first try at writing an efficient and "correct" exp10

this is a nonstandard function so it's not clear what conditions it
should satisfy. my intent is that it be fast and exact for positive
integral exponents when the result fits in the destination type, and
fast and correctly rounded for small negative integral exponents.
otherwise we aim for at most 1ulp error; it seems to differ from pow
by at most 1ulp and it's often 2-5 times faster than pow.
This commit is contained in:
Rich Felker 2012-04-30 03:26:53 -04:00
parent 63374ee233
commit f681975577
4 changed files with 59 additions and 0 deletions

View File

@ -387,6 +387,10 @@ float y1f(float);
long double y1l(long double);
float ynf(int, float);
long double ynl(int, long double);
double exp10(double);
float exp10f(float);
long double exp10l(long double);
#endif
#ifdef __cplusplus

19
src/math/exp10.c Normal file
View File

@ -0,0 +1,19 @@
#define _GNU_SOURCE
#include <math.h>
double exp10(double x)
{
static const double p10[] = {
1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10,
1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15
};
double n, y = modf(x, &n);
if (fabs(n) < 16) {
if (!y) return p10[(int)n+15];
y = exp2(3.32192809488736234787031942948939 * y);
return y * p10[(int)n+15];
}
return pow(10.0, x);
}

17
src/math/exp10f.c Normal file
View File

@ -0,0 +1,17 @@
#define _GNU_SOURCE
#include <math.h>
float exp10f(float x)
{
static const float p10[] = {
1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7
};
float n, y = modff(x, &n);
if (fabsf(n) < 8) {
if (!y) return p10[(int)n+7];
y = exp2f(3.32192809488736234787031942948939f * y);
return y * p10[(int)n+7];
}
return exp2(3.32192809488736234787031942948939 * x);
}

19
src/math/exp10l.c Normal file
View File

@ -0,0 +1,19 @@
#define _GNU_SOURCE
#include <math.h>
long double exp10l(long double x)
{
static const long double p10[] = {
1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10,
1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15
};
long double n, y = modfl(x, &n);
if (fabsl(n) < 16) {
if (!y) return p10[(int)n+15];
y = exp2l(3.32192809488736234787031942948939L * y);
return y * p10[(int)n+15];
}
return powl(10.0, x);
}