mimalloc/test/test-stress.c
2024-10-21 05:07:12 -07:00

408 lines
12 KiB
C

/* ----------------------------------------------------------------------------
Copyright (c) 2018-2020 Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license.
-----------------------------------------------------------------------------*/
/* This is a stress test for the allocator, using multiple threads and
transferring objects between threads. It tries to reflect real-world workloads:
- allocation size is distributed linearly in powers of two
- with some fraction extra large (and some very large)
- the allocations are initialized and read again at free
- pointers transfer between threads
- threads are terminated and recreated with some objects surviving in between
- uses deterministic "randomness", but execution can still depend on
(random) thread scheduling. Do not use this test as a benchmark!
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <assert.h>
// > mimalloc-test-stress [THREADS] [SCALE] [ITER]
//
// argument defaults
#if defined(MI_TSAN) // with thread-sanitizer reduce the threads to test within the azure pipeline limits
static int THREADS = 8;
static int SCALE = 25;
static int ITER = 400;
#elif defined(MI_UBSAN) // with undefined behavious sanitizer reduce parameters to stay within the azure pipeline limits
static int THREADS = 8;
static int SCALE = 25;
static int ITER = 20;
#elif defined(MI_DEBUG_GUARDED) // with debug guard pages reduce parameters to stay within the azure pipeline limits
static int THREADS = 8;
static int SCALE = 10;
static int ITER = 10;
#else
static int THREADS = 32; // more repeatable if THREADS <= #processors
static int SCALE = 25; // scaling factor
static int ITER = 50; // N full iterations destructing and re-creating all threads
#endif
#define STRESS // undefine for leak test
#ifndef NDEBUG
#define HEAP_WALK // walk the heap objects?
#endif
static bool allow_large_objects = true; // allow very large objects? (set to `true` if SCALE>100)
static size_t use_one_size = 0; // use single object size of `N * sizeof(uintptr_t)`?
static bool main_participates = false; // main thread participates as a worker too
// #define USE_STD_MALLOC
#ifdef USE_STD_MALLOC
#define custom_calloc(n,s) calloc(n,s)
#define custom_realloc(p,s) realloc(p,s)
#define custom_free(p) free(p)
#else
#include <mimalloc.h>
#define custom_calloc(n,s) mi_calloc(n,s)
#define custom_realloc(p,s) mi_realloc(p,s)
#define custom_free(p) mi_free(p)
#endif
// transfer pointer between threads
#define TRANSFERS (1000)
static volatile void* transfer[TRANSFERS];
#if (UINTPTR_MAX != UINT32_MAX)
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
#else
const uintptr_t cookie = 0x1ce4e5b9UL;
#endif
static void* atomic_exchange_ptr(volatile void** p, void* newval);
typedef uintptr_t* random_t;
static uintptr_t pick(random_t r) {
uintptr_t x = *r;
#if (UINTPTR_MAX > UINT32_MAX)
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
x ^= x >> 30;
x *= 0xbf58476d1ce4e5b9UL;
x ^= x >> 27;
x *= 0x94d049bb133111ebUL;
x ^= x >> 31;
#else
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
x ^= x >> 16;
x *= 0x7feb352dUL;
x ^= x >> 15;
x *= 0x846ca68bUL;
x ^= x >> 16;
#endif
*r = x;
return x;
}
static bool chance(size_t perc, random_t r) {
return (pick(r) % 100 <= perc);
}
static void* alloc_items(size_t items, random_t r) {
if (chance(1, r)) {
if (chance(1, r) && allow_large_objects) items *= 10000; // 0.01% giant
else if (chance(10, r) && allow_large_objects) items *= 1000; // 0.1% huge
else items *= 100; // 1% large objects;
}
if (items == 40) items++; // pthreads uses that size for stack increases
if (use_one_size > 0) items = (use_one_size / sizeof(uintptr_t));
if (items==0) items = 1;
uintptr_t* p = (uintptr_t*)custom_calloc(items,sizeof(uintptr_t));
if (p != NULL) {
for (uintptr_t i = 0; i < items; i++) {
assert(p[i] == 0);
p[i] = (items - i) ^ cookie;
}
}
return p;
}
static void free_items(void* p) {
if (p != NULL) {
uintptr_t* q = (uintptr_t*)p;
uintptr_t items = (q[0] ^ cookie);
for (uintptr_t i = 0; i < items; i++) {
if ((q[i] ^ cookie) != items - i) {
fprintf(stderr, "memory corruption at block %p at %zu\n", p, i);
abort();
}
}
}
custom_free(p);
}
#ifdef HEAP_WALK
static bool visit_blocks(const mi_heap_t* heap, const mi_heap_area_t* area, void* block, size_t block_size, void* arg) {
(void)(heap); (void)(area);
size_t* total = (size_t*)arg;
if (block != NULL) {
*total += block_size;
}
return true;
}
#endif
static void stress(intptr_t tid) {
//bench_start_thread();
uintptr_t r = ((tid + 1) * 43); // rand();
const size_t max_item_shift = 5; // 128
const size_t max_item_retained_shift = max_item_shift + 2;
size_t allocs = 100 * ((size_t)SCALE) * (tid % 8 + 1); // some threads do more
size_t retain = allocs / 2;
void** data = NULL;
size_t data_size = 0;
size_t data_top = 0;
void** retained = (void**)custom_calloc(retain,sizeof(void*));
size_t retain_top = 0;
while (allocs > 0 || retain > 0) {
if (retain == 0 || (chance(50, &r) && allocs > 0)) {
// 50%+ alloc
allocs--;
if (data_top >= data_size) {
data_size += 100000;
data = (void**)custom_realloc(data, data_size * sizeof(void*));
}
data[data_top++] = alloc_items(1ULL << (pick(&r) % max_item_shift), &r);
}
else {
// 25% retain
retained[retain_top++] = alloc_items( 1ULL << (pick(&r) % max_item_retained_shift), &r);
retain--;
}
if (chance(66, &r) && data_top > 0) {
// 66% free previous alloc
size_t idx = pick(&r) % data_top;
free_items(data[idx]);
data[idx] = NULL;
}
if (chance(25, &r) && data_top > 0) {
// 25% exchange a local pointer with the (shared) transfer buffer.
size_t data_idx = pick(&r) % data_top;
size_t transfer_idx = pick(&r) % TRANSFERS;
void* p = data[data_idx];
void* q = atomic_exchange_ptr(&transfer[transfer_idx], p);
data[data_idx] = q;
}
}
#ifdef HEAP_WALK
// walk the heap
size_t total = 0;
mi_heap_visit_blocks(mi_heap_get_default(), true, visit_blocks, &total);
#endif
// free everything that is left
for (size_t i = 0; i < retain_top; i++) {
free_items(retained[i]);
}
for (size_t i = 0; i < data_top; i++) {
free_items(data[i]);
}
custom_free(retained);
custom_free(data);
//bench_end_thread();
}
static void run_os_threads(size_t nthreads, void (*entry)(intptr_t tid));
static void test_stress(void) {
uintptr_t r = rand();
for (int n = 0; n < ITER; n++) {
run_os_threads(THREADS, &stress);
#ifndef NDEBUG
// switch between arena and OS allocation for testing
mi_option_set_enabled(mi_option_disallow_arena_alloc, (n%2)==1);
#endif
#ifdef HEAP_WALK
size_t total = 0;
mi_abandoned_visit_blocks(mi_subproc_main(), -1, true, visit_blocks, &total);
#endif
for (int i = 0; i < TRANSFERS; i++) {
if (chance(50, &r) || n + 1 == ITER) { // free all on last run, otherwise free half of the transfers
void* p = atomic_exchange_ptr(&transfer[i], NULL);
free_items(p);
}
}
#ifndef NDEBUG
//mi_collect(false);
//mi_debug_show_arenas();
#endif
#if !defined(NDEBUG) || defined(MI_TSAN)
if ((n + 1) % 10 == 0) { printf("- iterations left: %3d\n", ITER - (n + 1)); }
#endif
}
}
#ifndef STRESS
static void leak(intptr_t tid) {
uintptr_t r = rand();
void* p = alloc_items(1 /*pick(&r)%128*/, &r);
if (chance(50, &r)) {
intptr_t i = (pick(&r) % TRANSFERS);
void* q = atomic_exchange_ptr(&transfer[i], p);
free_items(q);
}
}
static void test_leak(void) {
for (int n = 0; n < ITER; n++) {
run_os_threads(THREADS, &leak);
mi_collect(false);
#ifndef NDEBUG
if ((n + 1) % 10 == 0) { printf("- iterations left: %3d\n", ITER - (n + 1)); }
#endif
}
}
#endif
int main(int argc, char** argv) {
#ifdef HEAP_WALK
mi_option_enable(mi_option_visit_abandoned);
#endif
#ifndef NDEBUG
mi_option_set(mi_option_arena_reserve, 32 * 1024 /* in kib = 32MiB */);
#endif
#ifndef USE_STD_MALLOC
mi_stats_reset();
#endif
// > mimalloc-test-stress [THREADS] [SCALE] [ITER]
if (argc >= 2) {
char* end;
long n = strtol(argv[1], &end, 10);
if (n > 0) THREADS = n;
}
if (argc >= 3) {
char* end;
long n = (strtol(argv[2], &end, 10));
if (n > 0) SCALE = n;
}
if (argc >= 4) {
char* end;
long n = (strtol(argv[3], &end, 10));
if (n > 0) ITER = n;
}
if (SCALE > 100) {
allow_large_objects = true;
}
printf("Using %d threads with a %d%% load-per-thread and %d iterations %s\n", THREADS, SCALE, ITER, (allow_large_objects ? "(allow large objects)" : ""));
//mi_reserve_os_memory(1024*1024*1024ULL, false, true);
//int res = mi_reserve_huge_os_pages(4,1);
//printf("(reserve huge: %i\n)", res);
//bench_start_program();
// Run ITER full iterations where half the objects in the transfer buffer survive to the next round.
srand(0x7feb352d);
//mi_reserve_os_memory(512ULL << 20, true, true);
#if !defined(NDEBUG) && !defined(USE_STD_MALLOC)
mi_stats_reset();
#endif
#ifdef STRESS
test_stress();
#else
test_leak();
#endif
#ifndef USE_STD_MALLOC
#ifndef NDEBUG
mi_debug_show_arenas(true,true,true);
mi_collect(true);
#endif
mi_stats_print(NULL);
#endif
//bench_end_program();
return 0;
}
static void (*thread_entry_fun)(intptr_t) = &stress;
#ifdef _WIN32
#include <windows.h>
static DWORD WINAPI thread_entry(LPVOID param) {
thread_entry_fun((intptr_t)param);
return 0;
}
static void run_os_threads(size_t nthreads, void (*fun)(intptr_t)) {
thread_entry_fun = fun;
DWORD* tids = (DWORD*)custom_calloc(nthreads,sizeof(DWORD));
HANDLE* thandles = (HANDLE*)custom_calloc(nthreads,sizeof(HANDLE));
const size_t start = (main_participates ? 1 : 0);
for (size_t i = start; i < nthreads; i++) {
thandles[i] = CreateThread(0, 8*1024, &thread_entry, (void*)(i), 0, &tids[i]);
}
if (main_participates) fun(0); // run the main thread as well
for (size_t i = start; i < nthreads; i++) {
WaitForSingleObject(thandles[i], INFINITE);
}
for (size_t i = start; i < nthreads; i++) {
CloseHandle(thandles[i]);
}
custom_free(tids);
custom_free(thandles);
}
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
#if (INTPTR_MAX == INT32_MAX)
return (void*)InterlockedExchange((volatile LONG*)p, (LONG)newval);
#else
return (void*)InterlockedExchange64((volatile LONG64*)p, (LONG64)newval);
#endif
}
#else
#include <pthread.h>
static void* thread_entry(void* param) {
thread_entry_fun((uintptr_t)param);
return NULL;
}
static void run_os_threads(size_t nthreads, void (*fun)(intptr_t)) {
thread_entry_fun = fun;
pthread_t* threads = (pthread_t*)custom_calloc(nthreads,sizeof(pthread_t));
memset(threads, 0, sizeof(pthread_t) * nthreads);
const size_t start = (main_participates ? 1 : 0);
//pthread_setconcurrency(nthreads);
for (size_t i = start; i < nthreads; i++) {
pthread_create(&threads[i], NULL, &thread_entry, (void*)i);
}
if (main_participates) fun(0); // run the main thread as well
for (size_t i = start; i < nthreads; i++) {
pthread_join(threads[i], NULL);
}
custom_free(threads);
}
#ifdef __cplusplus
#include <atomic>
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
return std::atomic_exchange((volatile std::atomic<void*>*)p, newval);
}
#else
#include <stdatomic.h>
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
return atomic_exchange((volatile _Atomic(void*)*)p, newval);
}
#endif
#endif