linux 3.14 introduced sched_getattr and sched_setattr syscalls in
commit d50dde5a10f305253cbc3855307f608f8a3c5f73
and the related SCHED_DEADLINE scheduling policy in
commit aab03e05e8f7e26f51dee792beddcb5cca9215a5
but struct sched_attr "extended scheduling parameters data structure"
is not yet exported to userspace (necessary for using the syscalls)
so related uapi definitions are not added yet.
On 32 bit mips the kernel uses -1UL/2 to mark RLIM_INFINITY (and
this is the definition in the userspace api), but since it is in
the middle of the valid range of limits and limits are often
compared with relational operators, various kernel side logic is
broken if larger than -1UL/2 limits are used. So we truncate the
limits to -1UL/2 in get/setrlimit and prlimit.
Even if the kernel side logic consistently treated -1UL/2 as greater
than any other limit value, there wouldn't be any clean workaround
that allowed using large limits:
* using -1UL/2 as RLIM_INFINITY in userspace would mean different
infinity value for get/setrlimt and prlimit (where infinity is always
-1ULL) and userspace logic could break easily (just like the kernel
is broken now) and more special case code would be needed for mips.
* translating -1UL/2 kernel side value to -1ULL in userspace would
mean that -1UL/2 limit cannot be set (eg. -1UL/2+1 had to be passed
to the kernel instead).
armv7/thumb2 provides a way to do atomics in thumb mode, but for armv6
we need a call to arm mode.
this commit is based on a patch by Stephen Thomas which fixed the
armv7 cases but not the armv6 ones.
all of this should be revisited if/when runtime selection of thread
pointer access and atomics are added.
the vdso symbol lookup code is based on the original 2011 patch by
Nicholas J. Kain, with some streamlining, pointer arithmetic fixes,
and one symbol version matching fix.
on the consumer side (clock_gettime), per-arch macros for the
particular symbol name and version to lookup are added in
syscall_arch.h, and no vdso code is pulled in on archs which do not
define these macros. at this time, vdso is enabled only on x86_64.
the vdso support at the dynamic linker level is no longer useful to
libc, but is left in place for the sake of debuggers (which may need
the vdso in the link map to find its functions) and possibly use with
dlsym.
The mips arch is special in that it uses different RLIMIT_
numbers than other archs, so allow bits/resource.h to override
the default RLIMIT_ numbers (empty on all archs except mips).
Reported by orc.
it will be needed to implement some things in sysconf, and the syscall
can't easily be used directly because the x32 syscall uses the wrong
structure layout. the l (uncreative, for "linux") prefix is used since
the symbol name __sysinfo is already taken for AT_SYSINFO from the aux
vector.
the way the x32 override of this function works is also changed to be
simpler and avoid the useless jump instruction.
aside from potentially offering better performance, this change is
needed since the old coprocessor-based approach to barriers is
deprecated in arm v7, and some compilers/assemblers issue errors when
using the deprecated instruction for v7 targets.
the "m" constraint could give a memory reference with an offset that's
not compatible with ldrex/strex, so the arm-specific "Q" constraint is
needed instead.
this is perhaps not the optimal implementation; a_cas still compiles
to nested loops due to the different interface contracts of the kuser
helper cas function (whose contract this patch implements) and the
a_cas function (whose contract mimics the x86 cmpxchg). fixing this
may be possible, but it's more complicated and thus deferred until a
later time.
aside from improving performance and code size, this patch also
provides a means of producing binaries which can run on hardened
kernels where the kuser helpers have been disabled. however, at
present this requires producing binaries for armv6k or later, which
will not run on older cpus. a real solution to the problem of kernels
that omit the kuser helpers would be runtime detection, so that
universal binaries which run on all arm cpu models can also be
compatible with all kernel hardening profiles. robust detection
however is a much harder problem, and will be addressed at a later
time.
the kernel entry point for syscalls on microblaze nominally saves and
restores all registers, and testing on qemu always worked since qemu
behaves this way too. however, the real kernel treats r3:r4 as a
potential 64-bit return value from the syscall function, and copies
both over top of the saved registers before returning to userspace.
thus, we need to treat r4 as always-clobbered.
the excess space was unused and unintentional. this change does not
affect the ABI between applications and libc. while it does
theoretically affect linkage between third-party translation units
using jmp_buf as part of a structure, we've already changed jmp_buf at
least once on all archs, and problems were never observed, likely
because such usage would be very unusual. in any case it's best to get
things right now rather than making changes sometime during the 1.0.x
series or later.
Applications ended up with copy relocations for this array, which
resulted in libc's references to this array pointing to the
application's copy. The dynamic linker, however, can require this array
before the application is relocated, and therefore before the
application's copy of this array is initialized. This resulted in
garbage being loaded into FPSCR before executing main, which violated
the ABI.
We fix this by putting the array in crt1 and making the libc copy
private. This prevents libc's reference to the array from pointing to
an uninitialized copy in the application.
The mips statfs struct layout is different than on other archs, so the
statfs, fstatfs, statvfs and fstatvfs APIs were broken on mips.
Now the ordering is fixed, the types are kept consistent with other archs.
these have been wrong for a long time and were never detected or
corrected. powerpc needs some gratuitous extra padding/reserved slots
in ipc_perm, big-endian ordering for the padding of time_t slots that
was intended by the kernel folks to allow a transition to 64-bit
time_t, and some minor gratuitous reordering of struct members.
the definition was found to be incorrect at least for powerpc, and
fixing this cleanly requires making the definition arch-specific. this
will allow cleaning up the definition for other archs to make it more
specific, and reversing some of the ugliness (time_t hacks) introduced
with the x32 port.
this first commit simply copies the existing definition to each arch
without any changes. this is intentional, to make it easier to review
changes made on a per-arch basis.
the kernel uses long longs in the struct, but the documentation
says they're long. so we need to fixup the mismatch between the
userspace and kernelspace structs.
since the struct offers a mem_unit member, we can avoid truncation
by adjusting that value.
linux, gcc, etc. all use "sh" as the name for the superh arch. there
was already some inconsistency internally in musl: the dynamic linker
was searching for "ld-musl-sh.path" as its path file despite its own
name being "ld-musl-superh.so.1". there was some sentiment in both
directions as to how to resolve the inconsistency, but overall "sh"
was favored.
Userspace emulated floating-point (gcc -msoft-float) is not compatible
with the default mips abi (assumes an FPU or in kernel emulation of it).
Soft vs hard float abi should not be mixed, __mips_soft_float is checked
in musl's configure script and there is no runtime check. The -sf subarch
does not save/restore floating-point registers in setjmp/longjmp and only
provides dummy fenv implementation.
the reordering of headers caused some risc archs to not see
the __syscall declaration anymore.
this caused build errors on mips with any compiler,
and on arm and microblaze with clang.
we now declare it locally just like the powerpc port does.
it's legal to call the __syscall functions with more arguments than
necessary, and the __syscall_cp cancel dummy impl. does just that.
thus we must insert the switch for all possible syscalls numbers
into all of the syscallN inline functions.
- the nanosleep fixup "fixed" the second timespec* argument erroneusly.
- the futex fixup was missing the check for FUTEX_WAIT.
- general cleanup using a macro.
the operand size is unnecessary, since the assembler knows it from the
destination register size. removing the suffix makes it so the same
code should work for x32.
the fix should be complete on archs that use the generic definitions
(i386, arm, x86_64, microblaze), but mips and powerpc have not been
checked thoroughly and may need more fixes.
previously these macros wrongly had type double rather than long
double. I see no way an application could detect the error in C99, but
C11's _Generic can trivially detect it.
at the same time, even though these archs do not have excess
precision, the number of decimal places used to represent these
constants has been increased to 21 to be consistent with the decimal
representations used for the DBL_* macros.