mirror of
https://git.musl-libc.org/git/musl
synced 2025-01-25 15:42:06 +03:00
Merge remote-tracking branch 'nsz/math'
This commit is contained in:
commit
19b1a8453e
123
src/math/exp.c
123
src/math/exp.c
@ -25,7 +25,7 @@
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Remes algorithm on [0,0.34658] to generate
|
||||
* We use a special Remez algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
@ -36,15 +36,15 @@
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* 2*r
|
||||
* exp(r) = 1 + ----------
|
||||
* R(r) - r
|
||||
* r*c(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* 2 - c(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
* 2 4 10
|
||||
* c(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
@ -61,27 +61,16 @@
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
* if x > 709.782712893383973096 then exp(x) overflows
|
||||
* if x < -745.133219101941108420 then exp(x) underflows
|
||||
*/
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
static const double
|
||||
halF[2] = {0.5,-0.5,},
|
||||
huge = 1.0e+300,
|
||||
o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
|
||||
u_threshold = -7.45133219101941108420e+02, /* 0xc0874910, 0xD52D3051 */
|
||||
ln2HI[2] = { 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
-6.93147180369123816490e-01},/* 0xbfe62e42, 0xfee00000 */
|
||||
ln2LO[2] = { 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
-1.90821492927058770002e-10},/* 0xbdea39ef, 0x35793c76 */
|
||||
half[2] = {0.5,-0.5},
|
||||
ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
|
||||
ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
|
||||
invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
|
||||
P1 = 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
|
||||
P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
|
||||
@ -89,68 +78,58 @@ P3 = 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
|
||||
P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
|
||||
P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
||||
|
||||
static const volatile double
|
||||
twom1000 = 9.33263618503218878990e-302; /* 2**-1000=0x01700000,0 */
|
||||
|
||||
double exp(double x)
|
||||
{
|
||||
double y,hi=0.0,lo=0.0,c,t,twopk;
|
||||
int32_t k=0,xsb;
|
||||
double hi, lo, c, xx;
|
||||
int k, sign;
|
||||
uint32_t hx;
|
||||
|
||||
GET_HIGH_WORD(hx, x);
|
||||
xsb = (hx>>31)&1; /* sign bit of x */
|
||||
sign = hx>>31;
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out non-finite argument */
|
||||
if (hx >= 0x40862E42) { /* if |x| >= 709.78... */
|
||||
if (hx >= 0x7ff00000) {
|
||||
uint32_t lx;
|
||||
|
||||
GET_LOW_WORD(lx,x);
|
||||
if (((hx&0xfffff)|lx) != 0) /* NaN */
|
||||
return x+x;
|
||||
return xsb==0 ? x : 0.0; /* exp(+-inf)={inf,0} */
|
||||
/* special cases */
|
||||
if (hx >= 0x40862e42) { /* if |x| >= 709.78... */
|
||||
if (isnan(x))
|
||||
return x;
|
||||
if (hx == 0x7ff00000 && sign) /* -inf */
|
||||
return 0;
|
||||
if (x > 709.782712893383973096) {
|
||||
/* overflow if x!=inf */
|
||||
STRICT_ASSIGN(double, x, 0x1p1023 * x);
|
||||
return x;
|
||||
}
|
||||
if (x < -745.13321910194110842) {
|
||||
/* underflow */
|
||||
STRICT_ASSIGN(double, x, 0x1p-1000 * 0x1p-1000);
|
||||
return x;
|
||||
}
|
||||
if (x > o_threshold)
|
||||
return huge*huge; /* overflow */
|
||||
if (x < u_threshold)
|
||||
return twom1000*twom1000; /* underflow */
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
hi = x-ln2HI[xsb];
|
||||
lo = ln2LO[xsb];
|
||||
k = 1 - xsb - xsb;
|
||||
} else {
|
||||
k = (int)(invln2*x+halF[xsb]);
|
||||
t = k;
|
||||
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
||||
lo = t*ln2LO[0];
|
||||
}
|
||||
if (hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */
|
||||
k = (int)(invln2*x + half[sign]);
|
||||
else
|
||||
k = 1 - sign - sign;
|
||||
hi = x - k*ln2hi; /* k*ln2hi is exact here */
|
||||
lo = k*ln2lo;
|
||||
STRICT_ASSIGN(double, x, hi - lo);
|
||||
} else if(hx < 0x3e300000) { /* |x| < 2**-28 */
|
||||
/* raise inexact */
|
||||
if (huge+x > 1.0)
|
||||
return 1.0+x;
|
||||
} else
|
||||
} else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
|
||||
k = 0;
|
||||
hi = x;
|
||||
lo = 0;
|
||||
} else {
|
||||
/* inexact if x!=0 */
|
||||
FORCE_EVAL(0x1p1023 + x);
|
||||
return 1 + x;
|
||||
}
|
||||
|
||||
/* x is now in primary range */
|
||||
t = x*x;
|
||||
if (k >= -1021)
|
||||
INSERT_WORDS(twopk, 0x3ff00000+(k<<20), 0);
|
||||
else
|
||||
INSERT_WORDS(twopk, 0x3ff00000+((k+1000)<<20), 0);
|
||||
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
xx = x*x;
|
||||
c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
|
||||
x = 1 + (x*c/(2-c) - lo + hi);
|
||||
if (k == 0)
|
||||
return 1.0 - ((x*c)/(c-2.0) - x);
|
||||
y = 1.0-((lo-(x*c)/(2.0-c))-hi);
|
||||
if (k < -1021)
|
||||
return y*twopk*twom1000;
|
||||
if (k == 1024)
|
||||
return y*2.0*0x1p1023;
|
||||
return y*twopk;
|
||||
return x;
|
||||
return scalbn(x, k);
|
||||
}
|
||||
|
@ -5,7 +5,7 @@
|
||||
float exp10f(float x)
|
||||
{
|
||||
static const float p10[] = {
|
||||
1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
|
||||
1e-7f, 1e-6f, 1e-5f, 1e-4f, 1e-3f, 1e-2f, 1e-1f,
|
||||
1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7
|
||||
};
|
||||
float n, y = modff(x, &n);
|
||||
|
@ -27,11 +27,9 @@
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
#define TBLBITS 8
|
||||
#define TBLSIZE (1 << TBLBITS)
|
||||
#define TBLSIZE 256
|
||||
|
||||
static const double
|
||||
huge = 0x1p1000,
|
||||
redux = 0x1.8p52 / TBLSIZE,
|
||||
P1 = 0x1.62e42fefa39efp-1,
|
||||
P2 = 0x1.ebfbdff82c575p-3,
|
||||
@ -39,8 +37,6 @@ P3 = 0x1.c6b08d704a0a6p-5,
|
||||
P4 = 0x1.3b2ab88f70400p-7,
|
||||
P5 = 0x1.5d88003875c74p-10;
|
||||
|
||||
static const volatile double twom1000 = 0x1p-1000;
|
||||
|
||||
static const double tbl[TBLSIZE * 2] = {
|
||||
/* exp2(z + eps) eps */
|
||||
0x1.6a09e667f3d5dp-1, 0x1.9880p-44,
|
||||
@ -334,25 +330,28 @@ static const double tbl[TBLSIZE * 2] = {
|
||||
*/
|
||||
double exp2(double x)
|
||||
{
|
||||
double r, t, twopk, twopkp1000, z;
|
||||
uint32_t hx, ix, lx, i0;
|
||||
int k;
|
||||
double r, t, z;
|
||||
uint32_t hx, ix, i0;
|
||||
union {uint32_t u; int32_t i;} k;
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
GET_HIGH_WORD(hx, x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if (ix >= 0x40900000) { /* |x| >= 1024 */
|
||||
if (ix >= 0x7ff00000) {
|
||||
GET_LOW_WORD(lx, x);
|
||||
if (((ix & 0xfffff) | lx) != 0 || (hx & 0x80000000) == 0)
|
||||
return x + x; /* x is NaN or +Inf */
|
||||
else
|
||||
return 0.0; /* x is -Inf */
|
||||
GET_LOW_WORD(ix, x);
|
||||
if (hx == 0xfff00000 && ix == 0) /* -inf */
|
||||
return 0;
|
||||
return x;
|
||||
}
|
||||
if (x >= 1024) {
|
||||
STRICT_ASSIGN(double, x, x * 0x1p1023);
|
||||
return x;
|
||||
}
|
||||
if (x <= -1075) {
|
||||
STRICT_ASSIGN(double, x, 0x1p-1000*0x1p-1000);
|
||||
return x;
|
||||
}
|
||||
if (x >= 0x1.0p10)
|
||||
return huge * huge; /* overflow */
|
||||
if (x <= -0x1.0ccp10)
|
||||
return twom1000 * twom1000; /* underflow */
|
||||
} else if (ix < 0x3c900000) { /* |x| < 0x1p-54 */
|
||||
return 1.0 + x;
|
||||
}
|
||||
@ -361,24 +360,16 @@ double exp2(double x)
|
||||
STRICT_ASSIGN(double, t, x + redux);
|
||||
GET_LOW_WORD(i0, t);
|
||||
i0 += TBLSIZE / 2;
|
||||
k = (i0 >> TBLBITS) << 20;
|
||||
i0 = (i0 & (TBLSIZE - 1)) << 1;
|
||||
k.u = i0 / TBLSIZE * TBLSIZE;
|
||||
k.i /= TBLSIZE;
|
||||
i0 %= TBLSIZE;
|
||||
t -= redux;
|
||||
z = x - t;
|
||||
|
||||
/* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
|
||||
t = tbl[i0]; /* exp2t[i0] */
|
||||
z -= tbl[i0 + 1]; /* eps[i0] */
|
||||
if (k >= -1021 << 20)
|
||||
INSERT_WORDS(twopk, 0x3ff00000 + k, 0);
|
||||
else
|
||||
INSERT_WORDS(twopkp1000, 0x3ff00000 + k + (1000 << 20), 0);
|
||||
t = tbl[2*i0]; /* exp2t[i0] */
|
||||
z -= tbl[2*i0 + 1]; /* eps[i0] */
|
||||
r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5))));
|
||||
|
||||
/* Scale by 2**(k>>20). */
|
||||
if (k < -1021 << 20)
|
||||
return r * twopkp1000 * twom1000;
|
||||
if (k == 1024 << 20)
|
||||
return r * 2.0 * 0x1p1023;
|
||||
return r * twopk;
|
||||
return scalbn(r, k.i);
|
||||
}
|
||||
|
@ -27,19 +27,15 @@
|
||||
|
||||
#include "libm.h"
|
||||
|
||||
#define TBLBITS 4
|
||||
#define TBLSIZE (1 << TBLBITS)
|
||||
#define TBLSIZE 16
|
||||
|
||||
static const float
|
||||
huge = 0x1p100f,
|
||||
redux = 0x1.8p23f / TBLSIZE,
|
||||
P1 = 0x1.62e430p-1f,
|
||||
P2 = 0x1.ebfbe0p-3f,
|
||||
P3 = 0x1.c6b348p-5f,
|
||||
P4 = 0x1.3b2c9cp-7f;
|
||||
|
||||
static const volatile float twom100 = 0x1p-100f;
|
||||
|
||||
static const double exp2ft[TBLSIZE] = {
|
||||
0x1.6a09e667f3bcdp-1,
|
||||
0x1.7a11473eb0187p-1,
|
||||
@ -89,23 +85,25 @@ float exp2f(float x)
|
||||
{
|
||||
double tv, twopk, u, z;
|
||||
float t;
|
||||
uint32_t hx, ix, i0;
|
||||
int32_t k;
|
||||
uint32_t hx, ix, i0, k;
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
ix = hx & 0x7fffffff;
|
||||
if (ix >= 0x43000000) { /* |x| >= 128 */
|
||||
if (ix >= 0x7f800000) {
|
||||
if ((ix & 0x7fffff) != 0 || (hx & 0x80000000) == 0)
|
||||
return x + x; /* x is NaN or +Inf */
|
||||
else
|
||||
return 0.0; /* x is -Inf */
|
||||
if (hx == 0xff800000) /* -inf */
|
||||
return 0;
|
||||
return x;
|
||||
}
|
||||
if (x >= 128) {
|
||||
STRICT_ASSIGN(float, x, x * 0x1p127);
|
||||
return x;
|
||||
}
|
||||
if (x <= -150) {
|
||||
STRICT_ASSIGN(float, x, 0x1p-100*0x1p-100);
|
||||
return x;
|
||||
}
|
||||
if (x >= 0x1.0p7f)
|
||||
return huge * huge; /* overflow */
|
||||
if (x <= -0x1.2cp7f)
|
||||
return twom100 * twom100; /* underflow */
|
||||
} else if (ix <= 0x33000000) { /* |x| <= 0x1p-25 */
|
||||
return 1.0f + x;
|
||||
}
|
||||
@ -114,7 +112,7 @@ float exp2f(float x)
|
||||
STRICT_ASSIGN(float, t, x + redux);
|
||||
GET_FLOAT_WORD(i0, t);
|
||||
i0 += TBLSIZE / 2;
|
||||
k = (i0 >> TBLBITS) << 20;
|
||||
k = (i0 / TBLSIZE) << 20;
|
||||
i0 &= TBLSIZE - 1;
|
||||
t -= redux;
|
||||
z = x - t;
|
||||
|
@ -30,7 +30,7 @@
|
||||
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
|
||||
long double exp2l(long double x)
|
||||
{
|
||||
return exp2l(x);
|
||||
return exp2(x);
|
||||
}
|
||||
#elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
|
||||
|
||||
@ -40,10 +40,6 @@ long double exp2l(long double x)
|
||||
#define BIAS (LDBL_MAX_EXP - 1)
|
||||
#define EXPMASK (BIAS + LDBL_MAX_EXP)
|
||||
|
||||
static const long double huge = 0x1p10000L;
|
||||
/* XXX Prevent gcc from erroneously constant folding this. */
|
||||
static const volatile long double twom10000 = 0x1p-10000L;
|
||||
|
||||
static const double
|
||||
redux = 0x1.8p63 / TBLSIZE,
|
||||
P1 = 0x1.62e42fefa39efp-1,
|
||||
@ -208,27 +204,28 @@ static const double tbl[TBLSIZE * 2] = {
|
||||
long double exp2l(long double x)
|
||||
{
|
||||
union IEEEl2bits u, v;
|
||||
long double r, twopk, twopkp10000, z;
|
||||
long double r, z;
|
||||
uint32_t hx, ix, i0;
|
||||
int k;
|
||||
union {uint32_t u; int32_t i;} k;
|
||||
|
||||
/* Filter out exceptional cases. */
|
||||
u.e = x;
|
||||
hx = u.xbits.expsign;
|
||||
ix = hx & EXPMASK;
|
||||
if (ix >= BIAS + 14) { /* |x| >= 16384 or x is NaN */
|
||||
if (ix == BIAS + LDBL_MAX_EXP) {
|
||||
if (u.xbits.man != 1ULL << 63 || (hx & 0x8000) == 0)
|
||||
return x + x; /* x is +Inf or NaN */
|
||||
return 0.0; /* x is -Inf */
|
||||
if (ix == EXPMASK) {
|
||||
if (u.xbits.man == 1ULL << 63 && hx == 0xffff) /* -inf */
|
||||
return 0;
|
||||
return x;
|
||||
}
|
||||
if (x >= 16384) {
|
||||
x *= 0x1p16383L;
|
||||
return x;
|
||||
}
|
||||
if (x >= 16384)
|
||||
return huge * huge; /* overflow */
|
||||
if (x <= -16446)
|
||||
return twom10000 * twom10000; /* underflow */
|
||||
} else if (ix <= BIAS - 66) { /* |x| < 0x1p-66 */
|
||||
return 1.0 + x;
|
||||
}
|
||||
return 0x1p-10000L*0x1p-10000L;
|
||||
} else if (ix < BIAS - 64) /* |x| < 0x1p-64 */
|
||||
return 1 + x;
|
||||
|
||||
/*
|
||||
* Reduce x, computing z, i0, and k. The low bits of x + redux
|
||||
@ -240,38 +237,22 @@ long double exp2l(long double x)
|
||||
* Then the low-order word of x + redux is 0x000abc12,
|
||||
* We split this into k = 0xabc and i0 = 0x12 (adjusted to
|
||||
* index into the table), then we compute z = 0x0.003456p0.
|
||||
*
|
||||
* XXX If the exponent is negative, the computation of k depends on
|
||||
* '>>' doing sign extension.
|
||||
*/
|
||||
u.e = x + redux;
|
||||
i0 = u.bits.manl + TBLSIZE / 2;
|
||||
k = (int)i0 >> TBLBITS;
|
||||
i0 = (i0 & (TBLSIZE - 1)) << 1;
|
||||
k.u = i0 / TBLSIZE * TBLSIZE;
|
||||
k.i /= TBLSIZE;
|
||||
i0 %= TBLSIZE;
|
||||
u.e -= redux;
|
||||
z = x - u.e;
|
||||
v.xbits.man = 1ULL << 63;
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
v.xbits.expsign = LDBL_MAX_EXP - 1 + k;
|
||||
twopk = v.e;
|
||||
} else {
|
||||
v.xbits.expsign = LDBL_MAX_EXP - 1 + k + 10000;
|
||||
twopkp10000 = v.e;
|
||||
}
|
||||
|
||||
/* Compute r = exp2l(y) = exp2lt[i0] * p(z). */
|
||||
long double t_hi = tbl[i0];
|
||||
long double t_lo = tbl[i0 + 1];
|
||||
long double t_hi = tbl[2*i0];
|
||||
long double t_lo = tbl[2*i0 + 1];
|
||||
/* XXX This gives > 1 ulp errors outside of FE_TONEAREST mode */
|
||||
r = t_lo + (t_hi + t_lo) * z * (P1 + z * (P2 + z * (P3 + z * (P4
|
||||
+ z * (P5 + z * P6))))) + t_hi;
|
||||
|
||||
/* Scale by 2**k. */
|
||||
if (k >= LDBL_MIN_EXP) {
|
||||
if (k == LDBL_MAX_EXP)
|
||||
return r * 2.0 * 0x1p16383L;
|
||||
return r * twopk;
|
||||
}
|
||||
return r * twopkp10000 * twom10000;
|
||||
return scalbnl(r, k.i);
|
||||
}
|
||||
#endif
|
||||
|
@ -16,79 +16,69 @@
|
||||
#include "libm.h"
|
||||
|
||||
static const float
|
||||
halF[2] = {0.5,-0.5,},
|
||||
huge = 1.0e+30,
|
||||
o_threshold = 8.8721679688e+01, /* 0x42b17180 */
|
||||
u_threshold = -1.0397208405e+02, /* 0xc2cff1b5 */
|
||||
ln2HI[2] = { 6.9314575195e-01, /* 0x3f317200 */
|
||||
-6.9314575195e-01,},/* 0xbf317200 */
|
||||
ln2LO[2] = { 1.4286067653e-06, /* 0x35bfbe8e */
|
||||
-1.4286067653e-06,},/* 0xb5bfbe8e */
|
||||
invln2 = 1.4426950216e+00, /* 0x3fb8aa3b */
|
||||
half[2] = {0.5,-0.5},
|
||||
ln2hi = 6.9314575195e-1f, /* 0x3f317200 */
|
||||
ln2lo = 1.4286067653e-6f, /* 0x35bfbe8e */
|
||||
invln2 = 1.4426950216e+0f, /* 0x3fb8aa3b */
|
||||
/*
|
||||
* Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
|
||||
* |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
|
||||
*/
|
||||
P1 = 1.6666625440e-1, /* 0xaaaa8f.0p-26 */
|
||||
P2 = -2.7667332906e-3; /* -0xb55215.0p-32 */
|
||||
|
||||
static const volatile float twom100 = 7.8886090522e-31; /* 2**-100=0x0d800000 */
|
||||
P1 = 1.6666625440e-1f, /* 0xaaaa8f.0p-26 */
|
||||
P2 = -2.7667332906e-3f; /* -0xb55215.0p-32 */
|
||||
|
||||
float expf(float x)
|
||||
{
|
||||
float y,hi=0.0,lo=0.0,c,t,twopk;
|
||||
int32_t k=0,xsb;
|
||||
float hi, lo, c, xx;
|
||||
int k, sign;
|
||||
uint32_t hx;
|
||||
|
||||
GET_FLOAT_WORD(hx, x);
|
||||
xsb = (hx>>31)&1; /* sign bit of x */
|
||||
sign = hx >> 31; /* sign bit of x */
|
||||
hx &= 0x7fffffff; /* high word of |x| */
|
||||
|
||||
/* filter out non-finite argument */
|
||||
if (hx >= 0x42b17218) { /* if |x|>=88.721... */
|
||||
/* special cases */
|
||||
if (hx >= 0x42b17218) { /* if |x| >= 88.722839f or NaN */
|
||||
if (hx > 0x7f800000) /* NaN */
|
||||
return x+x;
|
||||
if (hx == 0x7f800000) /* exp(+-inf)={inf,0} */
|
||||
return xsb==0 ? x : 0.0;
|
||||
if (x > o_threshold)
|
||||
return huge*huge; /* overflow */
|
||||
if (x < u_threshold)
|
||||
return twom100*twom100; /* underflow */
|
||||
return x;
|
||||
if (!sign) {
|
||||
/* overflow if x!=inf */
|
||||
STRICT_ASSIGN(float, x, x * 0x1p127f);
|
||||
return x;
|
||||
}
|
||||
if (hx == 0x7f800000) /* -inf */
|
||||
return 0;
|
||||
if (hx >= 0x42cff1b5) { /* x <= -103.972084f */
|
||||
/* underflow */
|
||||
STRICT_ASSIGN(float, x, 0x1p-100f*0x1p-100f);
|
||||
return x;
|
||||
}
|
||||
}
|
||||
|
||||
/* argument reduction */
|
||||
if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
|
||||
if (hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
|
||||
hi = x-ln2HI[xsb];
|
||||
lo = ln2LO[xsb];
|
||||
k = 1 - xsb - xsb;
|
||||
} else {
|
||||
k = invln2*x + halF[xsb];
|
||||
t = k;
|
||||
hi = x - t*ln2HI[0]; /* t*ln2HI is exact here */
|
||||
lo = t*ln2LO[0];
|
||||
}
|
||||
if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
|
||||
if (hx > 0x3f851592) /* if |x| > 1.5 ln2 */
|
||||
k = invln2*x + half[sign];
|
||||
else
|
||||
k = 1 - sign - sign;
|
||||
hi = x - k*ln2hi; /* k*ln2hi is exact here */
|
||||
lo = k*ln2lo;
|
||||
STRICT_ASSIGN(float, x, hi - lo);
|
||||
} else if(hx < 0x39000000) { /* |x|<2**-14 */
|
||||
/* raise inexact */
|
||||
if (huge+x > 1.0f)
|
||||
return 1.0f + x;
|
||||
} else
|
||||
} else if (hx > 0x39000000) { /* |x| > 2**-14 */
|
||||
k = 0;
|
||||
hi = x;
|
||||
lo = 0;
|
||||
} else {
|
||||
/* raise inexact */
|
||||
FORCE_EVAL(0x1p127f + x);
|
||||
return 1 + x;
|
||||
}
|
||||
|
||||
/* x is now in primary range */
|
||||
t = x*x;
|
||||
if (k >= -125)
|
||||
SET_FLOAT_WORD(twopk, 0x3f800000+(k<<23));
|
||||
else
|
||||
SET_FLOAT_WORD(twopk, 0x3f800000+((k+100)<<23));
|
||||
c = x - t*(P1+t*P2);
|
||||
xx = x*x;
|
||||
c = x - xx*(P1+xx*P2);
|
||||
x = 1 + (x*c/(2-c) - lo + hi);
|
||||
if (k == 0)
|
||||
return 1.0f - ((x*c)/(c - 2.0f) - x);
|
||||
y = 1.0f - ((lo - (x*c)/(2.0f - c)) - hi);
|
||||
if (k < -125)
|
||||
return y*twopk*twom100;
|
||||
if (k == 128)
|
||||
return y*2.0f*0x1p127f;
|
||||
return y*twopk;
|
||||
return x;
|
||||
return scalbnf(x, k);
|
||||
}
|
||||
|
@ -35,7 +35,7 @@
|
||||
* x k f
|
||||
* e = 2 e.
|
||||
*
|
||||
* A Pade' form of degree 2/3 is used to approximate exp(f) - 1
|
||||
* A Pade' form of degree 5/6 is used to approximate exp(f) - 1
|
||||
* in the basic range [-0.5 ln 2, 0.5 ln 2].
|
||||
*
|
||||
*
|
||||
@ -86,42 +86,37 @@ static const long double Q[4] = {
|
||||
2.0000000000000000000897E0L,
|
||||
};
|
||||
static const long double
|
||||
C1 = 6.9314575195312500000000E-1L,
|
||||
C2 = 1.4286068203094172321215E-6L,
|
||||
MAXLOGL = 1.1356523406294143949492E4L,
|
||||
MINLOGL = -1.13994985314888605586758E4L,
|
||||
LOG2EL = 1.4426950408889634073599E0L;
|
||||
LN2HI = 6.9314575195312500000000E-1L,
|
||||
LN2LO = 1.4286068203094172321215E-6L,
|
||||
LOG2E = 1.4426950408889634073599E0L;
|
||||
|
||||
long double expl(long double x)
|
||||
{
|
||||
long double px, xx;
|
||||
int n;
|
||||
int k;
|
||||
|
||||
if (isnan(x))
|
||||
return x;
|
||||
if (x > MAXLOGL)
|
||||
return INFINITY;
|
||||
if (x < MINLOGL)
|
||||
return 0.0;
|
||||
if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
|
||||
return x * 0x1p16383L;
|
||||
if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
|
||||
return 0x1p-10000L * 0x1p-10000L;
|
||||
|
||||
/* Express e**x = e**g 2**n
|
||||
* = e**g e**(n loge(2))
|
||||
* = e**(g + n loge(2))
|
||||
/* Express e**x = e**f 2**k
|
||||
* = e**(f + k ln(2))
|
||||
*/
|
||||
px = floorl(LOG2EL * x + 0.5); /* floor() truncates toward -infinity. */
|
||||
n = px;
|
||||
x -= px * C1;
|
||||
x -= px * C2;
|
||||
px = floorl(LOG2E * x + 0.5);
|
||||
k = px;
|
||||
x -= px * LN2HI;
|
||||
x -= px * LN2LO;
|
||||
|
||||
/* rational approximation for exponential
|
||||
* of the fractional part:
|
||||
* e**x = 1 + 2x P(x**2)/(Q(x**2) - P(x**2))
|
||||
/* rational approximation of the fractional part:
|
||||
* e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
|
||||
*/
|
||||
xx = x * x;
|
||||
px = x * __polevll(xx, P, 2);
|
||||
x = px/(__polevll(xx, Q, 3) - px);
|
||||
x = px/(__polevll(xx, Q, 3) - px);
|
||||
x = 1.0 + 2.0 * x;
|
||||
x = scalbnl(x, n);
|
||||
return x;
|
||||
return scalbnl(x, k);
|
||||
}
|
||||
#endif
|
||||
|
Loading…
Reference in New Issue
Block a user