this is a trivial no-op, because dlclose never deletes libraries. thus
we might as well have it in the header in case some application wants
it, since we're already providing it anyway.
based on patch by Pierre Carrier <pierre@gcarrier.fr> that just added
the flag constant, but with minimal additional code so that it
actually works as documented. this is a nonstandard option but some
major software (reportedly, Firefox) uses it and it was easy to add
anyway.
the historical mess of having different definitions for C and C++
comes from the historical C definition as (void *)0 and the fact that
(void *)0 can't be used in C++ because it does not convert to other
pointer types implicitly. however, using plain 0 in C++ exposed bugs
in C++ programs that call variadic functions with NULL as an argument
and (wrongly; this is UB) expect it to arrive as a null pointer. on
64-bit machines, the high bits end up containing junk. glibc dodges
the issue by using a GCC extension __null to define NULL; this is
observably non-conforming because a conforming application could
observe the definition of NULL via stringizing and see that it is
neither an integer constant expression with value zero nor such an
expression cast to void.
switching to 0L eliminates the issue and provides compatibility with
broken applications, since on all musl targets, long and pointers have
the same size, representation, and argument-passing convention. we
could maintain separate C and C++ definitions of NULL (i.e. just use
0L on C++ and use (void *)0 on C) but after careful analysis, it seems
extremely difficult for a C program to even determine whether NULL has
integer or pointer type, much less depend in subtle, unintentional
ways, on whether it does. C89 seems to have no way to make the
distinction. on C99, the fact that (int)(void *)0 is not an integer
constant expression, along with subtle VLA/sizeof semantics, can be
used to make the distinction, but many compilers are non-conforming
and give the wrong result to this test anyway. on C11, _Generic can
trivially make the distinction, but it seems unlikely that code
targetting C11 would be so backwards in caring which definition of
NULL an implementation uses.
as such, the simplest path of using the same definition for NULL in
both C and C++ was chosen. the #undef directive was also removed so
that the compiler can catch and give a warning or error on
redefinition if buggy programs have defined their own versions of
NULL prior to inclusion of standard headers.
added various MS_*, MNT_*, UMOUNT_* flags following the linux
headers, with one exception: MS_NOUSER is defined as (1U<<31)
instead of (1<<31) which invokes undefined behaviour
the S_* flags were removed following glibc
based on linux headers add the missing MCAST_* options
under _GNU_SOURCE as they are not in the reserved namespace
(this api was originally specified by RFC 3678)
the anonymous struct typedef with array notation breaks with
GCC in C++ mode:
error: non-local function 'static<anonymous struct>
(& boost::signal_handler::jump_buffer())[1]' uses anonymous type
this is a known GCC issue, as search results for that error msg
suggest.
since this is hard to work around in the calling C++ code, a
fix in musl is preferable.
some programs (procps, babl) expect it, and it doesn't seem to
cause any harm to just add it.
it's small and straightforward.
since math.h also defines MAXFLOAT, we undef it in both places,
before defining it.
these flags are needed in order to be able to handle lwp id's
which the kernel returns after clone() calls for new threads
via ptrace(PTRACE_GETEVENTMSG).
fortunately, they're the same for all archs and in the reserved
namespace.
for _Noreturn functions, gcc generates code that trashes the
stack frame, and so it makes it impossible to inspect the causes
of an assert error in gdb.
abort() is not affected (i have not yet investigated why).
the old definitions were wrong on some archs. actually, EPOLL_NONBLOCK
probably should not even be defined; it is not accepted by the kernel
and it's not clear to me whether it has any use at all, even if it did
work. this issue should be revisited at some point, but I'm leaving it
in place for now in case some applications reference it.
__IS_FP is a portable integer constant expression now
(uses that unsigned long long is larger than float)
the result casting logic should work now on all compilers
supporting typeof
* return type logic is simplified a bit and fixed (see below)
* return type of conj and cproj were wrong on int arguments
* added comments about the pending issues
(usually we don't have comments in public headers but this is
not the biggest issue with tgmath.h)
casting the result to the right type cannot be done in c99
(c11 _Generic can solve this but that is not widely supported),
so the typeof extension of gcc is used and that the ?: operator
has special semantics when one of the operands is a null
pointer constant
the standard is very strict about the definition of null
pointer constants so typeof with ?: is still not enough so
compiler specific workaround is used for now
on gcc '!1.0' is a null pointer constant so we can use the old
__IS_FP logic (eventhough it's non-standard)
on clang (and on gcc as well) 'sizeof(void)-1' is a null
pointer constant so we can use
!(sizeof(*(0?(int*)0:(void*)__IS_FP(x)))-1)
(this is non-standard as well), the old logic is used by
default and this new one on clang
in tgmath.h the return values are casted to the appropriate
floating-point type (if the compiler supports gcc __typeof__),
this is wrong in case of ilogb, lrint, llrint, lround, llround
which do not need such cast
j0l,j1l,jnl,y0l,j1l,jnl are gnu extensions, bsd and posix do not
have them.
noone seems to use them and there is no plan to implement them any
time soon so we shouldn't declare them in math.h.
despite glibc using __key and __seq rather than key and seq, some
applications, notably busybox, assume the names are key and seq unless
glibc is being used. and the names key and seq are really the ones
that _should_ be exposed when not attempting to present a
standards-conforming namespace; apps should not be using names that
begin with double-underscore. thus, the optimal fix is to use key and
seq as the actual names of the members when in bsd/gnu source profile,
and define macros for __key and __seq that redirect to plain key and
seq.
traditionally, both BSD and GNU systems have it this way.
sys/syscall.h is purely syscall number macros. presently glibc exposes
the syscall declaration in unistd.h only with _GNU_SOURCE, but that
does not reflect historical practice.
previously the names were exposed as key/seq with _GNU_SOURCE and
__ipc_perm_key/__ipc_perm/seq otherwise, whereas glibc always uses
__key and __seq for the names. thus, the old behavior never matched
glibc, and the new behavior always does, regardless of feature test
macros.
for now, i'm leaving the renaming here in sys/ipc.h where it's easy to
change globally for all archs, in case something turns out to be
wrong, but eventually the names could just be incorporated directly
into the bits headers for each arch and the renaming removed.
previously, everything was going through an intermediate conversion to
long double, which caused the extern __fpclassifyl function to get
invoked, preventing virtually all optimizations of these operations.
with the new code, tests on constant float or double arguments compile
to a constant 0 or 1, and tests on non-constant expressions are
efficient. I may later add support for __builtin versions on compilers
that support them.
due to some historical oddity, these are considered libc headers
rather than kernel headers. the kernel used to provide them too, but
it seems modern kernels do not install them, so let's just do the
easiest thing and provide them. stripped-down versions provided by
John Spencer.
apparently recent gcc versions have intentionally broken the
traditional definition by treating it as a non-constant expression.
the traditional definition may also be problematic for c++ programs.