#include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef _WIN32 #include #endif #ifdef _WIN32 #include static void msleep(unsigned long msecs) { Sleep(msecs); } #else #include static void msleep(unsigned long msecs) { usleep(msecs * 1000UL); } #endif static void heap_thread_free_large(); // issue #221 static void heap_no_delete(); // issue #202 static void heap_late_free(); // issue #204 static void padding_shrink(); // issue #209 static void various_tests(); static void test_mt_shutdown(); static void large_alloc(void); // issue #363 static void fail_aslr(); // issue #372 static void tsan_numa_test(); // issue #414 static void strdup_test(); // issue #445 static void bench_alloc_large(void); // issue #xxx static void heap_thread_free_huge(); static void test_stl_allocators(); int main() { mi_stats_reset(); // ignore earlier allocations heap_thread_free_huge(); /* heap_thread_free_large(); heap_no_delete(); heap_late_free(); padding_shrink(); various_tests(); large_alloc(); tsan_numa_test(); strdup_test(); */ test_stl_allocators(); test_mt_shutdown(); //fail_aslr(); bench_alloc_large(); mi_stats_print(NULL); return 0; } static void* p = malloc(8); void free_p() { free(p); return; } class Test { private: int i; public: Test(int x) { i = x; } ~Test() { } }; static void various_tests() { atexit(free_p); void* p1 = malloc(78); void* p2 = mi_malloc_aligned(24, 16); free(p1); p1 = malloc(8); char* s = mi_strdup("hello\n"); mi_free(p2); p2 = malloc(16); p1 = realloc(p1, 32); free(p1); free(p2); mi_free(s); Test* t = new Test(42); delete t; t = new (std::nothrow) Test(42); delete t; } class Static { private: void* p; public: Static() { p = malloc(64); return; } ~Static() { free(p); return; } }; static Static s = Static(); static bool test_stl_allocator1() { std::vector > vec; vec.push_back(1); vec.pop_back(); return vec.size() == 0; } struct some_struct { int i; int j; double z; }; static bool test_stl_allocator2() { std::vector > vec; vec.push_back(some_struct()); vec.pop_back(); return vec.size() == 0; } static bool test_stl_allocator3() { std::vector > vec; vec.push_back(1); vec.pop_back(); return vec.size() == 0; } static bool test_stl_allocator4() { std::vector > vec; vec.push_back(some_struct()); vec.pop_back(); return vec.size() == 0; } static bool test_stl_allocator5() { std::vector > vec; vec.push_back(1); vec.pop_back(); return vec.size() == 0; } static bool test_stl_allocator6() { std::vector > vec; vec.push_back(some_struct()); vec.pop_back(); return vec.size() == 0; } static void test_stl_allocators() { test_stl_allocator1(); test_stl_allocator2(); test_stl_allocator3(); test_stl_allocator4(); test_stl_allocator5(); test_stl_allocator6(); } // issue 445 static void strdup_test() { #ifdef _MSC_VER char* s = _strdup("hello\n"); char* buf = NULL; size_t len; _dupenv_s(&buf, &len, "MIMALLOC_VERBOSE"); mi_free(buf); mi_free(s); #endif } // Issue #202 static void heap_no_delete_worker() { mi_heap_t* heap = mi_heap_new(); void* q = mi_heap_malloc(heap, 1024); // mi_heap_delete(heap); // uncomment to prevent assertion } static void heap_no_delete() { auto t1 = std::thread(heap_no_delete_worker); t1.join(); } // Issue #204 static volatile void* global_p; static void t1main() { mi_heap_t* heap = mi_heap_new(); global_p = mi_heap_malloc(heap, 1024); mi_heap_delete(heap); } static void heap_late_free() { auto t1 = std::thread(t1main); msleep(2000); assert(global_p); mi_free((void*)global_p); t1.join(); } // issue #209 static void* shared_p; static void alloc0(/* void* arg */) { shared_p = mi_malloc(8); } static void padding_shrink(void) { auto t1 = std::thread(alloc0); t1.join(); mi_free(shared_p); } // Issue #221 static void heap_thread_free_large_worker() { mi_free(shared_p); } static void heap_thread_free_large() { for (int i = 0; i < 100; i++) { shared_p = mi_malloc_aligned(2 * 1024 * 1024 + 1, 8); auto t1 = std::thread(heap_thread_free_large_worker); t1.join(); } } static void heap_thread_free_huge_worker() { mi_free(shared_p); } static void heap_thread_free_huge() { for (int i = 0; i < 100; i++) { shared_p = mi_malloc(1024 * 1024 * 1024); auto t1 = std::thread(heap_thread_free_large_worker); t1.join(); } } static void heap_thread_free_huge_worker() { mi_free(shared_p); } static void heap_thread_free_huge() { for (int i = 0; i < 10; i++) { shared_p = mi_malloc(1024 * 1024 * 1024); auto t1 = std::thread(heap_thread_free_large_worker); t1.join(); } } static void test_mt_shutdown() { const int threads = 5; std::vector< std::future< std::vector< char* > > > ts; auto fn = [&]() { std::vector< char* > ps; ps.reserve(1000); for (int i = 0; i < 1000; i++) ps.emplace_back(new char[1]); return ps; }; for (int i = 0; i < threads; i++) ts.emplace_back(std::async(std::launch::async, fn)); for (auto& f : ts) for (auto& p : f.get()) delete[] p; std::cout << "done" << std::endl; } // issue #363 using namespace std; void large_alloc(void) { char* a = new char[1ull << 25]; thread th([&] { delete[] a; }); th.join(); } // issue #372 static void fail_aslr() { size_t sz = (4ULL << 40); // 4TiB void* p = malloc(sz); printf("pointer p: %p: area up to %p\n", p, (uint8_t*)p + sz); *(int*)0x5FFFFFFF000 = 0; // should segfault } // issues #414 static void dummy_worker() { void* p = mi_malloc(0); mi_free(p); } static void tsan_numa_test() { auto t1 = std::thread(dummy_worker); dummy_worker(); t1.join(); } // issue #? #include #include #include static void bench_alloc_large(void) { static constexpr int kNumBuffers = 20; static constexpr size_t kMinBufferSize = 5 * 1024 * 1024; static constexpr size_t kMaxBufferSize = 25 * 1024 * 1024; std::unique_ptr buffers[kNumBuffers]; std::random_device rd; std::mt19937 gen(42); //rd()); std::uniform_int_distribution<> size_distribution(kMinBufferSize, kMaxBufferSize); std::uniform_int_distribution<> buf_number_distribution(0, kNumBuffers - 1); static constexpr int kNumIterations = 2000; const auto start = std::chrono::steady_clock::now(); for (int i = 0; i < kNumIterations; ++i) { int buffer_idx = buf_number_distribution(gen); size_t new_size = size_distribution(gen); buffers[buffer_idx] = std::make_unique(new_size); } const auto end = std::chrono::steady_clock::now(); const auto num_ms = std::chrono::duration_cast(end - start).count(); const auto us_per_allocation = std::chrono::duration_cast(end - start).count() / kNumIterations; std::cout << kNumIterations << " allocations Done in " << num_ms << "ms." << std::endl; std::cout << "Avg " << us_per_allocation << " us per allocation" << std::endl; }