improve stress test

This commit is contained in:
daan 2019-11-15 16:28:11 -08:00
parent 8637f113d5
commit fd3ce5dc7d
2 changed files with 59 additions and 31 deletions

View File

@ -149,8 +149,8 @@
</ClCompile> </ClCompile>
</ItemGroup> </ItemGroup>
<ItemGroup> <ItemGroup>
<ProjectReference Include="mimalloc-override.vcxproj"> <ProjectReference Include="mimalloc.vcxproj">
<Project>{abb5eae7-b3e6-432e-b636-333449892ea7}</Project> <Project>{abb5eae7-b3e6-432e-b636-333449892ea6}</Project>
</ProjectReference> </ProjectReference>
</ItemGroup> </ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" /> <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />

View File

@ -6,7 +6,8 @@ terms of the MIT license.
/* This is a stress test for the allocator, using multiple threads and /* This is a stress test for the allocator, using multiple threads and
transferring objects between threads. This is not a typical workload transferring objects between threads. This is not a typical workload
but uses a random linear size distribution. Do not use this test as a benchmark! but uses a random linear size distribution. Timing can also depend on
(random) thread scheduling. Do not use this test as a benchmark!
*/ */
#include <stdio.h> #include <stdio.h>
@ -18,16 +19,31 @@ terms of the MIT license.
// argument defaults // argument defaults
static int THREADS = 32; // more repeatable if THREADS <= #processors static int THREADS = 32; // more repeatable if THREADS <= #processors
static int N = 20; // scaling factor static int SCALE = 12; // scaling factor
static int ITER = 10; // N full iterations re-creating all threads static int ITER = 50; // N full iterations re-creating all threads
// static int THREADS = 8; // more repeatable if THREADS <= #processors // static int THREADS = 8; // more repeatable if THREADS <= #processors
// static int N = 100; // scaling factor // static int SCALE = 100; // scaling factor
static bool allow_large_objects = true; // allow very large objects?
static size_t use_one_size = 0; // use single object size of N uintptr_t?
#ifdef USE_STD_MALLOC
#define custom_malloc(s) malloc(s)
#define custom_realloc(p,s) realloc(p,s)
#define custom_free(p) free(p)
#else
#define custom_malloc(s) mi_malloc(s)
#define custom_realloc(p,s) mi_realloc(p,s)
#define custom_free(p) mi_free(p)
#endif
// transfer pointer between threads
#define TRANSFERS (1000) #define TRANSFERS (1000)
static volatile void* transfer[TRANSFERS]; static volatile void* transfer[TRANSFERS];
#if (UINTPTR_MAX != UINT32_MAX) #if (UINTPTR_MAX != UINT32_MAX)
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL; const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
#else #else
@ -64,10 +80,17 @@ static bool chance(size_t perc, random_t r) {
} }
static void* alloc_items(size_t items, random_t r) { static void* alloc_items(size_t items, random_t r) {
if (chance(1, r)) items *= 100; // 1% huge objects; if (chance(1, r)) {
if (chance(1, r) && allow_large_objects) items *= 1000; // 0.01% giant
else if (chance(10, r) && allow_large_objects) items *= 100; // 0.1% huge
else items *= 10; // 1% large objects;
}
if (items==40) items++; // pthreads uses that size for stack increases if (items==40) items++; // pthreads uses that size for stack increases
uintptr_t* p = (uintptr_t*)mi_malloc(items*sizeof(uintptr_t)); if (use_one_size>0) items = (use_one_size/sizeof(uintptr_t));
for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie; uintptr_t* p = (uintptr_t*)custom_malloc(items*sizeof(uintptr_t));
if (p != NULL) {
for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie;
}
return p; return p;
} }
@ -82,7 +105,7 @@ static void free_items(void* p) {
} }
} }
} }
mi_free(p); custom_free(p);
} }
@ -91,12 +114,12 @@ static void stress(intptr_t tid) {
uintptr_t r = tid ^ 42; uintptr_t r = tid ^ 42;
const size_t max_item = 128; // in words const size_t max_item = 128; // in words
const size_t max_item_retained = 10*max_item; const size_t max_item_retained = 10*max_item;
size_t allocs = 25*N*(tid%8 + 1); // some threads do more size_t allocs = 25*SCALE*(tid%8 + 1); // some threads do more
size_t retain = allocs/2; size_t retain = allocs/2;
void** data = NULL; void** data = NULL;
size_t data_size = 0; size_t data_size = 0;
size_t data_top = 0; size_t data_top = 0;
void** retained = (void**)mi_malloc(retain*sizeof(void*)); void** retained = (void**)custom_malloc(retain*sizeof(void*));
size_t retain_top = 0; size_t retain_top = 0;
while (allocs>0 || retain>0) { while (allocs>0 || retain>0) {
@ -105,7 +128,7 @@ static void stress(intptr_t tid) {
allocs--; allocs--;
if (data_top >= data_size) { if (data_top >= data_size) {
data_size += 100000; data_size += 100000;
data = (void**)mi_realloc(data, data_size*sizeof(void*)); data = (void**)custom_realloc(data, data_size*sizeof(void*));
} }
data[data_top++] = alloc_items((pick(&r) % max_item) + 1, &r); data[data_top++] = alloc_items((pick(&r) % max_item) + 1, &r);
} }
@ -121,7 +144,7 @@ static void stress(intptr_t tid) {
data[idx] = NULL; data[idx] = NULL;
} }
if (chance(25, &r) && data_top > 0) { if (chance(25, &r) && data_top > 0) {
// 25% transfer-swap // 25% exchange a local pointer with the (shared) transfer buffer.
size_t data_idx = pick(&r) % data_top; size_t data_idx = pick(&r) % data_top;
size_t transfer_idx = pick(&r) % TRANSFERS; size_t transfer_idx = pick(&r) % TRANSFERS;
void* p = data[data_idx]; void* p = data[data_idx];
@ -136,8 +159,8 @@ static void stress(intptr_t tid) {
for (size_t i = 0; i < data_top; i++) { for (size_t i = 0; i < data_top; i++) {
free_items(data[i]); free_items(data[i]);
} }
mi_free(retained); custom_free(retained);
mi_free(data); custom_free(data);
//bench_end_thread(); //bench_end_thread();
} }
@ -152,25 +175,29 @@ int main(int argc, char** argv) {
if (argc>=3) { if (argc>=3) {
char* end; char* end;
long n = (strtol(argv[2], &end, 10)); long n = (strtol(argv[2], &end, 10));
if (n > 0) N = n; if (n > 0) SCALE = n;
} }
printf("start with %i threads with a %i%% load-per-thread\n", THREADS, N); printf("start with %i threads with a %i%% load-per-thread\n", THREADS, SCALE);
//int res = mi_reserve_huge_os_pages(4,1); //int res = mi_reserve_huge_os_pages(4,1);
//printf("(reserve huge: %i\n)", res); //printf("(reserve huge: %i\n)", res);
//bench_start_program(); //bench_start_program();
// Run ITER full iterations where half the objects in the transfer buffer survive to the next round.
mi_stats_reset(); mi_stats_reset();
for (int i = 0; i < ITER; i++) { uintptr_t r = 43;
memset((void*)transfer, 0, TRANSFERS * sizeof(void*)); for (int n = 0; n < ITER; n++) {
run_os_threads(THREADS); run_os_threads(THREADS);
for (int i = 0; i < TRANSFERS; i++) { for (int i = 0; i < TRANSFERS; i++) {
free_items((void*)transfer[i]); if (chance(50, &r) || n+1 == ITER) { // free all on last run, otherwise free half of the transfers
void* p = atomic_exchange_ptr(&transfer[i], NULL);
free_items(p);
}
} }
} }
#ifndef NDEBUG
mi_collect(false);
#endif
mi_collect(false);
mi_collect(true);
mi_stats_print(NULL); mi_stats_print(NULL);
//bench_end_program(); //bench_end_program();
return 0; return 0;
@ -187,8 +214,8 @@ static DWORD WINAPI thread_entry(LPVOID param) {
} }
static void run_os_threads(size_t nthreads) { static void run_os_threads(size_t nthreads) {
DWORD* tids = (DWORD*)malloc(nthreads * sizeof(DWORD)); DWORD* tids = (DWORD*)custom_malloc(nthreads * sizeof(DWORD));
HANDLE* thandles = (HANDLE*)malloc(nthreads * sizeof(HANDLE)); HANDLE* thandles = (HANDLE*)custom_malloc(nthreads * sizeof(HANDLE));
for (uintptr_t i = 0; i < nthreads; i++) { for (uintptr_t i = 0; i < nthreads; i++) {
thandles[i] = CreateThread(0, 4096, &thread_entry, (void*)(i), 0, &tids[i]); thandles[i] = CreateThread(0, 4096, &thread_entry, (void*)(i), 0, &tids[i]);
} }
@ -198,8 +225,8 @@ static void run_os_threads(size_t nthreads) {
for (size_t i = 0; i < nthreads; i++) { for (size_t i = 0; i < nthreads; i++) {
CloseHandle(thandles[i]); CloseHandle(thandles[i]);
} }
free(tids); custom_free(tids);
free(thandles); custom_free(thandles);
} }
static void* atomic_exchange_ptr(volatile void** p, void* newval) { static void* atomic_exchange_ptr(volatile void** p, void* newval) {
@ -220,7 +247,7 @@ static void* thread_entry(void* param) {
} }
static void run_os_threads(size_t nthreads) { static void run_os_threads(size_t nthreads) {
pthread_t* threads = (pthread_t*)mi_malloc(nthreads*sizeof(pthread_t)); pthread_t* threads = (pthread_t*)custom_malloc(nthreads*sizeof(pthread_t));
memset(threads, 0, sizeof(pthread_t)*nthreads); memset(threads, 0, sizeof(pthread_t)*nthreads);
//pthread_setconcurrency(nthreads); //pthread_setconcurrency(nthreads);
for (uintptr_t i = 0; i < nthreads; i++) { for (uintptr_t i = 0; i < nthreads; i++) {
@ -229,6 +256,7 @@ static void run_os_threads(size_t nthreads) {
for (size_t i = 0; i < nthreads; i++) { for (size_t i = 0; i < nthreads; i++) {
pthread_join(threads[i], NULL); pthread_join(threads[i], NULL);
} }
custom_free(threads);
} }
static void* atomic_exchange_ptr(volatile void** p, void* newval) { static void* atomic_exchange_ptr(volatile void** p, void* newval) {