, res);
|
|
}
|
|
|
|
DUK_LOCAL void duk__expr_toplain_ignore(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__expr(comp_ctx, res, rbp_flags);
|
|
duk__ivalue_toplain_ignore(comp_ctx, res);
|
|
}
|
|
|
|
DUK_LOCAL duk_reg_t duk__exprtop_toreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__exprtop(comp_ctx, res, rbp_flags);
|
|
return duk__ivalue_toreg(comp_ctx, res);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL duk_reg_t duk__exprtop_totempreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__exprtop(comp_ctx, res, rbp_flags);
|
|
return duk__ivalue_totempreg(comp_ctx, res);
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL void duk__exprtop_toforcedreg(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags, duk_reg_t forced_reg) {
|
|
DUK_ASSERT(forced_reg >= 0);
|
|
duk__exprtop(comp_ctx, res, rbp_flags);
|
|
duk__ivalue_toforcedreg(comp_ctx, res, forced_reg);
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL duk_regconst_t duk__exprtop_toregconst(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t rbp_flags) {
|
|
duk__exprtop(comp_ctx, res, rbp_flags);
|
|
return duk__ivalue_toregconst(comp_ctx, res);
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL void duk__exprtop_toplain_ignore(duk_compiler_ctx *comp_ctx, duk_ivalue *res, int rbp_flags) {
|
|
duk__exprtop(comp_ctx, res, rbp_flags);
|
|
duk__ivalue_toplain_ignore(comp_ctx, res);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Parse an individual source element (top level statement) or a statement.
|
|
*
|
|
* Handles labeled statements automatically (peeling away labels before
|
|
* parsing an expression that follows the label(s)).
|
|
*
|
|
* Upon entry, 'curr_tok' contains the first token of the statement (parsed
|
|
* in "allow regexp literal" mode). Upon exit, 'curr_tok' contains the first
|
|
* token following the statement (if the statement has a terminator, this is
|
|
* the token after the terminator).
|
|
*/
|
|
|
|
#ifdef DUK__HAS_VAL
|
|
#undef DUK__HAS_VAL
|
|
#endif
|
|
#ifdef DUK__HAS_TERM
|
|
#undef DUK__HAS_TERM
|
|
#endif
|
|
#ifdef DUK__ALLOW_AUTO_SEMI_ALWAYS
|
|
#undef DUK__ALLOW_AUTO_SEMI_ALWAYS
|
|
#endif
|
|
#ifdef DUK__STILL_PROLOGUE
|
|
#undef DUK__STILL_PROLOGUE
|
|
#endif
|
|
#ifdef DUK__IS_TERMINAL
|
|
#undef DUK__IS_TERMINAL
|
|
#endif
|
|
|
|
#define DUK__HAS_VAL (1 << 0) /* stmt has non-empty value */
|
|
#define DUK__HAS_TERM (1 << 1) /* stmt has explicit/implicit semicolon terminator */
|
|
#define DUK__ALLOW_AUTO_SEMI_ALWAYS (1 << 2) /* allow automatic semicolon even without lineterm (compatibility) */
|
|
#define DUK__STILL_PROLOGUE (1 << 3) /* statement does not terminate directive prologue */
|
|
#define DUK__IS_TERMINAL (1 << 4) /* statement is guaranteed to be terminal (control doesn't flow to next statement) */
|
|
|
|
/* Parse a single variable declaration (e.g. "i" or "i=10"). A leading 'var'
|
|
* has already been eaten. These is no return value in 'res', it is used only
|
|
* as a temporary.
|
|
*
|
|
* When called from 'for-in' statement parser, the initializer expression must
|
|
* not allow the 'in' token. The caller supply additional expression parsing
|
|
* flags (like DUK__EXPR_FLAG_REJECT_IN) in 'expr_flags'.
|
|
*
|
|
* Finally, out_rc_varname and out_reg_varbind are updated to reflect where
|
|
* the identifier is bound:
|
|
*
|
|
* If register bound: out_reg_varbind >= 0, out_rc_varname == 0 (ignore)
|
|
* If not register bound: out_reg_varbind < 0, out_rc_varname >= 0
|
|
*
|
|
* These allow the caller to use the variable for further assignment, e.g.
|
|
* as is done in 'for-in' parsing.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__parse_var_decl(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_small_uint_t expr_flags, duk_reg_t *out_reg_varbind, duk_regconst_t *out_rc_varname) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *h_varname;
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
/* assume 'var' has been eaten */
|
|
|
|
/* Note: Identifier rejects reserved words */
|
|
if (comp_ctx->curr_token.t != DUK_TOK_IDENTIFIER) {
|
|
goto syntax_error;
|
|
}
|
|
h_varname = comp_ctx->curr_token.str1;
|
|
|
|
DUK_ASSERT(h_varname != NULL);
|
|
|
|
/* strict mode restrictions (E5 Section 12.2.1) */
|
|
if (duk__hstring_is_eval_or_arguments_in_strict_mode(comp_ctx, h_varname)) {
|
|
goto syntax_error;
|
|
}
|
|
|
|
/* register declarations in first pass */
|
|
if (comp_ctx->curr_func.in_scanning) {
|
|
duk_uarridx_t n;
|
|
DUK_DDD(DUK_DDDPRINT("register variable declaration %!O in pass 1",
|
|
(duk_heaphdr *) h_varname));
|
|
n = (duk_uarridx_t) duk_get_length(ctx, comp_ctx->curr_func.decls_idx);
|
|
duk_push_hstring(ctx, h_varname);
|
|
duk_put_prop_index(ctx, comp_ctx->curr_func.decls_idx, n);
|
|
duk_push_int(ctx, DUK_DECL_TYPE_VAR + (0 << 8));
|
|
duk_put_prop_index(ctx, comp_ctx->curr_func.decls_idx, n + 1);
|
|
}
|
|
|
|
duk_push_hstring(ctx, h_varname); /* push before advancing to keep reachable */
|
|
|
|
/* register binding lookup is based on varmap (even in first pass) */
|
|
duk_dup_top(ctx);
|
|
(void) duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname);
|
|
|
|
duk__advance(comp_ctx); /* eat identifier */
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_EQUALSIGN) {
|
|
duk__advance(comp_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("vardecl, assign to '%!O' -> reg_varbind=%ld, rc_varname=%ld",
|
|
(duk_heaphdr *) h_varname, (long) reg_varbind, (long) rc_varname));
|
|
|
|
duk__exprtop(comp_ctx, res, DUK__BP_COMMA | expr_flags /*rbp_flags*/); /* AssignmentExpression */
|
|
|
|
if (reg_varbind >= 0) {
|
|
duk__ivalue_toforcedreg(comp_ctx, res, reg_varbind);
|
|
} else {
|
|
duk_reg_t reg_val;
|
|
reg_val = duk__ivalue_toreg(comp_ctx, res);
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_PUTVAR | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) reg_val,
|
|
rc_varname);
|
|
}
|
|
}
|
|
|
|
duk_pop(ctx); /* pop varname */
|
|
|
|
*out_rc_varname = rc_varname;
|
|
*out_reg_varbind = reg_varbind;
|
|
|
|
return;
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_VAR_DECLARATION);
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_var_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
duk__advance(comp_ctx); /* eat 'var' */
|
|
|
|
for (;;) {
|
|
/* rc_varname and reg_varbind are ignored here */
|
|
duk__parse_var_decl(comp_ctx, res, 0, ®_varbind, &rc_varname);
|
|
|
|
if (comp_ctx->curr_token.t != DUK_TOK_COMMA) {
|
|
break;
|
|
}
|
|
duk__advance(comp_ctx);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_for_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_int_t pc_v34_lhs; /* start variant 3/4 left-hand-side code (L1 in doc/compiler.txt example) */
|
|
duk_reg_t temp_reset; /* knock back "next temp" to this whenever possible */
|
|
duk_reg_t reg_temps; /* preallocated temporaries (2) for variants 3 and 4 */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("start parsing a for/for-in statement"));
|
|
|
|
/* Two temporaries are preallocated here for variants 3 and 4 which need
|
|
* registers which are never clobbered by expressions in the loop
|
|
* (concretely: for the enumerator object and the next enumerated value).
|
|
* Variants 1 and 2 "release" these temps.
|
|
*/
|
|
|
|
reg_temps = DUK__ALLOCTEMPS(comp_ctx, 2);
|
|
|
|
temp_reset = DUK__GETTEMP(comp_ctx);
|
|
|
|
/*
|
|
* For/for-in main variants are:
|
|
*
|
|
* 1. for (ExpressionNoIn_opt; Expression_opt; Expression_opt) Statement
|
|
* 2. for (var VariableDeclarationNoIn; Expression_opt; Expression_opt) Statement
|
|
* 3. for (LeftHandSideExpression in Expression) Statement
|
|
* 4. for (var VariableDeclarationNoIn in Expression) Statement
|
|
*
|
|
* Parsing these without arbitrary lookahead or backtracking is relatively
|
|
* tricky but we manage to do so for now.
|
|
*
|
|
* See doc/compiler.txt for a detailed discussion of control flow
|
|
* issues, evaluation order issues, etc.
|
|
*/
|
|
|
|
duk__advance(comp_ctx); /* eat 'for' */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("detecting for/for-in loop variant, pc=%ld", (long) duk__get_current_pc(comp_ctx)));
|
|
|
|
/* a label site has been emitted by duk__parse_stmt() automatically
|
|
* (it will also emit the ENDLABEL).
|
|
*/
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_VAR) {
|
|
/*
|
|
* Variant 2 or 4
|
|
*/
|
|
|
|
duk_reg_t reg_varbind; /* variable binding register if register-bound (otherwise < 0) */
|
|
duk_regconst_t rc_varname; /* variable name reg/const, if variable not register-bound */
|
|
|
|
duk__advance(comp_ctx); /* eat 'var' */
|
|
duk__parse_var_decl(comp_ctx, res, DUK__EXPR_FLAG_REJECT_IN, ®_varbind, &rc_varname);
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_IN) {
|
|
/*
|
|
* Variant 4
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("detected for variant 4: for (var VariableDeclarationNoIn in Expression) Statement"));
|
|
pc_v34_lhs = duk__get_current_pc(comp_ctx); /* jump is inserted here */
|
|
if (reg_varbind >= 0) {
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_LDREG,
|
|
(duk_regconst_t) reg_varbind,
|
|
(duk_regconst_t) (reg_temps + 0));
|
|
} else {
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_PUTVAR | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) (reg_temps + 0),
|
|
rc_varname);
|
|
}
|
|
goto parse_3_or_4;
|
|
} else {
|
|
/*
|
|
* Variant 2
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("detected for variant 2: for (var VariableDeclarationNoIn; Expression_opt; Expression_opt) Statement"));
|
|
for (;;) {
|
|
/* more initializers */
|
|
if (comp_ctx->curr_token.t != DUK_TOK_COMMA) {
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("variant 2 has another variable initializer"));
|
|
|
|
duk__advance(comp_ctx); /* eat comma */
|
|
duk__parse_var_decl(comp_ctx, res, DUK__EXPR_FLAG_REJECT_IN, ®_varbind, &rc_varname);
|
|
}
|
|
goto parse_1_or_2;
|
|
}
|
|
} else {
|
|
/*
|
|
* Variant 1 or 3
|
|
*/
|
|
|
|
pc_v34_lhs = duk__get_current_pc(comp_ctx); /* jump is inserted here (variant 3) */
|
|
|
|
/* Note that duk__exprtop() here can clobber any reg above current temp_next,
|
|
* so any loop variables (e.g. enumerator) must be "preallocated".
|
|
*/
|
|
|
|
/* don't coerce yet to a plain value (variant 3 needs special handling) */
|
|
duk__exprtop(comp_ctx, res, DUK__BP_FOR_EXPR | DUK__EXPR_FLAG_REJECT_IN | DUK__EXPR_FLAG_ALLOW_EMPTY /*rbp_flags*/); /* Expression */
|
|
if (comp_ctx->curr_token.t == DUK_TOK_IN) {
|
|
/*
|
|
* Variant 3
|
|
*/
|
|
|
|
/* XXX: need to determine LHS type, and check that it is LHS compatible */
|
|
DUK_DDD(DUK_DDDPRINT("detected for variant 3: for (LeftHandSideExpression in Expression) Statement"));
|
|
if (duk__expr_is_empty(comp_ctx)) {
|
|
goto syntax_error; /* LeftHandSideExpression does not allow empty expression */
|
|
}
|
|
|
|
if (res->t == DUK_IVAL_VAR) {
|
|
duk_reg_t reg_varbind;
|
|
duk_regconst_t rc_varname;
|
|
|
|
duk_dup(ctx, res->x1.valstack_idx);
|
|
if (duk__lookup_lhs(comp_ctx, ®_varbind, &rc_varname)) {
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_LDREG,
|
|
(duk_regconst_t) reg_varbind,
|
|
(duk_regconst_t) (reg_temps + 0));
|
|
} else {
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_PUTVAR | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) (reg_temps + 0),
|
|
rc_varname);
|
|
}
|
|
} else if (res->t == DUK_IVAL_PROP) {
|
|
/* Don't allow a constant for the object (even for a number etc), as
|
|
* it goes into the 'A' field of the opcode.
|
|
*/
|
|
duk_reg_t reg_obj;
|
|
duk_regconst_t rc_key;
|
|
reg_obj = duk__ispec_toregconst_raw(comp_ctx, &res->x1, -1 /*forced_reg*/, 0 /*flags*/); /* don't allow const */
|
|
rc_key = duk__ispec_toregconst_raw(comp_ctx, &res->x2, -1 /*forced_reg*/, DUK__IVAL_FLAG_ALLOW_CONST /*flags*/);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_PUTPROP | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) reg_obj,
|
|
rc_key,
|
|
(duk_regconst_t) (reg_temps + 0));
|
|
} else {
|
|
duk__ivalue_toplain_ignore(comp_ctx, res); /* just in case */
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_INVLHS);
|
|
}
|
|
goto parse_3_or_4;
|
|
} else {
|
|
/*
|
|
* Variant 1
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("detected for variant 1: for (ExpressionNoIn_opt; Expression_opt; Expression_opt) Statement"));
|
|
duk__ivalue_toplain_ignore(comp_ctx, res);
|
|
goto parse_1_or_2;
|
|
}
|
|
}
|
|
|
|
parse_1_or_2:
|
|
/*
|
|
* Parse variant 1 or 2. The first part expression (which differs
|
|
* in the variants) has already been parsed and its code emitted.
|
|
*
|
|
* reg_temps + 0: unused
|
|
* reg_temps + 1: unused
|
|
*/
|
|
{
|
|
duk_regconst_t rc_cond;
|
|
duk_int_t pc_l1, pc_l2, pc_l3, pc_l4;
|
|
duk_int_t pc_jumpto_l3, pc_jumpto_l4;
|
|
duk_bool_t expr_c_empty;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("shared code for parsing variants 1 and 2"));
|
|
|
|
/* "release" preallocated temps since we won't need them */
|
|
temp_reset = reg_temps + 0;
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_SEMICOLON);
|
|
|
|
pc_l1 = duk__get_current_pc(comp_ctx);
|
|
duk__exprtop(comp_ctx, res, DUK__BP_FOR_EXPR | DUK__EXPR_FLAG_ALLOW_EMPTY /*rbp_flags*/); /* Expression_opt */
|
|
if (duk__expr_is_empty(comp_ctx)) {
|
|
/* no need to coerce */
|
|
pc_jumpto_l3 = duk__emit_jump_empty(comp_ctx); /* to body */
|
|
pc_jumpto_l4 = -1; /* omitted */
|
|
} else {
|
|
rc_cond = duk__ivalue_toregconst(comp_ctx, res);
|
|
duk__emit_if_false_skip(comp_ctx, rc_cond);
|
|
pc_jumpto_l3 = duk__emit_jump_empty(comp_ctx); /* to body */
|
|
pc_jumpto_l4 = duk__emit_jump_empty(comp_ctx); /* to exit */
|
|
}
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_SEMICOLON);
|
|
|
|
pc_l2 = duk__get_current_pc(comp_ctx);
|
|
duk__exprtop(comp_ctx, res, DUK__BP_FOR_EXPR | DUK__EXPR_FLAG_ALLOW_EMPTY /*rbp_flags*/); /* Expression_opt */
|
|
if (duk__expr_is_empty(comp_ctx)) {
|
|
/* no need to coerce */
|
|
expr_c_empty = 1;
|
|
/* JUMP L1 omitted */
|
|
} else {
|
|
duk__ivalue_toplain_ignore(comp_ctx, res);
|
|
expr_c_empty = 0;
|
|
duk__emit_jump(comp_ctx, pc_l1);
|
|
}
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
pc_l3 = duk__get_current_pc(comp_ctx);
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
if (expr_c_empty) {
|
|
duk__emit_jump(comp_ctx, pc_l1);
|
|
} else {
|
|
duk__emit_jump(comp_ctx, pc_l2);
|
|
}
|
|
/* temp reset is not necessary after duk__parse_stmt(), which already does it */
|
|
|
|
pc_l4 = duk__get_current_pc(comp_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("patching jumps: jumpto_l3: %ld->%ld, jumpto_l4: %ld->%ld, "
|
|
"break: %ld->%ld, continue: %ld->%ld",
|
|
(long) pc_jumpto_l3, (long) pc_l3, (long) pc_jumpto_l4, (long) pc_l4,
|
|
(long) (pc_label_site + 1), (long) pc_l4, (long) (pc_label_site + 2), (long) pc_l2));
|
|
|
|
duk__patch_jump(comp_ctx, pc_jumpto_l3, pc_l3);
|
|
duk__patch_jump(comp_ctx, pc_jumpto_l4, pc_l4);
|
|
duk__patch_jump(comp_ctx,
|
|
pc_label_site + 1,
|
|
pc_l4); /* break jump */
|
|
duk__patch_jump(comp_ctx,
|
|
pc_label_site + 2,
|
|
expr_c_empty ? pc_l1 : pc_l2); /* continue jump */
|
|
}
|
|
goto finished;
|
|
|
|
parse_3_or_4:
|
|
/*
|
|
* Parse variant 3 or 4.
|
|
*
|
|
* For variant 3 (e.g. "for (A in C) D;") the code for A (except the
|
|
* final property/variable write) has already been emitted. The first
|
|
* instruction of that code is at pc_v34_lhs; a JUMP needs to be inserted
|
|
* there to satisfy control flow needs.
|
|
*
|
|
* For variant 4, if the variable declaration had an initializer
|
|
* (e.g. "for (var A = B in C) D;") the code for the assignment
|
|
* (B) has already been emitted.
|
|
*
|
|
* Variables set before entering here:
|
|
*
|
|
* pc_v34_lhs: insert a "JUMP L2" here (see doc/compiler.txt example).
|
|
* reg_temps + 0: iteration target value (written to LHS)
|
|
* reg_temps + 1: enumerator object
|
|
*/
|
|
{
|
|
duk_int_t pc_l1, pc_l2, pc_l3, pc_l4, pc_l5;
|
|
duk_int_t pc_jumpto_l2, pc_jumpto_l3, pc_jumpto_l4, pc_jumpto_l5;
|
|
duk_reg_t reg_target;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("shared code for parsing variants 3 and 4, pc_v34_lhs=%ld", (long) pc_v34_lhs));
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
/* First we need to insert a jump in the middle of previously
|
|
* emitted code to get the control flow right. No jumps can
|
|
* cross the position where the jump is inserted. See doc/compiler.txt
|
|
* for discussion on the intricacies of control flow and side effects
|
|
* for variants 3 and 4.
|
|
*/
|
|
|
|
duk__insert_jump_entry(comp_ctx, pc_v34_lhs);
|
|
pc_jumpto_l2 = pc_v34_lhs; /* inserted jump */
|
|
pc_l1 = pc_v34_lhs + 1; /* +1, right after inserted jump */
|
|
|
|
/* The code for writing reg_temps + 0 to the left hand side has already
|
|
* been emitted.
|
|
*/
|
|
|
|
pc_jumpto_l3 = duk__emit_jump_empty(comp_ctx); /* -> loop body */
|
|
|
|
duk__advance(comp_ctx); /* eat 'in' */
|
|
|
|
/* Parse enumeration target and initialize enumerator. For 'null' and 'undefined',
|
|
* INITENUM will creates a 'null' enumerator which works like an empty enumerator
|
|
* (E5 Section 12.6.4, step 3). Note that INITENUM requires the value to be in a
|
|
* register (constant not allowed).
|
|
*/
|
|
|
|
pc_l2 = duk__get_current_pc(comp_ctx);
|
|
reg_target = duk__exprtop_toreg(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/); /* Expression */
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
DUK_EXTRAOP_INITENUM | DUK__EMIT_FLAG_B_IS_TARGET,
|
|
(duk_regconst_t) (reg_temps + 1),
|
|
(duk_regconst_t) reg_target);
|
|
pc_jumpto_l4 = duk__emit_jump_empty(comp_ctx);
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
pc_l3 = duk__get_current_pc(comp_ctx);
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
/* temp reset is not necessary after duk__parse_stmt(), which already does it */
|
|
|
|
/* NEXTENUM needs a jump slot right after the main opcode.
|
|
* We need the code emitter to reserve the slot: if there's
|
|
* target shuffling, the target shuffle opcodes must happen
|
|
* after the jump slot (for NEXTENUM the shuffle opcodes are
|
|
* not needed if the enum is finished).
|
|
*/
|
|
pc_l4 = duk__get_current_pc(comp_ctx);
|
|
duk__emit_extraop_b_c(comp_ctx,
|
|
DUK_EXTRAOP_NEXTENUM | DUK__EMIT_FLAG_B_IS_TARGET | DUK__EMIT_FLAG_RESERVE_JUMPSLOT,
|
|
(duk_regconst_t) (reg_temps + 0),
|
|
(duk_regconst_t) (reg_temps + 1));
|
|
pc_jumpto_l5 = comp_ctx->emit_jumpslot_pc; /* NEXTENUM jump slot: executed when enum finished */
|
|
duk__emit_jump(comp_ctx, pc_l1); /* jump to next loop, using reg_v34_iter as iterated value */
|
|
|
|
pc_l5 = duk__get_current_pc(comp_ctx);
|
|
|
|
/* XXX: since the enumerator may be a memory expensive object,
|
|
* perhaps clear it explicitly here? If so, break jump must
|
|
* go through this clearing operation.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("patching jumps: jumpto_l2: %ld->%ld, jumpto_l3: %ld->%ld, "
|
|
"jumpto_l4: %ld->%ld, jumpto_l5: %ld->%ld, "
|
|
"break: %ld->%ld, continue: %ld->%ld",
|
|
(long) pc_jumpto_l2, (long) pc_l2, (long) pc_jumpto_l3, (long) pc_l3,
|
|
(long) pc_jumpto_l4, (long) pc_l4, (long) pc_jumpto_l5, (long) pc_l5,
|
|
(long) (pc_label_site + 1), (long) pc_l5, (long) (pc_label_site + 2), (long) pc_l4));
|
|
|
|
duk__patch_jump(comp_ctx, pc_jumpto_l2, pc_l2);
|
|
duk__patch_jump(comp_ctx, pc_jumpto_l3, pc_l3);
|
|
duk__patch_jump(comp_ctx, pc_jumpto_l4, pc_l4);
|
|
duk__patch_jump(comp_ctx, pc_jumpto_l5, pc_l5);
|
|
duk__patch_jump(comp_ctx, pc_label_site + 1, pc_l5); /* break jump */
|
|
duk__patch_jump(comp_ctx, pc_label_site + 2, pc_l4); /* continue jump */
|
|
}
|
|
goto finished;
|
|
|
|
finished:
|
|
DUK_DDD(DUK_DDDPRINT("end parsing a for/for-in statement"));
|
|
return;
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_FOR);
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_switch_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_reg_t temp_at_loop;
|
|
duk_regconst_t rc_switch; /* reg/const for switch value */
|
|
duk_regconst_t rc_case; /* reg/const for case value */
|
|
duk_reg_t reg_temp; /* general temp register */
|
|
duk_int_t pc_prevcase = -1;
|
|
duk_int_t pc_prevstmt = -1;
|
|
duk_int_t pc_default = -1; /* -1 == not set, -2 == pending (next statement list) */
|
|
|
|
/* Note: negative pc values are ignored when patching jumps, so no explicit checks needed */
|
|
|
|
/*
|
|
* Switch is pretty complicated because of several conflicting concerns:
|
|
*
|
|
* - Want to generate code without an intermediate representation,
|
|
* i.e., in one go
|
|
*
|
|
* - Case selectors are expressions, not values, and may thus e.g. throw
|
|
* exceptions (which causes evaluation order concerns)
|
|
*
|
|
* - Evaluation semantics of case selectors and default clause need to be
|
|
* carefully implemented to provide correct behavior even with case value
|
|
* side effects
|
|
*
|
|
* - Fall through case and default clauses; avoiding dead JUMPs if case
|
|
* ends with an unconditional jump (a break or a continue)
|
|
*
|
|
* - The same case value may occur multiple times, but evaluation rules
|
|
* only process the first match before switching to a "propagation" mode
|
|
* where case values are no longer evaluated
|
|
*
|
|
* See E5 Section 12.11. Also see doc/compiler.txt for compilation
|
|
* discussion.
|
|
*/
|
|
|
|
duk__advance(comp_ctx);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
rc_switch = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LCURLY);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("switch value in register %ld", (long) rc_switch));
|
|
|
|
temp_at_loop = DUK__GETTEMP(comp_ctx);
|
|
|
|
for (;;) {
|
|
duk_int_t num_stmts;
|
|
duk_small_int_t tok;
|
|
|
|
/* sufficient for keeping temp reg numbers in check */
|
|
DUK__SETTEMP(comp_ctx, temp_at_loop);
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RCURLY) {
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Parse a case or default clause.
|
|
*/
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_CASE) {
|
|
/*
|
|
* Case clause.
|
|
*
|
|
* Note: cannot use reg_case as a temp register (for SEQ target)
|
|
* because it may be a constant.
|
|
*/
|
|
|
|
duk__patch_jump_here(comp_ctx, pc_prevcase); /* chain jumps for case
|
|
* evaluation and checking
|
|
*/
|
|
|
|
duk__advance(comp_ctx);
|
|
rc_case = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_COLON);
|
|
|
|
reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_SEQ,
|
|
(duk_regconst_t) reg_temp,
|
|
rc_switch,
|
|
rc_case);
|
|
duk__emit_if_true_skip(comp_ctx, (duk_regconst_t) reg_temp);
|
|
|
|
/* jump to next case clause */
|
|
pc_prevcase = duk__emit_jump_empty(comp_ctx); /* no match, next case */
|
|
|
|
/* statements go here (if any) on next loop */
|
|
} else if (comp_ctx->curr_token.t == DUK_TOK_DEFAULT) {
|
|
/*
|
|
* Default clause.
|
|
*/
|
|
|
|
if (pc_default >= 0) {
|
|
goto syntax_error;
|
|
}
|
|
duk__advance(comp_ctx);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_COLON);
|
|
|
|
/* Fix for https://github.com/svaarala/duktape/issues/155:
|
|
* If 'default' is first clause (detected by pc_prevcase < 0)
|
|
* we need to ensure we stay in the matching chain.
|
|
*/
|
|
if (pc_prevcase < 0) {
|
|
DUK_DD(DUK_DDPRINT("default clause is first, emit prevcase jump"));
|
|
pc_prevcase = duk__emit_jump_empty(comp_ctx);
|
|
}
|
|
|
|
/* default clause matches next statement list (if any) */
|
|
pc_default = -2;
|
|
} else {
|
|
/* Code is not accepted before the first case/default clause */
|
|
goto syntax_error;
|
|
}
|
|
|
|
/*
|
|
* Parse code after the clause. Possible terminators are
|
|
* 'case', 'default', and '}'.
|
|
*
|
|
* Note that there may be no code at all, not even an empty statement,
|
|
* between case clauses. This must be handled just like an empty statement
|
|
* (omitting seemingly pointless JUMPs), to avoid situations like
|
|
* test-bug-case-fallthrough.js.
|
|
*/
|
|
|
|
num_stmts = 0;
|
|
if (pc_default == -2) {
|
|
pc_default = duk__get_current_pc(comp_ctx);
|
|
}
|
|
|
|
/* Note: this is correct even for default clause statements:
|
|
* they participate in 'fall-through' behavior even if the
|
|
* default clause is in the middle.
|
|
*/
|
|
duk__patch_jump_here(comp_ctx, pc_prevstmt); /* chain jumps for 'fall-through'
|
|
* after a case matches.
|
|
*/
|
|
|
|
for (;;) {
|
|
tok = comp_ctx->curr_token.t;
|
|
if (tok == DUK_TOK_CASE || tok == DUK_TOK_DEFAULT ||
|
|
tok == DUK_TOK_RCURLY) {
|
|
break;
|
|
}
|
|
num_stmts++;
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
}
|
|
|
|
/* fall-through jump to next code of next case (backpatched) */
|
|
pc_prevstmt = duk__emit_jump_empty(comp_ctx);
|
|
|
|
/* XXX: would be nice to omit this jump when the jump is not
|
|
* reachable, at least in the obvious cases (such as the case
|
|
* ending with a 'break'.
|
|
*
|
|
* Perhaps duk__parse_stmt() could provide some info on whether
|
|
* the statement is a "dead end"?
|
|
*
|
|
* If implemented, just set pc_prevstmt to -1 when not needed.
|
|
*/
|
|
}
|
|
|
|
DUK_ASSERT(comp_ctx->curr_token.t == DUK_TOK_RCURLY);
|
|
duk__advance(comp_ctx);
|
|
|
|
/* default case control flow patchup; note that if pc_prevcase < 0
|
|
* (i.e. no case clauses), control enters default case automatically.
|
|
*/
|
|
if (pc_default >= 0) {
|
|
/* default case exists: go there if no case matches */
|
|
duk__patch_jump(comp_ctx, pc_prevcase, pc_default);
|
|
} else {
|
|
/* default case does not exist, or no statements present
|
|
* after default case: finish case evaluation
|
|
*/
|
|
duk__patch_jump_here(comp_ctx, pc_prevcase);
|
|
}
|
|
|
|
/* fall-through control flow patchup; note that pc_prevstmt may be
|
|
* < 0 (i.e. no case clauses), in which case this is a no-op.
|
|
*/
|
|
duk__patch_jump_here(comp_ctx, pc_prevstmt);
|
|
|
|
/* continue jump not patched, an INVALID opcode remains there */
|
|
duk__patch_jump_here(comp_ctx, pc_label_site + 1); /* break jump */
|
|
|
|
/* Note: 'fast' breaks will jump to pc_label_site + 1, which will
|
|
* then jump here. The double jump will be eliminated by a
|
|
* peephole pass, resulting in an optimal jump here. The label
|
|
* site jumps will remain in bytecode and will waste code size.
|
|
*/
|
|
|
|
return;
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_SWITCH);
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_if_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_reg_t temp_reset;
|
|
duk_regconst_t rc_cond;
|
|
duk_int_t pc_jump_false;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("begin parsing if statement"));
|
|
|
|
temp_reset = DUK__GETTEMP(comp_ctx);
|
|
|
|
duk__advance(comp_ctx); /* eat 'if' */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
|
|
rc_cond = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__emit_if_true_skip(comp_ctx, rc_cond);
|
|
pc_jump_false = duk__emit_jump_empty(comp_ctx); /* jump to end or else part */
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
|
|
/* The 'else' ambiguity is resolved by 'else' binding to the innermost
|
|
* construct, so greedy matching is correct here.
|
|
*/
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_ELSE) {
|
|
duk_int_t pc_jump_end;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("if has else part"));
|
|
|
|
duk__advance(comp_ctx);
|
|
|
|
pc_jump_end = duk__emit_jump_empty(comp_ctx); /* jump from true part to end */
|
|
duk__patch_jump_here(comp_ctx, pc_jump_false);
|
|
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
|
|
duk__patch_jump_here(comp_ctx, pc_jump_end);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("if does not have else part"));
|
|
|
|
duk__patch_jump_here(comp_ctx, pc_jump_false);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("end parsing if statement"));
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_do_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site) {
|
|
duk_regconst_t rc_cond;
|
|
duk_int_t pc_start;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("begin parsing do statement"));
|
|
|
|
duk__advance(comp_ctx); /* eat 'do' */
|
|
|
|
pc_start = duk__get_current_pc(comp_ctx);
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
duk__patch_jump_here(comp_ctx, pc_label_site + 2); /* continue jump */
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_WHILE);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
|
|
rc_cond = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__emit_if_false_skip(comp_ctx, rc_cond);
|
|
duk__emit_jump(comp_ctx, pc_start);
|
|
/* no need to reset temps, as we're finished emitting code */
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
duk__patch_jump_here(comp_ctx, pc_label_site + 1); /* break jump */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("end parsing do statement"));
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_while_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_int_t pc_label_site) {
|
|
duk_reg_t temp_reset;
|
|
duk_regconst_t rc_cond;
|
|
duk_int_t pc_start;
|
|
duk_int_t pc_jump_false;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("begin parsing while statement"));
|
|
|
|
temp_reset = DUK__GETTEMP(comp_ctx);
|
|
|
|
duk__advance(comp_ctx); /* eat 'while' */
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
|
|
pc_start = duk__get_current_pc(comp_ctx);
|
|
duk__patch_jump_here(comp_ctx, pc_label_site + 2); /* continue jump */
|
|
|
|
rc_cond = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__emit_if_true_skip(comp_ctx, rc_cond);
|
|
pc_jump_false = duk__emit_jump_empty(comp_ctx);
|
|
DUK__SETTEMP(comp_ctx, temp_reset);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
duk__emit_jump(comp_ctx, pc_start);
|
|
|
|
duk__patch_jump_here(comp_ctx, pc_jump_false);
|
|
duk__patch_jump_here(comp_ctx, pc_label_site + 1); /* break jump */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("end parsing while statement"));
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_break_or_continue_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_bool_t is_break = (comp_ctx->curr_token.t == DUK_TOK_BREAK);
|
|
duk_int_t label_id;
|
|
duk_int_t label_catch_depth;
|
|
duk_int_t label_pc; /* points to LABEL; pc+1 = jump site for break; pc+2 = jump site for continue */
|
|
duk_bool_t label_is_closest;
|
|
|
|
DUK_UNREF(res);
|
|
|
|
duk__advance(comp_ctx); /* eat 'break' or 'continue' */
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_SEMICOLON || /* explicit semi follows */
|
|
comp_ctx->curr_token.lineterm || /* automatic semi will be inserted */
|
|
comp_ctx->curr_token.allow_auto_semi) { /* automatic semi will be inserted */
|
|
/* break/continue without label */
|
|
|
|
duk__lookup_active_label(comp_ctx, DUK_HTHREAD_STRING_EMPTY_STRING(thr), is_break, &label_id, &label_catch_depth, &label_pc, &label_is_closest);
|
|
} else if (comp_ctx->curr_token.t == DUK_TOK_IDENTIFIER) {
|
|
/* break/continue with label (label cannot be a reserved word, production is 'Identifier' */
|
|
DUK_ASSERT(comp_ctx->curr_token.str1 != NULL);
|
|
duk__lookup_active_label(comp_ctx, comp_ctx->curr_token.str1, is_break, &label_id, &label_catch_depth, &label_pc, &label_is_closest);
|
|
duk__advance(comp_ctx);
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_BREAK_CONT_LABEL);
|
|
}
|
|
|
|
/* Use a fast break/continue when possible. A fast break/continue is
|
|
* just a jump to the LABEL break/continue jump slot, which then jumps
|
|
* to an appropriate place (for break, going through ENDLABEL correctly).
|
|
* The peephole optimizer will optimize the jump to a direct one.
|
|
*/
|
|
|
|
if (label_catch_depth == comp_ctx->curr_func.catch_depth &&
|
|
label_is_closest) {
|
|
DUK_DDD(DUK_DDDPRINT("break/continue: is_break=%ld, label_id=%ld, label_is_closest=%ld, "
|
|
"label_catch_depth=%ld, catch_depth=%ld "
|
|
"-> use fast variant (direct jump)",
|
|
(long) is_break, (long) label_id, (long) label_is_closest,
|
|
(long) label_catch_depth, (long) comp_ctx->curr_func.catch_depth));
|
|
|
|
duk__emit_jump(comp_ctx, label_pc + (is_break ? 1 : 2));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("break/continue: is_break=%ld, label_id=%ld, label_is_closest=%ld, "
|
|
"label_catch_depth=%ld, catch_depth=%ld "
|
|
"-> use slow variant (longjmp)",
|
|
(long) is_break, (long) label_id, (long) label_is_closest,
|
|
(long) label_catch_depth, (long) comp_ctx->curr_func.catch_depth));
|
|
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
is_break ? DUK_EXTRAOP_BREAK : DUK_EXTRAOP_CONTINUE,
|
|
(duk_regconst_t) label_id);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_return_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_regconst_t rc_val;
|
|
duk_small_uint_t ret_flags;
|
|
|
|
duk__advance(comp_ctx); /* eat 'return' */
|
|
|
|
/* A 'return' statement is only allowed inside an actual function body,
|
|
* not as part of eval or global code.
|
|
*/
|
|
if (!comp_ctx->curr_func.is_function) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_RETURN);
|
|
}
|
|
|
|
/* Use a fast return when possible. A fast return does not cause a longjmp()
|
|
* unnecessarily. A fast return can be done when no TCF catchers are active
|
|
* (this includes 'try' and 'with' statements). Active label catches do not
|
|
* prevent a fast return; they're unwound on return automatically.
|
|
*/
|
|
|
|
ret_flags = 0;
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_SEMICOLON || /* explicit semi follows */
|
|
comp_ctx->curr_token.lineterm || /* automatic semi will be inserted */
|
|
comp_ctx->curr_token.allow_auto_semi) { /* automatic semi will be inserted */
|
|
DUK_DDD(DUK_DDDPRINT("empty return value -> undefined"));
|
|
rc_val = 0;
|
|
} else {
|
|
duk_int_t pc_before_expr;
|
|
duk_int_t pc_after_expr;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("return with a value"));
|
|
|
|
DUK_UNREF(pc_before_expr);
|
|
DUK_UNREF(pc_after_expr);
|
|
|
|
pc_before_expr = duk__get_current_pc(comp_ctx);
|
|
rc_val = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
pc_after_expr = duk__get_current_pc(comp_ctx);
|
|
|
|
/* Tail call check: if last opcode emitted was CALL(I), and
|
|
* the context allows it, change the CALL(I) to a tailcall.
|
|
* This doesn't guarantee that a tailcall will be allowed at
|
|
* runtime, so the RETURN must still be emitted. (Duktape
|
|
* 0.10.0 avoided this and simulated a RETURN if a tailcall
|
|
* couldn't be used at runtime; but this didn't work
|
|
* correctly with a thread yield/resume, see
|
|
* test-bug-tailcall-thread-yield-resume.js for discussion.)
|
|
*
|
|
* In addition to the last opcode being CALL, we also need to
|
|
* be sure that 'rc_val' is the result register of the CALL(I).
|
|
* For instance, for the expression 'return 0, (function ()
|
|
* { return 1; }), 2' the last opcode emitted is CALL (no
|
|
* bytecode is emitted for '2') but 'rc_val' indicates
|
|
* constant '2'. Similarly if '2' is replaced by a register
|
|
* bound variable, no opcodes are emitted but tailcall would
|
|
* be incorrect.
|
|
*
|
|
* This is tricky and easy to get wrong. It would be best to
|
|
* track enough expression metadata to check that 'rc_val' came
|
|
* from that last CALL instruction. We don't have that metadata
|
|
* now, so we check that 'rc_val' is a temporary register result
|
|
* (not a constant or a register bound variable). There should
|
|
* be no way currently for 'rc_val' to be a temporary for an
|
|
* expression following the CALL instruction without emitting
|
|
* some opcodes following the CALL. This proxy check is used
|
|
* below.
|
|
*
|
|
* See: test-bug-comma-expr-gh131.js.
|
|
*
|
|
* The non-standard 'caller' property disables tail calls
|
|
* because they pose some special cases which haven't been
|
|
* fixed yet.
|
|
*/
|
|
|
|
#if defined(DUK_USE_TAILCALL)
|
|
if (comp_ctx->curr_func.catch_depth == 0 && /* no catchers */
|
|
pc_after_expr > pc_before_expr) { /* at least one opcode emitted */
|
|
duk_compiler_instr *instr;
|
|
duk_small_uint_t op;
|
|
|
|
instr = duk__get_instr_ptr(comp_ctx, pc_after_expr - 1);
|
|
DUK_ASSERT(instr != NULL);
|
|
|
|
op = (duk_small_uint_t) DUK_DEC_OP(instr->ins);
|
|
if ((op == DUK_OP_CALL || op == DUK_OP_CALLI) &&
|
|
DUK__ISTEMP(comp_ctx, rc_val) /* see above */) {
|
|
DUK_DDD(DUK_DDDPRINT("return statement detected a tail call opportunity: "
|
|
"catch depth is 0, duk__exprtop() emitted >= 1 instructions, "
|
|
"and last instruction is a CALL "
|
|
"-> set TAILCALL flag"));
|
|
/* Just flip the single bit. */
|
|
instr->ins |= DUK_ENC_OP_A_B_C(0, DUK_BC_CALL_FLAG_TAILCALL, 0, 0);
|
|
}
|
|
}
|
|
#endif /* DUK_USE_TAILCALL */
|
|
|
|
ret_flags = DUK_BC_RETURN_FLAG_HAVE_RETVAL;
|
|
}
|
|
|
|
/* XXX: For now, "fast returns" are disabled. The compiler doesn't track
|
|
* label site depth so when it emits a fast return, it doesn't know whether
|
|
* label sites exist or not. Label sites are emitted for e.g. for loops,
|
|
* so it's probably quite relevant to handle them in the executor's fast
|
|
* return handler.
|
|
*/
|
|
#if 0
|
|
if (comp_ctx->curr_func.catch_depth == 0) {
|
|
DUK_DDD(DUK_DDDPRINT("fast return allowed -> use fast return"));
|
|
ret_flags |= DUK_BC_RETURN_FLAG_FAST;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("fast return not allowed -> use slow return"));
|
|
}
|
|
#endif
|
|
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_RETURN | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
(duk_regconst_t) ret_flags /*flags*/,
|
|
rc_val /*reg*/);
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_throw_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_reg_t reg_val;
|
|
|
|
duk__advance(comp_ctx); /* eat 'throw' */
|
|
|
|
/* Unlike break/continue, throw statement does not allow an empty value. */
|
|
|
|
if (comp_ctx->curr_token.lineterm) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_THROW);
|
|
}
|
|
|
|
reg_val = duk__exprtop_toreg(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_THROW,
|
|
(duk_regconst_t) reg_val);
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_try_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_reg_t reg_catch; /* reg_catch+0 and reg_catch+1 are reserved for TRYCATCH */
|
|
duk_regconst_t rc_varname = 0;
|
|
duk_small_uint_t trycatch_flags = 0;
|
|
duk_int_t pc_trycatch = -1;
|
|
duk_int_t pc_catch = -1;
|
|
duk_int_t pc_finally = -1;
|
|
|
|
DUK_UNREF(res);
|
|
|
|
/*
|
|
* See the following documentation for discussion:
|
|
*
|
|
* doc/execution.txt: control flow details
|
|
*
|
|
* Try, catch, and finally "parts" are Blocks, not Statements, so
|
|
* they must always be delimited by curly braces. This is unlike e.g.
|
|
* the if statement, which accepts any Statement. This eliminates any
|
|
* questions of matching parts of nested try statements. The Block
|
|
* parsing is implemented inline here (instead of calling out).
|
|
*
|
|
* Finally part has a 'let scoped' variable, which requires a few kinks
|
|
* here.
|
|
*/
|
|
|
|
comp_ctx->curr_func.catch_depth++;
|
|
|
|
duk__advance(comp_ctx); /* eat 'try' */
|
|
|
|
reg_catch = DUK__ALLOCTEMPS(comp_ctx, 2);
|
|
|
|
pc_trycatch = duk__get_current_pc(comp_ctx);
|
|
duk__emit_invalid(comp_ctx); /* TRYCATCH, cannot emit now (not enough info) */
|
|
duk__emit_invalid(comp_ctx); /* jump for 'catch' case */
|
|
duk__emit_invalid(comp_ctx); /* jump for 'finally' case or end (if no finally) */
|
|
|
|
/* try part */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LCURLY);
|
|
duk__parse_stmts(comp_ctx, 0 /*allow_source_elem*/, 0 /*expect_eof*/);
|
|
/* the DUK_TOK_RCURLY is eaten by duk__parse_stmts() */
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_ENDTRY);
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_CATCH) {
|
|
/*
|
|
* The catch variable must be updated to reflect the new allocated
|
|
* register for the duration of the catch clause. We need to store
|
|
* and restore the original value for the varmap entry (if any).
|
|
*/
|
|
|
|
/*
|
|
* Note: currently register bindings must be fixed for the entire
|
|
* function. So, even though the catch variable is in a register
|
|
* we know, we must use an explicit environment record and slow path
|
|
* accesses to read/write the catch binding to make closures created
|
|
* within the catch clause work correctly. This restriction should
|
|
* be fixable (at least in common cases) later.
|
|
*
|
|
* See: test-bug-catch-binding-2.js.
|
|
*
|
|
* XXX: improve to get fast path access to most catch clauses.
|
|
*/
|
|
|
|
duk_hstring *h_var;
|
|
duk_int_t varmap_value; /* for storing/restoring the varmap binding for catch variable */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("stack top at start of catch clause: %ld", (long) duk_get_top(ctx)));
|
|
|
|
trycatch_flags |= DUK_BC_TRYCATCH_FLAG_HAVE_CATCH;
|
|
|
|
pc_catch = duk__get_current_pc(comp_ctx);
|
|
|
|
duk__advance(comp_ctx);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
|
|
if (comp_ctx->curr_token.t != DUK_TOK_IDENTIFIER) {
|
|
/* Identifier, i.e. don't allow reserved words */
|
|
goto syntax_error;
|
|
}
|
|
h_var = comp_ctx->curr_token.str1;
|
|
DUK_ASSERT(h_var != NULL);
|
|
|
|
duk_push_hstring(ctx, h_var); /* keep in on valstack, use borrowed ref below */
|
|
|
|
if (comp_ctx->curr_func.is_strict &&
|
|
((h_var == DUK_HTHREAD_STRING_EVAL(thr)) ||
|
|
(h_var == DUK_HTHREAD_STRING_LC_ARGUMENTS(thr)))) {
|
|
DUK_DDD(DUK_DDDPRINT("catch identifier 'eval' or 'arguments' in strict mode -> SyntaxError"));
|
|
goto syntax_error;
|
|
}
|
|
|
|
duk_dup_top(ctx);
|
|
rc_varname = duk__getconst(comp_ctx);
|
|
DUK_DDD(DUK_DDDPRINT("catch clause, rc_varname=0x%08lx (%ld)",
|
|
(unsigned long) rc_varname, (long) rc_varname));
|
|
|
|
duk__advance(comp_ctx);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LCURLY);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("varmap before modifying for catch clause: %!iT",
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->curr_func.varmap_idx)));
|
|
|
|
duk_dup_top(ctx);
|
|
duk_get_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
if (duk_is_undefined(ctx, -1)) {
|
|
varmap_value = -2;
|
|
} else if (duk_is_null(ctx, -1)) {
|
|
varmap_value = -1;
|
|
} else {
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
varmap_value = duk_get_int(ctx, -1);
|
|
DUK_ASSERT(varmap_value >= 0);
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
#if 0
|
|
/* It'd be nice to do something like this - but it doesn't
|
|
* work for closures created inside the catch clause.
|
|
*/
|
|
duk_dup_top(ctx);
|
|
duk_push_int(ctx, (duk_int_t) (reg_catch + 0));
|
|
duk_put_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
#endif
|
|
duk_dup_top(ctx);
|
|
duk_push_null(ctx);
|
|
duk_put_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_PUTVAR | DUK__EMIT_FLAG_A_IS_SOURCE,
|
|
(duk_regconst_t) (reg_catch + 0) /*value*/,
|
|
rc_varname /*varname*/);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("varmap before parsing catch clause: %!iT",
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->curr_func.varmap_idx)));
|
|
|
|
duk__parse_stmts(comp_ctx, 0 /*allow_source_elem*/, 0 /*expect_eof*/);
|
|
/* the DUK_TOK_RCURLY is eaten by duk__parse_stmts() */
|
|
|
|
if (varmap_value == -2) {
|
|
/* not present */
|
|
duk_del_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
} else {
|
|
if (varmap_value == -1) {
|
|
duk_push_null(ctx);
|
|
} else {
|
|
DUK_ASSERT(varmap_value >= 0);
|
|
duk_push_int(ctx, varmap_value);
|
|
}
|
|
duk_put_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
}
|
|
/* varname is popped by above code */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("varmap after restore catch clause: %!iT",
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->curr_func.varmap_idx)));
|
|
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_ENDCATCH);
|
|
|
|
/*
|
|
* XXX: for now, indicate that an expensive catch binding
|
|
* declarative environment is always needed. If we don't
|
|
* need it, we don't need the const_varname either.
|
|
*/
|
|
|
|
trycatch_flags |= DUK_BC_TRYCATCH_FLAG_CATCH_BINDING;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("stack top at end of catch clause: %ld", (long) duk_get_top(ctx)));
|
|
}
|
|
|
|
if (comp_ctx->curr_token.t == DUK_TOK_FINALLY) {
|
|
trycatch_flags |= DUK_BC_TRYCATCH_FLAG_HAVE_FINALLY;
|
|
|
|
pc_finally = duk__get_current_pc(comp_ctx);
|
|
|
|
duk__advance(comp_ctx);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LCURLY);
|
|
duk__parse_stmts(comp_ctx, 0 /*allow_source_elem*/, 0 /*expect_eof*/);
|
|
/* the DUK_TOK_RCURLY is eaten by duk__parse_stmts() */
|
|
duk__emit_extraop_b(comp_ctx,
|
|
DUK_EXTRAOP_ENDFIN,
|
|
reg_catch); /* rethrow */
|
|
}
|
|
|
|
if (!(trycatch_flags & DUK_BC_TRYCATCH_FLAG_HAVE_CATCH) &&
|
|
!(trycatch_flags & DUK_BC_TRYCATCH_FLAG_HAVE_FINALLY)) {
|
|
/* must have catch and/or finally */
|
|
goto syntax_error;
|
|
}
|
|
|
|
duk__patch_trycatch(comp_ctx,
|
|
pc_trycatch,
|
|
reg_catch,
|
|
rc_varname,
|
|
trycatch_flags);
|
|
|
|
if (trycatch_flags & DUK_BC_TRYCATCH_FLAG_HAVE_CATCH) {
|
|
DUK_ASSERT(pc_catch >= 0);
|
|
duk__patch_jump(comp_ctx, pc_trycatch + 1, pc_catch);
|
|
}
|
|
|
|
if (trycatch_flags & DUK_BC_TRYCATCH_FLAG_HAVE_FINALLY) {
|
|
DUK_ASSERT(pc_finally >= 0);
|
|
duk__patch_jump(comp_ctx, pc_trycatch + 2, pc_finally);
|
|
} else {
|
|
/* without finally, the second jump slot is used to jump to end of stmt */
|
|
duk__patch_jump_here(comp_ctx, pc_trycatch + 2);
|
|
}
|
|
|
|
comp_ctx->curr_func.catch_depth--;
|
|
return;
|
|
|
|
syntax_error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_TRY);
|
|
}
|
|
|
|
DUK_LOCAL void duk__parse_with_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res) {
|
|
duk_int_t pc_trycatch;
|
|
duk_int_t pc_finished;
|
|
duk_reg_t reg_catch;
|
|
duk_regconst_t rc_target;
|
|
duk_small_uint_t trycatch_flags;
|
|
|
|
if (comp_ctx->curr_func.is_strict) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_WITH_IN_STRICT_MODE);
|
|
}
|
|
|
|
comp_ctx->curr_func.catch_depth++;
|
|
|
|
duk__advance(comp_ctx); /* eat 'with' */
|
|
|
|
reg_catch = DUK__ALLOCTEMPS(comp_ctx, 2);
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
rc_target = duk__exprtop_toregconst(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RPAREN);
|
|
|
|
/* XXX: the trycatch shuffle flags are now very limiting and a fix
|
|
* is needed to allow trycatch to work in functions with a very large
|
|
* number of temporaries or constants.
|
|
*/
|
|
|
|
pc_trycatch = duk__get_current_pc(comp_ctx);
|
|
trycatch_flags = DUK_BC_TRYCATCH_FLAG_WITH_BINDING;
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_TRYCATCH | DUK__EMIT_FLAG_NO_SHUFFLE_A
|
|
| DUK__EMIT_FLAG_NO_SHUFFLE_B
|
|
| DUK__EMIT_FLAG_NO_SHUFFLE_C,
|
|
(duk_regconst_t) trycatch_flags /*a*/,
|
|
(duk_regconst_t) reg_catch /*b*/,
|
|
rc_target /*c*/);
|
|
duk__emit_invalid(comp_ctx); /* catch jump */
|
|
duk__emit_invalid(comp_ctx); /* finished jump */
|
|
|
|
duk__parse_stmt(comp_ctx, res, 0 /*allow_source_elem*/);
|
|
duk__emit_extraop_only(comp_ctx,
|
|
DUK_EXTRAOP_ENDTRY);
|
|
|
|
pc_finished = duk__get_current_pc(comp_ctx);
|
|
|
|
duk__patch_jump(comp_ctx, pc_trycatch + 2, pc_finished);
|
|
|
|
comp_ctx->curr_func.catch_depth--;
|
|
}
|
|
|
|
DUK_LOCAL duk_int_t duk__stmt_label_site(duk_compiler_ctx *comp_ctx, duk_int_t label_id) {
|
|
/* if a site already exists, nop: max one label site per statement */
|
|
if (label_id >= 0) {
|
|
return label_id;
|
|
}
|
|
|
|
label_id = comp_ctx->curr_func.label_next++;
|
|
DUK_DDD(DUK_DDDPRINT("allocated new label id for label site: %ld", (long) label_id));
|
|
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_LABEL,
|
|
(duk_regconst_t) label_id);
|
|
duk__emit_invalid(comp_ctx);
|
|
duk__emit_invalid(comp_ctx);
|
|
|
|
return label_id;
|
|
}
|
|
|
|
/* Parse a single statement.
|
|
*
|
|
* Creates a label site (with an empty label) automatically for iteration
|
|
* statements. Also "peels off" any label statements for explicit labels.
|
|
*/
|
|
DUK_LOCAL void duk__parse_stmt(duk_compiler_ctx *comp_ctx, duk_ivalue *res, duk_bool_t allow_source_elem) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bool_t dir_prol_at_entry; /* directive prologue status at entry */
|
|
duk_reg_t temp_at_entry;
|
|
duk_uarridx_t labels_len_at_entry;
|
|
duk_int_t pc_at_entry; /* assumed to also be PC of "LABEL" */
|
|
duk_int_t stmt_id;
|
|
duk_small_uint_t stmt_flags = 0;
|
|
duk_int_t label_id = -1;
|
|
duk_small_uint_t tok;
|
|
|
|
DUK__RECURSION_INCREASE(comp_ctx, thr);
|
|
|
|
temp_at_entry = DUK__GETTEMP(comp_ctx);
|
|
pc_at_entry = duk__get_current_pc(comp_ctx);
|
|
labels_len_at_entry = (duk_uarridx_t) duk_get_length(ctx, comp_ctx->curr_func.labelnames_idx);
|
|
stmt_id = comp_ctx->curr_func.stmt_next++;
|
|
dir_prol_at_entry = comp_ctx->curr_func.in_directive_prologue;
|
|
|
|
DUK_UNREF(stmt_id);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parsing a statement, stmt_id=%ld, temp_at_entry=%ld, labels_len_at_entry=%ld, "
|
|
"is_strict=%ld, in_directive_prologue=%ld, catch_depth=%ld",
|
|
(long) stmt_id, (long) temp_at_entry, (long) labels_len_at_entry,
|
|
(long) comp_ctx->curr_func.is_strict, (long) comp_ctx->curr_func.in_directive_prologue,
|
|
(long) comp_ctx->curr_func.catch_depth));
|
|
|
|
/* The directive prologue flag is cleared by default so that it is
|
|
* unset for any recursive statement parsing. It is only "revived"
|
|
* if a directive is detected. (We could also make directives only
|
|
* allowed if 'allow_source_elem' was true.)
|
|
*/
|
|
comp_ctx->curr_func.in_directive_prologue = 0;
|
|
|
|
retry_parse:
|
|
|
|
DUK_DDD(DUK_DDDPRINT("try stmt parse, stmt_id=%ld, label_id=%ld, allow_source_elem=%ld, catch_depth=%ld",
|
|
(long) stmt_id, (long) label_id, (long) allow_source_elem,
|
|
(long) comp_ctx->curr_func.catch_depth));
|
|
|
|
/*
|
|
* Detect iteration statements; if encountered, establish an
|
|
* empty label.
|
|
*/
|
|
|
|
tok = comp_ctx->curr_token.t;
|
|
if (tok == DUK_TOK_FOR || tok == DUK_TOK_DO || tok == DUK_TOK_WHILE ||
|
|
tok == DUK_TOK_SWITCH) {
|
|
DUK_DDD(DUK_DDDPRINT("iteration/switch statement -> add empty label"));
|
|
|
|
label_id = duk__stmt_label_site(comp_ctx, label_id);
|
|
duk__add_label(comp_ctx,
|
|
DUK_HTHREAD_STRING_EMPTY_STRING(thr),
|
|
pc_at_entry /*pc_label*/,
|
|
label_id);
|
|
}
|
|
|
|
/*
|
|
* Main switch for statement / source element type.
|
|
*/
|
|
|
|
switch (comp_ctx->curr_token.t) {
|
|
case DUK_TOK_FUNCTION: {
|
|
/*
|
|
* Function declaration, function expression, or (non-standard)
|
|
* function statement.
|
|
*
|
|
* The E5 specification only allows function declarations at
|
|
* the top level (in "source elements"). An ExpressionStatement
|
|
* is explicitly not allowed to begin with a "function" keyword
|
|
* (E5 Section 12.4). Hence any non-error semantics for such
|
|
* non-top-level statements are non-standard. Duktape semantics
|
|
* for function statements are modelled after V8, see
|
|
* test-dev-func-decl-outside-top.js.
|
|
*/
|
|
|
|
#if defined(DUK_USE_NONSTD_FUNC_STMT)
|
|
/* Lenient: allow function declarations outside top level in
|
|
* non-strict mode but reject them in strict mode.
|
|
*/
|
|
if (allow_source_elem || !comp_ctx->curr_func.is_strict)
|
|
#else /* DUK_USE_NONSTD_FUNC_STMT */
|
|
/* Strict: never allow function declarations outside top level. */
|
|
if (allow_source_elem)
|
|
#endif /* DUK_USE_NONSTD_FUNC_STMT */
|
|
{
|
|
/* FunctionDeclaration: not strictly a statement but handled as such.
|
|
*
|
|
* O(depth^2) parse count for inner functions is handled by recording a
|
|
* lexer offset on the first compilation pass, so that the function can
|
|
* be efficiently skipped on the second pass. This is encapsulated into
|
|
* duk__parse_func_like_fnum().
|
|
*/
|
|
|
|
duk_int_t fnum;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("function declaration statement"));
|
|
|
|
duk__advance(comp_ctx); /* eat 'function' */
|
|
fnum = duk__parse_func_like_fnum(comp_ctx, 1 /*is_decl*/, 0 /*is_setget*/);
|
|
|
|
if (comp_ctx->curr_func.in_scanning) {
|
|
duk_uarridx_t n;
|
|
duk_hstring *h_funcname;
|
|
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.funcs_idx, fnum * 3);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_NAME); /* -> [ ... func name ] */
|
|
h_funcname = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_funcname != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("register function declaration %!O in pass 1, fnum %ld",
|
|
(duk_heaphdr *) h_funcname, (long) fnum));
|
|
n = (duk_uarridx_t) duk_get_length(ctx, comp_ctx->curr_func.decls_idx);
|
|
duk_push_hstring(ctx, h_funcname);
|
|
duk_put_prop_index(ctx, comp_ctx->curr_func.decls_idx, n);
|
|
duk_push_int(ctx, (duk_int_t) (DUK_DECL_TYPE_FUNC + (fnum << 8)));
|
|
duk_put_prop_index(ctx, comp_ctx->curr_func.decls_idx, n + 1);
|
|
|
|
duk_pop_n(ctx, 2);
|
|
}
|
|
|
|
/* no statement value (unlike function expression) */
|
|
stmt_flags = 0;
|
|
break;
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_FUNC_STMT_NOT_ALLOWED);
|
|
}
|
|
break;
|
|
}
|
|
case DUK_TOK_LCURLY: {
|
|
DUK_DDD(DUK_DDDPRINT("block statement"));
|
|
duk__advance(comp_ctx);
|
|
duk__parse_stmts(comp_ctx, 0 /*allow_source_elem*/, 0 /*expect_eof*/);
|
|
/* the DUK_TOK_RCURLY is eaten by duk__parse_stmts() */
|
|
if (label_id >= 0) {
|
|
duk__patch_jump_here(comp_ctx, pc_at_entry + 1); /* break jump */
|
|
}
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_VAR: {
|
|
DUK_DDD(DUK_DDDPRINT("variable declaration statement"));
|
|
duk__parse_var_stmt(comp_ctx, res);
|
|
stmt_flags = DUK__HAS_TERM;
|
|
break;
|
|
}
|
|
case DUK_TOK_SEMICOLON: {
|
|
/* empty statement with an explicit semicolon */
|
|
DUK_DDD(DUK_DDDPRINT("empty statement"));
|
|
stmt_flags = DUK__HAS_TERM;
|
|
break;
|
|
}
|
|
case DUK_TOK_IF: {
|
|
DUK_DDD(DUK_DDDPRINT("if statement"));
|
|
duk__parse_if_stmt(comp_ctx, res);
|
|
if (label_id >= 0) {
|
|
duk__patch_jump_here(comp_ctx, pc_at_entry + 1); /* break jump */
|
|
}
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_DO: {
|
|
/*
|
|
* Do-while statement is mostly trivial, but there is special
|
|
* handling for automatic semicolon handling (triggered by the
|
|
* DUK__ALLOW_AUTO_SEMI_ALWAYS) flag related to a bug filed at:
|
|
*
|
|
* https://bugs.ecmascript.org/show_bug.cgi?id=8
|
|
*
|
|
* See doc/compiler.txt for details.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("do statement"));
|
|
DUK_ASSERT(label_id >= 0);
|
|
duk__update_label_flags(comp_ctx,
|
|
label_id,
|
|
DUK_LABEL_FLAG_ALLOW_BREAK | DUK_LABEL_FLAG_ALLOW_CONTINUE);
|
|
duk__parse_do_stmt(comp_ctx, res, pc_at_entry);
|
|
stmt_flags = DUK__HAS_TERM | DUK__ALLOW_AUTO_SEMI_ALWAYS; /* DUK__ALLOW_AUTO_SEMI_ALWAYS workaround */
|
|
break;
|
|
}
|
|
case DUK_TOK_WHILE: {
|
|
DUK_DDD(DUK_DDDPRINT("while statement"));
|
|
DUK_ASSERT(label_id >= 0);
|
|
duk__update_label_flags(comp_ctx,
|
|
label_id,
|
|
DUK_LABEL_FLAG_ALLOW_BREAK | DUK_LABEL_FLAG_ALLOW_CONTINUE);
|
|
duk__parse_while_stmt(comp_ctx, res, pc_at_entry);
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_FOR: {
|
|
/*
|
|
* For/for-in statement is complicated to parse because
|
|
* determining the statement type (three-part for vs. a
|
|
* for-in) requires potential backtracking.
|
|
*
|
|
* See the helper for the messy stuff.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("for/for-in statement"));
|
|
DUK_ASSERT(label_id >= 0);
|
|
duk__update_label_flags(comp_ctx,
|
|
label_id,
|
|
DUK_LABEL_FLAG_ALLOW_BREAK | DUK_LABEL_FLAG_ALLOW_CONTINUE);
|
|
duk__parse_for_stmt(comp_ctx, res, pc_at_entry);
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_CONTINUE:
|
|
case DUK_TOK_BREAK: {
|
|
DUK_DDD(DUK_DDDPRINT("break/continue statement"));
|
|
duk__parse_break_or_continue_stmt(comp_ctx, res);
|
|
stmt_flags = DUK__HAS_TERM | DUK__IS_TERMINAL;
|
|
break;
|
|
}
|
|
case DUK_TOK_RETURN: {
|
|
DUK_DDD(DUK_DDDPRINT("return statement"));
|
|
duk__parse_return_stmt(comp_ctx, res);
|
|
stmt_flags = DUK__HAS_TERM | DUK__IS_TERMINAL;
|
|
break;
|
|
}
|
|
case DUK_TOK_WITH: {
|
|
DUK_DDD(DUK_DDDPRINT("with statement"));
|
|
comp_ctx->curr_func.with_depth++;
|
|
duk__parse_with_stmt(comp_ctx, res);
|
|
if (label_id >= 0) {
|
|
duk__patch_jump_here(comp_ctx, pc_at_entry + 1); /* break jump */
|
|
}
|
|
comp_ctx->curr_func.with_depth--;
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_SWITCH: {
|
|
/*
|
|
* The switch statement is pretty messy to compile.
|
|
* See the helper for details.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("switch statement"));
|
|
DUK_ASSERT(label_id >= 0);
|
|
duk__update_label_flags(comp_ctx,
|
|
label_id,
|
|
DUK_LABEL_FLAG_ALLOW_BREAK); /* don't allow continue */
|
|
duk__parse_switch_stmt(comp_ctx, res, pc_at_entry);
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_THROW: {
|
|
DUK_DDD(DUK_DDDPRINT("throw statement"));
|
|
duk__parse_throw_stmt(comp_ctx, res);
|
|
stmt_flags = DUK__HAS_TERM | DUK__IS_TERMINAL;
|
|
break;
|
|
}
|
|
case DUK_TOK_TRY: {
|
|
DUK_DDD(DUK_DDDPRINT("try statement"));
|
|
duk__parse_try_stmt(comp_ctx, res);
|
|
stmt_flags = 0;
|
|
break;
|
|
}
|
|
case DUK_TOK_DEBUGGER: {
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK_DDD(DUK_DDDPRINT("debugger statement: debugging enabled, emit debugger opcode"));
|
|
duk__emit_extraop_only(comp_ctx, DUK_EXTRAOP_DEBUGGER);
|
|
#else
|
|
DUK_DDD(DUK_DDDPRINT("debugger statement: ignored"));
|
|
#endif
|
|
duk__advance(comp_ctx);
|
|
stmt_flags = DUK__HAS_TERM;
|
|
break;
|
|
}
|
|
default: {
|
|
/*
|
|
* Else, must be one of:
|
|
* - ExpressionStatement, possibly a directive (String)
|
|
* - LabelledStatement (Identifier followed by ':')
|
|
*
|
|
* Expressions beginning with 'function' keyword are covered by a case
|
|
* above (such expressions are not allowed in standard E5 anyway).
|
|
* Also expressions starting with '{' are interpreted as block
|
|
* statements. See E5 Section 12.4.
|
|
*
|
|
* Directive detection is tricky; see E5 Section 14.1 on directive
|
|
* prologue. A directive is an expression statement with a single
|
|
* string literal and an explicit or automatic semicolon. Escape
|
|
* characters are significant and no parens etc are allowed:
|
|
*
|
|
* 'use strict'; // valid 'use strict' directive
|
|
* 'use\u0020strict'; // valid directive, not a 'use strict' directive
|
|
* ('use strict'); // not a valid directive
|
|
*
|
|
* The expression is determined to consist of a single string literal
|
|
* based on duk__expr_nud() and duk__expr_led() call counts. The string literal
|
|
* of a 'use strict' directive is determined to lack any escapes based
|
|
* num_escapes count from the lexer. Note that other directives may be
|
|
* allowed to contain escapes, so a directive with escapes does not
|
|
* terminate a directive prologue.
|
|
*
|
|
* We rely on the fact that the expression parser will not emit any
|
|
* code for a single token expression. However, it will generate an
|
|
* intermediate value which we will then successfully ignore.
|
|
*
|
|
* A similar approach is used for labels.
|
|
*/
|
|
|
|
duk_bool_t single_token;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("expression statement"));
|
|
duk__exprtop(comp_ctx, res, DUK__BP_FOR_EXPR /*rbp_flags*/);
|
|
|
|
single_token = (comp_ctx->curr_func.nud_count == 1 && /* one token */
|
|
comp_ctx->curr_func.led_count == 0); /* no operators */
|
|
|
|
if (single_token &&
|
|
comp_ctx->prev_token.t == DUK_TOK_IDENTIFIER &&
|
|
comp_ctx->curr_token.t == DUK_TOK_COLON) {
|
|
/*
|
|
* Detected label
|
|
*/
|
|
|
|
duk_hstring *h_lab;
|
|
|
|
/* expected ival */
|
|
DUK_ASSERT(res->t == DUK_IVAL_VAR);
|
|
DUK_ASSERT(res->x1.t == DUK_ISPEC_VALUE);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(duk_get_tval(ctx, res->x1.valstack_idx)));
|
|
h_lab = comp_ctx->prev_token.str1;
|
|
DUK_ASSERT(h_lab != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("explicit label site for label '%!O'",
|
|
(duk_heaphdr *) h_lab));
|
|
|
|
duk__advance(comp_ctx); /* eat colon */
|
|
|
|
label_id = duk__stmt_label_site(comp_ctx, label_id);
|
|
|
|
duk__add_label(comp_ctx,
|
|
h_lab,
|
|
pc_at_entry /*pc_label*/,
|
|
label_id);
|
|
|
|
/* a statement following a label cannot be a source element
|
|
* (a function declaration).
|
|
*/
|
|
allow_source_elem = 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("label handled, retry statement parsing"));
|
|
goto retry_parse;
|
|
}
|
|
|
|
stmt_flags = 0;
|
|
|
|
if (dir_prol_at_entry && /* still in prologue */
|
|
single_token && /* single string token */
|
|
comp_ctx->prev_token.t == DUK_TOK_STRING) {
|
|
/*
|
|
* Detected a directive
|
|
*/
|
|
duk_hstring *h_dir;
|
|
|
|
/* expected ival */
|
|
DUK_ASSERT(res->t == DUK_IVAL_PLAIN);
|
|
DUK_ASSERT(res->x1.t == DUK_ISPEC_VALUE);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(duk_get_tval(ctx, res->x1.valstack_idx)));
|
|
h_dir = comp_ctx->prev_token.str1;
|
|
DUK_ASSERT(h_dir != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("potential directive: %!O", h_dir));
|
|
|
|
stmt_flags |= DUK__STILL_PROLOGUE;
|
|
|
|
/* Note: escaped characters differentiate directives */
|
|
|
|
if (comp_ctx->prev_token.num_escapes > 0) {
|
|
DUK_DDD(DUK_DDDPRINT("directive contains escapes: valid directive "
|
|
"but we ignore such directives"));
|
|
} else {
|
|
/*
|
|
* The length comparisons are present to handle
|
|
* strings like "use strict\u0000foo" as required.
|
|
*/
|
|
|
|
if (DUK_HSTRING_GET_BYTELEN(h_dir) == 10 &&
|
|
DUK_STRNCMP((const char *) DUK_HSTRING_GET_DATA(h_dir), "use strict", 10) == 0) {
|
|
#if defined(DUK_USE_STRICT_DECL)
|
|
DUK_DDD(DUK_DDDPRINT("use strict directive detected: strict flag %ld -> %ld",
|
|
(long) comp_ctx->curr_func.is_strict, (long) 1));
|
|
comp_ctx->curr_func.is_strict = 1;
|
|
#else
|
|
DUK_DDD(DUK_DDDPRINT("use strict detected but strict declarations disabled, ignoring"));
|
|
#endif
|
|
} else if (DUK_HSTRING_GET_BYTELEN(h_dir) == 14 &&
|
|
DUK_STRNCMP((const char *) DUK_HSTRING_GET_DATA(h_dir), "use duk notail", 14) == 0) {
|
|
DUK_DDD(DUK_DDDPRINT("use duk notail directive detected: notail flag %ld -> %ld",
|
|
(long) comp_ctx->curr_func.is_notail, (long) 1));
|
|
comp_ctx->curr_func.is_notail = 1;
|
|
} else {
|
|
DUK_DD(DUK_DDPRINT("unknown directive: '%!O', ignoring but not terminating "
|
|
"directive prologue", (duk_hobject *) h_dir));
|
|
}
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("non-directive expression statement or no longer in prologue; "
|
|
"prologue terminated if still active"));
|
|
}
|
|
|
|
stmt_flags |= DUK__HAS_VAL | DUK__HAS_TERM;
|
|
}
|
|
} /* end switch (tok) */
|
|
|
|
/*
|
|
* Statement value handling.
|
|
*
|
|
* Global code and eval code has an implicit return value
|
|
* which comes from the last statement with a value
|
|
* (technically a non-"empty" continuation, which is
|
|
* different from an empty statement).
|
|
*
|
|
* Since we don't know whether a later statement will
|
|
* override the value of the current statement, we need
|
|
* to coerce the statement value to a register allocated
|
|
* for implicit return values. In other cases we need
|
|
* to coerce the statement value to a plain value to get
|
|
* any side effects out (consider e.g. "foo.bar;").
|
|
*/
|
|
|
|
/* XXX: what about statements which leave a half-cooked value in 'res'
|
|
* but have no stmt value? Any such statements?
|
|
*/
|
|
|
|
if (stmt_flags & DUK__HAS_VAL) {
|
|
duk_reg_t reg_stmt_value = comp_ctx->curr_func.reg_stmt_value;
|
|
if (reg_stmt_value >= 0) {
|
|
duk__ivalue_toforcedreg(comp_ctx, res, reg_stmt_value);
|
|
} else {
|
|
duk__ivalue_toplain_ignore(comp_ctx, res);
|
|
}
|
|
} else {
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Statement terminator check, including automatic semicolon
|
|
* handling. After this step, 'curr_tok' should be the first
|
|
* token after a possible statement terminator.
|
|
*/
|
|
|
|
if (stmt_flags & DUK__HAS_TERM) {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_SEMICOLON) {
|
|
DUK_DDD(DUK_DDDPRINT("explicit semicolon terminates statement"));
|
|
duk__advance(comp_ctx);
|
|
} else {
|
|
if (comp_ctx->curr_token.allow_auto_semi) {
|
|
DUK_DDD(DUK_DDDPRINT("automatic semicolon terminates statement"));
|
|
} else if (stmt_flags & DUK__ALLOW_AUTO_SEMI_ALWAYS) {
|
|
/* XXX: make this lenience dependent on flags or strictness? */
|
|
DUK_DDD(DUK_DDDPRINT("automatic semicolon terminates statement (allowed for compatibility "
|
|
"even though no lineterm present before next token)"));
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_UNTERMINATED_STMT);
|
|
}
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("statement has no terminator"));
|
|
}
|
|
|
|
/*
|
|
* Directive prologue tracking.
|
|
*/
|
|
|
|
if (stmt_flags & DUK__STILL_PROLOGUE) {
|
|
DUK_DDD(DUK_DDDPRINT("setting in_directive_prologue"));
|
|
comp_ctx->curr_func.in_directive_prologue = 1;
|
|
}
|
|
|
|
/*
|
|
* Cleanups (all statement parsing flows through here).
|
|
*
|
|
* Pop label site and reset labels. Reset 'next temp' to value at
|
|
* entry to reuse temps.
|
|
*/
|
|
|
|
if (label_id >= 0) {
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_ENDLABEL,
|
|
(duk_regconst_t) label_id);
|
|
}
|
|
|
|
DUK__SETTEMP(comp_ctx, temp_at_entry);
|
|
|
|
duk__reset_labels_to_length(comp_ctx, labels_len_at_entry);
|
|
|
|
/* XXX: return indication of "terminalness" (e.g. a 'throw' is terminal) */
|
|
|
|
DUK__RECURSION_DECREASE(comp_ctx, thr);
|
|
}
|
|
|
|
#undef DUK__HAS_VAL
|
|
#undef DUK__HAS_TERM
|
|
#undef DUK__ALLOW_AUTO_SEMI_ALWAYS
|
|
|
|
/*
|
|
* Parse a statement list.
|
|
*
|
|
* Handles automatic semicolon insertion and implicit return value.
|
|
*
|
|
* Upon entry, 'curr_tok' should contain the first token of the first
|
|
* statement (parsed in the "allow regexp literal" mode). Upon exit,
|
|
* 'curr_tok' contains the token following the statement list terminator
|
|
* (EOF or closing brace).
|
|
*/
|
|
|
|
DUK_LOCAL void duk__parse_stmts(duk_compiler_ctx *comp_ctx, duk_bool_t allow_source_elem, duk_bool_t expect_eof) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_ivalue res_alloc;
|
|
duk_ivalue *res = &res_alloc;
|
|
|
|
/* Setup state. Initial ivalue is 'undefined'. */
|
|
|
|
duk_require_stack(ctx, DUK__PARSE_STATEMENTS_SLOTS);
|
|
|
|
/* XXX: 'res' setup can be moved to function body level; in fact, two 'res'
|
|
* intermediate values suffice for parsing of each function. Nesting is needed
|
|
* for nested functions (which may occur inside expressions).
|
|
*/
|
|
|
|
DUK_MEMZERO(&res_alloc, sizeof(res_alloc));
|
|
res->t = DUK_IVAL_PLAIN;
|
|
res->x1.t = DUK_ISPEC_VALUE;
|
|
res->x1.valstack_idx = duk_get_top(ctx);
|
|
res->x2.valstack_idx = res->x1.valstack_idx + 1;
|
|
duk_push_undefined(ctx);
|
|
duk_push_undefined(ctx);
|
|
|
|
/* Parse statements until a closing token (EOF or '}') is found. */
|
|
|
|
for (;;) {
|
|
/* Check whether statement list ends. */
|
|
|
|
if (expect_eof) {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_EOF) {
|
|
break;
|
|
}
|
|
} else {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RCURLY) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Check statement type based on the first token type.
|
|
*
|
|
* Note: expression parsing helpers expect 'curr_tok' to
|
|
* contain the first token of the expression upon entry.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("TOKEN %ld (non-whitespace, non-comment)", (long) comp_ctx->curr_token.t));
|
|
|
|
duk__parse_stmt(comp_ctx, res, allow_source_elem);
|
|
}
|
|
|
|
duk__advance(comp_ctx);
|
|
|
|
/* Tear down state. */
|
|
|
|
duk_pop_2(ctx);
|
|
}
|
|
|
|
/*
|
|
* Declaration binding instantiation conceptually happens when calling a
|
|
* function; for us it essentially means that function prologue. The
|
|
* conceptual process is described in E5 Section 10.5.
|
|
*
|
|
* We need to keep track of all encountered identifiers to (1) create an
|
|
* identifier-to-register map ("varmap"); and (2) detect duplicate
|
|
* declarations. Identifiers which are not bound to registers still need
|
|
* to be tracked for detecting duplicates. Currently such identifiers
|
|
* are put into the varmap with a 'null' value, which is later cleaned up.
|
|
*
|
|
* To support functions with a large number of variable and function
|
|
* declarations, registers are not allocated beyond a certain limit;
|
|
* after that limit, variables and functions need slow path access.
|
|
* Arguments are currently always register bound, which imposes a hard
|
|
* (and relatively small) argument count limit.
|
|
*
|
|
* Some bindings in E5 are not configurable (= deletable) and almost all
|
|
* are mutable (writable). Exceptions are:
|
|
*
|
|
* - The 'arguments' binding, established only if no shadowing argument
|
|
* or function declaration exists. We handle 'arguments' creation
|
|
* and binding through an explicit slow path environment record.
|
|
*
|
|
* - The "name" binding for a named function expression. This is also
|
|
* handled through an explicit slow path environment record.
|
|
*/
|
|
|
|
/* XXX: add support for variables to not be register bound always, to
|
|
* handle cases with a very large number of variables?
|
|
*/
|
|
|
|
DUK_LOCAL void duk__init_varmap_and_prologue_for_pass2(duk_compiler_ctx *comp_ctx, duk_reg_t *out_stmt_value_reg) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *h_name;
|
|
duk_bool_t configurable_bindings;
|
|
duk_uarridx_t num_args;
|
|
duk_uarridx_t num_decls;
|
|
duk_regconst_t rc_name;
|
|
duk_small_uint_t declvar_flags;
|
|
duk_uarridx_t i;
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_idx_t entry_top;
|
|
#endif
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
entry_top = duk_get_top(ctx);
|
|
#endif
|
|
|
|
/*
|
|
* Preliminaries
|
|
*/
|
|
|
|
configurable_bindings = comp_ctx->curr_func.is_eval;
|
|
DUK_DDD(DUK_DDDPRINT("configurable_bindings=%ld", (long) configurable_bindings));
|
|
|
|
/* varmap is already in comp_ctx->curr_func.varmap_idx */
|
|
|
|
/*
|
|
* Function formal arguments, always bound to registers
|
|
* (there's no support for shuffling them now).
|
|
*/
|
|
|
|
num_args = (duk_uarridx_t) duk_get_length(ctx, comp_ctx->curr_func.argnames_idx);
|
|
DUK_DDD(DUK_DDDPRINT("num_args=%ld", (long) num_args));
|
|
/* XXX: check num_args */
|
|
|
|
for (i = 0; i < num_args; i++) {
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.argnames_idx, i);
|
|
h_name = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_name != NULL);
|
|
|
|
if (comp_ctx->curr_func.is_strict) {
|
|
if (duk__hstring_is_eval_or_arguments(comp_ctx, h_name)) {
|
|
DUK_DDD(DUK_DDDPRINT("arg named 'eval' or 'arguments' in strict mode -> SyntaxError"));
|
|
goto error_argname;
|
|
}
|
|
duk_dup_top(ctx);
|
|
if (duk_has_prop(ctx, comp_ctx->curr_func.varmap_idx)) {
|
|
DUK_DDD(DUK_DDDPRINT("duplicate arg name in strict mode -> SyntaxError"));
|
|
goto error_argname;
|
|
}
|
|
|
|
/* Ensure argument name is not a reserved word in current
|
|
* (final) strictness. Formal argument parsing may not
|
|
* catch reserved names if strictness changes during
|
|
* parsing.
|
|
*
|
|
* We only need to do this in strict mode because non-strict
|
|
* keyword are always detected in formal argument parsing.
|
|
*/
|
|
|
|
if (DUK_HSTRING_HAS_STRICT_RESERVED_WORD(h_name)) {
|
|
goto error_argname;
|
|
}
|
|
}
|
|
|
|
/* overwrite any previous binding of the same name; the effect is
|
|
* that last argument of a certain name wins.
|
|
*/
|
|
|
|
/* only functions can have arguments */
|
|
DUK_ASSERT(comp_ctx->curr_func.is_function);
|
|
duk_push_uarridx(ctx, i); /* -> [ ... name index ] */
|
|
duk_put_prop(ctx, comp_ctx->curr_func.varmap_idx); /* -> [ ... ] */
|
|
|
|
/* no code needs to be emitted, the regs already have values */
|
|
}
|
|
|
|
/* use temp_next for tracking register allocations */
|
|
DUK__SETTEMP_CHECKMAX(comp_ctx, (duk_reg_t) num_args);
|
|
|
|
/*
|
|
* After arguments, allocate special registers (like shuffling temps)
|
|
*/
|
|
|
|
if (out_stmt_value_reg) {
|
|
*out_stmt_value_reg = DUK__ALLOCTEMP(comp_ctx);
|
|
}
|
|
if (comp_ctx->curr_func.needs_shuffle) {
|
|
duk_reg_t shuffle_base = DUK__ALLOCTEMPS(comp_ctx, 3);
|
|
comp_ctx->curr_func.shuffle1 = shuffle_base;
|
|
comp_ctx->curr_func.shuffle2 = shuffle_base + 1;
|
|
comp_ctx->curr_func.shuffle3 = shuffle_base + 2;
|
|
DUK_D(DUK_DPRINT("shuffle registers needed by function, allocated: %ld %ld %ld",
|
|
(long) comp_ctx->curr_func.shuffle1,
|
|
(long) comp_ctx->curr_func.shuffle2,
|
|
(long) comp_ctx->curr_func.shuffle3));
|
|
}
|
|
if (comp_ctx->curr_func.temp_next > 0x100) {
|
|
DUK_D(DUK_DPRINT("not enough 8-bit regs: temp_next=%ld", (long) comp_ctx->curr_func.temp_next));
|
|
goto error_outofregs;
|
|
}
|
|
|
|
/*
|
|
* Function declarations
|
|
*/
|
|
|
|
num_decls = (duk_uarridx_t) duk_get_length(ctx, comp_ctx->curr_func.decls_idx);
|
|
DUK_DDD(DUK_DDDPRINT("num_decls=%ld -> %!T",
|
|
(long) num_decls,
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->curr_func.decls_idx)));
|
|
for (i = 0; i < num_decls; i += 2) {
|
|
duk_int_t decl_type;
|
|
duk_int_t fnum;
|
|
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.decls_idx, i + 1); /* decl type */
|
|
decl_type = duk_to_int(ctx, -1);
|
|
fnum = decl_type >> 8; /* XXX: macros */
|
|
decl_type = decl_type & 0xff;
|
|
duk_pop(ctx);
|
|
|
|
if (decl_type != DUK_DECL_TYPE_FUNC) {
|
|
continue;
|
|
}
|
|
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.decls_idx, i); /* decl name */
|
|
|
|
/* XXX: spilling */
|
|
if (comp_ctx->curr_func.is_function) {
|
|
duk_reg_t reg_bind;
|
|
duk_dup_top(ctx);
|
|
if (duk_has_prop(ctx, comp_ctx->curr_func.varmap_idx)) {
|
|
/* shadowed; update value */
|
|
duk_dup_top(ctx);
|
|
duk_get_prop(ctx, comp_ctx->curr_func.varmap_idx);
|
|
reg_bind = duk_to_int(ctx, -1); /* [ ... name reg_bind ] */
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_CLOSURE,
|
|
(duk_regconst_t) reg_bind,
|
|
(duk_regconst_t) fnum);
|
|
} else {
|
|
/* function: always register bound */
|
|
reg_bind = DUK__ALLOCTEMP(comp_ctx);
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_CLOSURE,
|
|
(duk_regconst_t) reg_bind,
|
|
(duk_regconst_t) fnum);
|
|
duk_push_int(ctx, (duk_int_t) reg_bind);
|
|
}
|
|
} else {
|
|
/* Function declaration for global/eval code is emitted even
|
|
* for duplicates, because of E5 Section 10.5, step 5.e of
|
|
* E5.1 (special behavior for variable bound to global object).
|
|
*
|
|
* DECLVAR will not re-declare a variable as such, but will
|
|
* update the binding value.
|
|
*/
|
|
|
|
duk_reg_t reg_temp = DUK__ALLOCTEMP(comp_ctx);
|
|
duk_dup_top(ctx);
|
|
rc_name = duk__getconst(comp_ctx);
|
|
duk_push_null(ctx);
|
|
|
|
duk__emit_a_bc(comp_ctx,
|
|
DUK_OP_CLOSURE,
|
|
(duk_regconst_t) reg_temp,
|
|
(duk_regconst_t) fnum);
|
|
|
|
declvar_flags = DUK_PROPDESC_FLAG_WRITABLE |
|
|
DUK_PROPDESC_FLAG_ENUMERABLE |
|
|
DUK_BC_DECLVAR_FLAG_FUNC_DECL;
|
|
|
|
if (configurable_bindings) {
|
|
declvar_flags |= DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
}
|
|
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_DECLVAR | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
(duk_regconst_t) declvar_flags /*flags*/,
|
|
rc_name /*name*/,
|
|
(duk_regconst_t) reg_temp /*value*/);
|
|
|
|
DUK__SETTEMP(comp_ctx, reg_temp); /* forget temp */
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("function declaration to varmap: %!T -> %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk_put_prop(ctx, comp_ctx->curr_func.varmap_idx); /* [ ... name reg/null ] -> [ ... ] */
|
|
}
|
|
|
|
/*
|
|
* 'arguments' binding is special; if a shadowing argument or
|
|
* function declaration exists, an arguments object will
|
|
* definitely not be needed, regardless of whether the identifier
|
|
* 'arguments' is referenced inside the function body.
|
|
*/
|
|
|
|
if (duk_has_prop_stridx(ctx, comp_ctx->curr_func.varmap_idx, DUK_STRIDX_LC_ARGUMENTS)) {
|
|
DUK_DDD(DUK_DDDPRINT("'arguments' is shadowed by argument or function declaration "
|
|
"-> arguments object creation can be skipped"));
|
|
comp_ctx->curr_func.is_arguments_shadowed = 1;
|
|
}
|
|
|
|
/*
|
|
* Variable declarations.
|
|
*
|
|
* Unlike function declarations, variable declaration values don't get
|
|
* assigned on entry. If a binding of the same name already exists, just
|
|
* ignore it silently.
|
|
*/
|
|
|
|
for (i = 0; i < num_decls; i += 2) {
|
|
duk_int_t decl_type;
|
|
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.decls_idx, i + 1); /* decl type */
|
|
decl_type = duk_to_int(ctx, -1);
|
|
decl_type = decl_type & 0xff;
|
|
duk_pop(ctx);
|
|
|
|
if (decl_type != DUK_DECL_TYPE_VAR) {
|
|
continue;
|
|
}
|
|
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.decls_idx, i); /* decl name */
|
|
|
|
if (duk_has_prop(ctx, comp_ctx->curr_func.varmap_idx)) {
|
|
/* shadowed, ignore */
|
|
} else {
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.decls_idx, i); /* decl name */
|
|
h_name = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_name != NULL);
|
|
|
|
if (h_name == DUK_HTHREAD_STRING_LC_ARGUMENTS(thr) &&
|
|
!comp_ctx->curr_func.is_arguments_shadowed) {
|
|
/* E5 Section steps 7-8 */
|
|
DUK_DDD(DUK_DDDPRINT("'arguments' not shadowed by a function declaration, "
|
|
"but appears as a variable declaration -> treat as "
|
|
"a no-op for variable declaration purposes"));
|
|
duk_pop(ctx);
|
|
continue;
|
|
}
|
|
|
|
/* XXX: spilling */
|
|
if (comp_ctx->curr_func.is_function) {
|
|
duk_reg_t reg_bind = DUK__ALLOCTEMP(comp_ctx);
|
|
/* no need to init reg, it will be undefined on entry */
|
|
duk_push_int(ctx, (duk_int_t) reg_bind);
|
|
} else {
|
|
duk_dup_top(ctx);
|
|
rc_name = duk__getconst(comp_ctx);
|
|
duk_push_null(ctx);
|
|
|
|
declvar_flags = DUK_PROPDESC_FLAG_WRITABLE |
|
|
DUK_PROPDESC_FLAG_ENUMERABLE |
|
|
DUK_BC_DECLVAR_FLAG_UNDEF_VALUE;
|
|
if (configurable_bindings) {
|
|
declvar_flags |= DUK_PROPDESC_FLAG_CONFIGURABLE;
|
|
}
|
|
|
|
duk__emit_a_b_c(comp_ctx,
|
|
DUK_OP_DECLVAR | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
(duk_regconst_t) declvar_flags /*flags*/,
|
|
rc_name /*name*/,
|
|
(duk_regconst_t) 0 /*value*/);
|
|
}
|
|
|
|
duk_put_prop(ctx, comp_ctx->curr_func.varmap_idx); /* [ ... name reg/null ] -> [ ... ] */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Wrap up
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("varmap: %!T, is_arguments_shadowed=%ld",
|
|
(duk_tval *) duk_get_tval(ctx, comp_ctx->curr_func.varmap_idx),
|
|
(long) comp_ctx->curr_func.is_arguments_shadowed));
|
|
|
|
DUK_ASSERT_TOP(ctx, entry_top);
|
|
return;
|
|
|
|
error_outofregs:
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, DUK_STR_REG_LIMIT);
|
|
DUK_UNREACHABLE();
|
|
return;
|
|
|
|
error_argname:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_ARG_NAME);
|
|
DUK_UNREACHABLE();
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Parse a function-body-like expression (FunctionBody or Program
|
|
* in E5 grammar) using a two-pass parse. The productions appear
|
|
* in the following contexts:
|
|
*
|
|
* - function expression
|
|
* - function statement
|
|
* - function declaration
|
|
* - getter in object literal
|
|
* - setter in object literal
|
|
* - global code
|
|
* - eval code
|
|
* - Function constructor body
|
|
*
|
|
* This function only parses the statement list of the body; the argument
|
|
* list and possible function name must be initialized by the caller.
|
|
* For instance, for Function constructor, the argument names are originally
|
|
* on the value stack. The parsing of statements ends either at an EOF or
|
|
* a closing brace; this is controlled by an input flag.
|
|
*
|
|
* Note that there are many differences affecting parsing and even code
|
|
* generation:
|
|
*
|
|
* - Global and eval code have an implicit return value generated
|
|
* by the last statement; function code does not
|
|
*
|
|
* - Global code, eval code, and Function constructor body end in
|
|
* an EOF, other bodies in a closing brace ('}')
|
|
*
|
|
* Upon entry, 'curr_tok' is ignored and the function will pull in the
|
|
* first token on its own. Upon exit, 'curr_tok' is the terminating
|
|
* token (EOF or closing brace).
|
|
*/
|
|
|
|
DUK_LOCAL void duk__parse_func_body(duk_compiler_ctx *comp_ctx, duk_bool_t expect_eof, duk_bool_t implicit_return_value, duk_small_int_t expect_token) {
|
|
duk_compiler_func *func;
|
|
duk_hthread *thr;
|
|
duk_context *ctx;
|
|
duk_reg_t reg_stmt_value = -1;
|
|
duk_lexer_point lex_pt;
|
|
duk_reg_t temp_first;
|
|
duk_small_int_t compile_round = 1;
|
|
|
|
DUK_ASSERT(comp_ctx != NULL);
|
|
|
|
thr = comp_ctx->thr;
|
|
ctx = (duk_context *) thr;
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
func = &comp_ctx->curr_func;
|
|
DUK_ASSERT(func != NULL);
|
|
|
|
DUK__RECURSION_INCREASE(comp_ctx, thr);
|
|
|
|
duk_require_stack(ctx, DUK__FUNCTION_BODY_REQUIRE_SLOTS);
|
|
|
|
/*
|
|
* Store lexer position for a later rewind
|
|
*/
|
|
|
|
DUK_LEXER_GETPOINT(&comp_ctx->lex, &lex_pt);
|
|
|
|
/*
|
|
* Program code (global and eval code) has an implicit return value
|
|
* from the last statement value (e.g. eval("1; 2+3;") returns 3).
|
|
* This is not the case with functions. If implicit statement return
|
|
* value is requested, all statements are coerced to a register
|
|
* allocated here, and used in the implicit return statement below.
|
|
*/
|
|
|
|
/* XXX: this is pointless here because pass 1 is throw-away */
|
|
if (implicit_return_value) {
|
|
reg_stmt_value = DUK__ALLOCTEMP(comp_ctx);
|
|
|
|
/* If an implicit return value is needed by caller, it must be
|
|
* initialized to 'undefined' because we don't know whether any
|
|
* non-empty (where "empty" is a continuation type, and different
|
|
* from an empty statement) statements will be executed.
|
|
*
|
|
* However, since 1st pass is a throwaway one, no need to emit
|
|
* it here.
|
|
*/
|
|
#if 0
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_LDUNDEF,
|
|
0);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* First pass.
|
|
*
|
|
* Gather variable/function declarations needed for second pass.
|
|
* Code generated is dummy and discarded.
|
|
*/
|
|
|
|
func->in_directive_prologue = 1;
|
|
func->in_scanning = 1;
|
|
func->may_direct_eval = 0;
|
|
func->id_access_arguments = 0;
|
|
func->id_access_slow = 0;
|
|
func->reg_stmt_value = reg_stmt_value;
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
func->min_line = DUK_INT_MAX;
|
|
func->max_line = 0;
|
|
#endif
|
|
|
|
/* duk__parse_stmts() expects curr_tok to be set; parse in "allow regexp literal" mode with current strictness */
|
|
if (expect_token >= 0) {
|
|
/* Eating a left curly; regexp mode is allowed by left curly
|
|
* based on duk__token_lbp[] automatically.
|
|
*/
|
|
DUK_ASSERT(expect_token == DUK_TOK_LCURLY);
|
|
duk__update_lineinfo_currtoken(comp_ctx);
|
|
duk__advance_expect(comp_ctx, expect_token);
|
|
} else {
|
|
/* Need to set curr_token.t because lexing regexp mode depends on current
|
|
* token type. Zero value causes "allow regexp" mode.
|
|
*/
|
|
comp_ctx->curr_token.t = 0;
|
|
duk__advance(comp_ctx);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("begin 1st pass"));
|
|
duk__parse_stmts(comp_ctx,
|
|
1, /* allow source elements */
|
|
expect_eof); /* expect EOF instead of } */
|
|
DUK_DDD(DUK_DDDPRINT("end 1st pass"));
|
|
|
|
/*
|
|
* Second (and possibly third) pass.
|
|
*
|
|
* Generate actual code. In most cases the need for shuffle
|
|
* registers is detected during pass 1, but in some corner cases
|
|
* we'll only detect it during pass 2 and a third pass is then
|
|
* needed (see GH-115).
|
|
*/
|
|
|
|
for (;;) {
|
|
duk_bool_t needs_shuffle_before = comp_ctx->curr_func.needs_shuffle;
|
|
compile_round++;
|
|
|
|
/*
|
|
* Rewind lexer.
|
|
*
|
|
* duk__parse_stmts() expects curr_tok to be set; parse in "allow regexp
|
|
* literal" mode with current strictness.
|
|
*
|
|
* curr_token line number info should be initialized for pass 2 before
|
|
* generating prologue, to ensure prologue bytecode gets nice line numbers.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("rewind lexer"));
|
|
DUK_LEXER_SETPOINT(&comp_ctx->lex, &lex_pt);
|
|
comp_ctx->curr_token.t = 0; /* this is needed for regexp mode */
|
|
comp_ctx->curr_token.start_line = 0; /* needed for line number tracking (becomes prev_token.start_line) */
|
|
duk__advance(comp_ctx);
|
|
|
|
/*
|
|
* Reset function state and perform register allocation, which creates
|
|
* 'varmap' for second pass. Function prologue for variable declarations,
|
|
* binding value initializations etc is emitted as a by-product.
|
|
*
|
|
* Strict mode restrictions for duplicate and invalid argument
|
|
* names are checked here now that we know whether the function
|
|
* is actually strict. See: test-dev-strict-mode-boundary.js.
|
|
*
|
|
* Inner functions are compiled during pass 1 and are not reset.
|
|
*/
|
|
|
|
duk__reset_func_for_pass2(comp_ctx);
|
|
func->in_directive_prologue = 1;
|
|
func->in_scanning = 0;
|
|
|
|
/* must be able to emit code, alloc consts, etc. */
|
|
|
|
duk__init_varmap_and_prologue_for_pass2(comp_ctx,
|
|
(implicit_return_value ? ®_stmt_value : NULL));
|
|
func->reg_stmt_value = reg_stmt_value;
|
|
|
|
temp_first = DUK__GETTEMP(comp_ctx);
|
|
|
|
func->temp_first = temp_first;
|
|
func->temp_next = temp_first;
|
|
func->stmt_next = 0;
|
|
func->label_next = 0;
|
|
|
|
/* XXX: init or assert catch depth etc -- all values */
|
|
func->id_access_arguments = 0;
|
|
func->id_access_slow = 0;
|
|
|
|
/*
|
|
* Check function name validity now that we know strictness.
|
|
* This only applies to function declarations and expressions,
|
|
* not setter/getter name.
|
|
*
|
|
* See: test-dev-strict-mode-boundary.js
|
|
*/
|
|
|
|
if (func->is_function && !func->is_setget && func->h_name != NULL) {
|
|
if (func->is_strict) {
|
|
if (duk__hstring_is_eval_or_arguments(comp_ctx, func->h_name)) {
|
|
DUK_DDD(DUK_DDDPRINT("func name is 'eval' or 'arguments' in strict mode"));
|
|
goto error_funcname;
|
|
}
|
|
if (DUK_HSTRING_HAS_STRICT_RESERVED_WORD(func->h_name)) {
|
|
DUK_DDD(DUK_DDDPRINT("func name is a reserved word in strict mode"));
|
|
goto error_funcname;
|
|
}
|
|
} else {
|
|
if (DUK_HSTRING_HAS_RESERVED_WORD(func->h_name) &&
|
|
!DUK_HSTRING_HAS_STRICT_RESERVED_WORD(func->h_name)) {
|
|
DUK_DDD(DUK_DDDPRINT("func name is a reserved word in non-strict mode"));
|
|
goto error_funcname;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Second pass parsing.
|
|
*/
|
|
|
|
if (implicit_return_value) {
|
|
/* Default implicit return value. */
|
|
duk__emit_extraop_bc(comp_ctx,
|
|
DUK_EXTRAOP_LDUNDEF,
|
|
0);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("begin 2nd pass"));
|
|
duk__parse_stmts(comp_ctx,
|
|
1, /* allow source elements */
|
|
expect_eof); /* expect EOF instead of } */
|
|
DUK_DDD(DUK_DDDPRINT("end 2nd pass"));
|
|
|
|
duk__update_lineinfo_currtoken(comp_ctx);
|
|
|
|
if (needs_shuffle_before == comp_ctx->curr_func.needs_shuffle) {
|
|
/* Shuffle decision not changed. */
|
|
break;
|
|
}
|
|
if (compile_round >= 3) {
|
|
/* Should never happen but avoid infinite loop just in case. */
|
|
DUK_D(DUK_DPRINT("more than 3 compile passes needed, should never happen"));
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
}
|
|
DUK_D(DUK_DPRINT("need additional round to compile function, round now %d", (int) compile_round));
|
|
}
|
|
|
|
/*
|
|
* Emit a final RETURN.
|
|
*
|
|
* It would be nice to avoid emitting an unnecessary "return" opcode
|
|
* if the current PC is not reachable. However, this cannot be reliably
|
|
* detected; even if the previous instruction is an unconditional jump,
|
|
* there may be a previous jump which jumps to current PC (which is the
|
|
* case for iteration and conditional statements, for instance).
|
|
*/
|
|
|
|
/* XXX: request a "last statement is terminal" from duk__parse_stmt() and duk__parse_stmts();
|
|
* we could avoid the last RETURN if we could ensure there is no way to get here
|
|
* (directly or via a jump)
|
|
*/
|
|
|
|
DUK_ASSERT(comp_ctx->curr_func.catch_depth == 0); /* fast returns are always OK here */
|
|
if (reg_stmt_value >= 0) {
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_RETURN | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
(duk_regconst_t) (DUK_BC_RETURN_FLAG_HAVE_RETVAL | DUK_BC_RETURN_FLAG_FAST) /*flags*/,
|
|
(duk_regconst_t) reg_stmt_value /*reg*/);
|
|
} else {
|
|
duk__emit_a_b(comp_ctx,
|
|
DUK_OP_RETURN | DUK__EMIT_FLAG_NO_SHUFFLE_A,
|
|
(duk_regconst_t) DUK_BC_RETURN_FLAG_FAST /*flags*/,
|
|
(duk_regconst_t) 0 /*reg(ignored)*/);
|
|
}
|
|
|
|
/*
|
|
* Peephole optimize JUMP chains.
|
|
*/
|
|
|
|
duk__peephole_optimize_bytecode(comp_ctx);
|
|
|
|
/*
|
|
* comp_ctx->curr_func is now ready to be converted into an actual
|
|
* function template.
|
|
*/
|
|
|
|
DUK__RECURSION_DECREASE(comp_ctx, thr);
|
|
return;
|
|
|
|
error_funcname:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_FUNC_NAME);
|
|
}
|
|
|
|
/*
|
|
* Parse a function-like expression:
|
|
*
|
|
* - function expression
|
|
* - function declaration
|
|
* - function statement (non-standard)
|
|
* - setter/getter
|
|
*
|
|
* Adds the function to comp_ctx->curr_func function table and returns the
|
|
* function number.
|
|
*
|
|
* On entry, curr_token points to:
|
|
*
|
|
* - the token after 'function' for function expression/declaration/statement
|
|
* - the token after 'set' or 'get' for setter/getter
|
|
*/
|
|
|
|
/* Parse formals. */
|
|
DUK_LOCAL void duk__parse_func_formals(duk_compiler_ctx *comp_ctx) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bool_t first = 1;
|
|
duk_uarridx_t n;
|
|
|
|
for (;;) {
|
|
if (comp_ctx->curr_token.t == DUK_TOK_RPAREN) {
|
|
break;
|
|
}
|
|
|
|
if (first) {
|
|
/* no comma */
|
|
first = 0;
|
|
} else {
|
|
duk__advance_expect(comp_ctx, DUK_TOK_COMMA);
|
|
}
|
|
|
|
/* Note: when parsing a formal list in non-strict context, e.g.
|
|
* "implements" is parsed as an identifier. When the function is
|
|
* later detected to be strict, the argument list must be rechecked
|
|
* against a larger set of reserved words (that of strict mode).
|
|
* This is handled by duk__parse_func_body(). Here we recognize
|
|
* whatever tokens are considered reserved in current strictness
|
|
* (which is not always enough).
|
|
*/
|
|
|
|
if (comp_ctx->curr_token.t != DUK_TOK_IDENTIFIER) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, "expected identifier");
|
|
}
|
|
DUK_ASSERT(comp_ctx->curr_token.t == DUK_TOK_IDENTIFIER);
|
|
DUK_ASSERT(comp_ctx->curr_token.str1 != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("formal argument: %!O",
|
|
(duk_heaphdr *) comp_ctx->curr_token.str1));
|
|
|
|
/* XXX: append primitive */
|
|
duk_push_hstring(ctx, comp_ctx->curr_token.str1);
|
|
n = (duk_uarridx_t) duk_get_length(ctx, comp_ctx->curr_func.argnames_idx);
|
|
duk_put_prop_index(ctx, comp_ctx->curr_func.argnames_idx, n);
|
|
|
|
duk__advance(comp_ctx); /* eat identifier */
|
|
}
|
|
}
|
|
|
|
/* Parse a function-like expression, assuming that 'comp_ctx->curr_func' is
|
|
* correctly set up. Assumes that curr_token is just after 'function' (or
|
|
* 'set'/'get' etc).
|
|
*/
|
|
DUK_LOCAL void duk__parse_func_like_raw(duk_compiler_ctx *comp_ctx, duk_bool_t is_decl, duk_bool_t is_setget) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
|
|
DUK_ASSERT(comp_ctx->curr_func.num_formals == 0);
|
|
DUK_ASSERT(comp_ctx->curr_func.is_function == 1);
|
|
DUK_ASSERT(comp_ctx->curr_func.is_eval == 0);
|
|
DUK_ASSERT(comp_ctx->curr_func.is_global == 0);
|
|
DUK_ASSERT(comp_ctx->curr_func.is_setget == is_setget);
|
|
DUK_ASSERT(comp_ctx->curr_func.is_decl == is_decl);
|
|
|
|
duk__update_lineinfo_currtoken(comp_ctx);
|
|
|
|
/*
|
|
* Function name (if any)
|
|
*
|
|
* We don't check for prohibited names here, because we don't
|
|
* yet know whether the function will be strict. Function body
|
|
* parsing handles this retroactively.
|
|
*
|
|
* For function expressions and declarations function name must
|
|
* be an Identifer (excludes reserved words). For setter/getter
|
|
* it is a PropertyName which allows reserved words and also
|
|
* strings and numbers (e.g. "{ get 1() { ... } }").
|
|
*/
|
|
|
|
if (is_setget) {
|
|
/* PropertyName -> IdentifierName | StringLiteral | NumericLiteral */
|
|
if (comp_ctx->curr_token.t_nores == DUK_TOK_IDENTIFIER ||
|
|
comp_ctx->curr_token.t == DUK_TOK_STRING) {
|
|
duk_push_hstring(ctx, comp_ctx->curr_token.str1); /* keep in valstack */
|
|
} else if (comp_ctx->curr_token.t == DUK_TOK_NUMBER) {
|
|
duk_push_number(ctx, comp_ctx->curr_token.num);
|
|
duk_to_string(ctx, -1);
|
|
} else {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_GETSET_NAME);
|
|
}
|
|
comp_ctx->curr_func.h_name = duk_get_hstring(ctx, -1); /* borrowed reference */
|
|
DUK_ASSERT(comp_ctx->curr_func.h_name != NULL);
|
|
duk__advance(comp_ctx);
|
|
} else {
|
|
/* Function name is an Identifier (not IdentifierName), but we get
|
|
* the raw name (not recognizing keywords) here and perform the name
|
|
* checks only after pass 1.
|
|
*/
|
|
if (comp_ctx->curr_token.t_nores == DUK_TOK_IDENTIFIER) {
|
|
duk_push_hstring(ctx, comp_ctx->curr_token.str1); /* keep in valstack */
|
|
comp_ctx->curr_func.h_name = duk_get_hstring(ctx, -1); /* borrowed reference */
|
|
DUK_ASSERT(comp_ctx->curr_func.h_name != NULL);
|
|
duk__advance(comp_ctx);
|
|
} else {
|
|
/* valstack will be unbalanced, which is OK */
|
|
DUK_ASSERT(!is_setget);
|
|
if (is_decl) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_FUNC_NAME_REQUIRED);
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("function name: %!O",
|
|
(duk_heaphdr *) comp_ctx->curr_func.h_name));
|
|
|
|
/*
|
|
* Formal argument list
|
|
*
|
|
* We don't check for prohibited names or for duplicate argument
|
|
* names here, becase we don't yet know whether the function will
|
|
* be strict. Function body parsing handles this retroactively.
|
|
*/
|
|
|
|
duk__advance_expect(comp_ctx, DUK_TOK_LPAREN);
|
|
|
|
duk__parse_func_formals(comp_ctx);
|
|
|
|
DUK_ASSERT(comp_ctx->curr_token.t == DUK_TOK_RPAREN);
|
|
duk__advance(comp_ctx);
|
|
|
|
/*
|
|
* Parse function body
|
|
*/
|
|
|
|
duk__parse_func_body(comp_ctx,
|
|
0, /* expect_eof */
|
|
0, /* implicit_return_value */
|
|
DUK_TOK_LCURLY); /* expect_token */
|
|
|
|
/*
|
|
* Convert duk_compiler_func to a function template and add it
|
|
* to the parent function table.
|
|
*/
|
|
|
|
duk__convert_to_func_template(comp_ctx, is_setget /*force_no_namebind*/); /* -> [ ... func ] */
|
|
}
|
|
|
|
/* Parse an inner function, adding the function template to the current function's
|
|
* function table. Return a function number to be used by the outer function.
|
|
*
|
|
* Avoiding O(depth^2) inner function parsing is handled here. On the first pass,
|
|
* compile and register the function normally into the 'funcs' array, also recording
|
|
* a lexer point (offset/line) to the closing brace of the function. On the second
|
|
* pass, skip the function and return the same 'fnum' as on the first pass by using
|
|
* a running counter.
|
|
*
|
|
* An unfortunate side effect of this is that when parsing the inner function, almost
|
|
* nothing is known of the outer function, i.e. the inner function's scope. We don't
|
|
* need that information at the moment, but it would allow some optimizations if it
|
|
* were used.
|
|
*/
|
|
DUK_LOCAL duk_int_t duk__parse_func_like_fnum(duk_compiler_ctx *comp_ctx, duk_bool_t is_decl, duk_bool_t is_setget) {
|
|
duk_hthread *thr = comp_ctx->thr;
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_compiler_func old_func;
|
|
duk_idx_t entry_top;
|
|
duk_int_t fnum;
|
|
|
|
/*
|
|
* On second pass, skip the function.
|
|
*/
|
|
|
|
if (!comp_ctx->curr_func.in_scanning) {
|
|
duk_lexer_point lex_pt;
|
|
|
|
fnum = comp_ctx->curr_func.fnum_next++;
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.funcs_idx, (duk_uarridx_t) (fnum * 3 + 1));
|
|
lex_pt.offset = duk_to_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
duk_get_prop_index(ctx, comp_ctx->curr_func.funcs_idx, (duk_uarridx_t) (fnum * 3 + 2));
|
|
lex_pt.line = duk_to_int(ctx, -1);
|
|
duk_pop(ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("second pass of an inner func, skip the function, reparse closing brace; lex offset=%ld, line=%ld",
|
|
(long) lex_pt.offset, (long) lex_pt.line));
|
|
|
|
DUK_LEXER_SETPOINT(&comp_ctx->lex, &lex_pt);
|
|
comp_ctx->curr_token.t = 0; /* this is needed for regexp mode */
|
|
comp_ctx->curr_token.start_line = 0; /* needed for line number tracking (becomes prev_token.start_line) */
|
|
duk__advance(comp_ctx);
|
|
duk__advance_expect(comp_ctx, DUK_TOK_RCURLY);
|
|
|
|
return fnum;
|
|
}
|
|
|
|
/*
|
|
* On first pass, perform actual parsing. Remember valstack top on entry
|
|
* to restore it later, and switch to using a new function in comp_ctx.
|
|
*/
|
|
|
|
entry_top = duk_get_top(ctx);
|
|
DUK_DDD(DUK_DDDPRINT("before func: entry_top=%ld, curr_tok.start_offset=%ld",
|
|
(long) entry_top, (long) comp_ctx->curr_token.start_offset));
|
|
|
|
DUK_MEMCPY(&old_func, &comp_ctx->curr_func, sizeof(duk_compiler_func));
|
|
|
|
DUK_MEMZERO(&comp_ctx->curr_func, sizeof(duk_compiler_func));
|
|
duk__init_func_valstack_slots(comp_ctx);
|
|
DUK_ASSERT(comp_ctx->curr_func.num_formals == 0);
|
|
|
|
/* inherit initial strictness from parent */
|
|
comp_ctx->curr_func.is_strict = old_func.is_strict;
|
|
|
|
DUK_ASSERT(comp_ctx->curr_func.is_notail == 0);
|
|
comp_ctx->curr_func.is_function = 1;
|
|
DUK_ASSERT(comp_ctx->curr_func.is_eval == 0);
|
|
DUK_ASSERT(comp_ctx->curr_func.is_global == 0);
|
|
comp_ctx->curr_func.is_setget = is_setget;
|
|
comp_ctx->curr_func.is_decl = is_decl;
|
|
|
|
/*
|
|
* Parse inner function
|
|
*/
|
|
|
|
duk__parse_func_like_raw(comp_ctx, is_decl, is_setget); /* pushes function template */
|
|
|
|
/* prev_token.start_offset points to the closing brace here; when skipping
|
|
* we're going to reparse the closing brace to ensure semicolon insertion
|
|
* etc work as expected.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("after func: prev_tok.start_offset=%ld, curr_tok.start_offset=%ld",
|
|
(long) comp_ctx->prev_token.start_offset, (long) comp_ctx->curr_token.start_offset));
|
|
DUK_ASSERT(comp_ctx->lex.input[comp_ctx->prev_token.start_offset] == (duk_uint8_t) DUK_ASC_RCURLY);
|
|
|
|
/* XXX: append primitive */
|
|
DUK_ASSERT(duk_get_length(ctx, old_func.funcs_idx) == (duk_size_t) (old_func.fnum_next * 3));
|
|
fnum = old_func.fnum_next++;
|
|
|
|
if (fnum > DUK__MAX_FUNCS) {
|
|
DUK_ERROR(comp_ctx->thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_FUNC_LIMIT);
|
|
}
|
|
|
|
/* array writes autoincrement length */
|
|
(void) duk_put_prop_index(ctx, old_func.funcs_idx, (duk_uarridx_t) (fnum * 3));
|
|
duk_push_size_t(ctx, comp_ctx->prev_token.start_offset);
|
|
(void) duk_put_prop_index(ctx, old_func.funcs_idx, (duk_uarridx_t) (fnum * 3 + 1));
|
|
duk_push_int(ctx, comp_ctx->prev_token.start_line);
|
|
(void) duk_put_prop_index(ctx, old_func.funcs_idx, (duk_uarridx_t) (fnum * 3 + 2));
|
|
|
|
/*
|
|
* Cleanup: restore original function, restore valstack state.
|
|
*/
|
|
|
|
DUK_MEMCPY((void *) &comp_ctx->curr_func, (void *) &old_func, sizeof(duk_compiler_func));
|
|
duk_set_top(ctx, entry_top);
|
|
|
|
DUK_ASSERT_TOP(ctx, entry_top);
|
|
|
|
return fnum;
|
|
}
|
|
|
|
/*
|
|
* Compile input string into an executable function template without
|
|
* arguments.
|
|
*
|
|
* The string is parsed as the "Program" production of Ecmascript E5.
|
|
* Compilation context can be either global code or eval code (see E5
|
|
* Sections 14 and 15.1.2.1).
|
|
*
|
|
* Input stack: [ ... filename ]
|
|
* Output stack: [ ... func_template ]
|
|
*/
|
|
|
|
/* XXX: source code property */
|
|
|
|
DUK_LOCAL duk_ret_t duk__js_compile_raw(duk_context *ctx) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk_hstring *h_filename;
|
|
duk__compiler_stkstate *comp_stk;
|
|
duk_compiler_ctx *comp_ctx;
|
|
duk_lexer_point *lex_pt;
|
|
duk_compiler_func *func;
|
|
duk_idx_t entry_top;
|
|
duk_bool_t is_strict;
|
|
duk_bool_t is_eval;
|
|
duk_bool_t is_funcexpr;
|
|
duk_small_uint_t flags;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
|
|
/*
|
|
* Arguments check
|
|
*/
|
|
|
|
entry_top = duk_get_top(ctx);
|
|
DUK_ASSERT(entry_top >= 2);
|
|
|
|
comp_stk = (duk__compiler_stkstate *) duk_require_pointer(ctx, -1);
|
|
comp_ctx = &comp_stk->comp_ctx_alloc;
|
|
lex_pt = &comp_stk->lex_pt_alloc;
|
|
DUK_ASSERT(comp_ctx != NULL);
|
|
DUK_ASSERT(lex_pt != NULL);
|
|
|
|
flags = comp_stk->flags;
|
|
is_eval = (flags & DUK_JS_COMPILE_FLAG_EVAL ? 1 : 0);
|
|
is_strict = (flags & DUK_JS_COMPILE_FLAG_STRICT ? 1 : 0);
|
|
is_funcexpr = (flags & DUK_JS_COMPILE_FLAG_FUNCEXPR ? 1 : 0);
|
|
|
|
h_filename = duk_get_hstring(ctx, -2); /* may be undefined */
|
|
|
|
/*
|
|
* Init compiler and lexer contexts
|
|
*/
|
|
|
|
func = &comp_ctx->curr_func;
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
comp_ctx->thr = NULL;
|
|
comp_ctx->h_filename = NULL;
|
|
comp_ctx->prev_token.str1 = NULL;
|
|
comp_ctx->prev_token.str2 = NULL;
|
|
comp_ctx->curr_token.str1 = NULL;
|
|
comp_ctx->curr_token.str2 = NULL;
|
|
#endif
|
|
|
|
duk_require_stack(ctx, DUK__COMPILE_ENTRY_SLOTS);
|
|
|
|
duk_push_dynamic_buffer(ctx, 0); /* entry_top + 0 */
|
|
duk_push_undefined(ctx); /* entry_top + 1 */
|
|
duk_push_undefined(ctx); /* entry_top + 2 */
|
|
duk_push_undefined(ctx); /* entry_top + 3 */
|
|
duk_push_undefined(ctx); /* entry_top + 4 */
|
|
|
|
comp_ctx->thr = thr;
|
|
comp_ctx->h_filename = h_filename;
|
|
comp_ctx->tok11_idx = entry_top + 1;
|
|
comp_ctx->tok12_idx = entry_top + 2;
|
|
comp_ctx->tok21_idx = entry_top + 3;
|
|
comp_ctx->tok22_idx = entry_top + 4;
|
|
comp_ctx->recursion_limit = DUK_COMPILER_RECURSION_LIMIT;
|
|
|
|
/* comp_ctx->lex has been pre-initialized by caller: it has been
|
|
* zeroed and input/input_length has been set.
|
|
*/
|
|
comp_ctx->lex.thr = thr;
|
|
/* comp_ctx->lex.input and comp_ctx->lex.input_length filled by caller */
|
|
comp_ctx->lex.slot1_idx = comp_ctx->tok11_idx;
|
|
comp_ctx->lex.slot2_idx = comp_ctx->tok12_idx;
|
|
comp_ctx->lex.buf_idx = entry_top + 0;
|
|
comp_ctx->lex.buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, entry_top + 0);
|
|
DUK_ASSERT(comp_ctx->lex.buf != NULL);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(comp_ctx->lex.buf));
|
|
comp_ctx->lex.token_limit = DUK_COMPILER_TOKEN_LIMIT;
|
|
|
|
lex_pt->offset = 0;
|
|
lex_pt->line = 1;
|
|
DUK_LEXER_SETPOINT(&comp_ctx->lex, lex_pt); /* fills window */
|
|
comp_ctx->curr_token.start_line = 0; /* needed for line number tracking (becomes prev_token.start_line) */
|
|
|
|
/*
|
|
* Initialize function state for a zero-argument function
|
|
*/
|
|
|
|
duk__init_func_valstack_slots(comp_ctx);
|
|
DUK_ASSERT(func->num_formals == 0);
|
|
|
|
if (is_funcexpr) {
|
|
/* Name will be filled from function expression, not by caller.
|
|
* This case is used by Function constructor and duk_compile()
|
|
* API with the DUK_COMPILE_FUNCTION option.
|
|
*/
|
|
DUK_ASSERT(func->h_name == NULL);
|
|
} else {
|
|
duk_push_hstring_stridx(ctx, (is_eval ? DUK_STRIDX_EVAL :
|
|
DUK_STRIDX_GLOBAL));
|
|
func->h_name = duk_get_hstring(ctx, -1);
|
|
}
|
|
|
|
/*
|
|
* Parse a function body or a function-like expression, depending
|
|
* on flags.
|
|
*/
|
|
|
|
func->is_strict = is_strict;
|
|
func->is_setget = 0;
|
|
func->is_decl = 0;
|
|
|
|
if (is_funcexpr) {
|
|
func->is_function = 1;
|
|
func->is_eval = 0;
|
|
func->is_global = 0;
|
|
|
|
duk__advance(comp_ctx); /* init 'curr_token' */
|
|
duk__advance_expect(comp_ctx, DUK_TOK_FUNCTION);
|
|
(void) duk__parse_func_like_raw(comp_ctx,
|
|
0, /* is_decl */
|
|
0); /* is_setget */
|
|
} else {
|
|
func->is_function = 0;
|
|
func->is_eval = is_eval;
|
|
func->is_global = !is_eval;
|
|
|
|
duk__parse_func_body(comp_ctx,
|
|
1, /* expect_eof */
|
|
1, /* implicit_return_value */
|
|
-1); /* expect_token */
|
|
}
|
|
|
|
/*
|
|
* Convert duk_compiler_func to a function template
|
|
*/
|
|
|
|
duk__convert_to_func_template(comp_ctx, 0 /*force_no_namebind*/);
|
|
|
|
/*
|
|
* Wrapping duk_safe_call() will mangle the stack, just return stack top
|
|
*/
|
|
|
|
/* [ ... filename (temps) func ] */
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_INTERNAL void duk_js_compile(duk_hthread *thr, const duk_uint8_t *src_buffer, duk_size_t src_length, duk_small_uint_t flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk__compiler_stkstate comp_stk;
|
|
duk_compiler_ctx *prev_ctx;
|
|
duk_ret_t safe_rc;
|
|
|
|
/* XXX: this illustrates that a C catchpoint implemented using duk_safe_call()
|
|
* is a bit heavy at the moment. The wrapper compiles to ~180 bytes on x64.
|
|
* Alternatives would be nice.
|
|
*/
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(src_buffer != NULL);
|
|
|
|
/* preinitialize lexer state partially */
|
|
DUK_MEMZERO(&comp_stk, sizeof(comp_stk));
|
|
comp_stk.flags = flags;
|
|
DUK_LEXER_INITCTX(&comp_stk.comp_ctx_alloc.lex);
|
|
comp_stk.comp_ctx_alloc.lex.input = src_buffer;
|
|
comp_stk.comp_ctx_alloc.lex.input_length = src_length;
|
|
|
|
duk_push_pointer(ctx, (void *) &comp_stk);
|
|
|
|
/* [ ... filename &comp_stk ] */
|
|
|
|
prev_ctx = thr->compile_ctx;
|
|
thr->compile_ctx = &comp_stk.comp_ctx_alloc; /* for duk_error_augment.c */
|
|
safe_rc = duk_safe_call(ctx, duk__js_compile_raw, 2 /*nargs*/, 1 /*nret*/);
|
|
thr->compile_ctx = prev_ctx;
|
|
|
|
if (safe_rc != DUK_EXEC_SUCCESS) {
|
|
/* Append a "(line NNN)" to the "message" property of any
|
|
* error thrown during compilation. Usually compilation
|
|
* errors are SyntaxErrors but they can also be out-of-memory
|
|
* errors and the like.
|
|
*
|
|
* Source file/line are added to tracedata directly by
|
|
* duk_error_augment.c based on thr->compile_ctx.
|
|
*/
|
|
|
|
/* [ ... error ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("compile error, before adding line info: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
if (duk_is_object(ctx, -1)) {
|
|
/* XXX: Now that fileName and lineNumber are set, this is
|
|
* unnecessary. Remove in Duktape 1.3.0?
|
|
*/
|
|
|
|
if (duk_get_prop_stridx(ctx, -1, DUK_STRIDX_MESSAGE)) {
|
|
duk_push_sprintf(ctx, " (line %ld)", (long) comp_stk.comp_ctx_alloc.curr_token.start_line);
|
|
duk_concat(ctx, 2);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_MESSAGE);
|
|
} else {
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("compile error, after adding line info: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_throw(ctx);
|
|
}
|
|
|
|
/* [ ... template ] */
|
|
}
|
|
#line 1 "duk_js_executor.c"
|
|
/*
|
|
* Ecmascript bytecode executor.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Local forward declarations
|
|
*/
|
|
|
|
DUK_LOCAL_DECL void duk__reconfig_valstack(duk_hthread *thr, duk_size_t act_idx, duk_small_uint_t retval_count);
|
|
|
|
/*
|
|
* Arithmetic, binary, and logical helpers.
|
|
*
|
|
* Note: there is no opcode for logical AND or logical OR; this is on
|
|
* purpose, because the evalution order semantics for them make such
|
|
* opcodes pretty pointless (short circuiting means they are most
|
|
* comfortably implemented as jumps). However, a logical NOT opcode
|
|
* is useful.
|
|
*
|
|
* Note: careful with duk_tval pointers here: they are potentially
|
|
* invalidated by any DECREF and almost any API call.
|
|
*/
|
|
|
|
DUK_LOCAL duk_double_t duk__compute_mod(duk_double_t d1, duk_double_t d2) {
|
|
/*
|
|
* Ecmascript modulus ('%') does not match IEEE 754 "remainder"
|
|
* operation (implemented by remainder() in C99) but does seem
|
|
* to match ANSI C fmod().
|
|
*
|
|
* Compare E5 Section 11.5.3 and "man fmod".
|
|
*/
|
|
|
|
return (duk_double_t) DUK_FMOD((double) d1, (double) d2);
|
|
}
|
|
|
|
DUK_LOCAL void duk__vm_arith_add(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_uint_fast_t idx_z) {
|
|
/*
|
|
* Addition operator is different from other arithmetic
|
|
* operations in that it also provides string concatenation.
|
|
* Hence it is implemented separately.
|
|
*
|
|
* There is a fast path for number addition. Other cases go
|
|
* through potentially multiple coercions as described in the
|
|
* E5 specification. It may be possible to reduce the number
|
|
* of coercions, but this must be done carefully to preserve
|
|
* the exact semantics.
|
|
*
|
|
* E5 Section 11.6.1.
|
|
*
|
|
* Custom types also have special behavior implemented here.
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv_x != NULL); /* may be reg or const */
|
|
DUK_ASSERT(tv_y != NULL); /* may be reg or const */
|
|
DUK_ASSERT_DISABLE(idx_z >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_uint_t) idx_z < (duk_uint_t) duk_get_top(ctx));
|
|
|
|
/*
|
|
* Fast paths
|
|
*/
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x) && DUK_TVAL_IS_FASTINT(tv_y)) {
|
|
duk_int64_t v1, v2, v3;
|
|
duk_int32_t v3_hi;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv_z;
|
|
|
|
/* Input values are signed 48-bit so we can detect overflow
|
|
* reliably from high bits or just a comparison.
|
|
*/
|
|
|
|
v1 = DUK_TVAL_GET_FASTINT(tv_x);
|
|
v2 = DUK_TVAL_GET_FASTINT(tv_y);
|
|
v3 = v1 + v2;
|
|
v3_hi = (duk_int32_t) (v3 >> 32);
|
|
if (DUK_LIKELY(v3_hi >= -0x8000LL && v3_hi <= 0x7fffLL)) {
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_FASTINT(tv_z, v3);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return;
|
|
} else {
|
|
/* overflow, fall through */
|
|
;
|
|
}
|
|
}
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
if (DUK_TVAL_IS_NUMBER(tv_x) && DUK_TVAL_IS_NUMBER(tv_y)) {
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv_z;
|
|
|
|
du.d = DUK_TVAL_GET_NUMBER(tv_x) + DUK_TVAL_GET_NUMBER(tv_y);
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du);
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&du));
|
|
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_NUMBER(tv_z, du.d);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Slow path: potentially requires function calls for coercion
|
|
*/
|
|
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
duk_to_primitive(ctx, -2, DUK_HINT_NONE); /* side effects -> don't use tv_x, tv_y after */
|
|
duk_to_primitive(ctx, -1, DUK_HINT_NONE);
|
|
|
|
/* As a first approximation, buffer values are coerced to strings
|
|
* for addition. This means that adding two buffers currently
|
|
* results in a string.
|
|
*/
|
|
if (duk_check_type_mask(ctx, -2, DUK_TYPE_MASK_STRING | DUK_TYPE_MASK_BUFFER) ||
|
|
duk_check_type_mask(ctx, -1, DUK_TYPE_MASK_STRING | DUK_TYPE_MASK_BUFFER)) {
|
|
duk_to_string(ctx, -2);
|
|
duk_to_string(ctx, -1);
|
|
duk_concat(ctx, 2); /* [... s1 s2] -> [... s1+s2] */
|
|
duk_replace(ctx, (duk_idx_t) idx_z); /* side effects */
|
|
} else {
|
|
duk_double_t d1, d2;
|
|
|
|
d1 = duk_to_number(ctx, -2);
|
|
d2 = duk_to_number(ctx, -1);
|
|
DUK_ASSERT(duk_is_number(ctx, -2));
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
DUK_ASSERT_DOUBLE_IS_NORMALIZED(d1);
|
|
DUK_ASSERT_DOUBLE_IS_NORMALIZED(d2);
|
|
|
|
du.d = d1 + d2;
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du);
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&du));
|
|
|
|
duk_pop_2(ctx);
|
|
duk_push_number(ctx, du.d);
|
|
duk_replace(ctx, (duk_idx_t) idx_z); /* side effects */
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__vm_arith_binary_op(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_idx_t idx_z, duk_small_uint_fast_t opcode) {
|
|
/*
|
|
* Arithmetic operations other than '+' have number-only semantics
|
|
* and are implemented here. The separate switch-case here means a
|
|
* "double dispatch" of the arithmetic opcode, but saves code space.
|
|
*
|
|
* E5 Sections 11.5, 11.5.1, 11.5.2, 11.5.3, 11.6, 11.6.1, 11.6.2, 11.6.3.
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv_z;
|
|
duk_double_t d1, d2;
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv_x != NULL); /* may be reg or const */
|
|
DUK_ASSERT(tv_y != NULL); /* may be reg or const */
|
|
DUK_ASSERT_DISABLE(idx_z >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_uint_t) idx_z < (duk_uint_t) duk_get_top(ctx));
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x) && DUK_TVAL_IS_FASTINT(tv_y)) {
|
|
duk_int64_t v1, v2, v3;
|
|
duk_int32_t v3_hi;
|
|
|
|
v1 = DUK_TVAL_GET_FASTINT(tv_x);
|
|
v2 = DUK_TVAL_GET_FASTINT(tv_y);
|
|
|
|
switch (opcode) {
|
|
case DUK_OP_SUB: {
|
|
v3 = v1 - v2;
|
|
break;
|
|
}
|
|
case DUK_OP_MUL: {
|
|
/* Must ensure result is 64-bit (no overflow); a
|
|
* simple and sufficient fast path is to allow only
|
|
* 32-bit inputs. Avoid zero inputs to avoid
|
|
* negative zero issues (-1 * 0 = -0, for instance).
|
|
*/
|
|
if (v1 >= -0x80000000LL && v1 <= 0x7fffffffLL && v1 != 0 &&
|
|
v2 >= -0x80000000LL && v2 <= 0x7fffffffLL && v2 != 0) {
|
|
v3 = v1 * v2;
|
|
} else {
|
|
goto skip_fastint;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_OP_DIV: {
|
|
/* Don't allow a zero divisor. Fast path check by
|
|
* "verifying" with multiplication. Also avoid zero
|
|
* dividend to avoid negative zero issues (0 / -1 = -0
|
|
* for instance).
|
|
*/
|
|
if (v1 == 0 || v2 == 0) {
|
|
goto skip_fastint;
|
|
}
|
|
v3 = v1 / v2;
|
|
if (v3 * v2 != v1) {
|
|
goto skip_fastint;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_OP_MOD: {
|
|
/* Don't allow a zero divisor. Restrict both v1 and
|
|
* v2 to positive values to avoid compiler specific
|
|
* behavior.
|
|
*/
|
|
if (v1 < 1 || v2 < 1) {
|
|
goto skip_fastint;
|
|
}
|
|
v3 = v1 % v2;
|
|
DUK_ASSERT(v3 >= 0);
|
|
DUK_ASSERT(v3 < v2);
|
|
DUK_ASSERT(v1 - (v1 / v2) * v2 == v3);
|
|
break;
|
|
}
|
|
default: {
|
|
DUK_UNREACHABLE();
|
|
goto skip_fastint;
|
|
}
|
|
}
|
|
|
|
v3_hi = (duk_int32_t) (v3 >> 32);
|
|
if (DUK_LIKELY(v3_hi >= -0x8000LL && v3_hi <= 0x7fffLL)) {
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_FASTINT(tv_z, v3);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
return;
|
|
}
|
|
/* fall through if overflow etc */
|
|
}
|
|
skip_fastint:
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
if (DUK_TVAL_IS_NUMBER(tv_x) && DUK_TVAL_IS_NUMBER(tv_y)) {
|
|
/* fast path */
|
|
d1 = DUK_TVAL_GET_NUMBER(tv_x);
|
|
d2 = DUK_TVAL_GET_NUMBER(tv_y);
|
|
} else {
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
d1 = duk_to_number(ctx, -2); /* side effects */
|
|
d2 = duk_to_number(ctx, -1);
|
|
DUK_ASSERT(duk_is_number(ctx, -2));
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
DUK_ASSERT_DOUBLE_IS_NORMALIZED(d1);
|
|
DUK_ASSERT_DOUBLE_IS_NORMALIZED(d2);
|
|
duk_pop_2(ctx);
|
|
}
|
|
|
|
switch (opcode) {
|
|
case DUK_OP_SUB: {
|
|
du.d = d1 - d2;
|
|
break;
|
|
}
|
|
case DUK_OP_MUL: {
|
|
du.d = d1 * d2;
|
|
break;
|
|
}
|
|
case DUK_OP_DIV: {
|
|
du.d = d1 / d2;
|
|
break;
|
|
}
|
|
case DUK_OP_MOD: {
|
|
du.d = duk__compute_mod(d1, d2);
|
|
break;
|
|
}
|
|
default: {
|
|
DUK_UNREACHABLE();
|
|
du.d = DUK_DOUBLE_NAN; /* should not happen */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* important to use normalized NaN with 8-byte tagged types */
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du);
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&du));
|
|
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_NUMBER(tv_z, du.d);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
}
|
|
|
|
DUK_LOCAL void duk__vm_bitwise_binary_op(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_uint_fast_t idx_z, duk_small_uint_fast_t opcode) {
|
|
/*
|
|
* Binary bitwise operations use different coercions (ToInt32, ToUint32)
|
|
* depending on the operation. We coerce the arguments first using
|
|
* ToInt32(), and then cast to an 32-bit value if necessary. Note that
|
|
* such casts must be correct even if there is no native 32-bit type
|
|
* (e.g., duk_int32_t and duk_uint32_t are 64-bit).
|
|
*
|
|
* E5 Sections 11.10, 11.7.1, 11.7.2, 11.7.3
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv_z;
|
|
duk_int32_t i1, i2, i3;
|
|
duk_uint32_t u1, u2, u3;
|
|
#if defined(DUK_USE_FASTINT)
|
|
duk_int64_t fi3;
|
|
#else
|
|
duk_double_t d3;
|
|
#endif
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv_x != NULL); /* may be reg or const */
|
|
DUK_ASSERT(tv_y != NULL); /* may be reg or const */
|
|
DUK_ASSERT_DISABLE(idx_z >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_uint_t) idx_z < (duk_uint_t) duk_get_top(ctx));
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x) && DUK_TVAL_IS_FASTINT(tv_y)) {
|
|
i1 = (duk_int32_t) DUK_TVAL_GET_FASTINT_I32(tv_x);
|
|
i2 = (duk_int32_t) DUK_TVAL_GET_FASTINT_I32(tv_y);
|
|
}
|
|
else
|
|
#endif /* DUK_USE_FASTINT */
|
|
{
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
i1 = duk_to_int32(ctx, -2);
|
|
i2 = duk_to_int32(ctx, -1);
|
|
duk_pop_2(ctx);
|
|
}
|
|
|
|
switch (opcode) {
|
|
case DUK_OP_BAND: {
|
|
i3 = i1 & i2;
|
|
break;
|
|
}
|
|
case DUK_OP_BOR: {
|
|
i3 = i1 | i2;
|
|
break;
|
|
}
|
|
case DUK_OP_BXOR: {
|
|
i3 = i1 ^ i2;
|
|
break;
|
|
}
|
|
case DUK_OP_BASL: {
|
|
/* Signed shift, named "arithmetic" (asl) because the result
|
|
* is signed, e.g. 4294967295 << 1 -> -2. Note that result
|
|
* must be masked.
|
|
*/
|
|
|
|
u2 = ((duk_uint32_t) i2) & 0xffffffffUL;
|
|
i3 = i1 << (u2 & 0x1f); /* E5 Section 11.7.1, steps 7 and 8 */
|
|
i3 = i3 & ((duk_int32_t) 0xffffffffUL); /* Note: left shift, should mask */
|
|
break;
|
|
}
|
|
case DUK_OP_BASR: {
|
|
/* signed shift */
|
|
|
|
u2 = ((duk_uint32_t) i2) & 0xffffffffUL;
|
|
i3 = i1 >> (u2 & 0x1f); /* E5 Section 11.7.2, steps 7 and 8 */
|
|
break;
|
|
}
|
|
case DUK_OP_BLSR: {
|
|
/* unsigned shift */
|
|
|
|
u1 = ((duk_uint32_t) i1) & 0xffffffffUL;
|
|
u2 = ((duk_uint32_t) i2) & 0xffffffffUL;
|
|
|
|
/* special result value handling */
|
|
u3 = u1 >> (u2 & 0x1f); /* E5 Section 11.7.2, steps 7 and 8 */
|
|
#if defined(DUK_USE_FASTINT)
|
|
fi3 = (duk_int64_t) u3;
|
|
goto fastint_result_set;
|
|
#else
|
|
d3 = (duk_double_t) u3;
|
|
goto result_set;
|
|
#endif
|
|
}
|
|
default: {
|
|
DUK_UNREACHABLE();
|
|
i3 = 0; /* should not happen */
|
|
break;
|
|
}
|
|
}
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Result is always fastint compatible. */
|
|
/* XXX: set 32-bit result (but must handle signed and unsigned) */
|
|
fi3 = (duk_int64_t) i3;
|
|
|
|
fastint_result_set:
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_FASTINT(tv_z, fi3);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#else
|
|
d3 = (duk_double_t) i3;
|
|
|
|
result_set:
|
|
DUK_ASSERT(!DUK_ISNAN(d3)); /* 'd3' is never NaN, so no need to normalize */
|
|
DUK_ASSERT_DOUBLE_IS_NORMALIZED(d3); /* always normalized */
|
|
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_NUMBER(tv_z, d3);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#endif
|
|
}
|
|
|
|
/* In-place unary operation. */
|
|
DUK_LOCAL void duk__vm_arith_unary_op(duk_hthread *thr, duk_tval *tv_x, duk_idx_t idx_x, duk_small_uint_fast_t opcode) {
|
|
/*
|
|
* Arithmetic operations other than '+' have number-only semantics
|
|
* and are implemented here. The separate switch-case here means a
|
|
* "double dispatch" of the arithmetic opcode, but saves code space.
|
|
*
|
|
* E5 Sections 11.5, 11.5.1, 11.5.2, 11.5.3, 11.6, 11.6.1, 11.6.2, 11.6.3.
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_double_t d1;
|
|
duk_double_union du;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(opcode == DUK_EXTRAOP_UNM || opcode == DUK_EXTRAOP_UNP);
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x)) {
|
|
duk_int64_t v1, v2;
|
|
|
|
v1 = DUK_TVAL_GET_FASTINT(tv_x);
|
|
if (opcode == DUK_EXTRAOP_UNM) {
|
|
/* The smallest fastint is no longer 48-bit when
|
|
* negated. Positive zero becames negative zero
|
|
* (cannot be represented) when negated.
|
|
*/
|
|
if (DUK_LIKELY(v1 != DUK_FASTINT_MIN && v1 != 0)) {
|
|
v2 = -v1;
|
|
DUK_TVAL_SET_FASTINT(tv_x, v2); /* no refcount changes */
|
|
return;
|
|
}
|
|
} else {
|
|
/* ToNumber() for a fastint is a no-op. */
|
|
DUK_ASSERT(opcode == DUK_EXTRAOP_UNP);
|
|
return;
|
|
}
|
|
/* fall through if overflow etc */
|
|
}
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
if (!DUK_TVAL_IS_NUMBER(tv_x)) {
|
|
duk_to_number(ctx, idx_x); /* side effects, perform in-place */
|
|
tv_x = duk_get_tval(ctx, idx_x);
|
|
DUK_ASSERT(tv_x != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_x));
|
|
}
|
|
|
|
d1 = DUK_TVAL_GET_NUMBER(tv_x);
|
|
if (opcode == DUK_EXTRAOP_UNM) {
|
|
du.d = -d1;
|
|
} else {
|
|
/* ToNumber() for a double is a no-op. */
|
|
DUK_ASSERT(opcode == DUK_EXTRAOP_UNP);
|
|
du.d = d1;
|
|
}
|
|
DUK_DBLUNION_NORMALIZE_NAN_CHECK(&du); /* mandatory if du.d is a NaN */
|
|
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&du));
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Unary plus is used to force a fastint check, so must include
|
|
* downgrade check.
|
|
*/
|
|
DUK_TVAL_SET_NUMBER_CHKFAST(tv_x, du.d); /* no refcount changes */
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv_x, du.d); /* no refcount changes */
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL void duk__vm_bitwise_not(duk_hthread *thr, duk_tval *tv_x, duk_small_uint_fast_t idx_z) {
|
|
/*
|
|
* E5 Section 11.4.8
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv_z;
|
|
duk_int32_t i1, i2;
|
|
#if !defined(DUK_USE_FASTINT)
|
|
duk_double_t d2;
|
|
#endif
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(tv_x != NULL); /* may be reg or const */
|
|
DUK_ASSERT_DISABLE(idx_z >= 0);
|
|
DUK_ASSERT((duk_uint_t) idx_z < (duk_uint_t) duk_get_top(ctx));
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x)) {
|
|
i1 = (duk_int32_t) DUK_TVAL_GET_FASTINT_I32(tv_x);
|
|
}
|
|
else
|
|
#endif /* DUK_USE_FASTINT */
|
|
{
|
|
duk_push_tval(ctx, tv_x);
|
|
i1 = duk_to_int32(ctx, -1);
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
i2 = ~i1;
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
/* Result is always fastint compatible. */
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_FASTINT_I32(tv_z, i2);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#else
|
|
d2 = (duk_double_t) i2;
|
|
|
|
DUK_ASSERT(!DUK_ISNAN(d2)); /* 'val' is never NaN, so no need to normalize */
|
|
DUK_ASSERT_DOUBLE_IS_NORMALIZED(d2); /* always normalized */
|
|
|
|
tv_z = thr->valstack_bottom + idx_z;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_NUMBER(tv_z, d2);
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv_z)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#endif
|
|
}
|
|
|
|
DUK_LOCAL void duk__vm_logical_not(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_z) {
|
|
/*
|
|
* E5 Section 11.4.9
|
|
*/
|
|
|
|
duk_tval tv_tmp;
|
|
duk_bool_t res;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(tv_x != NULL); /* may be reg or const */
|
|
DUK_ASSERT(tv_z != NULL); /* reg */
|
|
|
|
DUK_UNREF(thr); /* w/o refcounts */
|
|
|
|
/* ToBoolean() does not require any operations with side effects so
|
|
* we can do it efficiently. For footprint it would be better to use
|
|
* duk_js_toboolean() and then push+replace to the result slot.
|
|
*/
|
|
res = duk_js_toboolean(tv_x); /* does not modify tv_x */
|
|
DUK_ASSERT(res == 0 || res == 1);
|
|
res ^= 1;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_z);
|
|
DUK_TVAL_SET_BOOLEAN(tv_z, res); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
}
|
|
|
|
/*
|
|
* Longjmp handler for the bytecode executor (and a bunch of static
|
|
* helpers for it).
|
|
*
|
|
* Any type of longjmp() can be caught here, including intra-function
|
|
* longjmp()s like 'break', 'continue', (slow) 'return', 'yield', etc.
|
|
*
|
|
* Error policy: should not ordinarily throw errors. Errors thrown
|
|
* will bubble outwards.
|
|
*
|
|
* Returns:
|
|
* 0 restart execution
|
|
* 1 bytecode executor finished
|
|
* 2 rethrow longjmp
|
|
*/
|
|
|
|
/* XXX: duk_api operations for cross-thread reg manipulation? */
|
|
/* XXX: post-condition: value stack must be correct; for ecmascript functions, clamped to 'nregs' */
|
|
|
|
#define DUK__LONGJMP_RESTART 0 /* state updated, restart bytecode execution */
|
|
#define DUK__LONGJMP_FINISHED 1 /* exit bytecode executor with return value */
|
|
#define DUK__LONGJMP_RETHROW 2 /* exit bytecode executor by rethrowing an error to caller */
|
|
|
|
/* only called when act_idx points to an Ecmascript function */
|
|
DUK_LOCAL void duk__reconfig_valstack(duk_hthread *thr, duk_size_t act_idx, duk_small_uint_t retval_count) {
|
|
duk_hcompiledfunction *h_func;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT_DISABLE(act_idx >= 0); /* unsigned */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + act_idx) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + act_idx)));
|
|
DUK_ASSERT_DISABLE(thr->callstack[act_idx].idx_retval >= 0); /* unsigned */
|
|
|
|
thr->valstack_bottom = thr->valstack + thr->callstack[act_idx].idx_bottom;
|
|
|
|
/* clamp so that retval is at the top (retval_count == 1) or register just before
|
|
* intended retval is at the top (retval_count == 0, happens e.g. with 'finally').
|
|
*/
|
|
duk_set_top((duk_context *) thr,
|
|
(duk_idx_t) (thr->callstack[act_idx].idx_retval -
|
|
thr->callstack[act_idx].idx_bottom +
|
|
retval_count));
|
|
|
|
/*
|
|
* When returning to an Ecmascript function, extend the valstack
|
|
* top to 'nregs' always.
|
|
*/
|
|
|
|
h_func = (duk_hcompiledfunction *) DUK_ACT_GET_FUNC(thr->callstack + act_idx);
|
|
|
|
(void) duk_valstack_resize_raw((duk_context *) thr,
|
|
(thr->valstack_bottom - thr->valstack) + /* bottom of current func */
|
|
h_func->nregs + /* reg count */
|
|
DUK_VALSTACK_INTERNAL_EXTRA, /* + spare */
|
|
DUK_VSRESIZE_FLAG_SHRINK | /* flags */
|
|
0 /* no compact */ |
|
|
DUK_VSRESIZE_FLAG_THROW);
|
|
|
|
duk_set_top((duk_context *) thr, h_func->nregs);
|
|
}
|
|
|
|
DUK_LOCAL void duk__handle_catch_or_finally(duk_hthread *thr, duk_size_t cat_idx, duk_bool_t is_finally) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("handling catch/finally, cat_idx=%ld, is_finally=%ld",
|
|
(long) cat_idx, (long) is_finally));
|
|
|
|
/*
|
|
* Set caught value and longjmp type to catcher regs.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("writing catch registers: idx_base=%ld -> %!T, idx_base+1=%ld -> %!T",
|
|
(long) thr->catchstack[cat_idx].idx_base,
|
|
(duk_tval *) &thr->heap->lj.value1,
|
|
(long) (thr->catchstack[cat_idx].idx_base + 1),
|
|
(duk_tval *) &thr->heap->lj.value2));
|
|
|
|
tv1 = thr->valstack + thr->catchstack[cat_idx].idx_base;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, &thr->heap->lj.value1);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
tv1 = thr->valstack + thr->catchstack[cat_idx].idx_base + 1;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_NUMBER(tv1, (duk_double_t) thr->heap->lj.type); /* XXX: set int */
|
|
DUK_ASSERT(!DUK_TVAL_IS_HEAP_ALLOCATED(tv1)); /* no need to incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
/*
|
|
* Unwind catchstack and callstack.
|
|
*
|
|
* The 'cat_idx' catcher is always kept, even when executing finally.
|
|
*/
|
|
|
|
duk_hthread_catchstack_unwind(thr, cat_idx + 1);
|
|
duk_hthread_callstack_unwind(thr, thr->catchstack[cat_idx].callstack_index + 1);
|
|
|
|
/*
|
|
* Reconfigure valstack to 'nregs' (this is always the case for
|
|
* Ecmascript functions).
|
|
*/
|
|
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1)));
|
|
|
|
thr->valstack_bottom = thr->valstack + (thr->callstack + thr->callstack_top - 1)->idx_bottom;
|
|
duk_set_top((duk_context *) thr, ((duk_hcompiledfunction *) DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1))->nregs);
|
|
|
|
/*
|
|
* Reset PC: resume execution from catch or finally jump slot.
|
|
*/
|
|
|
|
(thr->callstack + thr->callstack_top - 1)->pc =
|
|
thr->catchstack[cat_idx].pc_base + (is_finally ? 1 : 0);
|
|
|
|
/*
|
|
* If entering a 'catch' block which requires an automatic
|
|
* catch variable binding, create the lexical environment.
|
|
*
|
|
* The binding is mutable (= writable) but not deletable.
|
|
* Step 4 for the catch production in E5 Section 12.14;
|
|
* no value is given for CreateMutableBinding 'D' argument,
|
|
* which implies the binding is not deletable.
|
|
*/
|
|
|
|
if (!is_finally && DUK_CAT_HAS_CATCH_BINDING_ENABLED(&thr->catchstack[cat_idx])) {
|
|
duk_activation *act;
|
|
duk_hobject *new_env;
|
|
duk_hobject *act_lex_env;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("catcher has an automatic catch binding"));
|
|
|
|
/* Note: 'act' is dangerous here because it may get invalidate at many
|
|
* points, so we re-lookup it multiple times.
|
|
*/
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
|
|
if (act->lex_env == NULL) {
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
DUK_DDD(DUK_DDDPRINT("delayed environment initialization"));
|
|
|
|
/* this may have side effects, so re-lookup act */
|
|
duk_js_init_activation_environment_records_delayed(thr, act);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
}
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(act) != NULL);
|
|
DUK_UNREF(act); /* unreferenced without assertions */
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
act_lex_env = act->lex_env;
|
|
act = NULL; /* invalidated */
|
|
|
|
(void) duk_push_object_helper_proto(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_DECENV),
|
|
act_lex_env);
|
|
new_env = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(new_env != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("new_env allocated: %!iO", (duk_heaphdr *) new_env));
|
|
|
|
/* Note: currently the catch binding is handled without a register
|
|
* binding because we don't support dynamic register bindings (they
|
|
* must be fixed for an entire function). So, there is no need to
|
|
* record regbases etc.
|
|
*/
|
|
|
|
DUK_ASSERT(thr->catchstack[cat_idx].h_varname != NULL);
|
|
duk_push_hstring(ctx, thr->catchstack[cat_idx].h_varname);
|
|
duk_push_tval(ctx, &thr->heap->lj.value1);
|
|
duk_xdef_prop(ctx, -3, DUK_PROPDESC_FLAGS_W); /* writable, not configurable */
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
act->lex_env = new_env;
|
|
DUK_HOBJECT_INCREF(thr, new_env); /* reachable through activation */
|
|
|
|
DUK_CAT_SET_LEXENV_ACTIVE(&thr->catchstack[cat_idx]);
|
|
|
|
duk_pop(ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("new_env finished: %!iO", (duk_heaphdr *) new_env));
|
|
}
|
|
|
|
if (is_finally) {
|
|
DUK_CAT_CLEAR_FINALLY_ENABLED(&thr->catchstack[cat_idx]);
|
|
} else {
|
|
DUK_CAT_CLEAR_CATCH_ENABLED(&thr->catchstack[cat_idx]);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__handle_label(duk_hthread *thr, duk_size_t cat_idx) {
|
|
duk_activation *act;
|
|
|
|
/* no callstack changes, no value stack changes */
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(act) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(act)));
|
|
|
|
/* +0 = break, +1 = continue */
|
|
act->pc = thr->catchstack[cat_idx].pc_base + (thr->heap->lj.type == DUK_LJ_TYPE_CONTINUE ? 1 : 0);
|
|
act = NULL; /* invalidated */
|
|
|
|
duk_hthread_catchstack_unwind(thr, cat_idx + 1); /* keep label catcher */
|
|
/* no need to unwind callstack */
|
|
|
|
/* valstack should not need changes */
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
DUK_ASSERT((duk_size_t) (thr->valstack_top - thr->valstack_bottom) ==
|
|
(duk_size_t) ((duk_hcompiledfunction *) DUK_ACT_GET_FUNC(act))->nregs);
|
|
#endif
|
|
}
|
|
|
|
/* Note: called for DUK_LJ_TYPE_YIELD and for DUK_LJ_TYPE_RETURN, when a
|
|
* return terminates a thread and yields to the resumer.
|
|
*/
|
|
DUK_LOCAL void duk__handle_yield(duk_hthread *thr, duk_hthread *resumer, duk_size_t act_idx) {
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
/* this may also be called for DUK_LJ_TYPE_RETURN; this is OK as long as
|
|
* lj.value1 is correct.
|
|
*/
|
|
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(resumer->callstack + act_idx) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(resumer->callstack + act_idx))); /* resume caller must be an ecmascript func */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("resume idx_retval is %ld", (long) resumer->callstack[act_idx].idx_retval));
|
|
|
|
tv1 = resumer->valstack + resumer->callstack[act_idx].idx_retval; /* return value from Duktape.Thread.resume() */
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, &thr->heap->lj.value1);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
duk_hthread_callstack_unwind(resumer, act_idx + 1); /* unwind to 'resume' caller */
|
|
|
|
/* no need to unwind catchstack */
|
|
duk__reconfig_valstack(resumer, act_idx, 1); /* 1 = have retval */
|
|
|
|
/* caller must change active thread, and set thr->resumer to NULL */
|
|
}
|
|
|
|
DUK_LOCAL
|
|
duk_small_uint_t duk__handle_longjmp(duk_hthread *thr,
|
|
duk_hthread *entry_thread,
|
|
duk_size_t entry_callstack_top) {
|
|
duk_tval tv_tmp;
|
|
duk_size_t entry_callstack_index;
|
|
duk_small_uint_t retval = DUK__LONGJMP_RESTART;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(entry_thread != NULL);
|
|
DUK_ASSERT(entry_callstack_top > 0); /* guarantees entry_callstack_top - 1 >= 0 */
|
|
|
|
entry_callstack_index = entry_callstack_top - 1;
|
|
|
|
/* 'thr' is the current thread, as no-one resumes except us and we
|
|
* switch 'thr' in that case.
|
|
*/
|
|
|
|
/*
|
|
* (Re)try handling the longjmp.
|
|
*
|
|
* A longjmp handler may convert the longjmp to a different type and
|
|
* "virtually" rethrow by goto'ing to 'check_longjmp'. Before the goto,
|
|
* the following must be updated:
|
|
* - the heap 'lj' state
|
|
* - 'thr' must reflect the "throwing" thread
|
|
*/
|
|
|
|
check_longjmp:
|
|
|
|
DUK_DD(DUK_DDPRINT("handling longjmp: type=%ld, value1=%!T, value2=%!T, iserror=%ld",
|
|
(long) thr->heap->lj.type,
|
|
(duk_tval *) &thr->heap->lj.value1,
|
|
(duk_tval *) &thr->heap->lj.value2,
|
|
(long) thr->heap->lj.iserror));
|
|
|
|
switch (thr->heap->lj.type) {
|
|
|
|
case DUK_LJ_TYPE_RESUME: {
|
|
/*
|
|
* Note: lj.value1 is 'value', lj.value2 is 'resumee'.
|
|
* This differs from YIELD.
|
|
*/
|
|
|
|
duk_tval *tv;
|
|
duk_tval *tv2;
|
|
duk_size_t act_idx;
|
|
duk_hthread *resumee;
|
|
|
|
/* duk_bi_duk_object_yield() and duk_bi_duk_object_resume() ensure all of these are met */
|
|
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING); /* unchanged by Duktape.Thread.resume() */
|
|
DUK_ASSERT(thr->callstack_top >= 2); /* Ecmascript activation + Duktape.Thread.resume() activation */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1) != NULL &&
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1)) &&
|
|
((duk_hnativefunction *) DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1))->func == duk_bi_thread_resume);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2) != NULL &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2))); /* an Ecmascript function */
|
|
DUK_ASSERT_DISABLE((thr->callstack + thr->callstack_top - 2)->idx_retval >= 0); /* unsigned */
|
|
|
|
tv = &thr->heap->lj.value2; /* resumee */
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
DUK_ASSERT(DUK_TVAL_GET_OBJECT(tv) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_THREAD(DUK_TVAL_GET_OBJECT(tv)));
|
|
resumee = (duk_hthread *) DUK_TVAL_GET_OBJECT(tv);
|
|
|
|
DUK_ASSERT(resumee != NULL);
|
|
DUK_ASSERT(resumee->resumer == NULL);
|
|
DUK_ASSERT(resumee->state == DUK_HTHREAD_STATE_INACTIVE ||
|
|
resumee->state == DUK_HTHREAD_STATE_YIELDED); /* checked by Duktape.Thread.resume() */
|
|
DUK_ASSERT(resumee->state != DUK_HTHREAD_STATE_YIELDED ||
|
|
resumee->callstack_top >= 2); /* YIELDED: Ecmascript activation + Duktape.Thread.yield() activation */
|
|
DUK_ASSERT(resumee->state != DUK_HTHREAD_STATE_YIELDED ||
|
|
(DUK_ACT_GET_FUNC(resumee->callstack + resumee->callstack_top - 1) != NULL &&
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(resumee->callstack + resumee->callstack_top - 1)) &&
|
|
((duk_hnativefunction *) DUK_ACT_GET_FUNC(resumee->callstack + resumee->callstack_top - 1))->func == duk_bi_thread_yield));
|
|
DUK_ASSERT(resumee->state != DUK_HTHREAD_STATE_YIELDED ||
|
|
(DUK_ACT_GET_FUNC(resumee->callstack + resumee->callstack_top - 2) != NULL &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(resumee->callstack + resumee->callstack_top - 2)))); /* an Ecmascript function */
|
|
DUK_ASSERT_DISABLE(resumee->state != DUK_HTHREAD_STATE_YIELDED ||
|
|
(resumee->callstack + resumee->callstack_top - 2)->idx_retval >= 0); /* idx_retval unsigned */
|
|
DUK_ASSERT(resumee->state != DUK_HTHREAD_STATE_INACTIVE ||
|
|
resumee->callstack_top == 0); /* INACTIVE: no activation, single function value on valstack */
|
|
DUK_ASSERT(resumee->state != DUK_HTHREAD_STATE_INACTIVE ||
|
|
(resumee->valstack_top == resumee->valstack + 1 &&
|
|
DUK_TVAL_IS_OBJECT(resumee->valstack_top - 1) &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_TVAL_GET_OBJECT(resumee->valstack_top - 1))));
|
|
|
|
if (thr->heap->lj.iserror) {
|
|
/*
|
|
* Throw the error in the resumed thread's context; the
|
|
* error value is pushed onto the resumee valstack.
|
|
*
|
|
* Note: the callstack of the target may empty in this case
|
|
* too (i.e. the target thread has never been resumed). The
|
|
* value stack will contain the initial function in that case,
|
|
* which we simply ignore.
|
|
*/
|
|
|
|
resumee->resumer = thr;
|
|
resumee->state = DUK_HTHREAD_STATE_RUNNING;
|
|
thr->state = DUK_HTHREAD_STATE_RESUMED;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumee);
|
|
thr = resumee;
|
|
|
|
thr->heap->lj.type = DUK_LJ_TYPE_THROW;
|
|
|
|
/* thr->heap->lj.value1 is already the value to throw */
|
|
/* thr->heap->lj.value2 is 'thread', will be wiped out at the end */
|
|
|
|
DUK_ASSERT(thr->heap->lj.iserror); /* already set */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> resume with an error, converted to a throw in the resumee, propagate"));
|
|
goto check_longjmp;
|
|
} else if (resumee->state == DUK_HTHREAD_STATE_YIELDED) {
|
|
act_idx = resumee->callstack_top - 2; /* Ecmascript function */
|
|
DUK_ASSERT_DISABLE(resumee->callstack[act_idx].idx_retval >= 0); /* unsigned */
|
|
|
|
tv = resumee->valstack + resumee->callstack[act_idx].idx_retval; /* return value from Duktape.Thread.yield() */
|
|
DUK_ASSERT(tv >= resumee->valstack && tv < resumee->valstack_top);
|
|
tv2 = &thr->heap->lj.value1;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_TVAL(tv, tv2);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
duk_hthread_callstack_unwind(resumee, act_idx + 1); /* unwind to 'yield' caller */
|
|
|
|
/* no need to unwind catchstack */
|
|
|
|
duk__reconfig_valstack(resumee, act_idx, 1); /* 1 = have retval */
|
|
|
|
resumee->resumer = thr;
|
|
resumee->state = DUK_HTHREAD_STATE_RUNNING;
|
|
thr->state = DUK_HTHREAD_STATE_RESUMED;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumee);
|
|
#if 0
|
|
thr = resumee; /* not needed, as we exit right away */
|
|
#endif
|
|
DUK_DD(DUK_DDPRINT("-> resume with a value, restart execution in resumee"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
} else {
|
|
duk_small_uint_t call_flags;
|
|
duk_bool_t setup_rc;
|
|
|
|
/* resumee: [... initial_func] (currently actually: [initial_func]) */
|
|
|
|
duk_push_undefined((duk_context *) resumee);
|
|
tv = &thr->heap->lj.value1;
|
|
duk_push_tval((duk_context *) resumee, tv);
|
|
|
|
/* resumee: [... initial_func undefined(= this) resume_value ] */
|
|
|
|
call_flags = DUK_CALL_FLAG_IS_RESUME; /* is resume, not a tailcall */
|
|
|
|
setup_rc = duk_handle_ecma_call_setup(resumee,
|
|
1, /* num_stack_args */
|
|
call_flags); /* call_flags */
|
|
if (setup_rc == 0) {
|
|
/* Shouldn't happen but check anyway. */
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
}
|
|
|
|
resumee->resumer = thr;
|
|
resumee->state = DUK_HTHREAD_STATE_RUNNING;
|
|
thr->state = DUK_HTHREAD_STATE_RESUMED;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumee);
|
|
#if 0
|
|
thr = resumee; /* not needed, as we exit right away */
|
|
#endif
|
|
DUK_DD(DUK_DDPRINT("-> resume with a value, restart execution in resumee"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
break; /* never here */
|
|
}
|
|
|
|
case DUK_LJ_TYPE_YIELD: {
|
|
/*
|
|
* Currently only allowed only if yielding thread has only
|
|
* Ecmascript activations (except for the Duktape.Thread.yield()
|
|
* call at the callstack top) and none of them constructor
|
|
* calls.
|
|
*
|
|
* This excludes the 'entry' thread which will always have
|
|
* a preventcount > 0.
|
|
*/
|
|
|
|
duk_hthread *resumer;
|
|
|
|
/* duk_bi_duk_object_yield() and duk_bi_duk_object_resume() ensure all of these are met */
|
|
|
|
DUK_ASSERT(thr != entry_thread); /* Duktape.Thread.yield() should prevent */
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING); /* unchanged from Duktape.Thread.yield() */
|
|
DUK_ASSERT(thr->callstack_top >= 2); /* Ecmascript activation + Duktape.Thread.yield() activation */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1) != NULL &&
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1)) &&
|
|
((duk_hnativefunction *) DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1))->func == duk_bi_thread_yield);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2) != NULL &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2))); /* an Ecmascript function */
|
|
DUK_ASSERT_DISABLE((thr->callstack + thr->callstack_top - 2)->idx_retval >= 0); /* unsigned */
|
|
|
|
resumer = thr->resumer;
|
|
|
|
DUK_ASSERT(resumer != NULL);
|
|
DUK_ASSERT(resumer->state == DUK_HTHREAD_STATE_RESUMED); /* written by a previous RESUME handling */
|
|
DUK_ASSERT(resumer->callstack_top >= 2); /* Ecmascript activation + Duktape.Thread.resume() activation */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(resumer->callstack + resumer->callstack_top - 1) != NULL &&
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(resumer->callstack + resumer->callstack_top - 1)) &&
|
|
((duk_hnativefunction *) DUK_ACT_GET_FUNC(resumer->callstack + resumer->callstack_top - 1))->func == duk_bi_thread_resume);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(resumer->callstack + resumer->callstack_top - 2) != NULL &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(resumer->callstack + resumer->callstack_top - 2))); /* an Ecmascript function */
|
|
DUK_ASSERT_DISABLE((resumer->callstack + resumer->callstack_top - 2)->idx_retval >= 0); /* unsigned */
|
|
|
|
if (thr->heap->lj.iserror) {
|
|
thr->state = DUK_HTHREAD_STATE_YIELDED;
|
|
thr->resumer = NULL;
|
|
resumer->state = DUK_HTHREAD_STATE_RUNNING;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumer);
|
|
thr = resumer;
|
|
|
|
thr->heap->lj.type = DUK_LJ_TYPE_THROW;
|
|
/* lj.value1 is already set */
|
|
DUK_ASSERT(thr->heap->lj.iserror); /* already set */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> yield an error, converted to a throw in the resumer, propagate"));
|
|
goto check_longjmp;
|
|
} else {
|
|
duk__handle_yield(thr, resumer, resumer->callstack_top - 2);
|
|
|
|
thr->state = DUK_HTHREAD_STATE_YIELDED;
|
|
thr->resumer = NULL;
|
|
resumer->state = DUK_HTHREAD_STATE_RUNNING;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumer);
|
|
#if 0
|
|
thr = resumer; /* not needed, as we exit right away */
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("-> yield a value, restart execution in resumer"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
break; /* never here */
|
|
}
|
|
|
|
case DUK_LJ_TYPE_RETURN: {
|
|
/*
|
|
* Four possible outcomes:
|
|
* * A 'finally' in the same function catches the 'return'.
|
|
* (or)
|
|
* * The return happens at the entry level of the bytecode
|
|
* executor, so return from the executor (in C stack).
|
|
* (or)
|
|
* * There is a calling (Ecmascript) activation in the call
|
|
* stack => return to it.
|
|
* (or)
|
|
* * There is no calling activation, and the thread is
|
|
* terminated. There is always a resumer in this case,
|
|
* which gets the return value similarly to a 'yield'
|
|
* (except that the current thread can no longer be
|
|
* resumed).
|
|
*/
|
|
|
|
duk_tval *tv1;
|
|
duk_hthread *resumer;
|
|
duk_catcher *cat;
|
|
duk_size_t orig_callstack_index;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(thr->catchstack != NULL);
|
|
|
|
/* XXX: does not work if thr->catchstack is NULL */
|
|
/* XXX: does not work if thr->catchstack is allocated but lowest pointer */
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1; /* may be < thr->catchstack initially */
|
|
DUK_ASSERT(thr->callstack_top > 0); /* ensures callstack_top - 1 >= 0 */
|
|
orig_callstack_index = thr->callstack_top - 1;
|
|
|
|
while (cat >= thr->catchstack) {
|
|
if (cat->callstack_index != orig_callstack_index) {
|
|
break;
|
|
}
|
|
if (DUK_CAT_GET_TYPE(cat) == DUK_CAT_TYPE_TCF &&
|
|
DUK_CAT_HAS_FINALLY_ENABLED(cat)) {
|
|
/* 'finally' catches */
|
|
duk__handle_catch_or_finally(thr,
|
|
cat - thr->catchstack,
|
|
1); /* is_finally */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> return caught by a finally (in the same function), restart execution"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
cat--;
|
|
}
|
|
/* if out of catchstack, cat = thr->catchstack - 1 */
|
|
|
|
DUK_DD(DUK_DDPRINT("no catcher in catch stack, return to calling activation / yield"));
|
|
|
|
/* return to calling activation (if any) */
|
|
|
|
if (thr == entry_thread &&
|
|
thr->callstack_top == entry_callstack_top) {
|
|
/* return to the bytecode executor caller */
|
|
|
|
duk_push_tval((duk_context *) thr, &thr->heap->lj.value1);
|
|
|
|
/* [ ... retval ] */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> return propagated up to entry level, exit bytecode executor"));
|
|
retval = DUK__LONGJMP_FINISHED;
|
|
goto wipe_and_return;
|
|
}
|
|
|
|
if (thr->callstack_top >= 2) {
|
|
/* there is a caller; it MUST be an Ecmascript caller (otherwise it would
|
|
* match entry level check)
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("slow return to Ecmascript caller, idx_retval=%ld, lj_value1=%!T",
|
|
(long) (thr->callstack + thr->callstack_top - 2)->idx_retval,
|
|
(duk_tval *) &thr->heap->lj.value1));
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2))); /* must be ecmascript */
|
|
|
|
tv1 = thr->valstack + (thr->callstack + thr->callstack_top - 2)->idx_retval;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, &thr->heap->lj.value1);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("return value at idx_retval=%ld is %!T",
|
|
(long) (thr->callstack + thr->callstack_top - 2)->idx_retval,
|
|
(duk_tval *) (thr->valstack + (thr->callstack + thr->callstack_top - 2)->idx_retval)));
|
|
|
|
duk_hthread_catchstack_unwind(thr, (cat - thr->catchstack) + 1); /* leave 'cat' as top catcher (also works if catchstack exhausted) */
|
|
duk_hthread_callstack_unwind(thr, thr->callstack_top - 1);
|
|
duk__reconfig_valstack(thr, thr->callstack_top - 1, 1); /* new top, i.e. callee */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> return not caught, restart execution in caller"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("no calling activation, thread finishes (similar to yield)"));
|
|
|
|
DUK_ASSERT(thr->resumer != NULL);
|
|
DUK_ASSERT(thr->resumer->callstack_top >= 2); /* Ecmascript activation + Duktape.Thread.resume() activation */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 1) != NULL &&
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 1)) &&
|
|
((duk_hnativefunction *) DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 1))->func == duk_bi_thread_resume); /* Duktape.Thread.resume() */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 2) != NULL &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 2))); /* an Ecmascript function */
|
|
DUK_ASSERT_DISABLE((thr->resumer->callstack + thr->resumer->callstack_top - 2)->idx_retval >= 0); /* unsigned */
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_RUNNING);
|
|
DUK_ASSERT(thr->resumer->state == DUK_HTHREAD_STATE_RESUMED);
|
|
|
|
resumer = thr->resumer;
|
|
|
|
duk__handle_yield(thr, resumer, resumer->callstack_top - 2);
|
|
|
|
duk_hthread_terminate(thr); /* updates thread state, minimizes its allocations */
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_TERMINATED);
|
|
|
|
thr->resumer = NULL;
|
|
resumer->state = DUK_HTHREAD_STATE_RUNNING;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumer);
|
|
#if 0
|
|
thr = resumer; /* not needed */
|
|
#endif
|
|
|
|
DUK_DD(DUK_DDPRINT("-> return not caught, thread terminated; handle like yield, restart execution in resumer"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
|
|
case DUK_LJ_TYPE_BREAK:
|
|
case DUK_LJ_TYPE_CONTINUE: {
|
|
/*
|
|
* Find a matching label catcher or 'finally' catcher in
|
|
* the same function.
|
|
*
|
|
* A label catcher must always exist and will match unless
|
|
* a 'finally' captures the break/continue first. It is the
|
|
* compiler's responsibility to ensure that labels are used
|
|
* correctly.
|
|
*/
|
|
|
|
duk_catcher *cat;
|
|
duk_size_t orig_callstack_index;
|
|
duk_uint_t lj_label;
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1;
|
|
orig_callstack_index = cat->callstack_index;
|
|
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(&thr->heap->lj.value1));
|
|
lj_label = (duk_uint_t) DUK_TVAL_GET_NUMBER(&thr->heap->lj.value1);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("handling break/continue with label=%ld, callstack index=%ld",
|
|
(long) lj_label, (long) cat->callstack_index));
|
|
|
|
while (cat >= thr->catchstack) {
|
|
if (cat->callstack_index != orig_callstack_index) {
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("considering catcher %ld: type=%ld label=%ld",
|
|
(long) (cat - thr->catchstack),
|
|
(long) DUK_CAT_GET_TYPE(cat),
|
|
(long) DUK_CAT_GET_LABEL(cat)));
|
|
|
|
if (DUK_CAT_GET_TYPE(cat) == DUK_CAT_TYPE_TCF &&
|
|
DUK_CAT_HAS_FINALLY_ENABLED(cat)) {
|
|
/* finally catches */
|
|
duk__handle_catch_or_finally(thr,
|
|
cat - thr->catchstack,
|
|
1); /* is_finally */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> break/continue caught by a finally (in the same function), restart execution"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
if (DUK_CAT_GET_TYPE(cat) == DUK_CAT_TYPE_LABEL &&
|
|
(duk_uint_t) DUK_CAT_GET_LABEL(cat) == lj_label) {
|
|
/* found label */
|
|
duk__handle_label(thr,
|
|
cat - thr->catchstack);
|
|
|
|
DUK_DD(DUK_DDPRINT("-> break/continue caught by a label catcher (in the same function), restart execution"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
cat--;
|
|
}
|
|
|
|
/* should never happen, but be robust */
|
|
DUK_D(DUK_DPRINT("break/continue not caught by anything in the current function (should never happen)"));
|
|
goto convert_to_internal_error;
|
|
}
|
|
|
|
case DUK_LJ_TYPE_THROW: {
|
|
/*
|
|
* Three possible outcomes:
|
|
* * A try or finally catcher is found => resume there.
|
|
* (or)
|
|
* * The error propagates to the bytecode executor entry
|
|
* level (and we're in the entry thread) => rethrow
|
|
* with a new longjmp(), after restoring the previous
|
|
* catchpoint.
|
|
* * The error is not caught in the current thread, so
|
|
* the thread finishes with an error. This works like
|
|
* a yielded error, except that the thread is finished
|
|
* and can no longer be resumed. (There is always a
|
|
* resumer in this case.)
|
|
*
|
|
* Note: until we hit the entry level, there can only be
|
|
* Ecmascript activations.
|
|
*/
|
|
|
|
duk_catcher *cat;
|
|
duk_hthread *resumer;
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1;
|
|
while (cat >= thr->catchstack) {
|
|
if (thr == entry_thread &&
|
|
cat->callstack_index < entry_callstack_index) {
|
|
/* entry level reached */
|
|
break;
|
|
}
|
|
|
|
if (DUK_CAT_HAS_CATCH_ENABLED(cat)) {
|
|
/* try catches */
|
|
DUK_ASSERT(DUK_CAT_GET_TYPE(cat) == DUK_CAT_TYPE_TCF);
|
|
|
|
duk__handle_catch_or_finally(thr,
|
|
cat - thr->catchstack,
|
|
0); /* is_finally */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> throw caught by a 'catch' clause, restart execution"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
|
|
if (DUK_CAT_HAS_FINALLY_ENABLED(cat)) {
|
|
DUK_ASSERT(DUK_CAT_GET_TYPE(cat) == DUK_CAT_TYPE_TCF);
|
|
DUK_ASSERT(!DUK_CAT_HAS_CATCH_ENABLED(cat));
|
|
|
|
duk__handle_catch_or_finally(thr,
|
|
cat - thr->catchstack,
|
|
1); /* is_finally */
|
|
|
|
DUK_DD(DUK_DDPRINT("-> throw caught by a 'finally' clause, restart execution"));
|
|
retval = DUK__LONGJMP_RESTART;
|
|
goto wipe_and_return;
|
|
}
|
|
|
|
cat--;
|
|
}
|
|
|
|
if (thr == entry_thread) {
|
|
/* not caught by anything before entry level; rethrow and let the
|
|
* final catcher unwind everything
|
|
*/
|
|
#if 0
|
|
duk_hthread_catchstack_unwind(thr, (cat - thr->catchstack) + 1); /* leave 'cat' as top catcher (also works if catchstack exhausted) */
|
|
duk_hthread_callstack_unwind(thr, entry_callstack_index + 1);
|
|
|
|
#endif
|
|
DUK_D(DUK_DPRINT("-> throw propagated up to entry level, rethrow and exit bytecode executor"));
|
|
retval = DUK__LONGJMP_RETHROW;
|
|
goto just_return;
|
|
/* Note: MUST NOT wipe_and_return here, as heap->lj must remain intact */
|
|
}
|
|
|
|
DUK_DD(DUK_DDPRINT("not caught by current thread, yield error to resumer"));
|
|
|
|
/* not caught by current thread, thread terminates (yield error to resumer);
|
|
* note that this may cause a cascade if the resumer terminates with an uncaught
|
|
* exception etc (this is OK, but needs careful testing)
|
|
*/
|
|
|
|
DUK_ASSERT(thr->resumer != NULL);
|
|
DUK_ASSERT(thr->resumer->callstack_top >= 2); /* Ecmascript activation + Duktape.Thread.resume() activation */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 1) != NULL &&
|
|
DUK_HOBJECT_IS_NATIVEFUNCTION(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 1)) &&
|
|
((duk_hnativefunction *) DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 1))->func == duk_bi_thread_resume); /* Duktape.Thread.resume() */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 2) != NULL &&
|
|
DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->resumer->callstack + thr->resumer->callstack_top - 2))); /* an Ecmascript function */
|
|
|
|
resumer = thr->resumer;
|
|
|
|
/* reset longjmp */
|
|
|
|
DUK_ASSERT(thr->heap->lj.type == DUK_LJ_TYPE_THROW); /* already set */
|
|
/* lj.value1 already set */
|
|
|
|
duk_hthread_terminate(thr); /* updates thread state, minimizes its allocations */
|
|
DUK_ASSERT(thr->state == DUK_HTHREAD_STATE_TERMINATED);
|
|
|
|
thr->resumer = NULL;
|
|
resumer->state = DUK_HTHREAD_STATE_RUNNING;
|
|
DUK_HEAP_SWITCH_THREAD(thr->heap, resumer);
|
|
thr = resumer;
|
|
goto check_longjmp;
|
|
}
|
|
|
|
case DUK_LJ_TYPE_NORMAL: {
|
|
DUK_D(DUK_DPRINT("caught DUK_LJ_TYPE_NORMAL, should never happen, treat as internal error"));
|
|
goto convert_to_internal_error;
|
|
}
|
|
|
|
default: {
|
|
/* should never happen, but be robust */
|
|
DUK_D(DUK_DPRINT("caught unknown longjmp type %ld, treat as internal error", (long) thr->heap->lj.type));
|
|
goto convert_to_internal_error;
|
|
}
|
|
|
|
} /* end switch */
|
|
|
|
DUK_UNREACHABLE();
|
|
|
|
wipe_and_return:
|
|
/* this is not strictly necessary, but helps debugging */
|
|
thr->heap->lj.type = DUK_LJ_TYPE_UNKNOWN;
|
|
thr->heap->lj.iserror = 0;
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value1);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->heap->lj.value1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, &thr->heap->lj.value2);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(&thr->heap->lj.value2);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
just_return:
|
|
return retval;
|
|
|
|
convert_to_internal_error:
|
|
/* This could also be thrown internally (set the error, goto check_longjmp),
|
|
* but it's better for internal errors to bubble outwards.
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR_EXEC_LONGJMP);
|
|
DUK_UNREACHABLE();
|
|
return retval;
|
|
}
|
|
|
|
/* XXX: Disabled for 1.0 release. This needs to handle unwinding for label
|
|
* sites (which are created for explicit labels but also for control statements
|
|
* like for-loops). At that point it's quite close to the "slow return" handler
|
|
* except for longjmp(). Perhaps all returns could initially be handled as fast
|
|
* returns and only converted to longjmp()s when basic handling won't do?
|
|
*/
|
|
#if 0
|
|
/* Try a fast return. Return false if fails, so that a slow return can be done
|
|
* instead.
|
|
*/
|
|
DUK_LOCAL
|
|
duk_bool_t duk__handle_fast_return(duk_hthread *thr,
|
|
duk_tval *tv_retval,
|
|
duk_hthread *entry_thread,
|
|
duk_size_t entry_callstack_top) {
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
/* retval == NULL indicates 'undefined' return value */
|
|
|
|
if (thr == entry_thread && thr->callstack_top == entry_callstack_top) {
|
|
DUK_DDD(DUK_DDDPRINT("reject fast return: return would exit bytecode executor to caller"));
|
|
return 0;
|
|
}
|
|
if (thr->callstack_top <= 1) {
|
|
DUK_DDD(DUK_DDDPRINT("reject fast return: there is no caller in this callstack (thread yield)"));
|
|
return 0;
|
|
}
|
|
|
|
/* There is a caller, and it must be an Ecmascript caller (otherwise
|
|
* it would have matched the entry level check).
|
|
*/
|
|
DUK_ASSERT(thr->callstack_top >= 2);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 2))); /* must be ecmascript */
|
|
|
|
tv1 = thr->valstack + (thr->callstack + thr->callstack_top - 2)->idx_retval;
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
if (tv_retval) {
|
|
DUK_TVAL_SET_TVAL(tv1, tv_retval);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
} else {
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv1);
|
|
/* no need to incref */
|
|
}
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
|
|
/* No catchstack to unwind. */
|
|
#if 0
|
|
duk_hthread_catchstack_unwind(thr, (cat - thr->catchstack) + 1); /* leave 'cat' as top catcher (also works if catchstack exhausted) */
|
|
#endif
|
|
duk_hthread_callstack_unwind(thr, thr->callstack_top - 1);
|
|
duk__reconfig_valstack(thr, thr->callstack_top - 1, 1); /* new top, i.e. callee */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("fast return accepted"));
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Executor interrupt handling
|
|
*
|
|
* The handler is called whenever the interrupt countdown reaches zero
|
|
* (or below). The handler must perform whatever checks are activated,
|
|
* e.g. check for cumulative step count to impose an execution step
|
|
* limit or check for breakpoints or other debugger interaction.
|
|
*
|
|
* When the actions are done, the handler must reinit the interrupt
|
|
* init and counter values. The 'init' value must indicate how many
|
|
* bytecode instructions are executed before the next interrupt. The
|
|
* counter must interface with the bytecode executor loop. Concretely,
|
|
* the new init value is normally one higher than the new counter value.
|
|
* For instance, to execute exactly one bytecode instruction the init
|
|
* value is set to 1 and the counter to 0. If an error is thrown by the
|
|
* interrupt handler, the counters are set to the same value (e.g. both
|
|
* to 0 to cause an interrupt when the next bytecode instruction is about
|
|
* to be executed after error handling).
|
|
*
|
|
* Maintaining the init/counter value properly is important for accurate
|
|
* behavior. For instance, executor step limit needs a cumulative step
|
|
* count which is simply computed as a sum of 'init' values. This must
|
|
* work accurately even when single stepping.
|
|
*/
|
|
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
|
|
#define DUK__INT_NOACTION 0 /* no specific action, resume normal execution */
|
|
#define DUK__INT_RESTART 1 /* must "goto restart_execution", e.g. breakpoints changed */
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK_LOCAL void duk__interrupt_handle_debugger(duk_hthread *thr, duk_bool_t *out_immediate, duk_small_uint_t *out_interrupt_retval) {
|
|
duk_context *ctx;
|
|
duk_activation *act;
|
|
duk_breakpoint *bp;
|
|
duk_breakpoint **bp_active;
|
|
duk_uint_fast32_t line = 0;
|
|
duk_bool_t send_status;
|
|
duk_bool_t process_messages;
|
|
duk_bool_t processed_messages = 0;
|
|
|
|
ctx = (duk_context *) thr;
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
|
|
/* It might seem that replacing 'thr->heap' with just 'heap' below
|
|
* might be a good idea, but it increases code size slightly
|
|
* (probably due to unnecessary spilling) at least on x64.
|
|
*/
|
|
|
|
/*
|
|
* Breakpoint and step state checks
|
|
*/
|
|
|
|
if (act->flags & DUK_ACT_FLAG_BREAKPOINT_ACTIVE ||
|
|
(thr->heap->dbg_step_thread == thr &&
|
|
thr->heap->dbg_step_csindex == thr->callstack_top - 1)) {
|
|
line = duk_debug_curr_line(thr);
|
|
|
|
if (act->prev_line != line) {
|
|
DUK_DDD(DUK_DDDPRINT("PC=%ld line=%ld; line transition: %ld -> %ld",
|
|
(long) act->pc, (long) line, (long) act->prev_line, (long) line));
|
|
|
|
/* Stepped? Step out is handled by callstack unwind. */
|
|
if ((thr->heap->dbg_step_type == DUK_STEP_TYPE_INTO ||
|
|
thr->heap->dbg_step_type == DUK_STEP_TYPE_OVER) &&
|
|
(thr->heap->dbg_step_thread == thr) &&
|
|
(thr->heap->dbg_step_csindex == thr->callstack_top - 1) &&
|
|
(line != thr->heap->dbg_step_startline)) {
|
|
DUK_D(DUK_DPRINT("STEP STATE TRIGGERED PAUSE at line %ld",
|
|
(long) line));
|
|
|
|
DUK_HEAP_SET_PAUSED(thr->heap);
|
|
}
|
|
|
|
/* Check for breakpoints only on line transition.
|
|
* Breakpoint is triggered when we enter or cross
|
|
* the target line, and the previous line was within
|
|
* the same function.
|
|
*/
|
|
bp_active = thr->heap->dbg_breakpoints_active;
|
|
for (;;) {
|
|
bp = *bp_active++;
|
|
if (bp == NULL) {
|
|
break;
|
|
}
|
|
DUK_ASSERT(bp->filename != NULL);
|
|
if (act->prev_line < bp->line && line >= bp->line) {
|
|
DUK_D(DUK_DPRINT("BREAKPOINT TRIGGERED at %!O:%ld",
|
|
(duk_heaphdr *) bp->filename, (long) bp->line));
|
|
|
|
DUK_HEAP_SET_PAUSED(thr->heap);
|
|
}
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("PC=%ld line=%ld", (long) act->pc, (long) line));
|
|
}
|
|
|
|
act->prev_line = line;
|
|
}
|
|
|
|
/*
|
|
* Rate limit check for sending status update or peeking into
|
|
* the debug transport. Both can be expensive operations that
|
|
* we don't want to do on every opcode.
|
|
*
|
|
* Making sure the interval remains reasonable on a wide variety
|
|
* of targets and bytecode is difficult without a timestamp, so
|
|
* we use a Date-provided timestamp for the rate limit check.
|
|
* But since it's also expensive to get a timestamp, a bytecode
|
|
* counter is used to rate limit getting timestamps.
|
|
*/
|
|
|
|
if (thr->heap->dbg_state_dirty || thr->heap->dbg_paused) {
|
|
send_status = 1;
|
|
} else {
|
|
send_status = 0;
|
|
}
|
|
|
|
if (thr->heap->dbg_paused) {
|
|
process_messages = 1;
|
|
} else {
|
|
process_messages = 0;
|
|
}
|
|
|
|
thr->heap->dbg_exec_counter += thr->heap->interrupt_init;
|
|
if (thr->heap->dbg_exec_counter - thr->heap->dbg_last_counter >= DUK_HEAP_DBG_RATELIMIT_OPCODES) {
|
|
/* Overflow of the execution counter is fine and doesn't break
|
|
* anything here.
|
|
*/
|
|
|
|
duk_double_t now, diff_last;
|
|
|
|
thr->heap->dbg_last_counter = thr->heap->dbg_exec_counter;
|
|
now = duk_bi_date_get_now(ctx);
|
|
|
|
diff_last = now - thr->heap->dbg_last_time;
|
|
if (diff_last < 0.0 || diff_last >= (duk_double_t) DUK_HEAP_DBG_RATELIMIT_MILLISECS) {
|
|
/* Negative value checked so that a "time jump" works
|
|
* reasonably.
|
|
*
|
|
* Same interval is now used for status sending and
|
|
* peeking.
|
|
*/
|
|
|
|
thr->heap->dbg_last_time = now;
|
|
send_status = 1;
|
|
process_messages = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Send status
|
|
*/
|
|
|
|
act = NULL; /* may be changed */
|
|
if (send_status) {
|
|
duk_debug_send_status(thr);
|
|
thr->heap->dbg_state_dirty = 0;
|
|
}
|
|
|
|
/*
|
|
* Process messages. If we're paused, we'll block for new messages.
|
|
* if we're not paused, we'll process anything we can peek but won't
|
|
* block for more.
|
|
*/
|
|
|
|
if (process_messages) {
|
|
processed_messages = duk_debug_process_messages(thr, 0 /*no_block*/);
|
|
}
|
|
|
|
/* XXX: any case here where we need to re-send status? */
|
|
|
|
/* Continue checked execution if there are breakpoints or we're stepping.
|
|
* Also use checked execution if paused flag is active - it shouldn't be
|
|
* because the debug message loop shouldn't terminate if it was. Step out
|
|
* is handled by callstack unwind and doesn't need checked execution.
|
|
* Note that debugger may have detached due to error or explicit request
|
|
* above, so we must recheck attach status.
|
|
*/
|
|
|
|
if (DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap)) {
|
|
act = thr->callstack + thr->callstack_top - 1; /* relookup, may have changed */
|
|
if (act->flags & DUK_ACT_FLAG_BREAKPOINT_ACTIVE ||
|
|
((thr->heap->dbg_step_type == DUK_STEP_TYPE_INTO ||
|
|
thr->heap->dbg_step_type == DUK_STEP_TYPE_OVER) &&
|
|
thr->heap->dbg_step_thread == thr &&
|
|
thr->heap->dbg_step_csindex == thr->callstack_top - 1) ||
|
|
thr->heap->dbg_paused) {
|
|
*out_immediate = 1;
|
|
}
|
|
|
|
/* If we processed any debug messages breakpoints may have
|
|
* changed; restart execution to re-check active breakpoints.
|
|
*/
|
|
if (processed_messages) {
|
|
DUK_D(DUK_DPRINT("processed debug messages, restart execution to recheck possibly changed breakpoints"));
|
|
*out_interrupt_retval = DUK__INT_RESTART;
|
|
}
|
|
} else {
|
|
DUK_D(DUK_DPRINT("debugger became detached, resume normal execution"));
|
|
}
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
DUK_LOCAL duk_small_uint_t duk__executor_interrupt(duk_hthread *thr) {
|
|
duk_int_t ctr;
|
|
duk_activation *act;
|
|
duk_hcompiledfunction *fun;
|
|
duk_bool_t immediate = 0;
|
|
duk_small_uint_t retval;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->callstack != NULL);
|
|
DUK_ASSERT(thr->callstack_top > 0);
|
|
|
|
retval = DUK__INT_NOACTION;
|
|
ctr = DUK_HEAP_INTCTR_DEFAULT;
|
|
|
|
/*
|
|
* Avoid nested calls. Concretely this happens during debugging, e.g.
|
|
* when we eval() an expression.
|
|
*/
|
|
|
|
if (DUK_HEAP_HAS_INTERRUPT_RUNNING(thr->heap)) {
|
|
DUK_DD(DUK_DDPRINT("nested executor interrupt, ignoring"));
|
|
|
|
/* Set a high interrupt counter; the original executor
|
|
* interrupt invocation will rewrite before exiting.
|
|
*/
|
|
thr->heap->interrupt_init = ctr;
|
|
thr->heap->interrupt_counter = ctr - 1;
|
|
thr->interrupt_counter = ctr - 1;
|
|
return DUK__INT_NOACTION;
|
|
}
|
|
DUK_HEAP_SET_INTERRUPT_RUNNING(thr->heap);
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
fun = (duk_hcompiledfunction *) DUK_ACT_GET_FUNC(act);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_COMPILEDFUNCTION((duk_hobject *) fun));
|
|
DUK_UNREF(fun);
|
|
|
|
#if defined(DUK_USE_EXEC_TIMEOUT_CHECK)
|
|
/*
|
|
* Execution timeout check
|
|
*/
|
|
|
|
if (DUK_USE_EXEC_TIMEOUT_CHECK(thr->heap->heap_udata)) {
|
|
/* Keep throwing an error whenever we get here. The unusual values
|
|
* are set this way because no instruction is ever executed, we just
|
|
* throw an error until all try/catch/finally and other catchpoints
|
|
* have been exhausted. Duktape/C code gets control at each protected
|
|
* call but whenever it enters back into Duktape the RangeError gets
|
|
* raised. User exec timeout check must consistently indicate a timeout
|
|
* until we've fully bubbled out of Duktape.
|
|
*/
|
|
DUK_D(DUK_DPRINT("execution timeout, throwing a RangeError"));
|
|
thr->heap->interrupt_init = 0;
|
|
thr->heap->interrupt_counter = 0;
|
|
thr->interrupt_counter = 0;
|
|
DUK_HEAP_CLEAR_INTERRUPT_RUNNING(thr->heap);
|
|
DUK_ERROR(thr, DUK_ERR_RANGE_ERROR, "execution timeout");
|
|
}
|
|
#endif /* DUK_USE_EXEC_TIMEOUT_CHECK */
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
if (DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap)) {
|
|
duk__interrupt_handle_debugger(thr, &immediate, &retval);
|
|
act = thr->callstack + thr->callstack_top - 1; /* relookup if changed */
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
/*
|
|
* Update the interrupt counter
|
|
*/
|
|
|
|
if (immediate) {
|
|
/* Cause an interrupt after executing one instruction. */
|
|
ctr = 1;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("executor interrupt finished, cstop=%ld, pc=%ld, nextctr=%ld",
|
|
(long) thr->callstack_top, (long) act->pc, (long) ctr));
|
|
|
|
/* The counter value is one less than the init value: init value should
|
|
* indicate how many instructions are executed before interrupt. To
|
|
* execute 1 instruction, counter must be 0.
|
|
*/
|
|
thr->heap->interrupt_init = ctr;
|
|
thr->heap->interrupt_counter = ctr - 1;
|
|
thr->interrupt_counter = ctr - 1;
|
|
DUK_HEAP_CLEAR_INTERRUPT_RUNNING(thr->heap);
|
|
|
|
return retval;
|
|
}
|
|
#endif /* DUK_USE_INTERRUPT_COUNTER */
|
|
|
|
/*
|
|
* Debugger handling for executor restart
|
|
*
|
|
* Check for breakpoints, stepping, etc, and figure out if we should execute
|
|
* in checked or normal mode. Note that we can't do this when an activation
|
|
* is created, because breakpoint status (and stepping status) may change
|
|
* later, so we must recheck every time we're executing an activation.
|
|
*/
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK_LOCAL void duk__executor_handle_debugger(duk_hthread *thr, duk_activation *act, duk_hcompiledfunction *fun) {
|
|
duk_heap *heap;
|
|
duk_tval *tv_tmp;
|
|
duk_hstring *filename;
|
|
duk_small_uint_t bp_idx;
|
|
duk_breakpoint **bp_active;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(act != NULL);
|
|
DUK_ASSERT(fun != NULL);
|
|
|
|
heap = thr->heap;
|
|
bp_active = heap->dbg_breakpoints_active;
|
|
act->flags &= ~DUK_ACT_FLAG_BREAKPOINT_ACTIVE;
|
|
|
|
tv_tmp = duk_hobject_find_existing_entry_tval_ptr(thr->heap, (duk_hobject *) fun, DUK_HTHREAD_STRING_FILE_NAME(thr));
|
|
if (tv_tmp && DUK_TVAL_IS_STRING(tv_tmp)) {
|
|
filename = DUK_TVAL_GET_STRING(tv_tmp);
|
|
|
|
/* Figure out all active breakpoints. A breakpoint is
|
|
* considered active if the current function's fileName
|
|
* matches the breakpoint's fileName, AND there is no
|
|
* inner function that has matching line numbers
|
|
* (otherwise a breakpoint would be triggered both
|
|
* inside and outside of the inner function which would
|
|
* be confusing). Example:
|
|
*
|
|
* function foo() {
|
|
* print('foo');
|
|
* function bar() { <-. breakpoints in these
|
|
* print('bar'); | lines should not affect
|
|
* } <-' foo() execution
|
|
* bar();
|
|
* }
|
|
*
|
|
* We need a few things that are only available when
|
|
* debugger support is enabled: (1) a line range for
|
|
* each function, and (2) access to the function
|
|
* template to access the inner functions (and their
|
|
* line ranges).
|
|
*
|
|
* It's important to have a narrow match for active
|
|
* breakpoints so that we don't enter checked execution
|
|
* when that's not necessary. For instance, if we're
|
|
* running inside a certain function and there's
|
|
* breakpoint outside in (after the call site), we
|
|
* don't want to slow down execution of the function.
|
|
*/
|
|
|
|
for (bp_idx = 0; bp_idx < heap->dbg_breakpoint_count; bp_idx++) {
|
|
duk_breakpoint *bp = heap->dbg_breakpoints + bp_idx;
|
|
duk_hobject **funcs, **funcs_end;
|
|
duk_hcompiledfunction *inner_fun;
|
|
duk_bool_t bp_match;
|
|
|
|
if (bp->filename == filename &&
|
|
bp->line >= fun->start_line && bp->line <= fun->end_line) {
|
|
bp_match = 1;
|
|
DUK_DD(DUK_DDPRINT("breakpoint filename and line match: "
|
|
"%s:%ld vs. %s (line %ld vs. %ld-%ld)",
|
|
DUK_HSTRING_GET_DATA(bp->filename),
|
|
(long) bp->line,
|
|
DUK_HSTRING_GET_DATA(filename),
|
|
(long) bp->line,
|
|
(long) fun->start_line,
|
|
(long) fun->end_line));
|
|
|
|
funcs = DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(thr->heap, fun);
|
|
funcs_end = DUK_HCOMPILEDFUNCTION_GET_FUNCS_END(thr->heap, fun);
|
|
while (funcs != funcs_end) {
|
|
inner_fun = (duk_hcompiledfunction *) *funcs;
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION((duk_hobject *) inner_fun));
|
|
if (bp->line >= inner_fun->start_line && bp->line <= inner_fun->end_line) {
|
|
DUK_DD(DUK_DDPRINT("inner function masks ('captures') breakpoint"));
|
|
bp_match = 0;
|
|
break;
|
|
}
|
|
funcs++;
|
|
}
|
|
|
|
if (bp_match) {
|
|
/* No need to check for size of bp_active list,
|
|
* it's always larger than maximum number of
|
|
* breakpoints.
|
|
*/
|
|
act->flags |= DUK_ACT_FLAG_BREAKPOINT_ACTIVE;
|
|
*bp_active = heap->dbg_breakpoints + bp_idx;
|
|
bp_active++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
*bp_active = NULL; /* terminate */
|
|
|
|
DUK_DD(DUK_DDPRINT("ACTIVE BREAKPOINTS: %ld", (long) (bp_active - thr->heap->dbg_breakpoints_active)));
|
|
|
|
/* Force pause if we were doing "step into" in another activation. */
|
|
if (thr->heap->dbg_step_thread != NULL &&
|
|
thr->heap->dbg_step_type == DUK_STEP_TYPE_INTO &&
|
|
(thr->heap->dbg_step_thread != thr ||
|
|
thr->heap->dbg_step_csindex != thr->callstack_top - 1)) {
|
|
DUK_D(DUK_DPRINT("STEP INTO ACTIVE, FORCE PAUSED"));
|
|
DUK_HEAP_SET_PAUSED(thr->heap);
|
|
}
|
|
|
|
/* Force interrupt right away if we're paused or in "checked mode".
|
|
* Step out is handled by callstack unwind.
|
|
*/
|
|
if (act->flags & (DUK_ACT_FLAG_BREAKPOINT_ACTIVE) ||
|
|
thr->heap->dbg_paused ||
|
|
(thr->heap->dbg_step_type != DUK_STEP_TYPE_OUT &&
|
|
thr->heap->dbg_step_csindex == thr->callstack_top - 1)) {
|
|
thr->interrupt_counter = 0;
|
|
}
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
/*
|
|
* Ecmascript bytecode executor.
|
|
*
|
|
* Resume execution for the current thread from its current activation.
|
|
* Returns when execution would return from the entry level activation,
|
|
* leaving a single return value on top of the stack. Function calls
|
|
* and thread resumptions are handled internally. If an error occurs,
|
|
* a longjmp() with type DUK_LJ_TYPE_THROW is called on the entry level
|
|
* setjmp() jmpbuf.
|
|
*
|
|
* Ecmascript function calls and coroutine resumptions are handled
|
|
* internally without recursive C calls. Other function calls are
|
|
* handled using duk_handle_call(), increasing C recursion depth.
|
|
*
|
|
* There are many other tricky control flow situations, such as:
|
|
*
|
|
* - Break and continue (fast and slow)
|
|
* - Return (fast and slow)
|
|
* - Error throwing
|
|
* - Thread resume and yield
|
|
*
|
|
* For more detailed notes, see doc/execution.rst.
|
|
*
|
|
* Also see doc/code-issues.rst for discussion of setjmp(), longjmp(),
|
|
* and volatile.
|
|
*/
|
|
|
|
#define DUK__STRICT() (DUK_HOBJECT_HAS_STRICT(&(fun)->obj))
|
|
#define DUK__REG(x) (thr->valstack_bottom[(x)])
|
|
#define DUK__REGP(x) (&thr->valstack_bottom[(x)])
|
|
#define DUK__CONST(x) (DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(thr->heap, fun)[(x)])
|
|
#define DUK__CONSTP(x) (&DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(thr->heap, fun)[(x)])
|
|
#define DUK__REGCONST(x) ((x) < DUK_BC_REGLIMIT ? DUK__REG((x)) : DUK__CONST((x) - DUK_BC_REGLIMIT))
|
|
#define DUK__REGCONSTP(x) ((x) < DUK_BC_REGLIMIT ? DUK__REGP((x)) : DUK__CONSTP((x) - DUK_BC_REGLIMIT))
|
|
|
|
#ifdef DUK_USE_VERBOSE_EXECUTOR_ERRORS
|
|
#define DUK__INTERNAL_ERROR(msg) do { \
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, (msg)); \
|
|
} while (0)
|
|
#else
|
|
#define DUK__INTERNAL_ERROR(msg) do { \
|
|
goto internal_error; \
|
|
} while (0)
|
|
#endif
|
|
|
|
DUK_INTERNAL void duk_js_execute_bytecode(duk_hthread *exec_thr) {
|
|
/* Entry level info. Although these are assigned to before setjmp()
|
|
* a 'volatile' seems to be needed. Note placement of "volatile" for
|
|
* pointers. See doc/code-issues.rst for more discussion.
|
|
*/
|
|
duk_hthread * volatile entry_thread; /* volatile copy of exec_thr */
|
|
volatile duk_size_t entry_callstack_top;
|
|
volatile duk_int_t entry_call_recursion_depth;
|
|
duk_jmpbuf * volatile entry_jmpbuf_ptr;
|
|
|
|
/* "hot" variables for interpretation -- not volatile, value not guaranteed in setjmp error handling */
|
|
duk_hthread *thr; /* stable */
|
|
duk_activation *act; /* semi-stable (ok as long as callstack not resized) */
|
|
duk_hcompiledfunction *fun; /* stable */
|
|
duk_instr_t *bcode; /* stable */
|
|
/* 'consts' is computed on-the-fly */
|
|
/* 'funcs' is quite rarely used, so no local for it */
|
|
|
|
/* "hot" temps for interpretation -- not volatile, value not guaranteed in setjmp error handling */
|
|
duk_uint_fast32_t ins; /* XXX: check performance impact on x64 between fast/non-fast variant */
|
|
|
|
/* jmpbuf */
|
|
duk_jmpbuf jmpbuf;
|
|
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
duk_int_t int_ctr;
|
|
#endif
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_size_t valstack_top_base; /* valstack top, should match before interpreting each op (no leftovers) */
|
|
#endif
|
|
|
|
/* XXX: document assumptions on setjmp and volatile variables
|
|
* (see duk_handle_call()).
|
|
*/
|
|
|
|
/*
|
|
* Preliminaries
|
|
*/
|
|
|
|
DUK_ASSERT(exec_thr != NULL);
|
|
DUK_ASSERT(exec_thr->heap != NULL);
|
|
DUK_ASSERT(exec_thr->heap->curr_thread != NULL);
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR((duk_heaphdr *) exec_thr);
|
|
DUK_ASSERT(exec_thr->callstack_top >= 1); /* at least one activation, ours */
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(exec_thr->callstack + exec_thr->callstack_top - 1) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(exec_thr->callstack + exec_thr->callstack_top - 1)));
|
|
|
|
entry_thread = exec_thr; /* volatile copy */
|
|
thr = (duk_hthread *) entry_thread;
|
|
entry_callstack_top = thr->callstack_top;
|
|
entry_call_recursion_depth = thr->heap->call_recursion_depth;
|
|
entry_jmpbuf_ptr = thr->heap->lj.jmpbuf_ptr;
|
|
|
|
/*
|
|
* Setjmp catchpoint setup.
|
|
*
|
|
* Note: we currently assume that the setjmp() catchpoint is
|
|
* not re-entrant (longjmp() cannot be called more than once
|
|
* for a single setjmp()).
|
|
*/
|
|
|
|
reset_setjmp_catchpoint:
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
thr->heap->lj.jmpbuf_ptr = &jmpbuf;
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL);
|
|
|
|
if (DUK_SETJMP(thr->heap->lj.jmpbuf_ptr->jb)) {
|
|
/*
|
|
* Note: any local variables accessed here must have their value
|
|
* assigned *before* the setjmp() call, OR they must be declared
|
|
* volatile. Otherwise their value is not guaranteed to be correct.
|
|
*
|
|
* 'thr' might seem to be a risky variable because it is changed
|
|
* for yield and resume. However, yield and resume are handled
|
|
* using longjmp()s.
|
|
*/
|
|
|
|
duk_small_uint_t lj_ret;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("longjmp caught by bytecode executor"));
|
|
|
|
/* Relookup 'thr': it's not volatile so its value is not
|
|
* guaranteed. The heap->curr_thread value should always be
|
|
* valid here because longjmp callers don't switch threads,
|
|
* only the longjmp handler does that (even for RESUME and
|
|
* YIELD).
|
|
*/
|
|
DUK_ASSERT(entry_thread != NULL);
|
|
thr = entry_thread->heap->curr_thread;
|
|
|
|
/* XXX: signalling the need to shrink check (only if unwound) */
|
|
|
|
/* Must be restored here to handle e.g. yields properly. */
|
|
thr->heap->call_recursion_depth = entry_call_recursion_depth;
|
|
|
|
/* Switch to caller's setjmp() catcher so that if an error occurs
|
|
* during error handling, it is always propagated outwards instead
|
|
* of causing an infinite loop in our own handler.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("restore jmpbuf_ptr: %p -> %p",
|
|
(void *) ((thr && thr->heap) ? thr->heap->lj.jmpbuf_ptr : NULL),
|
|
(void *) entry_jmpbuf_ptr));
|
|
thr->heap->lj.jmpbuf_ptr = (duk_jmpbuf *) entry_jmpbuf_ptr;
|
|
|
|
lj_ret = duk__handle_longjmp(thr, (duk_hthread *) entry_thread, (duk_size_t) entry_callstack_top);
|
|
|
|
if (lj_ret == DUK__LONGJMP_RESTART) {
|
|
/*
|
|
* Restart bytecode execution, possibly with a changed thread.
|
|
*/
|
|
thr = thr->heap->curr_thread;
|
|
goto reset_setjmp_catchpoint;
|
|
} else if (lj_ret == DUK__LONGJMP_RETHROW) {
|
|
/*
|
|
* Rethrow error to calling state.
|
|
*/
|
|
|
|
/* thread may have changed (e.g. YIELD converted to THROW) */
|
|
thr = thr->heap->curr_thread;
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr == entry_jmpbuf_ptr);
|
|
|
|
duk_err_longjmp(thr);
|
|
DUK_UNREACHABLE();
|
|
} else {
|
|
/*
|
|
* Return from bytecode executor with a return value.
|
|
*/
|
|
DUK_ASSERT(lj_ret == DUK__LONGJMP_FINISHED);
|
|
|
|
/* XXX: return assertions for valstack, callstack, catchstack */
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr == entry_jmpbuf_ptr);
|
|
return;
|
|
}
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/*
|
|
* Restart execution by reloading thread state.
|
|
*
|
|
* Note that 'thr' and any thread configuration may have changed,
|
|
* so all local variables are suspect.
|
|
*
|
|
* The number of local variables should be kept to a minimum: if
|
|
* the variables are spilled, they will need to be loaded from
|
|
* memory anyway.
|
|
*/
|
|
|
|
restart_execution:
|
|
|
|
/* Lookup current thread; use the volatile 'entry_thread' for this to
|
|
* avoid clobber warnings. (Any valid, reachable 'thr' value would be
|
|
* fine for this, so using 'entry_thread' is just to silence warnings.)
|
|
*/
|
|
thr = entry_thread->heap->curr_thread;
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_ACT_GET_FUNC(thr->callstack + thr->callstack_top - 1)));
|
|
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
thr->interrupt_counter = thr->heap->interrupt_counter;
|
|
#endif
|
|
|
|
/* assume that thr->valstack_bottom has been set-up before getting here */
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
fun = (duk_hcompiledfunction *) DUK_ACT_GET_FUNC(act);
|
|
DUK_ASSERT(fun != NULL);
|
|
DUK_ASSERT(thr->valstack_top - thr->valstack_bottom == fun->nregs);
|
|
bcode = DUK_HCOMPILEDFUNCTION_GET_CODE_BASE(thr->heap, fun);
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
if (DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap) && !thr->heap->dbg_processing) {
|
|
thr->heap->dbg_processing = 1;
|
|
duk__executor_handle_debugger(thr, act, fun);
|
|
thr->heap->dbg_processing = 0;
|
|
}
|
|
#endif /* DUK_USE_DEBUGGER_SUPPORT */
|
|
|
|
/* XXX: shrink check flag? */
|
|
|
|
/*
|
|
* Bytecode interpreter.
|
|
*
|
|
* The interpreter must be very careful with memory pointers, as
|
|
* many pointers are not guaranteed to be 'stable' and may be
|
|
* reallocated and relocated on-the-fly quite easily (e.g. by a
|
|
* memory allocation or a property access).
|
|
*
|
|
* The following are assumed to have stable pointers:
|
|
* - the current thread
|
|
* - the current function
|
|
* - the bytecode, constant table, inner function table of the
|
|
* current function (as they are a part of the function allocation)
|
|
*
|
|
* The following are assumed to have semi-stable pointers:
|
|
* - the current activation entry: stable as long as callstack
|
|
* is not changed (reallocated by growing or shrinking), or
|
|
* by any garbage collection invocation (through finalizers)
|
|
* - Note in particular that ANY DECREF can invalidate the
|
|
* activation pointer
|
|
*
|
|
* The following are not assumed to have stable pointers at all:
|
|
* - the value stack (registers) of the current thread
|
|
* - the catch stack of the current thread
|
|
*
|
|
* See execution.txt for discussion.
|
|
*/
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(act != NULL);
|
|
DUK_ASSERT(fun != NULL);
|
|
DUK_ASSERT(bcode != NULL);
|
|
|
|
DUK_DD(DUK_DDPRINT("restarting execution, thr %p, act %p (idx %ld), fun %p, bcode %p, "
|
|
"consts %p, funcs %p, lev %ld, regbot %ld, regtop %ld, catchstack_top=%ld, "
|
|
"preventcount=%ld",
|
|
(void *) thr,
|
|
(void *) act,
|
|
(long) (thr->callstack_top - 1),
|
|
(void *) fun,
|
|
(void *) bcode,
|
|
(void *) DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(thr->heap, fun),
|
|
(void *) DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(thr->heap, fun),
|
|
(long) (thr->callstack_top - 1),
|
|
(long) (thr->valstack_bottom - thr->valstack),
|
|
(long) (thr->valstack_top - thr->valstack),
|
|
(long) thr->catchstack_top,
|
|
(long) thr->callstack_preventcount));
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
valstack_top_base = (duk_size_t) (thr->valstack_top - thr->valstack);
|
|
#endif
|
|
|
|
for (;;) {
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(thr->valstack_top - thr->valstack_bottom == fun->nregs);
|
|
DUK_ASSERT((duk_size_t) (thr->valstack_top - thr->valstack) == valstack_top_base);
|
|
|
|
/* Executor interrupt counter check, used to implement breakpoints,
|
|
* debugging interface, execution timeouts, etc. The counter is heap
|
|
* specific but is maintained in the current thread to make the check
|
|
* as fast as possible. The counter is copied back to the heap struct
|
|
* whenever a thread switch occurs by the DUK_HEAP_SWITCH_THREAD() macro.
|
|
*/
|
|
#ifdef DUK_USE_INTERRUPT_COUNTER
|
|
int_ctr = thr->interrupt_counter;
|
|
if (DUK_LIKELY(int_ctr > 0)) {
|
|
thr->interrupt_counter = int_ctr - 1;
|
|
} else {
|
|
/* Trigger at zero or below */
|
|
duk_small_uint_t exec_int_ret;
|
|
|
|
exec_int_ret = duk__executor_interrupt(thr);
|
|
if (exec_int_ret == DUK__INT_RESTART) {
|
|
goto restart_execution;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Because ANY DECREF potentially invalidates 'act' now (through
|
|
* finalization), we need to re-lookup 'act' in almost every case.
|
|
*
|
|
* XXX: future work for performance optimization:
|
|
* This is not nice; it would be nice if the program counter was a
|
|
* behind a stable pointer. For instance, put a raw bytecode pointer
|
|
* into duk_hthread struct (not into the callstack); since bytecode
|
|
* has a stable pointer this would work nicely. Whenever a call is
|
|
* made, the bytecode pointer could be backed up as an integer index
|
|
* to the calling activation. Perhaps add a macro for setting up a
|
|
* new activation (same as for setting up / switching threads)?
|
|
*/
|
|
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
DUK_ASSERT(bcode + act->pc >= DUK_HCOMPILEDFUNCTION_GET_CODE_BASE(thr->heap, fun));
|
|
DUK_ASSERT(bcode + act->pc < DUK_HCOMPILEDFUNCTION_GET_CODE_END(thr->heap, fun));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("executing bytecode: pc=%ld ins=0x%08lx, op=%ld, valstack_top=%ld/%ld, nregs=%ld --> %!I",
|
|
(long) act->pc,
|
|
(unsigned long) bcode[act->pc],
|
|
(long) DUK_DEC_OP(bcode[act->pc]),
|
|
(long) (thr->valstack_top - thr->valstack),
|
|
(long) (thr->valstack_end - thr->valstack),
|
|
(long) (fun ? fun->nregs : -1),
|
|
(duk_instr_t) bcode[act->pc]));
|
|
|
|
#if defined(DUK_USE_ASSERTIONS)
|
|
/* Quite heavy assert: check that valstack is in correctly
|
|
* initialized state. Improper shuffle instructions can
|
|
* write beyond valstack_end so this check catches them in
|
|
* the act.
|
|
*/
|
|
{
|
|
duk_tval *tv;
|
|
tv = thr->valstack_top;
|
|
while (tv != thr->valstack_end) {
|
|
DUK_ASSERT(DUK_TVAL_IS_UNDEFINED_UNUSED(tv));
|
|
tv++;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
ins = bcode[act->pc++];
|
|
|
|
/* Typing: use duk_small_(u)int_fast_t when decoding small
|
|
* opcode fields (op, A, B, C) and duk_(u)int_fast_t when
|
|
* decoding larger fields (e.g. BC which is 18 bits). Use
|
|
* unsigned variant by default, signed when the value is used
|
|
* in signed arithmetic. Using variable names such as 'a', 'b',
|
|
* 'c', 'bc', etc makes it easier to spot typing mismatches.
|
|
*/
|
|
|
|
/* XXX: the best typing needs to be validated by perf measurement:
|
|
* e.g. using a small type which is the cast to a larger duk_idx_t
|
|
* may be slower than declaring the variable as a duk_idx_t in the
|
|
* first place.
|
|
*/
|
|
|
|
/* XXX: use macros for the repetitive tval/refcount handling. */
|
|
|
|
switch ((int) DUK_DEC_OP(ins)) {
|
|
/* XXX: switch cast? */
|
|
|
|
case DUK_OP_LDREG: {
|
|
duk_small_uint_fast_t a;
|
|
duk_uint_fast_t bc;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1, *tv2;
|
|
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
bc = DUK_DEC_BC(ins); tv2 = DUK__REGP(bc);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_STREG: {
|
|
duk_small_uint_fast_t a;
|
|
duk_uint_fast_t bc;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1, *tv2;
|
|
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
bc = DUK_DEC_BC(ins); tv2 = DUK__REGP(bc);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv2);
|
|
DUK_TVAL_SET_TVAL(tv2, tv1);
|
|
DUK_TVAL_INCREF(thr, tv2);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_LDCONST: {
|
|
duk_small_uint_fast_t a;
|
|
duk_uint_fast_t bc;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1, *tv2;
|
|
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
bc = DUK_DEC_BC(ins); tv2 = DUK__CONSTP(bc);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv2); /* may be e.g. string */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_LDINT: {
|
|
duk_small_uint_fast_t a;
|
|
duk_int_fast_t bc;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
#if defined(DUK_USE_FASTINT)
|
|
duk_int32_t val;
|
|
#else
|
|
duk_double_t val;
|
|
#endif
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
bc = DUK_DEC_BC(ins); val = (duk_int32_t) (bc - DUK_BC_LDINT_BIAS);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_FASTINT_I32(tv1, val);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#else
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
bc = DUK_DEC_BC(ins); val = (duk_double_t) (bc - DUK_BC_LDINT_BIAS);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_NUMBER(tv1, val);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_LDINTX: {
|
|
duk_small_uint_fast_t a;
|
|
duk_tval *tv1;
|
|
duk_double_t val;
|
|
|
|
/* LDINTX is not necessarily in FASTINT range, so
|
|
* no fast path for now.
|
|
*
|
|
* XXX: perhaps restrict LDINTX to fastint range, wider
|
|
* range very rarely needed.
|
|
*/
|
|
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv1));
|
|
val = DUK_TVAL_GET_NUMBER(tv1) * ((duk_double_t) (1L << DUK_BC_LDINTX_SHIFT)) +
|
|
(duk_double_t) DUK_DEC_BC(ins);
|
|
#if defined(DUK_USE_FASTINT)
|
|
DUK_TVAL_SET_NUMBER_CHKFAST(tv1, val);
|
|
#else
|
|
DUK_TVAL_SET_NUMBER(tv1, val);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_MPUTOBJ:
|
|
case DUK_OP_MPUTOBJI: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a;
|
|
duk_tval *tv1;
|
|
duk_hobject *obj;
|
|
duk_uint_fast_t idx;
|
|
duk_small_uint_fast_t count;
|
|
|
|
/* A -> register of target object
|
|
* B -> first register of key/value pair list
|
|
* C -> number of key/value pairs
|
|
*/
|
|
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv1));
|
|
obj = DUK_TVAL_GET_OBJECT(tv1);
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_B(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_MPUTOBJI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
count = (duk_small_uint_fast_t) DUK_DEC_C(ins);
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (DUK_UNLIKELY(idx + count * 2 > (duk_uint_fast_t) duk_get_top(ctx))) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("MPUTOBJ out of bounds");
|
|
}
|
|
#endif
|
|
|
|
duk_push_hobject(ctx, obj);
|
|
|
|
while (count > 0) {
|
|
/* XXX: faster initialization (direct access or better primitives) */
|
|
|
|
duk_push_tval(ctx, DUK__REGP(idx));
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
duk_push_tval(ctx, DUK__REGP(idx + 1)); /* -> [... obj key value] */
|
|
duk_xdef_prop_wec(ctx, -3); /* -> [... obj] */
|
|
|
|
count--;
|
|
idx += 2;
|
|
}
|
|
|
|
duk_pop(ctx); /* [... obj] -> [...] */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_MPUTARR:
|
|
case DUK_OP_MPUTARRI: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a;
|
|
duk_tval *tv1;
|
|
duk_hobject *obj;
|
|
duk_uint_fast_t idx;
|
|
duk_small_uint_fast_t count;
|
|
duk_uint32_t arr_idx;
|
|
|
|
/* A -> register of target object
|
|
* B -> first register of value data (start_index, value1, value2, ..., valueN)
|
|
* C -> number of key/value pairs (N)
|
|
*/
|
|
|
|
a = DUK_DEC_A(ins); tv1 = DUK__REGP(a);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv1));
|
|
obj = DUK_TVAL_GET_OBJECT(tv1);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_B(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_MPUTARRI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
count = (duk_small_uint_fast_t) DUK_DEC_C(ins);
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (idx + count + 1 > (duk_uint_fast_t) duk_get_top(ctx)) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("MPUTARR out of bounds");
|
|
}
|
|
#endif
|
|
|
|
tv1 = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv1));
|
|
arr_idx = (duk_uint32_t) DUK_TVAL_GET_NUMBER(tv1);
|
|
idx++;
|
|
|
|
duk_push_hobject(ctx, obj);
|
|
|
|
while (count > 0) {
|
|
/* duk_xdef_prop() will define an own property without any array
|
|
* special behaviors. We'll need to set the array length explicitly
|
|
* in the end. For arrays with elisions, the compiler will emit an
|
|
* explicit SETALEN which will update the length.
|
|
*/
|
|
|
|
/* XXX: because we're dealing with 'own' properties of a fresh array,
|
|
* the array initializer should just ensure that the array has a large
|
|
* enough array part and write the values directly into array part,
|
|
* and finally set 'length' manually in the end (as already happens now).
|
|
*/
|
|
|
|
duk_push_tval(ctx, DUK__REGP(idx)); /* -> [... obj value] */
|
|
duk_xdef_prop_index_wec(ctx, -2, arr_idx); /* -> [... obj] */
|
|
|
|
/* XXX: could use at least one fewer loop counters */
|
|
count--;
|
|
idx++;
|
|
arr_idx++;
|
|
}
|
|
|
|
/* XXX: E5.1 Section 11.1.4 coerces the final length through
|
|
* ToUint32() which is odd but happens now as a side effect of
|
|
* 'arr_idx' type.
|
|
*/
|
|
duk_hobject_set_length(thr, obj, (duk_uint32_t) arr_idx);
|
|
|
|
duk_pop(ctx); /* [... obj] -> [...] */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_NEW:
|
|
case DUK_OP_NEWI: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_uint_fast_t idx;
|
|
duk_small_uint_fast_t i;
|
|
|
|
/* A -> unused (reserved for flags, for consistency with DUK_OP_CALL)
|
|
* B -> target register and start reg: constructor, arg1, ..., argN
|
|
* (for DUK_OP_NEWI, 'b' is indirect)
|
|
* C -> num args (N)
|
|
*/
|
|
|
|
/* Note: duk_new() will call the constuctor using duk_handle_call().
|
|
* A constructor call prevents a yield from inside the constructor,
|
|
* even if the constructor is an Ecmascript function.
|
|
*/
|
|
|
|
/* XXX: unnecessary copying of values? Just set 'top' to
|
|
* b + c, and let the return handling fix up the stack frame?
|
|
*/
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_B(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_NEWI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (idx + c + 1 > (duk_uint_fast_t) duk_get_top(ctx)) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("NEW out of bounds");
|
|
}
|
|
#endif
|
|
|
|
duk_require_stack(ctx, (duk_idx_t) c);
|
|
duk_push_tval(ctx, DUK__REGP(idx));
|
|
for (i = 0; i < c; i++) {
|
|
duk_push_tval(ctx, DUK__REGP(idx + i + 1));
|
|
}
|
|
duk_new(ctx, (duk_idx_t) c); /* [... constructor arg1 ... argN] -> [retval] */
|
|
DUK_DDD(DUK_DDDPRINT("NEW -> %!iT", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_replace(ctx, (duk_idx_t) idx);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_REGEXP: {
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
|
|
/* A -> target register
|
|
* B -> bytecode (also contains flags)
|
|
* C -> escaped source
|
|
*/
|
|
|
|
duk_push_tval(ctx, DUK__REGCONSTP(c));
|
|
duk_push_tval(ctx, DUK__REGCONSTP(b)); /* -> [ ... escaped_source bytecode ] */
|
|
duk_regexp_create_instance(thr); /* -> [ ... regexp_instance ] */
|
|
DUK_DDD(DUK_DDDPRINT("regexp instance: %!iT", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
#else
|
|
/* The compiler should never emit DUK_OP_REGEXP if there is no
|
|
* regexp support.
|
|
*/
|
|
DUK__INTERNAL_ERROR("no regexp support");
|
|
#endif
|
|
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_CSREG:
|
|
case DUK_OP_CSREGI: {
|
|
/*
|
|
* Assuming a register binds to a variable declared within this
|
|
* function (a declarative binding), the 'this' for the call
|
|
* setup is always 'undefined'. E5 Section 10.2.1.1.6.
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins); /* restricted to regs */
|
|
duk_uint_fast_t idx;
|
|
|
|
/* A -> target register (A, A+1) for call setup
|
|
* (for DUK_OP_CSREGI, 'a' is indirect)
|
|
* B -> register containing target function (not type checked here)
|
|
*/
|
|
|
|
/* XXX: direct manipulation, or duk_replace_tval() */
|
|
|
|
/* Note: target registers a and a+1 may overlap with DUK__REGP(b).
|
|
* Careful here.
|
|
*/
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_A(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_CSREGI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (idx + 2 > (duk_uint_fast_t) duk_get_top(ctx)) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("CSREG out of bounds");
|
|
}
|
|
#endif
|
|
|
|
duk_push_tval(ctx, DUK__REGP(b));
|
|
duk_replace(ctx, (duk_idx_t) idx);
|
|
duk_push_undefined(ctx);
|
|
duk_replace(ctx, (duk_idx_t) (idx + 1));
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_GETVAR: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval *tv1;
|
|
duk_hstring *name;
|
|
|
|
tv1 = DUK__CONSTP(bc);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
name = DUK_TVAL_GET_STRING(tv1);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("GETVAR: '%!O'", (duk_heaphdr *) name));
|
|
(void) duk_js_getvar_activation(thr, act, name, 1 /*throw*/); /* -> [... val this] */
|
|
|
|
duk_pop(ctx); /* 'this' binding is not needed here */
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_PUTVAR: {
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval *tv1;
|
|
duk_hstring *name;
|
|
|
|
tv1 = DUK__CONSTP(bc);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
name = DUK_TVAL_GET_STRING(tv1);
|
|
DUK_ASSERT(name != NULL);
|
|
|
|
/* XXX: putvar takes a duk_tval pointer, which is awkward and
|
|
* should be reworked.
|
|
*/
|
|
|
|
tv1 = DUK__REGP(a); /* val */
|
|
duk_js_putvar_activation(thr, act, name, tv1, DUK__STRICT());
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_DECLVAR: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_tval *tv1;
|
|
duk_hstring *name;
|
|
duk_small_uint_t prop_flags;
|
|
duk_bool_t is_func_decl;
|
|
duk_bool_t is_undef_value;
|
|
|
|
tv1 = DUK__REGCONSTP(b);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
name = DUK_TVAL_GET_STRING(tv1);
|
|
DUK_ASSERT(name != NULL);
|
|
|
|
is_undef_value = ((a & DUK_BC_DECLVAR_FLAG_UNDEF_VALUE) != 0);
|
|
is_func_decl = ((a & DUK_BC_DECLVAR_FLAG_FUNC_DECL) != 0);
|
|
|
|
/* XXX: declvar takes an duk_tval pointer, which is awkward and
|
|
* should be reworked.
|
|
*/
|
|
|
|
/* Compiler is responsible for selecting property flags (configurability,
|
|
* writability, etc).
|
|
*/
|
|
prop_flags = a & DUK_PROPDESC_FLAGS_MASK;
|
|
|
|
if (is_undef_value) {
|
|
duk_push_undefined(ctx);
|
|
} else {
|
|
duk_push_tval(ctx, DUK__REGCONSTP(c));
|
|
}
|
|
tv1 = duk_get_tval(ctx, -1);
|
|
|
|
if (duk_js_declvar_activation(thr, act, name, tv1, prop_flags, is_func_decl)) {
|
|
/* already declared, must update binding value */
|
|
tv1 = duk_get_tval(ctx, -1);
|
|
duk_js_putvar_activation(thr, act, name, tv1, DUK__STRICT());
|
|
}
|
|
|
|
duk_pop(ctx);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_DELVAR: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_tval *tv1;
|
|
duk_hstring *name;
|
|
duk_bool_t rc;
|
|
|
|
tv1 = DUK__REGCONSTP(b);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
name = DUK_TVAL_GET_STRING(tv1);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_DDD(DUK_DDDPRINT("DELVAR '%!O'", (duk_heaphdr *) name));
|
|
rc = duk_js_delvar_activation(thr, act, name);
|
|
|
|
duk_push_boolean(ctx, rc);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_CSVAR:
|
|
case DUK_OP_CSVARI: {
|
|
/* 'this' value:
|
|
* E5 Section 6.b.i
|
|
*
|
|
* The only (standard) case where the 'this' binding is non-null is when
|
|
* (1) the variable is found in an object environment record, and
|
|
* (2) that object environment record is a 'with' block.
|
|
*
|
|
*/
|
|
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_uint_fast_t idx;
|
|
duk_tval *tv1;
|
|
duk_hstring *name;
|
|
|
|
tv1 = DUK__REGCONSTP(b);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
name = DUK_TVAL_GET_STRING(tv1);
|
|
DUK_ASSERT(name != NULL);
|
|
(void) duk_js_getvar_activation(thr, act, name, 1 /*throw*/); /* -> [... val this] */
|
|
|
|
/* Note: target registers a and a+1 may overlap with DUK__REGCONSTP(b)
|
|
* and DUK__REGCONSTP(c). Careful here.
|
|
*/
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_A(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_CSVARI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (idx + 2 > (duk_uint_fast_t) duk_get_top(ctx)) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("CSVAR out of bounds");
|
|
}
|
|
#endif
|
|
|
|
duk_replace(ctx, (duk_idx_t) (idx + 1)); /* 'this' binding */
|
|
duk_replace(ctx, (duk_idx_t) idx); /* variable value (function, we hope, not checked here) */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_CLOSURE: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_hobject *fun_temp;
|
|
|
|
/* A -> target reg
|
|
* BC -> inner function index
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("CLOSURE to target register %ld, fnum %ld (count %ld)",
|
|
(long) a, (long) bc, (long) DUK_HCOMPILEDFUNCTION_GET_FUNCS_COUNT(thr->heap, fun)));
|
|
|
|
DUK_ASSERT_DISABLE(bc >= 0); /* unsigned */
|
|
DUK_ASSERT((duk_uint_t) bc < (duk_uint_t) DUK_HCOMPILEDFUNCTION_GET_FUNCS_COUNT(thr->heap, fun));
|
|
fun_temp = DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(thr->heap, fun)[bc];
|
|
DUK_ASSERT(fun_temp != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(fun_temp));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("CLOSURE: function template is: %p -> %!O",
|
|
(void *) fun_temp, (duk_heaphdr *) fun_temp));
|
|
|
|
if (act->lex_env == NULL) {
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
duk_js_init_activation_environment_records_delayed(thr, act);
|
|
}
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
|
|
/* functions always have a NEWENV flag, i.e. they get a
|
|
* new variable declaration environment, so only lex_env
|
|
* matters here.
|
|
*/
|
|
duk_js_push_closure(thr,
|
|
(duk_hcompiledfunction *) fun_temp,
|
|
act->var_env,
|
|
act->lex_env);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_GETPROP: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_bool_t rc;
|
|
|
|
/* A -> target reg
|
|
* B -> object reg/const (may be const e.g. in "'foo'[1]")
|
|
* C -> key reg/const
|
|
*/
|
|
|
|
tv_obj = DUK__REGCONSTP(b);
|
|
tv_key = DUK__REGCONSTP(c);
|
|
DUK_DDD(DUK_DDDPRINT("GETPROP: a=%ld obj=%!T, key=%!T",
|
|
(long) a,
|
|
(duk_tval *) DUK__REGCONSTP(b),
|
|
(duk_tval *) DUK__REGCONSTP(c)));
|
|
rc = duk_hobject_getprop(thr, tv_obj, tv_key); /* -> [val] */
|
|
DUK_UNREF(rc); /* ignore */
|
|
DUK_DDD(DUK_DDDPRINT("GETPROP --> %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
tv_obj = NULL; /* invalidated */
|
|
tv_key = NULL; /* invalidated */
|
|
|
|
duk_replace(ctx, (duk_idx_t) a); /* val */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_PUTPROP: {
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_tval *tv_val;
|
|
duk_bool_t rc;
|
|
|
|
/* A -> object reg
|
|
* B -> key reg/const
|
|
* C -> value reg/const
|
|
*
|
|
* Note: intentional difference to register arrangement
|
|
* of e.g. GETPROP; 'A' must contain a register-only value.
|
|
*/
|
|
|
|
tv_obj = DUK__REGP(a);
|
|
tv_key = DUK__REGCONSTP(b);
|
|
tv_val = DUK__REGCONSTP(c);
|
|
DUK_DDD(DUK_DDDPRINT("PUTPROP: obj=%!T, key=%!T, val=%!T",
|
|
(duk_tval *) DUK__REGP(a),
|
|
(duk_tval *) DUK__REGCONSTP(b),
|
|
(duk_tval *) DUK__REGCONSTP(c)));
|
|
rc = duk_hobject_putprop(thr, tv_obj, tv_key, tv_val, DUK__STRICT());
|
|
DUK_UNREF(rc); /* ignore */
|
|
DUK_DDD(DUK_DDDPRINT("PUTPROP --> obj=%!T, key=%!T, val=%!T",
|
|
(duk_tval *) DUK__REGP(a),
|
|
(duk_tval *) DUK__REGCONSTP(b),
|
|
(duk_tval *) DUK__REGCONSTP(c)));
|
|
tv_obj = NULL; /* invalidated */
|
|
tv_key = NULL; /* invalidated */
|
|
tv_val = NULL; /* invalidated */
|
|
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_DELPROP: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_bool_t rc;
|
|
|
|
/* A -> result reg
|
|
* B -> object reg
|
|
* C -> key reg/const
|
|
*/
|
|
|
|
tv_obj = DUK__REGP(b);
|
|
tv_key = DUK__REGCONSTP(c);
|
|
rc = duk_hobject_delprop(thr, tv_obj, tv_key, DUK__STRICT());
|
|
tv_obj = NULL; /* invalidated */
|
|
tv_key = NULL; /* invalidated */
|
|
|
|
duk_push_boolean(ctx, rc);
|
|
duk_replace(ctx, (duk_idx_t) a); /* result */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_CSPROP:
|
|
case DUK_OP_CSPROPI: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_uint_fast_t idx;
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_bool_t rc;
|
|
|
|
/* E5 Section 11.2.3, step 6.a.i */
|
|
/* E5 Section 10.4.3 */
|
|
|
|
/* XXX: allow object to be a const, e.g. in 'foo'.toString()?
|
|
* On the other hand, DUK_REGCONSTP() is slower and generates
|
|
* more code.
|
|
*/
|
|
|
|
tv_obj = DUK__REGP(b);
|
|
tv_key = DUK__REGCONSTP(c);
|
|
rc = duk_hobject_getprop(thr, tv_obj, tv_key); /* -> [val] */
|
|
DUK_UNREF(rc); /* unused */
|
|
tv_obj = NULL; /* invalidated */
|
|
tv_key = NULL; /* invalidated */
|
|
|
|
/* Note: target registers a and a+1 may overlap with DUK__REGP(b)
|
|
* and DUK__REGCONSTP(c). Careful here.
|
|
*/
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_A(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_CSPROPI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (idx + 2 > (duk_uint_fast_t) duk_get_top(ctx)) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("CSPROP out of bounds");
|
|
}
|
|
#endif
|
|
|
|
duk_push_tval(ctx, DUK__REGP(b)); /* [ ... val obj ] */
|
|
duk_replace(ctx, (duk_idx_t) (idx + 1)); /* 'this' binding */
|
|
duk_replace(ctx, (duk_idx_t) idx); /* val */
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_ADD:
|
|
case DUK_OP_SUB:
|
|
case DUK_OP_MUL:
|
|
case DUK_OP_DIV:
|
|
case DUK_OP_MOD: {
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_small_uint_fast_t op = DUK_DEC_OP(ins);
|
|
|
|
if (op == DUK_OP_ADD) {
|
|
/*
|
|
* Handling DUK_OP_ADD this way is more compact (experimentally)
|
|
* than a separate case with separate argument decoding.
|
|
*/
|
|
duk__vm_arith_add(thr, DUK__REGCONSTP(b), DUK__REGCONSTP(c), a);
|
|
} else {
|
|
duk__vm_arith_binary_op(thr, DUK__REGCONSTP(b), DUK__REGCONSTP(c), a, op);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_BAND:
|
|
case DUK_OP_BOR:
|
|
case DUK_OP_BXOR:
|
|
case DUK_OP_BASL:
|
|
case DUK_OP_BLSR:
|
|
case DUK_OP_BASR: {
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_small_uint_fast_t op = DUK_DEC_OP(ins);
|
|
|
|
duk__vm_bitwise_binary_op(thr, DUK__REGCONSTP(b), DUK__REGCONSTP(c), a, op);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_EQ:
|
|
case DUK_OP_NEQ: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
/* E5 Sections 11.9.1, 11.9.3 */
|
|
tmp = duk_js_equals(thr, DUK__REGCONSTP(b), DUK__REGCONSTP(c));
|
|
if (DUK_DEC_OP(ins) == DUK_OP_NEQ) {
|
|
tmp = !tmp;
|
|
}
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_SEQ:
|
|
case DUK_OP_SNEQ: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
/* E5 Sections 11.9.1, 11.9.3 */
|
|
tmp = duk_js_strict_equals(DUK__REGCONSTP(b), DUK__REGCONSTP(c));
|
|
if (DUK_DEC_OP(ins) == DUK_OP_SNEQ) {
|
|
tmp = !tmp;
|
|
}
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
/* Note: combining comparison ops must be done carefully because
|
|
* of uncomparable values (NaN): it's not necessarily true that
|
|
* (x >= y) === !(x < y). Also, evaluation order matters, and
|
|
* although it would only seem to affect the compiler this is
|
|
* actually not the case, because there are also run-time coercions
|
|
* of the arguments (with potential side effects).
|
|
*
|
|
* XXX: can be combined; check code size.
|
|
*/
|
|
|
|
case DUK_OP_GT: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
/* x > y --> y < x */
|
|
tmp = duk_js_compare_helper(thr,
|
|
DUK__REGCONSTP(c), /* y */
|
|
DUK__REGCONSTP(b), /* x */
|
|
0); /* flags */
|
|
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_GE: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
/* x >= y --> not (x < y) */
|
|
tmp = duk_js_compare_helper(thr,
|
|
DUK__REGCONSTP(b), /* x */
|
|
DUK__REGCONSTP(c), /* y */
|
|
DUK_COMPARE_FLAG_EVAL_LEFT_FIRST |
|
|
DUK_COMPARE_FLAG_NEGATE); /* flags */
|
|
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_LT: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
/* x < y */
|
|
tmp = duk_js_compare_helper(thr,
|
|
DUK__REGCONSTP(b), /* x */
|
|
DUK__REGCONSTP(c), /* y */
|
|
DUK_COMPARE_FLAG_EVAL_LEFT_FIRST); /* flags */
|
|
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_LE: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
/* x <= y --> not (x > y) --> not (y < x) */
|
|
tmp = duk_js_compare_helper(thr,
|
|
DUK__REGCONSTP(c), /* y */
|
|
DUK__REGCONSTP(b), /* x */
|
|
DUK_COMPARE_FLAG_NEGATE); /* flags */
|
|
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_IF: {
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_bool_t tmp;
|
|
|
|
tmp = duk_js_toboolean(DUK__REGCONSTP(b));
|
|
if (tmp == (duk_bool_t) a) {
|
|
/* if boolean matches A, skip next inst */
|
|
act->pc++;
|
|
} else {
|
|
;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_JUMP: {
|
|
duk_int_fast_t abc = DUK_DEC_ABC(ins);
|
|
|
|
act->pc += abc - DUK_BC_JUMP_BIAS;
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_RETURN: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
/* duk_small_uint_fast_t c = DUK_DEC_C(ins); */
|
|
duk_tval *tv_val;
|
|
|
|
/* A -> flags
|
|
* B -> return value reg/const
|
|
* C -> currently unused
|
|
*/
|
|
|
|
/* A fast return avoids full longjmp handling for a set of
|
|
* scenarios which hopefully represents the common cases.
|
|
* The compiler is responsible for emitting fast returns
|
|
* only when they are safe. Currently this means that there
|
|
* is nothing on the catch stack (not even label catchers).
|
|
* The speed advantage of fast returns (avoiding longjmp) is
|
|
* not very high, around 10-15%.
|
|
*/
|
|
#if 0 /* XXX: Disabled for 1.0 release */
|
|
if (a & DUK_BC_RETURN_FLAG_FAST) {
|
|
DUK_DDD(DUK_DDDPRINT("FASTRETURN attempt a=%ld b=%ld", (long) a, (long) b));
|
|
|
|
if (duk__handle_fast_return(thr,
|
|
(a & DUK_BC_RETURN_FLAG_HAVE_RETVAL) ? DUK__REGCONSTP(b) : NULL,
|
|
entry_thread,
|
|
entry_callstack_top)) {
|
|
DUK_DDD(DUK_DDDPRINT("FASTRETURN success a=%ld b=%ld", (long) a, (long) b));
|
|
goto restart_execution;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* No fast return, slow path. */
|
|
DUK_DDD(DUK_DDDPRINT("SLOWRETURN a=%ld b=%ld", (long) a, (long) b));
|
|
|
|
if (a & DUK_BC_RETURN_FLAG_HAVE_RETVAL) {
|
|
tv_val = DUK__REGCONSTP(b);
|
|
#if defined(DUK_OPT_FASTINT)
|
|
/* Explicit check for fastint downgrade. Do
|
|
* it also for consts for now, which is odd
|
|
* but harmless.
|
|
*/
|
|
/* XXX: restrict to reg values only? */
|
|
|
|
DUK_TVAL_CHKFAST_INPLACE(tv_val);
|
|
#endif
|
|
duk_push_tval(ctx, tv_val);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
|
|
duk_err_setup_heap_ljstate(thr, DUK_LJ_TYPE_RETURN);
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* in bytecode executor, should always be set */
|
|
duk_err_longjmp(thr);
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_CALL:
|
|
case DUK_OP_CALLI: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_uint_fast_t idx;
|
|
duk_small_uint_t call_flags;
|
|
duk_small_uint_t flag_tailcall;
|
|
duk_small_uint_t flag_evalcall;
|
|
duk_tval *tv_func;
|
|
duk_hobject *obj_func;
|
|
duk_bool_t setup_rc;
|
|
duk_idx_t num_stack_args;
|
|
|
|
/* A -> flags
|
|
* B -> base register for call (base -> func, base+1 -> this, base+2 -> arg1 ... base+2+N-1 -> argN)
|
|
* (for DUK_OP_CALLI, 'b' is indirect)
|
|
* C -> nargs
|
|
*/
|
|
|
|
/* these are not necessarily 0 or 1 (may be other non-zero), that's ok */
|
|
flag_tailcall = (a & DUK_BC_CALL_FLAG_TAILCALL);
|
|
flag_evalcall = (a & DUK_BC_CALL_FLAG_EVALCALL);
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_B(ins);
|
|
if (DUK_DEC_OP(ins) == DUK_OP_CALLI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (!duk_is_valid_index(ctx, (duk_idx_t) idx)) {
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("CALL out of bounds");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* To determine whether to use an optimized Ecmascript-to-Ecmascript
|
|
* call, we need to know whether the final, non-bound function is an
|
|
* Ecmascript function.
|
|
*
|
|
* This is now implemented so that we start to do an ecma-to-ecma call
|
|
* setup which will resolve the bound chain as the first thing. If the
|
|
* final function is not eligible, the return value indicates that the
|
|
* ecma-to-ecma call is not possible. The setup will overwrite the call
|
|
* target at DUK__REGP(idx) with the final, non-bound function (which
|
|
* may be a lightfunc), and fudge arguments if necessary.
|
|
*
|
|
* XXX: If an ecma-to-ecma call is not possible, this initial call
|
|
* setup will do bound function chain resolution but won't do the
|
|
* "effective this binding" resolution which is quite confusing.
|
|
* Perhaps add a helper for doing bound function and effective this
|
|
* binding resolution - and call that explicitly? Ecma-to-ecma call
|
|
* setup and normal function handling can then assume this prestep has
|
|
* been done by the caller.
|
|
*/
|
|
|
|
duk_set_top(ctx, (duk_idx_t) (idx + c + 2)); /* [ ... func this arg1 ... argN ] */
|
|
|
|
call_flags = 0;
|
|
if (flag_tailcall) {
|
|
/* We request a tailcall, but in some corner cases
|
|
* call handling can decide that a tailcall is
|
|
* actually not possible.
|
|
* See: test-bug-tailcall-preventyield-assert.c.
|
|
*/
|
|
call_flags |= DUK_CALL_FLAG_IS_TAILCALL;
|
|
}
|
|
|
|
/* Compared to duk_handle_call():
|
|
* - protected call: never
|
|
* - ignore recursion limit: never
|
|
*/
|
|
num_stack_args = c;
|
|
setup_rc = duk_handle_ecma_call_setup(thr,
|
|
num_stack_args,
|
|
call_flags);
|
|
|
|
if (setup_rc) {
|
|
/* Ecma-to-ecma call possible, may or may not be a tailcall.
|
|
* Avoid C recursion by being clever.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("ecma-to-ecma call setup possible, restart execution"));
|
|
goto restart_execution;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("ecma-to-ecma call not possible, target is native (may be lightfunc)"));
|
|
|
|
/* Recompute argument count: bound function handling may have shifted. */
|
|
num_stack_args = duk_get_top(ctx) - (idx + 2);
|
|
DUK_DDD(DUK_DDDPRINT("recomputed arg count: %ld\n", (long) num_stack_args));
|
|
|
|
tv_func = DUK__REGP(idx); /* Relookup if relocated */
|
|
if (DUK_TVAL_IS_LIGHTFUNC(tv_func)) {
|
|
call_flags = 0; /* not protected, respect reclimit, not constructor */
|
|
|
|
/* There is no eval() special handling here: eval() is never
|
|
* automatically converted to a lightfunc.
|
|
*/
|
|
DUK_ASSERT(DUK_TVAL_GET_LIGHTFUNC_FUNCPTR(tv_func) != duk_bi_global_object_eval);
|
|
|
|
duk_handle_call(thr,
|
|
num_stack_args,
|
|
call_flags);
|
|
|
|
/* duk_js_call.c is required to restore the stack reserve
|
|
* so we only need to reset the top.
|
|
*/
|
|
duk_set_top(ctx, (duk_idx_t) fun->nregs);
|
|
|
|
/* No need to reinit setjmp() catchpoint, as call handling
|
|
* will store and restore our state.
|
|
*/
|
|
} else {
|
|
/* Call setup checks callability. */
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv_func));
|
|
obj_func = DUK_TVAL_GET_OBJECT(tv_func);
|
|
DUK_ASSERT(obj_func != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(obj_func));
|
|
|
|
/*
|
|
* Other cases, use C recursion.
|
|
*
|
|
* If a tailcall was requested we ignore it and execute a normal call.
|
|
* Since Duktape 0.11.0 the compiler emits a RETURN opcode even after
|
|
* a tailcall to avoid test-bug-tailcall-thread-yield-resume.js.
|
|
*
|
|
* Direct eval call: (1) call target (before following bound function
|
|
* chain) is the built-in eval() function, and (2) call was made with
|
|
* the identifier 'eval'.
|
|
*/
|
|
|
|
call_flags = 0; /* not protected, respect reclimit, not constructor */
|
|
|
|
if (DUK_HOBJECT_IS_NATIVEFUNCTION(obj_func) &&
|
|
((duk_hnativefunction *) obj_func)->func == duk_bi_global_object_eval) {
|
|
if (flag_evalcall) {
|
|
DUK_DDD(DUK_DDDPRINT("call target is eval, call identifier was 'eval' -> direct eval"));
|
|
call_flags |= DUK_CALL_FLAG_DIRECT_EVAL;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("call target is eval, call identifier was not 'eval' -> indirect eval"));
|
|
}
|
|
}
|
|
|
|
duk_handle_call(thr,
|
|
num_stack_args,
|
|
call_flags);
|
|
|
|
/* duk_js_call.c is required to restore the stack reserve
|
|
* so we only need to reset the top.
|
|
*/
|
|
duk_set_top(ctx, (duk_idx_t) fun->nregs);
|
|
|
|
/* No need to reinit setjmp() catchpoint, as call handling
|
|
* will store and restore our state.
|
|
*/
|
|
}
|
|
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
/* When debugger is enabled, we need to recheck the activation
|
|
* status after returning.
|
|
*/
|
|
goto restart_execution;
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_TRYCATCH: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_catcher *cat;
|
|
duk_tval *tv1;
|
|
duk_small_uint_fast_t a;
|
|
duk_small_uint_fast_t b;
|
|
duk_small_uint_fast_t c;
|
|
|
|
/* A -> flags
|
|
* B -> reg_catch; base register for 2 regs
|
|
* C -> semantics depend on flags: var_name or with_target
|
|
*
|
|
* If DUK_BC_TRYCATCH_FLAG_CATCH_BINDING set:
|
|
* C is constant index for catch binding variable name.
|
|
* Automatic declarative environment is established for
|
|
* the duration of the 'catch' clause.
|
|
*
|
|
* If DUK_BC_TRYCATCH_FLAG_WITH_BINDING set:
|
|
* C is reg/const index for with 'target value', which
|
|
* is coerced to an object and then used as a binding
|
|
* object for an environment record. The binding is
|
|
* initialized here, for the 'try' clause.
|
|
*
|
|
* Note that a TRYCATCH generated for a 'with' statement has no
|
|
* catch or finally parts.
|
|
*/
|
|
|
|
/* XXX: side effect handling is quite awkward here */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("TRYCATCH: reg_catch=%ld, var_name/with_target=%ld, have_catch=%ld, "
|
|
"have_finally=%ld, catch_binding=%ld, with_binding=%ld (flags=0x%02lx)",
|
|
(long) DUK_DEC_B(ins),
|
|
(long) DUK_DEC_C(ins),
|
|
(long) (DUK_DEC_A(ins) & DUK_BC_TRYCATCH_FLAG_HAVE_CATCH ? 1 : 0),
|
|
(long) (DUK_DEC_A(ins) & DUK_BC_TRYCATCH_FLAG_HAVE_FINALLY ? 1 : 0),
|
|
(long) (DUK_DEC_A(ins) & DUK_BC_TRYCATCH_FLAG_CATCH_BINDING ? 1 : 0),
|
|
(long) (DUK_DEC_A(ins) & DUK_BC_TRYCATCH_FLAG_WITH_BINDING ? 1 : 0),
|
|
(unsigned long) DUK_DEC_A(ins)));
|
|
|
|
a = DUK_DEC_A(ins);
|
|
b = DUK_DEC_B(ins);
|
|
c = DUK_DEC_C(ins);
|
|
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
|
|
/* 'with' target must be created first, in case we run out of memory */
|
|
/* XXX: refactor out? */
|
|
|
|
if (a & DUK_BC_TRYCATCH_FLAG_WITH_BINDING) {
|
|
DUK_DDD(DUK_DDDPRINT("need to initialize a with binding object"));
|
|
|
|
if (act->lex_env == NULL) {
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
DUK_DDD(DUK_DDDPRINT("delayed environment initialization"));
|
|
|
|
/* must relookup act in case of side effects */
|
|
duk_js_init_activation_environment_records_delayed(thr, act);
|
|
act = thr->callstack + thr->callstack_top - 1;
|
|
}
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
|
|
(void) duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_OBJENV),
|
|
-1); /* no prototype, updated below */
|
|
|
|
duk_push_tval(ctx, DUK__REGCONSTP(c));
|
|
duk_to_object(ctx, -1);
|
|
duk_dup(ctx, -1);
|
|
|
|
/* [ ... env target ] */
|
|
/* [ ... env target target ] */
|
|
|
|
duk_xdef_prop_stridx(thr, -3, DUK_STRIDX_INT_TARGET, DUK_PROPDESC_FLAGS_NONE);
|
|
duk_xdef_prop_stridx(thr, -2, DUK_STRIDX_INT_THIS, DUK_PROPDESC_FLAGS_NONE); /* always provideThis=true */
|
|
|
|
/* [ ... env ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("environment for with binding: %!iT",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
}
|
|
|
|
/* allocate catcher and populate it (should be atomic) */
|
|
|
|
duk_hthread_catchstack_grow(thr);
|
|
cat = thr->catchstack + thr->catchstack_top;
|
|
DUK_ASSERT(thr->catchstack_top + 1 <= thr->catchstack_size);
|
|
thr->catchstack_top++;
|
|
|
|
cat->flags = DUK_CAT_TYPE_TCF;
|
|
cat->h_varname = NULL;
|
|
|
|
if (a & DUK_BC_TRYCATCH_FLAG_HAVE_CATCH) {
|
|
cat->flags |= DUK_CAT_FLAG_CATCH_ENABLED;
|
|
}
|
|
if (a & DUK_BC_TRYCATCH_FLAG_HAVE_FINALLY) {
|
|
cat->flags |= DUK_CAT_FLAG_FINALLY_ENABLED;
|
|
}
|
|
if (a & DUK_BC_TRYCATCH_FLAG_CATCH_BINDING) {
|
|
DUK_DDD(DUK_DDDPRINT("catch binding flag set to catcher"));
|
|
cat->flags |= DUK_CAT_FLAG_CATCH_BINDING_ENABLED;
|
|
tv1 = DUK__CONSTP(c);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
cat->h_varname = DUK_TVAL_GET_STRING(tv1);
|
|
} else if (a & DUK_BC_TRYCATCH_FLAG_WITH_BINDING) {
|
|
/* env created above to stack top */
|
|
duk_hobject *new_env;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("lexenv active flag set to catcher"));
|
|
cat->flags |= DUK_CAT_FLAG_LEXENV_ACTIVE;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("activating object env: %!iT",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
new_env = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(new_env != NULL);
|
|
|
|
act = thr->callstack + thr->callstack_top - 1; /* relookup (side effects) */
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, new_env, act->lex_env);
|
|
|
|
act = thr->callstack + thr->callstack_top - 1; /* relookup (side effects) */
|
|
act->lex_env = new_env;
|
|
DUK_HOBJECT_INCREF(thr, new_env);
|
|
duk_pop(ctx);
|
|
} else {
|
|
;
|
|
}
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1; /* relookup (side effects) */
|
|
cat->callstack_index = thr->callstack_top - 1;
|
|
cat->pc_base = act->pc; /* pre-incremented, points to first jump slot */
|
|
cat->idx_base = (duk_size_t) (thr->valstack_bottom - thr->valstack) + b;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("TRYCATCH catcher: flags=0x%08lx, callstack_index=%ld, pc_base=%ld, "
|
|
"idx_base=%ld, h_varname=%!O",
|
|
(unsigned long) cat->flags, (long) cat->callstack_index,
|
|
(long) cat->pc_base, (long) cat->idx_base, (duk_heaphdr *) cat->h_varname));
|
|
|
|
act->pc += 2; /* skip jump slots */
|
|
break;
|
|
}
|
|
|
|
/* Pre/post inc/dec for register variables, important for loops. */
|
|
case DUK_OP_PREINCR:
|
|
case DUK_OP_PREDECR:
|
|
case DUK_OP_POSTINCR:
|
|
case DUK_OP_POSTDECR: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval *tv1, *tv2;
|
|
duk_tval tv_tmp;
|
|
duk_double_t x, y, z;
|
|
|
|
/* Two lowest bits of opcode are used to distinguish
|
|
* variants. Bit 0 = inc(0)/dec(1), bit 1 = pre(0)/post(1).
|
|
*/
|
|
DUK_ASSERT((DUK_OP_PREINCR & 0x03) == 0x00);
|
|
DUK_ASSERT((DUK_OP_PREDECR & 0x03) == 0x01);
|
|
DUK_ASSERT((DUK_OP_POSTINCR & 0x03) == 0x02);
|
|
DUK_ASSERT((DUK_OP_POSTDECR & 0x03) == 0x03);
|
|
|
|
tv1 = DUK__REGP(bc);
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv1)) {
|
|
duk_int64_t x_fi, y_fi, z_fi;
|
|
x_fi = DUK_TVAL_GET_FASTINT(tv1);
|
|
if (ins & DUK_ENC_OP(0x01)) {
|
|
if (x_fi == DUK_FASTINT_MIN) {
|
|
goto skip_fastint;
|
|
}
|
|
y_fi = x_fi - 1;
|
|
} else {
|
|
if (x_fi == DUK_FASTINT_MAX) {
|
|
goto skip_fastint;
|
|
}
|
|
y_fi = x_fi + 1;
|
|
}
|
|
|
|
DUK_TVAL_SET_FASTINT(tv1, y_fi); /* no need for refcount update */
|
|
|
|
tv2 = DUK__REGP(a);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv2);
|
|
z_fi = (ins & DUK_ENC_OP(0x02)) ? x_fi : y_fi;
|
|
DUK_TVAL_SET_FASTINT(tv2, z_fi); /* no need for incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
skip_fastint:
|
|
#endif
|
|
if (DUK_TVAL_IS_NUMBER(tv1)) {
|
|
/* Fast path for the case where the register
|
|
* is a number (e.g. loop counter).
|
|
*/
|
|
|
|
x = DUK_TVAL_GET_NUMBER(tv1);
|
|
if (ins & DUK_ENC_OP(0x01)) {
|
|
y = x - 1.0;
|
|
} else {
|
|
y = x + 1.0;
|
|
}
|
|
|
|
DUK_TVAL_SET_NUMBER(tv1, y); /* no need for refcount update */
|
|
} else {
|
|
x = duk_to_number(ctx, bc);
|
|
|
|
if (ins & DUK_ENC_OP(0x01)) {
|
|
y = x - 1.0;
|
|
} else {
|
|
y = x + 1.0;
|
|
}
|
|
|
|
duk_push_number(ctx, y);
|
|
duk_replace(ctx, bc);
|
|
}
|
|
|
|
tv2 = DUK__REGP(a);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv2);
|
|
z = (ins & DUK_ENC_OP(0x02)) ? x : y;
|
|
DUK_TVAL_SET_NUMBER(tv2, z); /* no need for incref */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
/* Preinc/predec for var-by-name, slow path. */
|
|
case DUK_OP_PREINCV:
|
|
case DUK_OP_PREDECV:
|
|
case DUK_OP_POSTINCV:
|
|
case DUK_OP_POSTDECV: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_double_t x, y;
|
|
duk_tval *tv1;
|
|
duk_hstring *name;
|
|
|
|
/* Two lowest bits of opcode are used to distinguish
|
|
* variants. Bit 0 = inc(0)/dec(1), bit 1 = pre(0)/post(1).
|
|
*/
|
|
DUK_ASSERT((DUK_OP_PREINCV & 0x03) == 0x00);
|
|
DUK_ASSERT((DUK_OP_PREDECV & 0x03) == 0x01);
|
|
DUK_ASSERT((DUK_OP_POSTINCV & 0x03) == 0x02);
|
|
DUK_ASSERT((DUK_OP_POSTDECV & 0x03) == 0x03);
|
|
|
|
tv1 = DUK__CONSTP(bc);
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv1));
|
|
name = DUK_TVAL_GET_STRING(tv1);
|
|
DUK_ASSERT(name != NULL);
|
|
(void) duk_js_getvar_activation(thr, act, name, 1 /*throw*/); /* -> [... val this] */
|
|
|
|
/* XXX: fastint fast path would be very useful here */
|
|
|
|
x = duk_to_number(ctx, -2);
|
|
duk_pop_2(ctx);
|
|
if (ins & DUK_ENC_OP(0x01)) {
|
|
y = x - 1.0;
|
|
} else {
|
|
y = x + 1.0;
|
|
}
|
|
|
|
duk_push_number(ctx, y);
|
|
tv1 = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv1 != NULL);
|
|
duk_js_putvar_activation(thr, act, name, tv1, DUK__STRICT());
|
|
duk_pop(ctx);
|
|
|
|
duk_push_number(ctx, (ins & DUK_ENC_OP(0x02)) ? x : y);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
/* Preinc/predec for object properties. */
|
|
case DUK_OP_PREINCP:
|
|
case DUK_OP_PREDECP:
|
|
case DUK_OP_POSTINCP:
|
|
case DUK_OP_POSTDECP: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t a = DUK_DEC_A(ins);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_tval *tv_obj;
|
|
duk_tval *tv_key;
|
|
duk_tval *tv_val;
|
|
duk_bool_t rc;
|
|
duk_double_t x, y;
|
|
|
|
/* A -> target reg
|
|
* B -> object reg/const (may be const e.g. in "'foo'[1]")
|
|
* C -> key reg/const
|
|
*/
|
|
|
|
/* Two lowest bits of opcode are used to distinguish
|
|
* variants. Bit 0 = inc(0)/dec(1), bit 1 = pre(0)/post(1).
|
|
*/
|
|
DUK_ASSERT((DUK_OP_PREINCP & 0x03) == 0x00);
|
|
DUK_ASSERT((DUK_OP_PREDECP & 0x03) == 0x01);
|
|
DUK_ASSERT((DUK_OP_POSTINCP & 0x03) == 0x02);
|
|
DUK_ASSERT((DUK_OP_POSTDECP & 0x03) == 0x03);
|
|
|
|
tv_obj = DUK__REGCONSTP(b);
|
|
tv_key = DUK__REGCONSTP(c);
|
|
rc = duk_hobject_getprop(thr, tv_obj, tv_key); /* -> [val] */
|
|
DUK_UNREF(rc); /* ignore */
|
|
tv_obj = NULL; /* invalidated */
|
|
tv_key = NULL; /* invalidated */
|
|
|
|
x = duk_to_number(ctx, -1);
|
|
duk_pop(ctx);
|
|
if (ins & DUK_ENC_OP(0x01)) {
|
|
y = x - 1.0;
|
|
} else {
|
|
y = x + 1.0;
|
|
}
|
|
|
|
duk_push_number(ctx, y);
|
|
tv_val = duk_get_tval(ctx, -1);
|
|
DUK_ASSERT(tv_val != NULL);
|
|
tv_obj = DUK__REGCONSTP(b);
|
|
tv_key = DUK__REGCONSTP(c);
|
|
rc = duk_hobject_putprop(thr, tv_obj, tv_key, tv_val, DUK__STRICT());
|
|
DUK_UNREF(rc); /* ignore */
|
|
tv_obj = NULL; /* invalidated */
|
|
tv_key = NULL; /* invalidated */
|
|
duk_pop(ctx);
|
|
|
|
duk_push_number(ctx, (ins & DUK_ENC_OP(0x02)) ? x : y);
|
|
duk_replace(ctx, (duk_idx_t) a);
|
|
break;
|
|
}
|
|
|
|
case DUK_OP_EXTRA: {
|
|
/* XXX: shared decoding of 'b' and 'c'? */
|
|
|
|
duk_small_uint_fast_t extraop = DUK_DEC_A(ins);
|
|
switch ((int) extraop) {
|
|
/* XXX: switch cast? */
|
|
|
|
case DUK_EXTRAOP_NOP: {
|
|
/* nop */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_INVALID: {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "INVALID opcode (%ld)", (long) DUK_DEC_BC(ins));
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LDTHIS: {
|
|
/* Note: 'this' may be bound to any value, not just an object */
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1, *tv2;
|
|
|
|
tv1 = DUK__REGP(bc);
|
|
tv2 = thr->valstack_bottom - 1; /* 'this binding' is just under bottom */
|
|
DUK_ASSERT(tv2 >= thr->valstack);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("LDTHIS: %!T to r%ld", (duk_tval *) tv2, (long) bc));
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_TVAL(tv1, tv2);
|
|
DUK_TVAL_INCREF(thr, tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LDUNDEF: {
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
tv1 = DUK__REGP(bc);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LDNULL: {
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
tv1 = DUK__REGP(bc);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_NULL(tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LDTRUE:
|
|
case DUK_EXTRAOP_LDFALSE: {
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
duk_small_uint_fast_t bval = (extraop == DUK_EXTRAOP_LDTRUE ? 1 : 0);
|
|
|
|
tv1 = DUK__REGP(bc);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_BOOLEAN(tv1, bval);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_NEWOBJ: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
|
|
duk_push_object(ctx);
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_NEWARR: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
|
|
duk_push_array(ctx);
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_SETALEN: {
|
|
duk_small_uint_fast_t b;
|
|
duk_small_uint_fast_t c;
|
|
duk_tval *tv1;
|
|
duk_hobject *h;
|
|
duk_uint32_t len;
|
|
|
|
b = DUK_DEC_B(ins); tv1 = DUK__REGP(b);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv1));
|
|
h = DUK_TVAL_GET_OBJECT(tv1);
|
|
|
|
c = DUK_DEC_C(ins); tv1 = DUK__REGP(c);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv1));
|
|
len = (duk_uint32_t) DUK_TVAL_GET_NUMBER(tv1);
|
|
|
|
duk_hobject_set_length(thr, h, len);
|
|
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_TYPEOF: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_push_hstring(ctx, duk_js_typeof(thr, DUK__REGP(bc)));
|
|
duk_replace(ctx, (duk_idx_t) bc);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_TYPEOFID: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_hstring *name;
|
|
duk_tval *tv;
|
|
|
|
/* B -> target register
|
|
* C -> constant index of identifier name
|
|
*/
|
|
|
|
tv = DUK__REGCONSTP(c); /* XXX: this could be a DUK__CONSTP instead */
|
|
DUK_ASSERT(DUK_TVAL_IS_STRING(tv));
|
|
name = DUK_TVAL_GET_STRING(tv);
|
|
if (duk_js_getvar_activation(thr, act, name, 0 /*throw*/)) {
|
|
/* -> [... val this] */
|
|
tv = duk_get_tval(ctx, -2);
|
|
duk_push_hstring(ctx, duk_js_typeof(thr, tv));
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
duk_pop_2(ctx);
|
|
} else {
|
|
/* unresolvable, no stack changes */
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_LC_UNDEFINED);
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_INITENUM: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
|
|
/*
|
|
* Enumeration semantics come from for-in statement, E5 Section 12.6.4.
|
|
* If called with 'null' or 'undefined', this opcode returns 'null' as
|
|
* the enumerator, which is special cased in NEXTENUM. This simplifies
|
|
* the compiler part
|
|
*/
|
|
|
|
/* B -> register for writing enumerator object
|
|
* C -> value to be enumerated (register)
|
|
*/
|
|
|
|
if (duk_is_null_or_undefined(ctx, (duk_idx_t) c)) {
|
|
duk_push_null(ctx);
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
} else {
|
|
duk_dup(ctx, (duk_idx_t) c);
|
|
duk_to_object(ctx, -1);
|
|
duk_hobject_enumerator_create(ctx, 0 /*enum_flags*/); /* [ ... val ] --> [ ... enum ] */
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_NEXTENUM: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
|
|
/*
|
|
* NEXTENUM checks whether the enumerator still has unenumerated
|
|
* keys. If so, the next key is loaded to the target register
|
|
* and the next instruction is skipped. Otherwise the next instruction
|
|
* will be executed, jumping out of the enumeration loop.
|
|
*/
|
|
|
|
/* B -> target register for next key
|
|
* C -> enum register
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("NEXTENUM: b->%!T, c->%!T",
|
|
(duk_tval *) duk_get_tval(ctx, (duk_idx_t) b),
|
|
(duk_tval *) duk_get_tval(ctx, (duk_idx_t) c)));
|
|
|
|
if (duk_is_object(ctx, (duk_idx_t) c)) {
|
|
/* XXX: assert 'c' is an enumerator */
|
|
duk_dup(ctx, (duk_idx_t) c);
|
|
if (duk_hobject_enumerator_next(ctx, 0 /*get_value*/)) {
|
|
/* [ ... enum ] -> [ ... next_key ] */
|
|
DUK_DDD(DUK_DDDPRINT("enum active, next key is %!T, skip jump slot ",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
act->pc++;;
|
|
} else {
|
|
/* [ ... enum ] -> [ ... ] */
|
|
DUK_DDD(DUK_DDDPRINT("enum finished, execute jump slot"));
|
|
duk_push_undefined(ctx);
|
|
}
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
} else {
|
|
/* 'null' enumerator case -> behave as with an empty enumerator */
|
|
DUK_ASSERT(duk_is_null(ctx, (duk_idx_t) c));
|
|
DUK_DDD(DUK_DDDPRINT("enum is null, execute jump slot"));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_INITSET:
|
|
case DUK_EXTRAOP_INITSETI:
|
|
case DUK_EXTRAOP_INITGET:
|
|
case DUK_EXTRAOP_INITGETI: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bool_t is_set = (extraop == DUK_EXTRAOP_INITSET || extraop == DUK_EXTRAOP_INITSETI);
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_uint_fast_t idx;
|
|
|
|
/* B -> object register
|
|
* C -> C+0 contains key, C+1 closure (value)
|
|
*/
|
|
|
|
/*
|
|
* INITSET/INITGET are only used to initialize object literal keys.
|
|
* The compiler ensures that there cannot be a previous data property
|
|
* of the same name. It also ensures that setter and getter can only
|
|
* be initialized once (or not at all).
|
|
*/
|
|
|
|
idx = (duk_uint_fast_t) DUK_DEC_C(ins);
|
|
if (extraop == DUK_EXTRAOP_INITSETI || extraop == DUK_EXTRAOP_INITGETI) {
|
|
duk_tval *tv_ind = DUK__REGP(idx);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_ind));
|
|
idx = (duk_uint_fast_t) DUK_TVAL_GET_NUMBER(tv_ind);
|
|
}
|
|
|
|
#if defined(DUK_USE_EXEC_INDIRECT_BOUND_CHECK)
|
|
if (idx + 2 > (duk_uint_fast_t) duk_get_top(ctx)) {
|
|
/* XXX: use duk_is_valid_index() instead? */
|
|
/* XXX: improve check; check against nregs, not against top */
|
|
DUK__INTERNAL_ERROR("INITSET/INITGET out of bounds");
|
|
}
|
|
#endif
|
|
|
|
/* XXX: this is now a very unoptimal implementation -- this can be
|
|
* made very simple by direct manipulation of the object internals,
|
|
* given the guarantees above.
|
|
*/
|
|
|
|
duk_push_hobject_bidx(ctx, DUK_BIDX_OBJECT_CONSTRUCTOR);
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_DEFINE_PROPERTY);
|
|
duk_push_undefined(ctx);
|
|
duk_dup(ctx, (duk_idx_t) b);
|
|
duk_dup(ctx, (duk_idx_t) (idx + 0));
|
|
duk_push_object(ctx); /* -> [ Object defineProperty undefined obj key desc ] */
|
|
|
|
duk_push_true(ctx);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_ENUMERABLE);
|
|
duk_push_true(ctx);
|
|
duk_put_prop_stridx(ctx, -2, DUK_STRIDX_CONFIGURABLE);
|
|
duk_dup(ctx, (duk_idx_t) (idx + 1));
|
|
duk_put_prop_stridx(ctx, -2, (is_set ? DUK_STRIDX_SET : DUK_STRIDX_GET));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("INITGET/INITSET: obj=%!T, key=%!T, desc=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -3),
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
duk_call_method(ctx, 3); /* -> [ Object res ] */
|
|
duk_pop_2(ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("INITGET/INITSET AFTER: obj=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, (duk_idx_t) b)));
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_ENDTRY: {
|
|
duk_catcher *cat;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
DUK_ASSERT(thr->catchstack_top >= 1);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(thr->catchstack[thr->catchstack_top - 1].callstack_index == thr->callstack_top - 1);
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("ENDTRY: clearing catch active flag (regardless of whether it was set or not)"));
|
|
DUK_CAT_CLEAR_CATCH_ENABLED(cat);
|
|
|
|
if (DUK_CAT_HAS_FINALLY_ENABLED(cat)) {
|
|
DUK_DDD(DUK_DDDPRINT("ENDTRY: finally part is active, jump through 2nd jump slot with 'normal continuation'"));
|
|
|
|
tv1 = thr->valstack + cat->idx_base;
|
|
DUK_ASSERT(tv1 >= thr->valstack && tv1 < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
tv1 = NULL;
|
|
|
|
tv1 = thr->valstack + cat->idx_base + 1;
|
|
DUK_ASSERT(tv1 >= thr->valstack && tv1 < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_NUMBER(tv1, (duk_double_t) DUK_LJ_TYPE_NORMAL); /* XXX: set int */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
tv1 = NULL;
|
|
|
|
DUK_CAT_CLEAR_FINALLY_ENABLED(cat);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("ENDTRY: no finally part, dismantle catcher, jump through 2nd jump slot (to end of statement)"));
|
|
duk_hthread_catchstack_unwind(thr, thr->catchstack_top - 1);
|
|
/* no need to unwind callstack */
|
|
}
|
|
|
|
act->pc = cat->pc_base + 1;
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_ENDCATCH: {
|
|
duk_catcher *cat;
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv1;
|
|
|
|
DUK_ASSERT(thr->catchstack_top >= 1);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(thr->catchstack[thr->catchstack_top - 1].callstack_index == thr->callstack_top - 1);
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1;
|
|
DUK_ASSERT(!DUK_CAT_HAS_CATCH_ENABLED(cat)); /* cleared before entering catch part */
|
|
|
|
if (DUK_CAT_HAS_LEXENV_ACTIVE(cat)) {
|
|
duk_hobject *prev_env;
|
|
|
|
/* 'with' binding has no catch clause, so can't be here unless a normal try-catch */
|
|
DUK_ASSERT(DUK_CAT_HAS_CATCH_BINDING_ENABLED(cat));
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("ENDCATCH: popping catcher part lexical environment"));
|
|
|
|
prev_env = act->lex_env;
|
|
DUK_ASSERT(prev_env != NULL);
|
|
act->lex_env = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, prev_env);
|
|
DUK_CAT_CLEAR_LEXENV_ACTIVE(cat);
|
|
DUK_HOBJECT_DECREF(thr, prev_env); /* side effects */
|
|
}
|
|
|
|
if (DUK_CAT_HAS_FINALLY_ENABLED(cat)) {
|
|
DUK_DDD(DUK_DDDPRINT("ENDCATCH: finally part is active, jump through 2nd jump slot with 'normal continuation'"));
|
|
|
|
tv1 = thr->valstack + cat->idx_base;
|
|
DUK_ASSERT(tv1 >= thr->valstack && tv1 < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_UNDEFINED_ACTUAL(tv1);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
tv1 = NULL;
|
|
|
|
tv1 = thr->valstack + cat->idx_base + 1;
|
|
DUK_ASSERT(tv1 >= thr->valstack && tv1 < thr->valstack_top);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv1);
|
|
DUK_TVAL_SET_NUMBER(tv1, (duk_double_t) DUK_LJ_TYPE_NORMAL); /* XXX: set int */
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* side effects */
|
|
tv1 = NULL;
|
|
|
|
DUK_CAT_CLEAR_FINALLY_ENABLED(cat);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("ENDCATCH: no finally part, dismantle catcher, jump through 2nd jump slot (to end of statement)"));
|
|
duk_hthread_catchstack_unwind(thr, thr->catchstack_top - 1);
|
|
/* no need to unwind callstack */
|
|
}
|
|
|
|
act->pc = cat->pc_base + 1;
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_ENDFIN: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_catcher *cat;
|
|
duk_tval *tv1;
|
|
duk_small_uint_fast_t cont_type;
|
|
|
|
DUK_ASSERT(thr->catchstack_top >= 1);
|
|
DUK_ASSERT(thr->callstack_top >= 1);
|
|
DUK_ASSERT(thr->catchstack[thr->catchstack_top - 1].callstack_index == thr->callstack_top - 1);
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1;
|
|
|
|
/* CATCH flag may be enabled or disabled here; it may be enabled if
|
|
* the statement has a catch block but the try block does not throw
|
|
* an error.
|
|
*/
|
|
DUK_ASSERT(!DUK_CAT_HAS_FINALLY_ENABLED(cat)); /* cleared before entering finally */
|
|
/* XXX: assert idx_base */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("ENDFIN: completion value=%!T, type=%!T",
|
|
(duk_tval *) (thr->valstack + cat->idx_base + 0),
|
|
(duk_tval *) (thr->valstack + cat->idx_base + 1)));
|
|
|
|
tv1 = thr->valstack + cat->idx_base + 1; /* type */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv1));
|
|
cont_type = (duk_small_uint_fast_t) DUK_TVAL_GET_NUMBER(tv1);
|
|
|
|
if (cont_type == DUK_LJ_TYPE_NORMAL) {
|
|
DUK_DDD(DUK_DDDPRINT("ENDFIN: finally part finishing with 'normal' (non-abrupt) completion -> "
|
|
"dismantle catcher, resume execution after ENDFIN"));
|
|
duk_hthread_catchstack_unwind(thr, thr->catchstack_top - 1);
|
|
/* no need to unwind callstack */
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("ENDFIN: finally part finishing with abrupt completion, lj_type=%ld -> "
|
|
"dismantle catcher, re-throw error",
|
|
(long) cont_type));
|
|
|
|
duk_push_tval(ctx, thr->valstack + cat->idx_base);
|
|
|
|
/* XXX: assert lj type valid */
|
|
duk_err_setup_heap_ljstate(thr, (duk_small_int_t) cont_type);
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* always in executor */
|
|
duk_err_longjmp(thr);
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/* continue execution after ENDFIN */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_THROW: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
|
|
/* Note: errors are augmented when they are created, not
|
|
* when they are thrown. So, don't augment here, it would
|
|
* break re-throwing for instance.
|
|
*/
|
|
|
|
duk_dup(ctx, (duk_idx_t) bc);
|
|
DUK_DDD(DUK_DDDPRINT("THROW ERROR (BYTECODE): %!dT (before throw augment)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
#if defined(DUK_USE_AUGMENT_ERROR_THROW)
|
|
duk_err_augment_error_throw(thr);
|
|
DUK_DDD(DUK_DDDPRINT("THROW ERROR (BYTECODE): %!dT (after throw augment)",
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
#endif
|
|
|
|
duk_err_setup_heap_ljstate(thr, DUK_LJ_TYPE_THROW);
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* always in executor */
|
|
duk_err_longjmp(thr);
|
|
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_INVLHS: {
|
|
DUK_ERROR(thr, DUK_ERR_REFERENCE_ERROR, "invalid lvalue");
|
|
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_UNM:
|
|
case DUK_EXTRAOP_UNP: {
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk__vm_arith_unary_op(thr, DUK__REGP(bc), bc, extraop);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_DEBUGGER: {
|
|
/* Opcode only emitted by compiler when debugger
|
|
* support is enabled. Ignore it silently without
|
|
* debugger support, in case it has been loaded
|
|
* from precompiled bytecode.
|
|
*/
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
DUK_D(DUK_DPRINT("DEBUGGER statement encountered, halt execution"));
|
|
if (DUK_HEAP_IS_DEBUGGER_ATTACHED(thr->heap)) {
|
|
DUK_HEAP_SET_PAUSED(thr->heap);
|
|
goto restart_execution;
|
|
}
|
|
#else
|
|
DUK_D(DUK_DPRINT("DEBUGGER statement ignored, no debugger support"));
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_BREAK: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
|
|
/* always the "slow break" variant (longjmp'ing); a "fast break" is
|
|
* simply an DUK_OP_JUMP.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("BREAK: %ld", (long) bc));
|
|
|
|
duk_push_uint(ctx, (duk_uint_t) bc);
|
|
duk_err_setup_heap_ljstate(thr, DUK_LJ_TYPE_BREAK);
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* always in executor */
|
|
duk_err_longjmp(thr);
|
|
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_CONTINUE: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
|
|
/* always the "slow continue" variant (longjmp'ing); a "fast continue" is
|
|
* simply an DUK_OP_JUMP.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("CONTINUE: %ld", (long) bc));
|
|
|
|
duk_push_uint(ctx, (duk_uint_t) bc);
|
|
duk_err_setup_heap_ljstate(thr, DUK_LJ_TYPE_CONTINUE);
|
|
|
|
DUK_ASSERT(thr->heap->lj.jmpbuf_ptr != NULL); /* always in executor */
|
|
duk_err_longjmp(thr);
|
|
|
|
DUK_UNREACHABLE();
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_BNOT: {
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
|
|
duk__vm_bitwise_not(thr, DUK__REGP(bc), bc);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LNOT: {
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
duk_tval *tv1;
|
|
|
|
tv1 = DUK__REGP(bc);
|
|
duk__vm_logical_not(thr, tv1, tv1);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_INSTOF: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
tmp = duk_js_instanceof(thr, DUK__REGP(b), DUK__REGCONSTP(c));
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_IN: {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_fast_t b = DUK_DEC_B(ins);
|
|
duk_small_uint_fast_t c = DUK_DEC_C(ins);
|
|
duk_bool_t tmp;
|
|
|
|
tmp = duk_js_in(thr, DUK__REGP(b), DUK__REGCONSTP(c));
|
|
duk_push_boolean(ctx, tmp);
|
|
duk_replace(ctx, (duk_idx_t) b);
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LABEL: {
|
|
duk_catcher *cat;
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
|
|
/* allocate catcher and populate it (should be atomic) */
|
|
|
|
duk_hthread_catchstack_grow(thr);
|
|
cat = thr->catchstack + thr->catchstack_top;
|
|
thr->catchstack_top++;
|
|
|
|
cat->flags = DUK_CAT_TYPE_LABEL | (bc << DUK_CAT_LABEL_SHIFT);
|
|
cat->callstack_index = thr->callstack_top - 1;
|
|
cat->pc_base = act->pc; /* pre-incremented, points to first jump slot */
|
|
cat->idx_base = 0; /* unused for label */
|
|
cat->h_varname = NULL;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("LABEL catcher: flags=0x%08lx, callstack_index=%ld, pc_base=%ld, "
|
|
"idx_base=%ld, h_varname=%!O, label_id=%ld",
|
|
(long) cat->flags, (long) cat->callstack_index, (long) cat->pc_base,
|
|
(long) cat->idx_base, (duk_heaphdr *) cat->h_varname, (long) DUK_CAT_GET_LABEL(cat)));
|
|
|
|
act->pc += 2; /* skip jump slots */
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_ENDLABEL: {
|
|
duk_catcher *cat;
|
|
#if defined(DUK_USE_DDDPRINT) || defined(DUK_USE_ASSERTIONS)
|
|
duk_uint_fast_t bc = DUK_DEC_BC(ins);
|
|
#endif
|
|
#if defined(DUK_USE_DDDPRINT)
|
|
DUK_DDD(DUK_DDDPRINT("ENDLABEL %ld", (long) bc));
|
|
#endif
|
|
|
|
DUK_ASSERT(thr->catchstack_top >= 1);
|
|
|
|
cat = thr->catchstack + thr->catchstack_top - 1;
|
|
DUK_UNREF(cat);
|
|
DUK_ASSERT(DUK_CAT_GET_TYPE(cat) == DUK_CAT_TYPE_LABEL);
|
|
DUK_ASSERT((duk_uint_fast_t) DUK_CAT_GET_LABEL(cat) == bc);
|
|
|
|
duk_hthread_catchstack_unwind(thr, thr->catchstack_top - 1);
|
|
/* no need to unwind callstack */
|
|
break;
|
|
}
|
|
|
|
#ifdef DUK_USE_DEBUG
|
|
case DUK_EXTRAOP_DUMPREG: {
|
|
DUK_D(DUK_DPRINT("DUMPREG: %ld -> %!T",
|
|
(long) DUK_DEC_BC(ins),
|
|
(duk_tval *) duk_get_tval((duk_context *) thr, (duk_idx_t) DUK_DEC_BC(ins))));
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_DUMPREGS: {
|
|
duk_idx_t i, i_top;
|
|
i_top = duk_get_top((duk_context *) thr);
|
|
DUK_D(DUK_DPRINT("DUMPREGS: %ld regs", (long) i_top));
|
|
for (i = 0; i < i_top; i++) {
|
|
DUK_D(DUK_DPRINT(" r%ld -> %!dT",
|
|
(long) i,
|
|
(duk_tval *) duk_get_tval((duk_context *) thr, i)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case DUK_EXTRAOP_LOGMARK: {
|
|
DUK_D(DUK_DPRINT("LOGMARK: mark %ld at pc %ld", (long) DUK_DEC_BC(ins), (long) (act->pc - 1))); /* -1, autoinc */
|
|
break;
|
|
}
|
|
#endif /* DUK_USE_DEBUG */
|
|
|
|
default: {
|
|
DUK__INTERNAL_ERROR("invalid extra opcode");
|
|
}
|
|
|
|
} /* end switch */
|
|
|
|
break;
|
|
}
|
|
|
|
default: {
|
|
/* this should never be possible, because the switch-case is
|
|
* comprehensive
|
|
*/
|
|
DUK__INTERNAL_ERROR("invalid opcode");
|
|
break;
|
|
}
|
|
|
|
} /* end switch */
|
|
}
|
|
DUK_UNREACHABLE();
|
|
|
|
#ifndef DUK_USE_VERBOSE_EXECUTOR_ERRORS
|
|
internal_error:
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "internal error in bytecode executor");
|
|
#endif
|
|
}
|
|
|
|
#undef DUK__INTERNAL_ERROR
|
|
#line 1 "duk_js_ops.c"
|
|
/*
|
|
* Ecmascript specification algorithm and conversion helpers.
|
|
*
|
|
* These helpers encapsulate the primitive Ecmascript operation
|
|
* semantics, and are used by the bytecode executor and the API
|
|
* (among other places). Note that some primitives are only
|
|
* implemented as part of the API and have no "internal" helper.
|
|
* (This is the case when an internal helper would not really be
|
|
* useful; e.g. the operation is rare, uses value stack heavily,
|
|
* etc.)
|
|
*
|
|
* The operation arguments depend on what is required to implement
|
|
* the operation:
|
|
*
|
|
* - If an operation is simple and stateless, and has no side
|
|
* effects, it won't take an duk_hthread argument and its
|
|
* arguments may be duk_tval pointers (which are safe as long
|
|
* as no side effects take place).
|
|
*
|
|
* - If complex coercions are required (e.g. a "ToNumber" coercion)
|
|
* or errors may be thrown, the operation takes an duk_hthread
|
|
* argument. This also implies that the operation may have
|
|
* arbitrary side effects, invalidating any duk_tval pointers.
|
|
*
|
|
* - For operations with potential side effects, arguments can be
|
|
* taken in several ways:
|
|
*
|
|
* a) as duk_tval pointers, which makes sense if the "common case"
|
|
* can be resolved without side effects (e.g. coercion); the
|
|
* arguments are pushed to the valstack for coercion if
|
|
* necessary
|
|
*
|
|
* b) as duk_tval values
|
|
*
|
|
* c) implicitly on value stack top
|
|
*
|
|
* d) as indices to the value stack
|
|
*
|
|
* Future work:
|
|
*
|
|
* - Argument styles may not be the most sensible in every case now.
|
|
*
|
|
* - In-place coercions might be useful for several operations, if
|
|
* in-place coercion is OK for the bytecode executor and the API.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* [[DefaultValue]] (E5 Section 8.12.8)
|
|
*
|
|
* ==> implemented in the API.
|
|
*/
|
|
|
|
/*
|
|
* ToPrimitive() (E5 Section 9.1)
|
|
*
|
|
* ==> implemented in the API.
|
|
*/
|
|
|
|
/*
|
|
* ToBoolean() (E5 Section 9.2)
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_js_toboolean(duk_tval *tv) {
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL:
|
|
return 0;
|
|
case DUK_TAG_BOOLEAN:
|
|
return DUK_TVAL_GET_BOOLEAN(tv);
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (DUK_HSTRING_GET_BYTELEN(h) > 0 ? 1 : 0);
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
return 1;
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
/* mimic semantics for strings */
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
DUK_ASSERT(h != NULL);
|
|
return (DUK_HBUFFER_GET_SIZE(h) > 0 ? 1 : 0);
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
void *p = DUK_TVAL_GET_POINTER(tv);
|
|
return (p != NULL ? 1 : 0);
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
return 1;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
if (DUK_TVAL_GET_FASTINT(tv) != 0) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
duk_double_t d;
|
|
int c;
|
|
DUK_ASSERT(DUK_TVAL_IS_DOUBLE(tv));
|
|
d = DUK_TVAL_GET_DOUBLE(tv);
|
|
c = DUK_FPCLASSIFY((double) d);
|
|
if (c == DUK_FP_ZERO || c == DUK_FP_NAN) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/*
|
|
* ToNumber() (E5 Section 9.3)
|
|
*
|
|
* Value to convert must be on stack top, and is popped before exit.
|
|
*
|
|
* See: http://www.cs.indiana.edu/~burger/FP-Printing-PLDI96.pdf
|
|
* http://www.cs.indiana.edu/~burger/fp/index.html
|
|
*
|
|
* Notes on the conversion:
|
|
*
|
|
* - There are specific requirements on the accuracy of the conversion
|
|
* through a "Mathematical Value" (MV), so this conversion is not
|
|
* trivial.
|
|
*
|
|
* - Quick rejects (e.g. based on first char) are difficult because
|
|
* the grammar allows leading and trailing white space.
|
|
*
|
|
* - Quick reject based on string length is difficult even after
|
|
* accounting for white space; there may be arbitrarily many
|
|
* decimal digits.
|
|
*
|
|
* - Standard grammar allows decimal values ("123"), hex values
|
|
* ("0x123") and infinities
|
|
*
|
|
* - Unlike source code literals, ToNumber() coerces empty strings
|
|
* and strings with only whitespace to zero (not NaN).
|
|
*/
|
|
|
|
/* E5 Section 9.3.1 */
|
|
DUK_LOCAL duk_double_t duk__tonumber_string_raw(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_small_uint_t s2n_flags;
|
|
duk_double_t d;
|
|
|
|
/* Quite lenient, e.g. allow empty as zero, but don't allow trailing
|
|
* garbage.
|
|
*/
|
|
s2n_flags = DUK_S2N_FLAG_TRIM_WHITE |
|
|
DUK_S2N_FLAG_ALLOW_EXP |
|
|
DUK_S2N_FLAG_ALLOW_PLUS |
|
|
DUK_S2N_FLAG_ALLOW_MINUS |
|
|
DUK_S2N_FLAG_ALLOW_INF |
|
|
DUK_S2N_FLAG_ALLOW_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_NAKED_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_EMPTY_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO |
|
|
DUK_S2N_FLAG_ALLOW_LEADING_ZERO |
|
|
DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT;
|
|
|
|
duk_numconv_parse(ctx, 10 /*radix*/, s2n_flags);
|
|
d = duk_get_number(ctx, -1);
|
|
duk_pop(ctx);
|
|
|
|
return d;
|
|
}
|
|
|
|
DUK_INTERNAL duk_double_t duk_js_tonumber(duk_hthread *thr, duk_tval *tv) {
|
|
duk_context *ctx = (duk_hthread *) thr;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(tv != NULL);
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv)) {
|
|
case DUK_TAG_UNDEFINED: {
|
|
/* return a specific NaN (although not strictly necessary) */
|
|
duk_double_union du;
|
|
DUK_DBLUNION_SET_NAN(&du);
|
|
DUK_ASSERT(DUK_DBLUNION_IS_NORMALIZED(&du));
|
|
return du.d;
|
|
}
|
|
case DUK_TAG_NULL: {
|
|
/* +0.0 */
|
|
return 0.0;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
if (DUK_TVAL_IS_BOOLEAN_TRUE(tv)) {
|
|
return 1.0;
|
|
}
|
|
return 0.0;
|
|
}
|
|
case DUK_TAG_STRING: {
|
|
duk_hstring *h = DUK_TVAL_GET_STRING(tv);
|
|
duk_push_hstring(ctx, h);
|
|
return duk__tonumber_string_raw(thr);
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
/* Note: ToPrimitive(object,hint) == [[DefaultValue]](object,hint),
|
|
* so use [[DefaultValue]] directly.
|
|
*/
|
|
duk_double_t d;
|
|
duk_push_tval(ctx, tv);
|
|
duk_to_defaultvalue(ctx, -1, DUK_HINT_NUMBER); /* 'tv' becomes invalid */
|
|
|
|
/* recursive call for a primitive value (guaranteed not to cause second
|
|
* recursion).
|
|
*/
|
|
d = duk_js_tonumber(thr, duk_require_tval(ctx, -1));
|
|
|
|
duk_pop(ctx);
|
|
return d;
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
/* Coerce like a string. This makes sense because addition also treats
|
|
* buffers like strings.
|
|
*/
|
|
duk_hbuffer *h = DUK_TVAL_GET_BUFFER(tv);
|
|
duk_push_hbuffer(ctx, h);
|
|
duk_to_string(ctx, -1); /* XXX: expensive, but numconv now expects to see a string */
|
|
return duk__tonumber_string_raw(thr);
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
/* Coerce like boolean */
|
|
void *p = DUK_TVAL_GET_POINTER(tv);
|
|
return (p != NULL ? 1.0 : 0.0);
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
/* +(function(){}) -> NaN */
|
|
return DUK_DOUBLE_NAN;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
return (duk_double_t) DUK_TVAL_GET_FASTINT(tv);
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
DUK_ASSERT(DUK_TVAL_IS_DOUBLE(tv));
|
|
return DUK_TVAL_GET_DOUBLE(tv);
|
|
}
|
|
}
|
|
|
|
DUK_UNREACHABLE();
|
|
}
|
|
|
|
/*
|
|
* ToInteger() (E5 Section 9.4)
|
|
*/
|
|
|
|
/* exposed, used by e.g. duk_bi_date.c */
|
|
DUK_INTERNAL duk_double_t duk_js_tointeger_number(duk_double_t x) {
|
|
duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
|
|
if (c == DUK_FP_NAN) {
|
|
return 0.0;
|
|
} else if (c == DUK_FP_ZERO || c == DUK_FP_INFINITE) {
|
|
/* XXX: FP_ZERO check can be removed, the else clause handles it
|
|
* correctly (preserving sign).
|
|
*/
|
|
return x;
|
|
} else {
|
|
duk_small_int_t s = (duk_small_int_t) DUK_SIGNBIT(x);
|
|
x = DUK_FLOOR(DUK_FABS(x)); /* truncate towards zero */
|
|
if (s) {
|
|
x = -x;
|
|
}
|
|
return x;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL duk_double_t duk_js_tointeger(duk_hthread *thr, duk_tval *tv) {
|
|
/* XXX: fastint */
|
|
duk_double_t d = duk_js_tonumber(thr, tv); /* invalidates tv */
|
|
return duk_js_tointeger_number(d);
|
|
}
|
|
|
|
/*
|
|
* ToInt32(), ToUint32(), ToUint16() (E5 Sections 9.5, 9.6, 9.7)
|
|
*/
|
|
|
|
/* combined algorithm matching E5 Sections 9.5 and 9.6 */
|
|
DUK_LOCAL duk_double_t duk__toint32_touint32_helper(duk_double_t x, duk_bool_t is_toint32) {
|
|
duk_small_int_t c = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
duk_small_int_t s;
|
|
|
|
if (c == DUK_FP_NAN || c == DUK_FP_ZERO || c == DUK_FP_INFINITE) {
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
/* x = sign(x) * floor(abs(x)), i.e. truncate towards zero, keep sign */
|
|
s = (duk_small_int_t) DUK_SIGNBIT(x);
|
|
x = DUK_FLOOR(DUK_FABS(x));
|
|
if (s) {
|
|
x = -x;
|
|
}
|
|
|
|
/* NOTE: fmod(x) result sign is same as sign of x, which
|
|
* differs from what Javascript wants (see Section 9.6).
|
|
*/
|
|
|
|
x = DUK_FMOD(x, DUK_DOUBLE_2TO32); /* -> x in ]-2**32, 2**32[ */
|
|
|
|
if (x < 0.0) {
|
|
x += DUK_DOUBLE_2TO32;
|
|
}
|
|
/* -> x in [0, 2**32[ */
|
|
|
|
if (is_toint32) {
|
|
if (x >= DUK_DOUBLE_2TO31) {
|
|
/* x in [2**31, 2**32[ */
|
|
|
|
x -= DUK_DOUBLE_2TO32; /* -> x in [-2**31,2**31[ */
|
|
}
|
|
}
|
|
|
|
return x;
|
|
}
|
|
|
|
DUK_INTERNAL duk_int32_t duk_js_toint32(duk_hthread *thr, duk_tval *tv) {
|
|
duk_double_t d;
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv)) {
|
|
return DUK_TVAL_GET_FASTINT_I32(tv);
|
|
}
|
|
#endif
|
|
|
|
d = duk_js_tonumber(thr, tv); /* invalidates tv */
|
|
d = duk__toint32_touint32_helper(d, 1);
|
|
DUK_ASSERT(DUK_FPCLASSIFY(d) == DUK_FP_ZERO || DUK_FPCLASSIFY(d) == DUK_FP_NORMAL);
|
|
DUK_ASSERT(d >= -2147483648.0 && d <= 2147483647.0); /* [-0x80000000,0x7fffffff] */
|
|
DUK_ASSERT(d == ((duk_double_t) ((duk_int32_t) d))); /* whole, won't clip */
|
|
return (duk_int32_t) d;
|
|
}
|
|
|
|
|
|
DUK_INTERNAL duk_uint32_t duk_js_touint32(duk_hthread *thr, duk_tval *tv) {
|
|
duk_double_t d;
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv)) {
|
|
return DUK_TVAL_GET_FASTINT_U32(tv);
|
|
}
|
|
#endif
|
|
|
|
d = duk_js_tonumber(thr, tv); /* invalidates tv */
|
|
d = duk__toint32_touint32_helper(d, 0);
|
|
DUK_ASSERT(DUK_FPCLASSIFY(d) == DUK_FP_ZERO || DUK_FPCLASSIFY(d) == DUK_FP_NORMAL);
|
|
DUK_ASSERT(d >= 0.0 && d <= 4294967295.0); /* [0x00000000, 0xffffffff] */
|
|
DUK_ASSERT(d == ((duk_double_t) ((duk_uint32_t) d))); /* whole, won't clip */
|
|
return (duk_uint32_t) d;
|
|
|
|
}
|
|
|
|
DUK_INTERNAL duk_uint16_t duk_js_touint16(duk_hthread *thr, duk_tval *tv) {
|
|
/* should be a safe way to compute this */
|
|
return (duk_uint16_t) (duk_js_touint32(thr, tv) & 0x0000ffffU);
|
|
}
|
|
|
|
/*
|
|
* ToString() (E5 Section 9.8)
|
|
*
|
|
* ==> implemented in the API.
|
|
*/
|
|
|
|
/*
|
|
* ToObject() (E5 Section 9.9)
|
|
*
|
|
* ==> implemented in the API.
|
|
*/
|
|
|
|
/*
|
|
* CheckObjectCoercible() (E5 Section 9.10)
|
|
*
|
|
* Note: no API equivalent now.
|
|
*/
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL void duk_js_checkobjectcoercible(duk_hthread *thr, duk_tval *tv_x) {
|
|
duk_small_uint_t tag = DUK_TVAL_GET_TAG(tv_x);
|
|
|
|
/* Note: this must match ToObject() behavior */
|
|
|
|
if (tag == DUK_TAG_UNDEFINED ||
|
|
tag == DUK_TAG_NULL ||
|
|
tag == DUK_TAG_POINTER ||
|
|
tag == DUK_TAG_BUFFER) {
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "not object coercible");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* IsCallable() (E5 Section 9.11)
|
|
*
|
|
* XXX: API equivalent is a separate implementation now, and this has
|
|
* currently no callers.
|
|
*/
|
|
|
|
#if 0 /* unused */
|
|
DUK_INTERNAL duk_bool_t duk_js_iscallable(duk_tval *tv_x) {
|
|
duk_hobject *obj;
|
|
|
|
if (!DUK_TVAL_IS_OBJECT(tv_x)) {
|
|
return 0;
|
|
}
|
|
obj = DUK_TVAL_GET_OBJECT(tv_x);
|
|
DUK_ASSERT(obj != NULL);
|
|
|
|
return DUK_HOBJECT_IS_CALLABLE(obj);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Loose equality, strict equality, and SameValue (E5 Sections 11.9.1, 11.9.4,
|
|
* 9.12). These have much in common so they can share some helpers.
|
|
*
|
|
* Future work notes:
|
|
*
|
|
* - Current implementation (and spec definition) has recursion; this should
|
|
* be fixed if possible.
|
|
*
|
|
* - String-to-number coercion should be possible without going through the
|
|
* value stack (and be more compact) if a shared helper is invoked.
|
|
*/
|
|
|
|
/* Note that this is the same operation for strict and loose equality:
|
|
* - E5 Section 11.9.3, step 1.c (loose)
|
|
* - E5 Section 11.9.6, step 4 (strict)
|
|
*/
|
|
|
|
DUK_LOCAL duk_bool_t duk__js_equals_number(duk_double_t x, duk_double_t y) {
|
|
#if defined(DUK_USE_PARANOID_MATH)
|
|
/* Straightforward algorithm, makes fewer compiler assumptions. */
|
|
duk_small_int_t cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
duk_small_int_t cy = (duk_small_int_t) DUK_FPCLASSIFY(y);
|
|
if (cx == DUK_FP_NAN || cy == DUK_FP_NAN) {
|
|
return 0;
|
|
}
|
|
if (cx == DUK_FP_ZERO && cy == DUK_FP_ZERO) {
|
|
return 1;
|
|
}
|
|
if (x == y) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
#else /* DUK_USE_PARANOID_MATH */
|
|
/* Better equivalent algorithm. If the compiler is compliant, C and
|
|
* Ecmascript semantics are identical for this particular comparison.
|
|
* In particular, NaNs must never compare equal and zeroes must compare
|
|
* equal regardless of sign. Could also use a macro, but this inlines
|
|
* already nicely (no difference on gcc, for instance).
|
|
*/
|
|
if (x == y) {
|
|
/* IEEE requires that NaNs compare false */
|
|
DUK_ASSERT(DUK_FPCLASSIFY(x) != DUK_FP_NAN);
|
|
DUK_ASSERT(DUK_FPCLASSIFY(y) != DUK_FP_NAN);
|
|
return 1;
|
|
} else {
|
|
/* IEEE requires that zeros compare the same regardless
|
|
* of their signed, so if both x and y are zeroes, they
|
|
* are caught above.
|
|
*/
|
|
DUK_ASSERT(!(DUK_FPCLASSIFY(x) == DUK_FP_ZERO && DUK_FPCLASSIFY(y) == DUK_FP_ZERO));
|
|
return 0;
|
|
}
|
|
#endif /* DUK_USE_PARANOID_MATH */
|
|
}
|
|
|
|
DUK_LOCAL duk_bool_t duk__js_samevalue_number(duk_double_t x, duk_double_t y) {
|
|
#if defined(DUK_USE_PARANOID_MATH)
|
|
duk_small_int_t cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
duk_small_int_t cy = (duk_small_int_t) DUK_FPCLASSIFY(y);
|
|
|
|
if (cx == DUK_FP_NAN && cy == DUK_FP_NAN) {
|
|
/* SameValue(NaN, NaN) = true, regardless of NaN sign or extra bits */
|
|
return 1;
|
|
}
|
|
if (cx == DUK_FP_ZERO && cy == DUK_FP_ZERO) {
|
|
/* Note: cannot assume that a non-zero return value of signbit() would
|
|
* always be the same -- hence cannot (portably) use something like:
|
|
*
|
|
* signbit(x) == signbit(y)
|
|
*/
|
|
duk_small_int_t sx = (DUK_SIGNBIT(x) ? 1 : 0);
|
|
duk_small_int_t sy = (DUK_SIGNBIT(y) ? 1 : 0);
|
|
return (sx == sy);
|
|
}
|
|
|
|
/* normal comparison; known:
|
|
* - both x and y are not NaNs (but one of them can be)
|
|
* - both x and y are not zero (but one of them can be)
|
|
* - x and y may be denormal or infinite
|
|
*/
|
|
|
|
return (x == y);
|
|
#else /* DUK_USE_PARANOID_MATH */
|
|
duk_small_int_t cx = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
duk_small_int_t cy = (duk_small_int_t) DUK_FPCLASSIFY(y);
|
|
|
|
if (x == y) {
|
|
/* IEEE requires that NaNs compare false */
|
|
DUK_ASSERT(DUK_FPCLASSIFY(x) != DUK_FP_NAN);
|
|
DUK_ASSERT(DUK_FPCLASSIFY(y) != DUK_FP_NAN);
|
|
|
|
/* Using classification has smaller footprint than direct comparison. */
|
|
if (DUK_UNLIKELY(cx == DUK_FP_ZERO && cy == DUK_FP_ZERO)) {
|
|
/* Note: cannot assume that a non-zero return value of signbit() would
|
|
* always be the same -- hence cannot (portably) use something like:
|
|
*
|
|
* signbit(x) == signbit(y)
|
|
*/
|
|
duk_small_int_t sx = (DUK_SIGNBIT(x) ? 1 : 0);
|
|
duk_small_int_t sy = (DUK_SIGNBIT(y) ? 1 : 0);
|
|
return (sx == sy);
|
|
}
|
|
return 1;
|
|
} else {
|
|
/* IEEE requires that zeros compare the same regardless
|
|
* of their signed, so if both x and y are zeroes, they
|
|
* are caught above.
|
|
*/
|
|
DUK_ASSERT(!(DUK_FPCLASSIFY(x) == DUK_FP_ZERO && DUK_FPCLASSIFY(y) == DUK_FP_ZERO));
|
|
|
|
/* Difference to non-strict/strict comparison is that NaNs compare
|
|
* equal and signed zero signs matter.
|
|
*/
|
|
if (DUK_UNLIKELY(cx == DUK_FP_NAN && cy == DUK_FP_NAN)) {
|
|
/* SameValue(NaN, NaN) = true, regardless of NaN sign or extra bits */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#endif /* DUK_USE_PARANOID_MATH */
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_js_equals_helper(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_int_t flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_tval *tv_tmp;
|
|
|
|
/* If flags != 0 (strict or SameValue), thr can be NULL. For loose
|
|
* equals comparison it must be != NULL.
|
|
*/
|
|
DUK_ASSERT(flags != 0 || thr != NULL);
|
|
|
|
/*
|
|
* Same type?
|
|
*
|
|
* Note: since number values have no explicit tag in the 8-byte
|
|
* representation, need the awkward if + switch.
|
|
*/
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x) && DUK_TVAL_IS_FASTINT(tv_y)) {
|
|
if (DUK_TVAL_GET_FASTINT(tv_x) == DUK_TVAL_GET_FASTINT(tv_y)) {
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
if (DUK_TVAL_IS_NUMBER(tv_x) && DUK_TVAL_IS_NUMBER(tv_y)) {
|
|
/* Catches both doubles and cases where only one argument is a fastint */
|
|
if (DUK_UNLIKELY((flags & DUK_EQUALS_FLAG_SAMEVALUE) != 0)) {
|
|
/* SameValue */
|
|
return duk__js_samevalue_number(DUK_TVAL_GET_NUMBER(tv_x),
|
|
DUK_TVAL_GET_NUMBER(tv_y));
|
|
} else {
|
|
/* equals and strict equals */
|
|
return duk__js_equals_number(DUK_TVAL_GET_NUMBER(tv_x),
|
|
DUK_TVAL_GET_NUMBER(tv_y));
|
|
}
|
|
} else if (DUK_TVAL_GET_TAG(tv_x) == DUK_TVAL_GET_TAG(tv_y)) {
|
|
switch (DUK_TVAL_GET_TAG(tv_x)) {
|
|
case DUK_TAG_UNDEFINED:
|
|
case DUK_TAG_NULL: {
|
|
return 1;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
return DUK_TVAL_GET_BOOLEAN(tv_x) == DUK_TVAL_GET_BOOLEAN(tv_y);
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
return DUK_TVAL_GET_POINTER(tv_x) == DUK_TVAL_GET_POINTER(tv_y);
|
|
}
|
|
case DUK_TAG_STRING:
|
|
case DUK_TAG_OBJECT: {
|
|
/* heap pointer comparison suffices */
|
|
return DUK_TVAL_GET_HEAPHDR(tv_x) == DUK_TVAL_GET_HEAPHDR(tv_y);
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
if ((flags & (DUK_EQUALS_FLAG_STRICT | DUK_EQUALS_FLAG_SAMEVALUE)) != 0) {
|
|
/* heap pointer comparison suffices */
|
|
return DUK_TVAL_GET_HEAPHDR(tv_x) == DUK_TVAL_GET_HEAPHDR(tv_y);
|
|
} else {
|
|
/* non-strict equality for buffers compares contents */
|
|
duk_hbuffer *h_x = DUK_TVAL_GET_BUFFER(tv_x);
|
|
duk_hbuffer *h_y = DUK_TVAL_GET_BUFFER(tv_y);
|
|
duk_size_t len_x = DUK_HBUFFER_GET_SIZE(h_x);
|
|
duk_size_t len_y = DUK_HBUFFER_GET_SIZE(h_y);
|
|
void *buf_x;
|
|
void *buf_y;
|
|
if (len_x != len_y) {
|
|
return 0;
|
|
}
|
|
buf_x = (void *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h_x);
|
|
buf_y = (void *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h_y);
|
|
/* if len_x == len_y == 0, buf_x and/or buf_y may
|
|
* be NULL, but that's OK.
|
|
*/
|
|
DUK_ASSERT(len_x == len_y);
|
|
DUK_ASSERT(len_x == 0 || buf_x != NULL);
|
|
DUK_ASSERT(len_y == 0 || buf_y != NULL);
|
|
return (DUK_MEMCMP(buf_x, buf_y, len_x) == 0) ? 1 : 0;
|
|
}
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
/* At least 'magic' has a significant impact on function
|
|
* identity.
|
|
*/
|
|
duk_small_uint_t lf_flags_x;
|
|
duk_small_uint_t lf_flags_y;
|
|
duk_c_function func_x;
|
|
duk_c_function func_y;
|
|
|
|
DUK_TVAL_GET_LIGHTFUNC(tv_x, func_x, lf_flags_x);
|
|
DUK_TVAL_GET_LIGHTFUNC(tv_y, func_y, lf_flags_y);
|
|
return ((func_x == func_y) && (lf_flags_x == lf_flags_y)) ? 1 : 0;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_x));
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_y));
|
|
DUK_UNREACHABLE();
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((flags & (DUK_EQUALS_FLAG_STRICT | DUK_EQUALS_FLAG_SAMEVALUE)) != 0) {
|
|
return 0;
|
|
}
|
|
|
|
DUK_ASSERT(flags == 0); /* non-strict equality from here on */
|
|
|
|
/*
|
|
* Types are different; various cases for non-strict comparison
|
|
*
|
|
* Since comparison is symmetric, we use a "swap trick" to reduce
|
|
* code size.
|
|
*/
|
|
|
|
/* Undefined/null are considered equal (e.g. "null == undefined" -> true). */
|
|
if ((DUK_TVAL_IS_UNDEFINED(tv_x) && DUK_TVAL_IS_NULL(tv_y)) ||
|
|
(DUK_TVAL_IS_NULL(tv_x) && DUK_TVAL_IS_UNDEFINED(tv_y))) {
|
|
return 1;
|
|
}
|
|
|
|
/* Number/string-or-buffer -> coerce string to number (e.g. "'1.5' == 1.5" -> true). */
|
|
if (DUK_TVAL_IS_NUMBER(tv_x) && (DUK_TVAL_IS_STRING(tv_y) || DUK_TVAL_IS_BUFFER(tv_y))) {
|
|
/* the next 'if' is guaranteed to match after swap */
|
|
tv_tmp = tv_x;
|
|
tv_x = tv_y;
|
|
tv_y = tv_tmp;
|
|
}
|
|
if ((DUK_TVAL_IS_STRING(tv_x) || DUK_TVAL_IS_BUFFER(tv_x)) && DUK_TVAL_IS_NUMBER(tv_y)) {
|
|
/* XXX: this is possible without resorting to the value stack */
|
|
duk_double_t d1, d2;
|
|
d2 = DUK_TVAL_GET_NUMBER(tv_y);
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_to_string(ctx, -1); /* buffer values are coerced first to string here */
|
|
duk_to_number(ctx, -1);
|
|
d1 = duk_require_number(ctx, -1);
|
|
duk_pop(ctx);
|
|
return duk__js_equals_number(d1, d2);
|
|
}
|
|
|
|
/* Buffer/string -> compare contents. */
|
|
if (DUK_TVAL_IS_BUFFER(tv_x) && DUK_TVAL_IS_STRING(tv_y)) {
|
|
tv_tmp = tv_x;
|
|
tv_x = tv_y;
|
|
tv_y = tv_tmp;
|
|
}
|
|
if (DUK_TVAL_IS_STRING(tv_x) && DUK_TVAL_IS_BUFFER(tv_y)) {
|
|
duk_hstring *h_x = DUK_TVAL_GET_STRING(tv_x);
|
|
duk_hbuffer *h_y = DUK_TVAL_GET_BUFFER(tv_y);
|
|
duk_size_t len_x = DUK_HSTRING_GET_BYTELEN(h_x);
|
|
duk_size_t len_y = DUK_HBUFFER_GET_SIZE(h_y);
|
|
void *buf_x;
|
|
void *buf_y;
|
|
if (len_x != len_y) {
|
|
return 0;
|
|
}
|
|
buf_x = (void *) DUK_HSTRING_GET_DATA(h_x);
|
|
buf_y = (void *) DUK_HBUFFER_GET_DATA_PTR(thr->heap, h_y);
|
|
/* if len_x == len_y == 0, buf_x and/or buf_y may
|
|
* be NULL, but that's OK.
|
|
*/
|
|
DUK_ASSERT(len_x == len_y);
|
|
DUK_ASSERT(len_x == 0 || buf_x != NULL);
|
|
DUK_ASSERT(len_y == 0 || buf_y != NULL);
|
|
return (DUK_MEMCMP(buf_x, buf_y, len_x) == 0) ? 1 : 0;
|
|
}
|
|
|
|
/* Boolean/any -> coerce boolean to number and try again. If boolean is
|
|
* compared to a pointer, the final comparison after coercion now always
|
|
* yields false (as pointer vs. number compares to false), but this is
|
|
* not special cased.
|
|
*/
|
|
if (DUK_TVAL_IS_BOOLEAN(tv_x)) {
|
|
tv_tmp = tv_x;
|
|
tv_x = tv_y;
|
|
tv_y = tv_tmp;
|
|
}
|
|
if (DUK_TVAL_IS_BOOLEAN(tv_y)) {
|
|
/* ToNumber(bool) is +1.0 or 0.0. Tagged boolean value is always 0 or 1. */
|
|
duk_bool_t rc;
|
|
DUK_ASSERT(DUK_TVAL_GET_BOOLEAN(tv_y) == 0 || DUK_TVAL_GET_BOOLEAN(tv_y) == 1);
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_int(ctx, DUK_TVAL_GET_BOOLEAN(tv_y));
|
|
rc = duk_js_equals_helper(thr, duk_get_tval(ctx, -2), duk_get_tval(ctx, -1), 0 /*flags:nonstrict*/);
|
|
duk_pop_2(ctx);
|
|
return rc;
|
|
}
|
|
|
|
/* String-number-buffer/object -> coerce object to primitive (apparently without hint), then try again. */
|
|
if ((DUK_TVAL_IS_STRING(tv_x) || DUK_TVAL_IS_NUMBER(tv_x) || DUK_TVAL_IS_BUFFER(tv_x)) &&
|
|
DUK_TVAL_IS_OBJECT(tv_y)) {
|
|
tv_tmp = tv_x;
|
|
tv_x = tv_y;
|
|
tv_y = tv_tmp;
|
|
}
|
|
if (DUK_TVAL_IS_OBJECT(tv_x) &&
|
|
(DUK_TVAL_IS_STRING(tv_y) || DUK_TVAL_IS_NUMBER(tv_y) || DUK_TVAL_IS_BUFFER(tv_y))) {
|
|
duk_bool_t rc;
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
duk_to_primitive(ctx, -2, DUK_HINT_NONE); /* apparently no hint? */
|
|
rc = duk_js_equals_helper(thr, duk_get_tval(ctx, -2), duk_get_tval(ctx, -1), 0 /*flags:nonstrict*/);
|
|
duk_pop_2(ctx);
|
|
return rc;
|
|
}
|
|
|
|
/* Nothing worked -> not equal. */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Comparisons (x >= y, x > y, x <= y, x < y)
|
|
*
|
|
* E5 Section 11.8.5: implement 'x < y' and then use negate and eval_left_first
|
|
* flags to get the rest.
|
|
*/
|
|
|
|
/* XXX: this should probably just operate on the stack top, because it
|
|
* needs to push stuff on the stack anyway...
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_js_string_compare(duk_hstring *h1, duk_hstring *h2) {
|
|
/*
|
|
* String comparison (E5 Section 11.8.5, step 4), which
|
|
* needs to compare codepoint by codepoint.
|
|
*
|
|
* However, UTF-8 allows us to use strcmp directly: the shared
|
|
* prefix will be encoded identically (UTF-8 has unique encoding)
|
|
* and the first differing character can be compared with a simple
|
|
* unsigned byte comparison (which strcmp does).
|
|
*
|
|
* This will not work properly for non-xutf-8 strings, but this
|
|
* is not an issue for compliance.
|
|
*/
|
|
|
|
duk_size_t h1_len, h2_len, prefix_len;
|
|
duk_small_int_t rc;
|
|
|
|
DUK_ASSERT(h1 != NULL);
|
|
DUK_ASSERT(h2 != NULL);
|
|
h1_len = DUK_HSTRING_GET_BYTELEN(h1);
|
|
h2_len = DUK_HSTRING_GET_BYTELEN(h2);
|
|
prefix_len = (h1_len <= h2_len ? h1_len : h2_len);
|
|
|
|
/* XXX: this special case can now be removed with DUK_MEMCMP */
|
|
/* memcmp() should return zero (equal) for zero length, but avoid
|
|
* it because there are some platform specific bugs. Don't use
|
|
* strncmp() because it stops comparing at a NUL.
|
|
*/
|
|
|
|
if (prefix_len == 0) {
|
|
rc = 0;
|
|
} else {
|
|
rc = DUK_MEMCMP((const char *) DUK_HSTRING_GET_DATA(h1),
|
|
(const char *) DUK_HSTRING_GET_DATA(h2),
|
|
prefix_len);
|
|
}
|
|
|
|
if (rc < 0) {
|
|
return -1;
|
|
} else if (rc > 0) {
|
|
return 1;
|
|
}
|
|
|
|
/* prefix matches, lengths matter now */
|
|
if (h1_len < h2_len) {
|
|
/* e.g. "x" < "xx" */
|
|
return -1;
|
|
} else if (h1_len > h2_len) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL duk_bool_t duk_js_compare_helper(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y, duk_small_int_t flags) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_double_t d1, d2;
|
|
duk_small_int_t c1, c2;
|
|
duk_small_int_t s1, s2;
|
|
duk_small_int_t rc;
|
|
duk_bool_t retval;
|
|
|
|
/* Fast path for fastints */
|
|
#if defined(DUK_USE_FASTINT)
|
|
if (DUK_TVAL_IS_FASTINT(tv_x) && DUK_TVAL_IS_FASTINT(tv_y)) {
|
|
duk_int64_t v1 = DUK_TVAL_GET_FASTINT(tv_x);
|
|
duk_int64_t v2 = DUK_TVAL_GET_FASTINT(tv_y);
|
|
if (v1 < v2) {
|
|
/* 'lt is true' */
|
|
retval = 1;
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
if (flags & DUK_COMPARE_FLAG_NEGATE) {
|
|
retval ^= 1;
|
|
}
|
|
return retval;
|
|
}
|
|
#endif /* DUK_USE_FASTINT */
|
|
|
|
/* Fast path for numbers (one of which may be a fastint) */
|
|
#if 1 /* XXX: make fast paths optional for size minimization? */
|
|
if (DUK_TVAL_IS_NUMBER(tv_x) && DUK_TVAL_IS_NUMBER(tv_y)) {
|
|
d1 = DUK_TVAL_GET_NUMBER(tv_x);
|
|
d2 = DUK_TVAL_GET_NUMBER(tv_y);
|
|
c1 = DUK_FPCLASSIFY(d1);
|
|
c2 = DUK_FPCLASSIFY(d2);
|
|
|
|
if (c1 == DUK_FP_NORMAL && c2 == DUK_FP_NORMAL) {
|
|
/* XXX: this is a very narrow check, and doesn't cover
|
|
* zeroes, subnormals, infinities, which compare normally.
|
|
*/
|
|
|
|
if (d1 < d2) {
|
|
/* 'lt is true' */
|
|
retval = 1;
|
|
} else {
|
|
retval = 0;
|
|
}
|
|
if (flags & DUK_COMPARE_FLAG_NEGATE) {
|
|
retval ^= 1;
|
|
}
|
|
return retval;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Slow path */
|
|
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
|
|
if (flags & DUK_COMPARE_FLAG_EVAL_LEFT_FIRST) {
|
|
duk_to_primitive(ctx, -2, DUK_HINT_NUMBER);
|
|
duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
|
|
} else {
|
|
duk_to_primitive(ctx, -1, DUK_HINT_NUMBER);
|
|
duk_to_primitive(ctx, -2, DUK_HINT_NUMBER);
|
|
}
|
|
|
|
/* Note: reuse variables */
|
|
tv_x = duk_get_tval(ctx, -2);
|
|
tv_y = duk_get_tval(ctx, -1);
|
|
|
|
if (DUK_TVAL_IS_STRING(tv_x) && DUK_TVAL_IS_STRING(tv_y)) {
|
|
duk_hstring *h1 = DUK_TVAL_GET_STRING(tv_x);
|
|
duk_hstring *h2 = DUK_TVAL_GET_STRING(tv_y);
|
|
DUK_ASSERT(h1 != NULL);
|
|
DUK_ASSERT(h2 != NULL);
|
|
|
|
rc = duk_js_string_compare(h1, h2);
|
|
if (rc < 0) {
|
|
goto lt_true;
|
|
} else {
|
|
goto lt_false;
|
|
}
|
|
} else {
|
|
/* Ordering should not matter (E5 Section 11.8.5, step 3.a) but
|
|
* preserve it just in case.
|
|
*/
|
|
|
|
if (flags & DUK_COMPARE_FLAG_EVAL_LEFT_FIRST) {
|
|
d1 = duk_to_number(ctx, -2);
|
|
d2 = duk_to_number(ctx, -1);
|
|
} else {
|
|
d2 = duk_to_number(ctx, -1);
|
|
d1 = duk_to_number(ctx, -2);
|
|
}
|
|
|
|
c1 = (duk_small_int_t) DUK_FPCLASSIFY(d1);
|
|
s1 = (duk_small_int_t) DUK_SIGNBIT(d1);
|
|
c2 = (duk_small_int_t) DUK_FPCLASSIFY(d2);
|
|
s2 = (duk_small_int_t) DUK_SIGNBIT(d2);
|
|
|
|
if (c1 == DUK_FP_NAN || c2 == DUK_FP_NAN) {
|
|
goto lt_undefined;
|
|
}
|
|
|
|
if (c1 == DUK_FP_ZERO && c2 == DUK_FP_ZERO) {
|
|
/* For all combinations: +0 < +0, +0 < -0, -0 < +0, -0 < -0,
|
|
* steps e, f, and g.
|
|
*/
|
|
goto lt_false;
|
|
}
|
|
|
|
if (d1 == d2) {
|
|
goto lt_false;
|
|
}
|
|
|
|
if (c1 == DUK_FP_INFINITE && s1 == 0) {
|
|
/* x == +Infinity */
|
|
goto lt_false;
|
|
}
|
|
|
|
if (c2 == DUK_FP_INFINITE && s2 == 0) {
|
|
/* y == +Infinity */
|
|
goto lt_true;
|
|
}
|
|
|
|
if (c2 == DUK_FP_INFINITE && s2 != 0) {
|
|
/* y == -Infinity */
|
|
goto lt_false;
|
|
}
|
|
|
|
if (c1 == DUK_FP_INFINITE && s1 != 0) {
|
|
/* x == -Infinity */
|
|
goto lt_true;
|
|
}
|
|
|
|
if (d1 < d2) {
|
|
goto lt_true;
|
|
}
|
|
|
|
goto lt_false;
|
|
}
|
|
|
|
lt_undefined:
|
|
/* Note: undefined from Section 11.8.5 always results in false
|
|
* return (see e.g. Section 11.8.3) - hence special treatment here.
|
|
*/
|
|
retval = 0;
|
|
goto cleanup;
|
|
|
|
lt_true:
|
|
if (flags & DUK_COMPARE_FLAG_NEGATE) {
|
|
retval = 0;
|
|
goto cleanup;
|
|
} else {
|
|
retval = 1;
|
|
goto cleanup;
|
|
}
|
|
/* never here */
|
|
|
|
lt_false:
|
|
if (flags & DUK_COMPARE_FLAG_NEGATE) {
|
|
retval = 1;
|
|
goto cleanup;
|
|
} else {
|
|
retval = 0;
|
|
goto cleanup;
|
|
}
|
|
/* never here */
|
|
|
|
cleanup:
|
|
duk_pop_2(ctx);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* instanceof
|
|
*/
|
|
|
|
/*
|
|
* E5 Section 11.8.6 describes the main algorithm, which uses
|
|
* [[HasInstance]]. [[HasInstance]] is defined for only
|
|
* function objects:
|
|
*
|
|
* - Normal functions:
|
|
* E5 Section 15.3.5.3
|
|
* - Functions established with Function.prototype.bind():
|
|
* E5 Section 15.3.4.5.3
|
|
*
|
|
* For other objects, a TypeError is thrown.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_js_instanceof(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *func;
|
|
duk_hobject *val;
|
|
duk_hobject *proto;
|
|
duk_uint_t sanity;
|
|
|
|
/*
|
|
* Get the values onto the stack first. It would be possible to cover
|
|
* some normal cases without resorting to the value stack.
|
|
*
|
|
* The right hand side could be a light function (as they generally
|
|
* behave like objects). Light functions never have a 'prototype'
|
|
* property so E5.1 Section 15.3.5.3 step 3 always throws a TypeError.
|
|
* Using duk_require_hobject() is thus correct (except for error msg).
|
|
*/
|
|
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
func = duk_require_hobject(ctx, -1);
|
|
|
|
/*
|
|
* For bound objects, [[HasInstance]] just calls the target function
|
|
* [[HasInstance]]. If that is again a bound object, repeat until
|
|
* we find a non-bound Function object.
|
|
*/
|
|
|
|
/* XXX: this bound function resolution also happens elsewhere,
|
|
* move into a shared helper.
|
|
*/
|
|
|
|
sanity = DUK_HOBJECT_BOUND_CHAIN_SANITY;
|
|
do {
|
|
/* check func supports [[HasInstance]] (this is checked for every function
|
|
* in the bound chain, including the final one)
|
|
*/
|
|
|
|
if (!DUK_HOBJECT_IS_CALLABLE(func)) {
|
|
/*
|
|
* Note: of native Ecmascript objects, only Function instances
|
|
* have a [[HasInstance]] internal property. Custom objects might
|
|
* also have it, but not in current implementation.
|
|
*
|
|
* XXX: add a separate flag, DUK_HOBJECT_FLAG_ALLOW_INSTANCEOF?
|
|
*/
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "invalid instanceof rval");
|
|
}
|
|
|
|
if (!DUK_HOBJECT_HAS_BOUND(func)) {
|
|
break;
|
|
}
|
|
|
|
/* [ ... lval rval ] */
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_TARGET); /* -> [ ... lval rval new_rval ] */
|
|
duk_replace(ctx, -1); /* -> [ ... lval new_rval ] */
|
|
func = duk_require_hobject(ctx, -1);
|
|
|
|
/* func support for [[HasInstance]] checked in the beginning of the loop */
|
|
} while (--sanity > 0);
|
|
|
|
if (sanity == 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_BOUND_CHAIN_LIMIT);
|
|
}
|
|
|
|
/*
|
|
* 'func' is now a non-bound object which supports [[HasInstance]]
|
|
* (which here just means DUK_HOBJECT_FLAG_CALLABLE). Move on
|
|
* to execute E5 Section 15.3.5.3.
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func));
|
|
DUK_ASSERT(DUK_HOBJECT_IS_CALLABLE(func));
|
|
|
|
/* [ ... lval rval(func) ] */
|
|
|
|
/* Handle lightfuncs through object coercion for now. */
|
|
/* XXX: direct implementation */
|
|
val = duk_get_hobject_or_lfunc_coerce(ctx, -2);
|
|
if (!val) {
|
|
goto pop_and_false;
|
|
}
|
|
|
|
duk_get_prop_stridx(ctx, -1, DUK_STRIDX_PROTOTYPE); /* -> [ ... lval rval rval.prototype ] */
|
|
proto = duk_require_hobject(ctx, -1);
|
|
duk_pop(ctx); /* -> [ ... lval rval ] */
|
|
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
do {
|
|
/*
|
|
* Note: prototype chain is followed BEFORE first comparison. This
|
|
* means that the instanceof lval is never itself compared to the
|
|
* rval.prototype property. This is apparently intentional, see E5
|
|
* Section 15.3.5.3, step 4.a.
|
|
*
|
|
* Also note:
|
|
*
|
|
* js> (function() {}) instanceof Function
|
|
* true
|
|
* js> Function instanceof Function
|
|
* true
|
|
*
|
|
* For the latter, h_proto will be Function.prototype, which is the
|
|
* built-in Function prototype. Because Function.[[Prototype]] is
|
|
* also the built-in Function prototype, the result is true.
|
|
*/
|
|
|
|
val = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, val);
|
|
|
|
if (!val) {
|
|
goto pop_and_false;
|
|
} else if (val == proto) {
|
|
goto pop_and_true;
|
|
}
|
|
|
|
/* follow prototype chain */
|
|
} while (--sanity > 0);
|
|
|
|
if (sanity == 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_PROTOTYPE_CHAIN_LIMIT);
|
|
}
|
|
DUK_UNREACHABLE();
|
|
|
|
pop_and_false:
|
|
duk_pop_2(ctx);
|
|
return 0;
|
|
|
|
pop_and_true:
|
|
duk_pop_2(ctx);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* in
|
|
*/
|
|
|
|
/*
|
|
* E5 Sections 11.8.7, 8.12.6.
|
|
*
|
|
* Basically just a property existence check using [[HasProperty]].
|
|
*/
|
|
|
|
DUK_INTERNAL duk_bool_t duk_js_in(duk_hthread *thr, duk_tval *tv_x, duk_tval *tv_y) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_bool_t retval;
|
|
|
|
/*
|
|
* Get the values onto the stack first. It would be possible to cover
|
|
* some normal cases without resorting to the value stack (e.g. if
|
|
* lval is already a string).
|
|
*/
|
|
|
|
/* XXX: The ES5/5.1/6 specifications require that the key in 'key in obj'
|
|
* must be string coerced before the internal HasProperty() algorithm is
|
|
* invoked. A fast path skipping coercion could be safely implemented for
|
|
* numbers (as number-to-string coercion has no side effects). For ES6
|
|
* proxy behavior, the trap 'key' argument must be in a string coerced
|
|
* form (which is a shame).
|
|
*/
|
|
|
|
/* TypeError if rval is not an object (or lightfunc which should behave
|
|
* like a Function instance).
|
|
*/
|
|
duk_push_tval(ctx, tv_x);
|
|
duk_push_tval(ctx, tv_y);
|
|
duk_require_type_mask(ctx, -1, DUK_TYPE_MASK_OBJECT | DUK_TYPE_MASK_LIGHTFUNC);
|
|
duk_to_string(ctx, -2); /* coerce lval with ToString() */
|
|
|
|
retval = duk_hobject_hasprop(thr, duk_get_tval(ctx, -1), duk_get_tval(ctx, -2));
|
|
|
|
duk_pop_2(ctx);
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* typeof
|
|
*
|
|
* E5 Section 11.4.3.
|
|
*
|
|
* Very straightforward. The only question is what to return for our
|
|
* non-standard tag / object types.
|
|
*
|
|
* There is an unfortunate string constant define naming problem with
|
|
* typeof return values for e.g. "Object" and "object"; careful with
|
|
* the built-in string defines. The LC_XXX defines are used for the
|
|
* lowercase variants now.
|
|
*/
|
|
|
|
DUK_INTERNAL duk_hstring *duk_js_typeof(duk_hthread *thr, duk_tval *tv_x) {
|
|
duk_small_int_t stridx = 0;
|
|
|
|
switch (DUK_TVAL_GET_TAG(tv_x)) {
|
|
case DUK_TAG_UNDEFINED: {
|
|
stridx = DUK_STRIDX_LC_UNDEFINED;
|
|
break;
|
|
}
|
|
case DUK_TAG_NULL: {
|
|
/* Note: not a typo, "object" is returned for a null value */
|
|
stridx = DUK_STRIDX_LC_OBJECT;
|
|
break;
|
|
}
|
|
case DUK_TAG_BOOLEAN: {
|
|
stridx = DUK_STRIDX_LC_BOOLEAN;
|
|
break;
|
|
}
|
|
case DUK_TAG_POINTER: {
|
|
/* implementation specific */
|
|
stridx = DUK_STRIDX_LC_POINTER;
|
|
break;
|
|
}
|
|
case DUK_TAG_STRING: {
|
|
stridx = DUK_STRIDX_LC_STRING;
|
|
break;
|
|
}
|
|
case DUK_TAG_OBJECT: {
|
|
duk_hobject *obj = DUK_TVAL_GET_OBJECT(tv_x);
|
|
DUK_ASSERT(obj != NULL);
|
|
if (DUK_HOBJECT_IS_CALLABLE(obj)) {
|
|
stridx = DUK_STRIDX_LC_FUNCTION;
|
|
} else {
|
|
stridx = DUK_STRIDX_LC_OBJECT;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_TAG_BUFFER: {
|
|
/* implementation specific */
|
|
stridx = DUK_STRIDX_LC_BUFFER;
|
|
break;
|
|
}
|
|
case DUK_TAG_LIGHTFUNC: {
|
|
stridx = DUK_STRIDX_LC_FUNCTION;
|
|
break;
|
|
}
|
|
#if defined(DUK_USE_FASTINT)
|
|
case DUK_TAG_FASTINT:
|
|
#endif
|
|
default: {
|
|
/* number */
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv_x));
|
|
stridx = DUK_STRIDX_LC_NUMBER;
|
|
break;
|
|
}
|
|
}
|
|
|
|
DUK_ASSERT(stridx >= 0 && stridx < DUK_HEAP_NUM_STRINGS);
|
|
return DUK_HTHREAD_GET_STRING(thr, stridx);
|
|
}
|
|
|
|
/*
|
|
* Array index and length
|
|
*
|
|
* Array index: E5 Section 15.4
|
|
* Array length: E5 Section 15.4.5.1 steps 3.c - 3.d (array length write)
|
|
*
|
|
* The DUK_HSTRING_GET_ARRIDX_SLOW() and DUK_HSTRING_GET_ARRIDX_FAST() macros
|
|
* call duk_js_to_arrayindex_string_helper().
|
|
*/
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_js_to_arrayindex_raw_string(const duk_uint8_t *str, duk_uint32_t blen, duk_uarridx_t *out_idx) {
|
|
duk_uarridx_t res, new_res;
|
|
|
|
if (blen == 0 || blen > 10) {
|
|
goto parse_fail;
|
|
}
|
|
if (str[0] == (duk_uint8_t) '0' && blen > 1) {
|
|
goto parse_fail;
|
|
}
|
|
|
|
/* Accept 32-bit decimal integers, no leading zeroes, signs, etc.
|
|
* Leading zeroes are not accepted (zero index "0" is an exception
|
|
* handled above).
|
|
*/
|
|
|
|
res = 0;
|
|
while (blen-- > 0) {
|
|
duk_uint8_t c = *str++;
|
|
if (c >= (duk_uint8_t) '0' && c <= (duk_uint8_t) '9') {
|
|
new_res = res * 10 + (duk_uint32_t) (c - (duk_uint8_t) '0');
|
|
if (new_res < res) {
|
|
/* overflow, more than 32 bits -> not an array index */
|
|
goto parse_fail;
|
|
}
|
|
res = new_res;
|
|
} else {
|
|
goto parse_fail;
|
|
}
|
|
}
|
|
|
|
*out_idx = res;
|
|
return 1;
|
|
|
|
parse_fail:
|
|
*out_idx = DUK_HSTRING_NO_ARRAY_INDEX;
|
|
return 0;
|
|
}
|
|
|
|
/* Called by duk_hstring.h macros */
|
|
DUK_INTERNAL duk_uarridx_t duk_js_to_arrayindex_string_helper(duk_hstring *h) {
|
|
duk_uarridx_t res;
|
|
duk_small_int_t rc;
|
|
|
|
if (!DUK_HSTRING_HAS_ARRIDX(h)) {
|
|
return DUK_HSTRING_NO_ARRAY_INDEX;
|
|
}
|
|
|
|
rc = duk_js_to_arrayindex_raw_string(DUK_HSTRING_GET_DATA(h),
|
|
DUK_HSTRING_GET_BYTELEN(h),
|
|
&res);
|
|
DUK_UNREF(rc);
|
|
DUK_ASSERT(rc != 0);
|
|
return res;
|
|
}
|
|
#line 1 "duk_js_var.c"
|
|
/*
|
|
* Identifier access and function closure handling.
|
|
*
|
|
* Provides the primitives for slow path identifier accesses: GETVAR,
|
|
* PUTVAR, DELVAR, etc. The fast path, direct register accesses, should
|
|
* be used for most identifier accesses. Consequently, these slow path
|
|
* primitives should be optimized for maximum compactness.
|
|
*
|
|
* Ecmascript environment records (declarative and object) are represented
|
|
* as internal objects with control keys. Environment records have a
|
|
* parent record ("outer environment reference") which is represented by
|
|
* the implicit prototype for technical reasons (in other words, it is a
|
|
* convenient field). The prototype chain is not followed in the ordinary
|
|
* sense for variable lookups.
|
|
*
|
|
* See identifier-handling.txt for more details on the identifier algorithms
|
|
* and the internal representation. See function-objects.txt for details on
|
|
* what function templates and instances are expected to look like.
|
|
*
|
|
* Care must be taken to avoid duk_tval pointer invalidation caused by
|
|
* e.g. value stack or object resizing.
|
|
*
|
|
* TODO: properties for function instances could be initialized much more
|
|
* efficiently by creating a property allocation for a certain size and
|
|
* filling in keys and values directly (and INCREFing both with "bulk incref"
|
|
* primitives.
|
|
*
|
|
* XXX: duk_hobject_getprop() and duk_hobject_putprop() calls are a bit
|
|
* awkward (especially because they follow the prototype chain); rework
|
|
* if "raw" own property helpers are added.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Local result type for duk__get_identifier_reference() lookup.
|
|
*/
|
|
|
|
typedef struct {
|
|
duk_hobject *holder; /* for object-bound identifiers */
|
|
duk_tval *value; /* for register-bound and declarative env identifiers */
|
|
duk_int_t attrs; /* property attributes for identifier (relevant if value != NULL) */
|
|
duk_tval *this_binding;
|
|
duk_hobject *env;
|
|
} duk__id_lookup_result;
|
|
|
|
/*
|
|
* Create a new function object based on a "template function" which contains
|
|
* compiled bytecode, constants, etc, but lacks a lexical environment.
|
|
*
|
|
* Ecmascript requires that each created closure is a separate object, with
|
|
* its own set of editable properties. However, structured property values
|
|
* (such as the formal arguments list and the variable map) are shared.
|
|
* Also the bytecode, constants, and inner functions are shared.
|
|
*
|
|
* See E5 Section 13.2 for detailed requirements on the function objects;
|
|
* there are no similar requirements for function "templates" which are an
|
|
* implementation dependent internal feature. Also see function-objects.txt
|
|
* for a discussion on the function instance properties provided by this
|
|
* implementation.
|
|
*
|
|
* Notes:
|
|
*
|
|
* * Order of internal properties should match frequency of use, since the
|
|
* properties will be linearly scanned on lookup (functions usually don't
|
|
* have enough properties to warrant a hash part).
|
|
*
|
|
* * The created closure is independent of its template; they do share the
|
|
* same 'data' buffer object, but the template object itself can be freed
|
|
* even if the closure object remains reachable.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__inc_data_inner_refcounts(duk_hthread *thr, duk_hcompiledfunction *f) {
|
|
duk_tval *tv, *tv_end;
|
|
duk_hobject **funcs, **funcs_end;
|
|
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, f) != NULL); /* compiled functions must be created 'atomically' */
|
|
DUK_UNREF(thr);
|
|
|
|
tv = DUK_HCOMPILEDFUNCTION_GET_CONSTS_BASE(thr->heap, f);
|
|
tv_end = DUK_HCOMPILEDFUNCTION_GET_CONSTS_END(thr->heap, f);
|
|
while (tv < tv_end) {
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
tv++;
|
|
}
|
|
|
|
funcs = DUK_HCOMPILEDFUNCTION_GET_FUNCS_BASE(thr->heap, f);
|
|
funcs_end = DUK_HCOMPILEDFUNCTION_GET_FUNCS_END(thr->heap, f);
|
|
while (funcs < funcs_end) {
|
|
DUK_HEAPHDR_INCREF(thr, (duk_heaphdr *) *funcs);
|
|
funcs++;
|
|
}
|
|
}
|
|
|
|
/* Push a new closure on the stack.
|
|
*
|
|
* Note: if fun_temp has NEWENV, i.e. a new lexical and variable declaration
|
|
* is created when the function is called, only outer_lex_env matters
|
|
* (outer_var_env is ignored and may or may not be same as outer_lex_env).
|
|
*/
|
|
|
|
DUK_LOCAL const duk_uint16_t duk__closure_copy_proplist[] = {
|
|
/* order: most frequent to least frequent */
|
|
DUK_STRIDX_INT_VARMAP,
|
|
DUK_STRIDX_INT_FORMALS,
|
|
DUK_STRIDX_NAME,
|
|
DUK_STRIDX_INT_PC2LINE,
|
|
DUK_STRIDX_FILE_NAME,
|
|
DUK_STRIDX_INT_SOURCE
|
|
};
|
|
|
|
DUK_INTERNAL
|
|
void duk_js_push_closure(duk_hthread *thr,
|
|
duk_hcompiledfunction *fun_temp,
|
|
duk_hobject *outer_var_env,
|
|
duk_hobject *outer_lex_env) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hcompiledfunction *fun_clos;
|
|
duk_small_uint_t i;
|
|
duk_uint_t len_value;
|
|
|
|
DUK_ASSERT(fun_temp != NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, fun_temp) != NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_FUNCS(thr->heap, fun_temp) != NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_BYTECODE(thr->heap, fun_temp) != NULL);
|
|
DUK_ASSERT(outer_var_env != NULL);
|
|
DUK_ASSERT(outer_lex_env != NULL);
|
|
|
|
duk_push_compiledfunction(ctx);
|
|
duk_push_hobject(ctx, &fun_temp->obj); /* -> [ ... closure template ] */
|
|
|
|
fun_clos = (duk_hcompiledfunction *) duk_get_hcompiledfunction(ctx, -2);
|
|
DUK_ASSERT(fun_clos != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION((duk_hobject *) fun_clos));
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, fun_clos) == NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_FUNCS(thr->heap, fun_clos) == NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_BYTECODE(thr->heap, fun_clos) == NULL);
|
|
|
|
DUK_HCOMPILEDFUNCTION_SET_DATA(thr->heap, fun_clos, DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, fun_temp));
|
|
DUK_HCOMPILEDFUNCTION_SET_FUNCS(thr->heap, fun_clos, DUK_HCOMPILEDFUNCTION_GET_FUNCS(thr->heap, fun_temp));
|
|
DUK_HCOMPILEDFUNCTION_SET_BYTECODE(thr->heap, fun_clos, DUK_HCOMPILEDFUNCTION_GET_BYTECODE(thr->heap, fun_temp));
|
|
|
|
/* Note: all references inside 'data' need to get their refcounts
|
|
* upped too. This is the case because refcounts are decreased
|
|
* through every function referencing 'data' independently.
|
|
*/
|
|
|
|
DUK_HBUFFER_INCREF(thr, DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, fun_clos));
|
|
duk__inc_data_inner_refcounts(thr, fun_temp);
|
|
|
|
fun_clos->nregs = fun_temp->nregs;
|
|
fun_clos->nargs = fun_temp->nargs;
|
|
#if defined(DUK_USE_DEBUGGER_SUPPORT)
|
|
fun_clos->start_line = fun_temp->start_line;
|
|
fun_clos->end_line = fun_temp->end_line;
|
|
#endif
|
|
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_DATA(thr->heap, fun_clos) != NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_FUNCS(thr->heap, fun_clos) != NULL);
|
|
DUK_ASSERT(DUK_HCOMPILEDFUNCTION_GET_BYTECODE(thr->heap, fun_clos) != NULL);
|
|
|
|
/* XXX: could also copy from template, but there's no way to have any
|
|
* other value here now (used code has no access to the template).
|
|
*/
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, &fun_clos->obj, thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE]);
|
|
|
|
/*
|
|
* Init/assert flags, copying them where appropriate. Some flags
|
|
* (like NEWENV) are processed separately below.
|
|
*/
|
|
|
|
/* XXX: copy flags using a mask */
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXTENSIBLE(&fun_clos->obj));
|
|
DUK_HOBJECT_SET_CONSTRUCTABLE(&fun_clos->obj); /* Note: not set in template (has no "prototype") */
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_CONSTRUCTABLE(&fun_clos->obj));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(&fun_clos->obj));
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_COMPILEDFUNCTION(&fun_clos->obj));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NATIVEFUNCTION(&fun_clos->obj));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_THREAD(&fun_clos->obj));
|
|
/* DUK_HOBJECT_FLAG_ARRAY_PART: don't care */
|
|
if (DUK_HOBJECT_HAS_STRICT(&fun_temp->obj)) {
|
|
DUK_HOBJECT_SET_STRICT(&fun_clos->obj);
|
|
}
|
|
if (DUK_HOBJECT_HAS_NOTAIL(&fun_temp->obj)) {
|
|
DUK_HOBJECT_SET_NOTAIL(&fun_clos->obj);
|
|
}
|
|
/* DUK_HOBJECT_FLAG_NEWENV: handled below */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NAMEBINDING(&fun_clos->obj));
|
|
if (DUK_HOBJECT_HAS_CREATEARGS(&fun_temp->obj)) {
|
|
DUK_HOBJECT_SET_CREATEARGS(&fun_clos->obj);
|
|
}
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARRAY(&fun_clos->obj));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_STRINGOBJ(&fun_clos->obj));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARGUMENTS(&fun_clos->obj));
|
|
|
|
/*
|
|
* Setup environment record properties based on the template and
|
|
* its flags.
|
|
*
|
|
* If DUK_HOBJECT_HAS_NEWENV(fun_temp) is true, the environment
|
|
* records represent identifiers "outside" the function; the
|
|
* "inner" environment records are created on demand. Otherwise,
|
|
* the environment records are those that will be directly used
|
|
* (e.g. for declarations).
|
|
*
|
|
* _Lexenv is always set; _Varenv defaults to _Lexenv if missing,
|
|
* so _Varenv is only set if _Lexenv != _Varenv.
|
|
*
|
|
* This is relatively complex, see doc/identifier-handling.txt.
|
|
*/
|
|
|
|
if (DUK_HOBJECT_HAS_NEWENV(&fun_temp->obj)) {
|
|
DUK_HOBJECT_SET_NEWENV(&fun_clos->obj);
|
|
|
|
if (DUK_HOBJECT_HAS_NAMEBINDING(&fun_temp->obj)) {
|
|
duk_hobject *proto;
|
|
|
|
/*
|
|
* Named function expression, name needs to be bound
|
|
* in an intermediate environment record. The "outer"
|
|
* lexical/variable environment will thus be:
|
|
*
|
|
* a) { funcname: <func>, __prototype: outer_lex_env }
|
|
* b) { funcname: <func>, __prototype: <globalenv> } (if outer_lex_env missing)
|
|
*/
|
|
|
|
DUK_ASSERT(duk_has_prop_stridx(ctx, -1, DUK_STRIDX_NAME)); /* required if NAMEBINDING set */
|
|
|
|
if (outer_lex_env) {
|
|
proto = outer_lex_env;
|
|
} else {
|
|
proto = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
}
|
|
|
|
/* -> [ ... closure template env ] */
|
|
(void) duk_push_object_helper_proto(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_DECENV),
|
|
proto);
|
|
|
|
/* It's important that duk_xdef_prop() is a 'raw define' so that any
|
|
* properties in an ancestor are never an issue (they should never be
|
|
* e.g. non-writable, but just in case).
|
|
*/
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_NAME); /* -> [ ... closure template env funcname ] */
|
|
duk_dup(ctx, -4); /* -> [ ... closure template env funcname closure ] */
|
|
duk_xdef_prop(ctx, -3, DUK_PROPDESC_FLAGS_NONE); /* -> [ ... closure template env ] */
|
|
/* env[funcname] = closure */
|
|
|
|
/* [ ... closure template env ] */
|
|
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_INT_LEXENV, DUK_PROPDESC_FLAGS_WC);
|
|
/* since closure has NEWENV, never define DUK_STRIDX_INT_VARENV, as it
|
|
* will be ignored anyway
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
} else {
|
|
/*
|
|
* Other cases (function declaration, anonymous function expression,
|
|
* strict direct eval code). The "outer" environment will be whatever
|
|
* the caller gave us.
|
|
*/
|
|
|
|
duk_push_hobject(ctx, outer_lex_env); /* -> [ ... closure template env ] */
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_INT_LEXENV, DUK_PROPDESC_FLAGS_WC);
|
|
/* since closure has NEWENV, never define DUK_STRIDX_INT_VARENV, as it
|
|
* will be ignored anyway
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
}
|
|
} else {
|
|
/*
|
|
* Function gets no new environment when called. This is the
|
|
* case for global code, indirect eval code, and non-strict
|
|
* direct eval code. There is no direct correspondence to the
|
|
* E5 specification, as global/eval code is not exposed as a
|
|
* function.
|
|
*/
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_NAMEBINDING(&fun_temp->obj));
|
|
|
|
duk_push_hobject(ctx, outer_lex_env); /* -> [ ... closure template env ] */
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_INT_LEXENV, DUK_PROPDESC_FLAGS_WC);
|
|
|
|
if (outer_var_env != outer_lex_env) {
|
|
duk_push_hobject(ctx, outer_var_env); /* -> [ ... closure template env ] */
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_INT_VARENV, DUK_PROPDESC_FLAGS_WC);
|
|
}
|
|
}
|
|
#ifdef DUK_USE_DDDPRINT
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_INT_VARENV);
|
|
duk_get_prop_stridx(ctx, -3, DUK_STRIDX_INT_LEXENV);
|
|
DUK_DDD(DUK_DDDPRINT("closure varenv -> %!ipT, lexenv -> %!ipT",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
duk_pop_2(ctx);
|
|
#endif
|
|
|
|
/*
|
|
* Copy some internal properties directly
|
|
*
|
|
* The properties will be writable and configurable, but not enumerable.
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("copying properties: closure=%!iT, template=%!iT",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
for (i = 0; i < (duk_small_uint_t) (sizeof(duk__closure_copy_proplist) / sizeof(duk_uint16_t)); i++) {
|
|
duk_small_int_t stridx = (duk_small_int_t) duk__closure_copy_proplist[i];
|
|
if (duk_get_prop_stridx(ctx, -1, stridx)) {
|
|
/* [ ... closure template val ] */
|
|
DUK_DDD(DUK_DDDPRINT("copying property, stridx=%ld -> found", (long) stridx));
|
|
duk_xdef_prop_stridx(ctx, -3, stridx, DUK_PROPDESC_FLAGS_WC);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("copying property, stridx=%ld -> not found", (long) stridx));
|
|
duk_pop(ctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* "length" maps to number of formals (E5 Section 13.2) for function
|
|
* declarations/expressions (non-bound functions). Note that 'nargs'
|
|
* is NOT necessarily equal to the number of arguments.
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
|
|
len_value = 0;
|
|
|
|
/* XXX: use helper for size optimization */
|
|
if (duk_get_prop_stridx(ctx, -2, DUK_STRIDX_INT_FORMALS)) {
|
|
/* [ ... closure template formals ] */
|
|
DUK_ASSERT(duk_has_prop_stridx(ctx, -1, DUK_STRIDX_LENGTH));
|
|
DUK_ASSERT(duk_get_length(ctx, -1) <= DUK_UINT_MAX); /* formal arg limits */
|
|
len_value = (duk_uint_t) duk_get_length(ctx, -1);
|
|
} else {
|
|
/* XXX: what to do if _Formals is not empty but compiler has
|
|
* optimized it away -- read length from an explicit property
|
|
* then?
|
|
*/
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
duk_push_uint(ctx, len_value); /* [ ... closure template len_value ] */
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_LENGTH, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/*
|
|
* "prototype" is, by default, a fresh object with the "constructor"
|
|
* property.
|
|
*
|
|
* Note that this creates a circular reference for every function
|
|
* instance (closure) which prevents refcount-based collection of
|
|
* function instances.
|
|
*
|
|
* XXX: Try to avoid creating the default prototype object, because
|
|
* many functions are not used as constructors and the default
|
|
* prototype is unnecessary. Perhaps it could be created on-demand
|
|
* when it is first accessed?
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
|
|
duk_push_object(ctx); /* -> [ ... closure template newobj ] */
|
|
duk_dup(ctx, -3); /* -> [ ... closure template newobj closure ] */
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_CONSTRUCTOR, DUK_PROPDESC_FLAGS_WC); /* -> [ ... closure template newobj ] */
|
|
duk_compact(ctx, -1); /* compact the prototype */
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_PROTOTYPE, DUK_PROPDESC_FLAGS_W); /* -> [ ... closure template ] */
|
|
|
|
/*
|
|
* "arguments" and "caller" must be mapped to throwers for strict
|
|
* mode and bound functions (E5 Section 15.3.5).
|
|
*
|
|
* XXX: This is expensive to have for every strict function instance.
|
|
* Try to implement as virtual properties or on-demand created properties.
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
|
|
if (DUK_HOBJECT_HAS_STRICT(&fun_clos->obj)) {
|
|
duk_xdef_prop_stridx_thrower(ctx, -2, DUK_STRIDX_CALLER, DUK_PROPDESC_FLAGS_NONE);
|
|
duk_xdef_prop_stridx_thrower(ctx, -2, DUK_STRIDX_LC_ARGUMENTS, DUK_PROPDESC_FLAGS_NONE);
|
|
} else {
|
|
#ifdef DUK_USE_NONSTD_FUNC_CALLER_PROPERTY
|
|
DUK_DDD(DUK_DDDPRINT("function is non-strict and non-standard 'caller' property in use, add initial 'null' value"));
|
|
duk_push_null(ctx);
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_CALLER, DUK_PROPDESC_FLAGS_NONE);
|
|
#else
|
|
DUK_DDD(DUK_DDDPRINT("function is non-strict and non-standard 'caller' property not used"));
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* "name" is a non-standard property found in at least V8, Rhino, smjs.
|
|
* For Rhino and smjs it is non-writable, non-enumerable, and non-configurable;
|
|
* for V8 it is writable, non-enumerable, non-configurable. It is also defined
|
|
* for an anonymous function expression in which case the value is an empty string.
|
|
* We could also leave name 'undefined' for anonymous functions but that would
|
|
* differ from behavior of other engines, so use an empty string.
|
|
*
|
|
* XXX: make optional? costs something per function.
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
|
|
if (duk_get_prop_stridx(ctx, -1, DUK_STRIDX_NAME)) {
|
|
/* [ ... closure template name ] */
|
|
DUK_ASSERT(duk_is_string(ctx, -1));
|
|
} else {
|
|
/* [ ... closure template undefined ] */
|
|
duk_pop(ctx);
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_EMPTY_STRING);
|
|
}
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_NAME, DUK_PROPDESC_FLAGS_NONE); /* -> [ ... closure template ] */
|
|
|
|
/*
|
|
* Compact the closure, in most cases no properties will be added later.
|
|
* Also, without this the closures end up having unused property slots
|
|
* (e.g. in Duktape 0.9.0, 8 slots would be allocated and only 7 used).
|
|
* A better future solution would be to allocate the closure directly
|
|
* to correct size (and setup the properties directly without going
|
|
* through the API).
|
|
*/
|
|
|
|
duk_compact(ctx, -2);
|
|
|
|
/*
|
|
* Some assertions (E5 Section 13.2).
|
|
*/
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_GET_CLASS_NUMBER(&fun_clos->obj) == DUK_HOBJECT_CLASS_FUNCTION);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_PROTOTYPE(thr->heap, &fun_clos->obj) == thr->builtins[DUK_BIDX_FUNCTION_PROTOTYPE]);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXTENSIBLE(&fun_clos->obj));
|
|
DUK_ASSERT(duk_has_prop_stridx(ctx, -2, DUK_STRIDX_LENGTH) != 0);
|
|
DUK_ASSERT(duk_has_prop_stridx(ctx, -2, DUK_STRIDX_PROTOTYPE) != 0);
|
|
DUK_ASSERT(duk_has_prop_stridx(ctx, -2, DUK_STRIDX_NAME) != 0); /* non-standard */
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_STRICT(&fun_clos->obj) ||
|
|
duk_has_prop_stridx(ctx, -2, DUK_STRIDX_CALLER) != 0);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_STRICT(&fun_clos->obj) ||
|
|
duk_has_prop_stridx(ctx, -2, DUK_STRIDX_LC_ARGUMENTS) != 0);
|
|
|
|
/*
|
|
* Finish
|
|
*/
|
|
|
|
/* [ ... closure template ] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created function instance: template=%!iT -> closure=%!iT",
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(duk_tval *) duk_get_tval(ctx, -2)));
|
|
|
|
duk_pop(ctx);
|
|
|
|
/* [ ... closure ] */
|
|
}
|
|
|
|
/*
|
|
* Delayed activation environment record initialization (for functions
|
|
* with NEWENV).
|
|
*
|
|
* The non-delayed initialization is handled by duk_handle_call().
|
|
*/
|
|
|
|
/* shared helper */
|
|
DUK_INTERNAL
|
|
duk_hobject *duk_create_activation_environment_record(duk_hthread *thr,
|
|
duk_hobject *func,
|
|
duk_size_t idx_bottom) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *env;
|
|
duk_hobject *parent;
|
|
duk_tval *tv;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(func != NULL);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_INT_LEXENV(thr));
|
|
if (tv) {
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
DUK_ASSERT(DUK_HOBJECT_IS_ENV(DUK_TVAL_GET_OBJECT(tv)));
|
|
parent = DUK_TVAL_GET_OBJECT(tv);
|
|
} else {
|
|
parent = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
}
|
|
|
|
(void) duk_push_object_helper(ctx,
|
|
DUK_HOBJECT_FLAG_EXTENSIBLE |
|
|
DUK_HOBJECT_CLASS_AS_FLAGS(DUK_HOBJECT_CLASS_DECENV),
|
|
-1); /* no prototype, updated below */
|
|
env = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, env, parent); /* parent env is the prototype */
|
|
|
|
/* open scope information, for compiled functions only */
|
|
|
|
if (DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
duk_push_hthread(ctx, thr);
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_INT_THREAD);
|
|
duk_push_hobject(ctx, func);
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_INT_CALLEE);
|
|
duk_push_size_t(ctx, idx_bottom);
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_INT_REGBASE);
|
|
}
|
|
|
|
return env;
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
void duk_js_init_activation_environment_records_delayed(duk_hthread *thr,
|
|
duk_activation *act) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *func;
|
|
duk_hobject *env;
|
|
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_BOUND(func)); /* bound functions are never in act 'func' */
|
|
|
|
/*
|
|
* Delayed initialization only occurs for 'NEWENV' functions.
|
|
*/
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_NEWENV(func));
|
|
DUK_ASSERT(act->lex_env == NULL);
|
|
DUK_ASSERT(act->var_env == NULL);
|
|
|
|
env = duk_create_activation_environment_record(thr, func, act->idx_bottom);
|
|
DUK_ASSERT(env != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("created delayed fresh env: %!ipO", (duk_heaphdr *) env));
|
|
#ifdef DUK_USE_DDDPRINT
|
|
{
|
|
duk_hobject *p = env;
|
|
while (p) {
|
|
DUK_DDD(DUK_DDDPRINT(" -> %!ipO", (duk_heaphdr *) p));
|
|
p = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, p);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
act->lex_env = env;
|
|
act->var_env = env;
|
|
DUK_HOBJECT_INCREF(thr, env); /* XXX: incref by count (here 2 times) */
|
|
DUK_HOBJECT_INCREF(thr, env);
|
|
|
|
duk_pop(ctx);
|
|
}
|
|
|
|
/*
|
|
* Closing environment records.
|
|
*
|
|
* The environment record MUST be closed with the thread where its activation
|
|
* is. In other words (if 'env' is open):
|
|
*
|
|
* - 'thr' must match _env.thread
|
|
* - 'func' must match _env.callee
|
|
* - 'regbase' must match _env.regbase
|
|
*
|
|
* These are not looked up from the env to minimize code size.
|
|
*
|
|
* XXX: should access the own properties directly instead of using the API
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_js_close_environment_record(duk_hthread *thr, duk_hobject *env, duk_hobject *func, duk_size_t regbase) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_uint_fast32_t i;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(env != NULL);
|
|
/* func is NULL for lightfuncs */
|
|
|
|
if (!DUK_HOBJECT_IS_DECENV(env) || DUK_HOBJECT_HAS_ENVRECCLOSED(env)) {
|
|
DUK_DDD(DUK_DDDPRINT("environment record not a declarative record, "
|
|
"or already closed: %!iO",
|
|
(duk_heaphdr *) env));
|
|
return;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("closing environment record: %!iO, func: %!iO, regbase: %ld",
|
|
(duk_heaphdr *) env, (duk_heaphdr *) func, (long) regbase));
|
|
|
|
duk_push_hobject(ctx, env);
|
|
|
|
/* assertions: env must be closed in the same thread as where it runs */
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
{
|
|
/* [... env] */
|
|
|
|
if (duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_CALLEE)) {
|
|
DUK_ASSERT(duk_is_object(ctx, -1));
|
|
DUK_ASSERT(duk_get_hobject(ctx, -1) == (duk_hobject *) func);
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
if (duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_THREAD)) {
|
|
DUK_ASSERT(duk_is_object(ctx, -1));
|
|
DUK_ASSERT(duk_get_hobject(ctx, -1) == (duk_hobject *) thr);
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
if (duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_REGBASE)) {
|
|
DUK_ASSERT(duk_is_number(ctx, -1));
|
|
DUK_ASSERT(duk_get_number(ctx, -1) == (double) regbase);
|
|
}
|
|
duk_pop(ctx);
|
|
|
|
/* [... env] */
|
|
}
|
|
#endif
|
|
|
|
if (func != NULL && DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
duk_hobject *varmap;
|
|
duk_hstring *key;
|
|
duk_tval *tv;
|
|
duk_uint_t regnum;
|
|
|
|
/* XXX: additional conditions when to close variables? we don't want to do it
|
|
* unless the environment may have "escaped" (referenced in a function closure).
|
|
* With delayed environments, the existence is probably good enough of a check.
|
|
*/
|
|
|
|
/* XXX: any way to detect faster whether something needs to be closed?
|
|
* We now look up _Callee and then skip the rest.
|
|
*/
|
|
|
|
/* Note: we rely on the _Varmap having a bunch of nice properties, like:
|
|
* - being compacted and unmodified during this process
|
|
* - not containing an array part
|
|
* - having correct value types
|
|
*/
|
|
|
|
/* [... env] */
|
|
|
|
if (!duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_CALLEE)) {
|
|
DUK_DDD(DUK_DDDPRINT("env has no callee property, nothing to close; re-delete the control properties just in case"));
|
|
duk_pop(ctx);
|
|
goto skip_varmap;
|
|
}
|
|
|
|
/* [... env callee] */
|
|
|
|
if (!duk_get_prop_stridx(ctx, -1, DUK_STRIDX_INT_VARMAP)) {
|
|
DUK_DDD(DUK_DDDPRINT("callee has no varmap property, nothing to close; delete the control properties"));
|
|
duk_pop_2(ctx);
|
|
goto skip_varmap;
|
|
}
|
|
varmap = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(varmap != NULL);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("varmap: %!O", (duk_heaphdr *) varmap));
|
|
|
|
/* [... env callee varmap] */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("copying bound register values, %ld bound regs", (long) DUK_HOBJECT_GET_ENEXT(varmap)));
|
|
|
|
for (i = 0; i < (duk_uint_fast32_t) DUK_HOBJECT_GET_ENEXT(varmap); i++) {
|
|
key = DUK_HOBJECT_E_GET_KEY(thr->heap, varmap, i);
|
|
DUK_ASSERT(key != NULL); /* assume keys are compacted */
|
|
|
|
DUK_ASSERT(!DUK_HOBJECT_E_SLOT_IS_ACCESSOR(thr->heap, varmap, i)); /* assume plain values */
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, varmap, i);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv)); /* assume value is a number */
|
|
regnum = (duk_uint_t) DUK_TVAL_GET_NUMBER(tv);
|
|
DUK_ASSERT_DISABLE(regnum >= 0); /* unsigned */
|
|
DUK_ASSERT(regnum < ((duk_hcompiledfunction *) func)->nregs); /* regnum is sane */
|
|
DUK_ASSERT(thr->valstack + regbase + regnum >= thr->valstack);
|
|
DUK_ASSERT(thr->valstack + regbase + regnum < thr->valstack_top);
|
|
|
|
/* XXX: slightly awkward */
|
|
duk_push_hstring(ctx, key);
|
|
duk_push_tval(ctx, thr->valstack + regbase + regnum);
|
|
DUK_DDD(DUK_DDDPRINT("closing identifier '%s' -> reg %ld, value %!T",
|
|
(const char *) duk_require_string(ctx, -2),
|
|
(long) regnum,
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/* [... env callee varmap key val] */
|
|
|
|
/* if property already exists, overwrites silently */
|
|
duk_xdef_prop(ctx, -5, DUK_PROPDESC_FLAGS_WE); /* writable but not deletable */
|
|
}
|
|
|
|
duk_pop_2(ctx);
|
|
|
|
/* [... env] */
|
|
}
|
|
|
|
skip_varmap:
|
|
|
|
/* [... env] */
|
|
|
|
duk_del_prop_stridx(ctx, -1, DUK_STRIDX_INT_CALLEE);
|
|
duk_del_prop_stridx(ctx, -1, DUK_STRIDX_INT_THREAD);
|
|
duk_del_prop_stridx(ctx, -1, DUK_STRIDX_INT_REGBASE);
|
|
|
|
duk_pop(ctx);
|
|
|
|
DUK_HOBJECT_SET_ENVRECCLOSED(env);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("environment record after being closed: %!O",
|
|
(duk_heaphdr *) env));
|
|
}
|
|
|
|
/*
|
|
* GETIDREF: a GetIdentifierReference-like helper.
|
|
*
|
|
* Provides a parent traversing lookup and a single level lookup
|
|
* (for HasBinding).
|
|
*
|
|
* Instead of returning the value, returns a bunch of values allowing
|
|
* the caller to read, write, or delete the binding. Value pointers
|
|
* are duk_tval pointers which can be mutated directly as long as
|
|
* refcounts are properly updated. Note that any operation which may
|
|
* reallocate valstacks or compact objects may invalidate the returned
|
|
* duk_tval (but not object) pointers, so caller must be very careful.
|
|
*
|
|
* If starting environment record 'env' is given, 'act' is ignored.
|
|
* However, if 'env' is NULL, the caller may identify, in 'act', an
|
|
* activation which hasn't had its declarative environment initialized
|
|
* yet. The activation registers are then looked up, and its parent
|
|
* traversed normally.
|
|
*
|
|
* The 'out' structure values are only valid if the function returns
|
|
* success (non-zero).
|
|
*/
|
|
|
|
/* lookup name from an open declarative record's registers */
|
|
DUK_LOCAL
|
|
duk_bool_t duk__getid_open_decl_env_regs(duk_hthread *thr,
|
|
duk_hstring *name,
|
|
duk_hobject *env,
|
|
duk__id_lookup_result *out) {
|
|
duk_hthread *env_thr;
|
|
duk_hobject *env_func;
|
|
duk_size_t env_regbase;
|
|
duk_hobject *varmap;
|
|
duk_tval *tv;
|
|
duk_size_t reg_rel;
|
|
duk_size_t idx;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_ASSERT(out != NULL);
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_IS_DECENV(env));
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_CALLEE(thr));
|
|
if (!tv) {
|
|
/* env is closed, should be missing _Callee, _Thread, _Regbase */
|
|
DUK_ASSERT(duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_CALLEE(thr)) == NULL);
|
|
DUK_ASSERT(duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_THREAD(thr)) == NULL);
|
|
DUK_ASSERT(duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_REGBASE(thr)) == NULL);
|
|
return 0;
|
|
}
|
|
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
DUK_ASSERT(DUK_TVAL_GET_OBJECT(tv) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_COMPILEDFUNCTION(DUK_TVAL_GET_OBJECT(tv)));
|
|
env_func = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(env_func != NULL);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env_func, DUK_HTHREAD_STRING_INT_VARMAP(thr));
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
varmap = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(varmap != NULL);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, varmap, name);
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
reg_rel = (duk_size_t) DUK_TVAL_GET_NUMBER(tv);
|
|
DUK_ASSERT_DISABLE(reg_rel >= 0); /* unsigned */
|
|
DUK_ASSERT(reg_rel < ((duk_hcompiledfunction *) env_func)->nregs);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_THREAD(thr));
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
DUK_ASSERT(DUK_TVAL_GET_OBJECT(tv) != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_THREAD(DUK_TVAL_GET_OBJECT(tv)));
|
|
env_thr = (duk_hthread *) DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(env_thr != NULL);
|
|
|
|
/* Note: env_thr != thr is quite possible and normal, so careful
|
|
* with what thread is used for valstack lookup.
|
|
*/
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_REGBASE(thr));
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
env_regbase = (duk_size_t) DUK_TVAL_GET_NUMBER(tv);
|
|
|
|
idx = env_regbase + reg_rel;
|
|
tv = env_thr->valstack + idx;
|
|
DUK_ASSERT(tv >= env_thr->valstack && tv < env_thr->valstack_end); /* XXX: more accurate? */
|
|
|
|
out->value = tv;
|
|
out->attrs = DUK_PROPDESC_FLAGS_W; /* registers are mutable, non-deletable */
|
|
out->this_binding = NULL; /* implicit this value always undefined for
|
|
* declarative environment records.
|
|
*/
|
|
out->env = env;
|
|
out->holder = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* lookup name from current activation record's functions' registers */
|
|
DUK_LOCAL
|
|
duk_bool_t duk__getid_activation_regs(duk_hthread *thr,
|
|
duk_hstring *name,
|
|
duk_activation *act,
|
|
duk__id_lookup_result *out) {
|
|
duk_tval *tv;
|
|
duk_hobject *func;
|
|
duk_hobject *varmap;
|
|
duk_size_t reg_rel;
|
|
duk_size_t idx;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_ASSERT(act != NULL);
|
|
DUK_ASSERT(out != NULL);
|
|
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_NEWENV(func));
|
|
|
|
if (!DUK_HOBJECT_IS_COMPILEDFUNCTION(func)) {
|
|
return 0;
|
|
}
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_INT_VARMAP(thr));
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
varmap = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(varmap != NULL);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, varmap, name);
|
|
if (!tv) {
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(DUK_TVAL_IS_NUMBER(tv));
|
|
reg_rel = (duk_size_t) DUK_TVAL_GET_NUMBER(tv);
|
|
DUK_ASSERT_DISABLE(reg_rel >= 0);
|
|
DUK_ASSERT(reg_rel < ((duk_hcompiledfunction *) func)->nregs);
|
|
|
|
idx = act->idx_bottom + reg_rel;
|
|
DUK_ASSERT(idx >= act->idx_bottom);
|
|
tv = thr->valstack + idx;
|
|
|
|
out->value = tv;
|
|
out->attrs = DUK_PROPDESC_FLAGS_W; /* registers are mutable, non-deletable */
|
|
out->this_binding = NULL; /* implicit this value always undefined for
|
|
* declarative environment records.
|
|
*/
|
|
out->env = NULL;
|
|
out->holder = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
DUK_LOCAL
|
|
duk_bool_t duk__get_identifier_reference(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_hstring *name,
|
|
duk_activation *act,
|
|
duk_bool_t parents,
|
|
duk__id_lookup_result *out) {
|
|
duk_tval *tv;
|
|
duk_uint_t sanity;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(env != NULL || act != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_ASSERT(out != NULL);
|
|
|
|
DUK_ASSERT(!env || DUK_HOBJECT_IS_ENV(env));
|
|
DUK_ASSERT(!env || !DUK_HOBJECT_HAS_ARRAY_PART(env));
|
|
|
|
/*
|
|
* Conceptually, we look for the identifier binding by starting from
|
|
* 'env' and following to chain of environment records (represented
|
|
* by the prototype chain).
|
|
*
|
|
* If 'env' is NULL, the current activation does not yet have an
|
|
* allocated declarative environment record; this should be treated
|
|
* exactly as if the environment record existed but had no bindings
|
|
* other than register bindings.
|
|
*
|
|
* Note: we assume that with the DUK_HOBJECT_FLAG_NEWENV cleared
|
|
* the environment will always be initialized immediately; hence
|
|
* a NULL 'env' should only happen with the flag set. This is the
|
|
* case for: (1) function calls, and (2) strict, direct eval calls.
|
|
*/
|
|
|
|
if (env == NULL && act != NULL) {
|
|
duk_hobject *func;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference: env is NULL, activation is non-NULL -> "
|
|
"delayed env case, look up activation regs first"));
|
|
|
|
/*
|
|
* Try registers
|
|
*/
|
|
|
|
if (duk__getid_activation_regs(thr, name, act, out)) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference successful: "
|
|
"name=%!O -> value=%!T, attrs=%ld, this=%!T, env=%!O, holder=%!O "
|
|
"(found from register bindings when env=NULL)",
|
|
(duk_heaphdr *) name, (duk_tval *) out->value,
|
|
(long) out->attrs, (duk_tval *) out->this_binding,
|
|
(duk_heaphdr *) out->env, (duk_heaphdr *) out->holder));
|
|
return 1;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("not found in current activation regs"));
|
|
|
|
/*
|
|
* Not found in registers, proceed to the parent record.
|
|
* Here we need to determine what the parent would be,
|
|
* if 'env' was not NULL (i.e. same logic as when initializing
|
|
* the record).
|
|
*
|
|
* Note that environment initialization is only deferred when
|
|
* DUK_HOBJECT_HAS_NEWENV is set, and this only happens for:
|
|
* - Function code
|
|
* - Strict eval code
|
|
*
|
|
* We only need to check _Lexenv here; _Varenv exists only if it
|
|
* differs from _Lexenv (and thus _Lexenv will also be present).
|
|
*/
|
|
|
|
if (!parents) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference failed, no parent traversal "
|
|
"(not found from register bindings when env=NULL)"));
|
|
goto fail_not_found;
|
|
}
|
|
|
|
func = DUK_ACT_GET_FUNC(act);
|
|
DUK_ASSERT(func != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_NEWENV(func));
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_INT_LEXENV(thr));
|
|
if (tv) {
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
env = DUK_TVAL_GET_OBJECT(tv);
|
|
} else {
|
|
DUK_ASSERT(duk_hobject_find_existing_entry_tval_ptr(thr->heap, func, DUK_HTHREAD_STRING_INT_VARENV(thr)) == NULL);
|
|
env = thr->builtins[DUK_BIDX_GLOBAL_ENV];
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("continue lookup from env: %!iO",
|
|
(duk_heaphdr *) env));
|
|
}
|
|
|
|
/*
|
|
* Prototype walking starting from 'env'.
|
|
*
|
|
* ('act' is not needed anywhere here.)
|
|
*/
|
|
|
|
sanity = DUK_HOBJECT_PROTOTYPE_CHAIN_SANITY;
|
|
while (env != NULL) {
|
|
duk_small_int_t cl;
|
|
duk_int_t attrs;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference, name=%!O, considering env=%p -> %!iO",
|
|
(duk_heaphdr *) name,
|
|
(void *) env,
|
|
(duk_heaphdr *) env));
|
|
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_ENV(env));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_ARRAY_PART(env));
|
|
|
|
cl = DUK_HOBJECT_GET_CLASS_NUMBER(env);
|
|
DUK_ASSERT(cl == DUK_HOBJECT_CLASS_OBJENV || cl == DUK_HOBJECT_CLASS_DECENV);
|
|
if (cl == DUK_HOBJECT_CLASS_DECENV) {
|
|
/*
|
|
* Declarative environment record.
|
|
*
|
|
* Identifiers can never be stored in ancestors and are
|
|
* always plain values, so we can use an internal helper
|
|
* and access the value directly with an duk_tval ptr.
|
|
*
|
|
* A closed environment is only indicated by it missing
|
|
* the "book-keeping" properties required for accessing
|
|
* register-bound variables.
|
|
*/
|
|
|
|
if (DUK_HOBJECT_HAS_ENVRECCLOSED(env)) {
|
|
/* already closed */
|
|
goto skip_regs;
|
|
}
|
|
|
|
if (duk__getid_open_decl_env_regs(thr, name, env, out)) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference successful: "
|
|
"name=%!O -> value=%!T, attrs=%ld, this=%!T, env=%!O, holder=%!O "
|
|
"(declarative environment record, scope open, found in regs)",
|
|
(duk_heaphdr *) name, (duk_tval *) out->value,
|
|
(long) out->attrs, (duk_tval *) out->this_binding,
|
|
(duk_heaphdr *) out->env, (duk_heaphdr *) out->holder));
|
|
return 1;
|
|
}
|
|
skip_regs:
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr_and_attrs(thr->heap, env, name, &attrs);
|
|
if (tv) {
|
|
out->value = tv;
|
|
out->attrs = attrs;
|
|
out->this_binding = NULL; /* implicit this value always undefined for
|
|
* declarative environment records.
|
|
*/
|
|
out->env = env;
|
|
out->holder = env;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference successful: "
|
|
"name=%!O -> value=%!T, attrs=%ld, this=%!T, env=%!O, holder=%!O "
|
|
"(declarative environment record, found in properties)",
|
|
(duk_heaphdr *) name, (duk_tval *) out->value,
|
|
(long) out->attrs, (duk_tval *) out->this_binding,
|
|
(duk_heaphdr *) out->env, (duk_heaphdr *) out->holder));
|
|
return 1;
|
|
}
|
|
} else {
|
|
/*
|
|
* Object environment record.
|
|
*
|
|
* Binding (target) object is an external, uncontrolled object.
|
|
* Identifier may be bound in an ancestor property, and may be
|
|
* an accessor.
|
|
*/
|
|
|
|
/* XXX: we could save space by using _Target OR _This. If _Target, assume
|
|
* this binding is undefined. If _This, assumes this binding is _This, and
|
|
* target is also _This. One property would then be enough.
|
|
*/
|
|
|
|
duk_hobject *target;
|
|
|
|
DUK_ASSERT(cl == DUK_HOBJECT_CLASS_OBJENV);
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_TARGET(thr));
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
target = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(target != NULL);
|
|
|
|
/* Note: we must traverse the prototype chain, so use an actual
|
|
* hasprop call here. The property may also be an accessor, so
|
|
* we can't get an duk_tval pointer here.
|
|
*
|
|
* out->holder is NOT set to the actual duk_hobject where the
|
|
* property is found, but rather the target object.
|
|
*/
|
|
|
|
if (duk_hobject_hasprop_raw(thr, target, name)) {
|
|
out->value = NULL; /* can't get value, may be accessor */
|
|
out->attrs = 0; /* irrelevant when out->value == NULL */
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_THIS(thr));
|
|
out->this_binding = tv; /* may be NULL */
|
|
out->env = env;
|
|
out->holder = target;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference successful: "
|
|
"name=%!O -> value=%!T, attrs=%ld, this=%!T, env=%!O, holder=%!O "
|
|
"(object environment record)",
|
|
(duk_heaphdr *) name, (duk_tval *) out->value,
|
|
(long) out->attrs, (duk_tval *) out->this_binding,
|
|
(duk_heaphdr *) out->env, (duk_heaphdr *) out->holder));
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
if (!parents) {
|
|
DUK_DDD(DUK_DDDPRINT("duk__get_identifier_reference failed, no parent traversal "
|
|
"(not found from first traversed env)"));
|
|
goto fail_not_found;
|
|
}
|
|
|
|
if (sanity-- == 0) {
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_PROTOTYPE_CHAIN_LIMIT);
|
|
}
|
|
env = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, env);
|
|
};
|
|
|
|
/*
|
|
* Not found (even in global object)
|
|
*/
|
|
|
|
fail_not_found:
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* HASVAR: check identifier binding from a given environment record
|
|
* without traversing its parents.
|
|
*
|
|
* This primitive is not exposed to user code as such, but is used
|
|
* internally for e.g. declaration binding instantiation.
|
|
*
|
|
* See E5 Sections:
|
|
* 10.2.1.1.1 HasBinding(N)
|
|
* 10.2.1.2.1 HasBinding(N)
|
|
*
|
|
* Note: strictness has no bearing on this check. Hence we don't take
|
|
* a 'strict' parameter.
|
|
*/
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_js_hasvar_envrec(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_hstring *name) {
|
|
duk__id_lookup_result ref;
|
|
duk_bool_t parents;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("hasvar: thr=%p, env=%p, name=%!O "
|
|
"(env -> %!dO)",
|
|
(void *) thr, (void *) env, (duk_heaphdr *) name,
|
|
(duk_heaphdr *) env));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(env);
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(name);
|
|
|
|
DUK_ASSERT(DUK_HOBJECT_IS_ENV(env));
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_ARRAY_PART(env));
|
|
|
|
/* lookup results is ignored */
|
|
parents = 0;
|
|
return duk__get_identifier_reference(thr, env, name, NULL, parents, &ref);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* GETVAR
|
|
*
|
|
* See E5 Sections:
|
|
* 11.1.2 Identifier Reference
|
|
* 10.3.1 Identifier Resolution
|
|
* 11.13.1 Simple Assignment [example of where the Reference is GetValue'd]
|
|
* 8.7.1 GetValue (V)
|
|
* 8.12.1 [[GetOwnProperty]] (P)
|
|
* 8.12.2 [[GetProperty]] (P)
|
|
* 8.12.3 [[Get]] (P)
|
|
*
|
|
* If 'throw' is true, always leaves two values on top of stack: [val this].
|
|
*
|
|
* If 'throw' is false, returns 0 if identifier cannot be resolved, and the
|
|
* stack will be unaffected in this case. If identifier is resolved, returns
|
|
* 1 and leaves [val this] on top of stack.
|
|
*
|
|
* Note: the 'strict' flag of a reference returned by GetIdentifierReference
|
|
* is ignored by GetValue. Hence we don't take a 'strict' parameter.
|
|
*
|
|
* The 'throw' flag is needed for implementing 'typeof' for an unreferenced
|
|
* identifier. An unreference identifier in other contexts generates a
|
|
* ReferenceError.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_bool_t duk__getvar_helper(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_activation *act,
|
|
duk_hstring *name,
|
|
duk_bool_t throw_flag) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk__id_lookup_result ref;
|
|
duk_tval tv_tmp_obj;
|
|
duk_tval tv_tmp_key;
|
|
duk_bool_t parents;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("getvar: thr=%p, env=%p, act=%p, name=%!O "
|
|
"(env -> %!dO)",
|
|
(void *) thr, (void *) env, (void *) act,
|
|
(duk_heaphdr *) name, (duk_heaphdr *) env));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
/* env and act may be NULL */
|
|
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(env);
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(name);
|
|
|
|
parents = 1; /* follow parent chain */
|
|
if (duk__get_identifier_reference(thr, env, name, act, parents, &ref)) {
|
|
if (ref.value) {
|
|
DUK_ASSERT(ref.this_binding == NULL); /* always for register bindings */
|
|
duk_push_tval(ctx, ref.value);
|
|
duk_push_undefined(ctx);
|
|
} else {
|
|
DUK_ASSERT(ref.holder != NULL);
|
|
|
|
/* Note: getprop may invoke any getter and invalidate any
|
|
* duk_tval pointers, so this must be done first.
|
|
*/
|
|
|
|
if (ref.this_binding) {
|
|
duk_push_tval(ctx, ref.this_binding);
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
|
|
DUK_TVAL_SET_OBJECT(&tv_tmp_obj, ref.holder);
|
|
DUK_TVAL_SET_STRING(&tv_tmp_key, name);
|
|
(void) duk_hobject_getprop(thr, &tv_tmp_obj, &tv_tmp_key); /* [this value] */
|
|
|
|
/* ref.value, ref.this.binding invalidated here by getprop call */
|
|
|
|
duk_insert(ctx, -2); /* [this value] -> [value this] */
|
|
}
|
|
|
|
return 1;
|
|
} else {
|
|
if (throw_flag) {
|
|
DUK_ERROR(thr, DUK_ERR_REFERENCE_ERROR,
|
|
"identifier '%s' undefined",
|
|
(const char *) DUK_HSTRING_GET_DATA(name));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_js_getvar_envrec(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_hstring *name,
|
|
duk_bool_t throw_flag) {
|
|
return duk__getvar_helper(thr, env, NULL, name, throw_flag);
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_js_getvar_activation(duk_hthread *thr,
|
|
duk_activation *act,
|
|
duk_hstring *name,
|
|
duk_bool_t throw_flag) {
|
|
DUK_ASSERT(act != NULL);
|
|
return duk__getvar_helper(thr, act->lex_env, act, name, throw_flag);
|
|
}
|
|
|
|
/*
|
|
* PUTVAR
|
|
*
|
|
* See E5 Sections:
|
|
* 11.1.2 Identifier Reference
|
|
* 10.3.1 Identifier Resolution
|
|
* 11.13.1 Simple Assignment [example of where the Reference is PutValue'd]
|
|
* 8.7.2 PutValue (V,W) [see especially step 3.b, undefined -> automatic global in non-strict mode]
|
|
* 8.12.4 [[CanPut]] (P)
|
|
* 8.12.5 [[Put]] (P)
|
|
*
|
|
* Note: may invalidate any valstack (or object) duk_tval pointers because
|
|
* putting a value may reallocate any object or any valstack. Caller beware.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__putvar_helper(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_activation *act,
|
|
duk_hstring *name,
|
|
duk_tval *val,
|
|
duk_bool_t strict) {
|
|
duk__id_lookup_result ref;
|
|
duk_tval tv_tmp_obj;
|
|
duk_tval tv_tmp_key;
|
|
duk_bool_t parents;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("putvar: thr=%p, env=%p, act=%p, name=%!O, val=%p, strict=%ld "
|
|
"(env -> %!dO, val -> %!T)",
|
|
(void *) thr, (void *) env, (void *) act,
|
|
(duk_heaphdr *) name, (void *) val, (long) strict,
|
|
(duk_heaphdr *) env, (duk_tval *) val));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_ASSERT(val != NULL);
|
|
/* env and act may be NULL */
|
|
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(env);
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(name);
|
|
DUK_ASSERT_REFCOUNT_NONZERO_TVAL(val);
|
|
|
|
/*
|
|
* In strict mode E5 protects 'eval' and 'arguments' from being
|
|
* assigned to (or even declared anywhere). Attempt to do so
|
|
* should result in a compile time SyntaxError. See the internal
|
|
* design documentation for details.
|
|
*
|
|
* Thus, we should never come here, run-time, for strict code,
|
|
* and name 'eval' or 'arguments'.
|
|
*/
|
|
|
|
DUK_ASSERT(!strict ||
|
|
(name != DUK_HTHREAD_STRING_EVAL(thr) &&
|
|
name != DUK_HTHREAD_STRING_LC_ARGUMENTS(thr)));
|
|
|
|
/*
|
|
* Lookup variable and update in-place if found.
|
|
*/
|
|
|
|
parents = 1; /* follow parent chain */
|
|
|
|
if (duk__get_identifier_reference(thr, env, name, act, parents, &ref)) {
|
|
if (ref.value && (ref.attrs & DUK_PROPDESC_FLAG_WRITABLE)) {
|
|
/* Update duk_tval in-place if pointer provided and the
|
|
* property is writable. If the property is not writable
|
|
* (immutable binding), use duk_hobject_putprop() which
|
|
* will respect mutability.
|
|
*/
|
|
duk_tval tv_tmp;
|
|
duk_tval *tv_val;
|
|
|
|
DUK_ASSERT(ref.this_binding == NULL); /* always for register bindings */
|
|
|
|
tv_val = ref.value;
|
|
DUK_ASSERT(tv_val != NULL);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv_val);
|
|
DUK_TVAL_SET_TVAL(tv_val, val);
|
|
DUK_TVAL_INCREF(thr, val);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp); /* must be last */
|
|
|
|
/* ref.value and ref.this_binding invalidated here */
|
|
} else {
|
|
DUK_ASSERT(ref.holder != NULL);
|
|
|
|
DUK_TVAL_SET_OBJECT(&tv_tmp_obj, ref.holder);
|
|
DUK_TVAL_SET_STRING(&tv_tmp_key, name);
|
|
(void) duk_hobject_putprop(thr, &tv_tmp_obj, &tv_tmp_key, val, strict);
|
|
|
|
/* ref.value and ref.this_binding invalidated here */
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Not found: write to global object (non-strict) or ReferenceError
|
|
* (strict); see E5 Section 8.7.2, step 3.
|
|
*/
|
|
|
|
if (strict) {
|
|
DUK_DDD(DUK_DDDPRINT("identifier binding not found, strict => reference error"));
|
|
DUK_ERROR(thr, DUK_ERR_REFERENCE_ERROR, "identifier not defined");
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("identifier binding not found, not strict => set to global"));
|
|
|
|
DUK_TVAL_SET_OBJECT(&tv_tmp_obj, thr->builtins[DUK_BIDX_GLOBAL]);
|
|
DUK_TVAL_SET_STRING(&tv_tmp_key, name);
|
|
(void) duk_hobject_putprop(thr, &tv_tmp_obj, &tv_tmp_key, val, 0); /* 0 = no throw */
|
|
|
|
/* NB: 'val' may be invalidated here because put_value may realloc valstack,
|
|
* caller beware.
|
|
*/
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
void duk_js_putvar_envrec(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_hstring *name,
|
|
duk_tval *val,
|
|
duk_bool_t strict) {
|
|
duk__putvar_helper(thr, env, NULL, name, val, strict);
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
void duk_js_putvar_activation(duk_hthread *thr,
|
|
duk_activation *act,
|
|
duk_hstring *name,
|
|
duk_tval *val,
|
|
duk_bool_t strict) {
|
|
DUK_ASSERT(act != NULL);
|
|
duk__putvar_helper(thr, act->lex_env, act, name, val, strict);
|
|
}
|
|
|
|
/*
|
|
* DELVAR
|
|
*
|
|
* See E5 Sections:
|
|
* 11.4.1 The delete operator
|
|
* 10.2.1.1.5 DeleteBinding (N) [declarative environment record]
|
|
* 10.2.1.2.5 DeleteBinding (N) [object environment record]
|
|
*
|
|
* Variable bindings established inside eval() are deletable (configurable),
|
|
* other bindings are not, including variables declared in global level.
|
|
* Registers are always non-deletable, and the deletion of other bindings
|
|
* is controlled by the configurable flag.
|
|
*
|
|
* For strict mode code, the 'delete' operator should fail with a compile
|
|
* time SyntaxError if applied to identifiers. Hence, no strict mode
|
|
* run-time deletion of identifiers should ever happen. This function
|
|
* should never be called from strict mode code!
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_bool_t duk__delvar_helper(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_activation *act,
|
|
duk_hstring *name) {
|
|
duk__id_lookup_result ref;
|
|
duk_bool_t parents;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("delvar: thr=%p, env=%p, act=%p, name=%!O "
|
|
"(env -> %!dO)",
|
|
(void *) thr, (void *) env, (void *) act,
|
|
(duk_heaphdr *) name, (duk_heaphdr *) env));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
/* env and act may be NULL */
|
|
|
|
DUK_ASSERT_REFCOUNT_NONZERO_HEAPHDR(name);
|
|
|
|
parents = 1; /* follow parent chain */
|
|
|
|
if (duk__get_identifier_reference(thr, env, name, act, parents, &ref)) {
|
|
if (ref.value && !(ref.attrs & DUK_PROPDESC_FLAG_CONFIGURABLE)) {
|
|
/* Identifier found in registers (always non-deletable)
|
|
* or declarative environment record and non-configurable.
|
|
*/
|
|
return 0;
|
|
}
|
|
DUK_ASSERT(ref.holder != NULL);
|
|
|
|
return duk_hobject_delprop_raw(thr, ref.holder, name, 0);
|
|
}
|
|
|
|
/*
|
|
* Not found (even in global object).
|
|
*
|
|
* In non-strict mode this is a silent SUCCESS (!), see E5 Section 11.4.1,
|
|
* step 3.b. In strict mode this case is a compile time SyntaxError so
|
|
* we should not come here.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("identifier to be deleted not found: name=%!O "
|
|
"(treated as silent success)",
|
|
(duk_heaphdr *) name));
|
|
return 1;
|
|
}
|
|
|
|
#if 0 /*unused*/
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_js_delvar_envrec(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_hstring *name) {
|
|
return duk__delvar_helper(thr, env, NULL, name);
|
|
}
|
|
#endif
|
|
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_js_delvar_activation(duk_hthread *thr,
|
|
duk_activation *act,
|
|
duk_hstring *name) {
|
|
DUK_ASSERT(act != NULL);
|
|
return duk__delvar_helper(thr, act->lex_env, act, name);
|
|
}
|
|
|
|
/*
|
|
* DECLVAR
|
|
*
|
|
* See E5 Sections:
|
|
* 10.4.3 Entering Function Code
|
|
* 10.5 Declaration Binding Instantion
|
|
* 12.2 Variable Statement
|
|
* 11.1.2 Identifier Reference
|
|
* 10.3.1 Identifier Resolution
|
|
*
|
|
* Variable declaration behavior is mainly discussed in Section 10.5,
|
|
* and is not discussed in the execution semantics (Sections 11-13).
|
|
*
|
|
* Conceptually declarations happen when code (global, eval, function)
|
|
* is entered, before any user code is executed. In practice, register-
|
|
* bound identifiers are 'declared' automatically (by virtue of being
|
|
* allocated to registers with the initial value 'undefined'). Other
|
|
* identifiers are declared in the function prologue with this primitive.
|
|
*
|
|
* Since non-register bindings eventually back to an internal object's
|
|
* properties, the 'prop_flags' argument is used to specify binding
|
|
* type:
|
|
*
|
|
* - Immutable binding: set DUK_PROPDESC_FLAG_WRITABLE to false
|
|
* - Non-deletable binding: set DUK_PROPDESC_FLAG_CONFIGURABLE to false
|
|
* - The flag DUK_PROPDESC_FLAG_ENUMERABLE should be set, although it
|
|
* doesn't really matter for internal objects
|
|
*
|
|
* All bindings are non-deletable mutable bindings except:
|
|
*
|
|
* - Declarations in eval code (mutable, deletable)
|
|
* - 'arguments' binding in strict function code (immutable)
|
|
* - Function name binding of a function expression (immutable)
|
|
*
|
|
* Declarations may go to declarative environment records (always
|
|
* so for functions), but may also go to object environment records
|
|
* (e.g. global code). The global object environment has special
|
|
* behavior when re-declaring a function (but not a variable); see
|
|
* E5.1 specification, Section 10.5, step 5.e.
|
|
*
|
|
* Declarations always go to the 'top-most' environment record, i.e.
|
|
* we never check the record chain. It's not an error even if a
|
|
* property (even an immutable or non-deletable one) of the same name
|
|
* already exists.
|
|
*
|
|
* If a declared variable already exists, its value needs to be updated
|
|
* (if possible). Returns 1 if a PUTVAR needs to be done by the caller;
|
|
* otherwise returns 0.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
duk_bool_t duk__declvar_helper(duk_hthread *thr,
|
|
duk_hobject *env,
|
|
duk_hstring *name,
|
|
duk_tval *val,
|
|
duk_small_int_t prop_flags,
|
|
duk_bool_t is_func_decl) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *holder;
|
|
duk_bool_t parents;
|
|
duk__id_lookup_result ref;
|
|
duk_tval *tv;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("declvar: thr=%p, env=%p, name=%!O, val=%!T, prop_flags=0x%08lx, is_func_decl=%ld "
|
|
"(env -> %!iO)",
|
|
(void *) thr, (void *) env, (duk_heaphdr *) name,
|
|
(duk_tval *) val, (unsigned long) prop_flags,
|
|
(unsigned int) is_func_decl, (duk_heaphdr *) env));
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_ASSERT(name != NULL);
|
|
DUK_ASSERT(val != NULL);
|
|
|
|
/* Note: in strict mode the compiler should reject explicit
|
|
* declaration of 'eval' or 'arguments'. However, internal
|
|
* bytecode may declare 'arguments' in the function prologue.
|
|
* We don't bother checking (or asserting) for these now.
|
|
*/
|
|
|
|
/* Note: val is a stable duk_tval pointer. The caller makes
|
|
* a value copy into its stack frame, so 'tv_val' is not subject
|
|
* to side effects here.
|
|
*/
|
|
|
|
/*
|
|
* Check whether already declared.
|
|
*
|
|
* We need to check whether the binding exists in the environment
|
|
* without walking its parents. However, we still need to check
|
|
* register-bound identifiers and the prototype chain of an object
|
|
* environment target object.
|
|
*/
|
|
|
|
parents = 0; /* just check 'env' */
|
|
if (duk__get_identifier_reference(thr, env, name, NULL, parents, &ref)) {
|
|
duk_int_t e_idx;
|
|
duk_int_t h_idx;
|
|
duk_small_int_t flags;
|
|
|
|
/*
|
|
* Variable already declared, ignore re-declaration.
|
|
* The only exception is the updated behavior of E5.1 for
|
|
* global function declarations, E5.1 Section 10.5, step 5.e.
|
|
* This behavior does not apply to global variable declarations.
|
|
*/
|
|
|
|
if (!(is_func_decl && env == thr->builtins[DUK_BIDX_GLOBAL_ENV])) {
|
|
DUK_DDD(DUK_DDDPRINT("re-declare a binding, ignoring"));
|
|
return 1; /* 1 -> needs a PUTVAR */
|
|
}
|
|
|
|
/*
|
|
* Special behavior in E5.1.
|
|
*
|
|
* Note that even though parents == 0, the conflicting property
|
|
* may be an inherited property (currently our global object's
|
|
* prototype is Object.prototype). Step 5.e first operates on
|
|
* the existing property (which is potentially in an ancestor)
|
|
* and then defines a new property in the global object (and
|
|
* never modifies the ancestor).
|
|
*
|
|
* Also note that this logic would become even more complicated
|
|
* if the conflicting property might be a virtual one. Object
|
|
* prototype has no virtual properties, though.
|
|
*
|
|
* XXX: this is now very awkward, rework.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("re-declare a function binding in global object, "
|
|
"updated E5.1 processing"));
|
|
|
|
DUK_ASSERT(ref.holder != NULL);
|
|
holder = ref.holder;
|
|
|
|
/* holder will be set to the target object, not the actual object
|
|
* where the property was found (see duk__get_identifier_reference()).
|
|
*/
|
|
DUK_ASSERT(DUK_HOBJECT_GET_CLASS_NUMBER(holder) == DUK_HOBJECT_CLASS_GLOBAL);
|
|
DUK_ASSERT(!DUK_HOBJECT_HAS_EXOTIC_ARRAY(holder)); /* global object doesn't have array part */
|
|
|
|
/* XXX: use a helper for prototype traversal; no loop check here */
|
|
/* must be found: was found earlier, and cannot be inherited */
|
|
for (;;) {
|
|
DUK_ASSERT(holder != NULL);
|
|
duk_hobject_find_existing_entry(thr->heap, holder, name, &e_idx, &h_idx);
|
|
if (e_idx >= 0) {
|
|
break;
|
|
}
|
|
/* SCANBUILD: NULL pointer dereference, doesn't actually trigger,
|
|
* asserted above.
|
|
*/
|
|
holder = DUK_HOBJECT_GET_PROTOTYPE(thr->heap, holder);
|
|
}
|
|
DUK_ASSERT(holder != NULL);
|
|
DUK_ASSERT(e_idx >= 0);
|
|
/* SCANBUILD: scan-build produces a NULL pointer dereference warning
|
|
* below; it never actually triggers because holder is actually never
|
|
* NULL.
|
|
*/
|
|
|
|
/* ref.holder is global object, holder is the object with the
|
|
* conflicting property.
|
|
*/
|
|
|
|
flags = DUK_HOBJECT_E_GET_FLAGS(thr->heap, holder, e_idx);
|
|
if (!(flags & DUK_PROPDESC_FLAG_CONFIGURABLE)) {
|
|
if (flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
DUK_DDD(DUK_DDDPRINT("existing property is a non-configurable "
|
|
"accessor -> reject"));
|
|
goto fail_existing_attributes;
|
|
}
|
|
if (!((flags & DUK_PROPDESC_FLAG_WRITABLE) &&
|
|
(flags & DUK_PROPDESC_FLAG_ENUMERABLE))) {
|
|
DUK_DDD(DUK_DDDPRINT("existing property is a non-configurable "
|
|
"plain property which is not writable and "
|
|
"enumerable -> reject"));
|
|
goto fail_existing_attributes;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("existing property is not configurable but "
|
|
"is plain, enumerable, and writable -> "
|
|
"allow redeclaration"));
|
|
}
|
|
|
|
if (holder == ref.holder) {
|
|
/* XXX: if duk_hobject_define_property_internal() was updated
|
|
* to handle a pre-existing accessor property, this would be
|
|
* a simple call (like for the ancestor case).
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("redefine, offending property in global object itself"));
|
|
|
|
if (flags & DUK_PROPDESC_FLAG_ACCESSOR) {
|
|
duk_hobject *tmp;
|
|
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_GETTER(thr->heap, holder, e_idx);
|
|
DUK_HOBJECT_E_SET_VALUE_GETTER(thr->heap, holder, e_idx, NULL);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
DUK_UNREF(tmp);
|
|
tmp = DUK_HOBJECT_E_GET_VALUE_SETTER(thr->heap, holder, e_idx);
|
|
DUK_HOBJECT_E_SET_VALUE_SETTER(thr->heap, holder, e_idx, NULL);
|
|
DUK_HOBJECT_DECREF_ALLOWNULL(thr, tmp);
|
|
DUK_UNREF(tmp);
|
|
} else {
|
|
duk_tval tv_tmp;
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, holder, e_idx);
|
|
DUK_TVAL_SET_TVAL(&tv_tmp, tv);
|
|
DUK_TVAL_SET_UNDEFINED_UNUSED(tv);
|
|
DUK_TVAL_DECREF(thr, &tv_tmp);
|
|
}
|
|
|
|
/* Here val would be potentially invalid if we didn't make
|
|
* a value copy at the caller.
|
|
*/
|
|
|
|
tv = DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, holder, e_idx);
|
|
DUK_TVAL_SET_TVAL(tv, val);
|
|
DUK_TVAL_INCREF(thr, tv);
|
|
DUK_HOBJECT_E_SET_FLAGS(thr->heap, holder, e_idx, prop_flags);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("updated global binding, final result: "
|
|
"value -> %!T, prop_flags=0x%08lx",
|
|
(duk_tval *) DUK_HOBJECT_E_GET_VALUE_TVAL_PTR(thr->heap, holder, e_idx),
|
|
(unsigned long) prop_flags));
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("redefine, offending property in ancestor"));
|
|
|
|
DUK_ASSERT(ref.holder == thr->builtins[DUK_BIDX_GLOBAL]);
|
|
duk_push_tval(ctx, val);
|
|
duk_hobject_define_property_internal(thr, ref.holder, name, prop_flags);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Not found (in registers or record objects). Declare
|
|
* to current variable environment.
|
|
*/
|
|
|
|
/*
|
|
* Get holder object
|
|
*/
|
|
|
|
if (DUK_HOBJECT_IS_DECENV(env)) {
|
|
holder = env;
|
|
} else {
|
|
DUK_ASSERT(DUK_HOBJECT_IS_OBJENV(env));
|
|
|
|
tv = duk_hobject_find_existing_entry_tval_ptr(thr->heap, env, DUK_HTHREAD_STRING_INT_TARGET(thr));
|
|
DUK_ASSERT(tv != NULL);
|
|
DUK_ASSERT(DUK_TVAL_IS_OBJECT(tv));
|
|
holder = DUK_TVAL_GET_OBJECT(tv);
|
|
DUK_ASSERT(holder != NULL);
|
|
}
|
|
|
|
/*
|
|
* Define new property
|
|
*
|
|
* Note: this may fail if the holder is not extensible.
|
|
*/
|
|
|
|
/* XXX: this is awkward as we use an internal method which doesn't handle
|
|
* extensibility etc correctly. Basically we'd want to do a [[DefineOwnProperty]]
|
|
* or Object.defineProperty() here.
|
|
*/
|
|
|
|
if (!DUK_HOBJECT_HAS_EXTENSIBLE(holder)) {
|
|
goto fail_not_extensible;
|
|
}
|
|
|
|
duk_push_hobject(ctx, holder);
|
|
duk_push_hstring(ctx, name);
|
|
duk_push_tval(ctx, val);
|
|
duk_xdef_prop(ctx, -3, prop_flags); /* [holder name val] -> [holder] */
|
|
duk_pop(ctx);
|
|
|
|
return 0;
|
|
|
|
fail_existing_attributes:
|
|
fail_not_extensible:
|
|
DUK_ERROR(thr, DUK_ERR_TYPE_ERROR, "declaration failed");
|
|
return 0;
|
|
}
|
|
|
|
DUK_INTERNAL
|
|
duk_bool_t duk_js_declvar_activation(duk_hthread *thr,
|
|
duk_activation *act,
|
|
duk_hstring *name,
|
|
duk_tval *val,
|
|
duk_small_int_t prop_flags,
|
|
duk_bool_t is_func_decl) {
|
|
duk_hobject *env;
|
|
duk_tval tv_val_copy;
|
|
|
|
/*
|
|
* Make a value copy of the input val. This ensures that
|
|
* side effects cannot invalidate the pointer.
|
|
*/
|
|
|
|
DUK_TVAL_SET_TVAL(&tv_val_copy, val);
|
|
val = &tv_val_copy;
|
|
|
|
/*
|
|
* Delayed env creation check
|
|
*/
|
|
|
|
if (!act->var_env) {
|
|
DUK_ASSERT(act->lex_env == NULL);
|
|
duk_js_init_activation_environment_records_delayed(thr, act);
|
|
}
|
|
DUK_ASSERT(act->lex_env != NULL);
|
|
DUK_ASSERT(act->var_env != NULL);
|
|
|
|
env = act->var_env;
|
|
DUK_ASSERT(env != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_IS_ENV(env));
|
|
|
|
return duk__declvar_helper(thr, env, name, val, prop_flags, is_func_decl);
|
|
}
|
|
#line 1 "duk_lexer.c"
|
|
/*
|
|
* Lexer for source files, ToNumber() string conversions, RegExp expressions,
|
|
* and JSON.
|
|
*
|
|
* Provides a stream of Ecmascript tokens from an UTF-8/CESU-8 buffer. The
|
|
* caller can also rewind the token stream into a certain position which is
|
|
* needed by the compiler part for multi-pass scanning. Tokens are
|
|
* represented as duk_token structures, and contain line number information.
|
|
* Token types are identified with DUK_TOK_* defines.
|
|
*
|
|
* Characters are decoded into a fixed size lookup window consisting of
|
|
* decoded Unicode code points, with window positions past the end of the
|
|
* input filled with an invalid codepoint (-1). The tokenizer can thus
|
|
* perform multiple character lookups efficiently and with few sanity
|
|
* checks (such as access outside the end of the input), which keeps the
|
|
* tokenization code small at the cost of performance.
|
|
*
|
|
* Character data in tokens (such as identifier names and string literals)
|
|
* is encoded into CESU-8 format on-the-fly while parsing the token in
|
|
* question. The string data is made reachable to garbage collection by
|
|
* placing the token-related values in value stack entries allocated for
|
|
* this purpose by the caller. The characters exist in Unicode code point
|
|
* form only in the fixed size lookup window, which keeps character data
|
|
* expansion (of especially ASCII data) low.
|
|
*
|
|
* Token parsing supports the full range of Unicode characters as described
|
|
* in the E5 specification. Parsing has been optimized for ASCII characters
|
|
* because ordinary Ecmascript code consists almost entirely of ASCII
|
|
* characters. Matching of complex Unicode codepoint sets (such as in the
|
|
* IdentifierStart and IdentifierPart productions) is optimized for size,
|
|
* and is done using a linear scan of a bit-packed list of ranges. This is
|
|
* very slow, but should never be entered unless the source code actually
|
|
* contains Unicode characters.
|
|
*
|
|
* Ecmascript tokenization is partially context sensitive. First,
|
|
* additional future reserved words are recognized in strict mode (see E5
|
|
* Section 7.6.1.2). Second, a forward slash character ('/') can be
|
|
* recognized either as starting a RegExp literal or as a division operator,
|
|
* depending on context. The caller must provide necessary context flags
|
|
* when requesting a new token.
|
|
*
|
|
* Future work:
|
|
*
|
|
* * Make the input window a circular array to avoid copying. This would
|
|
* not necessarily complicate the tokenizer much, although it would make
|
|
* the window fetches more expensive (one AND).
|
|
*
|
|
* * Make line number tracking optional, as it consumes space. Also, is
|
|
* tracking end line really useful for tokens?
|
|
*
|
|
* * Add a feature flag for disabling UTF-8 decoding of input, as most
|
|
* source code is ASCII. Because of Unicode escapes written in ASCII,
|
|
* this does not allow Unicode support to be removed from e.g.
|
|
* duk_unicode_is_identifier_start() nor does it allow removal of CESU-8
|
|
* encoding of e.g. string literals.
|
|
*
|
|
* * Add a feature flag for disabling Unicode compliance of e.g. identifier
|
|
* names. This allows for a build more than a kilobyte smaller, because
|
|
* Unicode ranges needed by duk_unicode_is_identifier_start() and
|
|
* duk_unicode_is_identifier_part() can be dropped. String literals
|
|
* should still be allowed to contain escaped Unicode, so this still does
|
|
* not allow removal of CESU-8 encoding of e.g. string literals.
|
|
*
|
|
* * Character lookup tables for codepoints above BMP could be stripped.
|
|
*
|
|
* * Strictly speaking, E5 specification requires that source code consists
|
|
* of 16-bit code units, and if not, must be conceptually converted to
|
|
* that format first. The current lexer processes Unicode code points
|
|
* and allows characters outside the BMP. These should be converted to
|
|
* surrogate pairs while reading the source characters into the window,
|
|
* not after tokens have been formed (as is done now). However, the fix
|
|
* is not trivial because two characters are decoded from one codepoint.
|
|
*
|
|
* * Optimize for speed as well as size. Large if-else ladders are slow.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Various defines and file specific helper macros
|
|
*/
|
|
|
|
#define DUK__MAX_RE_DECESC_DIGITS 9
|
|
#define DUK__MAX_RE_QUANT_DIGITS 9 /* Does not allow e.g. 2**31-1, but one more would allow overflows of u32. */
|
|
|
|
#define DUK__LOOKUP(lex_ctx,index) ((lex_ctx)->window[(index)])
|
|
#define DUK__ADVANCE(lex_ctx,count) duk__advance_chars((lex_ctx), (count))
|
|
#define DUK__INITBUFFER(lex_ctx) duk__initbuffer((lex_ctx))
|
|
#define DUK__APPENDBUFFER(lex_ctx,x) duk__appendbuffer((lex_ctx), (duk_codepoint_t) (x))
|
|
|
|
/* whether to use macros or helper function depends on call count */
|
|
#define DUK__ISDIGIT(x) ((x) >= DUK_ASC_0 && (x) <= DUK_ASC_9)
|
|
#define DUK__ISHEXDIGIT(x) duk__is_hex_digit((x))
|
|
#define DUK__ISOCTDIGIT(x) ((x) >= DUK_ASC_0 && (x) <= DUK_ASC_7)
|
|
#define DUK__ISDIGIT03(x) ((x) >= DUK_ASC_0 && (x) <= DUK_ASC_3)
|
|
#define DUK__ISDIGIT47(x) ((x) >= DUK_ASC_4 && (x) <= DUK_ASC_7)
|
|
|
|
/* lookup shorthands (note: assume context variable is named 'lex_ctx') */
|
|
#define DUK__L0() DUK__LOOKUP(lex_ctx, 0)
|
|
#define DUK__L1() DUK__LOOKUP(lex_ctx, 1)
|
|
#define DUK__L2() DUK__LOOKUP(lex_ctx, 2)
|
|
#define DUK__L3() DUK__LOOKUP(lex_ctx, 3)
|
|
#define DUK__L4() DUK__LOOKUP(lex_ctx, 4)
|
|
#define DUK__L5() DUK__LOOKUP(lex_ctx, 5)
|
|
|
|
/* packed advance/token number macro used by multiple functions */
|
|
#define DUK__ADVTOK(adv,tok) (((adv) << 8) + (tok))
|
|
|
|
/*
|
|
* Read a character from the window leading edge and update the line counter.
|
|
*
|
|
* Decodes UTF-8/CESU-8 leniently with support for code points from U+0000 to
|
|
* U+10FFFF, causing an error if the input is unparseable. Leniency means:
|
|
*
|
|
* * Unicode code point validation is intentionally not performed,
|
|
* except to check that the codepoint does not exceed 0x10ffff.
|
|
*
|
|
* * In particular, surrogate pairs are allowed and not combined, which
|
|
* allows source files to represent all SourceCharacters with CESU-8.
|
|
* Broken surrogate pairs are allowed, as Ecmascript does not mandate
|
|
* their validation.
|
|
*
|
|
* * Allow non-shortest UTF-8 encodings.
|
|
*
|
|
* Leniency here causes few security concerns because all character data is
|
|
* decoded into Unicode codepoints before lexer processing, and is then
|
|
* re-encoded into CESU-8. The source can be parsed as strict UTF-8 with
|
|
* a compiler option. However, Ecmascript source characters include -all-
|
|
* 16-bit unsigned integer codepoints, so leniency seems to be appropriate.
|
|
*
|
|
* Note that codepoints above the BMP are not strictly SourceCharacters,
|
|
* but the lexer still accepts them as such. Before ending up in a string
|
|
* or an identifier name, codepoints above BMP are converted into surrogate
|
|
* pairs and then CESU-8 encoded, resulting in 16-bit Unicode data as
|
|
* expected by Ecmascript.
|
|
*
|
|
* An alternative approach to dealing with invalid or partial sequences
|
|
* would be to skip them and replace them with e.g. the Unicode replacement
|
|
* character U+FFFD. This has limited utility because a replacement character
|
|
* will most likely cause a parse error, unless it occurs inside a string.
|
|
* Further, Ecmascript source is typically pure ASCII.
|
|
*
|
|
* See:
|
|
*
|
|
* http://en.wikipedia.org/wiki/UTF-8
|
|
* http://en.wikipedia.org/wiki/CESU-8
|
|
* http://tools.ietf.org/html/rfc3629
|
|
* http://en.wikipedia.org/wiki/UTF-8#Invalid_byte_sequences
|
|
*
|
|
* Future work:
|
|
*
|
|
* * Reject other invalid Unicode sequences (see Wikipedia entry for examples)
|
|
* in strict UTF-8 mode.
|
|
*
|
|
* * Size optimize. An attempt to use a 16-byte lookup table for the first
|
|
* byte resulted in a code increase though.
|
|
*
|
|
* * Is checking against maximum 0x10ffff really useful? 4-byte encoding
|
|
* imposes a certain limit anyway.
|
|
*/
|
|
|
|
DUK_LOCAL duk_codepoint_t duk__read_char(duk_lexer_ctx *lex_ctx) {
|
|
/* attempting to reduce size of 'len' and/or 'i' resulted in larger code */
|
|
duk_codepoint_t x;
|
|
duk_small_int_t len;
|
|
duk_small_int_t i;
|
|
const duk_uint8_t *p;
|
|
#ifdef DUK_USE_STRICT_UTF8_SOURCE
|
|
duk_codepoint_t mincp;
|
|
#endif
|
|
duk_size_t input_offset;
|
|
|
|
input_offset = lex_ctx->input_offset;
|
|
if (DUK_UNLIKELY(input_offset >= lex_ctx->input_length)) {
|
|
/* If input_offset were assigned a negative value, it would
|
|
* result in a large positive value. Most likely it would be
|
|
* larger than input_length and be caught here. In any case
|
|
* no memory unsafe behavior would happen.
|
|
*/
|
|
return -1;
|
|
}
|
|
|
|
p = lex_ctx->input + input_offset;
|
|
x = (int) *p++;
|
|
|
|
if (x < 0x80L) {
|
|
/* 0xxx xxxx -> fast path */
|
|
len = 1;
|
|
goto fastpath;
|
|
} else if (x < 0xc0L) {
|
|
/* 10xx xxxx -> invalid */
|
|
goto error_encoding;
|
|
} else if (x < 0xe0L) {
|
|
/* 110x xxxx 10xx xxxx */
|
|
len = 2;
|
|
#ifdef DUK_USE_STRICT_UTF8_SOURCE
|
|
mincp = 0x80L;
|
|
#endif
|
|
x = x & 0x1fL;
|
|
} else if (x < 0xf0L) {
|
|
/* 1110 xxxx 10xx xxxx 10xx xxxx */
|
|
len = 3;
|
|
#ifdef DUK_USE_STRICT_UTF8_SOURCE
|
|
mincp = 0x800L;
|
|
#endif
|
|
x = x & 0x0fL;
|
|
} else if (x < 0xf8L) {
|
|
/* 1111 0xxx 10xx xxxx 10xx xxxx 10xx xxxx */
|
|
len = 4;
|
|
#ifdef DUK_USE_STRICT_UTF8_SOURCE
|
|
mincp = 0x10000L;
|
|
#endif
|
|
x = x & 0x07;
|
|
} else {
|
|
/* no point in supporting encodings of 5 or more bytes */
|
|
goto error_encoding;
|
|
}
|
|
|
|
DUK_ASSERT(lex_ctx->input_length >= lex_ctx->input_offset);
|
|
if ((duk_size_t) len > (duk_size_t) (lex_ctx->input_length - lex_ctx->input_offset)) {
|
|
goto error_clipped;
|
|
}
|
|
|
|
for (i = 1; i < len; i++) {
|
|
duk_small_int_t y = *p++;
|
|
if ((y & 0xc0) != 0x80) {
|
|
/* check that byte has the form 10xx xxxx */
|
|
goto error_encoding;
|
|
}
|
|
x = x << 6;
|
|
x += y & 0x3f;
|
|
}
|
|
|
|
/* check final character validity */
|
|
|
|
if (x > 0x10ffffL) {
|
|
goto error_encoding;
|
|
}
|
|
#ifdef DUK_USE_STRICT_UTF8_SOURCE
|
|
if (x < mincp || (x >= 0xd800L && x <= 0xdfffL) || x == 0xfffeL) {
|
|
goto error_encoding;
|
|
}
|
|
#endif
|
|
|
|
/* fall through */
|
|
|
|
fastpath:
|
|
/* input offset tracking */
|
|
lex_ctx->input_offset += len;
|
|
|
|
/* line tracking */
|
|
if ((x == 0x000aL) ||
|
|
((x == 0x000dL) && (lex_ctx->input_offset >= lex_ctx->input_length ||
|
|
lex_ctx->input[lex_ctx->input_offset] != 0x000aL)) ||
|
|
(x == 0x2028L) ||
|
|
(x == 0x2029L)) {
|
|
/* lookup for 0x000a above assumes shortest encoding now */
|
|
|
|
/* E5 Section 7.3, treat the following as newlines:
|
|
* LF
|
|
* CR [not followed by LF]
|
|
* LS
|
|
* PS
|
|
*
|
|
* For CR LF, CR is ignored if it is followed by LF, and the LF will bump
|
|
* the line number.
|
|
*/
|
|
lex_ctx->input_line++;
|
|
}
|
|
|
|
return x;
|
|
|
|
error_clipped: /* clipped codepoint */
|
|
error_encoding: /* invalid codepoint encoding or codepoint */
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR, "char decode failed");
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Advance lookup window by N characters. Also used to fill the window
|
|
* after position is changed (call with count == DUK_LEXER_WINDOW_SIZE).
|
|
*
|
|
* XXX: A lot of copying now, perhaps change to circular array or at
|
|
* least use memcpy(). For memcpy(), putting all elements of the
|
|
* window (code point, offset, line) into a struct would allow one
|
|
* memcpy() to slide the window, instead of three separate copys.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__advance_chars(duk_lexer_ctx *lex_ctx, duk_small_int_t count) {
|
|
duk_small_int_t i, n;
|
|
|
|
DUK_ASSERT(count >= 0 && count <= DUK_LEXER_WINDOW_SIZE);
|
|
|
|
/* Without this check, gcc -O4 will complain the following for the
|
|
* first for-loop below:
|
|
*
|
|
* duk_lexer.c:301:19: error: array subscript is above array bounds [-Werror=array-bounds]
|
|
*
|
|
* Check for range explicitly; this also protects against legitimate
|
|
* internal errors and avoids memory unsafe behavior in such cases.
|
|
*/
|
|
if (DUK_UNLIKELY(!(count >= 0 && count <= DUK_LEXER_WINDOW_SIZE))) {
|
|
DUK_D(DUK_DPRINT("invalid count: %ld, should not happen", (long) count));
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_INTERNAL_ERROR);
|
|
return; /* never here */
|
|
}
|
|
|
|
if (count == 0) {
|
|
/* allowing zero count makes some special caller flows easier */
|
|
return;
|
|
}
|
|
|
|
n = DUK_LEXER_WINDOW_SIZE - count;
|
|
for (i = 0; i < n; i++) {
|
|
lex_ctx->offsets[i] = lex_ctx->offsets[i + count];
|
|
lex_ctx->lines[i] = lex_ctx->lines[i + count];
|
|
lex_ctx->window[i] = lex_ctx->window[i + count];
|
|
}
|
|
|
|
for (; i < DUK_LEXER_WINDOW_SIZE; i++) {
|
|
lex_ctx->offsets[i] = lex_ctx->input_offset;
|
|
lex_ctx->lines[i] = lex_ctx->input_line;
|
|
lex_ctx->window[i] = duk__read_char(lex_ctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* (Re)initialize the temporary byte buffer. May be called extra times
|
|
* with little impact.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__initbuffer(duk_lexer_ctx *lex_ctx) {
|
|
if (DUK_HBUFFER_DYNAMIC_GET_ALLOC_SIZE(lex_ctx->buf) < DUK_LEXER_TEMP_BUF_LIMIT) {
|
|
/* Resize (zero) without realloc. */
|
|
DUK_HBUFFER_DYNAMIC_SET_SIZE(lex_ctx->buf, 0);
|
|
} else {
|
|
duk_hbuffer_resize(lex_ctx->thr, lex_ctx->buf, 0, DUK_LEXER_TEMP_BUF_LIMIT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Append a Unicode codepoint to the temporary byte buffer. Performs
|
|
* CESU-8 surrogate pair encoding for codepoints above the BMP.
|
|
* Existing surrogate pairs are allowed and also encoded into CESU-8.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__appendbuffer(duk_lexer_ctx *lex_ctx, duk_codepoint_t x) {
|
|
/*
|
|
* Since character data is only generated by decoding the source or by
|
|
* the compiler itself, we rely on the input codepoints being correct
|
|
* and avoid a check here.
|
|
*
|
|
* Character data can also come here through decoding of Unicode
|
|
* escapes ("\udead\ubeef") so all 16-but unsigned values can be
|
|
* present, even when the source file itself is strict UTF-8.
|
|
*/
|
|
|
|
DUK_ASSERT(x >= 0 && x <= 0x10ffff);
|
|
|
|
duk_hbuffer_append_cesu8(lex_ctx->thr, lex_ctx->buf, (duk_ucodepoint_t) x);
|
|
}
|
|
|
|
/*
|
|
* Intern the temporary byte buffer into a valstack slot
|
|
* (in practice, slot1 or slot2).
|
|
*/
|
|
|
|
DUK_LOCAL void duk__internbuffer(duk_lexer_ctx *lex_ctx, duk_idx_t valstack_idx) {
|
|
duk_context *ctx = (duk_context *) lex_ctx->thr;
|
|
|
|
DUK_ASSERT(valstack_idx == lex_ctx->slot1_idx || valstack_idx == lex_ctx->slot2_idx);
|
|
|
|
duk_dup(ctx, lex_ctx->buf_idx);
|
|
duk_to_string(ctx, -1);
|
|
duk_replace(ctx, valstack_idx);
|
|
}
|
|
|
|
/*
|
|
* Init lexer context
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_lexer_initctx(duk_lexer_ctx *lex_ctx) {
|
|
DUK_ASSERT(lex_ctx != NULL);
|
|
|
|
DUK_MEMZERO(lex_ctx, sizeof(*lex_ctx));
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
lex_ctx->thr = NULL;
|
|
lex_ctx->input = NULL;
|
|
lex_ctx->buf = NULL;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Set lexer input position and reinitialize lookup window.
|
|
*/
|
|
|
|
/* NB: duk_lexer_getpoint() is a macro only */
|
|
|
|
DUK_INTERNAL void duk_lexer_setpoint(duk_lexer_ctx *lex_ctx, duk_lexer_point *pt) {
|
|
DUK_ASSERT_DISABLE(pt->offset >= 0); /* unsigned */
|
|
DUK_ASSERT(pt->line >= 1);
|
|
lex_ctx->input_offset = pt->offset;
|
|
lex_ctx->input_line = pt->line;
|
|
duk__advance_chars(lex_ctx, DUK_LEXER_WINDOW_SIZE); /* fill window */
|
|
}
|
|
|
|
/*
|
|
* Lexing helpers
|
|
*/
|
|
|
|
/* numeric value of a hex digit (also covers octal and decimal digits) */
|
|
DUK_LOCAL duk_codepoint_t duk__hexval(duk_lexer_ctx *lex_ctx, duk_codepoint_t x) {
|
|
duk_small_int_t t;
|
|
|
|
/* Here 'x' is a Unicode codepoint */
|
|
if (DUK_LIKELY(x >= 0 && x <= 0xff)) {
|
|
t = duk_hex_dectab[x];
|
|
if (DUK_LIKELY(t >= 0)) {
|
|
return t;
|
|
}
|
|
}
|
|
|
|
/* Throwing an error this deep makes the error rather vague, but
|
|
* saves hundreds of bytes of code.
|
|
*/
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR, "decode error");
|
|
return 0;
|
|
}
|
|
|
|
/* having this as a separate function provided a size benefit */
|
|
DUK_LOCAL duk_bool_t duk__is_hex_digit(duk_codepoint_t x) {
|
|
if (DUK_LIKELY(x >= 0 && x <= 0xff)) {
|
|
return (duk_hex_dectab[x] >= 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
DUK_LOCAL duk_codepoint_t duk__decode_hexesc_from_window(duk_lexer_ctx *lex_ctx, duk_small_int_t lookup_offset) {
|
|
/* validation performed by duk__hexval */
|
|
return (duk__hexval(lex_ctx, lex_ctx->window[lookup_offset]) << 4) |
|
|
(duk__hexval(lex_ctx, lex_ctx->window[lookup_offset + 1]));
|
|
}
|
|
|
|
DUK_LOCAL duk_codepoint_t duk__decode_uniesc_from_window(duk_lexer_ctx *lex_ctx, duk_small_int_t lookup_offset) {
|
|
/* validation performed by duk__hexval */
|
|
return (duk__hexval(lex_ctx, lex_ctx->window[lookup_offset]) << 12) |
|
|
(duk__hexval(lex_ctx, lex_ctx->window[lookup_offset + 1]) << 8) |
|
|
(duk__hexval(lex_ctx, lex_ctx->window[lookup_offset + 2]) << 4) |
|
|
(duk__hexval(lex_ctx, lex_ctx->window[lookup_offset + 3]));
|
|
}
|
|
|
|
/*
|
|
* Eat input characters until first character of window is not
|
|
* a white space (may be -1 if EOF encountered).
|
|
*/
|
|
DUK_LOCAL void duk__eat_whitespace(duk_lexer_ctx *lex_ctx) {
|
|
/* guaranteed to finish, as EOF (-1) is not a whitespace */
|
|
while (duk_unicode_is_whitespace(DUK__LOOKUP(lex_ctx, 0))) {
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse Ecmascript source InputElementDiv or InputElementRegExp
|
|
* (E5 Section 7).
|
|
*
|
|
* Possible results are:
|
|
* (1) a token
|
|
* (2) a line terminator
|
|
* (3) a comment
|
|
* (4) EOF
|
|
*
|
|
* White space is automatically skipped from the current position (but
|
|
* not after the input element). If input has already ended, returns
|
|
* DUK_TOK_EOF indefinitely. If a parse error occurs, uses an DUK_ERROR()
|
|
* macro call (and hence a longjmp through current heap longjmp context).
|
|
*
|
|
* The input element being matched is determined by regexp_mode; if set,
|
|
* parses a InputElementRegExp, otherwise a InputElementDiv. The
|
|
* difference between these are handling of productions starting with a
|
|
* forward slash.
|
|
*
|
|
* If strict_mode is set, recognizes additional future reserved words
|
|
* specific to strict mode, and refuses to parse octal literals.
|
|
*
|
|
* The matching strategy below is to (currently) use a six character
|
|
* lookup window to quickly determine which production is the -longest-
|
|
* matching one, and then parse that. The top-level if-else clauses
|
|
* match the first character, and the code blocks for each clause
|
|
* handle -all- alternatives for that first character. Ecmascript
|
|
* specification uses the "longest match wins" semantics, so the order
|
|
* of the if-clauses matters.
|
|
*
|
|
* Misc notes:
|
|
*
|
|
* * Ecmascript numeric literals do not accept a sign character.
|
|
* Consequently e.g. "-1.0" is parsed as two tokens: a negative
|
|
* sign and a positive numeric literal. The compiler performs
|
|
* the negation during compilation, so this has no adverse impact.
|
|
*
|
|
* * There is no token for "undefined": it is just a value available
|
|
* from the global object (or simply established by doing a reference
|
|
* to an undefined value).
|
|
*
|
|
* * Some contexts want Identifier tokens, which are IdentifierNames
|
|
* excluding reserved words, while some contexts want IdentifierNames
|
|
* directly. In the latter case e.g. "while" is interpreted as an
|
|
* identifier name, not a DUK_TOK_WHILE token. The solution here is
|
|
* to provide both token types: DUK_TOK_WHILE goes to 't' while
|
|
* DUK_TOK_IDENTIFIER goes to 't_nores', and 'slot1' always contains
|
|
* the identifier / keyword name.
|
|
*
|
|
* * Directive prologue needs to identify string literals such as
|
|
* "use strict" and 'use strict', which are sensitive to line
|
|
* continuations and escape sequences. For instance, "use\u0020strict"
|
|
* is a valid directive but is distinct from "use strict". The solution
|
|
* here is to decode escapes while tokenizing, but to keep track of the
|
|
* number of escapes. Directive detection can then check that the
|
|
* number of escapes is zero.
|
|
*
|
|
* * Comments are expressed as DUK_TOK_COMMENT tokens, with the type
|
|
* (single- or multi-line) and contents of the comments lost.
|
|
* Furthermore, multi-line comments with one or more internal
|
|
* LineTerminator are treated as DUK_TOK_LINETERM to comply with
|
|
* automatic semicolon insertion and to avoid complicating the
|
|
* tokenization process. See E5 Section 7.4.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__parse_input_element_raw(duk_lexer_ctx *lex_ctx,
|
|
duk_token *out_token,
|
|
duk_bool_t strict_mode,
|
|
duk_bool_t regexp_mode) {
|
|
duk_codepoint_t x, y; /* temporaries, must be signed and 32-bit to hold Unicode code points */
|
|
duk_small_uint_t advtok = 0; /* (advance << 8) + token_type, updated at function end,
|
|
* init is unnecessary but suppresses "may be used uninitialized" warnings.
|
|
*/
|
|
|
|
if (++lex_ctx->token_count >= lex_ctx->token_limit) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_RANGE_ERROR, "token limit");
|
|
return; /* unreachable */
|
|
}
|
|
|
|
duk__eat_whitespace(lex_ctx);
|
|
|
|
out_token->t = DUK_TOK_EOF;
|
|
out_token->t_nores = -1; /* marker: copy t if not changed */
|
|
out_token->num = DUK_DOUBLE_NAN;
|
|
out_token->str1 = NULL;
|
|
out_token->str2 = NULL;
|
|
out_token->num_escapes = 0;
|
|
out_token->start_line = lex_ctx->lines[0];
|
|
out_token->start_offset = lex_ctx->offsets[0];
|
|
/* out_token->lineterm set by caller */
|
|
|
|
duk_to_undefined((duk_context *) lex_ctx->thr, lex_ctx->slot1_idx);
|
|
duk_to_undefined((duk_context *) lex_ctx->thr, lex_ctx->slot2_idx);
|
|
|
|
/* 'advtok' indicates how much to advance and which token id to assign
|
|
* at the end. This shared functionality minimizes code size. All
|
|
* code paths are required to set 'advtok' to some value, so no default
|
|
* init value is used. Code paths calling DUK_ERROR() never return so
|
|
* they don't need to set advtok.
|
|
*/
|
|
|
|
/*
|
|
* Matching order:
|
|
*
|
|
* Punctuator first chars, also covers comments, regexps
|
|
* LineTerminator
|
|
* Identifier or reserved word, also covers null/true/false literals
|
|
* NumericLiteral
|
|
* StringLiteral
|
|
* EOF
|
|
*
|
|
* The order does not matter as long as the longest match is
|
|
* always correctly identified. There are order dependencies
|
|
* in the clauses, so it's not trivial to convert to a switch.
|
|
*
|
|
* XXX: This is quite inefficient. Maybe change to a switch
|
|
* statement which handles all single character cases and then
|
|
* use a followup if-else chain? Switch matches need to use
|
|
* goto to bypass the if-else chain.
|
|
*/
|
|
|
|
x = DUK__L0();
|
|
y = DUK__L1();
|
|
|
|
if (x == '/') {
|
|
if (y == '/') {
|
|
/*
|
|
* E5 Section 7.4, allow SourceCharacter (which is any 16-bit
|
|
* code point).
|
|
*/
|
|
|
|
/* DUK__ADVANCE(lex_ctx, 2) would be correct here, but it unnecessary */
|
|
for (;;) {
|
|
x = DUK__L0();
|
|
if (x < 0 || duk_unicode_is_line_terminator(x)) {
|
|
break;
|
|
}
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
}
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_COMMENT);
|
|
} else if (y == '*') {
|
|
/*
|
|
* E5 Section 7.4. If the multi-line comment contains a newline,
|
|
* it is treated like a single DUK_TOK_LINETERM to facilitate
|
|
* automatic semicolon insertion.
|
|
*/
|
|
|
|
duk_bool_t last_asterisk = 0;
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_COMMENT);
|
|
DUK__ADVANCE(lex_ctx, 2);
|
|
for (;;) {
|
|
x = DUK__L0();
|
|
if (x < 0) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"eof while parsing multiline comment");
|
|
}
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
if (last_asterisk && x == '/') {
|
|
break;
|
|
}
|
|
if (duk_unicode_is_line_terminator(x)) {
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_LINETERM);
|
|
}
|
|
last_asterisk = (x == '*');
|
|
}
|
|
} else if (regexp_mode) {
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
/*
|
|
* "/" followed by something in regexp mode. See E5 Section 7.8.5.
|
|
*
|
|
* RegExp parsing is a bit complex. First, the regexp body is delimited
|
|
* by forward slashes, but the body may also contain forward slashes as
|
|
* part of an escape sequence or inside a character class (delimited by
|
|
* square brackets). A mini state machine is used to implement these.
|
|
*
|
|
* Further, an early (parse time) error must be thrown if the regexp
|
|
* would cause a run-time error when used in the expression new RegExp(...).
|
|
* Parsing here simply extracts the (candidate) regexp, and also accepts
|
|
* invalid regular expressions (which are delimited properly). The caller
|
|
* (compiler) must perform final validation and regexp compilation.
|
|
*
|
|
* RegExp first char may not be '/' (single line comment) or '*' (multi-
|
|
* line comment). These have already been checked above, so there is no
|
|
* need below for special handling of the first regexp character as in
|
|
* the E5 productions.
|
|
*
|
|
* About unicode escapes within regexp literals:
|
|
*
|
|
* E5 Section 7.8.5 grammar does NOT accept \uHHHH escapes.
|
|
* However, Section 6 states that regexps accept the escapes,
|
|
* see paragraph starting with "In string literals...".
|
|
* The regexp grammar, which sees the decoded regexp literal
|
|
* (after lexical parsing) DOES have a \uHHHH unicode escape.
|
|
* So, for instance:
|
|
*
|
|
* /\u1234/
|
|
*
|
|
* should first be parsed by the lexical grammar as:
|
|
*
|
|
* '\' 'u' RegularExpressionBackslashSequence
|
|
* '1' RegularExpressionNonTerminator
|
|
* '2' RegularExpressionNonTerminator
|
|
* '3' RegularExpressionNonTerminator
|
|
* '4' RegularExpressionNonTerminator
|
|
*
|
|
* and the escape itself is then parsed by the regexp engine.
|
|
* This is the current implementation.
|
|
*
|
|
* Minor spec inconsistency:
|
|
*
|
|
* E5 Section 7.8.5 RegularExpressionBackslashSequence is:
|
|
*
|
|
* \ RegularExpressionNonTerminator
|
|
*
|
|
* while Section A.1 RegularExpressionBackslashSequence is:
|
|
*
|
|
* \ NonTerminator
|
|
*
|
|
* The latter is not normative and a typo.
|
|
*
|
|
*/
|
|
|
|
/* first, parse regexp body roughly */
|
|
|
|
duk_small_int_t state = 0; /* 0=base, 1=esc, 2=class, 3=class+esc */
|
|
|
|
DUK__INITBUFFER(lex_ctx);
|
|
for (;;) {
|
|
DUK__ADVANCE(lex_ctx, 1); /* skip opening slash on first loop */
|
|
x = DUK__L0();
|
|
if (x < 0 || duk_unicode_is_line_terminator(x)) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"eof or line terminator while parsing regexp");
|
|
}
|
|
x = DUK__L0(); /* re-read to avoid spill / fetch */
|
|
if (state == 0) {
|
|
if (x == '/') {
|
|
DUK__ADVANCE(lex_ctx, 1); /* eat closing slash */
|
|
break;
|
|
} else if (x == '\\') {
|
|
state = 1;
|
|
} else if (x == '[') {
|
|
state = 2;
|
|
}
|
|
} else if (state == 1) {
|
|
state = 0;
|
|
} else if (state == 2) {
|
|
if (x == ']') {
|
|
state = 0;
|
|
} else if (x == '\\') {
|
|
state = 3;
|
|
}
|
|
} else { /* state == 3 */
|
|
state = 2;
|
|
}
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
}
|
|
duk__internbuffer(lex_ctx, lex_ctx->slot1_idx);
|
|
out_token->str1 = duk_get_hstring((duk_context *) lex_ctx->thr, lex_ctx->slot1_idx);
|
|
|
|
/* second, parse flags */
|
|
|
|
DUK__INITBUFFER(lex_ctx);
|
|
for (;;) {
|
|
x = DUK__L0();
|
|
if (!duk_unicode_is_identifier_part(x)) {
|
|
break;
|
|
}
|
|
x = DUK__L0(); /* re-read to avoid spill / fetch */
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
}
|
|
duk__internbuffer(lex_ctx, lex_ctx->slot2_idx);
|
|
out_token->str2 = duk_get_hstring((duk_context *) lex_ctx->thr, lex_ctx->slot2_idx);
|
|
|
|
DUK__INITBUFFER(lex_ctx); /* free some memory */
|
|
|
|
/* validation of the regexp is caller's responsibility */
|
|
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_REGEXP);
|
|
#else
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR, "regexp support disabled");
|
|
#endif
|
|
} else if (y == '=') {
|
|
/* "/=" and not in regexp mode */
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_DIV_EQ);
|
|
} else {
|
|
/* "/" and not in regexp mode */
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_DIV);
|
|
}
|
|
} else if (x == '{') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_LCURLY);
|
|
} else if (x == '}') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_RCURLY);
|
|
} else if (x == '(') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_LPAREN);
|
|
} else if (x == ')') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_RPAREN);
|
|
} else if (x == '[') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_LBRACKET);
|
|
} else if (x == ']') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_RBRACKET);
|
|
} else if (x == '.' && !DUK__ISDIGIT(y)) {
|
|
/* Note: period followed by a digit can only start DecimalLiteral (captured below) */
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_PERIOD);
|
|
} else if (x == ';') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_SEMICOLON);
|
|
} else if (x == ',') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_COMMA);
|
|
} else if (x == '<') {
|
|
if (y == '<' && DUK__L2() == '=') {
|
|
advtok = DUK__ADVTOK(3, DUK_TOK_ALSHIFT_EQ);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_LE);
|
|
} else if (y == '<') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_ALSHIFT);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_LT);
|
|
}
|
|
} else if (x == '>') {
|
|
if (y == '>' && DUK__L2() == '>' && DUK__L3() == '=') {
|
|
advtok = DUK__ADVTOK(4, DUK_TOK_RSHIFT_EQ);
|
|
} else if (y == '>' && DUK__L2() == '>') {
|
|
advtok = DUK__ADVTOK(3, DUK_TOK_RSHIFT);
|
|
} else if (y == '>' && DUK__L2() == '=') {
|
|
advtok = DUK__ADVTOK(3, DUK_TOK_ARSHIFT_EQ);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_GE);
|
|
} else if (y == '>') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_ARSHIFT);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_GT);
|
|
}
|
|
} else if (x == '=') {
|
|
if (y == '=' && DUK__L2() == '=') {
|
|
advtok = DUK__ADVTOK(3, DUK_TOK_SEQ);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_EQUALSIGN);
|
|
}
|
|
} else if (x == '!') {
|
|
if (y == '=' && DUK__L2() == '=') {
|
|
advtok = DUK__ADVTOK(3, DUK_TOK_SNEQ);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_NEQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_LNOT);
|
|
}
|
|
} else if (x == '+') {
|
|
if (y == '+') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_INCREMENT);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_ADD_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_ADD);
|
|
}
|
|
} else if (x == '-') {
|
|
if (y == '-') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_DECREMENT);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_SUB_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_SUB);
|
|
}
|
|
} else if (x == '*') {
|
|
if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_MUL_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_MUL);
|
|
}
|
|
} else if (x == '%') {
|
|
if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_MOD_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_MOD);
|
|
}
|
|
} else if (x == '&') {
|
|
if (y == '&') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_LAND);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_BAND_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_BAND);
|
|
}
|
|
} else if (x == '|') {
|
|
if (y == '|') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_LOR);
|
|
} else if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_BOR_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_BOR);
|
|
}
|
|
} else if (x == '^') {
|
|
if (y == '=') {
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_BXOR_EQ);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_BXOR);
|
|
}
|
|
} else if (x == '~') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_BNOT);
|
|
} else if (x == '?') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_QUESTION);
|
|
} else if (x == ':') {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_COLON);
|
|
} else if (duk_unicode_is_line_terminator(x)) {
|
|
if (x == 0x000d && y == 0x000a) {
|
|
/*
|
|
* E5 Section 7.3: CR LF is detected as a single line terminator for
|
|
* line numbers. Here we also detect it as a single line terminator
|
|
* token.
|
|
*/
|
|
advtok = DUK__ADVTOK(2, DUK_TOK_LINETERM);
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_TOK_LINETERM);
|
|
}
|
|
} else if (duk_unicode_is_identifier_start(x) || x == '\\') {
|
|
/*
|
|
* Parse an identifier and then check whether it is:
|
|
* - reserved word (keyword or other reserved word)
|
|
* - "null" (NullLiteral)
|
|
* - "true" (BooleanLiteral)
|
|
* - "false" (BooleanLiteral)
|
|
* - anything else => identifier
|
|
*
|
|
* This does not follow the E5 productions cleanly, but is
|
|
* useful and compact.
|
|
*
|
|
* Note that identifiers may contain Unicode escapes,
|
|
* see E5 Sections 6 and 7.6. They must be decoded first,
|
|
* and the result checked against allowed characters.
|
|
* The above if-clause accepts an identifier start and an
|
|
* '\' character -- no other token can begin with a '\'.
|
|
*
|
|
* Note that "get" and "set" are not reserved words in E5
|
|
* specification so they are recognized as plain identifiers
|
|
* (the tokens DUK_TOK_GET and DUK_TOK_SET are actually not
|
|
* used now). The compiler needs to work around this.
|
|
*
|
|
* Strictly speaking, following Ecmascript longest match
|
|
* specification, an invalid escape for the first character
|
|
* should cause a syntax error. However, an invalid escape
|
|
* for IdentifierParts should just terminate the identifier
|
|
* early (longest match), and let the next tokenization
|
|
* fail. For instance Rhino croaks with 'foo\z' when
|
|
* parsing the identifier. This has little practical impact.
|
|
*/
|
|
|
|
duk_small_int_t i, i_end;
|
|
duk_bool_t first = 1;
|
|
duk_hstring *str;
|
|
|
|
DUK__INITBUFFER(lex_ctx);
|
|
for (;;) {
|
|
/* re-lookup first char on first loop */
|
|
if (DUK__L0() == '\\') {
|
|
duk_codepoint_t ch;
|
|
if (DUK__L1() != 'u') {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid unicode escape while parsing identifier");
|
|
}
|
|
|
|
ch = duk__decode_uniesc_from_window(lex_ctx, 2);
|
|
|
|
/* IdentifierStart is stricter than IdentifierPart, so if the first
|
|
* character is escaped, must have a stricter check here.
|
|
*/
|
|
if (!(first ? duk_unicode_is_identifier_start(ch) : duk_unicode_is_identifier_part(ch))) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid unicode escaped character while parsing identifier");
|
|
}
|
|
DUK__APPENDBUFFER(lex_ctx, ch);
|
|
DUK__ADVANCE(lex_ctx, 6);
|
|
|
|
/* Track number of escapes: necessary for proper keyword
|
|
* detection.
|
|
*/
|
|
out_token->num_escapes++;
|
|
} else {
|
|
/* Note: first character is checked against this. But because
|
|
* IdentifierPart includes all IdentifierStart characters, and
|
|
* the first character (if unescaped) has already been checked
|
|
* in the if condition, this is OK.
|
|
*/
|
|
if (!duk_unicode_is_identifier_part(DUK__L0())) {
|
|
break;
|
|
}
|
|
DUK__APPENDBUFFER(lex_ctx, DUK__L0());
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
}
|
|
first = 0;
|
|
}
|
|
|
|
duk__internbuffer(lex_ctx, lex_ctx->slot1_idx);
|
|
out_token->str1 = duk_get_hstring((duk_context *) lex_ctx->thr, lex_ctx->slot1_idx);
|
|
str = out_token->str1;
|
|
DUK_ASSERT(str != NULL);
|
|
out_token->t_nores = DUK_TOK_IDENTIFIER;
|
|
|
|
DUK__INITBUFFER(lex_ctx); /* free some memory */
|
|
|
|
/*
|
|
* Interned identifier is compared against reserved words, which are
|
|
* currently interned into the heap context. See genstrings.py.
|
|
*
|
|
* Note that an escape in the identifier disables recognition of
|
|
* keywords; e.g. "\u0069f = 1;" is a valid statement (assigns to
|
|
* identifier named "if"). This is not necessarily compliant,
|
|
* see test-dec-escaped-char-in-keyword.js.
|
|
*
|
|
* Note: "get" and "set" are awkward. They are not officially
|
|
* ReservedWords (and indeed e.g. "var set = 1;" is valid), and
|
|
* must come out as DUK_TOK_IDENTIFIER. The compiler needs to
|
|
* work around this a bit.
|
|
*/
|
|
|
|
/* XXX: optimize by adding the token numbers directly into the
|
|
* always interned duk_hstring objects (there should be enough
|
|
* flag bits free for that)?
|
|
*/
|
|
|
|
i_end = (strict_mode ? DUK_STRIDX_END_RESERVED : DUK_STRIDX_START_STRICT_RESERVED);
|
|
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_IDENTIFIER);
|
|
if (out_token->num_escapes == 0) {
|
|
for (i = DUK_STRIDX_START_RESERVED; i < i_end; i++) {
|
|
DUK_ASSERT(i >= 0 && i < DUK_HEAP_NUM_STRINGS);
|
|
if (DUK_HTHREAD_GET_STRING(lex_ctx->thr, i) == str) {
|
|
advtok = DUK__ADVTOK(0, DUK_STRIDX_TO_TOK(i));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (DUK__ISDIGIT(x) || (x == '.')) {
|
|
/* Note: decimal number may start with a period, but must be followed by a digit */
|
|
|
|
/*
|
|
* DecimalLiteral, HexIntegerLiteral, OctalIntegerLiteral
|
|
* "pre-parsing", followed by an actual, accurate parser step.
|
|
*
|
|
* Note: the leading sign character ('+' or '-') is -not- part of
|
|
* the production in E5 grammar, and that the a DecimalLiteral
|
|
* starting with a '0' must be followed by a non-digit. Leading
|
|
* zeroes are syntax errors and must be checked for.
|
|
*
|
|
* XXX: the two step parsing process is quite awkward, it would
|
|
* be more straightforward to allow numconv to parse the longest
|
|
* valid prefix (it already does that, it only needs to indicate
|
|
* where the input ended). However, the lexer decodes characters
|
|
* using a lookup window, so this is not a trivial change.
|
|
*/
|
|
|
|
/* XXX: because of the final check below (that the literal is not
|
|
* followed by a digit), this could maybe be simplified, if we bail
|
|
* out early from a leading zero (and if there are no periods etc).
|
|
* Maybe too complex.
|
|
*/
|
|
|
|
duk_double_t val;
|
|
duk_bool_t int_only = 0;
|
|
duk_bool_t allow_hex = 0;
|
|
duk_small_int_t state; /* 0=before period/exp,
|
|
* 1=after period, before exp
|
|
* 2=after exp, allow '+' or '-'
|
|
* 3=after exp and exp sign
|
|
*/
|
|
duk_small_uint_t s2n_flags;
|
|
|
|
DUK__INITBUFFER(lex_ctx);
|
|
if (x == '0' && (y == 'x' || y == 'X')) {
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
DUK__APPENDBUFFER(lex_ctx, y);
|
|
DUK__ADVANCE(lex_ctx, 2);
|
|
int_only = 1;
|
|
allow_hex = 1;
|
|
#ifdef DUK_USE_OCTAL_SUPPORT
|
|
} else if (!strict_mode && x == '0' && DUK__ISDIGIT(y)) {
|
|
/* Note: if DecimalLiteral starts with a '0', it can only be
|
|
* followed by a period or an exponent indicator which starts
|
|
* with 'e' or 'E'. Hence the if-check above ensures that
|
|
* OctalIntegerLiteral is the only valid NumericLiteral
|
|
* alternative at this point (even if y is, say, '9').
|
|
*/
|
|
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
int_only = 1;
|
|
#endif
|
|
}
|
|
|
|
state = 0;
|
|
for (;;) {
|
|
x = DUK__L0(); /* re-lookup curr char on first round */
|
|
if (DUK__ISDIGIT(x)) {
|
|
/* Note: intentionally allow leading zeroes here, as the
|
|
* actual parser will check for them.
|
|
*/
|
|
if (state == 2) {
|
|
state = 3;
|
|
}
|
|
} else if (allow_hex && DUK__ISHEXDIGIT(x)) {
|
|
/* Note: 'e' and 'E' are also accepted here. */
|
|
;
|
|
} else if (x == '.') {
|
|
if (state >= 1 || int_only) {
|
|
break;
|
|
} else {
|
|
state = 1;
|
|
}
|
|
} else if (x == 'e' || x == 'E') {
|
|
if (state >= 2 || int_only) {
|
|
break;
|
|
} else {
|
|
state = 2;
|
|
}
|
|
} else if (x == '-' || x == '+') {
|
|
if (state != 2) {
|
|
break;
|
|
} else {
|
|
state = 3;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
}
|
|
|
|
/* XXX: better coercion */
|
|
duk__internbuffer(lex_ctx, lex_ctx->slot1_idx);
|
|
|
|
s2n_flags = DUK_S2N_FLAG_ALLOW_EXP |
|
|
DUK_S2N_FLAG_ALLOW_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_NAKED_FRAC |
|
|
DUK_S2N_FLAG_ALLOW_EMPTY_FRAC |
|
|
#ifdef DUK_USE_OCTAL_SUPPORT
|
|
(strict_mode ? 0 : DUK_S2N_FLAG_ALLOW_AUTO_OCT_INT) |
|
|
#endif
|
|
DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT;
|
|
|
|
duk_dup((duk_context *) lex_ctx->thr, lex_ctx->slot1_idx);
|
|
duk_numconv_parse((duk_context *) lex_ctx->thr, 10 /*radix*/, s2n_flags);
|
|
val = duk_to_number((duk_context *) lex_ctx->thr, -1);
|
|
if (DUK_ISNAN(val)) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR, "invalid numeric literal");
|
|
}
|
|
duk_replace((duk_context *) lex_ctx->thr, lex_ctx->slot1_idx); /* could also just pop? */
|
|
|
|
DUK__INITBUFFER(lex_ctx); /* free some memory */
|
|
|
|
/* Section 7.8.3 (note): NumericLiteral must be followed by something other than
|
|
* IdentifierStart or DecimalDigit.
|
|
*/
|
|
|
|
if (DUK__ISDIGIT(DUK__L0()) || duk_unicode_is_identifier_start(DUK__L0())) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR, "invalid numeric literal");
|
|
}
|
|
|
|
out_token->num = val;
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_NUMBER);
|
|
} else if (x == '"' || x == '\'') {
|
|
duk_small_int_t quote = x; /* Note: duk_uint8_t type yields larger code */
|
|
duk_small_int_t adv;
|
|
|
|
DUK__INITBUFFER(lex_ctx);
|
|
for (;;) {
|
|
DUK__ADVANCE(lex_ctx, 1); /* eat opening quote on first loop */
|
|
x = DUK__L0();
|
|
if (x < 0 || duk_unicode_is_line_terminator(x)) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"eof or line terminator while parsing string literal");
|
|
}
|
|
if (x == quote) {
|
|
DUK__ADVANCE(lex_ctx, 1); /* eat closing quote */
|
|
break;
|
|
}
|
|
if (x == '\\') {
|
|
/* DUK__L0 -> '\' char
|
|
* DUK__L1 ... DUK__L5 -> more lookup
|
|
*/
|
|
|
|
x = DUK__L1();
|
|
y = DUK__L2();
|
|
|
|
/* How much to advance before next loop; note that next loop
|
|
* will advance by 1 anyway, so -1 from the total escape
|
|
* length (e.g. len('\uXXXX') - 1 = 6 - 1). As a default,
|
|
* 1 is good.
|
|
*/
|
|
adv = 2 - 1; /* note: long live range */
|
|
|
|
if (x < 0) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"eof while parsing string literal");
|
|
}
|
|
if (duk_unicode_is_line_terminator(x)) {
|
|
/* line continuation */
|
|
if (x == 0x000d && y == 0x000a) {
|
|
/* CR LF again a special case */
|
|
adv = 3 - 1;
|
|
}
|
|
} else if (x == '\'') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x0027);
|
|
} else if (x == '"') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x0022);
|
|
} else if (x == '\\') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x005c);
|
|
} else if (x == 'b') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x0008);
|
|
} else if (x == 'f') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x000c);
|
|
} else if (x == 'n') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x000a);
|
|
} else if (x == 'r') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x000d);
|
|
} else if (x == 't') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x0009);
|
|
} else if (x == 'v') {
|
|
DUK__APPENDBUFFER(lex_ctx, 0x000b);
|
|
} else if (x == 'x') {
|
|
adv = 4 - 1;
|
|
DUK__APPENDBUFFER(lex_ctx, duk__decode_hexesc_from_window(lex_ctx, 2));
|
|
} else if (x == 'u') {
|
|
adv = 6 - 1;
|
|
DUK__APPENDBUFFER(lex_ctx, duk__decode_uniesc_from_window(lex_ctx, 2));
|
|
} else if (DUK__ISDIGIT(x)) {
|
|
duk_codepoint_t ch = 0; /* initialized to avoid warnings of unused var */
|
|
|
|
/*
|
|
* Octal escape or zero escape:
|
|
* \0 (lookahead not DecimalDigit)
|
|
* \1 ... \7 (lookahead not DecimalDigit)
|
|
* \ZeroToThree OctalDigit (lookahead not DecimalDigit)
|
|
* \FourToSeven OctalDigit (no lookahead restrictions)
|
|
* \ZeroToThree OctalDigit OctalDigit (no lookahead restrictions)
|
|
*
|
|
* Zero escape is part of the standard syntax. Octal escapes are
|
|
* defined in E5 Section B.1.2, and are only allowed in non-strict mode.
|
|
* Any other productions starting with a decimal digit are invalid.
|
|
*/
|
|
|
|
if (x == '0' && !DUK__ISDIGIT(y)) {
|
|
/* Zero escape (also allowed in non-strict mode) */
|
|
ch = 0;
|
|
/* adv = 2 - 1 default OK */
|
|
#ifdef DUK_USE_OCTAL_SUPPORT
|
|
} else if (strict_mode) {
|
|
/* No other escape beginning with a digit in strict mode */
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid escape while parsing string literal");
|
|
} else if (DUK__ISDIGIT03(x) && DUK__ISOCTDIGIT(y) && DUK__ISOCTDIGIT(DUK__L3())) {
|
|
/* Three digit octal escape, digits validated. */
|
|
adv = 4 - 1;
|
|
ch = (duk__hexval(lex_ctx, x) << 6) +
|
|
(duk__hexval(lex_ctx, y) << 3) +
|
|
duk__hexval(lex_ctx, DUK__L3());
|
|
} else if (((DUK__ISDIGIT03(x) && !DUK__ISDIGIT(DUK__L3())) || DUK__ISDIGIT47(x)) &&
|
|
DUK__ISOCTDIGIT(y)) {
|
|
/* Two digit octal escape, digits validated.
|
|
*
|
|
* The if-condition is a bit tricky. We could catch e.g.
|
|
* '\039' in the three-digit escape and fail it there (by
|
|
* validating the digits), but we want to avoid extra
|
|
* additional validation code.
|
|
*/
|
|
adv = 3 - 1;
|
|
ch = (duk__hexval(lex_ctx, x) << 3) +
|
|
duk__hexval(lex_ctx, y);
|
|
} else if (DUK__ISDIGIT(x) && !DUK__ISDIGIT(y)) {
|
|
/* One digit octal escape, digit validated. */
|
|
/* adv = 2 default OK */
|
|
ch = duk__hexval(lex_ctx, x);
|
|
#else
|
|
/* fall through to error */
|
|
#endif
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid escape while parsing string literal");
|
|
}
|
|
|
|
DUK__APPENDBUFFER(lex_ctx, ch);
|
|
} else {
|
|
/* escaped NonEscapeCharacter */
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
}
|
|
DUK__ADVANCE(lex_ctx, adv);
|
|
|
|
/* Track number of escapes; count not really needed but directive
|
|
* prologues need to detect whether there were any escapes or line
|
|
* continuations or not.
|
|
*/
|
|
out_token->num_escapes++;
|
|
} else {
|
|
/* part of string */
|
|
DUK__APPENDBUFFER(lex_ctx, x);
|
|
}
|
|
}
|
|
|
|
duk__internbuffer(lex_ctx, lex_ctx->slot1_idx);
|
|
out_token->str1 = duk_get_hstring((duk_context *) lex_ctx->thr, lex_ctx->slot1_idx);
|
|
|
|
DUK__INITBUFFER(lex_ctx); /* free some memory */
|
|
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_STRING);
|
|
} else if (x < 0) {
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_EOF);
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR, "error parsing token");
|
|
}
|
|
|
|
/*
|
|
* Shared exit path
|
|
*/
|
|
|
|
DUK__ADVANCE(lex_ctx, advtok >> 8);
|
|
out_token->t = advtok & 0xff;
|
|
if (out_token->t_nores < 0) {
|
|
out_token->t_nores = out_token->t;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Tokenize input until a non-whitespace, non-lineterm token is found.
|
|
* Note in the output token whether a lineterm token preceded the starting
|
|
* point (inclusive) and the result token. This information is needed for
|
|
* automatic semicolon insertion.
|
|
*
|
|
* Future work:
|
|
*
|
|
* * Merge with duk__parse_input_element_raw() because only this function is
|
|
* called in practice.
|
|
*/
|
|
|
|
/* XXX: change mode flags into one flags argument? */
|
|
|
|
DUK_INTERNAL
|
|
void duk_lexer_parse_js_input_element(duk_lexer_ctx *lex_ctx,
|
|
duk_token *out_token,
|
|
duk_bool_t strict_mode,
|
|
duk_bool_t regexp_mode) {
|
|
duk_small_int_t tok;
|
|
duk_bool_t got_lineterm = 0; /* got lineterm preceding non-whitespace, non-lineterm token */
|
|
|
|
for (;;) {
|
|
duk__parse_input_element_raw(lex_ctx, out_token, strict_mode, regexp_mode);
|
|
tok = out_token->t;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("RAWTOKEN: %ld (line %ld)",
|
|
(long) tok, (long) out_token->start_line));
|
|
|
|
if (tok == DUK_TOK_COMMENT) {
|
|
/* single-line comment or multi-line comment without an internal lineterm */
|
|
continue;
|
|
} else if (tok == DUK_TOK_LINETERM) {
|
|
/* lineterm or multi-line comment with an internal lineterm */
|
|
got_lineterm = 1;
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
out_token->lineterm = got_lineterm;
|
|
|
|
/* Automatic semicolon insertion is allowed if a token is preceded
|
|
* by line terminator(s), or terminates a statement list (right curly
|
|
* or EOF).
|
|
*/
|
|
if (got_lineterm || tok == DUK_TOK_RCURLY || tok == DUK_TOK_EOF) {
|
|
out_token->allow_auto_semi = 1;
|
|
} else {
|
|
out_token->allow_auto_semi = 0;
|
|
}
|
|
}
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
|
|
/*
|
|
* Parse a RegExp token. The grammar is described in E5 Section 15.10.
|
|
* Terminal constructions (such as quantifiers) are parsed directly here.
|
|
*
|
|
* 0xffffffffU is used as a marker for "infinity" in quantifiers. Further,
|
|
* DUK__MAX_RE_QUANT_DIGITS limits the maximum number of digits that
|
|
* will be accepted for a quantifier.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_lexer_parse_re_token(duk_lexer_ctx *lex_ctx, duk_re_token *out_token) {
|
|
duk_small_int_t advtok = 0; /* init is unnecessary but suppresses "may be used uninitialized" warnings */
|
|
duk_codepoint_t x, y;
|
|
|
|
if (++lex_ctx->token_count >= lex_ctx->token_limit) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_RANGE_ERROR, "token limit");
|
|
return; /* unreachable */
|
|
}
|
|
|
|
DUK_MEMZERO(out_token, sizeof(*out_token));
|
|
|
|
x = DUK__L0();
|
|
y = DUK__L1();
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parsing regexp token, L0=%ld, L1=%ld", (long) x, (long) y));
|
|
|
|
switch (x) {
|
|
case '|': {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_DISJUNCTION);
|
|
break;
|
|
}
|
|
case '^': {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ASSERT_START);
|
|
break;
|
|
}
|
|
case '$': {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ASSERT_END);
|
|
break;
|
|
}
|
|
case '?': {
|
|
out_token->qmin = 0;
|
|
out_token->qmax = 1;
|
|
if (y == '?') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_QUANTIFIER);
|
|
out_token->greedy = 0;
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_QUANTIFIER);
|
|
out_token->greedy = 1;
|
|
}
|
|
break;
|
|
}
|
|
case '*': {
|
|
out_token->qmin = 0;
|
|
out_token->qmax = DUK_RE_QUANTIFIER_INFINITE;
|
|
if (y == '?') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_QUANTIFIER);
|
|
out_token->greedy = 0;
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_QUANTIFIER);
|
|
out_token->greedy = 1;
|
|
}
|
|
break;
|
|
}
|
|
case '+': {
|
|
out_token->qmin = 1;
|
|
out_token->qmax = DUK_RE_QUANTIFIER_INFINITE;
|
|
if (y == '?') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_QUANTIFIER);
|
|
out_token->greedy = 0;
|
|
} else {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_QUANTIFIER);
|
|
out_token->greedy = 1;
|
|
}
|
|
break;
|
|
}
|
|
case '{': {
|
|
/* Production allows 'DecimalDigits', including leading zeroes */
|
|
duk_uint_fast32_t val1 = 0;
|
|
duk_uint_fast32_t val2 = DUK_RE_QUANTIFIER_INFINITE;
|
|
duk_small_int_t digits = 0;
|
|
for (;;) {
|
|
DUK__ADVANCE(lex_ctx, 1); /* eat '{' on entry */
|
|
x = DUK__L0();
|
|
if (DUK__ISDIGIT(x)) {
|
|
if (digits >= DUK__MAX_RE_QUANT_DIGITS) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp quantifier (too many digits)");
|
|
}
|
|
digits++;
|
|
val1 = val1 * 10 + (duk_uint_fast32_t) duk__hexval(lex_ctx, x);
|
|
} else if (x == ',') {
|
|
if (val2 != DUK_RE_QUANTIFIER_INFINITE) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp quantifier (double comma)");
|
|
}
|
|
if (DUK__L1() == '}') {
|
|
/* form: { DecimalDigits , }, val1 = min count */
|
|
if (digits == 0) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp quantifier (missing digits)");
|
|
}
|
|
out_token->qmin = val1;
|
|
out_token->qmax = DUK_RE_QUANTIFIER_INFINITE;
|
|
DUK__ADVANCE(lex_ctx, 2);
|
|
break;
|
|
}
|
|
val2 = val1;
|
|
val1 = 0;
|
|
digits = 0; /* not strictly necessary because of lookahead '}' above */
|
|
} else if (x == '}') {
|
|
if (digits == 0) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp quantifier (missing digits)");
|
|
}
|
|
if (val2 != DUK_RE_QUANTIFIER_INFINITE) {
|
|
/* val2 = min count, val1 = max count */
|
|
out_token->qmin = val2;
|
|
out_token->qmax = val1;
|
|
} else {
|
|
/* val1 = count */
|
|
out_token->qmin = val1;
|
|
out_token->qmax = val1;
|
|
}
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
break;
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp quantifier (unknown char)");
|
|
}
|
|
}
|
|
if (DUK__L0() == '?') {
|
|
out_token->greedy = 0;
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
} else {
|
|
out_token->greedy = 1;
|
|
}
|
|
advtok = DUK__ADVTOK(0, DUK_RETOK_QUANTIFIER);
|
|
break;
|
|
}
|
|
case '.': {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ATOM_PERIOD);
|
|
break;
|
|
}
|
|
case '\\': {
|
|
/* The E5.1 specification does not seem to allow IdentifierPart characters
|
|
* to be used as identity escapes. Unfortunately this includes '$', which
|
|
* cannot be escaped as '\$'; it needs to be escaped e.g. as '\u0024'.
|
|
* Many other implementations (including V8 and Rhino, for instance) do
|
|
* accept '\$' as a valid identity escape, which is quite pragmatic.
|
|
* See: test-regexp-identity-escape-dollar.js.
|
|
*/
|
|
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_CHAR); /* default: char escape (two chars) */
|
|
if (y == 'b') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ASSERT_WORD_BOUNDARY);
|
|
} else if (y == 'B') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ASSERT_NOT_WORD_BOUNDARY);
|
|
} else if (y == 'f') {
|
|
out_token->num = 0x000c;
|
|
} else if (y == 'n') {
|
|
out_token->num = 0x000a;
|
|
} else if (y == 't') {
|
|
out_token->num = 0x0009;
|
|
} else if (y == 'r') {
|
|
out_token->num = 0x000d;
|
|
} else if (y == 'v') {
|
|
out_token->num = 0x000b;
|
|
} else if (y == 'c') {
|
|
x = DUK__L2();
|
|
if ((x >= 'a' && x <= 'z') ||
|
|
(x >= 'A' && x <= 'Z')) {
|
|
out_token->num = (x % 32);
|
|
advtok = DUK__ADVTOK(3, DUK_RETOK_ATOM_CHAR);
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp control escape");
|
|
}
|
|
} else if (y == 'x') {
|
|
out_token->num = duk__decode_hexesc_from_window(lex_ctx, 2);
|
|
advtok = DUK__ADVTOK(4, DUK_RETOK_ATOM_CHAR);
|
|
} else if (y == 'u') {
|
|
out_token->num = duk__decode_uniesc_from_window(lex_ctx, 2);
|
|
advtok = DUK__ADVTOK(6, DUK_RETOK_ATOM_CHAR);
|
|
} else if (y == 'd') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_DIGIT);
|
|
} else if (y == 'D') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_NOT_DIGIT);
|
|
} else if (y == 's') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_WHITE);
|
|
} else if (y == 'S') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_NOT_WHITE);
|
|
} else if (y == 'w') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_WORD_CHAR);
|
|
} else if (y == 'W') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_NOT_WORD_CHAR);
|
|
} else if (DUK__ISDIGIT(y)) {
|
|
/* E5 Section 15.10.2.11 */
|
|
if (y == '0') {
|
|
if (DUK__ISDIGIT(DUK__L2())) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp escape");
|
|
}
|
|
out_token->num = 0x0000;
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_CHAR);
|
|
} else {
|
|
/* XXX: shared parsing? */
|
|
duk_uint_fast32_t val = 0;
|
|
duk_small_int_t i;
|
|
for (i = 0; ; i++) {
|
|
if (i >= DUK__MAX_RE_DECESC_DIGITS) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp escape (decimal escape too long)");
|
|
}
|
|
DUK__ADVANCE(lex_ctx, 1); /* eat backslash on entry */
|
|
x = DUK__L0();
|
|
if (!DUK__ISDIGIT(x)) {
|
|
break;
|
|
}
|
|
val = val * 10 + (duk_uint_fast32_t) duk__hexval(lex_ctx, x);
|
|
}
|
|
/* DUK__L0() cannot be a digit, because the loop doesn't terminate if it is */
|
|
advtok = DUK__ADVTOK(0, DUK_RETOK_ATOM_BACKREFERENCE);
|
|
out_token->num = val;
|
|
}
|
|
} else if ((y >= 0 && !duk_unicode_is_identifier_part(y)) ||
|
|
#if defined(DUK_USE_NONSTD_REGEXP_DOLLAR_ESCAPE)
|
|
y == '$' ||
|
|
#endif
|
|
y == DUK_UNICODE_CP_ZWNJ ||
|
|
y == DUK_UNICODE_CP_ZWJ) {
|
|
/* IdentityEscape, with dollar added as a valid additional
|
|
* non-standard escape (see test-regexp-identity-escape-dollar.js).
|
|
* Careful not to match end-of-buffer (<0) here.
|
|
*/
|
|
out_token->num = y;
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp escape");
|
|
}
|
|
break;
|
|
}
|
|
case '(': {
|
|
/* XXX: naming is inconsistent: ATOM_END_GROUP ends an ASSERT_START_LOOKAHEAD */
|
|
|
|
if (y == '?') {
|
|
if (DUK__L2() == '=') {
|
|
/* (?= */
|
|
advtok = DUK__ADVTOK(3, DUK_RETOK_ASSERT_START_POS_LOOKAHEAD);
|
|
} else if (DUK__L2() == '!') {
|
|
/* (?! */
|
|
advtok = DUK__ADVTOK(3, DUK_RETOK_ASSERT_START_NEG_LOOKAHEAD);
|
|
} else if (DUK__L2() == ':') {
|
|
/* (?: */
|
|
advtok = DUK__ADVTOK(3, DUK_RETOK_ATOM_START_NONCAPTURE_GROUP);
|
|
}
|
|
} else {
|
|
/* ( */
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ATOM_START_CAPTURE_GROUP);
|
|
}
|
|
break;
|
|
}
|
|
case ')': {
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ATOM_END_GROUP);
|
|
break;
|
|
}
|
|
case '[': {
|
|
/*
|
|
* To avoid creating a heavy intermediate value for the list of ranges,
|
|
* only the start token ('[' or '[^') is parsed here. The regexp
|
|
* compiler parses the ranges itself.
|
|
*/
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ATOM_START_CHARCLASS);
|
|
if (y == '^') {
|
|
advtok = DUK__ADVTOK(2, DUK_RETOK_ATOM_START_CHARCLASS_INVERTED);
|
|
}
|
|
break;
|
|
}
|
|
case ']':
|
|
case '}': {
|
|
/* Although these could be parsed as PatternCharacters unambiguously (here),
|
|
* E5 Section 15.10.1 grammar explicitly forbids these as PatternCharacters.
|
|
*/
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp character");
|
|
break;
|
|
}
|
|
case -1: {
|
|
/* EOF */
|
|
advtok = DUK__ADVTOK(0, DUK_TOK_EOF);
|
|
break;
|
|
}
|
|
default: {
|
|
/* PatternCharacter, all excluded characters are matched by cases above */
|
|
advtok = DUK__ADVTOK(1, DUK_RETOK_ATOM_CHAR);
|
|
out_token->num = x;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shared exit path
|
|
*/
|
|
|
|
DUK__ADVANCE(lex_ctx, advtok >> 8);
|
|
out_token->t = advtok & 0xff;
|
|
}
|
|
|
|
/*
|
|
* Special parser for character classes; calls callback for every
|
|
* range parsed and returns the number of ranges present.
|
|
*/
|
|
|
|
/* XXX: this duplicates functionality in duk_regexp.c where a similar loop is
|
|
* required anyway. We could use that BUT we need to update the regexp compiler
|
|
* 'nranges' too. Work this out a bit more cleanly to save space.
|
|
*/
|
|
|
|
/* XXX: the handling of character range detection is a bit convoluted.
|
|
* Try to simplify and make smaller.
|
|
*/
|
|
|
|
/* XXX: logic for handling character ranges is now incorrect, it will accept
|
|
* e.g. [\d-z] whereas it should croak from it? SMJS accepts this too, though.
|
|
*
|
|
* Needs a read through and a lot of additional tests.
|
|
*/
|
|
|
|
DUK_LOCAL
|
|
void duk__emit_u16_direct_ranges(duk_lexer_ctx *lex_ctx,
|
|
duk_re_range_callback gen_range,
|
|
void *userdata,
|
|
duk_uint16_t *ranges,
|
|
duk_small_int_t num) {
|
|
duk_uint16_t *ranges_end;
|
|
|
|
DUK_UNREF(lex_ctx);
|
|
|
|
ranges_end = ranges + num;
|
|
while (ranges < ranges_end) {
|
|
/* mark range 'direct', bypass canonicalization (see Wiki) */
|
|
gen_range(userdata, (duk_codepoint_t) ranges[0], (duk_codepoint_t) ranges[1], 1);
|
|
ranges += 2;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_lexer_parse_re_ranges(duk_lexer_ctx *lex_ctx, duk_re_range_callback gen_range, void *userdata) {
|
|
duk_codepoint_t start = -1;
|
|
duk_codepoint_t ch;
|
|
duk_codepoint_t x;
|
|
duk_bool_t dash = 0;
|
|
|
|
DUK_DD(DUK_DDPRINT("parsing regexp ranges"));
|
|
|
|
for (;;) {
|
|
x = DUK__L0();
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
|
|
ch = -1; /* not strictly necessary, but avoids "uninitialized variable" warnings */
|
|
DUK_UNREF(ch);
|
|
|
|
if (x < 0) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"eof while parsing character class");
|
|
} else if (x == ']') {
|
|
DUK_ASSERT(!dash); /* lookup should prevent this */
|
|
if (start >= 0) {
|
|
gen_range(userdata, start, start, 0);
|
|
}
|
|
break;
|
|
} else if (x == '-') {
|
|
if (start >= 0 && !dash && DUK__L0() != ']') {
|
|
/* '-' as a range indicator */
|
|
dash = 1;
|
|
continue;
|
|
} else {
|
|
/* '-' verbatim */
|
|
ch = x;
|
|
}
|
|
} else if (x == '\\') {
|
|
/*
|
|
* The escapes are same as outside a character class, except that \b has a
|
|
* different meaning, and \B and backreferences are prohibited (see E5
|
|
* Section 15.10.2.19). However, it's difficult to share code because we
|
|
* handle e.g. "\n" very differently: here we generate a single character
|
|
* range for it.
|
|
*/
|
|
|
|
x = DUK__L0();
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
|
|
if (x == 'b') {
|
|
/* Note: '\b' in char class is different than outside (assertion),
|
|
* '\B' is not allowed and is caught by the duk_unicode_is_identifier_part()
|
|
* check below.
|
|
*/
|
|
ch = 0x0008;
|
|
} else if (x == 'f') {
|
|
ch = 0x000c;
|
|
} else if (x == 'n') {
|
|
ch = 0x000a;
|
|
} else if (x == 't') {
|
|
ch = 0x0009;
|
|
} else if (x == 'r') {
|
|
ch = 0x000d;
|
|
} else if (x == 'v') {
|
|
ch = 0x000b;
|
|
} else if (x == 'c') {
|
|
x = DUK__L0();
|
|
DUK__ADVANCE(lex_ctx, 1);
|
|
if ((x >= 'a' && x <= 'z') ||
|
|
(x >= 'A' && x <= 'Z')) {
|
|
ch = (x % 32);
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp control escape");
|
|
return; /* never reached, but avoids warnings of
|
|
* potentially unused variables.
|
|
*/
|
|
}
|
|
} else if (x == 'x') {
|
|
ch = duk__decode_hexesc_from_window(lex_ctx, 0);
|
|
DUK__ADVANCE(lex_ctx, 2);
|
|
} else if (x == 'u') {
|
|
ch = duk__decode_uniesc_from_window(lex_ctx, 0);
|
|
DUK__ADVANCE(lex_ctx, 4);
|
|
} else if (x == 'd') {
|
|
duk__emit_u16_direct_ranges(lex_ctx,
|
|
gen_range,
|
|
userdata,
|
|
duk_unicode_re_ranges_digit,
|
|
sizeof(duk_unicode_re_ranges_digit) / sizeof(duk_uint16_t));
|
|
ch = -1;
|
|
} else if (x == 'D') {
|
|
duk__emit_u16_direct_ranges(lex_ctx,
|
|
gen_range,
|
|
userdata,
|
|
duk_unicode_re_ranges_not_digit,
|
|
sizeof(duk_unicode_re_ranges_not_digit) / sizeof(duk_uint16_t));
|
|
ch = -1;
|
|
} else if (x == 's') {
|
|
duk__emit_u16_direct_ranges(lex_ctx,
|
|
gen_range,
|
|
userdata,
|
|
duk_unicode_re_ranges_white,
|
|
sizeof(duk_unicode_re_ranges_white) / sizeof(duk_uint16_t));
|
|
ch = -1;
|
|
} else if (x == 'S') {
|
|
duk__emit_u16_direct_ranges(lex_ctx,
|
|
gen_range,
|
|
userdata,
|
|
duk_unicode_re_ranges_not_white,
|
|
sizeof(duk_unicode_re_ranges_not_white) / sizeof(duk_uint16_t));
|
|
ch = -1;
|
|
} else if (x == 'w') {
|
|
duk__emit_u16_direct_ranges(lex_ctx,
|
|
gen_range,
|
|
userdata,
|
|
duk_unicode_re_ranges_wordchar,
|
|
sizeof(duk_unicode_re_ranges_wordchar) / sizeof(duk_uint16_t));
|
|
ch = -1;
|
|
} else if (x == 'W') {
|
|
duk__emit_u16_direct_ranges(lex_ctx,
|
|
gen_range,
|
|
userdata,
|
|
duk_unicode_re_ranges_not_wordchar,
|
|
sizeof(duk_unicode_re_ranges_not_wordchar) / sizeof(duk_uint16_t));
|
|
ch = -1;
|
|
} else if (DUK__ISDIGIT(x)) {
|
|
/* DecimalEscape, only \0 is allowed, no leading zeroes are allowed */
|
|
if (x == '0' && !DUK__ISDIGIT(DUK__L0())) {
|
|
ch = 0x0000;
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid decimal escape");
|
|
}
|
|
} else if (!duk_unicode_is_identifier_part(x)
|
|
#if defined(DUK_USE_NONSTD_REGEXP_DOLLAR_ESCAPE)
|
|
|| x == '$'
|
|
#endif
|
|
) {
|
|
/* IdentityEscape */
|
|
ch = x;
|
|
} else {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid regexp escape");
|
|
}
|
|
} else {
|
|
/* character represents itself */
|
|
ch = x;
|
|
}
|
|
|
|
/* ch is a literal character here or -1 if parsed entity was
|
|
* an escape such as "\s".
|
|
*/
|
|
|
|
if (ch < 0) {
|
|
/* multi-character sets not allowed as part of ranges, see
|
|
* E5 Section 15.10.2.15, abstract operation CharacterRange.
|
|
*/
|
|
if (start >= 0) {
|
|
if (dash) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid range");
|
|
} else {
|
|
gen_range(userdata, start, start, 0);
|
|
start = -1;
|
|
/* dash is already 0 */
|
|
}
|
|
}
|
|
} else {
|
|
if (start >= 0) {
|
|
if (dash) {
|
|
if (start > ch) {
|
|
DUK_ERROR(lex_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
"invalid range");
|
|
}
|
|
gen_range(userdata, start, ch, 0);
|
|
start = -1;
|
|
dash = 0;
|
|
} else {
|
|
gen_range(userdata, start, start, 0);
|
|
start = ch;
|
|
/* dash is already 0 */
|
|
}
|
|
} else {
|
|
start = ch;
|
|
}
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
#line 1 "duk_numconv.c"
|
|
/*
|
|
* Number-to-string and string-to-number conversions.
|
|
*
|
|
* Slow path number-to-string and string-to-number conversion is based on
|
|
* a Dragon4 variant, with fast paths for small integers. Big integer
|
|
* arithmetic is needed for guaranteeing that the conversion is correct
|
|
* and uses a minimum number of digits. The big number arithmetic has a
|
|
* fixed maximum size and does not require dynamic allocations.
|
|
*
|
|
* See: doc/number-conversion.txt.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#define DUK__IEEE_DOUBLE_EXP_BIAS 1023
|
|
#define DUK__IEEE_DOUBLE_EXP_MIN (-1022) /* biased exp == 0 -> denormal, exp -1022 */
|
|
|
|
#define DUK__DIGITCHAR(x) duk_lc_digits[(x)]
|
|
|
|
/*
|
|
* Tables generated with src/gennumdigits.py.
|
|
*
|
|
* duk__str2num_digits_for_radix indicates, for each radix, how many input
|
|
* digits should be considered significant for string-to-number conversion.
|
|
* The input is also padded to this many digits to give the Dragon4
|
|
* conversion enough (apparent) precision to work with.
|
|
*
|
|
* duk__str2num_exp_limits indicates, for each radix, the radix-specific
|
|
* minimum/maximum exponent values (for a Dragon4 integer mantissa)
|
|
* below and above which the number is guaranteed to underflow to zero
|
|
* or overflow to Infinity. This allows parsing to keep bigint values
|
|
* bounded.
|
|
*/
|
|
|
|
DUK_LOCAL const duk_uint8_t duk__str2num_digits_for_radix[] = {
|
|
69, 44, 35, 30, 27, 25, 23, 22, 20, 20, /* 2 to 11 */
|
|
20, 19, 19, 18, 18, 17, 17, 17, 16, 16, /* 12 to 21 */
|
|
16, 16, 16, 15, 15, 15, 15, 15, 15, 14, /* 22 to 31 */
|
|
14, 14, 14, 14, 14 /* 31 to 36 */
|
|
};
|
|
|
|
typedef struct {
|
|
duk_int16_t upper;
|
|
duk_int16_t lower;
|
|
} duk__exp_limits;
|
|
|
|
DUK_LOCAL const duk__exp_limits duk__str2num_exp_limits[] = {
|
|
{ 957, -1147 }, { 605, -725 }, { 479, -575 }, { 414, -496 },
|
|
{ 372, -446 }, { 342, -411 }, { 321, -384 }, { 304, -364 },
|
|
{ 291, -346 }, { 279, -334 }, { 268, -323 }, { 260, -312 },
|
|
{ 252, -304 }, { 247, -296 }, { 240, -289 }, { 236, -283 },
|
|
{ 231, -278 }, { 227, -273 }, { 223, -267 }, { 220, -263 },
|
|
{ 216, -260 }, { 213, -256 }, { 210, -253 }, { 208, -249 },
|
|
{ 205, -246 }, { 203, -244 }, { 201, -241 }, { 198, -239 },
|
|
{ 196, -237 }, { 195, -234 }, { 193, -232 }, { 191, -230 },
|
|
{ 190, -228 }, { 188, -226 }, { 187, -225 },
|
|
};
|
|
|
|
/*
|
|
* Limited functionality bigint implementation.
|
|
*
|
|
* Restricted to non-negative numbers with less than 32 * DUK__BI_MAX_PARTS bits,
|
|
* with the caller responsible for ensuring this is never exceeded. No memory
|
|
* allocation (except stack) is needed for bigint computation. Operations
|
|
* have been tailored for number conversion needs.
|
|
*
|
|
* Argument order is "assignment order", i.e. target first, then arguments:
|
|
* x <- y * z --> duk__bi_mul(x, y, z);
|
|
*/
|
|
|
|
/* This upper value has been experimentally determined; debug build will check
|
|
* bigint size with assertions.
|
|
*/
|
|
#define DUK__BI_MAX_PARTS 37 /* 37x32 = 1184 bits */
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
#define DUK__BI_PRINT(name,x) duk__bi_print((name),(x))
|
|
#else
|
|
#define DUK__BI_PRINT(name,x)
|
|
#endif
|
|
|
|
/* Current size is about 152 bytes. */
|
|
typedef struct {
|
|
duk_small_int_t n;
|
|
duk_uint32_t v[DUK__BI_MAX_PARTS]; /* low to high */
|
|
} duk__bigint;
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
DUK_LOCAL void duk__bi_print(const char *name, duk__bigint *x) {
|
|
/* Overestimate required size; debug code so not critical to be tight. */
|
|
char buf[DUK__BI_MAX_PARTS * 9 + 64];
|
|
char *p = buf;
|
|
duk_small_int_t i;
|
|
|
|
/* No NUL term checks in this debug code. */
|
|
p += DUK_SPRINTF(p, "%p n=%ld", (void *) x, (long) x->n);
|
|
if (x->n == 0) {
|
|
p += DUK_SPRINTF(p, " 0");
|
|
}
|
|
for (i = x->n - 1; i >= 0; i--) {
|
|
p += DUK_SPRINTF(p, " %08lx", (unsigned long) x->v[i]);
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("%s: %s", (const char *) name, (const char *) buf));
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
DUK_LOCAL duk_small_int_t duk__bi_is_valid(duk__bigint *x) {
|
|
return (duk_small_int_t)
|
|
( ((x->n >= 0) && (x->n <= DUK__BI_MAX_PARTS)) /* is valid size */ &&
|
|
((x->n == 0) || (x->v[x->n - 1] != 0)) /* is normalized */ );
|
|
}
|
|
#endif
|
|
|
|
DUK_LOCAL void duk__bi_normalize(duk__bigint *x) {
|
|
duk_small_int_t i;
|
|
|
|
for (i = x->n - 1; i >= 0; i--) {
|
|
if (x->v[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Note: if 'x' is zero, x->n becomes 0 here */
|
|
x->n = i + 1;
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
|
|
/* x <- y */
|
|
DUK_LOCAL void duk__bi_copy(duk__bigint *x, duk__bigint *y) {
|
|
duk_small_int_t n;
|
|
|
|
n = y->n;
|
|
x->n = n;
|
|
if (n == 0) {
|
|
return;
|
|
}
|
|
DUK_MEMCPY((void *) x->v, (void *) y->v, (size_t) (sizeof(duk_uint32_t) * n));
|
|
}
|
|
|
|
DUK_LOCAL void duk__bi_set_small(duk__bigint *x, duk_uint32_t v) {
|
|
if (v == 0U) {
|
|
x->n = 0;
|
|
} else {
|
|
x->n = 1;
|
|
x->v[0] = v;
|
|
}
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
|
|
/* Return value: <0 <=> x < y
|
|
* 0 <=> x == y
|
|
* >0 <=> x > y
|
|
*/
|
|
DUK_LOCAL int duk__bi_compare(duk__bigint *x, duk__bigint *y) {
|
|
duk_small_int_t i, nx, ny;
|
|
duk_uint32_t tx, ty;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
|
|
nx = x->n;
|
|
ny = y->n;
|
|
if (nx > ny) {
|
|
goto ret_gt;
|
|
}
|
|
if (nx < ny) {
|
|
goto ret_lt;
|
|
}
|
|
for (i = nx - 1; i >= 0; i--) {
|
|
tx = x->v[i];
|
|
ty = y->v[i];
|
|
|
|
if (tx > ty) {
|
|
goto ret_gt;
|
|
}
|
|
if (tx < ty) {
|
|
goto ret_lt;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
ret_gt:
|
|
return 1;
|
|
|
|
ret_lt:
|
|
return -1;
|
|
}
|
|
|
|
/* x <- y + z */
|
|
#ifdef DUK_USE_64BIT_OPS
|
|
DUK_LOCAL void duk__bi_add(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
|
|
duk_uint64_t tmp;
|
|
duk_small_int_t i, ny, nz;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
DUK_ASSERT(duk__bi_is_valid(z));
|
|
|
|
if (z->n > y->n) {
|
|
duk__bigint *t;
|
|
t = y; y = z; z = t;
|
|
}
|
|
DUK_ASSERT(y->n >= z->n);
|
|
|
|
ny = y->n; nz = z->n;
|
|
tmp = 0U;
|
|
for (i = 0; i < ny; i++) {
|
|
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
|
|
tmp += y->v[i];
|
|
if (i < nz) {
|
|
tmp += z->v[i];
|
|
}
|
|
x->v[i] = (duk_uint32_t) (tmp & 0xffffffffUL);
|
|
tmp = tmp >> 32;
|
|
}
|
|
if (tmp != 0U) {
|
|
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
|
|
x->v[i++] = (duk_uint32_t) tmp;
|
|
}
|
|
x->n = i;
|
|
DUK_ASSERT(x->n <= DUK__BI_MAX_PARTS);
|
|
|
|
/* no need to normalize */
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
#else /* DUK_USE_64BIT_OPS */
|
|
DUK_LOCAL void duk__bi_add(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
|
|
duk_uint32_t carry, tmp1, tmp2;
|
|
duk_small_int_t i, ny, nz;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
DUK_ASSERT(duk__bi_is_valid(z));
|
|
|
|
if (z->n > y->n) {
|
|
duk__bigint *t;
|
|
t = y; y = z; z = t;
|
|
}
|
|
DUK_ASSERT(y->n >= z->n);
|
|
|
|
ny = y->n; nz = z->n;
|
|
carry = 0U;
|
|
for (i = 0; i < ny; i++) {
|
|
/* Carry is detected based on wrapping which relies on exact 32-bit
|
|
* types.
|
|
*/
|
|
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
|
|
tmp1 = y->v[i];
|
|
tmp2 = tmp1;
|
|
if (i < nz) {
|
|
tmp2 += z->v[i];
|
|
}
|
|
|
|
/* Careful with carry condition:
|
|
* - If carry not added: 0x12345678 + 0 + 0xffffffff = 0x12345677 (< 0x12345678)
|
|
* - If carry added: 0x12345678 + 1 + 0xffffffff = 0x12345678 (== 0x12345678)
|
|
*/
|
|
if (carry) {
|
|
tmp2++;
|
|
carry = (tmp2 <= tmp1 ? 1U : 0U);
|
|
} else {
|
|
carry = (tmp2 < tmp1 ? 1U : 0U);
|
|
}
|
|
|
|
x->v[i] = tmp2;
|
|
}
|
|
if (carry) {
|
|
DUK_ASSERT(i < DUK__BI_MAX_PARTS);
|
|
DUK_ASSERT(carry == 1U);
|
|
x->v[i++] = carry;
|
|
}
|
|
x->n = i;
|
|
DUK_ASSERT(x->n <= DUK__BI_MAX_PARTS);
|
|
|
|
/* no need to normalize */
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
#endif /* DUK_USE_64BIT_OPS */
|
|
|
|
/* x <- y + z */
|
|
DUK_LOCAL void duk__bi_add_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) {
|
|
duk__bigint tmp;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
|
|
/* XXX: this could be optimized; there is only one call site now though */
|
|
duk__bi_set_small(&tmp, z);
|
|
duk__bi_add(x, y, &tmp);
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
/* x <- x + y, use t as temp */
|
|
DUK_LOCAL void duk__bi_add_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) {
|
|
duk__bi_add(t, x, y);
|
|
duk__bi_copy(x, t);
|
|
}
|
|
#endif
|
|
|
|
/* x <- y - z, require x >= y => z >= 0, i.e. y >= z */
|
|
#ifdef DUK_USE_64BIT_OPS
|
|
DUK_LOCAL void duk__bi_sub(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
|
|
duk_small_int_t i, ny, nz;
|
|
duk_uint32_t ty, tz;
|
|
duk_int64_t tmp;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
DUK_ASSERT(duk__bi_is_valid(z));
|
|
DUK_ASSERT(duk__bi_compare(y, z) >= 0);
|
|
DUK_ASSERT(y->n >= z->n);
|
|
|
|
ny = y->n; nz = z->n;
|
|
tmp = 0;
|
|
for (i = 0; i < ny; i++) {
|
|
ty = y->v[i];
|
|
if (i < nz) {
|
|
tz = z->v[i];
|
|
} else {
|
|
tz = 0;
|
|
}
|
|
tmp = (duk_int64_t) ty - (duk_int64_t) tz + tmp;
|
|
x->v[i] = (duk_uint32_t) (tmp & 0xffffffffUL);
|
|
tmp = tmp >> 32; /* 0 or -1 */
|
|
}
|
|
DUK_ASSERT(tmp == 0);
|
|
|
|
x->n = i;
|
|
duk__bi_normalize(x); /* need to normalize, may even cancel to 0 */
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
#else
|
|
DUK_LOCAL void duk__bi_sub(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
|
|
duk_small_int_t i, ny, nz;
|
|
duk_uint32_t tmp1, tmp2, borrow;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
DUK_ASSERT(duk__bi_is_valid(z));
|
|
DUK_ASSERT(duk__bi_compare(y, z) >= 0);
|
|
DUK_ASSERT(y->n >= z->n);
|
|
|
|
ny = y->n; nz = z->n;
|
|
borrow = 0U;
|
|
for (i = 0; i < ny; i++) {
|
|
/* Borrow is detected based on wrapping which relies on exact 32-bit
|
|
* types.
|
|
*/
|
|
tmp1 = y->v[i];
|
|
tmp2 = tmp1;
|
|
if (i < nz) {
|
|
tmp2 -= z->v[i];
|
|
}
|
|
|
|
/* Careful with borrow condition:
|
|
* - If borrow not subtracted: 0x12345678 - 0 - 0xffffffff = 0x12345679 (> 0x12345678)
|
|
* - If borrow subtracted: 0x12345678 - 1 - 0xffffffff = 0x12345678 (== 0x12345678)
|
|
*/
|
|
if (borrow) {
|
|
tmp2--;
|
|
borrow = (tmp2 >= tmp1 ? 1U : 0U);
|
|
} else {
|
|
borrow = (tmp2 > tmp1 ? 1U : 0U);
|
|
}
|
|
|
|
x->v[i] = tmp2;
|
|
}
|
|
DUK_ASSERT(borrow == 0U);
|
|
|
|
x->n = i;
|
|
duk__bi_normalize(x); /* need to normalize, may even cancel to 0 */
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* unused */
|
|
/* x <- y - z */
|
|
DUK_LOCAL void duk__bi_sub_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) {
|
|
duk__bigint tmp;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
|
|
/* XXX: this could be optimized */
|
|
duk__bi_set_small(&tmp, z);
|
|
duk__bi_sub(x, y, &tmp);
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
#endif
|
|
|
|
/* x <- x - y, use t as temp */
|
|
DUK_LOCAL void duk__bi_sub_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) {
|
|
duk__bi_sub(t, x, y);
|
|
duk__bi_copy(x, t);
|
|
}
|
|
|
|
/* x <- y * z */
|
|
DUK_LOCAL void duk__bi_mul(duk__bigint *x, duk__bigint *y, duk__bigint *z) {
|
|
duk_small_int_t i, j, nx, nz;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
DUK_ASSERT(duk__bi_is_valid(z));
|
|
|
|
nx = y->n + z->n; /* max possible */
|
|
DUK_ASSERT(nx <= DUK__BI_MAX_PARTS);
|
|
|
|
if (nx == 0) {
|
|
/* Both inputs are zero; cases where only one is zero can go
|
|
* through main algorithm.
|
|
*/
|
|
x->n = 0;
|
|
return;
|
|
}
|
|
|
|
DUK_MEMZERO((void *) x->v, (size_t) (sizeof(duk_uint32_t) * nx));
|
|
x->n = nx;
|
|
|
|
nz = z->n;
|
|
for (i = 0; i < y->n; i++) {
|
|
#ifdef DUK_USE_64BIT_OPS
|
|
duk_uint64_t tmp = 0U;
|
|
for (j = 0; j < nz; j++) {
|
|
tmp += (duk_uint64_t) y->v[i] * (duk_uint64_t) z->v[j] + x->v[i+j];
|
|
x->v[i+j] = (duk_uint32_t) (tmp & 0xffffffffUL);
|
|
tmp = tmp >> 32;
|
|
}
|
|
if (tmp > 0) {
|
|
DUK_ASSERT(i + j < nx);
|
|
DUK_ASSERT(i + j < DUK__BI_MAX_PARTS);
|
|
DUK_ASSERT(x->v[i+j] == 0U);
|
|
x->v[i+j] = (duk_uint32_t) tmp;
|
|
}
|
|
#else
|
|
/*
|
|
* Multiply + add + carry for 32-bit components using only 16x16->32
|
|
* multiplies and carry detection based on unsigned overflow.
|
|
*
|
|
* 1st mult, 32-bit: (A*2^16 + B)
|
|
* 2nd mult, 32-bit: (C*2^16 + D)
|
|
* 3rd add, 32-bit: E
|
|
* 4th add, 32-bit: F
|
|
*
|
|
* (AC*2^16 + B) * (C*2^16 + D) + E + F
|
|
* = AC*2^32 + AD*2^16 + BC*2^16 + BD + E + F
|
|
* = AC*2^32 + (AD + BC)*2^16 + (BD + E + F)
|
|
* = AC*2^32 + AD*2^16 + BC*2^16 + (BD + E + F)
|
|
*/
|
|
duk_uint32_t a, b, c, d, e, f;
|
|
duk_uint32_t r, s, t;
|
|
|
|
a = y->v[i]; b = a & 0xffffUL; a = a >> 16;
|
|
|
|
f = 0;
|
|
for (j = 0; j < nz; j++) {
|
|
c = z->v[j]; d = c & 0xffffUL; c = c >> 16;
|
|
e = x->v[i+j];
|
|
|
|
/* build result as: (r << 32) + s: start with (BD + E + F) */
|
|
r = 0;
|
|
s = b * d;
|
|
|
|
/* add E */
|
|
t = s + e;
|
|
if (t < s) { r++; } /* carry */
|
|
s = t;
|
|
|
|
/* add F */
|
|
t = s + f;
|
|
if (t < s) { r++; } /* carry */
|
|
s = t;
|
|
|
|
/* add BC*2^16 */
|
|
t = b * c;
|
|
r += (t >> 16);
|
|
t = s + ((t & 0xffffUL) << 16);
|
|
if (t < s) { r++; } /* carry */
|
|
s = t;
|
|
|
|
/* add AD*2^16 */
|
|
t = a * d;
|
|
r += (t >> 16);
|
|
t = s + ((t & 0xffffUL) << 16);
|
|
if (t < s) { r++; } /* carry */
|
|
s = t;
|
|
|
|
/* add AC*2^32 */
|
|
t = a * c;
|
|
r += t;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("ab=%08lx cd=%08lx ef=%08lx -> rs=%08lx %08lx",
|
|
(unsigned long) y->v[i], (unsigned long) z->v[j],
|
|
(unsigned long) x->v[i+j], (unsigned long) r,
|
|
(unsigned long) s));
|
|
|
|
x->v[i+j] = s;
|
|
f = r;
|
|
}
|
|
if (f > 0U) {
|
|
DUK_ASSERT(i + j < nx);
|
|
DUK_ASSERT(i + j < DUK__BI_MAX_PARTS);
|
|
DUK_ASSERT(x->v[i+j] == 0U);
|
|
x->v[i+j] = (duk_uint32_t) f;
|
|
}
|
|
#endif /* DUK_USE_64BIT_OPS */
|
|
}
|
|
|
|
duk__bi_normalize(x);
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
|
|
/* x <- y * z */
|
|
DUK_LOCAL void duk__bi_mul_small(duk__bigint *x, duk__bigint *y, duk_uint32_t z) {
|
|
duk__bigint tmp;
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(y));
|
|
|
|
/* XXX: this could be optimized */
|
|
duk__bi_set_small(&tmp, z);
|
|
duk__bi_mul(x, y, &tmp);
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
}
|
|
|
|
/* x <- x * y, use t as temp */
|
|
DUK_LOCAL void duk__bi_mul_copy(duk__bigint *x, duk__bigint *y, duk__bigint *t) {
|
|
duk__bi_mul(t, x, y);
|
|
duk__bi_copy(x, t);
|
|
}
|
|
|
|
/* x <- x * y, use t as temp */
|
|
DUK_LOCAL void duk__bi_mul_small_copy(duk__bigint *x, duk_uint32_t y, duk__bigint *t) {
|
|
duk__bi_mul_small(t, x, y);
|
|
duk__bi_copy(x, t);
|
|
}
|
|
|
|
DUK_LOCAL int duk__bi_is_even(duk__bigint *x) {
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
return (x->n == 0) || ((x->v[0] & 0x01) == 0);
|
|
}
|
|
|
|
DUK_LOCAL int duk__bi_is_zero(duk__bigint *x) {
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
return (x->n == 0); /* this is the case for normalized numbers */
|
|
}
|
|
|
|
/* Bigint is 2^52. Used to detect normalized IEEE double mantissa values
|
|
* which are at the lowest edge (next floating point value downwards has
|
|
* a different exponent). The lowest mantissa has the form:
|
|
*
|
|
* 1000........000 (52 zeroes; only "hidden bit" is set)
|
|
*/
|
|
DUK_LOCAL duk_small_int_t duk__bi_is_2to52(duk__bigint *x) {
|
|
DUK_ASSERT(duk__bi_is_valid(x));
|
|
return (duk_small_int_t)
|
|
(x->n == 2) && (x->v[0] == 0U) && (x->v[1] == (1U << (52-32)));
|
|
}
|
|
|
|
/* x <- (1<<y) */
|
|
DUK_LOCAL void duk__bi_twoexp(duk__bigint *x, duk_small_int_t y) {
|
|
duk_small_int_t n, r;
|
|
|
|
n = (y / 32) + 1;
|
|
DUK_ASSERT(n > 0);
|
|
r = y % 32;
|
|
DUK_MEMZERO((void *) x->v, sizeof(duk_uint32_t) * n);
|
|
x->n = n;
|
|
x->v[n - 1] = (((duk_uint32_t) 1) << r);
|
|
}
|
|
|
|
/* x <- b^y; use t1 and t2 as temps */
|
|
DUK_LOCAL void duk__bi_exp_small(duk__bigint *x, duk_small_int_t b, duk_small_int_t y, duk__bigint *t1, duk__bigint *t2) {
|
|
/* Fast path the binary case */
|
|
|
|
DUK_ASSERT(x != t1 && x != t2 && t1 != t2); /* distinct bignums, easy mistake to make */
|
|
DUK_ASSERT(b >= 0);
|
|
DUK_ASSERT(y >= 0);
|
|
|
|
if (b == 2) {
|
|
duk__bi_twoexp(x, y);
|
|
return;
|
|
}
|
|
|
|
/* http://en.wikipedia.org/wiki/Exponentiation_by_squaring */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("exp_small: b=%ld, y=%ld", (long) b, (long) y));
|
|
|
|
duk__bi_set_small(x, 1);
|
|
duk__bi_set_small(t1, b);
|
|
for (;;) {
|
|
/* Loop structure ensures that we don't compute t1^2 unnecessarily
|
|
* on the final round, as that might create a bignum exceeding the
|
|
* current DUK__BI_MAX_PARTS limit.
|
|
*/
|
|
if (y & 0x01) {
|
|
duk__bi_mul_copy(x, t1, t2);
|
|
}
|
|
y = y >> 1;
|
|
if (y == 0) {
|
|
break;
|
|
}
|
|
duk__bi_mul_copy(t1, t1, t2);
|
|
}
|
|
|
|
DUK__BI_PRINT("exp_small result", x);
|
|
}
|
|
|
|
/*
|
|
* A Dragon4 number-to-string variant, based on:
|
|
*
|
|
* Guy L. Steele Jr., Jon L. White: "How to Print Floating-Point Numbers
|
|
* Accurately"
|
|
*
|
|
* Robert G. Burger, R. Kent Dybvig: "Printing Floating-Point Numbers
|
|
* Quickly and Accurately"
|
|
*
|
|
* The current algorithm is based on Figure 1 of the Burger-Dybvig paper,
|
|
* i.e. the base implementation without logarithm estimation speedups
|
|
* (these would increase code footprint considerably). Fixed-format output
|
|
* does not follow the suggestions in the paper; instead, we generate an
|
|
* extra digit and round-with-carry.
|
|
*
|
|
* The same algorithm is used for number parsing (with b=10 and B=2)
|
|
* by generating one extra digit and doing rounding manually.
|
|
*
|
|
* See doc/number-conversion.txt for limitations.
|
|
*/
|
|
|
|
/* Maximum number of digits generated. */
|
|
#define DUK__MAX_OUTPUT_DIGITS 1040 /* (Number.MAX_VALUE).toString(2).length == 1024, + spare */
|
|
|
|
/* Maximum number of characters in formatted value. */
|
|
#define DUK__MAX_FORMATTED_LENGTH 1040 /* (-Number.MAX_VALUE).toString(2).length == 1025, + spare */
|
|
|
|
/* Number and (minimum) size of bigints in the nc_ctx structure. */
|
|
#define DUK__NUMCONV_CTX_NUM_BIGINTS 7
|
|
#define DUK__NUMCONV_CTX_BIGINTS_SIZE (sizeof(duk__bigint) * DUK__NUMCONV_CTX_NUM_BIGINTS)
|
|
|
|
typedef struct {
|
|
/* Currently about 7*152 = 1064 bytes. The space for these
|
|
* duk__bigints is used also as a temporary buffer for generating
|
|
* the final string. This is a bit awkard; a union would be
|
|
* more correct.
|
|
*/
|
|
duk__bigint f, r, s, mp, mm, t1, t2;
|
|
|
|
duk_small_int_t is_s2n; /* if 1, doing a string-to-number; else doing a number-to-string */
|
|
duk_small_int_t is_fixed; /* if 1, doing a fixed format output (not free format) */
|
|
duk_small_int_t req_digits; /* requested number of output digits; 0 = free-format */
|
|
duk_small_int_t abs_pos; /* digit position is absolute, not relative */
|
|
duk_small_int_t e; /* exponent for 'f' */
|
|
duk_small_int_t b; /* input radix */
|
|
duk_small_int_t B; /* output radix */
|
|
duk_small_int_t k; /* see algorithm */
|
|
duk_small_int_t low_ok; /* see algorithm */
|
|
duk_small_int_t high_ok; /* see algorithm */
|
|
duk_small_int_t unequal_gaps; /* m+ != m- (very rarely) */
|
|
|
|
/* Buffer used for generated digits, values are in the range [0,B-1]. */
|
|
duk_uint8_t digits[DUK__MAX_OUTPUT_DIGITS];
|
|
duk_small_int_t count; /* digit count */
|
|
} duk__numconv_stringify_ctx;
|
|
|
|
/* Note: computes with 'idx' in assertions, so caller beware.
|
|
* 'idx' is preincremented, i.e. '1' on first call, because it
|
|
* is more convenient for the caller.
|
|
*/
|
|
#define DUK__DRAGON4_OUTPUT_PREINC(nc_ctx,preinc_idx,x) do { \
|
|
DUK_ASSERT((preinc_idx) - 1 >= 0); \
|
|
DUK_ASSERT((preinc_idx) - 1 < DUK__MAX_OUTPUT_DIGITS); \
|
|
((nc_ctx)->digits[(preinc_idx) - 1]) = (duk_uint8_t) (x); \
|
|
} while (0)
|
|
|
|
DUK_LOCAL duk_size_t duk__dragon4_format_uint32(duk_uint8_t *buf, duk_uint32_t x, duk_small_int_t radix) {
|
|
duk_uint8_t *p;
|
|
duk_size_t len;
|
|
duk_small_int_t dig;
|
|
duk_small_int_t t;
|
|
|
|
DUK_ASSERT(radix >= 2 && radix <= 36);
|
|
|
|
/* A 32-bit unsigned integer formats to at most 32 digits (the
|
|
* worst case happens with radix == 2). Output the digits backwards,
|
|
* and use a memmove() to get them in the right place.
|
|
*/
|
|
|
|
p = buf + 32;
|
|
for (;;) {
|
|
t = x / radix;
|
|
dig = x - t * radix;
|
|
x = t;
|
|
|
|
DUK_ASSERT(dig >= 0 && dig < 36);
|
|
*(--p) = DUK__DIGITCHAR(dig);
|
|
|
|
if (x == 0) {
|
|
break;
|
|
}
|
|
}
|
|
len = (duk_size_t) ((buf + 32) - p);
|
|
|
|
DUK_MEMMOVE((void *) buf, (void *) p, (size_t) len);
|
|
|
|
return len;
|
|
}
|
|
|
|
DUK_LOCAL void duk__dragon4_prepare(duk__numconv_stringify_ctx *nc_ctx) {
|
|
duk_small_int_t lowest_mantissa;
|
|
|
|
#if 1
|
|
/* Assume IEEE round-to-even, so that shorter encoding can be used
|
|
* when round-to-even would produce correct result. By removing
|
|
* this check (and having low_ok == high_ok == 0) the results would
|
|
* still be accurate but in some cases longer than necessary.
|
|
*/
|
|
if (duk__bi_is_even(&nc_ctx->f)) {
|
|
DUK_DDD(DUK_DDDPRINT("f is even"));
|
|
nc_ctx->low_ok = 1;
|
|
nc_ctx->high_ok = 1;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("f is odd"));
|
|
nc_ctx->low_ok = 0;
|
|
nc_ctx->high_ok = 0;
|
|
}
|
|
#else
|
|
/* Note: not honoring round-to-even should work but now generates incorrect
|
|
* results. For instance, 1e23 serializes to "a000...", i.e. the first digit
|
|
* equals the radix (10). Scaling stops one step too early in this case.
|
|
* Don't know why this is the case, but since this code path is unused, it
|
|
* doesn't matter.
|
|
*/
|
|
nc_ctx->low_ok = 0;
|
|
nc_ctx->high_ok = 0;
|
|
#endif
|
|
|
|
/* For string-to-number, pretend we never have the lowest mantissa as there
|
|
* is no natural "precision" for inputs. Having lowest_mantissa == 0, we'll
|
|
* fall into the base cases for both e >= 0 and e < 0.
|
|
*/
|
|
if (nc_ctx->is_s2n) {
|
|
lowest_mantissa = 0;
|
|
} else {
|
|
lowest_mantissa = duk__bi_is_2to52(&nc_ctx->f);
|
|
}
|
|
|
|
nc_ctx->unequal_gaps = 0;
|
|
if (nc_ctx->e >= 0) {
|
|
/* exponent non-negative (and thus not minimum exponent) */
|
|
|
|
if (lowest_mantissa) {
|
|
/* (>= e 0) AND (= f (expt b (- p 1)))
|
|
*
|
|
* be <- (expt b e) == b^e
|
|
* be1 <- (* be b) == (expt b (+ e 1)) == b^(e+1)
|
|
* r <- (* f be1 2) == 2 * f * b^(e+1) [if b==2 -> f * b^(e+2)]
|
|
* s <- (* b 2) [if b==2 -> 4]
|
|
* m+ <- be1 == b^(e+1)
|
|
* m- <- be == b^e
|
|
* k <- 0
|
|
* B <- B
|
|
* low_ok <- round
|
|
* high_ok <- round
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("non-negative exponent (not smallest exponent); "
|
|
"lowest mantissa value for this exponent -> "
|
|
"unequal gaps"));
|
|
|
|
duk__bi_exp_small(&nc_ctx->mm, nc_ctx->b, nc_ctx->e, &nc_ctx->t1, &nc_ctx->t2); /* mm <- b^e */
|
|
duk__bi_mul_small(&nc_ctx->mp, &nc_ctx->mm, nc_ctx->b); /* mp <- b^(e+1) */
|
|
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, 2);
|
|
duk__bi_mul(&nc_ctx->r, &nc_ctx->t1, &nc_ctx->mp); /* r <- (2 * f) * b^(e+1) */
|
|
duk__bi_set_small(&nc_ctx->s, nc_ctx->b * 2); /* s <- 2 * b */
|
|
nc_ctx->unequal_gaps = 1;
|
|
} else {
|
|
/* (>= e 0) AND (not (= f (expt b (- p 1))))
|
|
*
|
|
* be <- (expt b e) == b^e
|
|
* r <- (* f be 2) == 2 * f * b^e [if b==2 -> f * b^(e+1)]
|
|
* s <- 2
|
|
* m+ <- be == b^e
|
|
* m- <- be == b^e
|
|
* k <- 0
|
|
* B <- B
|
|
* low_ok <- round
|
|
* high_ok <- round
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("non-negative exponent (not smallest exponent); "
|
|
"not lowest mantissa for this exponent -> "
|
|
"equal gaps"));
|
|
|
|
duk__bi_exp_small(&nc_ctx->mm, nc_ctx->b, nc_ctx->e, &nc_ctx->t1, &nc_ctx->t2); /* mm <- b^e */
|
|
duk__bi_copy(&nc_ctx->mp, &nc_ctx->mm); /* mp <- b^e */
|
|
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, 2);
|
|
duk__bi_mul(&nc_ctx->r, &nc_ctx->t1, &nc_ctx->mp); /* r <- (2 * f) * b^e */
|
|
duk__bi_set_small(&nc_ctx->s, 2); /* s <- 2 */
|
|
}
|
|
} else {
|
|
/* When doing string-to-number, lowest_mantissa is always 0 so
|
|
* the exponent check, while incorrect, won't matter.
|
|
*/
|
|
if (nc_ctx->e > DUK__IEEE_DOUBLE_EXP_MIN /*not minimum exponent*/ &&
|
|
lowest_mantissa /* lowest mantissa for this exponent*/) {
|
|
/* r <- (* f b 2) [if b==2 -> (* f 4)]
|
|
* s <- (* (expt b (- 1 e)) 2) == b^(1-e) * 2 [if b==2 -> b^(2-e)]
|
|
* m+ <- b == 2
|
|
* m- <- 1
|
|
* k <- 0
|
|
* B <- B
|
|
* low_ok <- round
|
|
* high_ok <- round
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("negative exponent; not minimum exponent and "
|
|
"lowest mantissa for this exponent -> "
|
|
"unequal gaps"));
|
|
|
|
duk__bi_mul_small(&nc_ctx->r, &nc_ctx->f, nc_ctx->b * 2); /* r <- (2 * b) * f */
|
|
duk__bi_exp_small(&nc_ctx->t1, nc_ctx->b, 1 - nc_ctx->e, &nc_ctx->s, &nc_ctx->t2); /* NB: use 's' as temp on purpose */
|
|
duk__bi_mul_small(&nc_ctx->s, &nc_ctx->t1, 2); /* s <- b^(1-e) * 2 */
|
|
duk__bi_set_small(&nc_ctx->mp, 2);
|
|
duk__bi_set_small(&nc_ctx->mm, 1);
|
|
nc_ctx->unequal_gaps = 1;
|
|
} else {
|
|
/* r <- (* f 2)
|
|
* s <- (* (expt b (- e)) 2) == b^(-e) * 2 [if b==2 -> b^(1-e)]
|
|
* m+ <- 1
|
|
* m- <- 1
|
|
* k <- 0
|
|
* B <- B
|
|
* low_ok <- round
|
|
* high_ok <- round
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("negative exponent; minimum exponent or not "
|
|
"lowest mantissa for this exponent -> "
|
|
"equal gaps"));
|
|
|
|
duk__bi_mul_small(&nc_ctx->r, &nc_ctx->f, 2); /* r <- 2 * f */
|
|
duk__bi_exp_small(&nc_ctx->t1, nc_ctx->b, -nc_ctx->e, &nc_ctx->s, &nc_ctx->t2); /* NB: use 's' as temp on purpose */
|
|
duk__bi_mul_small(&nc_ctx->s, &nc_ctx->t1, 2); /* s <- b^(-e) * 2 */
|
|
duk__bi_set_small(&nc_ctx->mp, 1);
|
|
duk__bi_set_small(&nc_ctx->mm, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__dragon4_scale(duk__numconv_stringify_ctx *nc_ctx) {
|
|
duk_small_int_t k = 0;
|
|
|
|
/* This is essentially the 'scale' algorithm, with recursion removed.
|
|
* Note that 'k' is either correct immediately, or will move in one
|
|
* direction in the loop. There's no need to do the low/high checks
|
|
* on every round (like the Scheme algorithm does).
|
|
*
|
|
* The scheme algorithm finds 'k' and updates 's' simultaneously,
|
|
* while the logical algorithm finds 'k' with 's' having its initial
|
|
* value, after which 's' is updated separately (see the Burger-Dybvig
|
|
* paper, Section 3.1, steps 2 and 3).
|
|
*
|
|
* The case where m+ == m- (almost always) is optimized for, because
|
|
* it reduces the bigint operations considerably and almost always
|
|
* applies. The scale loop only needs to work with m+, so this works.
|
|
*/
|
|
|
|
/* XXX: this algorithm could be optimized quite a lot by using e.g.
|
|
* a logarithm based estimator for 'k' and performing B^n multiplication
|
|
* using a lookup table or using some bit-representation based exp
|
|
* algorithm. Currently we just loop, with significant performance
|
|
* impact for very large and very small numbers.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("scale: B=%ld, low_ok=%ld, high_ok=%ld",
|
|
(long) nc_ctx->B, (long) nc_ctx->low_ok, (long) nc_ctx->high_ok));
|
|
DUK__BI_PRINT("r(init)", &nc_ctx->r);
|
|
DUK__BI_PRINT("s(init)", &nc_ctx->s);
|
|
DUK__BI_PRINT("mp(init)", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm(init)", &nc_ctx->mm);
|
|
|
|
for (;;) {
|
|
DUK_DDD(DUK_DDDPRINT("scale loop (inc k), k=%ld", (long) k));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("m+", &nc_ctx->mp);
|
|
DUK__BI_PRINT("m-", &nc_ctx->mm);
|
|
|
|
duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 = (+ r m+) */
|
|
if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) >= (nc_ctx->high_ok ? 0 : 1)) {
|
|
DUK_DDD(DUK_DDDPRINT("k is too low"));
|
|
/* r <- r
|
|
* s <- (* s B)
|
|
* m+ <- m+
|
|
* m- <- m-
|
|
* k <- (+ k 1)
|
|
*/
|
|
|
|
duk__bi_mul_small_copy(&nc_ctx->s, nc_ctx->B, &nc_ctx->t1);
|
|
k++;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* k > 0 -> k was too low, and cannot be too high */
|
|
if (k > 0) {
|
|
goto skip_dec_k;
|
|
}
|
|
|
|
for (;;) {
|
|
DUK_DDD(DUK_DDDPRINT("scale loop (dec k), k=%ld", (long) k));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("m+", &nc_ctx->mp);
|
|
DUK__BI_PRINT("m-", &nc_ctx->mm);
|
|
|
|
duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 = (+ r m+) */
|
|
duk__bi_mul_small(&nc_ctx->t2, &nc_ctx->t1, nc_ctx->B); /* t2 = (* (+ r m+) B) */
|
|
if (duk__bi_compare(&nc_ctx->t2, &nc_ctx->s) <= (nc_ctx->high_ok ? -1 : 0)) {
|
|
DUK_DDD(DUK_DDDPRINT("k is too high"));
|
|
/* r <- (* r B)
|
|
* s <- s
|
|
* m+ <- (* m+ B)
|
|
* m- <- (* m- B)
|
|
* k <- (- k 1)
|
|
*/
|
|
duk__bi_mul_small_copy(&nc_ctx->r, nc_ctx->B, &nc_ctx->t1);
|
|
duk__bi_mul_small_copy(&nc_ctx->mp, nc_ctx->B, &nc_ctx->t1);
|
|
if (nc_ctx->unequal_gaps) {
|
|
DUK_DDD(DUK_DDDPRINT("m+ != m- -> need to update m- too"));
|
|
duk__bi_mul_small_copy(&nc_ctx->mm, nc_ctx->B, &nc_ctx->t1);
|
|
}
|
|
k--;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
skip_dec_k:
|
|
|
|
if (!nc_ctx->unequal_gaps) {
|
|
DUK_DDD(DUK_DDDPRINT("equal gaps, copy m- from m+"));
|
|
duk__bi_copy(&nc_ctx->mm, &nc_ctx->mp); /* mm <- mp */
|
|
}
|
|
nc_ctx->k = k;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final k: %ld", (long) k));
|
|
DUK__BI_PRINT("r(final)", &nc_ctx->r);
|
|
DUK__BI_PRINT("s(final)", &nc_ctx->s);
|
|
DUK__BI_PRINT("mp(final)", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm(final)", &nc_ctx->mm);
|
|
}
|
|
|
|
DUK_LOCAL void duk__dragon4_generate(duk__numconv_stringify_ctx *nc_ctx) {
|
|
duk_small_int_t tc1, tc2; /* terminating conditions */
|
|
duk_small_int_t d; /* current digit */
|
|
duk_small_int_t count = 0; /* digit count */
|
|
|
|
/*
|
|
* Digit generation loop.
|
|
*
|
|
* Different termination conditions:
|
|
*
|
|
* 1. Free format output. Terminate when shortest accurate
|
|
* representation found.
|
|
*
|
|
* 2. Fixed format output, with specific number of digits.
|
|
* Ignore termination conditions, terminate when digits
|
|
* generated. Caller requests an extra digit and rounds.
|
|
*
|
|
* 3. Fixed format output, with a specific absolute cut-off
|
|
* position (e.g. 10 digits after decimal point). Note
|
|
* that we always generate at least one digit, even if
|
|
* the digit is below the cut-off point already.
|
|
*/
|
|
|
|
for (;;) {
|
|
DUK_DDD(DUK_DDDPRINT("generate loop, count=%ld, k=%ld, B=%ld, low_ok=%ld, high_ok=%ld",
|
|
(long) count, (long) nc_ctx->k, (long) nc_ctx->B,
|
|
(long) nc_ctx->low_ok, (long) nc_ctx->high_ok));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("m+", &nc_ctx->mp);
|
|
DUK__BI_PRINT("m-", &nc_ctx->mm);
|
|
|
|
/* (quotient-remainder (* r B) s) using a dummy subtraction loop */
|
|
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->r, nc_ctx->B); /* t1 <- (* r B) */
|
|
d = 0;
|
|
for (;;) {
|
|
if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) < 0) {
|
|
break;
|
|
}
|
|
duk__bi_sub_copy(&nc_ctx->t1, &nc_ctx->s, &nc_ctx->t2); /* t1 <- t1 - s */
|
|
d++;
|
|
}
|
|
duk__bi_copy(&nc_ctx->r, &nc_ctx->t1); /* r <- (remainder (* r B) s) */
|
|
/* d <- (quotient (* r B) s) (in range 0...B-1) */
|
|
DUK_DDD(DUK_DDDPRINT("-> d(quot)=%ld", (long) d));
|
|
DUK__BI_PRINT("r(rem)", &nc_ctx->r);
|
|
|
|
duk__bi_mul_small_copy(&nc_ctx->mp, nc_ctx->B, &nc_ctx->t2); /* m+ <- (* m+ B) */
|
|
duk__bi_mul_small_copy(&nc_ctx->mm, nc_ctx->B, &nc_ctx->t2); /* m- <- (* m- B) */
|
|
DUK__BI_PRINT("mp(upd)", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm(upd)", &nc_ctx->mm);
|
|
|
|
/* Terminating conditions. For fixed width output, we just ignore the
|
|
* terminating conditions (and pretend that tc1 == tc2 == false). The
|
|
* the current shortcut for fixed-format output is to generate a few
|
|
* extra digits and use rounding (with carry) to finish the output.
|
|
*/
|
|
|
|
if (nc_ctx->is_fixed == 0) {
|
|
/* free-form */
|
|
tc1 = (duk__bi_compare(&nc_ctx->r, &nc_ctx->mm) <= (nc_ctx->low_ok ? 0 : -1));
|
|
|
|
duk__bi_add(&nc_ctx->t1, &nc_ctx->r, &nc_ctx->mp); /* t1 <- (+ r m+) */
|
|
tc2 = (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) >= (&nc_ctx->high_ok ? 0 : 1));
|
|
|
|
DUK_DDD(DUK_DDDPRINT("tc1=%ld, tc2=%ld", (long) tc1, (long) tc2));
|
|
} else {
|
|
/* fixed-format */
|
|
tc1 = 0;
|
|
tc2 = 0;
|
|
}
|
|
|
|
/* Count is incremented before DUK__DRAGON4_OUTPUT_PREINC() call
|
|
* on purpose, which is taken into account by the macro.
|
|
*/
|
|
count++;
|
|
|
|
if (tc1) {
|
|
if (tc2) {
|
|
/* tc1 = true, tc2 = true */
|
|
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->r, 2);
|
|
if (duk__bi_compare(&nc_ctx->t1, &nc_ctx->s) < 0) { /* (< (* r 2) s) */
|
|
DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=true, 2r > s: output d --> %ld (k=%ld)",
|
|
(long) d, (long) nc_ctx->k));
|
|
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=true, 2r <= s: output d+1 --> %ld (k=%ld)",
|
|
(long) (d + 1), (long) nc_ctx->k));
|
|
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d + 1);
|
|
}
|
|
break;
|
|
} else {
|
|
/* tc1 = true, tc2 = false */
|
|
DUK_DDD(DUK_DDDPRINT("tc1=true, tc2=false: output d --> %ld (k=%ld)",
|
|
(long) d, (long) nc_ctx->k));
|
|
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d);
|
|
break;
|
|
}
|
|
} else {
|
|
if (tc2) {
|
|
/* tc1 = false, tc2 = true */
|
|
DUK_DDD(DUK_DDDPRINT("tc1=false, tc2=true: output d+1 --> %ld (k=%ld)",
|
|
(long) (d + 1), (long) nc_ctx->k));
|
|
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d + 1);
|
|
break;
|
|
} else {
|
|
/* tc1 = false, tc2 = false */
|
|
DUK_DDD(DUK_DDDPRINT("tc1=false, tc2=false: output d --> %ld (k=%ld)",
|
|
(long) d, (long) nc_ctx->k));
|
|
DUK__DRAGON4_OUTPUT_PREINC(nc_ctx, count, d);
|
|
|
|
/* r <- r (updated above: r <- (remainder (* r B) s)
|
|
* s <- s
|
|
* m+ <- m+ (updated above: m+ <- (* m+ B)
|
|
* m- <- m- (updated above: m- <- (* m- B)
|
|
* B, low_ok, high_ok are fixed
|
|
*/
|
|
|
|
/* fall through and continue for-loop */
|
|
}
|
|
}
|
|
|
|
/* fixed-format termination conditions */
|
|
if (nc_ctx->is_fixed) {
|
|
if (nc_ctx->abs_pos) {
|
|
int pos = nc_ctx->k - count + 1; /* count is already incremented, take into account */
|
|
DUK_DDD(DUK_DDDPRINT("fixed format, absolute: abs pos=%ld, k=%ld, count=%ld, req=%ld",
|
|
(long) pos, (long) nc_ctx->k, (long) count, (long) nc_ctx->req_digits));
|
|
if (pos <= nc_ctx->req_digits) {
|
|
DUK_DDD(DUK_DDDPRINT("digit position reached req_digits, end generate loop"));
|
|
break;
|
|
}
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("fixed format, relative: k=%ld, count=%ld, req=%ld",
|
|
(long) nc_ctx->k, (long) count, (long) nc_ctx->req_digits));
|
|
if (count >= nc_ctx->req_digits) {
|
|
DUK_DDD(DUK_DDDPRINT("digit count reached req_digits, end generate loop"));
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} /* for */
|
|
|
|
nc_ctx->count = count;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("generate finished"));
|
|
|
|
#ifdef DUK_USE_DDDPRINT
|
|
{
|
|
duk_uint8_t buf[2048];
|
|
duk_small_int_t i, t;
|
|
DUK_MEMZERO(buf, sizeof(buf));
|
|
for (i = 0; i < nc_ctx->count; i++) {
|
|
t = nc_ctx->digits[i];
|
|
if (t < 0 || t > 36) {
|
|
buf[i] = (duk_uint8_t) '?';
|
|
} else {
|
|
buf[i] = (duk_uint8_t) DUK__DIGITCHAR(t);
|
|
}
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("-> generated digits; k=%ld, digits='%s'",
|
|
(long) nc_ctx->k, (const char *) buf));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Round up digits to a given position. If position is out-of-bounds,
|
|
* does nothing. If carry propagates over the first digit, a '1' is
|
|
* prepended to digits and 'k' will be updated. Return value indicates
|
|
* whether carry propagated over the first digit.
|
|
*
|
|
* Note that nc_ctx->count is NOT updated based on the rounding position
|
|
* (it is updated only if carry overflows over the first digit and an
|
|
* extra digit is prepended).
|
|
*/
|
|
DUK_LOCAL duk_small_int_t duk__dragon4_fixed_format_round(duk__numconv_stringify_ctx *nc_ctx, duk_small_int_t round_idx) {
|
|
duk_small_int_t t;
|
|
duk_uint8_t *p;
|
|
duk_uint8_t roundup_limit;
|
|
duk_small_int_t ret = 0;
|
|
|
|
/*
|
|
* round_idx points to the digit which is considered for rounding; the
|
|
* digit to its left is the final digit of the rounded value. If round_idx
|
|
* is zero, rounding will be performed; the result will either be an empty
|
|
* rounded value or if carry happens a '1' digit is generated.
|
|
*/
|
|
|
|
if (round_idx >= nc_ctx->count) {
|
|
DUK_DDD(DUK_DDDPRINT("round_idx out of bounds (%ld >= %ld (count)) -> no rounding",
|
|
(long) round_idx, (long) nc_ctx->count));
|
|
return 0;
|
|
} else if (round_idx < 0) {
|
|
DUK_DDD(DUK_DDDPRINT("round_idx out of bounds (%ld < 0) -> no rounding",
|
|
(long) round_idx));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Round-up limit.
|
|
*
|
|
* For even values, divides evenly, e.g. 10 -> roundup_limit=5.
|
|
*
|
|
* For odd values, rounds up, e.g. 3 -> roundup_limit=2.
|
|
* If radix is 3, 0/3 -> down, 1/3 -> down, 2/3 -> up.
|
|
*/
|
|
roundup_limit = (duk_uint8_t) ((nc_ctx->B + 1) / 2);
|
|
|
|
p = &nc_ctx->digits[round_idx];
|
|
if (*p >= roundup_limit) {
|
|
DUK_DDD(DUK_DDDPRINT("fixed-format rounding carry required"));
|
|
/* carry */
|
|
for (;;) {
|
|
*p = 0;
|
|
if (p == &nc_ctx->digits[0]) {
|
|
DUK_DDD(DUK_DDDPRINT("carry propagated to first digit -> special case handling"));
|
|
DUK_MEMMOVE((void *) (&nc_ctx->digits[1]),
|
|
(void *) (&nc_ctx->digits[0]),
|
|
(size_t) (sizeof(char) * nc_ctx->count));
|
|
nc_ctx->digits[0] = 1; /* don't increase 'count' */
|
|
nc_ctx->k++; /* position of highest digit changed */
|
|
nc_ctx->count++; /* number of digits changed */
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("fixed-format rounding carry: B=%ld, roundup_limit=%ld, p=%p, digits=%p",
|
|
(long) nc_ctx->B, (long) roundup_limit, (void *) p, (void *) nc_ctx->digits));
|
|
p--;
|
|
t = *p;
|
|
DUK_DDD(DUK_DDDPRINT("digit before carry: %ld", (long) t));
|
|
if (++t < nc_ctx->B) {
|
|
DUK_DDD(DUK_DDDPRINT("rounding carry terminated"));
|
|
*p = t;
|
|
break;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("wraps, carry to next digit"));
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define DUK__NO_EXP (65536) /* arbitrary marker, outside valid exp range */
|
|
|
|
DUK_LOCAL void duk__dragon4_convert_and_push(duk__numconv_stringify_ctx *nc_ctx,
|
|
duk_context *ctx,
|
|
duk_small_int_t radix,
|
|
duk_small_int_t digits,
|
|
duk_small_uint_t flags,
|
|
duk_small_int_t neg) {
|
|
duk_small_int_t k;
|
|
duk_small_int_t pos, pos_end;
|
|
duk_small_int_t expt;
|
|
duk_small_int_t dig;
|
|
duk_uint8_t *q;
|
|
duk_uint8_t *buf;
|
|
|
|
/*
|
|
* The string conversion here incorporates all the necessary Ecmascript
|
|
* semantics without attempting to be generic. nc_ctx->digits contains
|
|
* nc_ctx->count digits (>= 1), with the topmost digit's 'position'
|
|
* indicated by nc_ctx->k as follows:
|
|
*
|
|
* digits="123" count=3 k=0 --> 0.123
|
|
* digits="123" count=3 k=1 --> 1.23
|
|
* digits="123" count=3 k=5 --> 12300
|
|
* digits="123" count=3 k=-1 --> 0.0123
|
|
*
|
|
* Note that the identifier names used for format selection are different
|
|
* in Burger-Dybvig paper and Ecmascript specification (quite confusingly
|
|
* so, because e.g. 'k' has a totally different meaning in each). See
|
|
* documentation for discussion.
|
|
*
|
|
* Ecmascript doesn't specify any specific behavior for format selection
|
|
* (e.g. when to use exponent notation) for non-base-10 numbers.
|
|
*
|
|
* The bigint space in the context is reused for string output, as there
|
|
* is more than enough space for that (>1kB at the moment), and we avoid
|
|
* allocating even more stack.
|
|
*/
|
|
|
|
DUK_ASSERT(DUK__NUMCONV_CTX_BIGINTS_SIZE >= DUK__MAX_FORMATTED_LENGTH);
|
|
DUK_ASSERT(nc_ctx->count >= 1);
|
|
|
|
k = nc_ctx->k;
|
|
buf = (duk_uint8_t *) &nc_ctx->f; /* XXX: union would be more correct */
|
|
q = buf;
|
|
|
|
/* Exponent handling: if exponent format is used, record exponent value and
|
|
* fake k such that one leading digit is generated (e.g. digits=123 -> "1.23").
|
|
*
|
|
* toFixed() prevents exponent use; otherwise apply a set of criteria to
|
|
* match the other API calls (toString(), toPrecision, etc).
|
|
*/
|
|
|
|
expt = DUK__NO_EXP;
|
|
if (!nc_ctx->abs_pos /* toFixed() */) {
|
|
if ((flags & DUK_N2S_FLAG_FORCE_EXP) || /* exponential notation forced */
|
|
((flags & DUK_N2S_FLAG_NO_ZERO_PAD) && /* fixed precision and zero padding would be required */
|
|
(k - digits >= 1)) || /* (e.g. k=3, digits=2 -> "12X") */
|
|
((k > 21 || k <= -6) && (radix == 10))) { /* toString() conditions */
|
|
DUK_DDD(DUK_DDDPRINT("use exponential notation: k=%ld -> expt=%ld",
|
|
(long) k, (long) (k - 1)));
|
|
expt = k - 1; /* e.g. 12.3 -> digits="123" k=2 -> 1.23e1 */
|
|
k = 1; /* generate mantissa with a single leading whole number digit */
|
|
}
|
|
}
|
|
|
|
if (neg) {
|
|
*q++ = '-';
|
|
}
|
|
|
|
/* Start position (inclusive) and end position (exclusive) */
|
|
pos = (k >= 1 ? k : 1);
|
|
if (nc_ctx->is_fixed) {
|
|
if (nc_ctx->abs_pos) {
|
|
/* toFixed() */
|
|
pos_end = -digits;
|
|
} else {
|
|
pos_end = k - digits;
|
|
}
|
|
} else {
|
|
pos_end = k - nc_ctx->count;
|
|
}
|
|
if (pos_end > 0) {
|
|
pos_end = 0;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("expt=%ld, k=%ld, count=%ld, pos=%ld, pos_end=%ld, is_fixed=%ld, "
|
|
"digits=%ld, abs_pos=%ld",
|
|
(long) expt, (long) k, (long) nc_ctx->count, (long) pos, (long) pos_end,
|
|
(long) nc_ctx->is_fixed, (long) digits, (long) nc_ctx->abs_pos));
|
|
|
|
/* Digit generation */
|
|
while (pos > pos_end) {
|
|
DUK_DDD(DUK_DDDPRINT("digit generation: pos=%ld, pos_end=%ld",
|
|
(long) pos, (long) pos_end));
|
|
if (pos == 0) {
|
|
*q++ = (duk_uint8_t) '.';
|
|
}
|
|
if (pos > k) {
|
|
*q++ = (duk_uint8_t) '0';
|
|
} else if (pos <= k - nc_ctx->count) {
|
|
*q++ = (duk_uint8_t) '0';
|
|
} else {
|
|
dig = nc_ctx->digits[k - pos];
|
|
DUK_ASSERT(dig >= 0 && dig < nc_ctx->B);
|
|
*q++ = (duk_uint8_t) DUK__DIGITCHAR(dig);
|
|
}
|
|
|
|
pos--;
|
|
}
|
|
DUK_ASSERT(pos <= 1);
|
|
|
|
/* Exponent */
|
|
if (expt != DUK__NO_EXP) {
|
|
/*
|
|
* Exponent notation for non-base-10 numbers isn't specified in Ecmascript
|
|
* specification, as it never explicitly turns up: non-decimal numbers can
|
|
* only be formatted with Number.prototype.toString([radix]) and for that,
|
|
* behavior is not explicitly specified.
|
|
*
|
|
* Logical choices include formatting the exponent as decimal (e.g. binary
|
|
* 100000 as 1e+5) or in current radix (e.g. binary 100000 as 1e+101).
|
|
* The Dragon4 algorithm (in the original paper) prints the exponent value
|
|
* in the target radix B. However, for radix values 15 and above, the
|
|
* exponent separator 'e' is no longer easily parseable. Consider, for
|
|
* instance, the number "1.faecee+1c".
|
|
*/
|
|
|
|
duk_size_t len;
|
|
char expt_sign;
|
|
|
|
*q++ = 'e';
|
|
if (expt >= 0) {
|
|
expt_sign = '+';
|
|
} else {
|
|
expt_sign = '-';
|
|
expt = -expt;
|
|
}
|
|
*q++ = (duk_uint8_t) expt_sign;
|
|
len = duk__dragon4_format_uint32(q, (duk_uint32_t) expt, radix);
|
|
q += len;
|
|
}
|
|
|
|
duk_push_lstring(ctx, (const char *) buf, (size_t) (q - buf));
|
|
}
|
|
|
|
/*
|
|
* Conversion helpers
|
|
*/
|
|
|
|
DUK_LOCAL void duk__dragon4_double_to_ctx(duk__numconv_stringify_ctx *nc_ctx, duk_double_t x) {
|
|
duk_double_union u;
|
|
duk_uint32_t tmp;
|
|
duk_small_int_t expt;
|
|
|
|
/*
|
|
* seeeeeee eeeeffff ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff
|
|
* A B C D E F G H
|
|
*
|
|
* s sign bit
|
|
* eee... exponent field
|
|
* fff... fraction
|
|
*
|
|
* ieee value = 1.ffff... * 2^(e - 1023) (normal)
|
|
* = 0.ffff... * 2^(-1022) (denormal)
|
|
*
|
|
* algorithm v = f * b^e
|
|
*/
|
|
|
|
DUK_DBLUNION_SET_DOUBLE(&u, x);
|
|
|
|
nc_ctx->f.n = 2;
|
|
|
|
tmp = DUK_DBLUNION_GET_LOW32(&u);
|
|
nc_ctx->f.v[0] = tmp;
|
|
tmp = DUK_DBLUNION_GET_HIGH32(&u);
|
|
nc_ctx->f.v[1] = tmp & 0x000fffffUL;
|
|
expt = (duk_small_int_t) ((tmp >> 20) & 0x07ffUL);
|
|
|
|
if (expt == 0) {
|
|
/* denormal */
|
|
expt = DUK__IEEE_DOUBLE_EXP_MIN - 52;
|
|
duk__bi_normalize(&nc_ctx->f);
|
|
} else {
|
|
/* normal: implicit leading 1-bit */
|
|
nc_ctx->f.v[1] |= 0x00100000UL;
|
|
expt = expt - DUK__IEEE_DOUBLE_EXP_BIAS - 52;
|
|
DUK_ASSERT(duk__bi_is_valid(&nc_ctx->f)); /* true, because v[1] has at least one bit set */
|
|
}
|
|
|
|
DUK_ASSERT(duk__bi_is_valid(&nc_ctx->f));
|
|
|
|
nc_ctx->e = expt;
|
|
}
|
|
|
|
DUK_LOCAL void duk__dragon4_ctx_to_double(duk__numconv_stringify_ctx *nc_ctx, duk_double_t *x) {
|
|
duk_double_union u;
|
|
duk_small_int_t expt;
|
|
duk_small_int_t i;
|
|
duk_small_int_t bitstart;
|
|
duk_small_int_t bitround;
|
|
duk_small_int_t bitidx;
|
|
duk_small_int_t skip_round;
|
|
duk_uint32_t t, v;
|
|
|
|
DUK_ASSERT(nc_ctx->count == 53 + 1);
|
|
|
|
/* Sometimes this assert is not true right now; it will be true after
|
|
* rounding. See: test-bug-numconv-mantissa-assert.js.
|
|
*/
|
|
DUK_ASSERT_DISABLE(nc_ctx->digits[0] == 1); /* zero handled by caller */
|
|
|
|
/* Should not be required because the code below always sets both high
|
|
* and low parts, but at least gcc-4.4.5 fails to deduce this correctly
|
|
* (perhaps because the low part is set (seemingly) conditionally in a
|
|
* loop), so this is here to avoid the bogus warning.
|
|
*/
|
|
DUK_MEMZERO((void *) &u, sizeof(u));
|
|
|
|
/*
|
|
* Figure out how generated digits match up with the mantissa,
|
|
* and then perform rounding. If mantissa overflows, need to
|
|
* recompute the exponent (it is bumped and may overflow to
|
|
* infinity).
|
|
*
|
|
* For normal numbers the leading '1' is hidden and ignored,
|
|
* and the last bit is used for rounding:
|
|
*
|
|
* rounding pt
|
|
* <--------52------->|
|
|
* 1 x x x x ... x x x x|y ==> x x x x ... x x x x
|
|
*
|
|
* For denormals, the leading '1' is included in the number,
|
|
* and the rounding point is different:
|
|
*
|
|
* rounding pt
|
|
* <--52 or less--->|
|
|
* 1 x x x x ... x x|x x y ==> 0 0 ... 1 x x ... x x
|
|
*
|
|
* The largest denormals will have a mantissa beginning with
|
|
* a '1' (the explicit leading bit); smaller denormals will
|
|
* have leading zero bits.
|
|
*
|
|
* If the exponent would become too high, the result becomes
|
|
* Infinity. If the exponent is so small that the entire
|
|
* mantissa becomes zero, the result becomes zero.
|
|
*
|
|
* Note: the Dragon4 'k' is off-by-one with respect to the IEEE
|
|
* exponent. For instance, k==0 indicates that the leading '1'
|
|
* digit is at the first binary fraction position (0.1xxx...);
|
|
* the corresponding IEEE exponent would be -1.
|
|
*/
|
|
|
|
skip_round = 0;
|
|
|
|
recheck_exp:
|
|
|
|
expt = nc_ctx->k - 1; /* IEEE exp without bias */
|
|
if (expt > 1023) {
|
|
/* Infinity */
|
|
bitstart = -255; /* needed for inf: causes mantissa to become zero,
|
|
* and rounding to be skipped.
|
|
*/
|
|
expt = 2047;
|
|
} else if (expt >= -1022) {
|
|
/* normal */
|
|
bitstart = 1; /* skip leading digit */
|
|
expt += DUK__IEEE_DOUBLE_EXP_BIAS;
|
|
DUK_ASSERT(expt >= 1 && expt <= 2046);
|
|
} else {
|
|
/* denormal or zero */
|
|
bitstart = 1023 + expt; /* expt==-1023 -> bitstart=0 (leading 1);
|
|
* expt==-1024 -> bitstart=-1 (one left of leading 1), etc
|
|
*/
|
|
expt = 0;
|
|
}
|
|
bitround = bitstart + 52;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("ieee expt=%ld, bitstart=%ld, bitround=%ld",
|
|
(long) expt, (long) bitstart, (long) bitround));
|
|
|
|
if (!skip_round) {
|
|
if (duk__dragon4_fixed_format_round(nc_ctx, bitround)) {
|
|
/* Corner case: see test-numconv-parse-mant-carry.js. We could
|
|
* just bump the exponent and update bitstart, but it's more robust
|
|
* to recompute (but avoid rounding twice).
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("rounding caused exponent to be bumped, recheck exponent"));
|
|
skip_round = 1;
|
|
goto recheck_exp;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create mantissa
|
|
*/
|
|
|
|
t = 0;
|
|
for (i = 0; i < 52; i++) {
|
|
bitidx = bitstart + 52 - 1 - i;
|
|
if (bitidx >= nc_ctx->count) {
|
|
v = 0;
|
|
} else if (bitidx < 0) {
|
|
v = 0;
|
|
} else {
|
|
v = nc_ctx->digits[bitidx];
|
|
}
|
|
DUK_ASSERT(v == 0 || v == 1);
|
|
t += v << (i % 32);
|
|
if (i == 31) {
|
|
/* low 32 bits is complete */
|
|
DUK_DBLUNION_SET_LOW32(&u, t);
|
|
t = 0;
|
|
}
|
|
}
|
|
/* t has high mantissa */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("mantissa is complete: %08lx %08lx",
|
|
(unsigned long) t,
|
|
(unsigned long) DUK_DBLUNION_GET_LOW32(&u)));
|
|
|
|
DUK_ASSERT(expt >= 0 && expt <= 0x7ffL);
|
|
t += expt << 20;
|
|
#if 0 /* caller handles sign change */
|
|
if (negative) {
|
|
t |= 0x80000000U;
|
|
}
|
|
#endif
|
|
DUK_DBLUNION_SET_HIGH32(&u, t);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("number is complete: %08lx %08lx",
|
|
(unsigned long) DUK_DBLUNION_GET_HIGH32(&u),
|
|
(unsigned long) DUK_DBLUNION_GET_LOW32(&u)));
|
|
|
|
*x = DUK_DBLUNION_GET_DOUBLE(&u);
|
|
}
|
|
|
|
/*
|
|
* Exposed number-to-string API
|
|
*
|
|
* Input: [ number ]
|
|
* Output: [ string ]
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_numconv_stringify(duk_context *ctx, duk_small_int_t radix, duk_small_int_t digits, duk_small_uint_t flags) {
|
|
duk_double_t x;
|
|
duk_small_int_t c;
|
|
duk_small_int_t neg;
|
|
duk_uint32_t uval;
|
|
duk__numconv_stringify_ctx nc_ctx_alloc; /* large context; around 2kB now */
|
|
duk__numconv_stringify_ctx *nc_ctx = &nc_ctx_alloc;
|
|
|
|
x = (duk_double_t) duk_require_number(ctx, -1);
|
|
duk_pop(ctx);
|
|
|
|
/*
|
|
* Handle special cases (NaN, infinity, zero).
|
|
*/
|
|
|
|
c = (duk_small_int_t) DUK_FPCLASSIFY(x);
|
|
if (DUK_SIGNBIT((double) x)) {
|
|
x = -x;
|
|
neg = 1;
|
|
} else {
|
|
neg = 0;
|
|
}
|
|
|
|
/* NaN sign bit is platform specific with unpacked, un-normalized NaNs */
|
|
DUK_ASSERT(c == DUK_FP_NAN || DUK_SIGNBIT((double) x) == 0);
|
|
|
|
if (c == DUK_FP_NAN) {
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_NAN);
|
|
return;
|
|
} else if (c == DUK_FP_INFINITE) {
|
|
if (neg) {
|
|
/* -Infinity */
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_MINUS_INFINITY);
|
|
} else {
|
|
/* Infinity */
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_INFINITY);
|
|
}
|
|
return;
|
|
} else if (c == DUK_FP_ZERO) {
|
|
/* We can't shortcut zero here if it goes through special formatting
|
|
* (such as forced exponential notation).
|
|
*/
|
|
;
|
|
}
|
|
|
|
/*
|
|
* Handle integers in 32-bit range (that is, [-(2**32-1),2**32-1])
|
|
* specially, as they're very likely for embedded programs. This
|
|
* is now done for all radix values. We must be careful not to use
|
|
* the fast path when special formatting (e.g. forced exponential)
|
|
* is in force.
|
|
*
|
|
* XXX: could save space by supporting radix 10 only and using
|
|
* sprintf "%lu" for the fast path and for exponent formatting.
|
|
*/
|
|
|
|
uval = (unsigned int) x;
|
|
if (((double) uval) == x && /* integer number in range */
|
|
flags == 0) { /* no special formatting */
|
|
/* use bigint area as a temp */
|
|
duk_uint8_t *buf = (duk_uint8_t *) (&nc_ctx->f);
|
|
duk_uint8_t *p = buf;
|
|
|
|
DUK_ASSERT(DUK__NUMCONV_CTX_BIGINTS_SIZE >= 32 + 1); /* max size: radix=2 + sign */
|
|
if (neg && uval != 0) {
|
|
/* no negative sign for zero */
|
|
*p++ = (duk_uint8_t) '-';
|
|
}
|
|
p += duk__dragon4_format_uint32(p, uval, radix);
|
|
duk_push_lstring(ctx, (const char *) buf, (duk_size_t) (p - buf));
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Dragon4 setup.
|
|
*
|
|
* Convert double from IEEE representation for conversion;
|
|
* normal finite values have an implicit leading 1-bit. The
|
|
* slow path algorithm doesn't handle zero, so zero is special
|
|
* cased here but still creates a valid nc_ctx, and goes
|
|
* through normal formatting in case special formatting has
|
|
* been requested (e.g. forced exponential format: 0 -> "0e+0").
|
|
*/
|
|
|
|
/* Would be nice to bulk clear the allocation, but the context
|
|
* is 1-2 kilobytes and nothing should rely on it being zeroed.
|
|
*/
|
|
#if 0
|
|
DUK_MEMZERO((void *) nc_ctx, sizeof(*nc_ctx)); /* slow init, do only for slow path cases */
|
|
#endif
|
|
|
|
nc_ctx->is_s2n = 0;
|
|
nc_ctx->b = 2;
|
|
nc_ctx->B = radix;
|
|
nc_ctx->abs_pos = 0;
|
|
if (flags & DUK_N2S_FLAG_FIXED_FORMAT) {
|
|
nc_ctx->is_fixed = 1;
|
|
if (flags & DUK_N2S_FLAG_FRACTION_DIGITS) {
|
|
/* absolute req_digits; e.g. digits = 1 -> last digit is 0,
|
|
* but add an extra digit for rounding.
|
|
*/
|
|
nc_ctx->abs_pos = 1;
|
|
nc_ctx->req_digits = (-digits + 1) - 1;
|
|
} else {
|
|
nc_ctx->req_digits = digits + 1;
|
|
}
|
|
} else {
|
|
nc_ctx->is_fixed = 0;
|
|
nc_ctx->req_digits = 0;
|
|
}
|
|
|
|
if (c == DUK_FP_ZERO) {
|
|
/* Zero special case: fake requested number of zero digits; ensure
|
|
* no sign bit is printed. Relative and absolute fixed format
|
|
* require separate handling.
|
|
*/
|
|
duk_small_int_t count;
|
|
if (nc_ctx->is_fixed) {
|
|
if (nc_ctx->abs_pos) {
|
|
count = digits + 2; /* lead zero + 'digits' fractions + 1 for rounding */
|
|
} else {
|
|
count = digits + 1; /* + 1 for rounding */
|
|
}
|
|
} else {
|
|
count = 1;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("count=%ld", (long) count));
|
|
DUK_ASSERT(count >= 1);
|
|
DUK_MEMZERO((void *) nc_ctx->digits, count);
|
|
nc_ctx->count = count;
|
|
nc_ctx->k = 1; /* 0.000... */
|
|
neg = 0;
|
|
goto zero_skip;
|
|
}
|
|
|
|
duk__dragon4_double_to_ctx(nc_ctx, x); /* -> sets 'f' and 'e' */
|
|
DUK__BI_PRINT("f", &nc_ctx->f);
|
|
DUK_DDD(DUK_DDDPRINT("e=%ld", (long) nc_ctx->e));
|
|
|
|
/*
|
|
* Dragon4 slow path digit generation.
|
|
*/
|
|
|
|
duk__dragon4_prepare(nc_ctx); /* setup many variables in nc_ctx */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("after prepare:"));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("mp", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm", &nc_ctx->mm);
|
|
|
|
duk__dragon4_scale(nc_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("after scale; k=%ld", (long) nc_ctx->k));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("mp", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm", &nc_ctx->mm);
|
|
|
|
duk__dragon4_generate(nc_ctx);
|
|
|
|
/*
|
|
* Convert and push final string.
|
|
*/
|
|
|
|
zero_skip:
|
|
|
|
if (flags & DUK_N2S_FLAG_FIXED_FORMAT) {
|
|
/* Perform fixed-format rounding. */
|
|
duk_small_int_t roundpos;
|
|
if (flags & DUK_N2S_FLAG_FRACTION_DIGITS) {
|
|
/* 'roundpos' is relative to nc_ctx->k and increases to the right
|
|
* (opposite of how 'k' changes).
|
|
*/
|
|
roundpos = -digits; /* absolute position for digit considered for rounding */
|
|
roundpos = nc_ctx->k - roundpos;
|
|
} else {
|
|
roundpos = digits;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("rounding: k=%ld, count=%ld, digits=%ld, roundpos=%ld",
|
|
(long) nc_ctx->k, (long) nc_ctx->count, (long) digits, (long) roundpos));
|
|
(void) duk__dragon4_fixed_format_round(nc_ctx, roundpos);
|
|
|
|
/* Note: 'count' is currently not adjusted by rounding (i.e. the
|
|
* digits are not "chopped off". That shouldn't matter because
|
|
* the digit position (absolute or relative) is passed on to the
|
|
* convert-and-push function.
|
|
*/
|
|
}
|
|
|
|
duk__dragon4_convert_and_push(nc_ctx, ctx, radix, digits, flags, neg);
|
|
}
|
|
|
|
/*
|
|
* Exposed string-to-number API
|
|
*
|
|
* Input: [ string ]
|
|
* Output: [ number ]
|
|
*
|
|
* If number parsing fails, a NaN is pushed as the result. If number parsing
|
|
* fails due to an internal error, an InternalError is thrown.
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_numconv_parse(duk_context *ctx, duk_small_int_t radix, duk_small_uint_t flags) {
|
|
duk_hthread *thr = (duk_hthread *) ctx;
|
|
duk__numconv_stringify_ctx nc_ctx_alloc; /* large context; around 2kB now */
|
|
duk__numconv_stringify_ctx *nc_ctx = &nc_ctx_alloc;
|
|
duk_double_t res;
|
|
duk_hstring *h_str;
|
|
duk_small_int_t expt;
|
|
duk_small_int_t expt_neg;
|
|
duk_small_int_t expt_adj;
|
|
duk_small_int_t neg;
|
|
duk_small_int_t dig;
|
|
duk_small_int_t dig_whole;
|
|
duk_small_int_t dig_lzero;
|
|
duk_small_int_t dig_frac;
|
|
duk_small_int_t dig_expt;
|
|
duk_small_int_t dig_prec;
|
|
const duk__exp_limits *explim;
|
|
const duk_uint8_t *p;
|
|
duk_small_int_t ch;
|
|
|
|
/* This seems to waste a lot of stack frame entries, but good compilers
|
|
* will compute these as needed below. Some of these initial flags are
|
|
* also modified in the code below, so they can't all be removed.
|
|
*/
|
|
duk_small_int_t trim_white = (flags & DUK_S2N_FLAG_TRIM_WHITE);
|
|
duk_small_int_t allow_expt = (flags & DUK_S2N_FLAG_ALLOW_EXP);
|
|
duk_small_int_t allow_garbage = (flags & DUK_S2N_FLAG_ALLOW_GARBAGE);
|
|
duk_small_int_t allow_plus = (flags & DUK_S2N_FLAG_ALLOW_PLUS);
|
|
duk_small_int_t allow_minus = (flags & DUK_S2N_FLAG_ALLOW_MINUS);
|
|
duk_small_int_t allow_infinity = (flags & DUK_S2N_FLAG_ALLOW_INF);
|
|
duk_small_int_t allow_frac = (flags & DUK_S2N_FLAG_ALLOW_FRAC);
|
|
duk_small_int_t allow_naked_frac = (flags & DUK_S2N_FLAG_ALLOW_NAKED_FRAC);
|
|
duk_small_int_t allow_empty_frac = (flags & DUK_S2N_FLAG_ALLOW_EMPTY_FRAC);
|
|
duk_small_int_t allow_empty = (flags & DUK_S2N_FLAG_ALLOW_EMPTY_AS_ZERO);
|
|
duk_small_int_t allow_leading_zero = (flags & DUK_S2N_FLAG_ALLOW_LEADING_ZERO);
|
|
duk_small_int_t allow_auto_hex_int = (flags & DUK_S2N_FLAG_ALLOW_AUTO_HEX_INT);
|
|
duk_small_int_t allow_auto_oct_int = (flags & DUK_S2N_FLAG_ALLOW_AUTO_OCT_INT);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse number: %!T, radix=%ld, flags=0x%08lx",
|
|
(duk_tval *) duk_get_tval(ctx, -1),
|
|
(long) radix, (unsigned long) flags));
|
|
|
|
DUK_ASSERT(radix >= 2 && radix <= 36);
|
|
DUK_ASSERT(radix - 2 < (duk_small_int_t) sizeof(duk__str2num_digits_for_radix));
|
|
|
|
/*
|
|
* Preliminaries: trim, sign, Infinity check
|
|
*
|
|
* We rely on the interned string having a NUL terminator, which will
|
|
* cause a parse failure wherever it is encountered. As a result, we
|
|
* don't need separate pointer checks.
|
|
*
|
|
* There is no special parsing for 'NaN' in the specification although
|
|
* 'Infinity' (with an optional sign) is allowed in some contexts.
|
|
* Some contexts allow plus/minus sign, while others only allow the
|
|
* minus sign (like JSON.parse()).
|
|
*
|
|
* Automatic hex number detection (leading '0x' or '0X') and octal
|
|
* number detection (leading '0' followed by at least one octal digit)
|
|
* is done here too.
|
|
*/
|
|
|
|
if (trim_white) {
|
|
/* Leading / trailing whitespace is sometimes accepted and
|
|
* sometimes not. After white space trimming, all valid input
|
|
* characters are pure ASCII.
|
|
*/
|
|
duk_trim(ctx, -1);
|
|
}
|
|
h_str = duk_require_hstring(ctx, -1);
|
|
DUK_ASSERT(h_str != NULL);
|
|
p = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h_str);
|
|
|
|
neg = 0;
|
|
ch = *p;
|
|
if (ch == (duk_small_int_t) '+') {
|
|
if (!allow_plus) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: leading plus sign not allowed"));
|
|
goto parse_fail;
|
|
}
|
|
p++;
|
|
} else if (ch == (duk_small_int_t) '-') {
|
|
if (!allow_minus) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: leading minus sign not allowed"));
|
|
goto parse_fail;
|
|
}
|
|
p++;
|
|
neg = 1;
|
|
}
|
|
|
|
ch = *p;
|
|
if (allow_infinity && ch == (duk_small_int_t) 'I') {
|
|
/* Don't check for Infinity unless the context allows it.
|
|
* 'Infinity' is a valid integer literal in e.g. base-36:
|
|
*
|
|
* parseInt('Infinity', 36)
|
|
* 1461559270678
|
|
*/
|
|
|
|
const duk_uint8_t *q;
|
|
|
|
/* borrow literal Infinity from builtin string */
|
|
q = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(DUK_HTHREAD_STRING_INFINITY(thr));
|
|
if (DUK_STRNCMP((const char *) p, (const char *) q, 8) == 0) {
|
|
if (!allow_garbage && (p[8] != (duk_uint8_t) 0)) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: trailing garbage after matching 'Infinity' not allowed"));
|
|
goto parse_fail;
|
|
} else {
|
|
res = DUK_DOUBLE_INFINITY;
|
|
goto negcheck_and_ret;
|
|
}
|
|
}
|
|
}
|
|
if (ch == (duk_small_int_t) '0') {
|
|
duk_small_int_t detect_radix = 0;
|
|
ch = p[1];
|
|
if (allow_auto_hex_int && (ch == (duk_small_int_t) 'x' || ch == (duk_small_int_t) 'X')) {
|
|
DUK_DDD(DUK_DDDPRINT("detected 0x/0X hex prefix, changing radix and preventing fractions and exponent"));
|
|
detect_radix = 16;
|
|
allow_empty = 0; /* interpret e.g. '0x' and '0xg' as a NaN (= parse error) */
|
|
p += 2;
|
|
} else if (allow_auto_oct_int && (ch >= (duk_small_int_t) '0' && ch <= (duk_small_int_t) '9')) {
|
|
DUK_DDD(DUK_DDDPRINT("detected 0n oct prefix, changing radix and preventing fractions and exponent"));
|
|
detect_radix = 8;
|
|
allow_empty = 1; /* interpret e.g. '09' as '0', not NaN */
|
|
p += 1;
|
|
}
|
|
if (detect_radix > 0) {
|
|
radix = detect_radix;
|
|
allow_expt = 0;
|
|
allow_frac = 0;
|
|
allow_naked_frac = 0;
|
|
allow_empty_frac = 0;
|
|
allow_leading_zero = 1; /* allow e.g. '0x0009' and '00077' */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Scan number and setup for Dragon4.
|
|
*
|
|
* The fast path case is detected during setup: an integer which
|
|
* can be converted without rounding, no net exponent. The fast
|
|
* path could be implemented as a separate scan, but may not really
|
|
* be worth it: the multiplications for building 'f' are not
|
|
* expensive when 'f' is small.
|
|
*
|
|
* The significand ('f') must contain enough bits of (apparent)
|
|
* accuracy, so that Dragon4 will generate enough binary output digits.
|
|
* For decimal numbers, this means generating a 20-digit significand,
|
|
* which should yield enough practical accuracy to parse IEEE doubles.
|
|
* In fact, the Ecmascript specification explicitly allows an
|
|
* implementation to treat digits beyond 20 as zeroes (and even
|
|
* to round the 20th digit upwards). For non-decimal numbers, the
|
|
* appropriate number of digits has been precomputed for comparable
|
|
* accuracy.
|
|
*
|
|
* Digit counts:
|
|
*
|
|
* [ dig_lzero ]
|
|
* |
|
|
* .+-..---[ dig_prec ]----.
|
|
* | || |
|
|
* 0000123.456789012345678901234567890e+123456
|
|
* | | | | | |
|
|
* `--+--' `------[ dig_frac ]-------' `-+--'
|
|
* | |
|
|
* [ dig_whole ] [ dig_expt ]
|
|
*
|
|
* dig_frac and dig_expt are -1 if not present
|
|
* dig_lzero is only computed for whole number part
|
|
*
|
|
* Parsing state
|
|
*
|
|
* Parsing whole part dig_frac < 0 AND dig_expt < 0
|
|
* Parsing fraction part dig_frac >= 0 AND dig_expt < 0
|
|
* Parsing exponent part dig_expt >= 0 (dig_frac may be < 0 or >= 0)
|
|
*
|
|
* Note: in case we hit an implementation limit (like exponent range),
|
|
* we should throw an error, NOT return NaN or Infinity. Even with
|
|
* very large exponent (or significand) values the final result may be
|
|
* finite, so NaN/Infinity would be incorrect.
|
|
*/
|
|
|
|
duk__bi_set_small(&nc_ctx->f, 0);
|
|
dig_prec = 0;
|
|
dig_lzero = 0;
|
|
dig_whole = 0;
|
|
dig_frac = -1;
|
|
dig_expt = -1;
|
|
expt = 0;
|
|
expt_adj = 0; /* essentially tracks digit position of lowest 'f' digit */
|
|
expt_neg = 0;
|
|
for (;;) {
|
|
ch = *p++;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("parse digits: p=%p, ch='%c' (%ld), expt=%ld, expt_adj=%ld, "
|
|
"dig_whole=%ld, dig_frac=%ld, dig_expt=%ld, dig_lzero=%ld, dig_prec=%ld",
|
|
(void *) p, (int) ((ch >= 0x20 && ch <= 0x7e) ? ch : '?'), (long) ch,
|
|
(long) expt, (long) expt_adj, (long) dig_whole, (long) dig_frac,
|
|
(long) dig_expt, (long) dig_lzero, (long) dig_prec));
|
|
DUK__BI_PRINT("f", &nc_ctx->f);
|
|
|
|
/* Most common cases first. */
|
|
if (ch >= (duk_small_int_t) '0' && ch <= (duk_small_int_t) '9') {
|
|
dig = (int) ch - '0' + 0;
|
|
} else if (ch == (duk_small_int_t) '.') {
|
|
/* A leading digit is not required in some cases, e.g. accept ".123".
|
|
* In other cases (JSON.parse()) a leading digit is required. This
|
|
* is checked for after the loop.
|
|
*/
|
|
if (dig_frac >= 0 || dig_expt >= 0) {
|
|
if (allow_garbage) {
|
|
DUK_DDD(DUK_DDDPRINT("garbage termination (invalid period)"));
|
|
break;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: period not allowed"));
|
|
goto parse_fail;
|
|
}
|
|
}
|
|
|
|
if (!allow_frac) {
|
|
/* Some contexts don't allow fractions at all; this can't be a
|
|
* post-check because the state ('f' and expt) would be incorrect.
|
|
*/
|
|
if (allow_garbage) {
|
|
DUK_DDD(DUK_DDDPRINT("garbage termination (invalid first period)"));
|
|
break;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: fraction part not allowed"));
|
|
}
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("start fraction part"));
|
|
dig_frac = 0;
|
|
continue;
|
|
} else if (ch == (duk_small_int_t) 0) {
|
|
DUK_DDD(DUK_DDDPRINT("NUL termination"));
|
|
break;
|
|
} else if (allow_expt && dig_expt < 0 && (ch == (duk_small_int_t) 'e' || ch == (duk_small_int_t) 'E')) {
|
|
/* Note: we don't parse back exponent notation for anything else
|
|
* than radix 10, so this is not an ambiguous check (e.g. hex
|
|
* exponent values may have 'e' either as a significand digit
|
|
* or as an exponent separator).
|
|
*
|
|
* If the exponent separator occurs twice, 'e' will be interpreted
|
|
* as a digit (= 14) and will be rejected as an invalid decimal
|
|
* digit.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("start exponent part"));
|
|
|
|
/* Exponent without a sign or with a +/- sign is accepted
|
|
* by all call sites (even JSON.parse()).
|
|
*/
|
|
ch = *p;
|
|
if (ch == (duk_small_int_t) '-') {
|
|
expt_neg = 1;
|
|
p++;
|
|
} else if (ch == (duk_small_int_t) '+') {
|
|
p++;
|
|
}
|
|
dig_expt = 0;
|
|
continue;
|
|
} else if (ch >= (duk_small_int_t) 'a' && ch <= (duk_small_int_t) 'z') {
|
|
dig = (duk_small_int_t) (ch - (duk_small_int_t) 'a' + 0x0a);
|
|
} else if (ch >= (duk_small_int_t) 'A' && ch <= (duk_small_int_t) 'Z') {
|
|
dig = (duk_small_int_t) (ch - (duk_small_int_t) 'A' + 0x0a);
|
|
} else {
|
|
dig = 255; /* triggers garbage digit check below */
|
|
}
|
|
DUK_ASSERT((dig >= 0 && dig <= 35) || dig == 255);
|
|
|
|
if (dig >= radix) {
|
|
if (allow_garbage) {
|
|
DUK_DDD(DUK_DDDPRINT("garbage termination"));
|
|
break;
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: trailing garbage or invalid digit"));
|
|
goto parse_fail;
|
|
}
|
|
}
|
|
|
|
if (dig_expt < 0) {
|
|
/* whole or fraction digit */
|
|
|
|
if (dig_prec < duk__str2num_digits_for_radix[radix - 2]) {
|
|
/* significant from precision perspective */
|
|
|
|
duk_small_int_t f_zero = duk__bi_is_zero(&nc_ctx->f);
|
|
if (f_zero && dig == 0) {
|
|
/* Leading zero is not counted towards precision digits; not
|
|
* in the integer part, nor in the fraction part.
|
|
*/
|
|
if (dig_frac < 0) {
|
|
dig_lzero++;
|
|
}
|
|
} else {
|
|
/* XXX: join these ops (multiply-accumulate), but only if
|
|
* code footprint decreases.
|
|
*/
|
|
duk__bi_mul_small(&nc_ctx->t1, &nc_ctx->f, radix);
|
|
duk__bi_add_small(&nc_ctx->f, &nc_ctx->t1, dig);
|
|
dig_prec++;
|
|
}
|
|
} else {
|
|
/* Ignore digits beyond a radix-specific limit, but note them
|
|
* in expt_adj.
|
|
*/
|
|
expt_adj++;
|
|
}
|
|
|
|
if (dig_frac >= 0) {
|
|
dig_frac++;
|
|
expt_adj--;
|
|
} else {
|
|
dig_whole++;
|
|
}
|
|
} else {
|
|
/* exponent digit */
|
|
|
|
expt = expt * radix + dig;
|
|
if (expt > DUK_S2N_MAX_EXPONENT) {
|
|
/* impose a reasonable exponent limit, so that exp
|
|
* doesn't need to get tracked using a bigint.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: exponent too large"));
|
|
goto parse_int_error;
|
|
}
|
|
dig_expt++;
|
|
}
|
|
}
|
|
|
|
/* Leading zero. */
|
|
|
|
if (dig_lzero > 0 && dig_whole > 1) {
|
|
if (!allow_leading_zero) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: leading zeroes not allowed in integer part"));
|
|
goto parse_fail;
|
|
}
|
|
}
|
|
|
|
/* Validity checks for various fraction formats ("0.1", ".1", "1.", "."). */
|
|
|
|
if (dig_whole == 0) {
|
|
if (dig_frac == 0) {
|
|
/* "." is not accepted in any format */
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: plain period without leading or trailing digits"));
|
|
goto parse_fail;
|
|
} else if (dig_frac > 0) {
|
|
/* ".123" */
|
|
if (!allow_naked_frac) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: fraction part not allowed without "
|
|
"leading integer digit(s)"));
|
|
goto parse_fail;
|
|
}
|
|
} else {
|
|
/* empty ("") is allowed in some formats (e.g. Number(''), as zero */
|
|
if (!allow_empty) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: empty string not allowed (as zero)"));
|
|
goto parse_fail;
|
|
}
|
|
}
|
|
} else {
|
|
if (dig_frac == 0) {
|
|
/* "123." is allowed in some formats */
|
|
if (!allow_empty_frac) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: empty fractions"));
|
|
goto parse_fail;
|
|
}
|
|
} else if (dig_frac > 0) {
|
|
/* "123.456" */
|
|
;
|
|
} else {
|
|
/* "123" */
|
|
;
|
|
}
|
|
}
|
|
|
|
/* Exponent without digits (e.g. "1e" or "1e+"). If trailing garbage is
|
|
* allowed, ignore exponent part as garbage (= parse as "1", i.e. exp 0).
|
|
*/
|
|
|
|
if (dig_expt == 0) {
|
|
if (!allow_garbage) {
|
|
DUK_DDD(DUK_DDDPRINT("parse failed: empty exponent"));
|
|
goto parse_fail;
|
|
}
|
|
DUK_ASSERT(expt == 0);
|
|
}
|
|
|
|
if (expt_neg) {
|
|
expt = -expt;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("expt=%ld, expt_adj=%ld, net exponent -> %ld",
|
|
(long) expt, (long) expt_adj, (long) (expt + expt_adj)));
|
|
expt += expt_adj;
|
|
|
|
/* Fast path check. */
|
|
|
|
if (nc_ctx->f.n <= 1 && /* 32-bit value */
|
|
expt == 0 /* no net exponent */) {
|
|
/* Fast path is triggered for no exponent and also for balanced exponent
|
|
* and fraction parts, e.g. for "1.23e2" == "123". Remember to respect
|
|
* zero sign.
|
|
*/
|
|
|
|
/* XXX: could accept numbers larger than 32 bits, e.g. up to 53 bits? */
|
|
DUK_DDD(DUK_DDDPRINT("fast path number parse"));
|
|
if (nc_ctx->f.n == 1) {
|
|
res = (double) nc_ctx->f.v[0];
|
|
} else {
|
|
res = 0.0;
|
|
}
|
|
goto negcheck_and_ret;
|
|
}
|
|
|
|
/* Significand ('f') padding. */
|
|
|
|
while (dig_prec < duk__str2num_digits_for_radix[radix - 2]) {
|
|
/* Pad significand with "virtual" zero digits so that Dragon4 will
|
|
* have enough (apparent) precision to work with.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("dig_prec=%ld, pad significand with zero", (long) dig_prec));
|
|
duk__bi_mul_small_copy(&nc_ctx->f, radix, &nc_ctx->t1);
|
|
DUK__BI_PRINT("f", &nc_ctx->f);
|
|
expt--;
|
|
dig_prec++;
|
|
}
|
|
|
|
DUK_DDD(DUK_DDDPRINT("final exponent: %ld", (long) expt));
|
|
|
|
/* Detect zero special case. */
|
|
|
|
if (nc_ctx->f.n == 0) {
|
|
/* This may happen even after the fast path check, if exponent is
|
|
* not balanced (e.g. "0e1"). Remember to respect zero sign.
|
|
*/
|
|
DUK_DDD(DUK_DDDPRINT("significand is zero"));
|
|
res = 0.0;
|
|
goto negcheck_and_ret;
|
|
}
|
|
|
|
|
|
/* Quick reject of too large or too small exponents. This check
|
|
* would be incorrect for zero (e.g. "0e1000" is zero, not Infinity)
|
|
* so zero check must be above.
|
|
*/
|
|
|
|
explim = &duk__str2num_exp_limits[radix - 2];
|
|
if (expt > explim->upper) {
|
|
DUK_DDD(DUK_DDDPRINT("exponent too large -> infinite"));
|
|
res = (duk_double_t) DUK_DOUBLE_INFINITY;
|
|
goto negcheck_and_ret;
|
|
} else if (expt < explim->lower) {
|
|
DUK_DDD(DUK_DDDPRINT("exponent too small -> zero"));
|
|
res = (duk_double_t) 0.0;
|
|
goto negcheck_and_ret;
|
|
}
|
|
|
|
nc_ctx->is_s2n = 1;
|
|
nc_ctx->e = expt;
|
|
nc_ctx->b = radix;
|
|
nc_ctx->B = 2;
|
|
nc_ctx->is_fixed = 1;
|
|
nc_ctx->abs_pos = 0;
|
|
nc_ctx->req_digits = 53 + 1;
|
|
|
|
DUK__BI_PRINT("f", &nc_ctx->f);
|
|
DUK_DDD(DUK_DDDPRINT("e=%ld", (long) nc_ctx->e));
|
|
|
|
/*
|
|
* Dragon4 slow path (binary) digit generation.
|
|
* An extra digit is generated for rounding.
|
|
*/
|
|
|
|
duk__dragon4_prepare(nc_ctx); /* setup many variables in nc_ctx */
|
|
|
|
DUK_DDD(DUK_DDDPRINT("after prepare:"));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("mp", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm", &nc_ctx->mm);
|
|
|
|
duk__dragon4_scale(nc_ctx);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("after scale; k=%ld", (long) nc_ctx->k));
|
|
DUK__BI_PRINT("r", &nc_ctx->r);
|
|
DUK__BI_PRINT("s", &nc_ctx->s);
|
|
DUK__BI_PRINT("mp", &nc_ctx->mp);
|
|
DUK__BI_PRINT("mm", &nc_ctx->mm);
|
|
|
|
duk__dragon4_generate(nc_ctx);
|
|
|
|
DUK_ASSERT(nc_ctx->count == 53 + 1);
|
|
|
|
/*
|
|
* Convert binary digits into an IEEE double. Need to handle
|
|
* denormals and rounding correctly.
|
|
*/
|
|
|
|
duk__dragon4_ctx_to_double(nc_ctx, &res);
|
|
goto negcheck_and_ret;
|
|
|
|
negcheck_and_ret:
|
|
if (neg) {
|
|
res = -res;
|
|
}
|
|
duk_pop(ctx);
|
|
duk_push_number(ctx, (double) res);
|
|
DUK_DDD(DUK_DDDPRINT("result: %!T", (duk_tval *) duk_get_tval(ctx, -1)));
|
|
return;
|
|
|
|
parse_fail:
|
|
DUK_DDD(DUK_DDDPRINT("parse failed"));
|
|
duk_pop(ctx);
|
|
duk_push_nan(ctx);
|
|
return;
|
|
|
|
parse_int_error:
|
|
DUK_DDD(DUK_DDDPRINT("parse failed, internal error, can't return a value"));
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, "number parse error");
|
|
return;
|
|
}
|
|
#line 1 "duk_regexp_compiler.c"
|
|
/*
|
|
* Regexp compilation.
|
|
*
|
|
* See doc/regexp.txt for a discussion of the compilation approach and
|
|
* current limitations.
|
|
*
|
|
* Regexp bytecode assumes jumps can be expressed with signed 32-bit
|
|
* integers. Consequently the bytecode size must not exceed 0x7fffffffL.
|
|
* The implementation casts duk_size_t (buffer size) to duk_(u)int32_t
|
|
* in many places. Although this could be changed, the bytecode format
|
|
* limit would still prevent regexps exceeding the signed 32-bit limit
|
|
* from working.
|
|
*
|
|
* XXX: The implementation does not prevent bytecode from exceeding the
|
|
* maximum supported size. This could be done by limiting the maximum
|
|
* input string size (assuming an upper bound can be computed for number
|
|
* of bytecode bytes emitted per input byte) or checking buffer maximum
|
|
* size when emitting bytecode (slower).
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
|
|
/*
|
|
* Helper macros
|
|
*/
|
|
|
|
#ifdef DUK__BUFLEN
|
|
#undef DUK__BUFLEN
|
|
#endif
|
|
|
|
#define DUK__BUFLEN(re_ctx) DUK_HBUFFER_GET_SIZE((duk_hbuffer *) re_ctx->buf)
|
|
|
|
/*
|
|
* Disjunction struct: result of parsing a disjunction
|
|
*/
|
|
|
|
typedef struct {
|
|
/* Number of characters that the atom matches (e.g. 3 for 'abc'),
|
|
* -1 if atom is complex and number of matched characters either
|
|
* varies or is not known.
|
|
*/
|
|
duk_int32_t charlen;
|
|
|
|
#if 0
|
|
/* These are not needed to implement quantifier capture handling,
|
|
* but might be needed at some point.
|
|
*/
|
|
|
|
/* re_ctx->captures at start and end of atom parsing.
|
|
* Since 'captures' indicates highest capture number emitted
|
|
* so far in a DUK_REOP_SAVE, the captures numbers saved by
|
|
* the atom are: ]start_captures,end_captures].
|
|
*/
|
|
duk_uint32_t start_captures;
|
|
duk_uint32_t end_captures;
|
|
#endif
|
|
} duk__re_disjunction_info;
|
|
|
|
/*
|
|
* Encoding helpers
|
|
*
|
|
* Some of the typing is bytecode based, e.g. slice sizes are unsigned 32-bit
|
|
* even though the buffer operations will use duk_size_t.
|
|
*/
|
|
|
|
/* XXX: the insert helpers should ensure that the bytecode result is not
|
|
* larger than expected (or at least assert for it). Many things in the
|
|
* bytecode, like skip offsets, won't work correctly if the bytecode is
|
|
* larger than say 2G.
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint32_t duk__encode_i32(duk_int32_t x) {
|
|
if (x < 0) {
|
|
return ((duk_uint32_t) (-x)) * 2 + 1;
|
|
} else {
|
|
return ((duk_uint32_t) x) * 2;
|
|
}
|
|
}
|
|
|
|
/* XXX: return type should probably be duk_size_t, or explicit checks are needed for
|
|
* maximum size.
|
|
*/
|
|
DUK_LOCAL duk_uint32_t duk__insert_u32(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_uint32_t x) {
|
|
return (duk_uint32_t) duk_hbuffer_insert_xutf8(re_ctx->thr, re_ctx->buf, offset, x);
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__append_u32(duk_re_compiler_ctx *re_ctx, duk_uint32_t x) {
|
|
return (duk_uint32_t) duk_hbuffer_append_xutf8(re_ctx->thr, re_ctx->buf, x);
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__insert_i32(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_int32_t x) {
|
|
return (duk_uint32_t) duk_hbuffer_insert_xutf8(re_ctx->thr, re_ctx->buf, offset, duk__encode_i32(x));
|
|
}
|
|
|
|
#if 0 /* unused */
|
|
DUK_LOCAL duk_uint32_t duk__append_i32(duk_re_compiler_ctx *re_ctx, duk_int32_t x) {
|
|
return duk_hbuffer_append_xutf8(re_ctx->thr, re_ctx->buf, duk__encode_i32(x));
|
|
}
|
|
#endif
|
|
|
|
/* special helper for emitting u16 lists (used for character ranges for built-in char classes) */
|
|
DUK_LOCAL void duk__append_u16_list(duk_re_compiler_ctx *re_ctx, duk_uint16_t *values, duk_uint32_t count) {
|
|
/* Call sites don't need the result length so it's not accumulated. */
|
|
while (count > 0) {
|
|
(void) duk__append_u32(re_ctx, (duk_uint32_t) (*values++));
|
|
count--;
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL void duk__insert_slice(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_uint32_t data_offset, duk_uint32_t data_length) {
|
|
duk_hbuffer_insert_slice(re_ctx->thr, re_ctx->buf, offset, data_offset, (duk_size_t) data_length);
|
|
}
|
|
|
|
DUK_LOCAL void duk__append_slice(duk_re_compiler_ctx *re_ctx, duk_uint32_t data_offset, duk_uint32_t data_length) {
|
|
duk_hbuffer_append_slice(re_ctx->thr, re_ctx->buf, data_offset, (duk_size_t) data_length);
|
|
}
|
|
|
|
DUK_LOCAL void duk__remove_slice(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_uint32_t length) {
|
|
duk_hbuffer_remove_slice(re_ctx->thr, re_ctx->buf, offset, (duk_size_t) length);
|
|
}
|
|
|
|
/*
|
|
* Insert a jump offset at 'offset' to complete an instruction
|
|
* (the jump offset is always the last component of an instruction).
|
|
* The 'skip' argument must be computed relative to 'offset',
|
|
* -without- taking into account the skip field being inserted.
|
|
*
|
|
* ... A B C ins X Y Z ... (ins may be a JUMP, SPLIT1/SPLIT2, etc)
|
|
* => ... A B C ins SKIP X Y Z
|
|
*
|
|
* Computing the final (adjusted) skip value, which is relative to the
|
|
* first byte of the next instruction, is a bit tricky because of the
|
|
* variable length UTF-8 encoding. See doc/regexp.txt for discussion.
|
|
*/
|
|
DUK_LOCAL duk_uint32_t duk__insert_jump_offset(duk_re_compiler_ctx *re_ctx, duk_uint32_t offset, duk_int32_t skip) {
|
|
duk_small_int_t len;
|
|
|
|
/* XXX: solve into closed form (smaller code) */
|
|
|
|
if (skip < 0) {
|
|
/* two encoding attempts suffices */
|
|
len = duk_unicode_get_xutf8_length((duk_codepoint_t) duk__encode_i32(skip));
|
|
len = duk_unicode_get_xutf8_length((duk_codepoint_t) duk__encode_i32(skip - (duk_int32_t) len));
|
|
DUK_ASSERT(duk_unicode_get_xutf8_length(duk__encode_i32(skip - (duk_int32_t) len)) == len); /* no change */
|
|
skip -= (duk_int32_t) len;
|
|
}
|
|
return duk__insert_i32(re_ctx, offset, skip);
|
|
}
|
|
|
|
DUK_LOCAL duk_uint32_t duk__append_jump_offset(duk_re_compiler_ctx *re_ctx, duk_int32_t skip) {
|
|
return (duk_uint32_t) duk__insert_jump_offset(re_ctx, (duk_uint32_t) DUK__BUFLEN(re_ctx), skip);
|
|
}
|
|
|
|
/*
|
|
* duk_re_range_callback for generating character class ranges.
|
|
*
|
|
* When ignoreCase is false, the range is simply emitted as is.
|
|
* We don't, for instance, eliminate duplicates or overlapping
|
|
* ranges in a character class.
|
|
*
|
|
* When ignoreCase is true, the range needs to be normalized through
|
|
* canonicalization. Unfortunately a canonicalized version of a
|
|
* continuous range is not necessarily continuous (e.g. [x-{] is
|
|
* continuous but [X-{] is not). The current algorithm creates the
|
|
* canonicalized range(s) space efficiently at the cost of compile
|
|
* time execution time (see doc/regexp.txt for discussion).
|
|
*
|
|
* Note that the ctx->nranges is a context-wide temporary value
|
|
* (this is OK because there cannot be multiple character classes
|
|
* being parsed simultaneously).
|
|
*/
|
|
|
|
DUK_LOCAL void duk__generate_ranges(void *userdata, duk_codepoint_t r1, duk_codepoint_t r2, duk_bool_t direct) {
|
|
duk_re_compiler_ctx *re_ctx = (duk_re_compiler_ctx *) userdata;
|
|
|
|
DUK_DD(DUK_DDPRINT("duk__generate_ranges(): re_ctx=%p, range=[%ld,%ld] direct=%ld",
|
|
(void *) re_ctx, (long) r1, (long) r2, (long) direct));
|
|
|
|
if (!direct && (re_ctx->re_flags & DUK_RE_FLAG_IGNORE_CASE)) {
|
|
/*
|
|
* Canonicalize a range, generating result ranges as necessary.
|
|
* Needs to exhaustively scan the entire range (at most 65536
|
|
* code points). If 'direct' is set, caller (lexer) has ensured
|
|
* that the range is already canonicalization compatible (this
|
|
* is used to avoid unnecessary canonicalization of built-in
|
|
* ranges like \W, which are not affected by canonicalization).
|
|
*
|
|
* NOTE: here is one place where we don't want to support chars
|
|
* outside the BMP, because the exhaustive search would be
|
|
* massively larger.
|
|
*/
|
|
|
|
duk_codepoint_t i;
|
|
duk_codepoint_t t;
|
|
duk_codepoint_t r_start, r_end;
|
|
|
|
r_start = duk_unicode_re_canonicalize_char(re_ctx->thr, r1);
|
|
r_end = r_start;
|
|
for (i = r1 + 1; i <= r2; i++) {
|
|
t = duk_unicode_re_canonicalize_char(re_ctx->thr, i);
|
|
if (t == r_end + 1) {
|
|
r_end = t;
|
|
} else {
|
|
DUK_DD(DUK_DDPRINT("canonicalized, emit range: [%ld,%ld]", (long) r_start, (long) r_end));
|
|
duk__append_u32(re_ctx, (duk_uint32_t) r_start);
|
|
duk__append_u32(re_ctx, (duk_uint32_t) r_end);
|
|
re_ctx->nranges++;
|
|
r_start = t;
|
|
r_end = t;
|
|
}
|
|
}
|
|
DUK_DD(DUK_DDPRINT("canonicalized, emit range: [%ld,%ld]", (long) r_start, (long) r_end));
|
|
duk__append_u32(re_ctx, (duk_uint32_t) r_start);
|
|
duk__append_u32(re_ctx, (duk_uint32_t) r_end);
|
|
re_ctx->nranges++;
|
|
} else {
|
|
DUK_DD(DUK_DDPRINT("direct, emit range: [%ld,%ld]", (long) r1, (long) r2));
|
|
duk__append_u32(re_ctx, (duk_uint32_t) r1);
|
|
duk__append_u32(re_ctx, (duk_uint32_t) r2);
|
|
re_ctx->nranges++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Parse regexp Disjunction. Most of regexp compilation happens here.
|
|
*
|
|
* Handles Disjunction, Alternative, and Term productions directly without
|
|
* recursion. The only constructs requiring recursion are positive/negative
|
|
* lookaheads, capturing parentheses, and non-capturing parentheses.
|
|
*
|
|
* The function determines whether the entire disjunction is a 'simple atom'
|
|
* (see doc/regexp.txt discussion on 'simple quantifiers') and if so,
|
|
* returns the atom character length which is needed by the caller to keep
|
|
* track of its own atom character length. A disjunction with more than one
|
|
* alternative is never considered a simple atom (although in some cases
|
|
* that might be the case).
|
|
*
|
|
* Return value: simple atom character length or < 0 if not a simple atom.
|
|
* Appends the bytecode for the disjunction matcher to the end of the temp
|
|
* buffer.
|
|
*
|
|
* Regexp top level structure is:
|
|
*
|
|
* Disjunction = Term*
|
|
* | Term* | Disjunction
|
|
*
|
|
* Term = Assertion
|
|
* | Atom
|
|
* | Atom Quantifier
|
|
*
|
|
* An empty Term sequence is a valid disjunction alternative (e.g. /|||c||/).
|
|
*
|
|
* Notes:
|
|
*
|
|
* * Tracking of the 'simple-ness' of the current atom vs. the entire
|
|
* disjunction are separate matters. For instance, the disjunction
|
|
* may be complex, but individual atoms may be simple. Furthermore,
|
|
* simple quantifiers are used whenever possible, even if the
|
|
* disjunction as a whole is complex.
|
|
*
|
|
* * The estimate of whether an atom is simple is conservative now,
|
|
* and it would be possible to expand it. For instance, captures
|
|
* cause the disjunction to be marked complex, even though captures
|
|
* -can- be handled by simple quantifiers with some minor modifications.
|
|
*
|
|
* * Disjunction 'tainting' as 'complex' is handled at the end of the
|
|
* main for loop collectively for atoms. Assertions, quantifiers,
|
|
* and '|' tokens need to taint the result manually if necessary.
|
|
* Assertions cannot add to result char length, only atoms (and
|
|
* quantifiers) can; currently quantifiers will taint the result
|
|
* as complex though.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__parse_disjunction(duk_re_compiler_ctx *re_ctx, duk_bool_t expect_eof, duk__re_disjunction_info *out_atom_info) {
|
|
duk_int32_t atom_start_offset = -1; /* negative -> no atom matched on previous round */
|
|
duk_int32_t atom_char_length = 0; /* negative -> complex atom */
|
|
duk_uint32_t atom_start_captures = re_ctx->captures; /* value of re_ctx->captures at start of atom */
|
|
duk_int32_t unpatched_disjunction_split = -1;
|
|
duk_int32_t unpatched_disjunction_jump = -1;
|
|
duk_uint32_t entry_offset = (duk_uint32_t) DUK__BUFLEN(re_ctx);
|
|
duk_int32_t res_charlen = 0; /* -1 if disjunction is complex, char length if simple */
|
|
duk__re_disjunction_info tmp_disj;
|
|
|
|
DUK_ASSERT(out_atom_info != NULL);
|
|
|
|
if (re_ctx->recursion_depth >= re_ctx->recursion_limit) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_RANGE_ERROR,
|
|
DUK_STR_REGEXP_COMPILER_RECURSION_LIMIT);
|
|
}
|
|
re_ctx->recursion_depth++;
|
|
|
|
#if 0
|
|
out_atom_info->start_captures = re_ctx->captures;
|
|
#endif
|
|
|
|
for (;;) {
|
|
/* atom_char_length, atom_start_offset, atom_start_offset reflect the
|
|
* atom matched on the previous loop. If a quantifier is encountered
|
|
* on this loop, these are needed to handle the quantifier correctly.
|
|
* new_atom_char_length etc are for the atom parsed on this round;
|
|
* they're written to atom_char_length etc at the end of the round.
|
|
*/
|
|
duk_int32_t new_atom_char_length; /* char length of the atom parsed in this loop */
|
|
duk_int32_t new_atom_start_offset; /* bytecode start offset of the atom parsed in this loop
|
|
* (allows quantifiers to copy the atom bytecode)
|
|
*/
|
|
duk_uint32_t new_atom_start_captures; /* re_ctx->captures at the start of the atom parsed in this loop */
|
|
|
|
duk_lexer_parse_re_token(&re_ctx->lex, &re_ctx->curr_token);
|
|
|
|
DUK_DD(DUK_DDPRINT("re token: %ld (num=%ld, char=%c)",
|
|
(long) re_ctx->curr_token.t,
|
|
(long) re_ctx->curr_token.num,
|
|
(re_ctx->curr_token.num >= 0x20 && re_ctx->curr_token.num <= 0x7e) ?
|
|
(int) re_ctx->curr_token.num : (int) '?'));
|
|
|
|
/* set by atom case clauses */
|
|
new_atom_start_offset = -1;
|
|
new_atom_char_length = -1;
|
|
new_atom_start_captures = re_ctx->captures;
|
|
|
|
switch (re_ctx->curr_token.t) {
|
|
case DUK_RETOK_DISJUNCTION: {
|
|
/*
|
|
* The handling here is a bit tricky. If a previous '|' has been processed,
|
|
* we have a pending split1 and a pending jump (for a previous match). These
|
|
* need to be back-patched carefully. See docs for a detailed example.
|
|
*/
|
|
|
|
/* patch pending jump and split */
|
|
if (unpatched_disjunction_jump >= 0) {
|
|
duk_uint32_t offset;
|
|
|
|
DUK_ASSERT(unpatched_disjunction_split >= 0);
|
|
offset = unpatched_disjunction_jump;
|
|
offset += duk__insert_jump_offset(re_ctx,
|
|
offset,
|
|
(duk_int32_t) (DUK__BUFLEN(re_ctx) - offset));
|
|
/* offset is now target of the pending split (right after jump) */
|
|
duk__insert_jump_offset(re_ctx,
|
|
unpatched_disjunction_split,
|
|
offset - unpatched_disjunction_split);
|
|
}
|
|
|
|
/* add a new pending split to the beginning of the entire disjunction */
|
|
(void) duk__insert_u32(re_ctx,
|
|
entry_offset,
|
|
DUK_REOP_SPLIT1); /* prefer direct execution */
|
|
unpatched_disjunction_split = entry_offset + 1; /* +1 for opcode */
|
|
|
|
/* add a new pending match jump for latest finished alternative */
|
|
duk__append_u32(re_ctx, DUK_REOP_JUMP);
|
|
unpatched_disjunction_jump = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
|
|
/* 'taint' result as complex */
|
|
res_charlen = -1;
|
|
break;
|
|
}
|
|
case DUK_RETOK_QUANTIFIER: {
|
|
if (atom_start_offset < 0) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
DUK_STR_INVALID_QUANTIFIER_NO_ATOM);
|
|
}
|
|
if (re_ctx->curr_token.qmin > re_ctx->curr_token.qmax) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
DUK_STR_INVALID_QUANTIFIER_VALUES);
|
|
}
|
|
if (atom_char_length >= 0) {
|
|
/*
|
|
* Simple atom
|
|
*
|
|
* If atom_char_length is zero, we'll have unbounded execution time for e.g.
|
|
* /()*x/.exec('x'). We can't just skip the match because it might have some
|
|
* side effects (for instance, if we allowed captures in simple atoms, the
|
|
* capture needs to happen). The simple solution below is to force the
|
|
* quantifier to match at most once, since the additional matches have no effect.
|
|
*
|
|
* With a simple atom there can be no capture groups, so no captures need
|
|
* to be reset.
|
|
*/
|
|
duk_int32_t atom_code_length;
|
|
duk_uint32_t offset;
|
|
duk_uint32_t qmin, qmax;
|
|
|
|
qmin = re_ctx->curr_token.qmin;
|
|
qmax = re_ctx->curr_token.qmax;
|
|
if (atom_char_length == 0) {
|
|
/* qmin and qmax will be 0 or 1 */
|
|
if (qmin > 1) {
|
|
qmin = 1;
|
|
}
|
|
if (qmax > 1) {
|
|
qmax = 1;
|
|
}
|
|
}
|
|
|
|
duk__append_u32(re_ctx, DUK_REOP_MATCH); /* complete 'sub atom' */
|
|
atom_code_length = (duk_int32_t) (DUK__BUFLEN(re_ctx) - atom_start_offset);
|
|
|
|
offset = atom_start_offset;
|
|
if (re_ctx->curr_token.greedy) {
|
|
offset += duk__insert_u32(re_ctx, offset, DUK_REOP_SQGREEDY);
|
|
offset += duk__insert_u32(re_ctx, offset, qmin);
|
|
offset += duk__insert_u32(re_ctx, offset, qmax);
|
|
offset += duk__insert_u32(re_ctx, offset, atom_char_length);
|
|
offset += duk__insert_jump_offset(re_ctx, offset, atom_code_length);
|
|
} else {
|
|
offset += duk__insert_u32(re_ctx, offset, DUK_REOP_SQMINIMAL);
|
|
offset += duk__insert_u32(re_ctx, offset, qmin);
|
|
offset += duk__insert_u32(re_ctx, offset, qmax);
|
|
offset += duk__insert_jump_offset(re_ctx, offset, atom_code_length);
|
|
}
|
|
DUK_UNREF(offset); /* silence scan-build warning */
|
|
} else {
|
|
/*
|
|
* Complex atom
|
|
*
|
|
* The original code is used as a template, and removed at the end
|
|
* (this differs from the handling of simple quantifiers).
|
|
*
|
|
* NOTE: there is no current solution for empty atoms in complex
|
|
* quantifiers. This would need some sort of a 'progress' instruction.
|
|
*
|
|
* XXX: impose limit on maximum result size, i.e. atom_code_len * atom_copies?
|
|
*/
|
|
duk_int32_t atom_code_length;
|
|
duk_uint32_t atom_copies;
|
|
duk_uint32_t tmp_qmin, tmp_qmax;
|
|
|
|
/* pre-check how many atom copies we're willing to make (atom_copies not needed below) */
|
|
atom_copies = (re_ctx->curr_token.qmax == DUK_RE_QUANTIFIER_INFINITE) ?
|
|
re_ctx->curr_token.qmin : re_ctx->curr_token.qmax;
|
|
if (atom_copies > DUK_RE_MAX_ATOM_COPIES) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_RANGE_ERROR,
|
|
DUK_STR_QUANTIFIER_TOO_MANY_COPIES);
|
|
}
|
|
|
|
/* wipe the capture range made by the atom (if any) */
|
|
DUK_ASSERT(atom_start_captures <= re_ctx->captures);
|
|
if (atom_start_captures != re_ctx->captures) {
|
|
DUK_ASSERT(atom_start_captures < re_ctx->captures);
|
|
DUK_DDD(DUK_DDDPRINT("must wipe ]atom_start_captures,re_ctx->captures]: ]%ld,%ld]",
|
|
(long) atom_start_captures, (long) re_ctx->captures));
|
|
|
|
/* insert (DUK_REOP_WIPERANGE, start, count) in reverse order so the order ends up right */
|
|
duk__insert_u32(re_ctx, atom_start_offset, (re_ctx->captures - atom_start_captures) * 2);
|
|
duk__insert_u32(re_ctx, atom_start_offset, (atom_start_captures + 1) * 2);
|
|
duk__insert_u32(re_ctx, atom_start_offset, DUK_REOP_WIPERANGE);
|
|
} else {
|
|
DUK_DDD(DUK_DDDPRINT("no need to wipe captures: atom_start_captures == re_ctx->captures == %ld",
|
|
(long) atom_start_captures));
|
|
}
|
|
|
|
atom_code_length = (duk_int32_t) DUK__BUFLEN(re_ctx) - atom_start_offset;
|
|
|
|
/* insert the required matches (qmin) by copying the atom */
|
|
tmp_qmin = re_ctx->curr_token.qmin;
|
|
tmp_qmax = re_ctx->curr_token.qmax;
|
|
while (tmp_qmin > 0) {
|
|
duk__append_slice(re_ctx, atom_start_offset, atom_code_length);
|
|
tmp_qmin--;
|
|
if (tmp_qmax != DUK_RE_QUANTIFIER_INFINITE) {
|
|
tmp_qmax--;
|
|
}
|
|
}
|
|
DUK_ASSERT(tmp_qmin == 0);
|
|
|
|
/* insert code for matching the remainder - infinite or finite */
|
|
if (tmp_qmax == DUK_RE_QUANTIFIER_INFINITE) {
|
|
/* reuse last emitted atom for remaining 'infinite' quantifier */
|
|
|
|
if (re_ctx->curr_token.qmin == 0) {
|
|
/* Special case: original qmin was zero so there is nothing
|
|
* to repeat. Emit an atom copy but jump over it here.
|
|
*/
|
|
duk__append_u32(re_ctx, DUK_REOP_JUMP);
|
|
duk__append_jump_offset(re_ctx, atom_code_length);
|
|
duk__append_slice(re_ctx, atom_start_offset, atom_code_length);
|
|
}
|
|
if (re_ctx->curr_token.greedy) {
|
|
duk__append_u32(re_ctx, DUK_REOP_SPLIT2); /* prefer jump */
|
|
} else {
|
|
duk__append_u32(re_ctx, DUK_REOP_SPLIT1); /* prefer direct */
|
|
}
|
|
duk__append_jump_offset(re_ctx, -atom_code_length - 1); /* -1 for opcode */
|
|
} else {
|
|
/*
|
|
* The remaining matches are emitted as sequence of SPLITs and atom
|
|
* copies; the SPLITs skip the remaining copies and match the sequel.
|
|
* This sequence needs to be emitted starting from the last copy
|
|
* because the SPLITs are variable length due to the variable length
|
|
* skip offset. This causes a lot of memory copying now.
|
|
*
|
|
* Example structure (greedy, match maximum # atoms):
|
|
*
|
|
* SPLIT1 LSEQ
|
|
* (atom)
|
|
* SPLIT1 LSEQ ; <- the byte length of this instruction is needed
|
|
* (atom) ; to encode the above SPLIT1 correctly
|
|
* ...
|
|
* LSEQ:
|
|
*/
|
|
duk_uint32_t offset = (duk_uint32_t) DUK__BUFLEN(re_ctx);
|
|
while (tmp_qmax > 0) {
|
|
duk__insert_slice(re_ctx, offset, atom_start_offset, atom_code_length);
|
|
if (re_ctx->curr_token.greedy) {
|
|
duk__insert_u32(re_ctx, offset, DUK_REOP_SPLIT1); /* prefer direct */
|
|
} else {
|
|
duk__insert_u32(re_ctx, offset, DUK_REOP_SPLIT2); /* prefer jump */
|
|
}
|
|
duk__insert_jump_offset(re_ctx,
|
|
offset + 1, /* +1 for opcode */
|
|
(duk_int32_t) (DUK__BUFLEN(re_ctx) - (offset + 1)));
|
|
tmp_qmax--;
|
|
}
|
|
}
|
|
|
|
/* remove the original 'template' atom */
|
|
duk__remove_slice(re_ctx, atom_start_offset, atom_code_length);
|
|
}
|
|
|
|
/* 'taint' result as complex */
|
|
res_charlen = -1;
|
|
break;
|
|
}
|
|
case DUK_RETOK_ASSERT_START: {
|
|
duk__append_u32(re_ctx, DUK_REOP_ASSERT_START);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ASSERT_END: {
|
|
duk__append_u32(re_ctx, DUK_REOP_ASSERT_END);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ASSERT_WORD_BOUNDARY: {
|
|
duk__append_u32(re_ctx, DUK_REOP_ASSERT_WORD_BOUNDARY);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ASSERT_NOT_WORD_BOUNDARY: {
|
|
duk__append_u32(re_ctx, DUK_REOP_ASSERT_NOT_WORD_BOUNDARY);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ASSERT_START_POS_LOOKAHEAD:
|
|
case DUK_RETOK_ASSERT_START_NEG_LOOKAHEAD: {
|
|
duk_uint32_t offset;
|
|
duk_uint32_t opcode = (re_ctx->curr_token.t == DUK_RETOK_ASSERT_START_POS_LOOKAHEAD) ?
|
|
DUK_REOP_LOOKPOS : DUK_REOP_LOOKNEG;
|
|
|
|
offset = (duk_uint32_t) DUK__BUFLEN(re_ctx);
|
|
duk__parse_disjunction(re_ctx, 0, &tmp_disj);
|
|
duk__append_u32(re_ctx, DUK_REOP_MATCH);
|
|
|
|
(void) duk__insert_u32(re_ctx, offset, opcode);
|
|
(void) duk__insert_jump_offset(re_ctx,
|
|
offset + 1, /* +1 for opcode */
|
|
(duk_int32_t) (DUK__BUFLEN(re_ctx) - (offset + 1)));
|
|
|
|
/* 'taint' result as complex -- this is conservative,
|
|
* as lookaheads do not backtrack.
|
|
*/
|
|
res_charlen = -1;
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_PERIOD: {
|
|
new_atom_char_length = 1;
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx, DUK_REOP_PERIOD);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_CHAR: {
|
|
/* Note: successive characters could be joined into string matches
|
|
* but this is not trivial (consider e.g. '/xyz+/); see docs for
|
|
* more discussion.
|
|
*/
|
|
duk_uint32_t ch;
|
|
|
|
new_atom_char_length = 1;
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx, DUK_REOP_CHAR);
|
|
ch = re_ctx->curr_token.num;
|
|
if (re_ctx->re_flags & DUK_RE_FLAG_IGNORE_CASE) {
|
|
ch = duk_unicode_re_canonicalize_char(re_ctx->thr, ch);
|
|
}
|
|
duk__append_u32(re_ctx, ch);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_DIGIT:
|
|
case DUK_RETOK_ATOM_NOT_DIGIT: {
|
|
new_atom_char_length = 1;
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx,
|
|
(re_ctx->curr_token.t == DUK_RETOK_ATOM_DIGIT) ?
|
|
DUK_REOP_RANGES : DUK_REOP_INVRANGES);
|
|
duk__append_u32(re_ctx, sizeof(duk_unicode_re_ranges_digit) / (2 * sizeof(duk_uint16_t)));
|
|
duk__append_u16_list(re_ctx, duk_unicode_re_ranges_digit, sizeof(duk_unicode_re_ranges_digit) / sizeof(duk_uint16_t));
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_WHITE:
|
|
case DUK_RETOK_ATOM_NOT_WHITE: {
|
|
new_atom_char_length = 1;
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx,
|
|
(re_ctx->curr_token.t == DUK_RETOK_ATOM_WHITE) ?
|
|
DUK_REOP_RANGES : DUK_REOP_INVRANGES);
|
|
duk__append_u32(re_ctx, sizeof(duk_unicode_re_ranges_white) / (2 * sizeof(duk_uint16_t)));
|
|
duk__append_u16_list(re_ctx, duk_unicode_re_ranges_white, sizeof(duk_unicode_re_ranges_white) / sizeof(duk_uint16_t));
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_WORD_CHAR:
|
|
case DUK_RETOK_ATOM_NOT_WORD_CHAR: {
|
|
new_atom_char_length = 1;
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx,
|
|
(re_ctx->curr_token.t == DUK_RETOK_ATOM_WORD_CHAR) ?
|
|
DUK_REOP_RANGES : DUK_REOP_INVRANGES);
|
|
duk__append_u32(re_ctx, sizeof(duk_unicode_re_ranges_wordchar) / (2 * sizeof(duk_uint16_t)));
|
|
duk__append_u16_list(re_ctx, duk_unicode_re_ranges_wordchar, sizeof(duk_unicode_re_ranges_wordchar) / sizeof(duk_uint16_t));
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_BACKREFERENCE: {
|
|
duk_uint32_t backref = (duk_uint32_t) re_ctx->curr_token.num;
|
|
if (backref > re_ctx->highest_backref) {
|
|
re_ctx->highest_backref = backref;
|
|
}
|
|
new_atom_char_length = -1; /* mark as complex */
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx, DUK_REOP_BACKREFERENCE);
|
|
duk__append_u32(re_ctx, backref);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_START_CAPTURE_GROUP: {
|
|
duk_uint32_t cap;
|
|
|
|
new_atom_char_length = -1; /* mark as complex (capture handling) */
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
cap = ++re_ctx->captures;
|
|
duk__append_u32(re_ctx, DUK_REOP_SAVE);
|
|
duk__append_u32(re_ctx, cap * 2);
|
|
duk__parse_disjunction(re_ctx, 0, &tmp_disj); /* retval (sub-atom char length) unused, tainted as complex above */
|
|
duk__append_u32(re_ctx, DUK_REOP_SAVE);
|
|
duk__append_u32(re_ctx, cap * 2 + 1);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_START_NONCAPTURE_GROUP: {
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__parse_disjunction(re_ctx, 0, &tmp_disj);
|
|
new_atom_char_length = tmp_disj.charlen;
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_START_CHARCLASS:
|
|
case DUK_RETOK_ATOM_START_CHARCLASS_INVERTED: {
|
|
/*
|
|
* Range parsing is done with a special lexer function which calls
|
|
* us for every range parsed. This is different from how rest of
|
|
* the parsing works, but avoids a heavy, arbitrary size intermediate
|
|
* value type to hold the ranges.
|
|
*
|
|
* Another complication is the handling of character ranges when
|
|
* case insensitive matching is used (see docs for discussion).
|
|
* The range handler callback given to the lexer takes care of this
|
|
* as well.
|
|
*
|
|
* Note that duplicate ranges are not eliminated when parsing character
|
|
* classes, so that canonicalization of
|
|
*
|
|
* [0-9a-fA-Fx-{]
|
|
*
|
|
* creates the result (note the duplicate ranges):
|
|
*
|
|
* [0-9A-FA-FX-Z{-{]
|
|
*
|
|
* where [x-{] is split as a result of canonicalization. The duplicate
|
|
* ranges are not a semantics issue: they work correctly.
|
|
*/
|
|
|
|
duk_uint32_t offset;
|
|
|
|
DUK_DD(DUK_DDPRINT("character class"));
|
|
|
|
/* insert ranges instruction, range count patched in later */
|
|
new_atom_char_length = 1;
|
|
new_atom_start_offset = (duk_int32_t) DUK__BUFLEN(re_ctx);
|
|
duk__append_u32(re_ctx,
|
|
(re_ctx->curr_token.t == DUK_RETOK_ATOM_START_CHARCLASS) ?
|
|
DUK_REOP_RANGES : DUK_REOP_INVRANGES);
|
|
offset = (duk_uint32_t) DUK__BUFLEN(re_ctx); /* patch in range count later */
|
|
|
|
/* parse ranges until character class ends */
|
|
re_ctx->nranges = 0; /* note: ctx-wide temporary */
|
|
duk_lexer_parse_re_ranges(&re_ctx->lex, duk__generate_ranges, (void *) re_ctx);
|
|
|
|
/* insert range count */
|
|
duk__insert_u32(re_ctx, offset, re_ctx->nranges);
|
|
break;
|
|
}
|
|
case DUK_RETOK_ATOM_END_GROUP: {
|
|
if (expect_eof) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
DUK_STR_UNEXPECTED_CLOSING_PAREN);
|
|
}
|
|
goto done;
|
|
}
|
|
case DUK_RETOK_EOF: {
|
|
if (!expect_eof) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
DUK_STR_UNEXPECTED_END_OF_PATTERN);
|
|
}
|
|
goto done;
|
|
}
|
|
default: {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_SYNTAX_ERROR,
|
|
DUK_STR_UNEXPECTED_REGEXP_TOKEN);
|
|
}
|
|
}
|
|
|
|
/* a complex (new) atom taints the result */
|
|
if (new_atom_start_offset >= 0) {
|
|
if (new_atom_char_length < 0) {
|
|
res_charlen = -1;
|
|
} else if (res_charlen >= 0) {
|
|
/* only advance if not tainted */
|
|
res_charlen += new_atom_char_length;
|
|
}
|
|
}
|
|
|
|
/* record previous atom info in case next token is a quantifier */
|
|
atom_start_offset = new_atom_start_offset;
|
|
atom_char_length = new_atom_char_length;
|
|
atom_start_captures = new_atom_start_captures;
|
|
}
|
|
|
|
done:
|
|
|
|
/* finish up pending jump and split for last alternative */
|
|
if (unpatched_disjunction_jump >= 0) {
|
|
duk_uint32_t offset;
|
|
|
|
DUK_ASSERT(unpatched_disjunction_split >= 0);
|
|
offset = unpatched_disjunction_jump;
|
|
offset += duk__insert_jump_offset(re_ctx,
|
|
offset,
|
|
(duk_int32_t) (DUK__BUFLEN(re_ctx) - offset));
|
|
/* offset is now target of the pending split (right after jump) */
|
|
duk__insert_jump_offset(re_ctx,
|
|
unpatched_disjunction_split,
|
|
offset - unpatched_disjunction_split);
|
|
}
|
|
|
|
#if 0
|
|
out_atom_info->end_captures = re_ctx->captures;
|
|
#endif
|
|
out_atom_info->charlen = res_charlen;
|
|
DUK_DDD(DUK_DDDPRINT("parse disjunction finished: charlen=%ld",
|
|
(long) out_atom_info->charlen));
|
|
|
|
re_ctx->recursion_depth--;
|
|
}
|
|
|
|
/*
|
|
* Flags parsing (see E5 Section 15.10.4.1).
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint32_t duk__parse_regexp_flags(duk_hthread *thr, duk_hstring *h) {
|
|
const duk_uint8_t *p;
|
|
const duk_uint8_t *p_end;
|
|
duk_uint32_t flags = 0;
|
|
|
|
p = DUK_HSTRING_GET_DATA(h);
|
|
p_end = p + DUK_HSTRING_GET_BYTELEN(h);
|
|
|
|
/* Note: can be safely scanned as bytes (undecoded) */
|
|
|
|
while (p < p_end) {
|
|
duk_uint8_t c = *p++;
|
|
switch ((int) c) {
|
|
case (int) 'g': {
|
|
if (flags & DUK_RE_FLAG_GLOBAL) {
|
|
goto error;
|
|
}
|
|
flags |= DUK_RE_FLAG_GLOBAL;
|
|
break;
|
|
}
|
|
case (int) 'i': {
|
|
if (flags & DUK_RE_FLAG_IGNORE_CASE) {
|
|
goto error;
|
|
}
|
|
flags |= DUK_RE_FLAG_IGNORE_CASE;
|
|
break;
|
|
}
|
|
case (int) 'm': {
|
|
if (flags & DUK_RE_FLAG_MULTILINE) {
|
|
goto error;
|
|
}
|
|
flags |= DUK_RE_FLAG_MULTILINE;
|
|
break;
|
|
}
|
|
default: {
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
|
|
return flags;
|
|
|
|
error:
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_REGEXP_FLAGS);
|
|
return 0; /* never here */
|
|
}
|
|
|
|
/*
|
|
* Create escaped RegExp source (E5 Section 15.10.3).
|
|
*
|
|
* The current approach is to special case the empty RegExp
|
|
* ('' -> '(?:)') and otherwise replace unescaped '/' characters
|
|
* with '\/' regardless of where they occur in the regexp.
|
|
*
|
|
* Note that normalization does not seem to be necessary for
|
|
* RegExp literals (e.g. '/foo/') because to be acceptable as
|
|
* a RegExp literal, the text between forward slashes must
|
|
* already match the escaping requirements (e.g. must not contain
|
|
* unescaped forward slashes or be empty). Escaping IS needed
|
|
* for expressions like 'new Regexp("...", "")' however.
|
|
* Currently, we re-escape in either case.
|
|
*
|
|
* Also note that we process the source here in UTF-8 encoded
|
|
* form. This is correct, because any non-ASCII characters are
|
|
* passed through without change.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__create_escaped_source(duk_hthread *thr, int idx_pattern) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hstring *h;
|
|
duk_hbuffer_dynamic *buf;
|
|
const duk_uint8_t *p;
|
|
duk_size_t i, n;
|
|
duk_uint_fast8_t c_prev, c;
|
|
|
|
h = duk_get_hstring(ctx, idx_pattern);
|
|
DUK_ASSERT(h != NULL);
|
|
p = (const duk_uint8_t *) DUK_HSTRING_GET_DATA(h);
|
|
n = (duk_size_t) DUK_HSTRING_GET_BYTELEN(h);
|
|
|
|
if (n == 0) {
|
|
/* return '(?:)' */
|
|
duk_push_hstring_stridx(ctx, DUK_STRIDX_ESCAPED_EMPTY_REGEXP);
|
|
return;
|
|
}
|
|
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
buf = (duk_hbuffer_dynamic *) duk_get_hbuffer(ctx, -1);
|
|
DUK_ASSERT(buf != NULL);
|
|
|
|
c_prev = (duk_uint_fast8_t) 0;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
c = p[i];
|
|
|
|
if (c == (duk_uint_fast8_t) '/' && c_prev != (duk_uint_fast8_t) '\\') {
|
|
/* Unescaped '/' ANYWHERE in the regexp (in disjunction,
|
|
* inside a character class, ...) => same escape works.
|
|
*/
|
|
duk_hbuffer_append_byte(thr, buf, (duk_uint8_t) '\\');
|
|
}
|
|
duk_hbuffer_append_byte(thr, buf, (duk_uint8_t) c);
|
|
|
|
c_prev = c;
|
|
}
|
|
|
|
duk_to_string(ctx, -1); /* -> [ ... escaped_source ] */
|
|
}
|
|
|
|
/*
|
|
* Exposed regexp compilation primitive.
|
|
*
|
|
* Sets up a regexp compilation context, and calls duk__parse_disjunction() to do the
|
|
* actual parsing. Handles generation of the compiled regexp header and the
|
|
* "boilerplate" capture of the matching substring (save 0 and 1). Also does some
|
|
* global level regexp checks after recursive compilation has finished.
|
|
*
|
|
* An escaped version of the regexp source, suitable for use as a RegExp instance
|
|
* 'source' property (see E5 Section 15.10.3), is also left on the stack.
|
|
*
|
|
* Input stack: [ pattern flags ]
|
|
* Output stack: [ bytecode escaped_source ] (both as strings)
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_regexp_compile(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_re_compiler_ctx re_ctx;
|
|
duk_lexer_point lex_point;
|
|
duk_hstring *h_pattern;
|
|
duk_hstring *h_flags;
|
|
duk_hbuffer_dynamic *h_buffer;
|
|
duk__re_disjunction_info ign_disj;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
/*
|
|
* Args validation
|
|
*/
|
|
|
|
/* TypeError if fails */
|
|
h_pattern = duk_require_hstring(ctx, -2);
|
|
h_flags = duk_require_hstring(ctx, -1);
|
|
|
|
/*
|
|
* Create normalized 'source' property (E5 Section 15.10.3).
|
|
*/
|
|
|
|
/* [ ... pattern flags ] */
|
|
|
|
duk__create_escaped_source(thr, -2);
|
|
|
|
/* [ ... pattern flags escaped_source ] */
|
|
|
|
/*
|
|
* Init compilation context
|
|
*/
|
|
|
|
duk_push_dynamic_buffer(ctx, 0);
|
|
h_buffer = (duk_hbuffer_dynamic *) duk_require_hbuffer(ctx, -1);
|
|
DUK_ASSERT(DUK_HBUFFER_HAS_DYNAMIC(h_buffer));
|
|
|
|
/* [ ... pattern flags escaped_source buffer ] */
|
|
|
|
DUK_MEMZERO(&re_ctx, sizeof(re_ctx));
|
|
DUK_LEXER_INITCTX(&re_ctx.lex); /* duplicate zeroing, expect for (possible) NULL inits */
|
|
re_ctx.thr = thr;
|
|
re_ctx.lex.thr = thr;
|
|
re_ctx.lex.input = DUK_HSTRING_GET_DATA(h_pattern);
|
|
re_ctx.lex.input_length = DUK_HSTRING_GET_BYTELEN(h_pattern);
|
|
re_ctx.lex.token_limit = DUK_RE_COMPILE_TOKEN_LIMIT;
|
|
re_ctx.buf = h_buffer;
|
|
re_ctx.recursion_limit = DUK_RE_COMPILE_RECURSION_LIMIT;
|
|
re_ctx.re_flags = duk__parse_regexp_flags(thr, h_flags);
|
|
|
|
DUK_DD(DUK_DDPRINT("regexp compiler ctx initialized, flags=0x%08lx, recursion_limit=%ld",
|
|
(unsigned long) re_ctx.re_flags, (long) re_ctx.recursion_limit));
|
|
|
|
/*
|
|
* Init lexer
|
|
*/
|
|
|
|
lex_point.offset = 0; /* expensive init, just want to fill window */
|
|
lex_point.line = 1;
|
|
DUK_LEXER_SETPOINT(&re_ctx.lex, &lex_point);
|
|
|
|
/*
|
|
* Compilation
|
|
*/
|
|
|
|
DUK_D(DUK_DPRINT("starting regexp compilation"));
|
|
|
|
duk__append_u32(&re_ctx, DUK_REOP_SAVE);
|
|
duk__append_u32(&re_ctx, 0);
|
|
duk__parse_disjunction(&re_ctx, 1 /*expect_eof*/, &ign_disj);
|
|
duk__append_u32(&re_ctx, DUK_REOP_SAVE);
|
|
duk__append_u32(&re_ctx, 1);
|
|
duk__append_u32(&re_ctx, DUK_REOP_MATCH);
|
|
|
|
DUK_D(DUK_DPRINT("regexp bytecode size (before header) is %ld bytes",
|
|
(long) DUK_HBUFFER_GET_SIZE(re_ctx.buf)));
|
|
|
|
/*
|
|
* Check for invalid backreferences; note that it is NOT an error
|
|
* to back-reference a capture group which has not yet been introduced
|
|
* in the pattern (as in /\1(foo)/); in fact, the backreference will
|
|
* always match! It IS an error to back-reference a capture group
|
|
* which will never be introduced in the pattern. Thus, we can check
|
|
* for such references only after parsing is complete.
|
|
*/
|
|
|
|
if (re_ctx.highest_backref > re_ctx.captures) {
|
|
DUK_ERROR(thr, DUK_ERR_SYNTAX_ERROR, DUK_STR_INVALID_BACKREFS);
|
|
}
|
|
|
|
/*
|
|
* Emit compiled regexp header: flags, ncaptures
|
|
* (insertion order inverted on purpose)
|
|
*/
|
|
|
|
duk__insert_u32(&re_ctx, 0, (re_ctx.captures + 1) * 2);
|
|
duk__insert_u32(&re_ctx, 0, re_ctx.re_flags);
|
|
|
|
DUK_D(DUK_DPRINT("regexp bytecode size (after header) is %ld bytes",
|
|
(long) DUK_HBUFFER_GET_SIZE(re_ctx.buf)));
|
|
DUK_DDD(DUK_DDDPRINT("compiled regexp: %!xO", (duk_heaphdr *) re_ctx.buf));
|
|
|
|
/* [ ... pattern flags escaped_source buffer ] */
|
|
|
|
duk_to_string(ctx, -1); /* coerce to string */
|
|
|
|
/* [ ... pattern flags escaped_source bytecode ] */
|
|
|
|
/*
|
|
* Finalize stack
|
|
*/
|
|
|
|
duk_remove(ctx, -4); /* -> [ ... flags escaped_source bytecode ] */
|
|
duk_remove(ctx, -3); /* -> [ ... escaped_source bytecode ] */
|
|
|
|
DUK_D(DUK_DPRINT("regexp compilation successful, bytecode: %!T, escaped source: %!T",
|
|
(duk_tval *) duk_get_tval(ctx, -1), (duk_tval *) duk_get_tval(ctx, -2)));
|
|
}
|
|
|
|
/*
|
|
* Create a RegExp instance (E5 Section 15.10.7).
|
|
*
|
|
* Note: the output stack left by duk_regexp_compile() is directly compatible
|
|
* with the input here.
|
|
*
|
|
* Input stack: [ escaped_source bytecode ] (both as strings)
|
|
* Output stack: [ RegExp ]
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_regexp_create_instance(duk_hthread *thr) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_hobject *h;
|
|
duk_hstring *h_bc;
|
|
duk_small_int_t re_flags;
|
|
|
|
/* [ ... escape_source bytecode ] */
|
|
|
|
h_bc = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_bc != NULL);
|
|
DUK_ASSERT(DUK_HSTRING_GET_BYTELEN(h_bc) >= 1); /* always at least the header */
|
|
DUK_ASSERT(DUK_HSTRING_GET_CHARLEN(h_bc) >= 1);
|
|
DUK_ASSERT((duk_small_int_t) DUK_HSTRING_GET_DATA(h_bc)[0] < 0x80); /* flags always encodes to 1 byte */
|
|
re_flags = (duk_small_int_t) DUK_HSTRING_GET_DATA(h_bc)[0];
|
|
|
|
/* [ ... escaped_source bytecode ] */
|
|
|
|
duk_push_object(ctx);
|
|
h = duk_get_hobject(ctx, -1);
|
|
DUK_ASSERT(h != NULL);
|
|
duk_insert(ctx, -3);
|
|
|
|
/* [ ... regexp_object escaped_source bytecode ] */
|
|
|
|
DUK_HOBJECT_SET_CLASS_NUMBER(h, DUK_HOBJECT_CLASS_REGEXP);
|
|
DUK_HOBJECT_SET_PROTOTYPE_UPDREF(thr, h, thr->builtins[DUK_BIDX_REGEXP_PROTOTYPE]);
|
|
|
|
duk_xdef_prop_stridx(ctx, -3, DUK_STRIDX_INT_BYTECODE, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* [ ... regexp_object escaped_source ] */
|
|
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_SOURCE, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
/* [ ... regexp_object ] */
|
|
|
|
duk_push_boolean(ctx, (re_flags & DUK_RE_FLAG_GLOBAL));
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_GLOBAL, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
duk_push_boolean(ctx, (re_flags & DUK_RE_FLAG_IGNORE_CASE));
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_IGNORE_CASE, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
duk_push_boolean(ctx, (re_flags & DUK_RE_FLAG_MULTILINE));
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_MULTILINE, DUK_PROPDESC_FLAGS_NONE);
|
|
|
|
duk_push_int(ctx, 0);
|
|
duk_xdef_prop_stridx(ctx, -2, DUK_STRIDX_LAST_INDEX, DUK_PROPDESC_FLAGS_W);
|
|
|
|
/* [ ... regexp_object ] */
|
|
}
|
|
|
|
#undef DUK__BUFLEN
|
|
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
/* regexp support disabled */
|
|
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
#line 1 "duk_regexp_executor.c"
|
|
/*
|
|
* Regexp executor.
|
|
*
|
|
* Safety: the Ecmascript executor should prevent user from reading and
|
|
* replacing regexp bytecode. Even so, the executor must validate all
|
|
* memory accesses etc. When an invalid access is detected (e.g. a 'save'
|
|
* opcode to invalid, unallocated index) it should fail with an internal
|
|
* error but not cause a segmentation fault.
|
|
*
|
|
* Notes:
|
|
*
|
|
* - Backtrack counts are limited to unsigned 32 bits but should
|
|
* technically be duk_size_t for strings longer than 4G chars.
|
|
* This also requires a regexp bytecode change.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_REGEXP_SUPPORT
|
|
|
|
/*
|
|
* Helpers for UTF-8 handling
|
|
*
|
|
* For bytecode readers the duk_uint32_t and duk_int32_t types are correct
|
|
* because they're used for more than just codepoints.
|
|
*/
|
|
|
|
DUK_LOCAL duk_uint32_t duk__bc_get_u32(duk_re_matcher_ctx *re_ctx, const duk_uint8_t **pc) {
|
|
return (duk_uint32_t) duk_unicode_decode_xutf8_checked(re_ctx->thr, pc, re_ctx->bytecode, re_ctx->bytecode_end);
|
|
}
|
|
|
|
DUK_LOCAL duk_int32_t duk__bc_get_i32(duk_re_matcher_ctx *re_ctx, const duk_uint8_t **pc) {
|
|
duk_uint32_t t;
|
|
|
|
/* signed integer encoding needed to work with UTF-8 */
|
|
t = (duk_uint32_t) duk_unicode_decode_xutf8_checked(re_ctx->thr, pc, re_ctx->bytecode, re_ctx->bytecode_end);
|
|
if (t & 1) {
|
|
return -((duk_int32_t) (t >> 1));
|
|
} else {
|
|
return (duk_int32_t) (t >> 1);
|
|
}
|
|
}
|
|
|
|
DUK_LOCAL const duk_uint8_t *duk__utf8_backtrack(duk_hthread *thr, const duk_uint8_t **ptr, const duk_uint8_t *ptr_start, const duk_uint8_t *ptr_end, duk_uint_fast32_t count) {
|
|
const duk_uint8_t *p;
|
|
|
|
/* Note: allow backtracking from p == ptr_end */
|
|
p = *ptr;
|
|
if (p < ptr_start || p > ptr_end) {
|
|
goto fail;
|
|
}
|
|
|
|
while (count > 0) {
|
|
for (;;) {
|
|
p--;
|
|
if (p < ptr_start) {
|
|
goto fail;
|
|
}
|
|
if ((*p & 0xc0) != 0x80) {
|
|
/* utf-8 continuation bytes have the form 10xx xxxx */
|
|
break;
|
|
}
|
|
}
|
|
count--;
|
|
}
|
|
*ptr = p;
|
|
return p;
|
|
|
|
fail:
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_REGEXP_BACKTRACK_FAILED);
|
|
return NULL; /* never here */
|
|
}
|
|
|
|
DUK_LOCAL const duk_uint8_t *duk__utf8_advance(duk_hthread *thr, const duk_uint8_t **ptr, const duk_uint8_t *ptr_start, const duk_uint8_t *ptr_end, duk_uint_fast32_t count) {
|
|
const duk_uint8_t *p;
|
|
|
|
p = *ptr;
|
|
if (p < ptr_start || p >= ptr_end) {
|
|
goto fail;
|
|
}
|
|
|
|
while (count > 0) {
|
|
for (;;) {
|
|
p++;
|
|
|
|
/* Note: if encoding ends by hitting end of input, we don't check that
|
|
* the encoding is valid, we just assume it is.
|
|
*/
|
|
if (p >= ptr_end || ((*p & 0xc0) != 0x80)) {
|
|
/* utf-8 continuation bytes have the form 10xx xxxx */
|
|
break;
|
|
}
|
|
}
|
|
count--;
|
|
}
|
|
|
|
*ptr = p;
|
|
return p;
|
|
|
|
fail:
|
|
DUK_ERROR(thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_REGEXP_ADVANCE_FAILED);
|
|
return NULL; /* never here */
|
|
}
|
|
|
|
/*
|
|
* Helpers for dealing with the input string
|
|
*/
|
|
|
|
/* Get a (possibly canonicalized) input character from current sp. The input
|
|
* itself is never modified, and captures always record non-canonicalized
|
|
* characters even in case-insensitive matching.
|
|
*/
|
|
DUK_LOCAL duk_codepoint_t duk__inp_get_cp(duk_re_matcher_ctx *re_ctx, const duk_uint8_t **sp) {
|
|
duk_codepoint_t res = (duk_codepoint_t) duk_unicode_decode_xutf8_checked(re_ctx->thr, sp, re_ctx->input, re_ctx->input_end);
|
|
if (re_ctx->re_flags & DUK_RE_FLAG_IGNORE_CASE) {
|
|
res = duk_unicode_re_canonicalize_char(re_ctx->thr, res);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
DUK_LOCAL const duk_uint8_t *duk__inp_backtrack(duk_re_matcher_ctx *re_ctx, const duk_uint8_t **sp, duk_uint_fast32_t count) {
|
|
return duk__utf8_backtrack(re_ctx->thr, sp, re_ctx->input, re_ctx->input_end, count);
|
|
}
|
|
|
|
/* Backtrack utf-8 input and return a (possibly canonicalized) input character. */
|
|
DUK_LOCAL duk_codepoint_t duk__inp_get_prev_cp(duk_re_matcher_ctx *re_ctx, const duk_uint8_t *sp) {
|
|
/* note: caller 'sp' is intentionally not updated here */
|
|
(void) duk__inp_backtrack(re_ctx, &sp, (duk_uint_fast32_t) 1);
|
|
return duk__inp_get_cp(re_ctx, &sp);
|
|
}
|
|
|
|
/*
|
|
* Regexp recursive matching function.
|
|
*
|
|
* Returns 'sp' on successful match (points to character after last matched one),
|
|
* NULL otherwise.
|
|
*
|
|
* The C recursion depth limit check is only performed in this function, this
|
|
* suffices because the function is present in all true recursion required by
|
|
* regexp execution.
|
|
*/
|
|
|
|
DUK_LOCAL const duk_uint8_t *duk__match_regexp(duk_re_matcher_ctx *re_ctx, const duk_uint8_t *pc, const duk_uint8_t *sp) {
|
|
if (re_ctx->recursion_depth >= re_ctx->recursion_limit) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_REGEXP_EXECUTOR_RECURSION_LIMIT);
|
|
}
|
|
re_ctx->recursion_depth++;
|
|
|
|
for (;;) {
|
|
duk_small_int_t op;
|
|
|
|
if (re_ctx->steps_count >= re_ctx->steps_limit) {
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_RANGE_ERROR, DUK_STR_REGEXP_EXECUTOR_STEP_LIMIT);
|
|
}
|
|
re_ctx->steps_count++;
|
|
|
|
op = (duk_small_int_t) duk__bc_get_u32(re_ctx, &pc);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("match: rec=%ld, steps=%ld, pc (after op)=%ld, sp=%ld, op=%ld",
|
|
(long) re_ctx->recursion_depth,
|
|
(long) re_ctx->steps_count,
|
|
(long) (pc - re_ctx->bytecode),
|
|
(long) (sp - re_ctx->input),
|
|
(long) op));
|
|
|
|
switch (op) {
|
|
case DUK_REOP_MATCH: {
|
|
goto match;
|
|
}
|
|
case DUK_REOP_CHAR: {
|
|
/*
|
|
* Byte-based matching would be possible for case-sensitive
|
|
* matching but not for case-insensitive matching. So, we
|
|
* match by decoding the input and bytecode character normally.
|
|
*
|
|
* Bytecode characters are assumed to be already canonicalized.
|
|
* Input characters are canonicalized automatically by
|
|
* duk__inp_get_cp() if necessary.
|
|
*
|
|
* There is no opcode for matching multiple characters. The
|
|
* regexp compiler has trouble joining strings efficiently
|
|
* during compilation. See doc/regexp.txt for more discussion.
|
|
*/
|
|
duk_codepoint_t c1, c2;
|
|
|
|
c1 = (duk_codepoint_t) duk__bc_get_u32(re_ctx, &pc);
|
|
DUK_ASSERT(!(re_ctx->re_flags & DUK_RE_FLAG_IGNORE_CASE) ||
|
|
c1 == duk_unicode_re_canonicalize_char(re_ctx->thr, c1)); /* canonicalized by compiler */
|
|
if (sp >= re_ctx->input_end) {
|
|
goto fail;
|
|
}
|
|
c2 = duk__inp_get_cp(re_ctx, &sp);
|
|
DUK_DDD(DUK_DDDPRINT("char match, c1=%ld, c2=%ld", (long) c1, (long) c2));
|
|
if (c1 != c2) {
|
|
goto fail;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_REOP_PERIOD: {
|
|
duk_codepoint_t c;
|
|
|
|
if (sp >= re_ctx->input_end) {
|
|
goto fail;
|
|
}
|
|
c = duk__inp_get_cp(re_ctx, &sp);
|
|
if (duk_unicode_is_line_terminator(c)) {
|
|
/* E5 Sections 15.10.2.8, 7.3 */
|
|
goto fail;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_REOP_RANGES:
|
|
case DUK_REOP_INVRANGES: {
|
|
duk_uint32_t n;
|
|
duk_codepoint_t c;
|
|
duk_small_int_t match;
|
|
|
|
n = duk__bc_get_u32(re_ctx, &pc);
|
|
if (sp >= re_ctx->input_end) {
|
|
goto fail;
|
|
}
|
|
c = duk__inp_get_cp(re_ctx, &sp);
|
|
|
|
match = 0;
|
|
while (n) {
|
|
duk_codepoint_t r1, r2;
|
|
r1 = (duk_codepoint_t) duk__bc_get_u32(re_ctx, &pc);
|
|
r2 = (duk_codepoint_t) duk__bc_get_u32(re_ctx, &pc);
|
|
DUK_DDD(DUK_DDDPRINT("matching ranges/invranges, n=%ld, r1=%ld, r2=%ld, c=%ld",
|
|
(long) n, (long) r1, (long) r2, (long) c));
|
|
if (c >= r1 && c <= r2) {
|
|
/* Note: don't bail out early, we must read all the ranges from
|
|
* bytecode. Another option is to skip them efficiently after
|
|
* breaking out of here. Prefer smallest code.
|
|
*/
|
|
match = 1;
|
|
}
|
|
n--;
|
|
}
|
|
|
|
if (op == DUK_REOP_RANGES) {
|
|
if (!match) {
|
|
goto fail;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(op == DUK_REOP_INVRANGES);
|
|
if (match) {
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DUK_REOP_ASSERT_START: {
|
|
duk_codepoint_t c;
|
|
|
|
if (sp <= re_ctx->input) {
|
|
break;
|
|
}
|
|
if (!(re_ctx->re_flags & DUK_RE_FLAG_MULTILINE)) {
|
|
goto fail;
|
|
}
|
|
c = duk__inp_get_prev_cp(re_ctx, sp);
|
|
if (duk_unicode_is_line_terminator(c)) {
|
|
/* E5 Sections 15.10.2.8, 7.3 */
|
|
break;
|
|
}
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_ASSERT_END: {
|
|
duk_codepoint_t c;
|
|
const duk_uint8_t *tmp_sp;
|
|
|
|
if (sp >= re_ctx->input_end) {
|
|
break;
|
|
}
|
|
if (!(re_ctx->re_flags & DUK_RE_FLAG_MULTILINE)) {
|
|
goto fail;
|
|
}
|
|
tmp_sp = sp;
|
|
c = duk__inp_get_cp(re_ctx, &tmp_sp);
|
|
if (duk_unicode_is_line_terminator(c)) {
|
|
/* E5 Sections 15.10.2.8, 7.3 */
|
|
break;
|
|
}
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_ASSERT_WORD_BOUNDARY:
|
|
case DUK_REOP_ASSERT_NOT_WORD_BOUNDARY: {
|
|
/*
|
|
* E5 Section 15.10.2.6. The previous and current character
|
|
* should -not- be canonicalized as they are now. However,
|
|
* canonicalization does not affect the result of IsWordChar()
|
|
* (which depends on Unicode characters never canonicalizing
|
|
* into ASCII characters) so this does not matter.
|
|
*/
|
|
duk_small_int_t w1, w2;
|
|
|
|
if (sp <= re_ctx->input) {
|
|
w1 = 0; /* not a wordchar */
|
|
} else {
|
|
duk_codepoint_t c;
|
|
c = duk__inp_get_prev_cp(re_ctx, sp);
|
|
w1 = duk_unicode_re_is_wordchar(c);
|
|
}
|
|
if (sp >= re_ctx->input_end) {
|
|
w2 = 0; /* not a wordchar */
|
|
} else {
|
|
const duk_uint8_t *tmp_sp = sp; /* dummy so sp won't get updated */
|
|
duk_codepoint_t c;
|
|
c = duk__inp_get_cp(re_ctx, &tmp_sp);
|
|
w2 = duk_unicode_re_is_wordchar(c);
|
|
}
|
|
|
|
if (op == DUK_REOP_ASSERT_WORD_BOUNDARY) {
|
|
if (w1 == w2) {
|
|
goto fail;
|
|
}
|
|
} else {
|
|
DUK_ASSERT(op == DUK_REOP_ASSERT_NOT_WORD_BOUNDARY);
|
|
if (w1 != w2) {
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case DUK_REOP_JUMP: {
|
|
duk_int32_t skip;
|
|
|
|
skip = duk__bc_get_i32(re_ctx, &pc);
|
|
pc += skip;
|
|
break;
|
|
}
|
|
case DUK_REOP_SPLIT1: {
|
|
/* split1: prefer direct execution (no jump) */
|
|
const duk_uint8_t *sub_sp;
|
|
duk_int32_t skip;
|
|
|
|
skip = duk__bc_get_i32(re_ctx, &pc);
|
|
sub_sp = duk__match_regexp(re_ctx, pc, sp);
|
|
if (sub_sp) {
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
pc += skip;
|
|
break;
|
|
}
|
|
case DUK_REOP_SPLIT2: {
|
|
/* split2: prefer jump execution (not direct) */
|
|
const duk_uint8_t *sub_sp;
|
|
duk_int32_t skip;
|
|
|
|
skip = duk__bc_get_i32(re_ctx, &pc);
|
|
sub_sp = duk__match_regexp(re_ctx, pc + skip, sp);
|
|
if (sub_sp) {
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
break;
|
|
}
|
|
case DUK_REOP_SQMINIMAL: {
|
|
duk_uint32_t q, qmin, qmax;
|
|
duk_int32_t skip;
|
|
const duk_uint8_t *sub_sp;
|
|
|
|
qmin = duk__bc_get_u32(re_ctx, &pc);
|
|
qmax = duk__bc_get_u32(re_ctx, &pc);
|
|
skip = duk__bc_get_i32(re_ctx, &pc);
|
|
DUK_DDD(DUK_DDDPRINT("minimal quantifier, qmin=%lu, qmax=%lu, skip=%ld",
|
|
(unsigned long) qmin, (unsigned long) qmax, (long) skip));
|
|
|
|
q = 0;
|
|
while (q <= qmax) {
|
|
if (q >= qmin) {
|
|
sub_sp = duk__match_regexp(re_ctx, pc + skip, sp);
|
|
if (sub_sp) {
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
}
|
|
sub_sp = duk__match_regexp(re_ctx, pc, sp);
|
|
if (!sub_sp) {
|
|
break;
|
|
}
|
|
sp = sub_sp;
|
|
q++;
|
|
}
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_SQGREEDY: {
|
|
duk_uint32_t q, qmin, qmax, atomlen;
|
|
duk_int32_t skip;
|
|
const duk_uint8_t *sub_sp;
|
|
|
|
qmin = duk__bc_get_u32(re_ctx, &pc);
|
|
qmax = duk__bc_get_u32(re_ctx, &pc);
|
|
atomlen = duk__bc_get_u32(re_ctx, &pc);
|
|
skip = duk__bc_get_i32(re_ctx, &pc);
|
|
DUK_DDD(DUK_DDDPRINT("greedy quantifier, qmin=%lu, qmax=%lu, atomlen=%lu, skip=%ld",
|
|
(unsigned long) qmin, (unsigned long) qmax, (unsigned long) atomlen, (long) skip));
|
|
|
|
q = 0;
|
|
while (q < qmax) {
|
|
sub_sp = duk__match_regexp(re_ctx, pc, sp);
|
|
if (!sub_sp) {
|
|
break;
|
|
}
|
|
sp = sub_sp;
|
|
q++;
|
|
}
|
|
while (q >= qmin) {
|
|
sub_sp = duk__match_regexp(re_ctx, pc + skip, sp);
|
|
if (sub_sp) {
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
if (q == qmin) {
|
|
break;
|
|
}
|
|
|
|
/* Note: if atom were to contain e.g. captures, we would need to
|
|
* re-match the atom to get correct captures. Simply quantifiers
|
|
* do not allow captures in their atom now, so this is not an issue.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("greedy quantifier, backtrack %ld characters (atomlen)",
|
|
(long) atomlen));
|
|
sp = duk__inp_backtrack(re_ctx, &sp, (duk_uint_fast32_t) atomlen);
|
|
q--;
|
|
}
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_SAVE: {
|
|
duk_uint32_t idx;
|
|
const duk_uint8_t *old;
|
|
const duk_uint8_t *sub_sp;
|
|
|
|
idx = duk__bc_get_u32(re_ctx, &pc);
|
|
if (idx >= re_ctx->nsaved) {
|
|
/* idx is unsigned, < 0 check is not necessary */
|
|
DUK_D(DUK_DPRINT("internal error, regexp save index insane: idx=%ld", (long) idx));
|
|
goto internal_error;
|
|
}
|
|
old = re_ctx->saved[idx];
|
|
re_ctx->saved[idx] = sp;
|
|
sub_sp = duk__match_regexp(re_ctx, pc, sp);
|
|
if (sub_sp) {
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
re_ctx->saved[idx] = old;
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_WIPERANGE: {
|
|
/* Wipe capture range and save old values for backtracking.
|
|
*
|
|
* XXX: this typically happens with a relatively small idx_count.
|
|
* It might be useful to handle cases where the count is small
|
|
* (say <= 8) by saving the values in stack instead. This would
|
|
* reduce memory churn and improve performance, at the cost of a
|
|
* slightly higher code footprint.
|
|
*/
|
|
duk_uint32_t idx_start, idx_count;
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
duk_uint32_t idx_end, idx;
|
|
#endif
|
|
duk_uint8_t **range_save;
|
|
const duk_uint8_t *sub_sp;
|
|
|
|
idx_start = duk__bc_get_u32(re_ctx, &pc);
|
|
idx_count = duk__bc_get_u32(re_ctx, &pc);
|
|
DUK_DDD(DUK_DDDPRINT("wipe saved range: start=%ld, count=%ld -> [%ld,%ld] (captures [%ld,%ld])",
|
|
(long) idx_start, (long) idx_count,
|
|
(long) idx_start, (long) (idx_start + idx_count - 1),
|
|
(long) (idx_start / 2), (long) ((idx_start + idx_count - 1) / 2)));
|
|
if (idx_start + idx_count > re_ctx->nsaved || idx_count == 0) {
|
|
/* idx is unsigned, < 0 check is not necessary */
|
|
DUK_D(DUK_DPRINT("internal error, regexp wipe indices insane: idx_start=%ld, idx_count=%ld",
|
|
(long) idx_start, (long) idx_count));
|
|
goto internal_error;
|
|
}
|
|
DUK_ASSERT(idx_count > 0);
|
|
|
|
duk_require_stack((duk_context *) re_ctx->thr, 1);
|
|
range_save = (duk_uint8_t **) duk_push_fixed_buffer((duk_context *) re_ctx->thr,
|
|
sizeof(duk_uint8_t *) * idx_count);
|
|
DUK_ASSERT(range_save != NULL);
|
|
DUK_MEMCPY(range_save, re_ctx->saved + idx_start, sizeof(duk_uint8_t *) * idx_count);
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
idx_end = idx_start + idx_count;
|
|
for (idx = idx_start; idx < idx_end; idx++) {
|
|
re_ctx->saved[idx] = NULL;
|
|
}
|
|
#else
|
|
DUK_MEMZERO((void *) (re_ctx->saved + idx_start), sizeof(duk_uint8_t *) * idx_count);
|
|
#endif
|
|
|
|
sub_sp = duk__match_regexp(re_ctx, pc, sp);
|
|
if (sub_sp) {
|
|
/* match: keep wiped/resaved values */
|
|
DUK_DDD(DUK_DDDPRINT("match: keep wiped/resaved values [%ld,%ld] (captures [%ld,%ld])",
|
|
(long) idx_start, (long) (idx_start + idx_count - 1),
|
|
(long) (idx_start / 2), (long) ((idx_start + idx_count - 1) / 2)));
|
|
duk_pop((duk_context *) re_ctx->thr);
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
|
|
/* fail: restore saves */
|
|
DUK_DDD(DUK_DDDPRINT("fail: restore wiped/resaved values [%ld,%ld] (captures [%ld,%ld])",
|
|
(long) idx_start, (long) (idx_start + idx_count - 1),
|
|
(long) (idx_start / 2), (long) ((idx_start + idx_count - 1) / 2)));
|
|
DUK_MEMCPY((void *) (re_ctx->saved + idx_start),
|
|
(const void *) range_save,
|
|
sizeof(duk_uint8_t *) * idx_count);
|
|
duk_pop((duk_context *) re_ctx->thr);
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_LOOKPOS:
|
|
case DUK_REOP_LOOKNEG: {
|
|
/*
|
|
* Needs a save of multiple saved[] entries depending on what range
|
|
* may be overwritten. Because the regexp parser does no such analysis,
|
|
* we currently save the entire saved array here. Lookaheads are thus
|
|
* a bit expensive. Note that the saved array is not needed for just
|
|
* the lookahead sub-match, but for the matching of the entire sequel.
|
|
*
|
|
* The temporary save buffer is pushed on to the valstack to handle
|
|
* errors correctly. Each lookahead causes a C recursion and pushes
|
|
* more stuff on the value stack. If the C recursion limit is less
|
|
* than the value stack spare, there is no need to check the stack.
|
|
* We do so regardless, just in case.
|
|
*/
|
|
|
|
duk_int32_t skip;
|
|
duk_uint8_t **full_save;
|
|
const duk_uint8_t *sub_sp;
|
|
|
|
DUK_ASSERT(re_ctx->nsaved > 0);
|
|
|
|
duk_require_stack((duk_context *) re_ctx->thr, 1);
|
|
full_save = (duk_uint8_t **) duk_push_fixed_buffer((duk_context *) re_ctx->thr,
|
|
sizeof(duk_uint8_t *) * re_ctx->nsaved);
|
|
DUK_ASSERT(full_save != NULL);
|
|
DUK_MEMCPY(full_save, re_ctx->saved, sizeof(duk_uint8_t *) * re_ctx->nsaved);
|
|
|
|
skip = duk__bc_get_i32(re_ctx, &pc);
|
|
sub_sp = duk__match_regexp(re_ctx, pc, sp);
|
|
if (op == DUK_REOP_LOOKPOS) {
|
|
if (!sub_sp) {
|
|
goto lookahead_fail;
|
|
}
|
|
} else {
|
|
if (sub_sp) {
|
|
goto lookahead_fail;
|
|
}
|
|
}
|
|
sub_sp = duk__match_regexp(re_ctx, pc + skip, sp);
|
|
if (sub_sp) {
|
|
/* match: keep saves */
|
|
duk_pop((duk_context *) re_ctx->thr);
|
|
sp = sub_sp;
|
|
goto match;
|
|
}
|
|
|
|
/* fall through */
|
|
|
|
lookahead_fail:
|
|
/* fail: restore saves */
|
|
DUK_MEMCPY((void *) re_ctx->saved,
|
|
(const void *) full_save,
|
|
sizeof(duk_uint8_t *) * re_ctx->nsaved);
|
|
duk_pop((duk_context *) re_ctx->thr);
|
|
goto fail;
|
|
}
|
|
case DUK_REOP_BACKREFERENCE: {
|
|
/*
|
|
* Byte matching for back-references would be OK in case-
|
|
* sensitive matching. In case-insensitive matching we need
|
|
* to canonicalize characters, so back-reference matching needs
|
|
* to be done with codepoints instead. So, we just decode
|
|
* everything normally here, too.
|
|
*
|
|
* Note: back-reference index which is 0 or higher than
|
|
* NCapturingParens (= number of capturing parens in the
|
|
* -entire- regexp) is a compile time error. However, a
|
|
* backreference referring to a valid capture which has
|
|
* not matched anything always succeeds! See E5 Section
|
|
* 15.10.2.9, step 5, sub-step 3.
|
|
*/
|
|
duk_uint32_t idx;
|
|
const duk_uint8_t *p;
|
|
|
|
idx = duk__bc_get_u32(re_ctx, &pc);
|
|
idx = idx << 1; /* backref n -> saved indices [n*2, n*2+1] */
|
|
if (idx < 2 || idx + 1 >= re_ctx->nsaved) {
|
|
/* regexp compiler should catch these */
|
|
DUK_D(DUK_DPRINT("internal error, backreference index insane"));
|
|
goto internal_error;
|
|
}
|
|
if (!re_ctx->saved[idx] || !re_ctx->saved[idx+1]) {
|
|
/* capture is 'undefined', always matches! */
|
|
DUK_DDD(DUK_DDDPRINT("backreference: saved[%ld,%ld] not complete, always match",
|
|
(long) idx, (long) (idx + 1)));
|
|
break;
|
|
}
|
|
DUK_DDD(DUK_DDDPRINT("backreference: match saved[%ld,%ld]", (long) idx, (long) (idx + 1)));
|
|
|
|
p = re_ctx->saved[idx];
|
|
while (p < re_ctx->saved[idx+1]) {
|
|
duk_codepoint_t c1, c2;
|
|
|
|
/* Note: not necessary to check p against re_ctx->input_end:
|
|
* the memory access is checked by duk__inp_get_cp(), while
|
|
* valid compiled regexps cannot write a saved[] entry
|
|
* which points to outside the string.
|
|
*/
|
|
if (sp >= re_ctx->input_end) {
|
|
goto fail;
|
|
}
|
|
c1 = duk__inp_get_cp(re_ctx, &p);
|
|
c2 = duk__inp_get_cp(re_ctx, &sp);
|
|
if (c1 != c2) {
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default: {
|
|
DUK_D(DUK_DPRINT("internal error, regexp opcode error: %ld", (long) op));
|
|
goto internal_error;
|
|
}
|
|
}
|
|
}
|
|
|
|
match:
|
|
re_ctx->recursion_depth--;
|
|
return sp;
|
|
|
|
fail:
|
|
re_ctx->recursion_depth--;
|
|
return NULL;
|
|
|
|
internal_error:
|
|
DUK_ERROR(re_ctx->thr, DUK_ERR_INTERNAL_ERROR, DUK_STR_REGEXP_INTERNAL_ERROR);
|
|
return NULL; /* never here */
|
|
}
|
|
|
|
/*
|
|
* Exposed matcher function which provides the semantics of RegExp.prototype.exec().
|
|
*
|
|
* RegExp.prototype.test() has the same semantics as exec() but does not return the
|
|
* result object (which contains the matching string and capture groups). Currently
|
|
* there is no separate test() helper, so a temporary result object is created and
|
|
* discarded if test() is needed. This is intentional, to save code space.
|
|
*
|
|
* Input stack: [ ... re_obj input ]
|
|
* Output stack: [ ... result ]
|
|
*/
|
|
|
|
DUK_LOCAL void duk__regexp_match_helper(duk_hthread *thr, duk_small_int_t force_global) {
|
|
duk_context *ctx = (duk_context *) thr;
|
|
duk_re_matcher_ctx re_ctx;
|
|
duk_hobject *h_regexp;
|
|
duk_hstring *h_bytecode;
|
|
duk_hstring *h_input;
|
|
const duk_uint8_t *pc;
|
|
const duk_uint8_t *sp;
|
|
duk_small_int_t match = 0;
|
|
duk_small_int_t global;
|
|
duk_uint_fast32_t i;
|
|
double d;
|
|
duk_uint32_t char_offset;
|
|
|
|
DUK_ASSERT(thr != NULL);
|
|
DUK_ASSERT(ctx != NULL);
|
|
|
|
DUK_DD(DUK_DDPRINT("regexp match: regexp=%!T, input=%!T",
|
|
(duk_tval *) duk_get_tval(ctx, -2),
|
|
(duk_tval *) duk_get_tval(ctx, -1)));
|
|
|
|
/*
|
|
* Regexp instance check, bytecode check, input coercion.
|
|
*
|
|
* See E5 Section 15.10.6.
|
|
*/
|
|
|
|
/* TypeError if wrong; class check, see E5 Section 15.10.6 */
|
|
h_regexp = duk_require_hobject_with_class(ctx, -2, DUK_HOBJECT_CLASS_REGEXP);
|
|
DUK_ASSERT(h_regexp != NULL);
|
|
DUK_ASSERT(DUK_HOBJECT_GET_CLASS_NUMBER(h_regexp) == DUK_HOBJECT_CLASS_REGEXP);
|
|
DUK_UNREF(h_regexp);
|
|
|
|
duk_to_string(ctx, -1);
|
|
h_input = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_input != NULL);
|
|
|
|
duk_get_prop_stridx(ctx, -2, DUK_STRIDX_INT_BYTECODE); /* [ ... re_obj input ] -> [ ... re_obj input bc ] */
|
|
h_bytecode = duk_require_hstring(ctx, -1); /* no regexp instance should exist without a non-configurable bytecode property */
|
|
DUK_ASSERT(h_bytecode != NULL);
|
|
|
|
/*
|
|
* Basic context initialization.
|
|
*
|
|
* Some init values are read from the bytecode header
|
|
* whose format is (UTF-8 codepoints):
|
|
*
|
|
* uint flags
|
|
* uint nsaved (even, 2n+2 where n = num captures)
|
|
*/
|
|
|
|
/* [ ... re_obj input bc ] */
|
|
|
|
DUK_MEMZERO(&re_ctx, sizeof(re_ctx));
|
|
|
|
re_ctx.thr = thr;
|
|
re_ctx.input = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h_input);
|
|
re_ctx.input_end = re_ctx.input + DUK_HSTRING_GET_BYTELEN(h_input);
|
|
re_ctx.bytecode = (duk_uint8_t *) DUK_HSTRING_GET_DATA(h_bytecode);
|
|
re_ctx.bytecode_end = re_ctx.bytecode + DUK_HSTRING_GET_BYTELEN(h_bytecode);
|
|
re_ctx.saved = NULL;
|
|
re_ctx.recursion_limit = DUK_RE_EXECUTE_RECURSION_LIMIT;
|
|
re_ctx.steps_limit = DUK_RE_EXECUTE_STEPS_LIMIT;
|
|
|
|
/* read header */
|
|
pc = re_ctx.bytecode;
|
|
re_ctx.re_flags = duk__bc_get_u32(&re_ctx, &pc);
|
|
re_ctx.nsaved = duk__bc_get_u32(&re_ctx, &pc);
|
|
re_ctx.bytecode = pc;
|
|
|
|
DUK_ASSERT(DUK_RE_FLAG_GLOBAL < 0x10000UL); /* must fit into duk_small_int_t */
|
|
global = (duk_small_int_t) (force_global | (re_ctx.re_flags & DUK_RE_FLAG_GLOBAL));
|
|
|
|
DUK_ASSERT(re_ctx.nsaved >= 2);
|
|
DUK_ASSERT((re_ctx.nsaved % 2) == 0);
|
|
|
|
duk_push_fixed_buffer(ctx, sizeof(duk_uint8_t *) * re_ctx.nsaved);
|
|
re_ctx.saved = (const duk_uint8_t **) duk_get_buffer(ctx, -1, NULL);
|
|
DUK_ASSERT(re_ctx.saved != NULL);
|
|
|
|
/* [ ... re_obj input bc saved_buf ] */
|
|
|
|
/* buffer is automatically zeroed */
|
|
#ifdef DUK_USE_EXPLICIT_NULL_INIT
|
|
for (i = 0; i < re_ctx.nsaved; i++) {
|
|
re_ctx.saved[i] = (duk_uint8_t *) NULL;
|
|
}
|
|
#endif
|
|
|
|
DUK_DDD(DUK_DDDPRINT("regexp ctx initialized, flags=0x%08lx, nsaved=%ld, recursion_limit=%ld, steps_limit=%ld",
|
|
(unsigned long) re_ctx.re_flags, (long) re_ctx.nsaved, (long) re_ctx.recursion_limit,
|
|
(long) re_ctx.steps_limit));
|
|
|
|
/*
|
|
* Get starting character offset for match, and initialize 'sp' based on it.
|
|
*
|
|
* Note: lastIndex is non-configurable so it must be present (we check the
|
|
* internal class of the object above, so we know it is). User code can set
|
|
* its value to an arbitrary (garbage) value though; E5 requires that lastIndex
|
|
* be coerced to a number before using. The code below works even if the
|
|
* property is missing: the value will then be coerced to zero.
|
|
*
|
|
* Note: lastIndex may be outside Uint32 range even after ToInteger() coercion.
|
|
* For instance, ToInteger(+Infinity) = +Infinity. We track the match offset
|
|
* as an integer, but pre-check it to be inside the 32-bit range before the loop.
|
|
* If not, the check in E5 Section 15.10.6.2, step 9.a applies.
|
|
*/
|
|
|
|
/* XXX: lastIndex handling produces a lot of asm */
|
|
|
|
/* [ ... re_obj input bc saved_buf ] */
|
|
|
|
duk_get_prop_stridx(ctx, -4, DUK_STRIDX_LAST_INDEX); /* -> [ ... re_obj input bc saved_buf lastIndex ] */
|
|
(void) duk_to_int(ctx, -1); /* ToInteger(lastIndex) */
|
|
d = duk_get_number(ctx, -1); /* integer, but may be +/- Infinite, +/- zero (not NaN, though) */
|
|
duk_pop(ctx);
|
|
|
|
if (global) {
|
|
if (d < 0.0 || d > (double) DUK_HSTRING_GET_CHARLEN(h_input)) {
|
|
/* match fail */
|
|
char_offset = 0; /* not really necessary */
|
|
DUK_ASSERT(match == 0);
|
|
goto match_over;
|
|
}
|
|
char_offset = (duk_uint32_t) d;
|
|
} else {
|
|
/* lastIndex must be ignored for non-global regexps, but get the
|
|
* value for (theoretical) side effects. No side effects can
|
|
* really occur, because lastIndex is a normal property and is
|
|
* always non-configurable for RegExp instances.
|
|
*/
|
|
char_offset = (duk_uint32_t) 0;
|
|
}
|
|
|
|
sp = re_ctx.input + duk_heap_strcache_offset_char2byte(thr, h_input, char_offset);
|
|
|
|
/*
|
|
* Match loop.
|
|
*
|
|
* Try matching at different offsets until match found or input exhausted.
|
|
*/
|
|
|
|
/* [ ... re_obj input bc saved_buf ] */
|
|
|
|
DUK_ASSERT(match == 0);
|
|
|
|
for (;;) {
|
|
/* char offset in [0, h_input->clen] (both ends inclusive), checked before entry */
|
|
DUK_ASSERT_DISABLE(char_offset >= 0);
|
|
DUK_ASSERT(char_offset <= DUK_HSTRING_GET_CHARLEN(h_input));
|
|
|
|
/* Note: ctx.steps is intentionally not reset, it applies to the entire unanchored match */
|
|
DUK_ASSERT(re_ctx.recursion_depth == 0);
|
|
|
|
DUK_DDD(DUK_DDDPRINT("attempt match at char offset %ld; %p [%p,%p]",
|
|
(long) char_offset, (void *) sp, (void *) re_ctx.input,
|
|
(void *) re_ctx.input_end));
|
|
|
|
/*
|
|
* Note:
|
|
*
|
|
* - duk__match_regexp() is required not to longjmp() in ordinary "non-match"
|
|
* conditions; a longjmp() will terminate the entire matching process.
|
|
*
|
|
* - Clearing saved[] is not necessary because backtracking does it
|
|
*
|
|
* - Backtracking also rewinds ctx.recursion back to zero, unless an
|
|
* internal/limit error occurs (which causes a longjmp())
|
|
*
|
|
* - If we supported anchored matches, we would break out here
|
|
* unconditionally; however, Ecmascript regexps don't have anchored
|
|
* matches. It might make sense to implement a fast bail-out if
|
|
* the regexp begins with '^' and sp is not 0: currently we'll just
|
|
* run through the entire input string, trivially failing the match
|
|
* at every non-zero offset.
|
|
*/
|
|
|
|
if (duk__match_regexp(&re_ctx, re_ctx.bytecode, sp) != NULL) {
|
|
DUK_DDD(DUK_DDDPRINT("match at offset %ld", (long) char_offset));
|
|
match = 1;
|
|
break;
|
|
}
|
|
|
|
/* advance by one character (code point) and one char_offset */
|
|
char_offset++;
|
|
if (char_offset > DUK_HSTRING_GET_CHARLEN(h_input)) {
|
|
/*
|
|
* Note:
|
|
*
|
|
* - Intentionally attempt (empty) match at char_offset == k_input->clen
|
|
*
|
|
* - Negative char_offsets have been eliminated and char_offset is duk_uint32_t
|
|
* -> no need or use for a negative check
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("no match after trying all sp offsets"));
|
|
break;
|
|
}
|
|
|
|
/* avoid calling at end of input, will DUK_ERROR (above check suffices to avoid this) */
|
|
(void) duk__utf8_advance(thr, &sp, re_ctx.input, re_ctx.input_end, (duk_uint_fast32_t) 1);
|
|
}
|
|
|
|
match_over:
|
|
|
|
/*
|
|
* Matching complete, create result array or return a 'null'. Update lastIndex
|
|
* if necessary. See E5 Section 15.10.6.2.
|
|
*
|
|
* Because lastIndex is a character (not byte) offset, we need the character
|
|
* length of the match which we conveniently get as a side effect of interning
|
|
* the matching substring (0th index of result array).
|
|
*
|
|
* saved[0] start pointer (~ byte offset) of current match
|
|
* saved[1] end pointer (~ byte offset) of current match (exclusive)
|
|
* char_offset start character offset of current match (-> .index of result)
|
|
* char_end_offset end character offset (computed below)
|
|
*/
|
|
|
|
/* [ ... re_obj input bc saved_buf ] */
|
|
|
|
if (match) {
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
duk_hobject *h_res;
|
|
#endif
|
|
duk_uint32_t char_end_offset = 0;
|
|
|
|
DUK_DDD(DUK_DDDPRINT("regexp matches at char_offset %ld", (long) char_offset));
|
|
|
|
DUK_ASSERT(re_ctx.nsaved >= 2); /* must have start and end */
|
|
DUK_ASSERT((re_ctx.nsaved % 2) == 0); /* and even number */
|
|
|
|
/* XXX: Array size is known before and (2 * re_ctx.nsaved) but not taken
|
|
* advantage of now. The array is not compacted either, as regexp match
|
|
* objects are usually short lived.
|
|
*/
|
|
|
|
duk_push_array(ctx);
|
|
|
|
#ifdef DUK_USE_ASSERTIONS
|
|
h_res = duk_require_hobject(ctx, -1);
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXTENSIBLE(h_res));
|
|
DUK_ASSERT(DUK_HOBJECT_HAS_EXOTIC_ARRAY(h_res));
|
|
DUK_ASSERT(DUK_HOBJECT_GET_CLASS_NUMBER(h_res) == DUK_HOBJECT_CLASS_ARRAY);
|
|
#endif
|
|
|
|
/* [ ... re_obj input bc saved_buf res_obj ] */
|
|
|
|
duk_push_u32(ctx, char_offset);
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_INDEX);
|
|
|
|
duk_dup(ctx, -4);
|
|
duk_xdef_prop_stridx_wec(ctx, -2, DUK_STRIDX_INPUT);
|
|
|
|
for (i = 0; i < re_ctx.nsaved; i += 2) {
|
|
/* Captures which are undefined have NULL pointers and are returned
|
|
* as 'undefined'. The same is done when saved[] pointers are insane
|
|
* (this should, of course, never happen in practice).
|
|
*/
|
|
if (re_ctx.saved[i] && re_ctx.saved[i+1] && re_ctx.saved[i+1] >= re_ctx.saved[i]) {
|
|
duk_hstring *h_saved;
|
|
|
|
duk_push_lstring(ctx,
|
|
(char *) re_ctx.saved[i],
|
|
(duk_size_t) (re_ctx.saved[i+1] - re_ctx.saved[i]));
|
|
h_saved = duk_get_hstring(ctx, -1);
|
|
DUK_ASSERT(h_saved != NULL);
|
|
|
|
if (i == 0) {
|
|
/* Assumes that saved[0] and saved[1] are always
|
|
* set by regexp bytecode (if not, char_end_offset
|
|
* will be zero). Also assumes clen reflects the
|
|
* correct char length.
|
|
*/
|
|
char_end_offset = char_offset + DUK_HSTRING_GET_CHARLEN(h_saved);
|
|
}
|
|
} else {
|
|
duk_push_undefined(ctx);
|
|
}
|
|
|
|
/* [ ... re_obj input bc saved_buf res_obj val ] */
|
|
duk_put_prop_index(ctx, -2, i / 2);
|
|
}
|
|
|
|
/* [ ... re_obj input bc saved_buf res_obj ] */
|
|
|
|
/* NB: 'length' property is automatically updated by the array setup loop */
|
|
|
|
if (global) {
|
|
/* global regexp: lastIndex updated on match */
|
|
duk_push_u32(ctx, char_end_offset);
|
|
duk_put_prop_stridx(ctx, -6, DUK_STRIDX_LAST_INDEX);
|
|
} else {
|
|
/* non-global regexp: lastIndex never updated on match */
|
|
;
|
|
}
|
|
} else {
|
|
/*
|
|
* No match, E5 Section 15.10.6.2, step 9.a.i - 9.a.ii apply, regardless
|
|
* of 'global' flag of the RegExp. In particular, if lastIndex is invalid
|
|
* initially, it is reset to zero.
|
|
*/
|
|
|
|
DUK_DDD(DUK_DDDPRINT("regexp does not match"));
|
|
|
|
duk_push_null(ctx);
|
|
|
|
/* [ ... re_obj input bc saved_buf res_obj ] */
|
|
|
|
duk_push_int(ctx, 0);
|
|
duk_put_prop_stridx(ctx, -6, DUK_STRIDX_LAST_INDEX);
|
|
}
|
|
|
|
/* [ ... re_obj input bc saved_buf res_obj ] */
|
|
|
|
duk_insert(ctx, -5);
|
|
|
|
/* [ ... res_obj re_obj input bc saved_buf ] */
|
|
|
|
duk_pop_n(ctx, 4);
|
|
|
|
/* [ ... res_obj ] */
|
|
|
|
/* XXX: these last tricks are unnecessary if the function is made
|
|
* a genuine native function.
|
|
*/
|
|
}
|
|
|
|
DUK_INTERNAL void duk_regexp_match(duk_hthread *thr) {
|
|
duk__regexp_match_helper(thr, 0 /*force_global*/);
|
|
}
|
|
|
|
/* This variant is needed by String.prototype.split(); it needs to perform
|
|
* global-style matching on a cloned RegExp which is potentially non-global.
|
|
*/
|
|
DUK_INTERNAL void duk_regexp_match_force_global(duk_hthread *thr) {
|
|
duk__regexp_match_helper(thr, 1 /*force_global*/);
|
|
}
|
|
|
|
#else /* DUK_USE_REGEXP_SUPPORT */
|
|
|
|
/* regexp support disabled */
|
|
|
|
#endif /* DUK_USE_REGEXP_SUPPORT */
|
|
#line 1 "duk_replacements.c"
|
|
/*
|
|
* Replacements for missing platform functions.
|
|
*
|
|
* Unlike the originals, fpclassify() and signbit() replacements don't
|
|
* work on any floating point types, only doubles. The C typing here
|
|
* mimics the standard prototypes.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#ifdef DUK_USE_COMPUTED_NAN
|
|
DUK_INTERNAL double duk_computed_nan;
|
|
#endif
|
|
|
|
#ifdef DUK_USE_COMPUTED_INFINITY
|
|
DUK_INTERNAL double duk_computed_infinity;
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_FPCLASSIFY
|
|
DUK_INTERNAL int duk_repl_fpclassify(double x) {
|
|
duk_double_union u;
|
|
duk_uint_fast16_t expt;
|
|
duk_small_int_t mzero;
|
|
|
|
u.d = x;
|
|
expt = (duk_uint_fast16_t) (u.us[DUK_DBL_IDX_US0] & 0x7ff0UL);
|
|
if (expt > 0x0000UL && expt < 0x7ff0UL) {
|
|
/* expt values [0x001,0x7fe] = normal */
|
|
return DUK_FP_NORMAL;
|
|
}
|
|
|
|
mzero = (u.ui[DUK_DBL_IDX_UI1] == 0 && (u.ui[DUK_DBL_IDX_UI0] & 0x000fffffUL) == 0);
|
|
if (expt == 0x0000UL) {
|
|
/* expt 0x000 is zero/subnormal */
|
|
if (mzero) {
|
|
return DUK_FP_ZERO;
|
|
} else {
|
|
return DUK_FP_SUBNORMAL;
|
|
}
|
|
} else {
|
|
/* expt 0xfff is infinite/nan */
|
|
if (mzero) {
|
|
return DUK_FP_INFINITE;
|
|
} else {
|
|
return DUK_FP_NAN;
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_SIGNBIT
|
|
DUK_INTERNAL int duk_repl_signbit(double x) {
|
|
duk_double_union u;
|
|
u.d = x;
|
|
return (int) (u.uc[DUK_DBL_IDX_UC0] & 0x80UL);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_ISFINITE
|
|
DUK_INTERNAL int duk_repl_isfinite(double x) {
|
|
int c = DUK_FPCLASSIFY(x);
|
|
if (c == DUK_FP_NAN || c == DUK_FP_INFINITE) {
|
|
return 0;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_ISNAN
|
|
DUK_INTERNAL int duk_repl_isnan(double x) {
|
|
int c = DUK_FPCLASSIFY(x);
|
|
return (c == DUK_FP_NAN);
|
|
}
|
|
#endif
|
|
|
|
#ifdef DUK_USE_REPL_ISINF
|
|
DUK_INTERNAL int duk_repl_isinf(double x) {
|
|
int c = DUK_FPCLASSIFY(x);
|
|
return (c == DUK_FP_INFINITE);
|
|
}
|
|
#endif
|
|
#line 1 "duk_selftest.c"
|
|
/*
|
|
* Self tests to ensure execution environment is sane. Intended to catch
|
|
* compiler/platform problems which cannot be detected at compile time.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#if defined(DUK_USE_SELF_TESTS)
|
|
|
|
/*
|
|
* Unions and structs for self tests
|
|
*/
|
|
|
|
typedef union {
|
|
double d;
|
|
duk_uint8_t c[8];
|
|
} duk__test_double_union;
|
|
|
|
#define DUK__DBLUNION_CMP_TRUE(a,b) do { \
|
|
if (DUK_MEMCMP((void *) (a), (void *) (b), sizeof(duk__test_double_union)) != 0) { \
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: double union compares false (expected true)"); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define DUK__DBLUNION_CMP_FALSE(a,b) do { \
|
|
if (DUK_MEMCMP((void *) (a), (void *) (b), sizeof(duk__test_double_union)) == 0) { \
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: double union compares true (expected false)"); \
|
|
} \
|
|
} while (0)
|
|
|
|
typedef union {
|
|
duk_uint32_t i;
|
|
duk_uint8_t c[8];
|
|
} duk__test_u32_union;
|
|
|
|
/*
|
|
* Various sanity checks for typing
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_types(void) {
|
|
if (!(sizeof(duk_int8_t) == 1 &&
|
|
sizeof(duk_uint8_t) == 1 &&
|
|
sizeof(duk_int16_t) == 2 &&
|
|
sizeof(duk_uint16_t) == 2 &&
|
|
sizeof(duk_int32_t) == 4 &&
|
|
sizeof(duk_uint32_t) == 4)) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: duk_(u)int{8,16,32}_t size");
|
|
}
|
|
#if defined(DUK_USE_64BIT_OPS)
|
|
if (!(sizeof(duk_int64_t) == 8 &&
|
|
sizeof(duk_uint64_t) == 8)) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: duk_(u)int64_t size");
|
|
}
|
|
#endif
|
|
|
|
if (!(sizeof(duk_size_t) >= sizeof(duk_uint_t))) {
|
|
/* Some internal code now assumes that all duk_uint_t values
|
|
* can be expressed with a duk_size_t.
|
|
*/
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: duk_size_t is smaller than duk_uint_t");
|
|
}
|
|
if (!(sizeof(duk_int_t) >= 4)) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: duk_int_t is not 32 bits");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Packed tval sanity
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_packed_tval(void) {
|
|
#if defined(DUK_USE_PACKED_TVAL)
|
|
if (sizeof(void *) > 4) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: packed duk_tval in use but sizeof(void *) > 4");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Two's complement arithmetic.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_twos_complement(void) {
|
|
volatile int test;
|
|
test = -1;
|
|
if (((duk_uint8_t *) &test)[0] != (duk_uint8_t) 0xff) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: two's complement arithmetic");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Byte order. Important to self check, because on some exotic platforms
|
|
* there is no actual detection but rather assumption based on platform
|
|
* defines.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_byte_order(void) {
|
|
duk__test_u32_union u1;
|
|
duk__test_double_union u2;
|
|
|
|
/*
|
|
* >>> struct.pack('>d', 102030405060).encode('hex')
|
|
* '4237c17c6dc40000'
|
|
*/
|
|
#if defined(DUK_USE_INTEGER_LE)
|
|
u1.c[0] = 0xef; u1.c[1] = 0xbe; u1.c[2] = 0xad; u1.c[3] = 0xde;
|
|
#elif defined(DUK_USE_INTEGER_ME)
|
|
#error integer mixed endian not supported now
|
|
#elif defined(DUK_USE_INTEGER_BE)
|
|
u1.c[0] = 0xde; u1.c[1] = 0xad; u1.c[2] = 0xbe; u1.c[3] = 0xef;
|
|
#else
|
|
#error unknown integer endianness
|
|
#endif
|
|
|
|
#if defined(DUK_USE_DOUBLE_LE)
|
|
u2.c[0] = 0x00; u2.c[1] = 0x00; u2.c[2] = 0xc4; u2.c[3] = 0x6d;
|
|
u2.c[4] = 0x7c; u2.c[5] = 0xc1; u2.c[6] = 0x37; u2.c[7] = 0x42;
|
|
#elif defined(DUK_USE_DOUBLE_ME)
|
|
u2.c[0] = 0x7c; u2.c[1] = 0xc1; u2.c[2] = 0x37; u2.c[3] = 0x42;
|
|
u2.c[4] = 0x00; u2.c[5] = 0x00; u2.c[6] = 0xc4; u2.c[7] = 0x6d;
|
|
#elif defined(DUK_USE_DOUBLE_BE)
|
|
u2.c[0] = 0x42; u2.c[1] = 0x37; u2.c[2] = 0xc1; u2.c[3] = 0x7c;
|
|
u2.c[4] = 0x6d; u2.c[5] = 0xc4; u2.c[6] = 0x00; u2.c[7] = 0x00;
|
|
#else
|
|
#error unknown double endianness
|
|
#endif
|
|
|
|
if (u1.i != (duk_uint32_t) 0xdeadbeefUL) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: duk_uint32_t byte order");
|
|
}
|
|
|
|
if (u2.d != (double) 102030405060.0) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: double byte order");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* DUK_BSWAP macros
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_bswap_macros(void) {
|
|
duk_uint32_t x32;
|
|
duk_uint16_t x16;
|
|
duk_double_union du;
|
|
duk_double_t du_diff;
|
|
|
|
x16 = 0xbeefUL;
|
|
x16 = DUK_BSWAP16(x16);
|
|
if (x16 != (duk_uint16_t) 0xefbeUL) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: DUK_BSWAP16");
|
|
}
|
|
|
|
x32 = 0xdeadbeefUL;
|
|
x32 = DUK_BSWAP32(x32);
|
|
if (x32 != (duk_uint32_t) 0xefbeaddeUL) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: DUK_BSWAP32");
|
|
}
|
|
|
|
/* >>> struct.unpack('>d', '4000112233445566'.decode('hex'))
|
|
* (2.008366013071895,)
|
|
*/
|
|
|
|
du.uc[0] = 0x40; du.uc[1] = 0x00; du.uc[2] = 0x11; du.uc[3] = 0x22;
|
|
du.uc[4] = 0x33; du.uc[5] = 0x44; du.uc[6] = 0x55; du.uc[7] = 0x66;
|
|
DUK_DBLUNION_BSWAP(&du);
|
|
du_diff = du.d - 2.008366013071895;
|
|
#if 0
|
|
DUK_FPRINTF(DUK_STDERR, "du_diff: %lg\n", (double) du_diff);
|
|
#endif
|
|
if (du_diff > 1e-15) {
|
|
/* Allow very small lenience because some compilers won't parse
|
|
* exact IEEE double constants (happened in matrix testing with
|
|
* Linux gcc-4.8 -m32 at least).
|
|
*/
|
|
#if 0
|
|
DUK_FPRINTF(DUK_STDERR, "Result of DUK_DBLUNION_BSWAP: %02x %02x %02x %02x %02x %02x %02x %02x\n",
|
|
(unsigned int) du.uc[0], (unsigned int) du.uc[1],
|
|
(unsigned int) du.uc[2], (unsigned int) du.uc[3],
|
|
(unsigned int) du.uc[4], (unsigned int) du.uc[5],
|
|
(unsigned int) du.uc[6], (unsigned int) du.uc[7]);
|
|
#endif
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: DUK_DBLUNION_BSWAP");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Basic double / byte union memory layout.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_double_union_size(void) {
|
|
if (sizeof(duk__test_double_union) != 8) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: invalid union size");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Union aliasing, see misc/clang_aliasing.c.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_double_aliasing(void) {
|
|
duk__test_double_union a, b;
|
|
|
|
/* This testcase fails when Emscripten-generated code runs on Firefox.
|
|
* It's not an issue because the failure should only affect packed
|
|
* duk_tval representation, which is not used with Emscripten.
|
|
*/
|
|
#if defined(DUK_USE_NO_DOUBLE_ALIASING_SELFTEST)
|
|
#if defined(DUK_USE_PACKED_TVAL)
|
|
#error inconsistent defines: skipping double aliasing selftest when using packed duk_tval
|
|
#endif
|
|
return;
|
|
#endif
|
|
|
|
/* Test signaling NaN and alias assignment in all
|
|
* endianness combinations.
|
|
*/
|
|
|
|
/* little endian */
|
|
a.c[0] = 0x11; a.c[1] = 0x22; a.c[2] = 0x33; a.c[3] = 0x44;
|
|
a.c[4] = 0x00; a.c[5] = 0x00; a.c[6] = 0xf1; a.c[7] = 0xff;
|
|
b = a;
|
|
DUK__DBLUNION_CMP_TRUE(&a, &b);
|
|
|
|
/* big endian */
|
|
a.c[0] = 0xff; a.c[1] = 0xf1; a.c[2] = 0x00; a.c[3] = 0x00;
|
|
a.c[4] = 0x44; a.c[5] = 0x33; a.c[6] = 0x22; a.c[7] = 0x11;
|
|
b = a;
|
|
DUK__DBLUNION_CMP_TRUE(&a, &b);
|
|
|
|
/* mixed endian */
|
|
a.c[0] = 0x00; a.c[1] = 0x00; a.c[2] = 0xf1; a.c[3] = 0xff;
|
|
a.c[4] = 0x11; a.c[5] = 0x22; a.c[6] = 0x33; a.c[7] = 0x44;
|
|
b = a;
|
|
DUK__DBLUNION_CMP_TRUE(&a, &b);
|
|
}
|
|
|
|
/*
|
|
* Zero sign, see misc/tcc_zerosign2.c.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_double_zero_sign(void) {
|
|
volatile duk__test_double_union a, b;
|
|
|
|
a.d = 0.0;
|
|
b.d = -a.d;
|
|
DUK__DBLUNION_CMP_FALSE(&a, &b);
|
|
}
|
|
|
|
/*
|
|
* Struct size/alignment if platform requires it
|
|
*
|
|
* There are some compiler specific struct padding pragmas etc in use, this
|
|
* selftest ensures they're correctly detected and used.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_struct_align(void) {
|
|
#if defined(DUK_USE_ALIGN_4)
|
|
if ((sizeof(duk_hbuffer_fixed) % 4) != 0) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: sizeof(duk_hbuffer_fixed) not aligned to 4");
|
|
}
|
|
#elif defined(DUK_USE_ALIGN_8)
|
|
if ((sizeof(duk_hbuffer_fixed) % 8) != 0) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: sizeof(duk_hbuffer_fixed) not aligned to 8");
|
|
}
|
|
#else
|
|
/* no check */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* 64-bit arithmetic
|
|
*
|
|
* There are some platforms/compilers where 64-bit types are available
|
|
* but don't work correctly. Test for known cases.
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_64bit_arithmetic(void) {
|
|
#if defined(DUK_USE_64BIT_OPS)
|
|
volatile duk_int64_t i;
|
|
volatile duk_double_t d;
|
|
|
|
/* Catch a double-to-int64 cast issue encountered in practice. */
|
|
d = 2147483648.0;
|
|
i = (duk_int64_t) d;
|
|
if (i != 0x80000000LL) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: casting 2147483648.0 to duk_int64_t failed");
|
|
}
|
|
#else
|
|
/* nop */
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Casting
|
|
*/
|
|
|
|
DUK_LOCAL void duk__selftest_cast_double_to_uint(void) {
|
|
/*
|
|
* https://github.com/svaarala/duktape/issues/127#issuecomment-77863473
|
|
*/
|
|
|
|
duk_double_t d1, d2;
|
|
duk_small_uint_t u;
|
|
|
|
duk_double_t d1v, d2v;
|
|
duk_small_uint_t uv;
|
|
|
|
d1 = 1.0;
|
|
u = (duk_small_uint_t) d1;
|
|
d2 = (duk_double_t) u;
|
|
|
|
if (!(d1 == 1.0 && u == 1 && d2 == 1.0 && d1 == d2)) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: double to uint cast failed");
|
|
}
|
|
|
|
/* Same test with volatiles */
|
|
|
|
d1v = 1.0;
|
|
uv = (duk_small_uint_t) d1v;
|
|
d2v = (duk_double_t) uv;
|
|
|
|
if (!(d1v == 1.0 && uv == 1 && d2v == 1.0 && d1v == d2v)) {
|
|
DUK_PANIC(DUK_ERR_INTERNAL_ERROR, "self test failed: double to uint cast failed");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Self test main
|
|
*/
|
|
|
|
DUK_INTERNAL void duk_selftest_run_tests(void) {
|
|
duk__selftest_types();
|
|
duk__selftest_packed_tval();
|
|
duk__selftest_twos_complement();
|
|
duk__selftest_byte_order();
|
|
duk__selftest_bswap_macros();
|
|
duk__selftest_double_union_size();
|
|
duk__selftest_double_aliasing();
|
|
duk__selftest_double_zero_sign();
|
|
duk__selftest_struct_align();
|
|
duk__selftest_64bit_arithmetic();
|
|
duk__selftest_cast_double_to_uint();
|
|
}
|
|
|
|
#undef DUK__DBLUNION_CMP_TRUE
|
|
#undef DUK__DBLUNION_CMP_FALSE
|
|
|
|
#endif /* DUK_USE_SELF_TESTS */
|
|
/* include removed: duk_internal.h */
|
|
#line 2 "duk_tval.c"
|
|
|
|
#if defined(DUK_USE_FASTINT)
|
|
|
|
/*
|
|
* Manually optimized double-to-fastint downgrade check.
|
|
*
|
|
* This check has a large impact on performance, especially for fastint
|
|
* slow paths, so must be changed carefully. The code should probably be
|
|
* optimized for the case where the result does not fit into a fastint,
|
|
* to minimize the penalty for "slow path code" dealing with fractions etc.
|
|
*
|
|
* At least on one tested soft float ARM platform double-to-int64 coercion
|
|
* is very slow (and sometimes produces incorrect results, see self tests).
|
|
* This algorithm combines a fastint compatibility check and extracting the
|
|
* integer value from an IEEE double for setting the tagged fastint. For
|
|
* other platforms a more naive approach might be better.
|
|
*
|
|
* See doc/fastint.rst for details.
|
|
*/
|
|
|
|
DUK_INTERNAL DUK_ALWAYS_INLINE void duk_tval_set_number_chkfast(duk_tval *tv, duk_double_t x) {
|
|
duk_double_union du;
|
|
duk_int64_t i;
|
|
duk_small_int_t expt;
|
|
duk_small_int_t shift;
|
|
|
|
/* XXX: optimize for packed duk_tval directly? */
|
|
|
|
du.d = x;
|
|
i = (duk_int64_t) DUK_DBLUNION_GET_INT64(&du);
|
|
expt = (duk_small_int_t) ((i >> 52) & 0x07ff);
|
|
shift = expt - 1023;
|
|
|
|
if (shift >= 0 && shift <= 46) { /* exponents 1023 to 1069 */
|
|
duk_int64_t t;
|
|
|
|
if (((0x000fffffffffffffLL >> shift) & i) == 0) {
|
|
t = i | 0x0010000000000000LL; /* implicit leading one */
|
|
t = t & 0x001fffffffffffffLL;
|
|
t = t >> (52 - shift);
|
|
if (i < 0) {
|
|
t = -t;
|
|
}
|
|
DUK_TVAL_SET_FASTINT(tv, t);
|
|
return;
|
|
}
|
|
} else if (shift == -1023) { /* exponent 0 */
|
|
if (i >= 0 && (i & 0x000fffffffffffffLL) == 0) {
|
|
/* Note: reject negative zero. */
|
|
DUK_TVAL_SET_FASTINT(tv, (duk_int64_t) 0);
|
|
return;
|
|
}
|
|
} else if (shift == 47) { /* exponent 1070 */
|
|
if (i < 0 && (i & 0x000fffffffffffffLL) == 0) {
|
|
DUK_TVAL_SET_FASTINT(tv, (duk_int64_t) DUK_FASTINT_MIN);
|
|
return;
|
|
}
|
|
}
|
|
|
|
DUK_TVAL_SET_DOUBLE(tv, x);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Manually optimized number-to-double conversion
|
|
*/
|
|
|
|
#if defined(DUK_USE_FASTINT) && defined(DUK_USE_PACKED_TVAL)
|
|
DUK_INTERNAL DUK_ALWAYS_INLINE duk_double_t duk_tval_get_number_packed(duk_tval *tv) {
|
|
duk_double_union du;
|
|
duk_uint64_t t;
|
|
|
|
t = (duk_uint64_t) DUK_DBLUNION_GET_UINT64(tv);
|
|
if ((t >> 48) != DUK_TAG_FASTINT) {
|
|
return tv->d;
|
|
} else if (t & 0x0000800000000000ULL) {
|
|
t = (duk_uint64_t) (-((duk_int64_t) t)); /* avoid unary minus on unsigned */
|
|
t = t & 0x0000ffffffffffffULL; /* negative */
|
|
t |= 0xc330000000000000ULL;
|
|
DUK_DBLUNION_SET_UINT64(&du, t);
|
|
return du.d + 4503599627370496.0; /* 1 << 52 */
|
|
} else if (t != 0) {
|
|
t &= 0x0000ffffffffffffULL; /* positive */
|
|
t |= 0x4330000000000000ULL;
|
|
DUK_DBLUNION_SET_UINT64(&du, t);
|
|
return du.d - 4503599627370496.0; /* 1 << 52 */
|
|
} else {
|
|
return 0.0; /* zero */
|
|
}
|
|
}
|
|
#endif /* DUK_USE_FASTINT && DUK_USE_PACKED_TVAL */
|
|
|
|
#if 0 /* unused */
|
|
#if defined(DUK_USE_FASTINT) && !defined(DUK_USE_PACKED_TVAL)
|
|
DUK_INTERNAL DUK_ALWAYS_INLINE duk_double_t duk_tval_get_number_unpacked(duk_tval *tv) {
|
|
duk_double_union du;
|
|
duk_uint64_t t;
|
|
|
|
DUK_ASSERT(tv->t == DUK__TAG_NUMBER || tv->t == DUK_TAG_FASTINT);
|
|
|
|
if (tv->t == DUK_TAG_FASTINT) {
|
|
if (tv->v.fi >= 0) {
|
|
t = 0x4330000000000000ULL | (duk_uint64_t) tv->v.fi;
|
|
DUK_DBLUNION_SET_UINT64(&du, t);
|
|
return du.d - 4503599627370496.0; /* 1 << 52 */
|
|
} else {
|
|
t = 0xc330000000000000ULL | (duk_uint64_t) (-tv->v.fi);
|
|
DUK_DBLUNION_SET_UINT64(&du, t);
|
|
return du.d + 4503599627370496.0; /* 1 << 52 */
|
|
}
|
|
} else {
|
|
return tv->v.d;
|
|
}
|
|
}
|
|
#endif /* DUK_USE_FASTINT && DUK_USE_PACKED_TVAL */
|
|
#endif /* 0 */
|
|
|
|
#if defined(DUK_USE_FASTINT) && !defined(DUK_USE_PACKED_TVAL)
|
|
DUK_INTERNAL DUK_ALWAYS_INLINE duk_double_t duk_tval_get_number_unpacked_fastint(duk_tval *tv) {
|
|
duk_double_union du;
|
|
duk_uint64_t t;
|
|
|
|
DUK_ASSERT(tv->t == DUK_TAG_FASTINT);
|
|
|
|
if (tv->v.fi >= 0) {
|
|
t = 0x4330000000000000ULL | (duk_uint64_t) tv->v.fi;
|
|
DUK_DBLUNION_SET_UINT64(&du, t);
|
|
return du.d - 4503599627370496.0; /* 1 << 52 */
|
|
} else {
|
|
t = 0xc330000000000000ULL | (duk_uint64_t) (-tv->v.fi);
|
|
DUK_DBLUNION_SET_UINT64(&du, t);
|
|
return du.d + 4503599627370496.0; /* 1 << 52 */
|
|
}
|
|
}
|
|
#endif /* DUK_USE_FASTINT && DUK_USE_PACKED_TVAL */
|
|
|
|
#endif /* DUK_USE_FASTINT */
|
|
#line 1 "duk_unicode_tables.c"
|
|
/*
|
|
* Unicode support tables automatically generated during build.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/*
|
|
* Unicode tables containing ranges of Unicode characters in a
|
|
* packed format. These tables are used to match non-ASCII
|
|
* characters of complex productions by resorting to a linear
|
|
* range-by-range comparison. This is very slow, but is expected
|
|
* to be very rare in practical Ecmascript source code, and thus
|
|
* compactness is most important.
|
|
*
|
|
* The tables are matched using uni_range_match() and the format
|
|
* is described in src/extract_chars.py.
|
|
*/
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
/* IdentifierStart production with ASCII excluded */
|
|
/* duk_unicode_ids_noa[] */
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_ids_noa[791] = {
|
|
249,176,176,80,111,7,47,15,47,254,11,197,191,0,72,2,15,115,66,19,57,2,34,2,
|
|
240,66,244,50,247,185,248,234,241,99,8,241,127,58,240,182,47,31,241,191,21,
|
|
18,245,50,15,1,24,27,35,15,2,2,240,239,15,244,156,15,10,241,26,21,6,240,
|
|
101,10,4,15,9,240,159,157,242,100,15,4,8,159,1,98,102,115,19,240,98,98,4,
|
|
52,15,2,14,18,47,0,31,5,85,19,240,98,98,18,18,31,17,50,15,5,47,2,130,34,
|
|
240,98,98,18,68,15,4,15,1,31,21,115,19,240,98,98,18,68,15,16,18,47,1,15,3,
|
|
2,84,34,52,18,2,20,20,36,191,8,15,38,114,34,240,114,146,68,15,12,23,31,21,
|
|
114,34,240,114,146,68,15,18,2,31,1,31,4,114,34,241,147,15,2,15,3,31,10,86,
|
|
240,36,240,130,130,3,111,44,242,2,29,111,44,18,3,18,3,7,50,98,34,2,3,18,50,
|
|
26,3,66,15,7,31,20,15,49,114,241,79,13,79,101,241,191,6,15,2,85,52,4,24,37,
|
|
205,15,3,241,107,241,178,4,255,224,59,35,54,32,35,63,25,35,63,17,35,54,32,
|
|
35,62,47,41,35,63,51,241,127,0,240,47,69,223,254,21,227,240,18,240,166,243,
|
|
180,47,1,194,63,0,240,47,0,240,47,0,194,47,1,242,79,21,5,15,53,244,137,241,
|
|
146,6,243,107,240,223,37,240,227,76,241,207,7,111,42,240,122,242,95,68,15,
|
|
79,241,255,3,111,41,240,238,31,2,241,111,12,241,79,27,43,241,79,93,50,63,0,
|
|
251,15,50,255,224,8,53,63,22,53,55,32,32,32,47,15,63,37,38,32,66,38,67,53,
|
|
92,98,38,246,96,224,240,44,245,112,80,57,32,68,112,32,32,35,42,51,100,80,
|
|
240,63,25,255,233,107,241,242,241,242,247,87,63,3,241,107,242,106,15,2,240,
|
|
122,98,98,98,98,98,98,98,111,66,15,254,12,146,240,184,132,52,95,70,114,47,
|
|
74,35,111,25,79,78,240,63,11,242,127,0,255,224,244,255,240,0,138,143,60,
|
|
255,240,4,11,239,38,255,227,127,243,95,30,63,253,79,0,177,240,111,31,240,
|
|
47,9,159,64,241,152,63,87,51,33,240,9,244,39,34,35,47,7,240,255,36,240,15,
|
|
34,243,5,64,240,15,12,191,7,240,191,13,143,31,240,224,242,47,25,240,146,39,
|
|
240,111,7,64,111,32,32,65,52,48,32,240,162,241,85,53,53,166,38,248,63,19,
|
|
240,255,255,0,26,150,223,7,95,33,255,240,0,255,143,254,2,3,242,227,245,175,
|
|
24,109,70,2,146,194,66,2,18,18,245,207,19,255,224,93,240,79,48,63,38,241,
|
|
171,246,100,47,119,241,111,10,127,10,207,73,69,53,53,50,241,91,47,10,47,3,
|
|
33,46,61,241,79,107,243,127,37,255,223,13,79,33,242,31,15,240,63,11,242,
|
|
127,14,63,20,87,36,241,207,142,255,226,86,83,2,241,194,20,3,240,127,156,
|
|
240,107,240,175,184,15,1,50,34,240,191,30,240,223,117,242,107,240,107,240,
|
|
63,127,243,159,254,42,239,37,243,223,29,255,238,68,255,226,97,248,63,83,
|
|
255,234,145,255,227,33,255,240,2,44,95,254,18,191,255,0,52,187,31,255,0,18,
|
|
242,244,82,243,114,19,3,19,50,178,2,98,243,18,51,114,98,240,194,50,66,4,98,
|
|
255,224,70,63,9,47,9,47,15,47,9,47,15,47,9,47,15,47,9,47,15,47,9,39,255,
|
|
240,1,114,143,255,0,149,201,241,191,254,242,124,252,239,255,0,46,214,255,
|
|
225,16,0,
|
|
};
|
|
#else
|
|
/* IdentifierStart production with ASCII and non-BMP excluded */
|
|
/* duk_unicode_ids_noabmp[] */
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_ids_noabmp[611] = {
|
|
249,176,176,80,111,7,47,15,47,254,11,197,191,0,72,2,15,115,66,19,57,2,34,2,
|
|
240,66,244,50,247,185,248,234,241,99,8,241,127,58,240,182,47,31,241,191,21,
|
|
18,245,50,15,1,24,27,35,15,2,2,240,239,15,244,156,15,10,241,26,21,6,240,
|
|
101,10,4,15,9,240,159,157,242,100,15,4,8,159,1,98,102,115,19,240,98,98,4,
|
|
52,15,2,14,18,47,0,31,5,85,19,240,98,98,18,18,31,17,50,15,5,47,2,130,34,
|
|
240,98,98,18,68,15,4,15,1,31,21,115,19,240,98,98,18,68,15,16,18,47,1,15,3,
|
|
2,84,34,52,18,2,20,20,36,191,8,15,38,114,34,240,114,146,68,15,12,23,31,21,
|
|
114,34,240,114,146,68,15,18,2,31,1,31,4,114,34,241,147,15,2,15,3,31,10,86,
|
|
240,36,240,130,130,3,111,44,242,2,29,111,44,18,3,18,3,7,50,98,34,2,3,18,50,
|
|
26,3,66,15,7,31,20,15,49,114,241,79,13,79,101,241,191,6,15,2,85,52,4,24,37,
|
|
205,15,3,241,107,241,178,4,255,224,59,35,54,32,35,63,25,35,63,17,35,54,32,
|
|
35,62,47,41,35,63,51,241,127,0,240,47,69,223,254,21,227,240,18,240,166,243,
|
|
180,47,1,194,63,0,240,47,0,240,47,0,194,47,1,242,79,21,5,15,53,244,137,241,
|
|
146,6,243,107,240,223,37,240,227,76,241,207,7,111,42,240,122,242,95,68,15,
|
|
79,241,255,3,111,41,240,238,31,2,241,111,12,241,79,27,43,241,79,93,50,63,0,
|
|
251,15,50,255,224,8,53,63,22,53,55,32,32,32,47,15,63,37,38,32,66,38,67,53,
|
|
92,98,38,246,96,224,240,44,245,112,80,57,32,68,112,32,32,35,42,51,100,80,
|
|
240,63,25,255,233,107,241,242,241,242,247,87,63,3,241,107,242,106,15,2,240,
|
|
122,98,98,98,98,98,98,98,111,66,15,254,12,146,240,184,132,52,95,70,114,47,
|
|
74,35,111,25,79,78,240,63,11,242,127,0,255,224,244,255,240,0,138,143,60,
|
|
255,240,4,11,239,38,255,227,127,243,95,30,63,253,79,0,177,240,111,31,240,
|
|
47,9,159,64,241,152,63,87,51,33,240,9,244,39,34,35,47,7,240,255,36,240,15,
|
|
34,243,5,64,240,15,12,191,7,240,191,13,143,31,240,224,242,47,25,240,146,39,
|
|
240,111,7,64,111,32,32,65,52,48,32,240,162,241,85,53,53,166,38,248,63,19,
|
|
240,255,255,0,26,150,223,7,95,33,255,240,0,255,143,254,2,3,242,227,245,175,
|
|
24,109,70,2,146,194,66,2,18,18,245,207,19,255,224,93,240,79,48,63,38,241,
|
|
171,246,100,47,119,241,111,10,127,10,207,73,69,53,53,50,0,
|
|
};
|
|
#endif
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
/* IdentifierStart production with Letter and ASCII excluded */
|
|
/* duk_unicode_ids_m_let_noa[] */
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_ids_m_let_noa[42] = {
|
|
255,240,0,94,18,255,233,99,241,51,63,254,215,32,240,184,240,2,255,240,6,89,
|
|
249,255,240,4,148,79,37,255,224,192,9,15,120,79,255,0,15,30,245,48,
|
|
};
|
|
#else
|
|
/* IdentifierStart production with Letter, ASCII, and non-BMP excluded */
|
|
/* duk_unicode_ids_m_let_noabmp[] */
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_ids_m_let_noabmp[24] = {
|
|
255,240,0,94,18,255,233,99,241,51,63,254,215,32,240,184,240,2,255,240,6,89,
|
|
249,0,
|
|
};
|
|
#endif
|
|
|
|
#ifdef DUK_USE_SOURCE_NONBMP
|
|
/* IdentifierPart production with IdentifierStart and ASCII excluded */
|
|
/* duk_unicode_idp_m_ids_noa[] */
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_idp_m_ids_noa[397] = {
|
|
255,225,243,246,15,254,0,116,255,191,29,32,33,33,32,243,170,242,47,15,112,
|
|
245,118,53,49,35,57,240,144,241,15,11,244,218,240,25,241,56,241,67,40,34,
|
|
36,241,210,249,99,242,130,47,2,38,177,57,240,50,242,160,38,49,50,160,177,
|
|
57,240,50,242,160,36,81,50,64,240,107,64,194,242,160,39,34,34,240,97,57,
|
|
240,50,242,160,38,49,50,145,177,57,240,64,242,212,66,35,160,240,9,240,50,
|
|
242,198,34,35,129,193,57,240,65,242,160,38,34,35,129,193,57,240,65,242,198,
|
|
34,35,160,177,57,240,65,243,128,85,32,39,240,65,242,240,54,215,41,244,144,
|
|
53,33,197,57,243,1,121,192,32,32,81,242,63,4,33,106,47,20,160,245,111,4,41,
|
|
211,82,34,54,67,235,46,255,225,179,47,254,42,98,240,242,240,241,241,1,243,
|
|
79,14,160,57,241,50,57,248,16,246,139,91,185,245,47,1,129,121,242,244,242,
|
|
185,47,13,58,121,245,132,242,31,1,201,240,56,210,241,9,105,241,237,242,47,
|
|
4,153,121,246,130,47,5,80,80,251,255,23,240,115,255,225,0,31,35,31,5,15,
|
|
109,197,4,191,254,175,34,247,240,245,47,16,255,225,30,95,91,31,255,0,100,
|
|
121,159,55,13,31,100,31,254,0,64,64,80,240,148,244,161,242,79,1,201,127,2,
|
|
240,9,240,231,240,188,241,227,242,29,240,25,244,29,208,145,57,241,48,242,
|
|
96,34,49,97,32,255,224,21,114,19,159,255,0,62,24,15,254,29,95,0,240,38,209,
|
|
240,162,251,41,241,112,255,225,177,15,254,25,105,255,228,75,34,22,63,26,37,
|
|
15,254,75,66,242,126,241,25,240,34,241,250,255,240,10,249,228,69,151,54,
|
|
241,3,248,98,255,228,125,242,47,255,12,23,244,254,0,
|
|
};
|
|
#else
|
|
/* IdentifierPart production with IdentifierStart, ASCII, and non-BMP excluded */
|
|
/* duk_unicode_idp_m_ids_noabmp[] */
|
|
/*
|
|
* Automatically generated by extract_chars.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_idp_m_ids_noabmp[348] = {
|
|
255,225,243,246,15,254,0,116,255,191,29,32,33,33,32,243,170,242,47,15,112,
|
|
245,118,53,49,35,57,240,144,241,15,11,244,218,240,25,241,56,241,67,40,34,
|
|
36,241,210,249,99,242,130,47,2,38,177,57,240,50,242,160,38,49,50,160,177,
|
|
57,240,50,242,160,36,81,50,64,240,107,64,194,242,160,39,34,34,240,97,57,
|
|
240,50,242,160,38,49,50,145,177,57,240,64,242,212,66,35,160,240,9,240,50,
|
|
242,198,34,35,129,193,57,240,65,242,160,38,34,35,129,193,57,240,65,242,198,
|
|
34,35,160,177,57,240,65,243,128,85,32,39,240,65,242,240,54,215,41,244,144,
|
|
53,33,197,57,243,1,121,192,32,32,81,242,63,4,33,106,47,20,160,245,111,4,41,
|
|
211,82,34,54,67,235,46,255,225,179,47,254,42,98,240,242,240,241,241,1,243,
|
|
79,14,160,57,241,50,57,248,16,246,139,91,185,245,47,1,129,121,242,244,242,
|
|
185,47,13,58,121,245,132,242,31,1,201,240,56,210,241,9,105,241,237,242,47,
|
|
4,153,121,246,130,47,5,80,80,251,255,23,240,115,255,225,0,31,35,31,5,15,
|
|
109,197,4,191,254,175,34,247,240,245,47,16,255,225,30,95,91,31,255,0,100,
|
|
121,159,55,13,31,100,31,254,0,64,64,80,240,148,244,161,242,79,1,201,127,2,
|
|
240,9,240,231,240,188,241,227,242,29,240,25,244,29,208,145,57,241,48,242,
|
|
96,34,49,97,32,255,224,21,114,19,159,255,0,62,24,15,254,29,95,0,240,38,209,
|
|
240,162,251,41,241,112,0,
|
|
};
|
|
#endif
|
|
|
|
/*
|
|
* Case conversion tables generated using src/extract_caseconv.py.
|
|
*/
|
|
|
|
/* duk_unicode_caseconv_uc[] */
|
|
/* duk_unicode_caseconv_lc[] */
|
|
|
|
/*
|
|
* Automatically generated by extract_caseconv.py, do not edit!
|
|
*/
|
|
|
|
const duk_uint8_t duk_unicode_caseconv_uc[1288] = {
|
|
132,3,128,3,0,184,7,192,6,192,112,35,242,199,224,64,74,192,49,32,128,162,
|
|
128,108,65,1,189,129,254,131,3,173,3,136,6,7,98,7,34,68,15,12,14,140,72,30,
|
|
104,28,112,32,67,0,65,4,0,138,0,128,4,1,88,65,76,83,15,128,15,132,8,31,16,
|
|
31,24,12,62,64,62,80,32,124,192,124,224,64,250,0,250,64,97,246,1,246,129,3,
|
|
238,3,247,64,135,220,135,242,2,15,187,15,237,2,31,120,31,248,4,62,244,63,
|
|
212,8,125,240,127,232,16,253,128,253,192,33,253,1,253,128,67,252,3,253,0,
|
|
136,92,8,88,8,18,104,18,91,26,44,48,44,0,94,90,0,33,64,155,253,7,252,132,
|
|
212,0,32,32,32,6,0,76,192,76,129,128,157,0,156,136,1,75,1,74,46,2,244,2,
|
|
242,12,6,12,6,8,16,13,8,13,0,48,27,64,27,48,64,57,192,57,162,0,119,192,119,
|
|
132,128,252,128,252,20,2,35,2,34,18,4,142,4,140,20,13,196,13,192,16,30,200,
|
|
30,192,192,70,16,70,2,32,145,96,145,70,193,48,129,48,67,130,104,130,104,44,
|
|
30,1,30,0,150,61,66,61,64,192,125,68,125,100,33,99,65,99,56,50,200,18,200,
|
|
6,69,157,133,157,96,169,144,105,144,11,211,64,211,64,12,167,35,167,34,15,
|
|
78,103,78,100,126,157,234,157,228,21,59,253,59,240,90,122,26,122,0,163,128,
|
|
214,128,214,2,1,197,1,196,6,3,140,3,136,12,7,200,7,196,16,20,0,13,48,32,63,
|
|
128,63,112,69,142,101,142,64,130,1,136,1,135,4,3,114,3,112,8,26,120,202,
|
|
120,176,65,1,30,1,29,130,2,105,1,150,5,255,96,22,160,115,128,31,224,47,0,
|
|
38,32,9,32,47,224,10,96,48,0,72,96,50,64,50,32,50,160,62,192,51,32,51,0,51,
|
|
64,71,160,51,192,68,0,53,0,52,224,55,224,62,224,59,160,49,192,62,96,62,32,
|
|
74,5,141,224,74,37,141,160,74,69,142,0,74,96,48,32,74,128,48,192,75,32,49,
|
|
224,75,96,50,0,76,0,50,96,76,96,50,128,76,180,241,160,77,0,50,224,77,101,
|
|
140,64,78,37,141,192,78,64,51,160,78,160,51,224,79,165,140,128,81,0,53,192,
|
|
81,32,72,128,81,128,72,160,82,64,54,224,104,160,115,32,110,224,110,192,117,
|
|
128,112,192,120,64,116,96,121,128,113,128,122,0,114,64,122,32,115,0,122,
|
|
160,116,192,122,192,116,0,122,224,121,224,126,0,115,64,126,32,116,32,126,
|
|
64,127,32,126,160,114,160,153,224,152,3,175,52,239,163,175,165,140,99,211,
|
|
99,204,3,247,192,115,35,252,163,253,132,41,196,38,68,48,132,48,101,140,37,
|
|
140,5,140,160,71,69,140,192,71,217,128,55,224,5,48,5,48,20,152,10,240,1,56,
|
|
7,194,0,74,3,12,3,144,192,230,64,194,0,192,64,236,48,58,80,48,128,48,16,88,
|
|
120,20,212,21,72,122,90,0,72,3,49,30,151,128,21,0,194,7,166,32,5,112,48,
|
|
161,233,152,1,100,12,40,122,106,0,65,2,190,31,80,128,233,64,196,199,212,
|
|
176,58,80,49,48,48,1,245,76,14,148,12,76,12,4,125,91,3,165,3,19,3,66,31,
|
|
128,135,194,0,230,71,224,97,240,144,57,145,248,40,124,40,14,100,126,14,31,
|
|
11,3,153,31,132,135,195,0,230,71,225,97,240,208,57,145,248,104,124,56,14,
|
|
100,126,30,31,15,3,153,31,136,135,194,0,230,71,226,97,240,144,57,145,248,
|
|
168,124,40,14,100,126,46,31,11,3,153,31,140,135,195,0,230,71,227,97,240,
|
|
208,57,145,248,232,124,56,14,100,126,62,31,15,3,153,31,144,135,202,0,230,
|
|
71,228,97,242,144,57,145,249,40,124,168,14,100,126,78,31,43,3,153,31,148,
|
|
135,203,0,230,71,229,97,242,208,57,145,249,104,124,184,14,100,126,94,31,47,
|
|
3,153,31,152,135,202,0,230,71,230,97,242,144,57,145,249,168,124,168,14,100,
|
|
126,110,31,43,3,153,31,156,135,203,0,230,71,231,97,242,208,57,145,249,232,
|
|
124,184,14,100,126,126,31,47,3,153,31,160,135,218,0,230,71,232,97,246,144,
|
|
57,145,250,40,125,168,14,100,126,142,31,107,3,153,31,164,135,219,0,230,71,
|
|
233,97,246,208,57,145,250,104,125,184,14,100,126,158,31,111,3,153,31,168,
|
|
135,218,0,230,71,234,97,246,144,57,145,250,168,125,168,14,100,126,174,31,
|
|
107,3,153,31,172,135,219,0,230,71,235,97,246,208,57,145,250,232,125,184,14,
|
|
100,126,190,31,111,3,153,31,178,135,238,128,230,71,236,224,57,16,57,145,
|
|
251,72,14,24,14,100,126,218,3,145,3,66,31,183,192,228,64,208,128,230,71,
|
|
239,32,57,16,57,145,252,40,127,40,14,100,127,14,3,151,3,153,31,196,128,226,
|
|
64,230,71,241,160,57,112,52,33,252,124,14,92,13,8,14,100,127,50,3,151,3,
|
|
153,31,210,192,230,64,194,0,192,7,244,240,57,144,48,128,48,17,253,104,14,
|
|
100,13,8,127,95,3,153,3,8,3,66,31,226,192,233,64,194,0,192,7,248,240,58,80,
|
|
48,128,48,17,254,72,14,132,12,76,127,154,3,165,3,66,31,231,192,233,64,194,
|
|
0,208,135,252,161,255,160,57,145,255,56,14,164,14,100,127,210,3,143,3,153,
|
|
31,246,128,234,64,208,135,253,240,58,144,52,32,57,145,255,200,14,164,14,
|
|
103,236,2,0,70,0,70,251,1,128,17,128,18,126,192,160,4,96,4,207,176,60,1,24,
|
|
1,24,1,39,236,19,0,70,0,70,0,76,251,5,128,20,192,21,62,193,160,5,48,5,79,
|
|
177,56,21,16,21,27,236,82,5,68,5,53,251,21,129,81,1,78,254,197,160,84,224,
|
|
84,111,177,120,21,16,20,244,
|
|
};
|
|
const duk_uint8_t duk_unicode_caseconv_lc[616] = {
|
|
144,3,0,3,128,184,6,192,7,192,112,24,144,37,96,64,54,32,81,64,128,226,0,
|
|
235,65,129,199,1,230,130,3,145,3,177,34,7,70,7,134,36,15,244,13,236,24,32,
|
|
0,34,129,0,65,0,67,4,0,166,32,172,41,132,40,11,64,19,15,132,15,128,8,31,24,
|
|
31,16,12,62,80,62,64,32,124,224,124,192,64,250,64,250,0,97,246,129,246,1,3,
|
|
241,3,240,2,7,230,7,228,4,15,212,15,208,8,31,184,31,176,4,63,116,62,224,8,
|
|
127,32,125,200,32,254,192,254,128,33,253,161,247,96,67,253,3,252,0,135,250,
|
|
135,222,129,15,252,15,188,2,31,250,31,124,4,66,192,66,224,64,146,216,147,
|
|
64,209,96,1,97,130,242,199,224,35,240,95,228,63,232,38,161,1,0,1,1,48,2,
|
|
100,2,102,12,4,228,4,232,64,10,80,10,89,112,23,144,23,160,96,48,64,48,96,
|
|
128,104,0,104,65,128,217,128,218,2,1,203,1,204,18,3,188,3,190,36,7,200,7,
|
|
204,16,15,192,15,201,64,34,32,34,49,32,72,192,72,225,64,220,0,220,65,1,236,
|
|
1,236,140,4,96,4,97,34,9,20,9,22,108,19,4,19,8,56,38,128,38,138,193,224,1,
|
|
224,25,99,212,3,212,44,7,214,71,212,66,22,51,150,52,3,44,128,44,129,100,89,
|
|
214,89,216,10,153,2,153,4,189,52,5,52,8,202,114,42,114,48,244,230,84,230,
|
|
103,233,222,105,222,129,83,191,83,191,133,167,160,167,161,10,48,13,48,20,0,
|
|
32,26,192,26,208,64,56,128,56,192,192,113,64,113,129,1,251,129,252,2,44,
|
|
114,44,115,4,16,12,56,12,64,32,27,128,27,144,64,211,197,211,198,2,8,6,88,9,
|
|
164,16,17,216,17,224,47,245,1,120,0,255,1,129,2,83,1,134,2,84,1,142,1,221,
|
|
1,143,2,89,1,144,2,91,1,145,1,146,1,147,2,96,1,148,2,99,1,151,2,104,1,152,
|
|
1,153,1,157,2,114,1,159,2,117,1,167,1,168,1,174,2,136,1,183,2,146,1,241,1,
|
|
243,1,246,1,149,1,247,1,191,2,32,1,158,2,58,44,101,2,61,1,154,2,62,44,102,
|
|
2,67,1,128,2,68,2,137,2,69,2,140,3,118,3,119,3,134,3,172,3,140,3,204,3,207,
|
|
3,215,3,244,3,184,3,249,3,242,4,192,4,207,30,158,0,223,31,188,31,179,31,
|
|
204,31,195,31,236,31,229,31,252,31,243,33,38,3,201,33,42,0,107,33,43,0,229,
|
|
33,50,33,78,33,131,33,132,44,96,44,97,44,98,2,107,44,99,29,125,44,100,2,
|
|
125,44,109,2,81,44,110,2,113,44,111,2,80,44,112,2,82,167,125,29,121,167,
|
|
141,2,101,2,2,97,0,52,129,131,128,
|
|
};
|
|
#line 1 "duk_util_bitdecoder.c"
|
|
/*
|
|
* Bitstream decoder.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* Decode 'bits' bits from the input stream (bits must be 1...24).
|
|
* When reading past bitstream end, zeroes are shifted in. The result
|
|
* is signed to match duk_bd_decode_flagged.
|
|
*/
|
|
DUK_INTERNAL duk_int32_t duk_bd_decode(duk_bitdecoder_ctx *ctx, duk_small_int_t bits) {
|
|
duk_small_int_t shift;
|
|
duk_uint32_t mask;
|
|
duk_uint32_t tmp;
|
|
|
|
/* Note: cannot read more than 24 bits without possibly shifting top bits out.
|
|
* Fixable, but adds complexity.
|
|
*/
|
|
DUK_ASSERT(bits >= 1 && bits <= 24);
|
|
|
|
while (ctx->currbits < bits) {
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("decode_bits: shift more data (bits=%ld, currbits=%ld)",
|
|
(long) bits, (long) ctx->currbits));
|
|
#endif
|
|
ctx->currval <<= 8;
|
|
if (ctx->offset < ctx->length) {
|
|
/* If ctx->offset >= ctx->length, we "shift zeroes in"
|
|
* instead of croaking.
|
|
*/
|
|
ctx->currval |= ctx->data[ctx->offset++];
|
|
}
|
|
ctx->currbits += 8;
|
|
}
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("decode_bits: bits=%ld, currbits=%ld, currval=0x%08lx",
|
|
(long) bits, (long) ctx->currbits, (unsigned long) ctx->currval));
|
|
#endif
|
|
|
|
/* Extract 'top' bits of currval; note that the extracted bits do not need
|
|
* to be cleared, we just ignore them on next round.
|
|
*/
|
|
shift = ctx->currbits - bits;
|
|
mask = (1 << bits) - 1;
|
|
tmp = (ctx->currval >> shift) & mask;
|
|
ctx->currbits = shift; /* remaining */
|
|
|
|
#if 0
|
|
DUK_DDD(DUK_DDDPRINT("decode_bits: %ld bits -> 0x%08lx (%ld), currbits=%ld, currval=0x%08lx",
|
|
(long) bits, (unsigned long) tmp, (long) tmp, (long) ctx->currbits, (unsigned long) ctx->currval));
|
|
#endif
|
|
|
|
return tmp;
|
|
}
|
|
|
|
DUK_INTERNAL duk_small_int_t duk_bd_decode_flag(duk_bitdecoder_ctx *ctx) {
|
|
return (duk_small_int_t) duk_bd_decode(ctx, 1);
|
|
}
|
|
|
|
/* Decode a one-bit flag, and if set, decode a value of 'bits', otherwise return
|
|
* default value. Return value is signed so that negative marker value can be
|
|
* used by caller as a "not present" value.
|
|
*/
|
|
DUK_INTERNAL duk_int32_t duk_bd_decode_flagged(duk_bitdecoder_ctx *ctx, duk_small_int_t bits, duk_int32_t def_value) {
|
|
if (duk_bd_decode_flag(ctx)) {
|
|
return (duk_int32_t) duk_bd_decode(ctx, bits);
|
|
} else {
|
|
return def_value;
|
|
}
|
|
}
|
|
#line 1 "duk_util_bitencoder.c"
|
|
/*
|
|
* Bitstream encoder.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
DUK_INTERNAL void duk_be_encode(duk_bitencoder_ctx *ctx, duk_uint32_t data, duk_small_int_t bits) {
|
|
duk_uint8_t tmp;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(ctx->currbits < 8);
|
|
|
|
/* This limitation would be fixable but adds unnecessary complexity. */
|
|
DUK_ASSERT(bits >= 1 && bits <= 24);
|
|
|
|
ctx->currval = (ctx->currval << bits) | data;
|
|
ctx->currbits += bits;
|
|
|
|
while (ctx->currbits >= 8) {
|
|
if (ctx->offset < ctx->length) {
|
|
tmp = (duk_uint8_t) ((ctx->currval >> (ctx->currbits - 8)) & 0xff);
|
|
ctx->data[ctx->offset++] = tmp;
|
|
} else {
|
|
/* If buffer has been exhausted, truncate bitstream */
|
|
ctx->truncated = 1;
|
|
}
|
|
|
|
ctx->currbits -= 8;
|
|
}
|
|
}
|
|
|
|
DUK_INTERNAL void duk_be_finish(duk_bitencoder_ctx *ctx) {
|
|
duk_small_int_t npad;
|
|
|
|
DUK_ASSERT(ctx != NULL);
|
|
DUK_ASSERT(ctx->currbits < 8);
|
|
|
|
npad = (duk_small_int_t) (8 - ctx->currbits);
|
|
if (npad > 0) {
|
|
duk_be_encode(ctx, 0, npad);
|
|
}
|
|
DUK_ASSERT(ctx->currbits == 0);
|
|
}
|
|
#line 1 "duk_util_hashbytes.c"
|
|
/*
|
|
* Hash function duk_util_hashbytes().
|
|
*
|
|
* Currently, 32-bit MurmurHash2.
|
|
*
|
|
* Don't rely on specific hash values; hash function may be endianness
|
|
* dependent, for instance.
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
/* 'magic' constants for Murmurhash2 */
|
|
#define DUK__MAGIC_M ((duk_uint32_t) 0x5bd1e995UL)
|
|
#define DUK__MAGIC_R 24
|
|
|
|
DUK_INTERNAL duk_uint32_t duk_util_hashbytes(const duk_uint8_t *data, duk_size_t len, duk_uint32_t seed) {
|
|
duk_uint32_t h = seed ^ ((duk_uint32_t) len);
|
|
|
|
while (len >= 4) {
|
|
/* Portability workaround is required for platforms without
|
|
* unaligned access. The replacement code emulates little
|
|
* endian access even on big endian architectures, which is
|
|
* OK as long as it is consistent for a build.
|
|
*/
|
|
#ifdef DUK_USE_HASHBYTES_UNALIGNED_U32_ACCESS
|
|
duk_uint32_t k = *((duk_uint32_t *) data);
|
|
#else
|
|
duk_uint32_t k = ((duk_uint32_t) data[0]) |
|
|
(((duk_uint32_t) data[1]) << 8) |
|
|
(((duk_uint32_t) data[2]) << 16) |
|
|
(((duk_uint32_t) data[3]) << 24);
|
|
#endif
|
|
|
|
k *= DUK__MAGIC_M;
|
|
k ^= k >> DUK__MAGIC_R;
|
|
k *= DUK__MAGIC_M;
|
|
h *= DUK__MAGIC_M;
|
|
h ^= k;
|
|
data += 4;
|
|
len -= 4;
|
|
}
|
|
|
|
switch (len) {
|
|
case 3: h ^= data[2] << 16;
|
|
case 2: h ^= data[1] << 8;
|
|
case 1: h ^= data[0];
|
|
h *= DUK__MAGIC_M;
|
|
}
|
|
|
|
h ^= h >> 13;
|
|
h *= DUK__MAGIC_M;
|
|
h ^= h >> 15;
|
|
|
|
return h;
|
|
}
|
|
#line 1 "duk_util_tinyrandom.c"
|
|
/*
|
|
* A tiny random number generator.
|
|
*
|
|
* Currently used for Math.random().
|
|
*
|
|
* http://www.woodmann.com/forum/archive/index.php/t-3100.html
|
|
*/
|
|
|
|
/* include removed: duk_internal.h */
|
|
|
|
#define DUK__UPDATE_RND(rnd) do { \
|
|
(rnd) += ((rnd) * (rnd)) | 0x05; \
|
|
(rnd) = ((rnd) & 0xffffffffU); /* if duk_uint32_t is exactly 32 bits, this is a NOP */ \
|
|
} while (0)
|
|
|
|
#define DUK__RND_BIT(rnd) ((rnd) >> 31) /* only use the highest bit */
|
|
|
|
DUK_INTERNAL duk_uint32_t duk_util_tinyrandom_get_bits(duk_hthread *thr, duk_small_int_t n) {
|
|
duk_small_int_t i;
|
|
duk_uint32_t res = 0;
|
|
duk_uint32_t rnd;
|
|
|
|
rnd = thr->heap->rnd_state;
|
|
|
|
for (i = 0; i < n; i++) {
|
|
DUK__UPDATE_RND(rnd);
|
|
res <<= 1;
|
|
res += DUK__RND_BIT(rnd);
|
|
}
|
|
|
|
thr->heap->rnd_state = rnd;
|
|
|
|
return res;
|
|
}
|
|
|
|
DUK_INTERNAL duk_double_t duk_util_tinyrandom_get_double(duk_hthread *thr) {
|
|
duk_double_t t;
|
|
duk_small_int_t n;
|
|
duk_uint32_t rnd;
|
|
|
|
/*
|
|
* XXX: could make this a lot faster if we create the double memory
|
|
* representation directly. Feasible easily (must be uniform random).
|
|
*/
|
|
|
|
rnd = thr->heap->rnd_state;
|
|
|
|
n = 53; /* enough to cover the whole mantissa */
|
|
t = 0.0;
|
|
|
|
do {
|
|
DUK__UPDATE_RND(rnd);
|
|
t += DUK__RND_BIT(rnd);
|
|
t /= 2.0;
|
|
} while (--n);
|
|
|
|
thr->heap->rnd_state = rnd;
|
|
|
|
DUK_ASSERT(t >= (duk_double_t) 0.0);
|
|
DUK_ASSERT(t < (duk_double_t) 1.0);
|
|
|
|
return t;
|
|
}
|