1002 lines
38 KiB
C
1002 lines
38 KiB
C
/* ----------------------------------------------------------------------------
|
|
Copyright (c) 2018-2022, Microsoft Research, Daan Leijen
|
|
This is free software; you can redistribute it and/or modify it under the
|
|
terms of the MIT license. A copy of the license can be found in the file
|
|
"LICENSE" at the root of this distribution.
|
|
-----------------------------------------------------------------------------*/
|
|
#pragma once
|
|
#ifndef MIMALLOC_INTERNAL_H
|
|
#define MIMALLOC_INTERNAL_H
|
|
|
|
#include "mimalloc-types.h"
|
|
#include "mimalloc-track.h"
|
|
|
|
#if (MI_DEBUG>0)
|
|
#define mi_trace_message(...) _mi_trace_message(__VA_ARGS__)
|
|
#else
|
|
#define mi_trace_message(...)
|
|
#endif
|
|
|
|
#define MI_CACHE_LINE 64
|
|
#if defined(_MSC_VER)
|
|
#pragma warning(disable:4127) // suppress constant conditional warning (due to MI_SECURE paths)
|
|
#pragma warning(disable:26812) // unscoped enum warning
|
|
#define mi_decl_noinline __declspec(noinline)
|
|
#define mi_decl_thread __declspec(thread)
|
|
#define mi_decl_cache_align __declspec(align(MI_CACHE_LINE))
|
|
#elif (defined(__GNUC__) && (__GNUC__ >= 3)) || defined(__clang__) // includes clang and icc
|
|
#define mi_decl_noinline __attribute__((noinline))
|
|
#define mi_decl_thread __thread
|
|
#define mi_decl_cache_align __attribute__((aligned(MI_CACHE_LINE)))
|
|
#else
|
|
#define mi_decl_noinline
|
|
#define mi_decl_thread __thread // hope for the best :-)
|
|
#define mi_decl_cache_align
|
|
#endif
|
|
|
|
#if defined(__EMSCRIPTEN__) && !defined(__wasi__)
|
|
#define __wasi__
|
|
#endif
|
|
|
|
#if defined(__cplusplus)
|
|
#define mi_decl_externc extern "C"
|
|
#else
|
|
#define mi_decl_externc
|
|
#endif
|
|
|
|
#if !defined(_WIN32) && !defined(__wasi__)
|
|
#define MI_USE_PTHREADS
|
|
#include <pthread.h>
|
|
#endif
|
|
|
|
// "options.c"
|
|
void _mi_fputs(mi_output_fun* out, void* arg, const char* prefix, const char* message);
|
|
void _mi_fprintf(mi_output_fun* out, void* arg, const char* fmt, ...);
|
|
void _mi_warning_message(const char* fmt, ...);
|
|
void _mi_verbose_message(const char* fmt, ...);
|
|
void _mi_trace_message(const char* fmt, ...);
|
|
void _mi_options_init(void);
|
|
void _mi_error_message(int err, const char* fmt, ...);
|
|
|
|
// random.c
|
|
void _mi_random_init(mi_random_ctx_t* ctx);
|
|
void _mi_random_split(mi_random_ctx_t* ctx, mi_random_ctx_t* new_ctx);
|
|
uintptr_t _mi_random_next(mi_random_ctx_t* ctx);
|
|
uintptr_t _mi_heap_random_next(mi_heap_t* heap);
|
|
uintptr_t _mi_os_random_weak(uintptr_t extra_seed);
|
|
static inline uintptr_t _mi_random_shuffle(uintptr_t x);
|
|
|
|
// init.c
|
|
extern mi_decl_cache_align mi_stats_t _mi_stats_main;
|
|
extern mi_decl_cache_align const mi_page_t _mi_page_empty;
|
|
bool _mi_is_main_thread(void);
|
|
size_t _mi_current_thread_count(void);
|
|
bool _mi_preloading(void); // true while the C runtime is not ready
|
|
|
|
// os.c
|
|
size_t _mi_os_page_size(void);
|
|
void _mi_os_init(void); // called from process init
|
|
void* _mi_os_alloc(size_t size, mi_stats_t* stats); // to allocate thread local data
|
|
void _mi_os_free(void* p, size_t size, mi_stats_t* stats); // to free thread local data
|
|
size_t _mi_os_good_alloc_size(size_t size);
|
|
bool _mi_os_has_overcommit(void);
|
|
|
|
// memory.c
|
|
void* _mi_mem_alloc_aligned(size_t size, size_t alignment, bool* commit, bool* large, bool* is_pinned, bool* is_zero, size_t* id, mi_os_tld_t* tld);
|
|
void _mi_mem_free(void* p, size_t size, size_t id, bool fully_committed, bool any_reset, mi_os_tld_t* tld);
|
|
|
|
bool _mi_mem_reset(void* p, size_t size, mi_os_tld_t* tld);
|
|
bool _mi_mem_unreset(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld);
|
|
bool _mi_mem_commit(void* p, size_t size, bool* is_zero, mi_os_tld_t* tld);
|
|
bool _mi_mem_protect(void* addr, size_t size);
|
|
bool _mi_mem_unprotect(void* addr, size_t size);
|
|
|
|
void _mi_mem_collect(mi_os_tld_t* tld);
|
|
|
|
// "segment.c"
|
|
mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_wsize, mi_segments_tld_t* tld, mi_os_tld_t* os_tld);
|
|
void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld);
|
|
void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld);
|
|
uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size); // page start for any page
|
|
void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block);
|
|
|
|
void _mi_segment_thread_collect(mi_segments_tld_t* tld);
|
|
void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld);
|
|
void _mi_abandoned_await_readers(void);
|
|
|
|
|
|
|
|
// "page.c"
|
|
void* _mi_malloc_generic(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept mi_attr_malloc;
|
|
|
|
void _mi_page_retire(mi_page_t* page) mi_attr_noexcept; // free the page if there are no other pages with many free blocks
|
|
void _mi_page_unfull(mi_page_t* page);
|
|
void _mi_page_free(mi_page_t* page, mi_page_queue_t* pq, bool force); // free the page
|
|
void _mi_page_abandon(mi_page_t* page, mi_page_queue_t* pq); // abandon the page, to be picked up by another thread...
|
|
void _mi_heap_delayed_free_all(mi_heap_t* heap);
|
|
bool _mi_heap_delayed_free_partial(mi_heap_t* heap);
|
|
void _mi_heap_collect_retired(mi_heap_t* heap, bool force);
|
|
|
|
void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
|
|
bool _mi_page_try_use_delayed_free(mi_page_t* page, mi_delayed_t delay, bool override_never);
|
|
size_t _mi_page_queue_append(mi_heap_t* heap, mi_page_queue_t* pq, mi_page_queue_t* append);
|
|
void _mi_deferred_free(mi_heap_t* heap, bool force);
|
|
|
|
void _mi_page_free_collect(mi_page_t* page,bool force);
|
|
void _mi_page_reclaim(mi_heap_t* heap, mi_page_t* page); // callback from segments
|
|
|
|
size_t _mi_bin_size(uint8_t bin); // for stats
|
|
uint8_t _mi_bin(size_t size); // for stats
|
|
|
|
// "heap.c"
|
|
void _mi_heap_destroy_pages(mi_heap_t* heap);
|
|
void _mi_heap_collect_abandon(mi_heap_t* heap);
|
|
void _mi_heap_set_default_direct(mi_heap_t* heap);
|
|
|
|
// "stats.c"
|
|
void _mi_stats_done(mi_stats_t* stats);
|
|
|
|
mi_msecs_t _mi_clock_now(void);
|
|
mi_msecs_t _mi_clock_end(mi_msecs_t start);
|
|
mi_msecs_t _mi_clock_start(void);
|
|
|
|
// "alloc.c"
|
|
void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t size, bool zero) mi_attr_noexcept; // called from `_mi_malloc_generic`
|
|
void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) mi_attr_noexcept;
|
|
void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero) mi_attr_noexcept;
|
|
mi_block_t* _mi_page_ptr_unalign(const mi_segment_t* segment, const mi_page_t* page, const void* p);
|
|
bool _mi_free_delayed_block(mi_block_t* block);
|
|
|
|
#if MI_DEBUG>1
|
|
bool _mi_page_is_valid(mi_page_t* page);
|
|
#endif
|
|
|
|
|
|
// ------------------------------------------------------
|
|
// Branches
|
|
// ------------------------------------------------------
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#define mi_unlikely(x) (__builtin_expect(!!(x),false))
|
|
#define mi_likely(x) (__builtin_expect(!!(x),true))
|
|
#elif (defined(__cplusplus) && (__cplusplus >= 202002L)) || (defined(_MSVC_LANG) && _MSVC_LANG >= 202002L)
|
|
#define mi_unlikely(x) (x) [[unlikely]]
|
|
#define mi_likely(x) (x) [[likely]]
|
|
#else
|
|
#define mi_unlikely(x) (x)
|
|
#define mi_likely(x) (x)
|
|
#endif
|
|
|
|
#ifndef __has_builtin
|
|
#define __has_builtin(x) 0
|
|
#endif
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
Error codes passed to `_mi_fatal_error`
|
|
All are recoverable but EFAULT is a serious error and aborts by default in secure mode.
|
|
For portability define undefined error codes using common Unix codes:
|
|
<https://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Errors/unix_system_errors.html>
|
|
----------------------------------------------------------- */
|
|
#include <errno.h>
|
|
#ifndef EAGAIN // double free
|
|
#define EAGAIN (11)
|
|
#endif
|
|
#ifndef ENOMEM // out of memory
|
|
#define ENOMEM (12)
|
|
#endif
|
|
#ifndef EFAULT // corrupted free-list or meta-data
|
|
#define EFAULT (14)
|
|
#endif
|
|
#ifndef EINVAL // trying to free an invalid pointer
|
|
#define EINVAL (22)
|
|
#endif
|
|
#ifndef EOVERFLOW // count*size overflow
|
|
#define EOVERFLOW (75)
|
|
#endif
|
|
|
|
|
|
/* -----------------------------------------------------------
|
|
Inlined definitions
|
|
----------------------------------------------------------- */
|
|
#define MI_UNUSED(x) (void)(x)
|
|
#if (MI_DEBUG>0)
|
|
#define MI_UNUSED_RELEASE(x)
|
|
#else
|
|
#define MI_UNUSED_RELEASE(x) MI_UNUSED(x)
|
|
#endif
|
|
|
|
#define MI_INIT4(x) x(),x(),x(),x()
|
|
#define MI_INIT8(x) MI_INIT4(x),MI_INIT4(x)
|
|
#define MI_INIT16(x) MI_INIT8(x),MI_INIT8(x)
|
|
#define MI_INIT32(x) MI_INIT16(x),MI_INIT16(x)
|
|
#define MI_INIT64(x) MI_INIT32(x),MI_INIT32(x)
|
|
#define MI_INIT128(x) MI_INIT64(x),MI_INIT64(x)
|
|
#define MI_INIT256(x) MI_INIT128(x),MI_INIT128(x)
|
|
|
|
|
|
// Is `x` a power of two? (0 is considered a power of two)
|
|
static inline bool _mi_is_power_of_two(uintptr_t x) {
|
|
return ((x & (x - 1)) == 0);
|
|
}
|
|
|
|
// Is a pointer aligned?
|
|
static inline bool _mi_is_aligned(void* p, size_t alignment) {
|
|
mi_assert_internal(alignment != 0);
|
|
return (((uintptr_t)p % alignment) == 0);
|
|
}
|
|
|
|
// Align upwards
|
|
static inline uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) {
|
|
mi_assert_internal(alignment != 0);
|
|
uintptr_t mask = alignment - 1;
|
|
if ((alignment & mask) == 0) { // power of two?
|
|
return ((sz + mask) & ~mask);
|
|
}
|
|
else {
|
|
return (((sz + mask)/alignment)*alignment);
|
|
}
|
|
}
|
|
|
|
// Divide upwards: `s <= _mi_divide_up(s,d)*d < s+d`.
|
|
static inline uintptr_t _mi_divide_up(uintptr_t size, size_t divider) {
|
|
mi_assert_internal(divider != 0);
|
|
return (divider == 0 ? size : ((size + divider - 1) / divider));
|
|
}
|
|
|
|
// Is memory zero initialized?
|
|
static inline bool mi_mem_is_zero(void* p, size_t size) {
|
|
for (size_t i = 0; i < size; i++) {
|
|
if (((uint8_t*)p)[i] != 0) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Align a byte size to a size in _machine words_,
|
|
// i.e. byte size == `wsize*sizeof(void*)`.
|
|
static inline size_t _mi_wsize_from_size(size_t size) {
|
|
mi_assert_internal(size <= SIZE_MAX - sizeof(uintptr_t));
|
|
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
|
|
}
|
|
|
|
// Overflow detecting multiply
|
|
#if __has_builtin(__builtin_umul_overflow) || (defined(__GNUC__) && (__GNUC__ >= 5))
|
|
#include <limits.h> // UINT_MAX, ULONG_MAX
|
|
#if defined(_CLOCK_T) // for Illumos
|
|
#undef _CLOCK_T
|
|
#endif
|
|
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
|
|
#if (SIZE_MAX == ULONG_MAX)
|
|
return __builtin_umull_overflow(count, size, (unsigned long *)total);
|
|
#elif (SIZE_MAX == UINT_MAX)
|
|
return __builtin_umul_overflow(count, size, (unsigned int *)total);
|
|
#else
|
|
return __builtin_umulll_overflow(count, size, (unsigned long long *)total);
|
|
#endif
|
|
}
|
|
#else /* __builtin_umul_overflow is unavailable */
|
|
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
|
|
#define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
|
|
*total = count * size;
|
|
// note: gcc/clang optimize this to directly check the overflow flag
|
|
return ((size >= MI_MUL_NO_OVERFLOW || count >= MI_MUL_NO_OVERFLOW) && size > 0 && (SIZE_MAX / size) < count);
|
|
}
|
|
#endif
|
|
|
|
// Safe multiply `count*size` into `total`; return `true` on overflow.
|
|
static inline bool mi_count_size_overflow(size_t count, size_t size, size_t* total) {
|
|
if (count==1) { // quick check for the case where count is one (common for C++ allocators)
|
|
*total = size;
|
|
return false;
|
|
}
|
|
else if mi_unlikely(mi_mul_overflow(count, size, total)) {
|
|
#if MI_DEBUG > 0
|
|
_mi_error_message(EOVERFLOW, "allocation request is too large (%zu * %zu bytes)\n", count, size);
|
|
#endif
|
|
*total = SIZE_MAX;
|
|
return true;
|
|
}
|
|
else return false;
|
|
}
|
|
|
|
|
|
/* ----------------------------------------------------------------------------------------
|
|
The thread local default heap: `_mi_get_default_heap` returns the thread local heap.
|
|
On most platforms (Windows, Linux, FreeBSD, NetBSD, etc), this just returns a
|
|
__thread local variable (`_mi_heap_default`). With the initial-exec TLS model this ensures
|
|
that the storage will always be available (allocated on the thread stacks).
|
|
On some platforms though we cannot use that when overriding `malloc` since the underlying
|
|
TLS implementation (or the loader) will call itself `malloc` on a first access and recurse.
|
|
We try to circumvent this in an efficient way:
|
|
- macOSX : we use an unused TLS slot from the OS allocated slots (MI_TLS_SLOT). On OSX, the
|
|
loader itself calls `malloc` even before the modules are initialized.
|
|
- OpenBSD: we use an unused slot from the pthread block (MI_TLS_PTHREAD_SLOT_OFS).
|
|
- DragonFly: defaults are working but seem slow compared to freeBSD (see PR #323)
|
|
------------------------------------------------------------------------------------------- */
|
|
|
|
extern const mi_heap_t _mi_heap_empty; // read-only empty heap, initial value of the thread local default heap
|
|
extern bool _mi_process_is_initialized;
|
|
mi_heap_t* _mi_heap_main_get(void); // statically allocated main backing heap
|
|
|
|
#if defined(MI_MALLOC_OVERRIDE)
|
|
#if defined(__APPLE__) // macOS
|
|
#define MI_TLS_SLOT 89 // seems unused?
|
|
// #define MI_TLS_RECURSE_GUARD 1
|
|
// other possible unused ones are 9, 29, __PTK_FRAMEWORK_JAVASCRIPTCORE_KEY4 (94), __PTK_FRAMEWORK_GC_KEY9 (112) and __PTK_FRAMEWORK_OLDGC_KEY9 (89)
|
|
// see <https://github.com/rweichler/substrate/blob/master/include/pthread_machdep.h>
|
|
#elif defined(__OpenBSD__)
|
|
// use end bytes of a name; goes wrong if anyone uses names > 23 characters (ptrhread specifies 16)
|
|
// see <https://github.com/openbsd/src/blob/master/lib/libc/include/thread_private.h#L371>
|
|
#define MI_TLS_PTHREAD_SLOT_OFS (6*sizeof(int) + 4*sizeof(void*) + 24)
|
|
// #elif defined(__DragonFly__)
|
|
// #warning "mimalloc is not working correctly on DragonFly yet."
|
|
// #define MI_TLS_PTHREAD_SLOT_OFS (4 + 1*sizeof(void*)) // offset `uniqueid` (also used by gdb?) <https://github.com/DragonFlyBSD/DragonFlyBSD/blob/master/lib/libthread_xu/thread/thr_private.h#L458>
|
|
#elif defined(__ANDROID__)
|
|
// See issue #381
|
|
#define MI_TLS_PTHREAD
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(MI_TLS_SLOT)
|
|
static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept; // forward declaration
|
|
#elif defined(MI_TLS_PTHREAD_SLOT_OFS)
|
|
static inline mi_heap_t** mi_tls_pthread_heap_slot(void) {
|
|
pthread_t self = pthread_self();
|
|
#if defined(__DragonFly__)
|
|
if (self==NULL) {
|
|
mi_heap_t* pheap_main = _mi_heap_main_get();
|
|
return &pheap_main;
|
|
}
|
|
#endif
|
|
return (mi_heap_t**)((uint8_t*)self + MI_TLS_PTHREAD_SLOT_OFS);
|
|
}
|
|
#elif defined(MI_TLS_PTHREAD)
|
|
extern pthread_key_t _mi_heap_default_key;
|
|
#endif
|
|
|
|
// Default heap to allocate from (if not using TLS- or pthread slots).
|
|
// Do not use this directly but use through `mi_heap_get_default()` (or the unchecked `mi_get_default_heap`).
|
|
// This thread local variable is only used when neither MI_TLS_SLOT, MI_TLS_PTHREAD, or MI_TLS_PTHREAD_SLOT_OFS are defined.
|
|
// However, on the Apple M1 we do use the address of this variable as the unique thread-id (issue #356).
|
|
extern mi_decl_thread mi_heap_t* _mi_heap_default; // default heap to allocate from
|
|
|
|
static inline mi_heap_t* mi_get_default_heap(void) {
|
|
#if defined(MI_TLS_SLOT)
|
|
mi_heap_t* heap = (mi_heap_t*)mi_tls_slot(MI_TLS_SLOT);
|
|
if mi_unlikely(heap == NULL) {
|
|
#ifdef __GNUC__
|
|
__asm(""); // prevent conditional load of the address of _mi_heap_empty
|
|
#endif
|
|
heap = (mi_heap_t*)&_mi_heap_empty;
|
|
}
|
|
return heap;
|
|
#elif defined(MI_TLS_PTHREAD_SLOT_OFS)
|
|
mi_heap_t* heap = *mi_tls_pthread_heap_slot();
|
|
return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
|
|
#elif defined(MI_TLS_PTHREAD)
|
|
mi_heap_t* heap = (mi_unlikely(_mi_heap_default_key == (pthread_key_t)(-1)) ? _mi_heap_main_get() : (mi_heap_t*)pthread_getspecific(_mi_heap_default_key));
|
|
return (mi_unlikely(heap == NULL) ? (mi_heap_t*)&_mi_heap_empty : heap);
|
|
#else
|
|
#if defined(MI_TLS_RECURSE_GUARD)
|
|
if (mi_unlikely(!_mi_process_is_initialized)) return _mi_heap_main_get();
|
|
#endif
|
|
return _mi_heap_default;
|
|
#endif
|
|
}
|
|
|
|
static inline bool mi_heap_is_default(const mi_heap_t* heap) {
|
|
return (heap == mi_get_default_heap());
|
|
}
|
|
|
|
static inline bool mi_heap_is_backing(const mi_heap_t* heap) {
|
|
return (heap->tld->heap_backing == heap);
|
|
}
|
|
|
|
static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
|
|
mi_assert_internal(heap != NULL);
|
|
return (heap != &_mi_heap_empty);
|
|
}
|
|
|
|
static inline uintptr_t _mi_ptr_cookie(const void* p) {
|
|
extern mi_heap_t _mi_heap_main;
|
|
mi_assert_internal(_mi_heap_main.cookie != 0);
|
|
return ((uintptr_t)p ^ _mi_heap_main.cookie);
|
|
}
|
|
|
|
/* -----------------------------------------------------------
|
|
Pages
|
|
----------------------------------------------------------- */
|
|
|
|
static inline mi_page_t* _mi_heap_get_free_small_page(mi_heap_t* heap, size_t size) {
|
|
mi_assert_internal(size <= (MI_SMALL_SIZE_MAX + MI_PADDING_SIZE));
|
|
const size_t idx = _mi_wsize_from_size(size);
|
|
mi_assert_internal(idx < MI_PAGES_DIRECT);
|
|
return heap->pages_free_direct[idx];
|
|
}
|
|
|
|
// Get the page belonging to a certain size class
|
|
static inline mi_page_t* _mi_get_free_small_page(size_t size) {
|
|
return _mi_heap_get_free_small_page(mi_get_default_heap(), size);
|
|
}
|
|
|
|
// Segment that contains the pointer
|
|
static inline mi_segment_t* _mi_ptr_segment(const void* p) {
|
|
// mi_assert_internal(p != NULL);
|
|
return (mi_segment_t*)((uintptr_t)p & ~MI_SEGMENT_MASK);
|
|
}
|
|
|
|
// Segment belonging to a page
|
|
static inline mi_segment_t* _mi_page_segment(const mi_page_t* page) {
|
|
mi_segment_t* segment = _mi_ptr_segment(page);
|
|
mi_assert_internal(segment == NULL || page == &segment->pages[page->segment_idx]);
|
|
return segment;
|
|
}
|
|
|
|
// used internally
|
|
static inline size_t _mi_segment_page_idx_of(const mi_segment_t* segment, const void* p) {
|
|
// if (segment->page_size > MI_SEGMENT_SIZE) return &segment->pages[0]; // huge pages
|
|
ptrdiff_t diff = (uint8_t*)p - (uint8_t*)segment;
|
|
mi_assert_internal(diff >= 0 && (size_t)diff < MI_SEGMENT_SIZE);
|
|
size_t idx = (size_t)diff >> segment->page_shift;
|
|
mi_assert_internal(idx < segment->capacity);
|
|
mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM || idx == 0);
|
|
return idx;
|
|
}
|
|
|
|
// Get the page containing the pointer
|
|
static inline mi_page_t* _mi_segment_page_of(const mi_segment_t* segment, const void* p) {
|
|
size_t idx = _mi_segment_page_idx_of(segment, p);
|
|
return &((mi_segment_t*)segment)->pages[idx];
|
|
}
|
|
|
|
// Quick page start for initialized pages
|
|
static inline uint8_t* _mi_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
|
|
const size_t bsize = page->xblock_size;
|
|
mi_assert_internal(bsize > 0 && (bsize%sizeof(void*)) == 0);
|
|
return _mi_segment_page_start(segment, page, bsize, page_size, NULL);
|
|
}
|
|
|
|
// Get the page containing the pointer
|
|
static inline mi_page_t* _mi_ptr_page(void* p) {
|
|
return _mi_segment_page_of(_mi_ptr_segment(p), p);
|
|
}
|
|
|
|
// Get the block size of a page (special case for huge objects)
|
|
static inline size_t mi_page_block_size(const mi_page_t* page) {
|
|
const size_t bsize = page->xblock_size;
|
|
mi_assert_internal(bsize > 0);
|
|
if mi_likely(bsize < MI_HUGE_BLOCK_SIZE) {
|
|
return bsize;
|
|
}
|
|
else {
|
|
size_t psize;
|
|
_mi_segment_page_start(_mi_page_segment(page), page, bsize, &psize, NULL);
|
|
return psize;
|
|
}
|
|
}
|
|
|
|
// Get the usable block size of a page without fixed padding.
|
|
// This may still include internal padding due to alignment and rounding up size classes.
|
|
static inline size_t mi_page_usable_block_size(const mi_page_t* page) {
|
|
return mi_page_block_size(page) - MI_PADDING_SIZE;
|
|
}
|
|
|
|
|
|
// Thread free access
|
|
static inline mi_block_t* mi_page_thread_free(const mi_page_t* page) {
|
|
return (mi_block_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & ~3);
|
|
}
|
|
|
|
static inline mi_delayed_t mi_page_thread_free_flag(const mi_page_t* page) {
|
|
return (mi_delayed_t)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xthread_free) & 3);
|
|
}
|
|
|
|
// Heap access
|
|
static inline mi_heap_t* mi_page_heap(const mi_page_t* page) {
|
|
return (mi_heap_t*)(mi_atomic_load_relaxed(&((mi_page_t*)page)->xheap));
|
|
}
|
|
|
|
static inline void mi_page_set_heap(mi_page_t* page, mi_heap_t* heap) {
|
|
mi_assert_internal(mi_page_thread_free_flag(page) != MI_DELAYED_FREEING);
|
|
mi_atomic_store_release(&page->xheap,(uintptr_t)heap);
|
|
}
|
|
|
|
// Thread free flag helpers
|
|
static inline mi_block_t* mi_tf_block(mi_thread_free_t tf) {
|
|
return (mi_block_t*)(tf & ~0x03);
|
|
}
|
|
static inline mi_delayed_t mi_tf_delayed(mi_thread_free_t tf) {
|
|
return (mi_delayed_t)(tf & 0x03);
|
|
}
|
|
static inline mi_thread_free_t mi_tf_make(mi_block_t* block, mi_delayed_t delayed) {
|
|
return (mi_thread_free_t)((uintptr_t)block | (uintptr_t)delayed);
|
|
}
|
|
static inline mi_thread_free_t mi_tf_set_delayed(mi_thread_free_t tf, mi_delayed_t delayed) {
|
|
return mi_tf_make(mi_tf_block(tf),delayed);
|
|
}
|
|
static inline mi_thread_free_t mi_tf_set_block(mi_thread_free_t tf, mi_block_t* block) {
|
|
return mi_tf_make(block, mi_tf_delayed(tf));
|
|
}
|
|
|
|
// are all blocks in a page freed?
|
|
// note: needs up-to-date used count, (as the `xthread_free` list may not be empty). see `_mi_page_collect_free`.
|
|
static inline bool mi_page_all_free(const mi_page_t* page) {
|
|
mi_assert_internal(page != NULL);
|
|
return (page->used == 0);
|
|
}
|
|
|
|
// are there any available blocks?
|
|
static inline bool mi_page_has_any_available(const mi_page_t* page) {
|
|
mi_assert_internal(page != NULL && page->reserved > 0);
|
|
return (page->used < page->reserved || (mi_page_thread_free(page) != NULL));
|
|
}
|
|
|
|
// are there immediately available blocks, i.e. blocks available on the free list.
|
|
static inline bool mi_page_immediate_available(const mi_page_t* page) {
|
|
mi_assert_internal(page != NULL);
|
|
return (page->free != NULL);
|
|
}
|
|
|
|
// is more than 7/8th of a page in use?
|
|
static inline bool mi_page_mostly_used(const mi_page_t* page) {
|
|
if (page==NULL) return true;
|
|
uint16_t frac = page->reserved / 8U;
|
|
return (page->reserved - page->used <= frac);
|
|
}
|
|
|
|
static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size) {
|
|
return &((mi_heap_t*)heap)->pages[_mi_bin(size)];
|
|
}
|
|
|
|
|
|
|
|
//-----------------------------------------------------------
|
|
// Page flags
|
|
//-----------------------------------------------------------
|
|
static inline bool mi_page_is_in_full(const mi_page_t* page) {
|
|
return page->flags.x.in_full;
|
|
}
|
|
|
|
static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
|
|
page->flags.x.in_full = in_full;
|
|
}
|
|
|
|
static inline bool mi_page_has_aligned(const mi_page_t* page) {
|
|
return page->flags.x.has_aligned;
|
|
}
|
|
|
|
static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
|
|
page->flags.x.has_aligned = has_aligned;
|
|
}
|
|
|
|
|
|
/* -------------------------------------------------------------------
|
|
Encoding/Decoding the free list next pointers
|
|
|
|
This is to protect against buffer overflow exploits where the
|
|
free list is mutated. Many hardened allocators xor the next pointer `p`
|
|
with a secret key `k1`, as `p^k1`. This prevents overwriting with known
|
|
values but might be still too weak: if the attacker can guess
|
|
the pointer `p` this can reveal `k1` (since `p^k1^p == k1`).
|
|
Moreover, if multiple blocks can be read as well, the attacker can
|
|
xor both as `(p1^k1) ^ (p2^k1) == p1^p2` which may reveal a lot
|
|
about the pointers (and subsequently `k1`).
|
|
|
|
Instead mimalloc uses an extra key `k2` and encodes as `((p^k2)<<<k1)+k1`.
|
|
Since these operations are not associative, the above approaches do not
|
|
work so well any more even if the `p` can be guesstimated. For example,
|
|
for the read case we can subtract two entries to discard the `+k1` term,
|
|
but that leads to `((p1^k2)<<<k1) - ((p2^k2)<<<k1)` at best.
|
|
We include the left-rotation since xor and addition are otherwise linear
|
|
in the lowest bit. Finally, both keys are unique per page which reduces
|
|
the re-use of keys by a large factor.
|
|
|
|
We also pass a separate `null` value to be used as `NULL` or otherwise
|
|
`(k2<<<k1)+k1` would appear (too) often as a sentinel value.
|
|
------------------------------------------------------------------- */
|
|
|
|
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
|
|
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
|
|
}
|
|
|
|
static inline bool mi_is_in_same_page(const void* p, const void* q) {
|
|
mi_segment_t* segmentp = _mi_ptr_segment(p);
|
|
mi_segment_t* segmentq = _mi_ptr_segment(q);
|
|
if (segmentp != segmentq) return false;
|
|
size_t idxp = _mi_segment_page_idx_of(segmentp, p);
|
|
size_t idxq = _mi_segment_page_idx_of(segmentq, q);
|
|
return (idxp == idxq);
|
|
}
|
|
|
|
static inline uintptr_t mi_rotl(uintptr_t x, uintptr_t shift) {
|
|
shift %= MI_INTPTR_BITS;
|
|
return (shift==0 ? x : ((x << shift) | (x >> (MI_INTPTR_BITS - shift))));
|
|
}
|
|
static inline uintptr_t mi_rotr(uintptr_t x, uintptr_t shift) {
|
|
shift %= MI_INTPTR_BITS;
|
|
return (shift==0 ? x : ((x >> shift) | (x << (MI_INTPTR_BITS - shift))));
|
|
}
|
|
|
|
static inline void* mi_ptr_decode(const void* null, const mi_encoded_t x, const uintptr_t* keys) {
|
|
void* p = (void*)(mi_rotr(x - keys[0], keys[0]) ^ keys[1]);
|
|
return (p==null ? NULL : p);
|
|
}
|
|
|
|
static inline mi_encoded_t mi_ptr_encode(const void* null, const void* p, const uintptr_t* keys) {
|
|
uintptr_t x = (uintptr_t)(p==NULL ? null : p);
|
|
return mi_rotl(x ^ keys[1], keys[0]) + keys[0];
|
|
}
|
|
|
|
static inline mi_block_t* mi_block_nextx( const void* null, const mi_block_t* block, const uintptr_t* keys ) {
|
|
mi_track_mem_defined(block,sizeof(mi_block_t));
|
|
mi_block_t* next;
|
|
#ifdef MI_ENCODE_FREELIST
|
|
next = (mi_block_t*)mi_ptr_decode(null, block->next, keys);
|
|
#else
|
|
MI_UNUSED(keys); MI_UNUSED(null);
|
|
next = (mi_block_t*)block->next;
|
|
#endif
|
|
mi_track_mem_noaccess(block,sizeof(mi_block_t));
|
|
return next;
|
|
}
|
|
|
|
static inline void mi_block_set_nextx(const void* null, mi_block_t* block, const mi_block_t* next, const uintptr_t* keys) {
|
|
mi_track_mem_undefined(block,sizeof(mi_block_t));
|
|
#ifdef MI_ENCODE_FREELIST
|
|
block->next = mi_ptr_encode(null, next, keys);
|
|
#else
|
|
MI_UNUSED(keys); MI_UNUSED(null);
|
|
block->next = (mi_encoded_t)next;
|
|
#endif
|
|
mi_track_mem_noaccess(block,sizeof(mi_block_t));
|
|
}
|
|
|
|
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
|
|
#ifdef MI_ENCODE_FREELIST
|
|
mi_block_t* next = mi_block_nextx(page,block,page->keys);
|
|
// check for free list corruption: is `next` at least in the same page?
|
|
// TODO: check if `next` is `page->block_size` aligned?
|
|
if mi_unlikely(next!=NULL && !mi_is_in_same_page(block, next)) {
|
|
_mi_error_message(EFAULT, "corrupted free list entry of size %zub at %p: value 0x%zx\n", mi_page_block_size(page), block, (uintptr_t)next);
|
|
next = NULL;
|
|
}
|
|
return next;
|
|
#else
|
|
MI_UNUSED(page);
|
|
return mi_block_nextx(page,block,NULL);
|
|
#endif
|
|
}
|
|
|
|
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
|
|
#ifdef MI_ENCODE_FREELIST
|
|
mi_block_set_nextx(page,block,next, page->keys);
|
|
#else
|
|
MI_UNUSED(page);
|
|
mi_block_set_nextx(page,block,next,NULL);
|
|
#endif
|
|
}
|
|
|
|
// -------------------------------------------------------------------
|
|
// Fast "random" shuffle
|
|
// -------------------------------------------------------------------
|
|
|
|
static inline uintptr_t _mi_random_shuffle(uintptr_t x) {
|
|
if (x==0) { x = 17; } // ensure we don't get stuck in generating zeros
|
|
#if (MI_INTPTR_SIZE==8)
|
|
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
|
|
x ^= x >> 30;
|
|
x *= 0xbf58476d1ce4e5b9UL;
|
|
x ^= x >> 27;
|
|
x *= 0x94d049bb133111ebUL;
|
|
x ^= x >> 31;
|
|
#elif (MI_INTPTR_SIZE==4)
|
|
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
|
|
x ^= x >> 16;
|
|
x *= 0x7feb352dUL;
|
|
x ^= x >> 15;
|
|
x *= 0x846ca68bUL;
|
|
x ^= x >> 16;
|
|
#endif
|
|
return x;
|
|
}
|
|
|
|
// -------------------------------------------------------------------
|
|
// Optimize numa node access for the common case (= one node)
|
|
// -------------------------------------------------------------------
|
|
|
|
int _mi_os_numa_node_get(mi_os_tld_t* tld);
|
|
size_t _mi_os_numa_node_count_get(void);
|
|
|
|
extern _Atomic(size_t) _mi_numa_node_count;
|
|
static inline int _mi_os_numa_node(mi_os_tld_t* tld) {
|
|
if mi_likely(mi_atomic_load_relaxed(&_mi_numa_node_count) == 1) { return 0; }
|
|
else return _mi_os_numa_node_get(tld);
|
|
}
|
|
static inline size_t _mi_os_numa_node_count(void) {
|
|
const size_t count = mi_atomic_load_relaxed(&_mi_numa_node_count);
|
|
if mi_likely(count > 0) { return count; }
|
|
else return _mi_os_numa_node_count_get();
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------
|
|
// Getting the thread id should be performant as it is called in the
|
|
// fast path of `_mi_free` and we specialize for various platforms.
|
|
// We only require _mi_threadid() to return a unique id for each thread.
|
|
// -------------------------------------------------------------------
|
|
#if defined(_WIN32)
|
|
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
static inline mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
|
|
// Windows: works on Intel and ARM in both 32- and 64-bit
|
|
return (uintptr_t)NtCurrentTeb();
|
|
}
|
|
|
|
// We use assembly for a fast thread id on the main platforms. The TLS layout depends on
|
|
// both the OS and libc implementation so we use specific tests for each main platform.
|
|
// If you test on another platform and it works please send a PR :-)
|
|
// see also https://akkadia.org/drepper/tls.pdf for more info on the TLS register.
|
|
#elif defined(__GNUC__) && ( \
|
|
(defined(__GLIBC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \
|
|
|| (defined(__APPLE__) && (defined(__x86_64__) || defined(__aarch64__))) \
|
|
|| (defined(__BIONIC__) && (defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))) \
|
|
|| (defined(__FreeBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \
|
|
|| (defined(__OpenBSD__) && (defined(__x86_64__) || defined(__i386__) || defined(__aarch64__))) \
|
|
)
|
|
|
|
static inline void* mi_tls_slot(size_t slot) mi_attr_noexcept {
|
|
void* res;
|
|
const size_t ofs = (slot*sizeof(void*));
|
|
#if defined(__i386__)
|
|
__asm__("movl %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86 32-bit always uses GS
|
|
#elif defined(__APPLE__) && defined(__x86_64__)
|
|
__asm__("movq %%gs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 macOSX uses GS
|
|
#elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
|
|
__asm__("movl %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x32 ABI
|
|
#elif defined(__x86_64__)
|
|
__asm__("movq %%fs:%1, %0" : "=r" (res) : "m" (*((void**)ofs)) : ); // x86_64 Linux, BSD uses FS
|
|
#elif defined(__arm__)
|
|
void** tcb; MI_UNUSED(ofs);
|
|
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
|
|
res = tcb[slot];
|
|
#elif defined(__aarch64__)
|
|
void** tcb; MI_UNUSED(ofs);
|
|
#if defined(__APPLE__) // M1, issue #343
|
|
__asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb));
|
|
#else
|
|
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
|
|
#endif
|
|
res = tcb[slot];
|
|
#endif
|
|
return res;
|
|
}
|
|
|
|
// setting a tls slot is only used on macOS for now
|
|
static inline void mi_tls_slot_set(size_t slot, void* value) mi_attr_noexcept {
|
|
const size_t ofs = (slot*sizeof(void*));
|
|
#if defined(__i386__)
|
|
__asm__("movl %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // 32-bit always uses GS
|
|
#elif defined(__APPLE__) && defined(__x86_64__)
|
|
__asm__("movq %1,%%gs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 macOS uses GS
|
|
#elif defined(__x86_64__) && (MI_INTPTR_SIZE==4)
|
|
__asm__("movl %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x32 ABI
|
|
#elif defined(__x86_64__)
|
|
__asm__("movq %1,%%fs:%0" : "=m" (*((void**)ofs)) : "rn" (value) : ); // x86_64 Linux, BSD uses FS
|
|
#elif defined(__arm__)
|
|
void** tcb; MI_UNUSED(ofs);
|
|
__asm__ volatile ("mrc p15, 0, %0, c13, c0, 3\nbic %0, %0, #3" : "=r" (tcb));
|
|
tcb[slot] = value;
|
|
#elif defined(__aarch64__)
|
|
void** tcb; MI_UNUSED(ofs);
|
|
#if defined(__APPLE__) // M1, issue #343
|
|
__asm__ volatile ("mrs %0, tpidrro_el0\nbic %0, %0, #7" : "=r" (tcb));
|
|
#else
|
|
__asm__ volatile ("mrs %0, tpidr_el0" : "=r" (tcb));
|
|
#endif
|
|
tcb[slot] = value;
|
|
#endif
|
|
}
|
|
|
|
static inline mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
|
|
#if defined(__BIONIC__)
|
|
// issue #384, #495: on the Bionic libc (Android), slot 1 is the thread id
|
|
// see: https://github.com/aosp-mirror/platform_bionic/blob/c44b1d0676ded732df4b3b21c5f798eacae93228/libc/platform/bionic/tls_defines.h#L86
|
|
return (uintptr_t)mi_tls_slot(1);
|
|
#else
|
|
// in all our other targets, slot 0 is the thread id
|
|
// glibc: https://sourceware.org/git/?p=glibc.git;a=blob_plain;f=sysdeps/x86_64/nptl/tls.h
|
|
// apple: https://github.com/apple/darwin-xnu/blob/main/libsyscall/os/tsd.h#L36
|
|
return (uintptr_t)mi_tls_slot(0);
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
// otherwise use portable C, taking the address of a thread local variable (this is still very fast on most platforms).
|
|
static inline mi_threadid_t _mi_thread_id(void) mi_attr_noexcept {
|
|
return (uintptr_t)&_mi_heap_default;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Count bits: trailing or leading zeros (with MI_INTPTR_BITS on all zero)
|
|
// -----------------------------------------------------------------------
|
|
|
|
#if defined(__GNUC__)
|
|
|
|
#include <limits.h> // LONG_MAX
|
|
#define MI_HAVE_FAST_BITSCAN
|
|
static inline size_t mi_clz(uintptr_t x) {
|
|
if (x==0) return MI_INTPTR_BITS;
|
|
#if (INTPTR_MAX == LONG_MAX)
|
|
return __builtin_clzl(x);
|
|
#else
|
|
return __builtin_clzll(x);
|
|
#endif
|
|
}
|
|
static inline size_t mi_ctz(uintptr_t x) {
|
|
if (x==0) return MI_INTPTR_BITS;
|
|
#if (INTPTR_MAX == LONG_MAX)
|
|
return __builtin_ctzl(x);
|
|
#else
|
|
return __builtin_ctzll(x);
|
|
#endif
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
#include <limits.h> // LONG_MAX
|
|
#define MI_HAVE_FAST_BITSCAN
|
|
static inline size_t mi_clz(uintptr_t x) {
|
|
if (x==0) return MI_INTPTR_BITS;
|
|
unsigned long idx;
|
|
#if (INTPTR_MAX == LONG_MAX)
|
|
_BitScanReverse(&idx, x);
|
|
#else
|
|
_BitScanReverse64(&idx, x);
|
|
#endif
|
|
return ((MI_INTPTR_BITS - 1) - idx);
|
|
}
|
|
static inline size_t mi_ctz(uintptr_t x) {
|
|
if (x==0) return MI_INTPTR_BITS;
|
|
unsigned long idx;
|
|
#if (INTPTR_MAX == LONG_MAX)
|
|
_BitScanForward(&idx, x);
|
|
#else
|
|
_BitScanForward64(&idx, x);
|
|
#endif
|
|
return idx;
|
|
}
|
|
|
|
#else
|
|
static inline size_t mi_ctz32(uint32_t x) {
|
|
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
|
|
static const unsigned char debruijn[32] = {
|
|
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
|
|
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
|
|
};
|
|
if (x==0) return 32;
|
|
return debruijn[((x & -(int32_t)x) * 0x077CB531UL) >> 27];
|
|
}
|
|
static inline size_t mi_clz32(uint32_t x) {
|
|
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
|
|
static const uint8_t debruijn[32] = {
|
|
31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,
|
|
23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0
|
|
};
|
|
if (x==0) return 32;
|
|
x |= x >> 1;
|
|
x |= x >> 2;
|
|
x |= x >> 4;
|
|
x |= x >> 8;
|
|
x |= x >> 16;
|
|
return debruijn[(uint32_t)(x * 0x07C4ACDDUL) >> 27];
|
|
}
|
|
|
|
static inline size_t mi_clz(uintptr_t x) {
|
|
if (x==0) return MI_INTPTR_BITS;
|
|
#if (MI_INTPTR_BITS <= 32)
|
|
return mi_clz32((uint32_t)x);
|
|
#else
|
|
size_t count = mi_clz32((uint32_t)(x >> 32));
|
|
if (count < 32) return count;
|
|
return (32 + mi_clz32((uint32_t)x));
|
|
#endif
|
|
}
|
|
static inline size_t mi_ctz(uintptr_t x) {
|
|
if (x==0) return MI_INTPTR_BITS;
|
|
#if (MI_INTPTR_BITS <= 32)
|
|
return mi_ctz32((uint32_t)x);
|
|
#else
|
|
size_t count = mi_ctz32((uint32_t)x);
|
|
if (count < 32) return count;
|
|
return (32 + mi_ctz32((uint32_t)(x>>32)));
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
// "bit scan reverse": Return index of the highest bit (or MI_INTPTR_BITS if `x` is zero)
|
|
static inline size_t mi_bsr(uintptr_t x) {
|
|
return (x==0 ? MI_INTPTR_BITS : MI_INTPTR_BITS - 1 - mi_clz(x));
|
|
}
|
|
|
|
|
|
// ---------------------------------------------------------------------------------
|
|
// Provide our own `_mi_memcpy` for potential performance optimizations.
|
|
//
|
|
// For now, only on Windows with msvc/clang-cl we optimize to `rep movsb` if
|
|
// we happen to run on x86/x64 cpu's that have "fast short rep movsb" (FSRM) support
|
|
// (AMD Zen3+ (~2020) or Intel Ice Lake+ (~2017). See also issue #201 and pr #253.
|
|
// ---------------------------------------------------------------------------------
|
|
|
|
#if !MI_TRACK_ENABLED && defined(_WIN32) && (defined(_M_IX86) || defined(_M_X64))
|
|
#include <intrin.h>
|
|
#include <string.h>
|
|
extern bool _mi_cpu_has_fsrm;
|
|
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
|
|
if (_mi_cpu_has_fsrm) {
|
|
__movsb((unsigned char*)dst, (const unsigned char*)src, n);
|
|
}
|
|
else {
|
|
memcpy(dst, src, n);
|
|
}
|
|
}
|
|
static inline void _mi_memzero(void* dst, size_t n) {
|
|
if (_mi_cpu_has_fsrm) {
|
|
__stosb((unsigned char*)dst, 0, n);
|
|
}
|
|
else {
|
|
memset(dst, 0, n);
|
|
}
|
|
}
|
|
#else
|
|
#include <string.h>
|
|
static inline void _mi_memcpy(void* dst, const void* src, size_t n) {
|
|
memcpy(dst, src, n);
|
|
}
|
|
static inline void _mi_memzero(void* dst, size_t n) {
|
|
memset(dst, 0, n);
|
|
}
|
|
#endif
|
|
|
|
|
|
// -------------------------------------------------------------------------------
|
|
// The `_mi_memcpy_aligned` can be used if the pointers are machine-word aligned
|
|
// This is used for example in `mi_realloc`.
|
|
// -------------------------------------------------------------------------------
|
|
|
|
#if (defined(__GNUC__) && (__GNUC__ >= 4)) || defined(__clang__)
|
|
// On GCC/CLang we provide a hint that the pointers are word aligned.
|
|
#include <string.h>
|
|
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
|
|
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
|
|
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
|
|
const void* asrc = __builtin_assume_aligned(src, MI_INTPTR_SIZE);
|
|
_mi_memcpy(adst, asrc, n);
|
|
}
|
|
|
|
static inline void _mi_memzero_aligned(void* dst, size_t n) {
|
|
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
|
|
void* adst = __builtin_assume_aligned(dst, MI_INTPTR_SIZE);
|
|
_mi_memzero(adst, n);
|
|
}
|
|
#else
|
|
// Default fallback on `_mi_memcpy`
|
|
static inline void _mi_memcpy_aligned(void* dst, const void* src, size_t n) {
|
|
mi_assert_internal(((uintptr_t)dst % MI_INTPTR_SIZE == 0) && ((uintptr_t)src % MI_INTPTR_SIZE == 0));
|
|
_mi_memcpy(dst, src, n);
|
|
}
|
|
|
|
static inline void _mi_memzero_aligned(void* dst, size_t n) {
|
|
mi_assert_internal((uintptr_t)dst % MI_INTPTR_SIZE == 0);
|
|
_mi_memzero(dst, n);
|
|
}
|
|
#endif
|
|
|
|
|
|
#endif
|