/* ---------------------------------------------------------------------------- Copyright (c) 2018, Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. A copy of the license can be found in the file "LICENSE" at the root of this distribution. -----------------------------------------------------------------------------*/ #ifndef _DEFAULT_SOURCE #define _DEFAULT_SOURCE // ensure mmap flags are defined #endif #include "mimalloc.h" #include "mimalloc-internal.h" #include // memset #include // debug fprintf #include /* ----------------------------------------------------------- Raw allocation on Windows (VirtualAlloc) and Unix's (mmap). Defines a portable `mmap`, `munmap` and `mmap_trim`. ----------------------------------------------------------- */ #if defined(_WIN32) #include #if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS) // rough check it VirtualAlloc2 is available (needs windows 10 or Windows server 2016) #pragma comment(lib, "mincore.lib") // seems needed to resolve VirtualAlloc2 #define USE_VIRTUALALLOC2 // allows aligned allocation #endif #else #include // mmap #include // sysconf #endif uintptr_t _mi_align_up(uintptr_t sz, size_t alignment) { uintptr_t x = (sz / alignment) * alignment; if (x < sz) x += alignment; if (x < sz) return 0; // overflow return x; } static void* mi_align_up_ptr(void* p, size_t alignment) { return (void*)_mi_align_up((uintptr_t)p, alignment); } static uintptr_t _mi_align_down(uintptr_t sz, size_t alignment) { return (sz / alignment) * alignment; } static void* mi_align_down_ptr(void* p, size_t alignment) { return (void*)_mi_align_down((uintptr_t)p, alignment); } static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld); // cached OS page size size_t _mi_os_page_size(void) { static size_t page_size = 0; if (page_size == 0) { #if defined(_WIN32) SYSTEM_INFO si; GetSystemInfo(&si); page_size = (si.dwPageSize > 0 ? si.dwPageSize : 4096); #else long result = sysconf(_SC_PAGESIZE); page_size = (result > 0 ? (size_t)result : 4096); #endif } return page_size; } static bool mi_munmap(void* addr, size_t size) { if (addr == NULL || size == 0) return true; bool err = false; #if defined(_WIN32) err = (VirtualFree(addr, 0, MEM_RELEASE) == 0); #else err = (munmap(addr, size) == -1); #endif if (err) { #pragma warning(suppress:4996) _mi_warning_message("munmap failed: %s, addr 0x%8li, size %lu\n", strerror(errno), (size_t)addr, size); return false; } else { return true; } } static void* mi_mmap(void* addr, size_t size, int extra_flags, mi_stats_t* stats) { UNUSED(stats); if (size == 0) return NULL; void* p; #if defined(_WIN32) p = VirtualAlloc(addr, size, MEM_RESERVE | MEM_COMMIT | extra_flags, PAGE_READWRITE); #else #if !defined(MAP_ANONYMOUS) #define MAP_ANONYMOUS MAP_ANON #endif int flags = MAP_PRIVATE | MAP_ANONYMOUS | extra_flags; if (addr != NULL) { #if defined(MAP_EXCL) flags |= MAP_FIXED | MAP_EXCL; // BSD #elif defined(MAP_FIXED_NOREPLACE) flags |= MAP_FIXED_NOREPLACE; // Linux #elif defined(MAP_FIXED) flags |= MAP_FIXED; #endif } p = mmap(addr, size, (PROT_READ | PROT_WRITE), flags, -1, 0); if (p == MAP_FAILED) p = NULL; if (addr != NULL && p != addr) { mi_munmap(p, size); p = NULL; } #endif mi_assert(p == NULL || (addr == NULL && p != addr) || (addr != NULL && p == addr)); if (p != NULL) mi_stat_increase(stats->mmap_calls, 1); return p; } static void* mi_mmap_aligned(size_t size, size_t alignment, mi_stats_t* stats) { if (alignment < _mi_os_page_size() || ((alignment & (~alignment + 1)) != alignment)) return NULL; void* p = NULL; #if defined(_WIN32) && defined(USE_VIRTUALALLOC2) // on modern Windows use VirtualAlloc2 MEM_ADDRESS_REQUIREMENTS reqs = {0}; reqs.Alignment = alignment; MEM_EXTENDED_PARAMETER param = { 0 }; param.Type = MemExtendedParameterAddressRequirements; param.Pointer = &reqs; p = VirtualAlloc2(NULL, NULL, size, MEM_RESERVE | MEM_COMMIT, PAGE_READWRITE, ¶m, 1); #elif defined(MAP_ALIGNED) // on BSD, use the aligned mmap api size_t n = _mi_bsr(alignment); if ((size_t)1 << n == alignment && n >= 12) { // alignment is a power of 2 and >= 4096 p = mi_mmap(suggest, size, MAP_ALIGNED(n), tld->stats); // use the NetBSD/freeBSD aligned flags } #else UNUSED(size); UNUSED(alignment); #endif mi_assert(p == NULL || (uintptr_t)p % alignment == 0); if (p != NULL) mi_stat_increase(stats->mmap_calls, 1); return p; } static void* mi_os_page_align_region(void* addr, size_t size, size_t* newsize) { mi_assert(addr != NULL && size > 0); if (newsize != NULL) *newsize = 0; if (size == 0 || addr == NULL) return NULL; // page align conservatively within the range void* start = mi_align_up_ptr(addr, _mi_os_page_size()); void* end = mi_align_down_ptr((uint8_t*)addr + size, _mi_os_page_size()); ptrdiff_t diff = (uint8_t*)end - (uint8_t*)start; if (diff <= 0) return NULL; mi_assert_internal((size_t)diff <= size); if (newsize != NULL) *newsize = (size_t)diff; return start; } // Signal to the OS that the address range is no longer in use // but may be used later again. This will release physical memory // pages and reduce swapping while keeping the memory committed. // We page align to a conservative area inside the range to reset. bool _mi_os_reset(void* addr, size_t size) { // page align conservatively within the range size_t csize; void* start = mi_os_page_align_region(addr,size,&csize); if (csize==0) return true; #if defined(_WIN32) void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE); mi_assert(p == start); return (p == start); #else #if defined(MADV_FREE) static int advice = MADV_FREE; int err = madvise(start, csize, advice); if (err!=0 && errno==EINVAL && advice==MADV_FREE) { // if MADV_FREE is not supported, fall back to MADV_DONTNEED from now on advice = MADV_DONTNEED; err = madvise(start, csize, advice); } #else int err = madvise(start, csize, MADV_DONTNEED); #endif if (err != 0) { _mi_warning_message("madvise reset error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno); } //mi_assert(err == 0); return (err == 0); #endif } // Protect a region in memory to be not accessible. static bool mi_os_protectx(void* addr, size_t size, bool protect) { // page align conservatively within the range size_t csize = 0; void* start = mi_os_page_align_region(addr, size, &csize); if (csize==0) return false; int err = 0; #ifdef _WIN32 DWORD oldprotect = 0; BOOL ok = VirtualProtect(start,csize,protect ? PAGE_NOACCESS : PAGE_READWRITE,&oldprotect); err = (ok ? 0 : -1); #else err = mprotect(start,csize,protect ? PROT_NONE : (PROT_READ|PROT_WRITE)); #endif if (err != 0) { _mi_warning_message("mprotect error: start: 0x%8p, csize: 0x%8zux, errno: %i\n", start, csize, errno); } return (err==0); } bool _mi_os_protect(void* addr, size_t size) { return mi_os_protectx(addr,size,true); } bool _mi_os_unprotect(void* addr, size_t size) { return mi_os_protectx(addr, size, false); } bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize) { // page align conservatively within the range mi_assert_internal(oldsize > newsize && p != NULL); if (oldsize < newsize || p==NULL) return false; if (oldsize == newsize) return true; // oldsize and newsize should be page aligned or we cannot shrink precisely void* addr = (uint8_t*)p + newsize; size_t size = 0; void* start = mi_os_page_align_region(addr, oldsize - newsize, &size); if (size==0 || start != addr) return false; #ifdef _WIN32 // we cannot shrink on windows return false; #else return mi_munmap( start, size ); #endif } /* ----------------------------------------------------------- OS allocation using mmap/munmap ----------------------------------------------------------- */ void* _mi_os_alloc(size_t size, mi_stats_t* stats) { if (size == 0) return NULL; void* p = mi_mmap(NULL, size, 0, stats); mi_assert(p!=NULL); if (p != NULL) mi_stat_increase(stats->reserved, size); return p; } void _mi_os_free(void* p, size_t size, mi_stats_t* stats) { UNUSED(stats); mi_munmap(p, size); mi_stat_decrease(stats->reserved, size); } // Slow but guaranteed way to allocated aligned memory // by over-allocating and then reallocating at a fixed aligned // address that should be available then. static void* mi_os_alloc_aligned_ensured(size_t size, size_t alignment, size_t trie, mi_stats_t* stats) { if (trie >= 3) return NULL; // stop recursion (only on Windows) size_t alloc_size = size + alignment; mi_assert(alloc_size >= size); // overflow? if (alloc_size < size) return NULL; // allocate a chunk that includes the alignment void* p = mi_mmap(NULL, alloc_size, 0, stats); if (p == NULL) return NULL; // create an aligned pointer in the allocated area void* aligned_p = mi_align_up_ptr(p, alignment); mi_assert(aligned_p != NULL); #if defined(_WIN32) // free it and try to allocate `size` at exactly `aligned_p` // note: this may fail in case another thread happens to VirtualAlloc // concurrently at that spot. We try up to 3 times to mitigate this. mi_munmap(p, alloc_size); p = mi_mmap(aligned_p, size, 0, stats); if (p != aligned_p) { if (p != NULL) mi_munmap(p, size); return mi_os_alloc_aligned_ensured(size, alignment, trie++, stats); } #else // we selectively unmap parts around the over-allocated area. size_t pre_size = (uint8_t*)aligned_p - (uint8_t*)p; size_t mid_size = _mi_align_up(size, _mi_os_page_size()); size_t post_size = alloc_size - pre_size - mid_size; if (pre_size > 0) mi_munmap(p, pre_size); if (post_size > 0) mi_munmap((uint8_t*)aligned_p + mid_size, post_size); #endif mi_assert(((uintptr_t)aligned_p) % alignment == 0); return aligned_p; } // Allocate an aligned block. // Since `mi_mmap` is relatively slow we try to allocate directly at first and // hope to get an aligned address; only when that fails we fall back // to a guaranteed method by overallocating at first and adjusting. // TODO: use VirtualAlloc2 with alignment on Windows 10 / Windows Server 2016. void* _mi_os_alloc_aligned(size_t size, size_t alignment, mi_os_tld_t* tld) { if (size == 0) return NULL; if (alignment < 1024) return _mi_os_alloc(size, tld->stats); void* p = os_pool_alloc(size,alignment,tld); if (p != NULL) return p; void* suggest = NULL; p = mi_mmap_aligned(size,alignment,tld->stats); if (p==NULL && (tld->mmap_next_probable % alignment) == 0) { // if the next probable address is aligned, // then try to just allocate `size` and hope it is aligned... p = mi_mmap(suggest, size, 0, tld->stats); if (p == NULL) return NULL; if (((uintptr_t)p % alignment) == 0) mi_stat_increase(tld->stats->mmap_right_align, 1); } //fprintf(stderr, "segment address guess: %s, p=%lxu, guess:%lxu\n", (p != NULL && (uintptr_t)p % alignment ==0 ? "correct" : "incorrect"), (uintptr_t)p, next_probable); if (p==NULL || ((uintptr_t)p % alignment) != 0) { // if `p` is not yet aligned after all, free the block and use a slower // but guaranteed way to allocate an aligned block if (p != NULL) mi_munmap(p, size); mi_stat_increase( tld->stats->mmap_ensure_aligned, 1); //fprintf(stderr, "mimalloc: slow mmap 0x%lx\n", _mi_thread_id()); p = mi_os_alloc_aligned_ensured(size, alignment,0,tld->stats); } if (p != NULL) { mi_stat_increase( tld->stats->reserved, size); // next probable address is the page-aligned address just after the newly allocated area. const size_t alloc_align = #if defined(_WIN32) 64 * 1024; // Windows allocates 64kb aligned #else _mi_os_page_size(); // page size on other OS's #endif size_t probable_size = MI_SEGMENT_SIZE; if (tld->mmap_previous > p) { // Linux tends to allocate downward tld->mmap_next_probable = _mi_align_down((uintptr_t)p - probable_size, alloc_align); // ((uintptr_t)previous - (uintptr_t)p); } else { // Otherwise, guess the next address is page aligned `size` from current pointer tld->mmap_next_probable = _mi_align_up((uintptr_t)p + probable_size, alloc_align); } tld->mmap_previous = p; } return p; } // Pooled allocation: on 64-bit systems with plenty // of virtual addresses, we allocate 10 segments at the // time to minimize `mmap` calls and increase aligned // allocations. This is only good on systems that // do overcommit so we put it behind the `MIMALLOC_POOL_COMMIT` option. // For now, we disable it on windows as VirtualFree must // be called on the original allocation and cannot be called // for individual fragments. #if defined(_WIN32) || (MI_INTPTR_SIZE<8) static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld) { UNUSED(size); UNUSED(alignment); UNUSED(tld); return NULL; } #else #define MI_POOL_ALIGNMENT MI_SEGMENT_SIZE #define MI_POOL_SIZE (10*MI_POOL_ALIGNMENT) static void* os_pool_alloc(size_t size, size_t alignment, mi_os_tld_t* tld) { if (!mi_option_is_enabled(mi_option_pool_commit)) return NULL; if (alignment != MI_POOL_ALIGNMENT) return NULL; size = _mi_align_up(size,MI_POOL_ALIGNMENT); if (size > MI_POOL_SIZE) return NULL; if (tld->pool_available == 0) { tld->pool = (uint8_t*)mi_os_alloc_aligned_ensured(MI_POOL_SIZE,MI_POOL_ALIGNMENT,0,tld->stats); if (tld->pool == NULL) return NULL; tld->pool_available += MI_POOL_SIZE; } if (size > tld->pool_available) return NULL; void* p = tld->pool; tld->pool_available -= size; tld->pool += size; return p; } #endif