/* ---------------------------------------------------------------------------- Copyright (c) 2018,2019 Microsoft Research, Daan Leijen This is free software; you can redistribute it and/or modify it under the terms of the MIT license. -----------------------------------------------------------------------------*/ /* This is a stress test for the allocator, using multiple threads and transferring objects between threads. This is not a typical workload but uses a random linear size distribution. Do not use this test as a benchmark! */ #include #include #include #include #include #include // argument defaults static int THREADS = 8; // more repeatable if THREADS <= #processors static int N = 200; // scaling factor // static int THREADS = 8; // more repeatable if THREADS <= #processors // static int N = 100; // scaling factor #define TRANSFERS (1000) static volatile void* transfer[TRANSFERS]; #if (UINTPTR_MAX != UINT32_MAX) const uintptr_t cookie = 0xbf58476d1ce4e5b9UL; #else const uintptr_t cookie = 0x1ce4e5b9UL; #endif static void* atomic_exchange_ptr(volatile void** p, void* newval); typedef uintptr_t* random_t; static uintptr_t pick(random_t r) { uintptr_t x = *r; #if (UINTPTR_MAX > UINT32_MAX) // by Sebastiano Vigna, see: x ^= x >> 30; x *= 0xbf58476d1ce4e5b9UL; x ^= x >> 27; x *= 0x94d049bb133111ebUL; x ^= x >> 31; #else // by Chris Wellons, see: x ^= x >> 16; x *= 0x7feb352dUL; x ^= x >> 15; x *= 0x846ca68bUL; x ^= x >> 16; #endif *r = x; return x; } static bool chance(size_t perc, random_t r) { return (pick(r) % 100 <= perc); } static void* alloc_items(size_t items, random_t r) { if (chance(1, r)) { if (chance(1,r)) items *= 1000; // 0.01% giant else if (chance(10,r)) items *= 100; // 0.1% huge else items *= 10; // 1% large objects; } if (items==40) items++; // pthreads uses that size for stack increases uintptr_t* p = (uintptr_t*)mi_malloc(items*sizeof(uintptr_t)); if (p != NULL) { for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie; } return p; } static void free_items(void* p) { if (p != NULL) { uintptr_t* q = (uintptr_t*)p; uintptr_t items = (q[0] ^ cookie); for (uintptr_t i = 0; i < items; i++) { if ((q[i]^cookie) != items - i) { fprintf(stderr, "memory corruption at block %p at %zu\n", p, i); abort(); } } } mi_free(p); } static void stress(intptr_t tid) { //bench_start_thread(); uintptr_t r = tid ^ 42; const size_t max_item = 128; // in words const size_t max_item_retained = 10*max_item; size_t allocs = 25*N*(tid%8 + 1); // some threads do more size_t retain = allocs/2; void** data = NULL; size_t data_size = 0; size_t data_top = 0; void** retained = (void**)mi_malloc(retain*sizeof(void*)); size_t retain_top = 0; while (allocs>0 || retain>0) { if (retain == 0 || (chance(50, &r) && allocs > 0)) { // 50%+ alloc allocs--; if (data_top >= data_size) { data_size += 100000; data = (void**)mi_realloc(data, data_size*sizeof(void*)); } data[data_top++] = alloc_items((pick(&r) % max_item) + 1, &r); } else { // 25% retain retained[retain_top++] = alloc_items(10*((pick(&r) % max_item_retained) + 1), &r); retain--; } if (chance(66, &r) && data_top > 0) { // 66% free previous alloc size_t idx = pick(&r) % data_top; free_items(data[idx]); data[idx] = NULL; } if (chance(25, &r) && data_top > 0) { // 25% transfer-swap size_t data_idx = pick(&r) % data_top; size_t transfer_idx = pick(&r) % TRANSFERS; void* p = data[data_idx]; void* q = atomic_exchange_ptr(&transfer[transfer_idx], p); data[data_idx] = q; } } // free everything that is left for (size_t i = 0; i < retain_top; i++) { free_items(retained[i]); } for (size_t i = 0; i < data_top; i++) { free_items(data[i]); } mi_free(retained); mi_free(data); //bench_end_thread(); } static void run_os_threads(size_t nthreads); int main(int argc, char** argv) { if (argc>=2) { char* end; long n = strtol(argv[1], &end, 10); if (n > 0) THREADS = n; } if (argc>=3) { char* end; long n = (strtol(argv[2], &end, 10)); if (n > 0) N = n; } printf("start with %i threads with a %i%% load-per-thread\n", THREADS, N); //int res = mi_reserve_huge_os_pages(4,1); //printf("(reserve huge: %i\n)", res); //bench_start_program(); mi_stats_reset(); memset((void*)transfer, 0, TRANSFERS*sizeof(void*)); run_os_threads(THREADS); for (int i = 0; i < TRANSFERS; i++) { free_items((void*)transfer[i]); } #ifndef NDEBUG mi_collect(false); #endif mi_stats_print(NULL); //bench_end_program(); return 0; } #ifdef _WIN32 #include static DWORD WINAPI thread_entry(LPVOID param) { stress((intptr_t)param); return 0; } static void run_os_threads(size_t nthreads) { DWORD* tids = (DWORD*)malloc(nthreads * sizeof(DWORD)); HANDLE* thandles = (HANDLE*)malloc(nthreads * sizeof(HANDLE)); for (uintptr_t i = 0; i < nthreads; i++) { thandles[i] = CreateThread(0, 4096, &thread_entry, (void*)(i), 0, &tids[i]); } for (size_t i = 0; i < nthreads; i++) { WaitForSingleObject(thandles[i], INFINITE); } for (size_t i = 0; i < nthreads; i++) { CloseHandle(thandles[i]); } free(tids); free(thandles); } static void* atomic_exchange_ptr(volatile void** p, void* newval) { #if (INTPTR_MAX == UINT32_MAX) return (void*)InterlockedExchange((volatile LONG*)p, (LONG)newval); #else return (void*)InterlockedExchange64((volatile LONG64*)p, (LONG64)newval); #endif } #else #include #include static void* thread_entry(void* param) { stress((uintptr_t)param); return NULL; } static void run_os_threads(size_t nthreads) { pthread_t* threads = (pthread_t*)mi_malloc(nthreads*sizeof(pthread_t)); memset(threads, 0, sizeof(pthread_t)*nthreads); //pthread_setconcurrency(nthreads); for (uintptr_t i = 0; i < nthreads; i++) { pthread_create(&threads[i], NULL, &thread_entry, (void*)i); } for (size_t i = 0; i < nthreads; i++) { pthread_join(threads[i], NULL); } } static void* atomic_exchange_ptr(volatile void** p, void* newval) { return atomic_exchange_explicit((volatile _Atomic(void*)*)p, newval, memory_order_acquire); } #endif