mirror of
https://git.musl-libc.org/git/musl
synced 2025-01-11 00:48:35 +03:00
Merge remote-tracking branch 'nsz/math'
This commit is contained in:
commit
8bb1816222
@ -112,6 +112,15 @@ long double creall(long double complex);
|
||||
#define cimagf(x) __CIMAG(x, float)
|
||||
#define cimagl(x) __CIMAG(x, long double)
|
||||
|
||||
#define __CMPLX(x, y, t) \
|
||||
((union { _Complex t __z; t __xy[2]; }){.__xy = {(x),(y)}}.__z)
|
||||
|
||||
#if __STDC_VERSION__ >= 201112L
|
||||
#define CMPLX(x, y) __CMPLX(x, y, double)
|
||||
#define CMPLXF(x, y) __CMPLX(x, y, float)
|
||||
#define CMPLXL(x, y) __CMPLX(x, y, long double)
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
@ -83,5 +83,5 @@ double complex __ldexp_cexp(double complex z, int expt)
|
||||
half_expt = expt - half_expt;
|
||||
INSERT_WORDS(scale2, (0x3ff + half_expt) << 20, 0);
|
||||
|
||||
return cpack(cos(y) * exp_x * scale1 * scale2, sin(y) * exp_x * scale1 * scale2);
|
||||
return CMPLX(cos(y) * exp_x * scale1 * scale2, sin(y) * exp_x * scale1 * scale2);
|
||||
}
|
||||
|
@ -63,6 +63,6 @@ float complex __ldexp_cexpf(float complex z, int expt)
|
||||
half_expt = expt - half_expt;
|
||||
SET_FLOAT_WORD(scale2, (0x7f + half_expt) << 23);
|
||||
|
||||
return cpackf(cosf(y) * exp_x * scale1 * scale2,
|
||||
return CMPLXF(cosf(y) * exp_x * scale1 * scale2,
|
||||
sinf(y) * exp_x * scale1 * scale2);
|
||||
}
|
||||
|
@ -7,5 +7,5 @@
|
||||
double complex cacos(double complex z)
|
||||
{
|
||||
z = casin(z);
|
||||
return cpack(M_PI_2 - creal(z), -cimag(z));
|
||||
return CMPLX(M_PI_2 - creal(z), -cimag(z));
|
||||
}
|
||||
|
@ -5,5 +5,5 @@
|
||||
float complex cacosf(float complex z)
|
||||
{
|
||||
z = casinf(z);
|
||||
return cpackf((float)M_PI_2 - crealf(z), -cimagf(z));
|
||||
return CMPLXF((float)M_PI_2 - crealf(z), -cimagf(z));
|
||||
}
|
||||
|
@ -5,5 +5,5 @@
|
||||
double complex cacosh(double complex z)
|
||||
{
|
||||
z = cacos(z);
|
||||
return cpack(-cimag(z), creal(z));
|
||||
return CMPLX(-cimag(z), creal(z));
|
||||
}
|
||||
|
@ -3,5 +3,5 @@
|
||||
float complex cacoshf(float complex z)
|
||||
{
|
||||
z = cacosf(z);
|
||||
return cpackf(-cimagf(z), crealf(z));
|
||||
return CMPLXF(-cimagf(z), crealf(z));
|
||||
}
|
||||
|
@ -9,6 +9,6 @@ long double complex cacoshl(long double complex z)
|
||||
long double complex cacoshl(long double complex z)
|
||||
{
|
||||
z = cacosl(z);
|
||||
return cpackl(-cimagl(z), creall(z));
|
||||
return CMPLXL(-cimagl(z), creall(z));
|
||||
}
|
||||
#endif
|
||||
|
@ -11,6 +11,6 @@ long double complex cacosl(long double complex z)
|
||||
long double complex cacosl(long double complex z)
|
||||
{
|
||||
z = casinl(z);
|
||||
return cpackl(PI_2 - creall(z), -cimagl(z));
|
||||
return CMPLXL(PI_2 - creall(z), -cimagl(z));
|
||||
}
|
||||
#endif
|
||||
|
@ -11,6 +11,6 @@ double complex casin(double complex z)
|
||||
|
||||
x = creal(z);
|
||||
y = cimag(z);
|
||||
w = cpack(1.0 - (x - y)*(x + y), -2.0*x*y);
|
||||
return clog(cpack(-y, x) + csqrt(w));
|
||||
w = CMPLX(1.0 - (x - y)*(x + y), -2.0*x*y);
|
||||
return clog(CMPLX(-y, x) + csqrt(w));
|
||||
}
|
||||
|
@ -9,6 +9,6 @@ float complex casinf(float complex z)
|
||||
|
||||
x = crealf(z);
|
||||
y = cimagf(z);
|
||||
w = cpackf(1.0 - (x - y)*(x + y), -2.0*x*y);
|
||||
return clogf(cpackf(-y, x) + csqrtf(w));
|
||||
w = CMPLXF(1.0 - (x - y)*(x + y), -2.0*x*y);
|
||||
return clogf(CMPLXF(-y, x) + csqrtf(w));
|
||||
}
|
||||
|
@ -4,6 +4,6 @@
|
||||
|
||||
double complex casinh(double complex z)
|
||||
{
|
||||
z = casin(cpack(-cimag(z), creal(z)));
|
||||
return cpack(cimag(z), -creal(z));
|
||||
z = casin(CMPLX(-cimag(z), creal(z)));
|
||||
return CMPLX(cimag(z), -creal(z));
|
||||
}
|
||||
|
@ -2,6 +2,6 @@
|
||||
|
||||
float complex casinhf(float complex z)
|
||||
{
|
||||
z = casinf(cpackf(-cimagf(z), crealf(z)));
|
||||
return cpackf(cimagf(z), -crealf(z));
|
||||
z = casinf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
return CMPLXF(cimagf(z), -crealf(z));
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ long double complex casinhl(long double complex z)
|
||||
#else
|
||||
long double complex casinhl(long double complex z)
|
||||
{
|
||||
z = casinl(cpackl(-cimagl(z), creall(z)));
|
||||
return cpackl(cimagl(z), -creall(z));
|
||||
z = casinl(CMPLXL(-cimagl(z), creall(z)));
|
||||
return CMPLXL(cimagl(z), -creall(z));
|
||||
}
|
||||
#endif
|
||||
|
@ -14,7 +14,7 @@ long double complex casinl(long double complex z)
|
||||
|
||||
x = creall(z);
|
||||
y = cimagl(z);
|
||||
w = cpackl(1.0 - (x - y)*(x + y), -2.0*x*y);
|
||||
return clogl(cpackl(-y, x) + csqrtl(w));
|
||||
w = CMPLXL(1.0 - (x - y)*(x + y), -2.0*x*y);
|
||||
return clogl(CMPLXL(-y, x) + csqrtl(w));
|
||||
}
|
||||
#endif
|
||||
|
@ -4,6 +4,6 @@
|
||||
|
||||
double complex catanh(double complex z)
|
||||
{
|
||||
z = catan(cpack(-cimag(z), creal(z)));
|
||||
return cpack(cimag(z), -creal(z));
|
||||
z = catan(CMPLX(-cimag(z), creal(z)));
|
||||
return CMPLX(cimag(z), -creal(z));
|
||||
}
|
||||
|
@ -2,6 +2,6 @@
|
||||
|
||||
float complex catanhf(float complex z)
|
||||
{
|
||||
z = catanf(cpackf(-cimagf(z), crealf(z)));
|
||||
return cpackf(cimagf(z), -crealf(z));
|
||||
z = catanf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
return CMPLXF(cimagf(z), -crealf(z));
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ long double complex catanhl(long double complex z)
|
||||
#else
|
||||
long double complex catanhl(long double complex z)
|
||||
{
|
||||
z = catanl(cpackl(-cimagl(z), creall(z)));
|
||||
return cpackl(cimagl(z), -creall(z));
|
||||
z = catanl(CMPLXL(-cimagl(z), creall(z)));
|
||||
return CMPLXL(cimagl(z), -creall(z));
|
||||
}
|
||||
#endif
|
||||
|
@ -4,5 +4,5 @@
|
||||
|
||||
double complex ccos(double complex z)
|
||||
{
|
||||
return ccosh(cpack(-cimag(z), creal(z)));
|
||||
return ccosh(CMPLX(-cimag(z), creal(z)));
|
||||
}
|
||||
|
@ -2,5 +2,5 @@
|
||||
|
||||
float complex ccosf(float complex z)
|
||||
{
|
||||
return ccoshf(cpackf(-cimagf(z), crealf(z)));
|
||||
return ccoshf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
}
|
||||
|
@ -55,23 +55,23 @@ double complex ccosh(double complex z)
|
||||
/* Handle the nearly-non-exceptional cases where x and y are finite. */
|
||||
if (ix < 0x7ff00000 && iy < 0x7ff00000) {
|
||||
if ((iy | ly) == 0)
|
||||
return cpack(cosh(x), x * y);
|
||||
return CMPLX(cosh(x), x * y);
|
||||
if (ix < 0x40360000) /* small x: normal case */
|
||||
return cpack(cosh(x) * cos(y), sinh(x) * sin(y));
|
||||
return CMPLX(cosh(x) * cos(y), sinh(x) * sin(y));
|
||||
|
||||
/* |x| >= 22, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x40862e42) {
|
||||
/* x < 710: exp(|x|) won't overflow */
|
||||
h = exp(fabs(x)) * 0.5;
|
||||
return cpack(h * cos(y), copysign(h, x) * sin(y));
|
||||
return CMPLX(h * cos(y), copysign(h, x) * sin(y));
|
||||
} else if (ix < 0x4096bbaa) {
|
||||
/* x < 1455: scale to avoid overflow */
|
||||
z = __ldexp_cexp(cpack(fabs(x), y), -1);
|
||||
return cpack(creal(z), cimag(z) * copysign(1, x));
|
||||
z = __ldexp_cexp(CMPLX(fabs(x), y), -1);
|
||||
return CMPLX(creal(z), cimag(z) * copysign(1, x));
|
||||
} else {
|
||||
/* x >= 1455: the result always overflows */
|
||||
h = huge * x;
|
||||
return cpack(h * h * cos(y), h * sin(y));
|
||||
return CMPLX(h * h * cos(y), h * sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,7 +85,7 @@ double complex ccosh(double complex z)
|
||||
* the same as d(NaN).
|
||||
*/
|
||||
if ((ix | lx) == 0 && iy >= 0x7ff00000)
|
||||
return cpack(y - y, copysign(0, x * (y - y)));
|
||||
return CMPLX(y - y, copysign(0, x * (y - y)));
|
||||
|
||||
/*
|
||||
* cosh(+-Inf +- I 0) = +Inf + I (+-)(+-)0.
|
||||
@ -95,8 +95,8 @@ double complex ccosh(double complex z)
|
||||
*/
|
||||
if ((iy | ly) == 0 && ix >= 0x7ff00000) {
|
||||
if (((hx & 0xfffff) | lx) == 0)
|
||||
return cpack(x * x, copysign(0, x) * y);
|
||||
return cpack(x * x, copysign(0, (x + x) * y));
|
||||
return CMPLX(x * x, copysign(0, x) * y);
|
||||
return CMPLX(x * x, copysign(0, (x + x) * y));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -108,7 +108,7 @@ double complex ccosh(double complex z)
|
||||
* nonzero x. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
if (ix < 0x7ff00000 && iy >= 0x7ff00000)
|
||||
return cpack(y - y, x * (y - y));
|
||||
return CMPLX(y - y, x * (y - y));
|
||||
|
||||
/*
|
||||
* cosh(+-Inf + I NaN) = +Inf + I d(NaN).
|
||||
@ -121,8 +121,8 @@ double complex ccosh(double complex z)
|
||||
*/
|
||||
if (ix >= 0x7ff00000 && ((hx & 0xfffff) | lx) == 0) {
|
||||
if (iy >= 0x7ff00000)
|
||||
return cpack(x * x, x * (y - y));
|
||||
return cpack((x * x) * cos(y), x * sin(y));
|
||||
return CMPLX(x * x, x * (y - y));
|
||||
return CMPLX((x * x) * cos(y), x * sin(y));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -136,5 +136,5 @@ double complex ccosh(double complex z)
|
||||
* Optionally raises the invalid floating-point exception for finite
|
||||
* nonzero y. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
return cpack((x * x) * (y - y), (x + x) * (y - y));
|
||||
return CMPLX((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
@ -48,43 +48,43 @@ float complex ccoshf(float complex z)
|
||||
|
||||
if (ix < 0x7f800000 && iy < 0x7f800000) {
|
||||
if (iy == 0)
|
||||
return cpackf(coshf(x), x * y);
|
||||
return CMPLXF(coshf(x), x * y);
|
||||
if (ix < 0x41100000) /* small x: normal case */
|
||||
return cpackf(coshf(x) * cosf(y), sinhf(x) * sinf(y));
|
||||
return CMPLXF(coshf(x) * cosf(y), sinhf(x) * sinf(y));
|
||||
|
||||
/* |x| >= 9, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x42b17218) {
|
||||
/* x < 88.7: expf(|x|) won't overflow */
|
||||
h = expf(fabsf(x)) * 0.5f;
|
||||
return cpackf(h * cosf(y), copysignf(h, x) * sinf(y));
|
||||
return CMPLXF(h * cosf(y), copysignf(h, x) * sinf(y));
|
||||
} else if (ix < 0x4340b1e7) {
|
||||
/* x < 192.7: scale to avoid overflow */
|
||||
z = __ldexp_cexpf(cpackf(fabsf(x), y), -1);
|
||||
return cpackf(crealf(z), cimagf(z) * copysignf(1, x));
|
||||
z = __ldexp_cexpf(CMPLXF(fabsf(x), y), -1);
|
||||
return CMPLXF(crealf(z), cimagf(z) * copysignf(1, x));
|
||||
} else {
|
||||
/* x >= 192.7: the result always overflows */
|
||||
h = huge * x;
|
||||
return cpackf(h * h * cosf(y), h * sinf(y));
|
||||
return CMPLXF(h * h * cosf(y), h * sinf(y));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix == 0 && iy >= 0x7f800000)
|
||||
return cpackf(y - y, copysignf(0, x * (y - y)));
|
||||
return CMPLXF(y - y, copysignf(0, x * (y - y)));
|
||||
|
||||
if (iy == 0 && ix >= 0x7f800000) {
|
||||
if ((hx & 0x7fffff) == 0)
|
||||
return cpackf(x * x, copysignf(0, x) * y);
|
||||
return cpackf(x * x, copysignf(0, (x + x) * y));
|
||||
return CMPLXF(x * x, copysignf(0, x) * y);
|
||||
return CMPLXF(x * x, copysignf(0, (x + x) * y));
|
||||
}
|
||||
|
||||
if (ix < 0x7f800000 && iy >= 0x7f800000)
|
||||
return cpackf(y - y, x * (y - y));
|
||||
return CMPLXF(y - y, x * (y - y));
|
||||
|
||||
if (ix >= 0x7f800000 && (hx & 0x7fffff) == 0) {
|
||||
if (iy >= 0x7f800000)
|
||||
return cpackf(x * x, x * (y - y));
|
||||
return cpackf((x * x) * cosf(y), x * sinf(y));
|
||||
return CMPLXF(x * x, x * (y - y));
|
||||
return CMPLXF((x * x) * cosf(y), x * sinf(y));
|
||||
}
|
||||
|
||||
return cpackf((x * x) * (y - y), (x + x) * (y - y));
|
||||
return CMPLXF((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
@ -8,6 +8,6 @@ long double complex ccosl(long double complex z)
|
||||
#else
|
||||
long double complex ccosl(long double complex z)
|
||||
{
|
||||
return ccoshl(cpackl(-cimagl(z), creall(z)));
|
||||
return ccoshl(CMPLXL(-cimagl(z), creall(z)));
|
||||
}
|
||||
#endif
|
||||
|
@ -44,22 +44,22 @@ double complex cexp(double complex z)
|
||||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if ((hy | ly) == 0)
|
||||
return cpack(exp(x), y);
|
||||
return CMPLX(exp(x), y);
|
||||
EXTRACT_WORDS(hx, lx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if (((hx & 0x7fffffff) | lx) == 0)
|
||||
return cpack(cos(y), sin(y));
|
||||
return CMPLX(cos(y), sin(y));
|
||||
|
||||
if (hy >= 0x7ff00000) {
|
||||
if (lx != 0 || (hx & 0x7fffffff) != 0x7ff00000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return cpack(y - y, y - y);
|
||||
return CMPLX(y - y, y - y);
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return cpack(0.0, 0.0);
|
||||
return CMPLX(0.0, 0.0);
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return cpack(x, y - y);
|
||||
return CMPLX(x, y - y);
|
||||
}
|
||||
}
|
||||
|
||||
@ -78,6 +78,6 @@ double complex cexp(double complex z)
|
||||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = exp(x);
|
||||
return cpack(exp_x * cos(y), exp_x * sin(y));
|
||||
return CMPLX(exp_x * cos(y), exp_x * sin(y));
|
||||
}
|
||||
}
|
||||
|
@ -44,22 +44,22 @@ float complex cexpf(float complex z)
|
||||
|
||||
/* cexp(x + I 0) = exp(x) + I 0 */
|
||||
if (hy == 0)
|
||||
return cpackf(expf(x), y);
|
||||
return CMPLXF(expf(x), y);
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
/* cexp(0 + I y) = cos(y) + I sin(y) */
|
||||
if ((hx & 0x7fffffff) == 0)
|
||||
return cpackf(cosf(y), sinf(y));
|
||||
return CMPLXF(cosf(y), sinf(y));
|
||||
|
||||
if (hy >= 0x7f800000) {
|
||||
if ((hx & 0x7fffffff) != 0x7f800000) {
|
||||
/* cexp(finite|NaN +- I Inf|NaN) = NaN + I NaN */
|
||||
return cpackf(y - y, y - y);
|
||||
return CMPLXF(y - y, y - y);
|
||||
} else if (hx & 0x80000000) {
|
||||
/* cexp(-Inf +- I Inf|NaN) = 0 + I 0 */
|
||||
return cpackf(0.0, 0.0);
|
||||
return CMPLXF(0.0, 0.0);
|
||||
} else {
|
||||
/* cexp(+Inf +- I Inf|NaN) = Inf + I NaN */
|
||||
return cpackf(x, y - y);
|
||||
return CMPLXF(x, y - y);
|
||||
}
|
||||
}
|
||||
|
||||
@ -78,6 +78,6 @@ float complex cexpf(float complex z)
|
||||
* - x = NaN (spurious inexact exception from y)
|
||||
*/
|
||||
exp_x = expf(x);
|
||||
return cpackf(exp_x * cosf(y), exp_x * sinf(y));
|
||||
return CMPLXF(exp_x * cosf(y), exp_x * sinf(y));
|
||||
}
|
||||
}
|
||||
|
@ -10,5 +10,5 @@ double complex clog(double complex z)
|
||||
|
||||
r = cabs(z);
|
||||
phi = carg(z);
|
||||
return cpack(log(r), phi);
|
||||
return CMPLX(log(r), phi);
|
||||
}
|
||||
|
@ -8,5 +8,5 @@ float complex clogf(float complex z)
|
||||
|
||||
r = cabsf(z);
|
||||
phi = cargf(z);
|
||||
return cpackf(logf(r), phi);
|
||||
return CMPLXF(logf(r), phi);
|
||||
}
|
||||
|
@ -13,6 +13,6 @@ long double complex clogl(long double complex z)
|
||||
|
||||
r = cabsl(z);
|
||||
phi = cargl(z);
|
||||
return cpackl(logl(r), phi);
|
||||
return CMPLXL(logl(r), phi);
|
||||
}
|
||||
#endif
|
||||
|
@ -2,5 +2,5 @@
|
||||
|
||||
double complex conj(double complex z)
|
||||
{
|
||||
return cpack(creal(z), -cimag(z));
|
||||
return CMPLX(creal(z), -cimag(z));
|
||||
}
|
||||
|
@ -2,5 +2,5 @@
|
||||
|
||||
float complex conjf(float complex z)
|
||||
{
|
||||
return cpackf(crealf(z), -cimagf(z));
|
||||
return CMPLXF(crealf(z), -cimagf(z));
|
||||
}
|
||||
|
@ -2,5 +2,5 @@
|
||||
|
||||
long double complex conjl(long double complex z)
|
||||
{
|
||||
return cpackl(creall(z), -cimagl(z));
|
||||
return CMPLXL(creall(z), -cimagl(z));
|
||||
}
|
||||
|
@ -3,6 +3,6 @@
|
||||
double complex cproj(double complex z)
|
||||
{
|
||||
if (isinf(creal(z)) || isinf(cimag(z)))
|
||||
return cpack(INFINITY, copysign(0.0, creal(z)));
|
||||
return CMPLX(INFINITY, copysign(0.0, creal(z)));
|
||||
return z;
|
||||
}
|
||||
|
@ -3,6 +3,6 @@
|
||||
float complex cprojf(float complex z)
|
||||
{
|
||||
if (isinf(crealf(z)) || isinf(cimagf(z)))
|
||||
return cpackf(INFINITY, copysignf(0.0, crealf(z)));
|
||||
return CMPLXF(INFINITY, copysignf(0.0, crealf(z)));
|
||||
return z;
|
||||
}
|
||||
|
@ -9,7 +9,7 @@ long double complex cprojl(long double complex z)
|
||||
long double complex cprojl(long double complex z)
|
||||
{
|
||||
if (isinf(creall(z)) || isinf(cimagl(z)))
|
||||
return cpackl(INFINITY, copysignl(0.0, creall(z)));
|
||||
return CMPLXL(INFINITY, copysignl(0.0, creall(z)));
|
||||
return z;
|
||||
}
|
||||
#endif
|
||||
|
@ -4,6 +4,6 @@
|
||||
|
||||
double complex csin(double complex z)
|
||||
{
|
||||
z = csinh(cpack(-cimag(z), creal(z)));
|
||||
return cpack(cimag(z), -creal(z));
|
||||
z = csinh(CMPLX(-cimag(z), creal(z)));
|
||||
return CMPLX(cimag(z), -creal(z));
|
||||
}
|
||||
|
@ -2,6 +2,6 @@
|
||||
|
||||
float complex csinf(float complex z)
|
||||
{
|
||||
z = csinhf(cpackf(-cimagf(z), crealf(z)));
|
||||
return cpackf(cimagf(z), -crealf(z));
|
||||
z = csinhf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
return CMPLXF(cimagf(z), -crealf(z));
|
||||
}
|
||||
|
@ -55,23 +55,23 @@ double complex csinh(double complex z)
|
||||
/* Handle the nearly-non-exceptional cases where x and y are finite. */
|
||||
if (ix < 0x7ff00000 && iy < 0x7ff00000) {
|
||||
if ((iy | ly) == 0)
|
||||
return cpack(sinh(x), y);
|
||||
return CMPLX(sinh(x), y);
|
||||
if (ix < 0x40360000) /* small x: normal case */
|
||||
return cpack(sinh(x) * cos(y), cosh(x) * sin(y));
|
||||
return CMPLX(sinh(x) * cos(y), cosh(x) * sin(y));
|
||||
|
||||
/* |x| >= 22, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x40862e42) {
|
||||
/* x < 710: exp(|x|) won't overflow */
|
||||
h = exp(fabs(x)) * 0.5;
|
||||
return cpack(copysign(h, x) * cos(y), h * sin(y));
|
||||
return CMPLX(copysign(h, x) * cos(y), h * sin(y));
|
||||
} else if (ix < 0x4096bbaa) {
|
||||
/* x < 1455: scale to avoid overflow */
|
||||
z = __ldexp_cexp(cpack(fabs(x), y), -1);
|
||||
return cpack(creal(z) * copysign(1, x), cimag(z));
|
||||
z = __ldexp_cexp(CMPLX(fabs(x), y), -1);
|
||||
return CMPLX(creal(z) * copysign(1, x), cimag(z));
|
||||
} else {
|
||||
/* x >= 1455: the result always overflows */
|
||||
h = huge * x;
|
||||
return cpack(h * cos(y), h * h * sin(y));
|
||||
return CMPLX(h * cos(y), h * h * sin(y));
|
||||
}
|
||||
}
|
||||
|
||||
@ -85,7 +85,7 @@ double complex csinh(double complex z)
|
||||
* the same as d(NaN).
|
||||
*/
|
||||
if ((ix | lx) == 0 && iy >= 0x7ff00000)
|
||||
return cpack(copysign(0, x * (y - y)), y - y);
|
||||
return CMPLX(copysign(0, x * (y - y)), y - y);
|
||||
|
||||
/*
|
||||
* sinh(+-Inf +- I 0) = +-Inf + I +-0.
|
||||
@ -94,8 +94,8 @@ double complex csinh(double complex z)
|
||||
*/
|
||||
if ((iy | ly) == 0 && ix >= 0x7ff00000) {
|
||||
if (((hx & 0xfffff) | lx) == 0)
|
||||
return cpack(x, y);
|
||||
return cpack(x, copysign(0, y));
|
||||
return CMPLX(x, y);
|
||||
return CMPLX(x, copysign(0, y));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -107,7 +107,7 @@ double complex csinh(double complex z)
|
||||
* nonzero x. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
if (ix < 0x7ff00000 && iy >= 0x7ff00000)
|
||||
return cpack(y - y, x * (y - y));
|
||||
return CMPLX(y - y, x * (y - y));
|
||||
|
||||
/*
|
||||
* sinh(+-Inf + I NaN) = +-Inf + I d(NaN).
|
||||
@ -122,8 +122,8 @@ double complex csinh(double complex z)
|
||||
*/
|
||||
if (ix >= 0x7ff00000 && ((hx & 0xfffff) | lx) == 0) {
|
||||
if (iy >= 0x7ff00000)
|
||||
return cpack(x * x, x * (y - y));
|
||||
return cpack(x * cos(y), INFINITY * sin(y));
|
||||
return CMPLX(x * x, x * (y - y));
|
||||
return CMPLX(x * cos(y), INFINITY * sin(y));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -137,5 +137,5 @@ double complex csinh(double complex z)
|
||||
* Optionally raises the invalid floating-point exception for finite
|
||||
* nonzero y. Choice = don't raise (except for signaling NaNs).
|
||||
*/
|
||||
return cpack((x * x) * (y - y), (x + x) * (y - y));
|
||||
return CMPLX((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
@ -48,43 +48,43 @@ float complex csinhf(float complex z)
|
||||
|
||||
if (ix < 0x7f800000 && iy < 0x7f800000) {
|
||||
if (iy == 0)
|
||||
return cpackf(sinhf(x), y);
|
||||
return CMPLXF(sinhf(x), y);
|
||||
if (ix < 0x41100000) /* small x: normal case */
|
||||
return cpackf(sinhf(x) * cosf(y), coshf(x) * sinf(y));
|
||||
return CMPLXF(sinhf(x) * cosf(y), coshf(x) * sinf(y));
|
||||
|
||||
/* |x| >= 9, so cosh(x) ~= exp(|x|) */
|
||||
if (ix < 0x42b17218) {
|
||||
/* x < 88.7: expf(|x|) won't overflow */
|
||||
h = expf(fabsf(x)) * 0.5f;
|
||||
return cpackf(copysignf(h, x) * cosf(y), h * sinf(y));
|
||||
return CMPLXF(copysignf(h, x) * cosf(y), h * sinf(y));
|
||||
} else if (ix < 0x4340b1e7) {
|
||||
/* x < 192.7: scale to avoid overflow */
|
||||
z = __ldexp_cexpf(cpackf(fabsf(x), y), -1);
|
||||
return cpackf(crealf(z) * copysignf(1, x), cimagf(z));
|
||||
z = __ldexp_cexpf(CMPLXF(fabsf(x), y), -1);
|
||||
return CMPLXF(crealf(z) * copysignf(1, x), cimagf(z));
|
||||
} else {
|
||||
/* x >= 192.7: the result always overflows */
|
||||
h = huge * x;
|
||||
return cpackf(h * cosf(y), h * h * sinf(y));
|
||||
return CMPLXF(h * cosf(y), h * h * sinf(y));
|
||||
}
|
||||
}
|
||||
|
||||
if (ix == 0 && iy >= 0x7f800000)
|
||||
return cpackf(copysignf(0, x * (y - y)), y - y);
|
||||
return CMPLXF(copysignf(0, x * (y - y)), y - y);
|
||||
|
||||
if (iy == 0 && ix >= 0x7f800000) {
|
||||
if ((hx & 0x7fffff) == 0)
|
||||
return cpackf(x, y);
|
||||
return cpackf(x, copysignf(0, y));
|
||||
return CMPLXF(x, y);
|
||||
return CMPLXF(x, copysignf(0, y));
|
||||
}
|
||||
|
||||
if (ix < 0x7f800000 && iy >= 0x7f800000)
|
||||
return cpackf(y - y, x * (y - y));
|
||||
return CMPLXF(y - y, x * (y - y));
|
||||
|
||||
if (ix >= 0x7f800000 && (hx & 0x7fffff) == 0) {
|
||||
if (iy >= 0x7f800000)
|
||||
return cpackf(x * x, x * (y - y));
|
||||
return cpackf(x * cosf(y), INFINITY * sinf(y));
|
||||
return CMPLXF(x * x, x * (y - y));
|
||||
return CMPLXF(x * cosf(y), INFINITY * sinf(y));
|
||||
}
|
||||
|
||||
return cpackf((x * x) * (y - y), (x + x) * (y - y));
|
||||
return CMPLXF((x * x) * (y - y), (x + x) * (y - y));
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ long double complex csinl(long double complex z)
|
||||
#else
|
||||
long double complex csinl(long double complex z)
|
||||
{
|
||||
z = csinhl(cpackl(-cimagl(z), creall(z)));
|
||||
return cpackl(cimagl(z), -creall(z));
|
||||
z = csinhl(CMPLXL(-cimagl(z), creall(z)));
|
||||
return CMPLXL(cimagl(z), -creall(z));
|
||||
}
|
||||
#endif
|
||||
|
@ -51,12 +51,12 @@ double complex csqrt(double complex z)
|
||||
|
||||
/* Handle special cases. */
|
||||
if (z == 0)
|
||||
return cpack(0, b);
|
||||
return CMPLX(0, b);
|
||||
if (isinf(b))
|
||||
return cpack(INFINITY, b);
|
||||
return CMPLX(INFINITY, b);
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return cpack(a, t); /* return NaN + NaN i */
|
||||
return CMPLX(a, t); /* return NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
@ -66,9 +66,9 @@ double complex csqrt(double complex z)
|
||||
* csqrt(-inf + y i) = 0 + inf i
|
||||
*/
|
||||
if (signbit(a))
|
||||
return cpack(fabs(b - b), copysign(a, b));
|
||||
return CMPLX(fabs(b - b), copysign(a, b));
|
||||
else
|
||||
return cpack(a, copysign(b - b, b));
|
||||
return CMPLX(a, copysign(b - b, b));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
@ -87,10 +87,10 @@ double complex csqrt(double complex z)
|
||||
/* Algorithm 312, CACM vol 10, Oct 1967. */
|
||||
if (a >= 0) {
|
||||
t = sqrt((a + hypot(a, b)) * 0.5);
|
||||
result = cpack(t, b / (2 * t));
|
||||
result = CMPLX(t, b / (2 * t));
|
||||
} else {
|
||||
t = sqrt((-a + hypot(a, b)) * 0.5);
|
||||
result = cpack(fabs(b) / (2 * t), copysign(t, b));
|
||||
result = CMPLX(fabs(b) / (2 * t), copysign(t, b));
|
||||
}
|
||||
|
||||
/* Rescale. */
|
||||
|
@ -43,12 +43,12 @@ float complex csqrtf(float complex z)
|
||||
|
||||
/* Handle special cases. */
|
||||
if (z == 0)
|
||||
return cpackf(0, b);
|
||||
return CMPLXF(0, b);
|
||||
if (isinf(b))
|
||||
return cpackf(INFINITY, b);
|
||||
return CMPLXF(INFINITY, b);
|
||||
if (isnan(a)) {
|
||||
t = (b - b) / (b - b); /* raise invalid if b is not a NaN */
|
||||
return cpackf(a, t); /* return NaN + NaN i */
|
||||
return CMPLXF(a, t); /* return NaN + NaN i */
|
||||
}
|
||||
if (isinf(a)) {
|
||||
/*
|
||||
@ -58,9 +58,9 @@ float complex csqrtf(float complex z)
|
||||
* csqrtf(-inf + y i) = 0 + inf i
|
||||
*/
|
||||
if (signbit(a))
|
||||
return cpackf(fabsf(b - b), copysignf(a, b));
|
||||
return CMPLXF(fabsf(b - b), copysignf(a, b));
|
||||
else
|
||||
return cpackf(a, copysignf(b - b, b));
|
||||
return CMPLXF(a, copysignf(b - b, b));
|
||||
}
|
||||
/*
|
||||
* The remaining special case (b is NaN) is handled just fine by
|
||||
@ -74,9 +74,9 @@ float complex csqrtf(float complex z)
|
||||
*/
|
||||
if (a >= 0) {
|
||||
t = sqrt((a + hypot(a, b)) * 0.5);
|
||||
return cpackf(t, b / (2.0 * t));
|
||||
return CMPLXF(t, b / (2.0 * t));
|
||||
} else {
|
||||
t = sqrt((-a + hypot(a, b)) * 0.5);
|
||||
return cpackf(fabsf(b) / (2.0 * t), copysignf(t, b));
|
||||
return CMPLXF(fabsf(b) / (2.0 * t), copysignf(t, b));
|
||||
}
|
||||
}
|
||||
|
@ -4,6 +4,6 @@
|
||||
|
||||
double complex ctan(double complex z)
|
||||
{
|
||||
z = ctanh(cpack(-cimag(z), creal(z)));
|
||||
return cpack(cimag(z), -creal(z));
|
||||
z = ctanh(CMPLX(-cimag(z), creal(z)));
|
||||
return CMPLX(cimag(z), -creal(z));
|
||||
}
|
||||
|
@ -2,6 +2,6 @@
|
||||
|
||||
float complex ctanf(float complex z)
|
||||
{
|
||||
z = ctanhf(cpackf(-cimagf(z), crealf(z)));
|
||||
return cpackf(cimagf(z), -crealf(z));
|
||||
z = ctanhf(CMPLXF(-cimagf(z), crealf(z)));
|
||||
return CMPLXF(cimagf(z), -crealf(z));
|
||||
}
|
||||
|
@ -95,9 +95,9 @@ double complex ctanh(double complex z)
|
||||
*/
|
||||
if (ix >= 0x7ff00000) {
|
||||
if ((ix & 0xfffff) | lx) /* x is NaN */
|
||||
return cpack(x, (y == 0 ? y : x * y));
|
||||
return CMPLX(x, (y == 0 ? y : x * y));
|
||||
SET_HIGH_WORD(x, hx - 0x40000000); /* x = copysign(1, x) */
|
||||
return cpack(x, copysign(0, isinf(y) ? y : sin(y) * cos(y)));
|
||||
return CMPLX(x, copysign(0, isinf(y) ? y : sin(y) * cos(y)));
|
||||
}
|
||||
|
||||
/*
|
||||
@ -105,7 +105,7 @@ double complex ctanh(double complex z)
|
||||
* ctanh(x +- i Inf) = NaN + i NaN
|
||||
*/
|
||||
if (!isfinite(y))
|
||||
return cpack(y - y, y - y);
|
||||
return CMPLX(y - y, y - y);
|
||||
|
||||
/*
|
||||
* ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
|
||||
@ -114,7 +114,7 @@ double complex ctanh(double complex z)
|
||||
*/
|
||||
if (ix >= 0x40360000) { /* x >= 22 */
|
||||
double exp_mx = exp(-fabs(x));
|
||||
return cpack(copysign(1, x), 4 * sin(y) * cos(y) * exp_mx * exp_mx);
|
||||
return CMPLX(copysign(1, x), 4 * sin(y) * cos(y) * exp_mx * exp_mx);
|
||||
}
|
||||
|
||||
/* Kahan's algorithm */
|
||||
@ -123,5 +123,5 @@ double complex ctanh(double complex z)
|
||||
s = sinh(x);
|
||||
rho = sqrt(1 + s * s); /* = cosh(x) */
|
||||
denom = 1 + beta * s * s;
|
||||
return cpack((beta * rho * s) / denom, t / denom);
|
||||
return CMPLX((beta * rho * s) / denom, t / denom);
|
||||
}
|
||||
|
@ -44,17 +44,17 @@ float complex ctanhf(float complex z)
|
||||
|
||||
if (ix >= 0x7f800000) {
|
||||
if (ix & 0x7fffff)
|
||||
return cpackf(x, (y == 0 ? y : x * y));
|
||||
return CMPLXF(x, (y == 0 ? y : x * y));
|
||||
SET_FLOAT_WORD(x, hx - 0x40000000);
|
||||
return cpackf(x, copysignf(0, isinf(y) ? y : sinf(y) * cosf(y)));
|
||||
return CMPLXF(x, copysignf(0, isinf(y) ? y : sinf(y) * cosf(y)));
|
||||
}
|
||||
|
||||
if (!isfinite(y))
|
||||
return cpackf(y - y, y - y);
|
||||
return CMPLXF(y - y, y - y);
|
||||
|
||||
if (ix >= 0x41300000) { /* x >= 11 */
|
||||
float exp_mx = expf(-fabsf(x));
|
||||
return cpackf(copysignf(1, x), 4 * sinf(y) * cosf(y) * exp_mx * exp_mx);
|
||||
return CMPLXF(copysignf(1, x), 4 * sinf(y) * cosf(y) * exp_mx * exp_mx);
|
||||
}
|
||||
|
||||
t = tanf(y);
|
||||
@ -62,5 +62,5 @@ float complex ctanhf(float complex z)
|
||||
s = sinhf(x);
|
||||
rho = sqrtf(1 + s * s);
|
||||
denom = 1 + beta * s * s;
|
||||
return cpackf((beta * rho * s) / denom, t / denom);
|
||||
return CMPLXF((beta * rho * s) / denom, t / denom);
|
||||
}
|
||||
|
@ -8,7 +8,7 @@ long double complex ctanl(long double complex z)
|
||||
#else
|
||||
long double complex ctanl(long double complex z)
|
||||
{
|
||||
z = ctanhl(cpackl(-cimagl(z), creall(z)));
|
||||
return cpackl(cimagl(z), -creall(z));
|
||||
z = ctanhl(CMPLXL(-cimagl(z), creall(z)));
|
||||
return CMPLXL(cimagl(z), -creall(z));
|
||||
}
|
||||
#endif
|
||||
|
@ -19,7 +19,7 @@ int fetestexcept(int mask)
|
||||
|
||||
int fegetround(void)
|
||||
{
|
||||
return 0;
|
||||
return FE_TONEAREST;
|
||||
}
|
||||
|
||||
int fesetround(int r)
|
||||
|
@ -2,6 +2,7 @@
|
||||
|
||||
int feupdateenv(const fenv_t *envp)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int ex = fetestexcept(FE_ALL_EXCEPT);
|
||||
fesetenv(envp);
|
||||
feraiseexcept(ex);
|
||||
|
@ -157,38 +157,23 @@ long double __tanl(long double, long double, int);
|
||||
long double __polevll(long double, const long double *, int);
|
||||
long double __p1evll(long double, const long double *, int);
|
||||
|
||||
// FIXME: not needed when -fexcess-precision=standard is supported (>=gcc4.5)
|
||||
/*
|
||||
* Attempt to get strict C99 semantics for assignment with non-C99 compilers.
|
||||
*/
|
||||
#if 1
|
||||
#if 0
|
||||
/* Attempt to get strict C99 semantics for assignment with non-C99 compilers. */
|
||||
#define STRICT_ASSIGN(type, lval, rval) do { \
|
||||
volatile type __v = (rval); \
|
||||
(lval) = __v; \
|
||||
} while (0)
|
||||
#else
|
||||
/* Should work with -fexcess-precision=standard (>=gcc-4.5) or -ffloat-store */
|
||||
#define STRICT_ASSIGN(type, lval, rval) ((lval) = (type)(rval))
|
||||
#endif
|
||||
|
||||
|
||||
/* complex */
|
||||
|
||||
union dcomplex {
|
||||
double complex z;
|
||||
double a[2];
|
||||
};
|
||||
union fcomplex {
|
||||
float complex z;
|
||||
float a[2];
|
||||
};
|
||||
union lcomplex {
|
||||
long double complex z;
|
||||
long double a[2];
|
||||
};
|
||||
|
||||
/* x + y*I is not supported properly by gcc */
|
||||
#define cpack(x,y) ((union dcomplex){.a={(x),(y)}}.z)
|
||||
#define cpackf(x,y) ((union fcomplex){.a={(x),(y)}}.z)
|
||||
#define cpackl(x,y) ((union lcomplex){.a={(x),(y)}}.z)
|
||||
#ifndef CMPLX
|
||||
#define CMPLX(x, y) __CMPLX(x, y, double)
|
||||
#define CMPLXF(x, y) __CMPLX(x, y, float)
|
||||
#define CMPLXL(x, y) __CMPLX(x, y, long double)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -28,9 +28,8 @@
|
||||
#include "__invtrigl.h"
|
||||
|
||||
#if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
||||
/*
|
||||
* asinl() and acosl()
|
||||
*/
|
||||
|
||||
/* coefficients used in asinl() and acosl() */
|
||||
const long double
|
||||
pS0 = 1.66666666666666666631e-01L,
|
||||
pS1 = -4.16313987993683104320e-01L,
|
||||
@ -45,38 +44,9 @@ qS3 = -1.68285799854822427013e+00L,
|
||||
qS4 = 3.90699412641738801874e-01L,
|
||||
qS5 = -3.14365703596053263322e-02L;
|
||||
|
||||
/*
|
||||
* atanl()
|
||||
*/
|
||||
const long double atanhi[] = {
|
||||
4.63647609000806116202e-01L,
|
||||
7.85398163397448309628e-01L,
|
||||
9.82793723247329067960e-01L,
|
||||
1.57079632679489661926e+00L,
|
||||
};
|
||||
|
||||
const long double atanlo[] = {
|
||||
1.18469937025062860669e-20L,
|
||||
-1.25413940316708300586e-20L,
|
||||
2.55232234165405176172e-20L,
|
||||
-2.50827880633416601173e-20L,
|
||||
};
|
||||
|
||||
const long double aT[] = {
|
||||
3.33333333333333333017e-01L,
|
||||
-1.99999999999999632011e-01L,
|
||||
1.42857142857046531280e-01L,
|
||||
-1.11111111100562372733e-01L,
|
||||
9.09090902935647302252e-02L,
|
||||
-7.69230552476207730353e-02L,
|
||||
6.66661718042406260546e-02L,
|
||||
-5.88158892835030888692e-02L,
|
||||
5.25499891539726639379e-02L,
|
||||
-4.70119845393155721494e-02L,
|
||||
4.03539201366454414072e-02L,
|
||||
-2.91303858419364158725e-02L,
|
||||
1.24822046299269234080e-02L,
|
||||
};
|
||||
|
||||
const long double pi_hi = 3.1415926535897932384626433832795L;
|
||||
const long double pi_lo = -5.01655761266833202345e-20L;
|
||||
const long double pio2_hi = 1.57079632679489661926L;
|
||||
const long double pio2_lo = -2.50827880633416601173e-20L;
|
||||
|
||||
#endif
|
||||
|
@ -32,15 +32,6 @@
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
#define MANH_SIZE LDBL_MANH_SIZE
|
||||
|
||||
/* Approximation thresholds. */
|
||||
#define ASIN_LINEAR (BIAS - 32) /* 2**-32 */
|
||||
#define ACOS_CONST (BIAS - 65) /* 2**-65 */
|
||||
#define ATAN_CONST (BIAS + 65) /* 2**65 */
|
||||
#define ATAN_LINEAR (BIAS - 32) /* 2**-32 */
|
||||
|
||||
/* 0.95 */
|
||||
#define THRESH ((0xe666666666666666ULL>>(64-(MANH_SIZE-1)))|LDBL_NBIT)
|
||||
|
||||
/* Constants shared by the long double inverse trig functions. */
|
||||
#define pS0 __pS0
|
||||
#define pS1 __pS1
|
||||
@ -54,56 +45,24 @@
|
||||
#define qS3 __qS3
|
||||
#define qS4 __qS4
|
||||
#define qS5 __qS5
|
||||
#define atanhi __atanhi
|
||||
#define atanlo __atanlo
|
||||
#define aT __aT
|
||||
#define pi_hi __pi_hi
|
||||
#define pi_lo __pi_lo
|
||||
#define pio2_hi __pio2_hi
|
||||
#define pio2_lo __pio2_lo
|
||||
|
||||
#define pio2_hi atanhi[3]
|
||||
#define pio2_lo atanlo[3]
|
||||
#define pio4_hi atanhi[1]
|
||||
extern const long double pS0, pS1, pS2, pS3, pS4, pS5, pS6;
|
||||
extern const long double qS1, qS2, qS3, qS4, qS5;
|
||||
extern const long double pi_hi, pi_lo, pio2_hi, pio2_lo;
|
||||
|
||||
#ifdef STRUCT_DECLS
|
||||
typedef struct longdouble {
|
||||
uint64_t mant;
|
||||
uint16_t expsign;
|
||||
} LONGDOUBLE;
|
||||
#else
|
||||
typedef long double LONGDOUBLE;
|
||||
#endif
|
||||
|
||||
extern const LONGDOUBLE pS0, pS1, pS2, pS3, pS4, pS5, pS6;
|
||||
extern const LONGDOUBLE qS1, qS2, qS3, qS4, qS5;
|
||||
extern const LONGDOUBLE atanhi[], atanlo[], aT[];
|
||||
extern const LONGDOUBLE pi_lo;
|
||||
|
||||
#ifndef STRUCT_DECLS
|
||||
static inline long double
|
||||
P(long double x)
|
||||
static long double P(long double x)
|
||||
{
|
||||
return (x * (pS0 + x * (pS1 + x * (pS2 + x * (pS3 + x * \
|
||||
(pS4 + x * (pS5 + x * pS6)))))));
|
||||
return x * (pS0 + x * (pS1 + x * (pS2 + x * (pS3 +
|
||||
x * (pS4 + x * (pS5 + x * pS6))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
Q(long double x)
|
||||
static long double Q(long double x)
|
||||
{
|
||||
return (1.0 + x * (qS1 + x * (qS2 + x * (qS3 + x * (qS4 + x * qS5)))));
|
||||
return 1.0 + x * (qS1 + x * (qS2 + x * (qS3 + x * (qS4 + x * qS5))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
T_even(long double x)
|
||||
{
|
||||
return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * \
|
||||
(aT[8] + x * (aT[10] + x * aT[12]))))));
|
||||
}
|
||||
|
||||
static inline long double
|
||||
T_odd(long double x)
|
||||
{
|
||||
return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * \
|
||||
(aT[9] + x * aT[11])))));
|
||||
}
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
@ -38,6 +38,7 @@
|
||||
static const double
|
||||
pi = 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
|
||||
pio2_hi = 1.57079632679489655800e+00; /* 0x3FF921FB, 0x54442D18 */
|
||||
// FIXME
|
||||
static const volatile double
|
||||
pio2_lo = 6.12323399573676603587e-17; /* 0x3C91A626, 0x33145C07 */
|
||||
static const double
|
||||
|
@ -23,9 +23,7 @@ long double acosl(long double x)
|
||||
}
|
||||
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||||
#include "__invtrigl.h"
|
||||
|
||||
static const long double
|
||||
pi = 3.14159265358979323846264338327950280e+00L;
|
||||
#define ACOS_CONST (BIAS - 65) /* 2**-65 */
|
||||
|
||||
long double acosl(long double x)
|
||||
{
|
||||
@ -41,7 +39,8 @@ long double acosl(long double x)
|
||||
if (expsign > 0)
|
||||
return 0.0; /* acos(1) = 0 */
|
||||
else
|
||||
return pi + 2.0 * pio2_lo; /* acos(-1)= pi */
|
||||
// FIXME
|
||||
return pi_hi + 2.0 * pio2_lo; /* acos(-1)= pi */
|
||||
}
|
||||
return (x - x) / (x - x); /* acos(|x|>1) is NaN */
|
||||
}
|
||||
@ -60,7 +59,7 @@ long double acosl(long double x)
|
||||
s = sqrtl(z);
|
||||
r = p / q;
|
||||
w = r * s - pio2_lo;
|
||||
return pi - 2.0 * (s + w);
|
||||
return pi_hi - 2.0 * (s + w);
|
||||
} else { /* x > 0.5 */
|
||||
z = (1.0 - x) * 0.5;
|
||||
s = sqrtl(z);
|
||||
|
@ -24,6 +24,10 @@ long double asinl(long double x)
|
||||
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||||
#include "__invtrigl.h"
|
||||
static const long double huge = 1.000e+300;
|
||||
static const long double pio4_hi = 7.85398163397448309628e-01L;
|
||||
#define ASIN_LINEAR (BIAS - 32) /* 2**-32 */
|
||||
/* 0.95 */
|
||||
#define THRESH ((0xe666666666666666ULL>>(64-(MANH_SIZE-1)))|LDBL_NBIT)
|
||||
|
||||
long double asinl(long double x)
|
||||
{
|
||||
|
@ -39,6 +39,7 @@
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
// FIXME
|
||||
static const volatile double
|
||||
tiny = 1.0e-300;
|
||||
static const double
|
||||
|
@ -24,10 +24,8 @@ long double atan2l(long double y, long double x)
|
||||
}
|
||||
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||||
#include "__invtrigl.h"
|
||||
static const volatile long double
|
||||
tiny = 1.0e-300;
|
||||
static const long double
|
||||
pi = 3.14159265358979323846264338327950280e+00L;
|
||||
// FIXME:
|
||||
static const volatile long double tiny = 1.0e-300;
|
||||
|
||||
long double atan2l(long double y, long double x)
|
||||
{
|
||||
@ -55,9 +53,9 @@ long double atan2l(long double y, long double x)
|
||||
if (expty==0 && ((uy.bits.manh&~LDBL_NBIT)|uy.bits.manl)==0) {
|
||||
switch(m) {
|
||||
case 0:
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi+tiny; /* atan(+0,-anything) = pi */
|
||||
case 3: return -pi-tiny; /* atan(-0,-anything) =-pi */
|
||||
case 1: return y; /* atan(+-0,+anything)=+-0 */
|
||||
case 2: return pi_hi+tiny; /* atan(+0,-anything) = pi */
|
||||
case 3: return -pi_hi-tiny; /* atan(-0,-anything) =-pi */
|
||||
}
|
||||
}
|
||||
/* when x = 0 */
|
||||
@ -69,15 +67,15 @@ long double atan2l(long double y, long double x)
|
||||
switch(m) {
|
||||
case 0: return pio2_hi*0.5+tiny; /* atan(+INF,+INF) */
|
||||
case 1: return -pio2_hi*0.5-tiny; /* atan(-INF,+INF) */
|
||||
case 2: return 1.5*pio2_hi+tiny; /*atan(+INF,-INF)*/
|
||||
case 3: return -1.5*pio2_hi-tiny; /*atan(-INF,-INF)*/
|
||||
case 2: return 1.5*pio2_hi+tiny; /* atan(+INF,-INF) */
|
||||
case 3: return -1.5*pio2_hi-tiny; /* atan(-INF,-INF) */
|
||||
}
|
||||
} else {
|
||||
switch(m) {
|
||||
case 0: return 0.0; /* atan(+...,+INF) */
|
||||
case 1: return -0.0; /* atan(-...,+INF) */
|
||||
case 2: return pi+tiny; /* atan(+...,-INF) */
|
||||
case 3: return -pi-tiny; /* atan(-...,-INF) */
|
||||
case 0: return 0.0; /* atan(+...,+INF) */
|
||||
case 1: return -0.0; /* atan(-...,+INF) */
|
||||
case 2: return pi_hi+tiny; /* atan(+...,-INF) */
|
||||
case 3: return -pi_hi-tiny; /* atan(-...,-INF) */
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -95,11 +93,11 @@ long double atan2l(long double y, long double x)
|
||||
else /* safe to do y/x */
|
||||
z = atanl(fabsl(y/x));
|
||||
switch (m) {
|
||||
case 0: return z; /* atan(+,+) */
|
||||
case 1: return -z; /* atan(-,+) */
|
||||
case 2: return pi - (z-pi_lo); /* atan(+,-) */
|
||||
case 0: return z; /* atan(+,+) */
|
||||
case 1: return -z; /* atan(-,+) */
|
||||
case 2: return pi_hi-(z-pi_lo); /* atan(+,-) */
|
||||
default: /* case 3 */
|
||||
return (z-pi_lo) - pi; /* atan(-,-) */
|
||||
return (z-pi_lo)-pi_hi; /* atan(-,-) */
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -23,8 +23,53 @@ long double atanl(long double x)
|
||||
}
|
||||
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
|
||||
#include "__invtrigl.h"
|
||||
|
||||
#define ATAN_CONST (BIAS + 65) /* 2**65 */
|
||||
#define ATAN_LINEAR (BIAS - 32) /* 2**-32 */
|
||||
static const long double huge = 1.0e300;
|
||||
|
||||
static const long double atanhi[] = {
|
||||
4.63647609000806116202e-01L,
|
||||
7.85398163397448309628e-01L,
|
||||
9.82793723247329067960e-01L,
|
||||
1.57079632679489661926e+00L,
|
||||
};
|
||||
|
||||
static const long double atanlo[] = {
|
||||
1.18469937025062860669e-20L,
|
||||
-1.25413940316708300586e-20L,
|
||||
2.55232234165405176172e-20L,
|
||||
-2.50827880633416601173e-20L,
|
||||
};
|
||||
|
||||
static const long double aT[] = {
|
||||
3.33333333333333333017e-01L,
|
||||
-1.99999999999999632011e-01L,
|
||||
1.42857142857046531280e-01L,
|
||||
-1.11111111100562372733e-01L,
|
||||
9.09090902935647302252e-02L,
|
||||
-7.69230552476207730353e-02L,
|
||||
6.66661718042406260546e-02L,
|
||||
-5.88158892835030888692e-02L,
|
||||
5.25499891539726639379e-02L,
|
||||
-4.70119845393155721494e-02L,
|
||||
4.03539201366454414072e-02L,
|
||||
-2.91303858419364158725e-02L,
|
||||
1.24822046299269234080e-02L,
|
||||
};
|
||||
|
||||
static long double T_even(long double x)
|
||||
{
|
||||
return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
|
||||
x * (aT[8] + x * (aT[10] + x * aT[12])))));
|
||||
}
|
||||
|
||||
static long double T_odd(long double x)
|
||||
{
|
||||
return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
|
||||
x * (aT[9] + x * aT[11]))));
|
||||
}
|
||||
|
||||
long double atanl(long double x)
|
||||
{
|
||||
union IEEEl2bits u;
|
||||
|
@ -5,8 +5,8 @@
|
||||
long double exp10l(long double x)
|
||||
{
|
||||
static const long double p10[] = {
|
||||
1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10,
|
||||
1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
|
||||
1e-15L, 1e-14L, 1e-13L, 1e-12L, 1e-11L, 1e-10L,
|
||||
1e-9L, 1e-8L, 1e-7L, 1e-6L, 1e-5L, 1e-4L, 1e-3L, 1e-2L, 1e-1L,
|
||||
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
|
||||
1e10, 1e11, 1e12, 1e13, 1e14, 1e15
|
||||
};
|
||||
|
@ -44,13 +44,7 @@
|
||||
*
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE -45,+MAXLOG 200,000 1.2e-19 2.5e-20
|
||||
*
|
||||
* ERROR MESSAGES:
|
||||
*
|
||||
* message condition value returned
|
||||
* expm1l overflow x > MAXLOG MAXNUM
|
||||
*
|
||||
* IEEE -45,+maxarg 200,000 1.2e-19 2.5e-20
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
@ -61,7 +55,6 @@ long double expm1l(long double x)
|
||||
return expm1(x);
|
||||
}
|
||||
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
||||
static const long double MAXLOGL = 1.1356523406294143949492E4L;
|
||||
|
||||
/* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
|
||||
-.5 ln 2 < x < .5 ln 2
|
||||
@ -83,19 +76,20 @@ C1 = 6.93145751953125E-1L,
|
||||
C2 = 1.428606820309417232121458176568075500134E-6L,
|
||||
/* ln 2^-65 */
|
||||
minarg = -4.5054566736396445112120088E1L,
|
||||
huge = 0x1p10000L;
|
||||
/* ln 2^16384 */
|
||||
maxarg = 1.1356523406294143949492E4L;
|
||||
|
||||
long double expm1l(long double x)
|
||||
{
|
||||
long double px, qx, xx;
|
||||
int k;
|
||||
|
||||
/* Overflow. */
|
||||
if (x > MAXLOGL)
|
||||
return huge*huge; /* overflow */
|
||||
if (isnan(x))
|
||||
return x;
|
||||
if (x > maxarg)
|
||||
return x*0x1p16383L; /* overflow, unless x==inf */
|
||||
if (x == 0.0)
|
||||
return x;
|
||||
/* Minimum value.*/
|
||||
if (x < minarg)
|
||||
return -1.0;
|
||||
|
||||
|
@ -89,6 +89,7 @@ static int getexp(long double x)
|
||||
|
||||
double fma(double x, double y, double z)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
long double hi, lo1, lo2, xy;
|
||||
int round, ez, exy;
|
||||
|
||||
@ -306,6 +307,7 @@ static inline struct dd dd_mul(double a, double b)
|
||||
*/
|
||||
double fma(double x, double y, double z)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
double xs, ys, zs, adj;
|
||||
struct dd xy, r;
|
||||
int oround;
|
||||
|
@ -37,6 +37,7 @@
|
||||
*/
|
||||
float fmaf(float x, float y, float z)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
double xy, result;
|
||||
uint32_t hr, lr;
|
||||
|
||||
|
@ -162,6 +162,7 @@ static inline struct dd dd_mul(long double a, long double b)
|
||||
*/
|
||||
long double fmal(long double x, long double y, long double z)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
long double xs, ys, zs, adj;
|
||||
struct dd xy, r;
|
||||
int oround;
|
||||
|
@ -117,12 +117,7 @@ double hypot(double x, double y)
|
||||
t2 = a - t1;
|
||||
w = sqrt(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if (k != 0) {
|
||||
uint32_t high;
|
||||
t1 = 1.0;
|
||||
GET_HIGH_WORD(high, t1);
|
||||
SET_HIGH_WORD(t1, high+(k<<20));
|
||||
return t1*w;
|
||||
}
|
||||
if (k)
|
||||
w = scalbn(w, k);
|
||||
return w;
|
||||
}
|
||||
|
@ -80,9 +80,7 @@ float hypotf(float x, float y)
|
||||
t2 = a - t1;
|
||||
w = sqrtf(t1*y1-(w*(-w)-(t1*y2+t2*b)));
|
||||
}
|
||||
if (k != 0) {
|
||||
SET_FLOAT_WORD(t1, 0x3f800000+(k<<23));
|
||||
return t1*w;
|
||||
}
|
||||
if (k)
|
||||
w = scalbnf(w, k);
|
||||
return w;
|
||||
}
|
||||
|
@ -8,13 +8,17 @@ int ilogb(double x)
|
||||
|
||||
if (!e) {
|
||||
u.bits <<= 12;
|
||||
if (u.bits == 0)
|
||||
if (u.bits == 0) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
for (e = -0x3ff; u.bits < (uint64_t)1<<63; e--, u.bits<<=1);
|
||||
return e;
|
||||
}
|
||||
if (e == 0x7ff)
|
||||
if (e == 0x7ff) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return u.bits<<12 ? FP_ILOGBNAN : INT_MAX;
|
||||
}
|
||||
return e - 0x3ff;
|
||||
}
|
||||
|
@ -8,13 +8,17 @@ int ilogbf(float x)
|
||||
|
||||
if (!e) {
|
||||
u.bits <<= 9;
|
||||
if (u.bits == 0)
|
||||
if (u.bits == 0) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
for (e = -0x7f; u.bits < (uint32_t)1<<31; e--, u.bits<<=1);
|
||||
return e;
|
||||
}
|
||||
if (e == 0xff)
|
||||
if (e == 0xff) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return u.bits<<9 ? FP_ILOGBNAN : INT_MAX;
|
||||
}
|
||||
return e - 0x7f;
|
||||
}
|
||||
|
@ -14,15 +14,19 @@ int ilogbl(long double x)
|
||||
int e = u.bits.exp;
|
||||
|
||||
if (!e) {
|
||||
if (m == 0)
|
||||
if (m == 0) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
return FP_ILOGB0;
|
||||
}
|
||||
/* subnormal x */
|
||||
for (e = -0x3fff+1; m < (uint64_t)1<<63; e--, m<<=1);
|
||||
return e;
|
||||
}
|
||||
if (e == 0x7fff)
|
||||
if (e == 0x7fff) {
|
||||
FORCE_EVAL(0/0.0f);
|
||||
/* in ld80 msb is set in inf */
|
||||
return m & (uint64_t)-1>>1 ? FP_ILOGBNAN : INT_MAX;
|
||||
}
|
||||
return e - 0x3fff;
|
||||
}
|
||||
#endif
|
||||
|
@ -18,6 +18,7 @@ raises inexact (with tonearest or upward rounding mode)
|
||||
*/
|
||||
long long llrintl(long double x)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int e;
|
||||
|
||||
e = fetestexcept(FE_INEXACT);
|
||||
|
@ -46,11 +46,6 @@
|
||||
* Relative error:
|
||||
* arithmetic domain # trials peak rms
|
||||
* IEEE -1.0, 9.0 100000 8.2e-20 2.5e-20
|
||||
*
|
||||
* ERROR MESSAGES:
|
||||
*
|
||||
* log singularity: x-1 = 0; returns -INFINITY
|
||||
* log domain: x-1 < 0; returns NAN
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
@ -123,8 +118,8 @@ long double log1pl(long double xm1)
|
||||
/* Test for domain errors. */
|
||||
if (x <= 0.0) {
|
||||
if (x == 0.0)
|
||||
return -INFINITY;
|
||||
return NAN;
|
||||
return -1/x; /* -inf with divbyzero */
|
||||
return 0/0.0f; /* nan with invalid */
|
||||
}
|
||||
|
||||
/* Separate mantissa from exponent.
|
||||
|
@ -50,11 +50,6 @@
|
||||
* In the tests over the interval exp(+-10000), the logarithms
|
||||
* of the random arguments were uniformly distributed over
|
||||
* [-10000, +10000].
|
||||
*
|
||||
* ERROR MESSAGES:
|
||||
*
|
||||
* log singularity: x = 0; returns -INFINITY
|
||||
* log domain: x < 0; returns NAN
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
@ -113,8 +108,7 @@ static const long double S[4] = {
|
||||
|
||||
long double log2l(long double x)
|
||||
{
|
||||
volatile long double z;
|
||||
long double y;
|
||||
long double y, z;
|
||||
int e;
|
||||
|
||||
if (isnan(x))
|
||||
@ -123,8 +117,8 @@ long double log2l(long double x)
|
||||
return x;
|
||||
if (x <= 0.0) {
|
||||
if (x == 0.0)
|
||||
return -INFINITY;
|
||||
return NAN;
|
||||
return -1/(x+0); /* -inf with divbyzero */
|
||||
return 0/0.0f; /* nan with invalid */
|
||||
}
|
||||
|
||||
/* separate mantissa from exponent */
|
||||
|
@ -1,20 +1,17 @@
|
||||
#include <limits.h>
|
||||
#include "libm.h"
|
||||
|
||||
/*
|
||||
special cases:
|
||||
logb(+-0) = -inf
|
||||
logb(+-0) = -inf, and raise divbyzero
|
||||
logb(+-inf) = +inf
|
||||
logb(nan) = nan
|
||||
these are calculated at runtime to raise fp exceptions
|
||||
*/
|
||||
|
||||
double logb(double x) {
|
||||
int i = ilogb(x);
|
||||
|
||||
if (i == FP_ILOGB0)
|
||||
return -1.0/fabs(x);
|
||||
if (i == FP_ILOGBNAN || i == INT_MAX)
|
||||
double logb(double x)
|
||||
{
|
||||
if (!isfinite(x))
|
||||
return x * x;
|
||||
return i;
|
||||
if (x == 0)
|
||||
return -1/(x+0);
|
||||
return ilogb(x);
|
||||
}
|
||||
|
@ -1,12 +1,10 @@
|
||||
#include <limits.h>
|
||||
#include "libm.h"
|
||||
|
||||
float logbf(float x) {
|
||||
int i = ilogbf(x);
|
||||
|
||||
if (i == FP_ILOGB0)
|
||||
return -1.0f/fabsf(x);
|
||||
if (i == FP_ILOGBNAN || i == INT_MAX)
|
||||
float logbf(float x)
|
||||
{
|
||||
if (!isfinite(x))
|
||||
return x * x;
|
||||
return i;
|
||||
if (x == 0)
|
||||
return -1/(x+0);
|
||||
return ilogbf(x);
|
||||
}
|
||||
|
@ -1,4 +1,3 @@
|
||||
#include <limits.h>
|
||||
#include "libm.h"
|
||||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||||
long double logbl(long double x)
|
||||
@ -8,12 +7,10 @@ long double logbl(long double x)
|
||||
#else
|
||||
long double logbl(long double x)
|
||||
{
|
||||
int i = ilogbl(x);
|
||||
|
||||
if (i == FP_ILOGB0)
|
||||
return -1.0/fabsl(x);
|
||||
if (i == FP_ILOGBNAN || i == INT_MAX)
|
||||
if (!isfinite(x))
|
||||
return x * x;
|
||||
return i;
|
||||
if (x == 0)
|
||||
return -1/(x+0);
|
||||
return ilogbl(x);
|
||||
}
|
||||
#endif
|
||||
|
@ -50,11 +50,6 @@
|
||||
* In the tests over the interval exp(+-10000), the logarithms
|
||||
* of the random arguments were uniformly distributed over
|
||||
* [-10000, +10000].
|
||||
*
|
||||
* ERROR MESSAGES:
|
||||
*
|
||||
* log singularity: x = 0; returns -INFINITY
|
||||
* log domain: x < 0; returns NAN
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
@ -121,8 +116,8 @@ long double logl(long double x)
|
||||
return x;
|
||||
if (x <= 0.0) {
|
||||
if (x == 0.0)
|
||||
return -INFINITY;
|
||||
return NAN;
|
||||
return -1/(x+0); /* -inf with divbyzero */
|
||||
return 0/0.0f; /* nan with invalid */
|
||||
}
|
||||
|
||||
/* separate mantissa from exponent */
|
||||
|
@ -28,6 +28,7 @@ as a double.
|
||||
#if LONG_MAX < 1U<<53 && defined(FE_INEXACT)
|
||||
long lrint(double x)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int e;
|
||||
|
||||
e = fetestexcept(FE_INEXACT);
|
||||
|
@ -18,6 +18,7 @@ raises inexact (with tonearest or upward rounding mode)
|
||||
*/
|
||||
long lrintl(long double x)
|
||||
{
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int e;
|
||||
|
||||
e = fetestexcept(FE_INEXACT);
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
double modf(double x, double *iptr)
|
||||
{
|
||||
@ -33,5 +32,6 @@ double modf(double x, double *iptr)
|
||||
}
|
||||
u.n &= ~mask;
|
||||
*iptr = u.x;
|
||||
return x - *iptr;
|
||||
STRICT_ASSIGN(double, x, x - *iptr);
|
||||
return x;
|
||||
}
|
||||
|
@ -1,5 +1,4 @@
|
||||
#include <math.h>
|
||||
#include <stdint.h>
|
||||
#include "libm.h"
|
||||
|
||||
float modff(float x, float *iptr)
|
||||
{
|
||||
@ -33,5 +32,6 @@ float modff(float x, float *iptr)
|
||||
}
|
||||
u.n &= ~mask;
|
||||
*iptr = u.x;
|
||||
return x - *iptr;
|
||||
STRICT_ASSIGN(float, x, x - *iptr);
|
||||
return x;
|
||||
}
|
||||
|
@ -6,6 +6,7 @@
|
||||
double nearbyint(double x)
|
||||
{
|
||||
#ifdef FE_INEXACT
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int e;
|
||||
|
||||
e = fetestexcept(FE_INEXACT);
|
||||
|
@ -4,6 +4,7 @@
|
||||
float nearbyintf(float x)
|
||||
{
|
||||
#ifdef FE_INEXACT
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int e;
|
||||
|
||||
e = fetestexcept(FE_INEXACT);
|
||||
|
@ -11,6 +11,7 @@ long double nearbyintl(long double x)
|
||||
long double nearbyintl(long double x)
|
||||
{
|
||||
#ifdef FE_INEXACT
|
||||
#pragma STDC FENV_ACCESS ON
|
||||
int e;
|
||||
|
||||
e = fetestexcept(FE_INEXACT);
|
||||
|
@ -27,7 +27,7 @@ double nextafter(double x, double y)
|
||||
e = ux.bits >> 52 & 0x7ff;
|
||||
/* raise overflow if ux.value is infinite and x is finite */
|
||||
if (e == 0x7ff)
|
||||
return x + x;
|
||||
FORCE_EVAL(x+x);
|
||||
/* raise underflow if ux.value is subnormal or zero */
|
||||
if (e == 0)
|
||||
FORCE_EVAL(x*x + ux.value*ux.value);
|
||||
|
@ -26,7 +26,7 @@ float nextafterf(float x, float y)
|
||||
e = ux.bits & 0x7f800000;
|
||||
/* raise overflow if ux.value is infinite and x is finite */
|
||||
if (e == 0x7f800000)
|
||||
return x + x;
|
||||
FORCE_EVAL(x+x);
|
||||
/* raise underflow if ux.value is subnormal or zero */
|
||||
if (e == 0)
|
||||
FORCE_EVAL(x*x + ux.value*ux.value);
|
||||
|
@ -36,7 +36,7 @@ double nexttoward(double x, long double y)
|
||||
e = ux.bits>>52 & 0x7ff;
|
||||
/* raise overflow if ux.value is infinite and x is finite */
|
||||
if (e == 0x7ff)
|
||||
return x + x;
|
||||
FORCE_EVAL(x+x);
|
||||
/* raise underflow if ux.value is subnormal or zero */
|
||||
if (e == 0)
|
||||
FORCE_EVAL(x*x + ux.value*ux.value);
|
||||
|
@ -28,7 +28,7 @@ float nexttowardf(float x, long double y)
|
||||
e = ux.bits & 0x7f800000;
|
||||
/* raise overflow if ux.value is infinite and x is finite */
|
||||
if (e == 0x7f800000)
|
||||
return x + x;
|
||||
FORCE_EVAL(x+x);
|
||||
/* raise underflow if ux.value is subnormal or zero */
|
||||
if (e == 0)
|
||||
FORCE_EVAL(x*x + ux.value*ux.value);
|
||||
|
@ -10,8 +10,10 @@ double scalbn(double x, int n)
|
||||
if (n > 1023) {
|
||||
x *= 0x1p1023;
|
||||
n -= 1023;
|
||||
if (n > 1023)
|
||||
return x * 0x1p1023;
|
||||
if (n > 1023) {
|
||||
STRICT_ASSIGN(double, x, x * 0x1p1023);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
} else if (n < -1022) {
|
||||
x *= 0x1p-1022;
|
||||
@ -19,10 +21,13 @@ double scalbn(double x, int n)
|
||||
if (n < -1022) {
|
||||
x *= 0x1p-1022;
|
||||
n += 1022;
|
||||
if (n < -1022)
|
||||
return x * 0x1p-1022;
|
||||
if (n < -1022) {
|
||||
STRICT_ASSIGN(double, x, x * 0x1p-1022);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
}
|
||||
INSERT_WORDS(scale, (uint32_t)(0x3ff+n)<<20, 0);
|
||||
return x * scale;
|
||||
STRICT_ASSIGN(double, x, x * scale);
|
||||
return x;
|
||||
}
|
||||
|
@ -10,8 +10,10 @@ float scalbnf(float x, int n)
|
||||
if (n > 127) {
|
||||
x *= 0x1p127f;
|
||||
n -= 127;
|
||||
if (n > 127)
|
||||
return x * 0x1p127f;
|
||||
if (n > 127) {
|
||||
STRICT_ASSIGN(float, x, x * 0x1p127f);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
} else if (n < -126) {
|
||||
x *= 0x1p-126f;
|
||||
@ -19,10 +21,13 @@ float scalbnf(float x, int n)
|
||||
if (n < -126) {
|
||||
x *= 0x1p-126f;
|
||||
n += 126;
|
||||
if (n < -126)
|
||||
return x * 0x1p-126f;
|
||||
if (n < -126) {
|
||||
STRICT_ASSIGN(float, x, x * 0x1p-126f);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
}
|
||||
SET_FLOAT_WORD(scale, (uint32_t)(0x7f+n)<<23);
|
||||
return x * scale;
|
||||
STRICT_ASSIGN(float, x, x * scale);
|
||||
return x;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user