Go to file
Rich Felker a63c0104e4 add __timedwait backend workaround for old kernels where futex EINTRs
prior to linux 2.6.22, futex wait could fail with EINTR even for
non-interrupting (SA_RESTART) signals. this was no problem provided
the caller simply restarted the wait, but sem_[timed]wait is required
by POSIX to return when interrupted by a signal. commit
a113434cd6 introduced this behavior, and
commit c0ed5a201b reverted it based on a
mistaken belief that it was not required. this belief stems from a bug
in the specification: the description requires the function to return
when interrupted, but the errors section marks EINTR as a "may fail"
condition rather than a "shall fail" one.

since there does seem to be significant value in the change made in
commit c0ed5a201b, making it so that
programs that call sem_wait without checking for EINTR don't silently
make forward progress without obtaining the semaphore or treat it as a
fatal error and abort, add a behind-the-scenes mechanism in the
__timedwait backend to suppress EINTR in programs that have never
installed interrupting signal handlers, and have sigaction track and
report this state. this way the semaphore code is not cluttered by
workarounds and can be updated (to be done in next commit) to reflect
the high-level logic for conforming behavior.

these changes are based loosely on a patch by Markus Wichmann, with
the main changes being atomic update to flag object and moving the
workaround from sem_timedwait to the __timedwait futex backend.
2018-12-18 12:17:33 -05:00
arch add io_pgetevents and rseq syscall numbers from linux v4.18 2018-12-09 22:29:12 -05:00
crt define and use internal macros for hidden visibility, weak refs 2018-09-05 14:05:14 -04:00
dist add another example option to dist/config.mak 2012-04-24 16:49:11 -04:00
include add NT_VMCOREDD to elf.h from linux v4.18 2018-12-09 22:30:05 -05:00
ldso add new stage 2b to dynamic linker bootstrap for thread pointer 2018-10-16 13:50:28 -04:00
src add __timedwait backend workaround for old kernels where futex EINTRs 2018-12-18 12:17:33 -05:00
tools fix musl-gcc wrapper to be compatible with default-pie gcc toolchains 2018-08-02 19:15:48 -04:00
.gitignore remove obsolete gitignore rules 2016-07-06 00:21:25 -04:00
configure support clang internal assembler when building for arm as thumb2 code 2018-09-19 01:31:26 -04:00
COPYRIGHT new tsearch implementation 2018-09-20 17:57:47 -04:00
dynamic.list fix regression in access to optopt object 2018-11-19 13:20:41 -05:00
INSTALL add powerpc64 and s390x to list of supported archs in INSTALL file 2017-08-29 20:48:02 -04:00
Makefile overhaul internally-public declarations using wrapper headers 2018-09-12 14:34:33 -04:00
README update version reference in the README file 2014-06-25 14:16:53 -04:00
VERSION release 1.1.20 2018-09-04 13:17:19 -04:00
WHATSNEW fix mistake/cruft in 1.1.20 release notes 2018-09-04 19:27:15 -04:00

    musl libc

musl, pronounced like the word "mussel", is an MIT-licensed
implementation of the standard C library targetting the Linux syscall
API, suitable for use in a wide range of deployment environments. musl
offers efficient static and dynamic linking support, lightweight code
and low runtime overhead, strong fail-safe guarantees under correct
usage, and correctness in the sense of standards conformance and
safety. musl is built on the principle that these goals are best
achieved through simple code that is easy to understand and maintain.

The 1.1 release series for musl features coverage for all interfaces
defined in ISO C99 and POSIX 2008 base, along with a number of
non-standardized interfaces for compatibility with Linux, BSD, and
glibc functionality.

For basic installation instructions, see the included INSTALL file.
Information on full musl-targeted compiler toolchains, system
bootstrapping, and Linux distributions built on musl can be found on
the project website:

    http://www.musl-libc.org/