basically there are 3 choices for how to implement this variable-size
string member:
1. C99 flexible array member: breaks using dirent.h with pre-C99 compiler.
2. old way: length-1 string: generates array bounds warnings in caller.
3. new way: length-NAME_MAX string. no problems, simplifies all code.
of course the usable part in the pointer returned by readdir might be
shorter than NAME_MAX+1 bytes, but that is allowed by the standard and
doesn't hurt anything.
there is a resource limit of 0 bits to store the concurrency level
requested. thus any positive level exceeds a resource limit, resulting
in EAGAIN. :-)
this slightly cuts down on the degree musl "fights with" gcc, but more
importantly, it fixes a critical bug when gcc inlines a variadic
function and optimizes out the variadic arguments due to noticing that
they were "not used" (by __builtin_va_arg).
we leave the old code in place if __GNUC__ >= 3 is false; it seems
like it might be necessary at least for tinycc support and perhaps if
anyone ever gets around to fixing gcc 2.95.3 enough to make it work..
some of these definitions were just plain wrong, others based on
outdated ancient "non-64" versions of the kernel interface.
as much as possible has now been moved out of bits/*
these changes break abi (the old abi for these functions was wrong),
but since they were not working anyway it can hardly matter.
the basic idea is that the only things in alltypes.h should be types
that either vary from system to system (in practice, not just in
theoretical la-la land - this is the implementation so we choose what
constraints we want to impose on ports) or which are needed by
multiple system headers.
note that unlike the originals, these do not print the program
name/argv[0] because we have not saved it anywhere. this could be
changed in __libc_start_main if desired.
this implementation is superior to the glibc/nptl implementation, in
that it gives true realtime behavior. there is no risk of timer
expiration events being lost due to failed thread creation or failed
malloc, because the thread is created as time creation time, and
reused until the timer is deleted.
glibc made the ridiculous choice to use pass-by-register calling
convention for these functions, which is impossible to duplicate
directly on non-gcc compilers. instead, we use ugly asm to wrap and
convert the calling convention. presumably this works with every
compiler anyone could potentially want to use.
with this patch, the syscallN() functions are no longer needed; a
variadic syscall() macro allows syscalls with anywhere from 0 to 6
arguments to be made with a single macro name. also, manually casting
each non-integer argument with (long) is no longer necessary; the
casts are hidden in the macros.
some source files which depended on being able to define the old macro
SYSCALL_RETURNS_ERRNO have been modified to directly use __syscall()
instead of syscall(). references to SYSCALL_SIGSET_SIZE and SYSCALL_LL
have also been changed.
x86_64 has not been tested, and may need a follow-up commit to fix any
minor bugs/oversights.
this commit shuffles around the location of syscall definitions so
that we can make a syscall() library function with both SYS_* and
__NR_* style syscall names available to user applications, provides
the syscall() library function, and optimizes the code that performs
the actual inline syscalls in the library itself.
previously on i386 when built as PIC (shared library), syscalls were
incurring bus lock (lock prefix) overhead at entry and exit, due to
the way the ebx register was being loaded (xchg instruction with a
memory operand). now the xchg takes place between two registers.
further cleanup to arch/$(ARCH)/syscall.h is planned.
i'm still not sure whether it's a good idea to include or use any of
these, but i'll add them for now. it may make more sense to just add
official kernel headers to the include path for compiling programs
that need them.
some of this code should be cleaned up, e.g. using macros for some of
the bit flags, masks, etc. nonetheless, the code is believed to be
working and correct at this point.
multiple opens of the same named semaphore must return the same
pointer, and only the last close can unmap it. thus the ugly global
state keeping track of mappings. the maximum number of distinct named
semaphores that can be opened is limited sufficiently small that the
linear searches take trivial time, especially compared to the syscall
overhead of these functions.
this is needed in the long term for ABI compatibility anyway, and in
the immediate, it helps with building broken programs like GNU screen
that try to prototype the functions themselves rather than using the
header.
this is a nonstandard header used only by backwards programs, but for
some reason it's extremely popular. the recent namespace cleanup fixes
broke it, because PATH_MAX and NAME_MAX will not be defined unless an
approriate feature test macro has been defined. moreover, it's too
late to just #define _GNU_SOURCE in param.h, since limits.h may have
already been included.
let's just hard-code standard values and be done with it.
only the structures, not the functions from ucontext.h, are supported
at this point. the main goal of this commit is to make modern gcc with
dwarf2 unwinding build without errors.
honestly, it probably doesn't matter how we define these as long as
they have members with the right names to prevent errors while
compiling libgcc. the only time they will be used is for propagating
exceptions across signal-handler boundaries, which invokes undefined
behavior anyway. but as-is, they're probably correct and may be useful
to various low-level applications dealing with virtualization, jit
code generation, and so on...
note that this presently does not handle consistency of the libc's own
global state during forking. as per POSIX 2008, if the parent process
was threaded, the child process may only call async-signal-safe
functions until one of the exec-family functions is called, so the
current behavior is believed to be conformant even if non-ideal. it
may be improved at some later time.
this allows sys/types.h to provide the pthread types, as required by
POSIX. this design also facilitates forcing ABI-compatible sizes in
the arch-specific alltypes.h, while eliminating the need for
developers changing the internals of the pthread types to poke around
with arch-specific headers they may not be able to test.