merge from dev new atomics
This commit is contained in:
commit
a654732d99
@ -9,63 +9,109 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#define MIMALLOC_ATOMIC_H
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Atomics
|
||||
// Atomics
|
||||
// We need to be portable between C, C++, and MSVC.
|
||||
// ------------------------------------------------------
|
||||
|
||||
// Atomically increment a value; returns the incremented result.
|
||||
static inline uintptr_t mi_atomic_increment(volatile uintptr_t* p);
|
||||
#if defined(_MSC_VER)
|
||||
#define _Atomic(tp) tp
|
||||
#define ATOMIC_VAR_INIT(x) x
|
||||
#elif defined(__cplusplus)
|
||||
#include <atomic>
|
||||
#define _Atomic(tp) std::atomic<tp>
|
||||
#else
|
||||
#include <stdatomic.h>
|
||||
#endif
|
||||
|
||||
// Atomically increment a value; returns the incremented result.
|
||||
static inline uint32_t mi_atomic_increment32(volatile uint32_t* p);
|
||||
#define mi_atomic_cast(tp,x) (volatile _Atomic(tp)*)(x)
|
||||
|
||||
// Atomically decrement a value; returns the decremented result.
|
||||
static inline uintptr_t mi_atomic_decrement(volatile uintptr_t* p);
|
||||
// ------------------------------------------------------
|
||||
// Atomic operations specialized for mimalloc
|
||||
// ------------------------------------------------------
|
||||
|
||||
// Atomically add a 64-bit value; returns the added result.
|
||||
static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add);
|
||||
// Atomically add a 64-bit value; returns the previous value.
|
||||
// Note: not using _Atomic(int64_t) as it is only used for statistics.
|
||||
static inline void mi_atomic_add64(volatile int64_t* p, int64_t add);
|
||||
|
||||
// Atomically subtract a value; returns the subtracted result.
|
||||
static inline uintptr_t mi_atomic_subtract(volatile uintptr_t* p, uintptr_t sub);
|
||||
// Atomically add a value; returns the previous value. Memory ordering is relaxed.
|
||||
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add);
|
||||
|
||||
// Atomically subtract a value; returns the subtracted result.
|
||||
static inline uint32_t mi_atomic_subtract32(volatile uint32_t* p, uint32_t sub);
|
||||
// Atomically compare and exchange a value; returns `true` if successful.
|
||||
// May fail spuriously. Memory ordering as release on success, and relaxed on failure.
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected);
|
||||
|
||||
// Atomically compare and exchange a value; returns `true` if successful.
|
||||
static inline bool mi_atomic_compare_exchange32(volatile uint32_t* p, uint32_t exchange, uint32_t compare);
|
||||
// Memory ordering is acquire-release
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected);
|
||||
|
||||
// Atomically compare and exchange a value; returns `true` if successful.
|
||||
static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t exchange, uintptr_t compare);
|
||||
// Atomically exchange a value. Memory ordering is acquire-release.
|
||||
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange);
|
||||
|
||||
// Atomically exchange a value.
|
||||
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange);
|
||||
// Atomically read a value. Memory ordering is relaxed.
|
||||
static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p);
|
||||
|
||||
// Atomically read a value
|
||||
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p);
|
||||
// Atomically read a value. Memory ordering is acquire.
|
||||
static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p);
|
||||
|
||||
// Atomically write a value
|
||||
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x);
|
||||
|
||||
// Atomically read a pointer
|
||||
static inline void* mi_atomic_read_ptr(volatile void** p) {
|
||||
return (void*)mi_atomic_read( (volatile uintptr_t*)p );
|
||||
}
|
||||
// Atomically write a value. Memory ordering is release.
|
||||
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x);
|
||||
|
||||
// Yield
|
||||
static inline void mi_atomic_yield(void);
|
||||
|
||||
|
||||
|
||||
// Atomically add a value; returns the previous value.
|
||||
static inline uintptr_t mi_atomic_addu(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
|
||||
return (uintptr_t)mi_atomic_add((volatile _Atomic(intptr_t)*)p, (intptr_t)add);
|
||||
}
|
||||
// Atomically subtract a value; returns the previous value.
|
||||
static inline uintptr_t mi_atomic_subu(volatile _Atomic(uintptr_t)* p, uintptr_t sub) {
|
||||
return (uintptr_t)mi_atomic_add((volatile _Atomic(intptr_t)*)p, -((intptr_t)sub));
|
||||
}
|
||||
|
||||
// Atomically increment a value; returns the incremented result.
|
||||
static inline uintptr_t mi_atomic_increment(volatile _Atomic(uintptr_t)* p) {
|
||||
return mi_atomic_addu(p, 1);
|
||||
}
|
||||
|
||||
// Atomically decrement a value; returns the decremented result.
|
||||
static inline uintptr_t mi_atomic_decrement(volatile _Atomic(uintptr_t)* p) {
|
||||
return mi_atomic_subu(p, 1);
|
||||
}
|
||||
|
||||
// Atomically read a pointer; Memory order is relaxed.
|
||||
static inline void* mi_atomic_read_ptr_relaxed(volatile _Atomic(void*) const * p) {
|
||||
return (void*)mi_atomic_read_relaxed((const volatile _Atomic(uintptr_t)*)p);
|
||||
}
|
||||
|
||||
// Atomically read a pointer; Memory order is acquire.
|
||||
static inline void* mi_atomic_read_ptr(volatile _Atomic(void*) const * p) {
|
||||
return (void*)mi_atomic_read((const volatile _Atomic(uintptr_t)*)p);
|
||||
}
|
||||
|
||||
// Atomically write a pointer
|
||||
static inline void mi_atomic_write_ptr(volatile void** p, void* x) {
|
||||
mi_atomic_write((volatile uintptr_t*)p, (uintptr_t)x );
|
||||
static inline void mi_atomic_write_ptr(volatile _Atomic(void*)* p, void* x) {
|
||||
mi_atomic_write((volatile _Atomic(uintptr_t)*)p, (uintptr_t)x );
|
||||
}
|
||||
|
||||
// Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously.
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
static inline bool mi_atomic_cas_ptr_weak(volatile _Atomic(void*)* p, void* desired, void* expected) {
|
||||
return mi_atomic_cas_weak((volatile _Atomic(uintptr_t)*)p, (uintptr_t)desired, (uintptr_t)expected);
|
||||
}
|
||||
|
||||
// Atomically compare and exchange a pointer; returns `true` if successful.
|
||||
static inline bool mi_atomic_compare_exchange_ptr(volatile void** p, void* newp, void* compare) {
|
||||
return mi_atomic_compare_exchange((volatile uintptr_t*)p, (uintptr_t)newp, (uintptr_t)compare);
|
||||
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
|
||||
static inline bool mi_atomic_cas_ptr_strong(volatile _Atomic(void*)* p, void* desired, void* expected) {
|
||||
return mi_atomic_cas_strong((volatile _Atomic(uintptr_t)*)p, (uintptr_t)desired, (uintptr_t)expected);
|
||||
}
|
||||
|
||||
// Atomically exchange a pointer value.
|
||||
static inline void* mi_atomic_exchange_ptr(volatile void** p, void* exchange) {
|
||||
return (void*)mi_atomic_exchange((volatile uintptr_t*)p, (uintptr_t)exchange);
|
||||
static inline void* mi_atomic_exchange_ptr(volatile _Atomic(void*)* p, void* exchange) {
|
||||
return (void*)mi_atomic_exchange((volatile _Atomic(uintptr_t)*)p, (uintptr_t)exchange);
|
||||
}
|
||||
|
||||
static inline intptr_t mi_atomic_iread(volatile intptr_t* p) {
|
||||
@ -76,49 +122,40 @@ static inline intptr_t mi_atomic_iread(volatile intptr_t* p) {
|
||||
#define WIN32_LEAN_AND_MEAN
|
||||
#include <windows.h>
|
||||
#include <intrin.h>
|
||||
#if (MI_INTPTR_SIZE==8)
|
||||
#ifdef _WIN64
|
||||
typedef LONG64 msc_intptr_t;
|
||||
#define RC64(f) f##64
|
||||
#else
|
||||
typedef LONG msc_intptr_t;
|
||||
#define RC64(f) f
|
||||
#endif
|
||||
static inline uintptr_t mi_atomic_increment(volatile uintptr_t* p) {
|
||||
return (uintptr_t)RC64(_InterlockedIncrement)((volatile msc_intptr_t*)p);
|
||||
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add) {
|
||||
return (intptr_t)RC64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
|
||||
}
|
||||
static inline uint32_t mi_atomic_increment32(volatile uint32_t* p) {
|
||||
return (uint32_t)_InterlockedIncrement((volatile LONG*)p);
|
||||
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
|
||||
return (expected == RC64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)expected));
|
||||
}
|
||||
static inline uintptr_t mi_atomic_decrement(volatile uintptr_t* p) {
|
||||
return (uintptr_t)RC64(_InterlockedDecrement)((volatile msc_intptr_t*)p);
|
||||
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
|
||||
return mi_atomic_cas_strong(p,desired,expected);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_subtract(volatile uintptr_t* p, uintptr_t sub) {
|
||||
return (uintptr_t)RC64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, -((msc_intptr_t)sub)) - sub;
|
||||
}
|
||||
static inline uint32_t mi_atomic_subtract32(volatile uint32_t* p, uint32_t sub) {
|
||||
return (uint32_t)_InterlockedExchangeAdd((volatile LONG*)p, -((LONG)sub)) - sub;
|
||||
}
|
||||
static inline bool mi_atomic_compare_exchange32(volatile uint32_t* p, uint32_t exchange, uint32_t compare) {
|
||||
return ((int32_t)compare == _InterlockedCompareExchange((volatile LONG*)p, (LONG)exchange, (LONG)compare));
|
||||
}
|
||||
static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t exchange, uintptr_t compare) {
|
||||
return (compare == RC64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange, (msc_intptr_t)compare));
|
||||
}
|
||||
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange) {
|
||||
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) {
|
||||
return (uintptr_t)RC64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p) {
|
||||
static inline uintptr_t mi_atomic_read(volatile _Atomic(uintptr_t) const* p) {
|
||||
return *p;
|
||||
}
|
||||
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x) {
|
||||
*p = x;
|
||||
static inline uintptr_t mi_atomic_read_relaxed(volatile _Atomic(uintptr_t) const* p) {
|
||||
return mi_atomic_read(p);
|
||||
}
|
||||
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
|
||||
mi_atomic_exchange(p,x);
|
||||
}
|
||||
static inline void mi_atomic_yield(void) {
|
||||
YieldProcessor();
|
||||
}
|
||||
static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add) {
|
||||
#if (MI_INTPTR_SIZE==8)
|
||||
return _InterlockedExchangeAdd64(p, add) + add;
|
||||
static inline void mi_atomic_add64(volatile _Atomic(int64_t)* p, int64_t add) {
|
||||
#ifdef _WIN64
|
||||
mi_atomic_add(p,add);
|
||||
#else
|
||||
int64_t current;
|
||||
int64_t sum;
|
||||
@ -126,62 +163,46 @@ static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add) {
|
||||
current = *p;
|
||||
sum = current + add;
|
||||
} while (_InterlockedCompareExchange64(p, sum, current) != current);
|
||||
return sum;
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
#ifdef __cplusplus
|
||||
#include <atomic>
|
||||
#define MI_USING_STD using namespace std;
|
||||
#define _Atomic(tp) atomic<tp>
|
||||
#else
|
||||
#include <stdatomic.h>
|
||||
#define MI_USING_STD
|
||||
#endif
|
||||
static inline uintptr_t mi_atomic_increment(volatile uintptr_t* p) {
|
||||
static inline void mi_atomic_add64(volatile int64_t* p, int64_t add) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_add_explicit((volatile atomic_uintptr_t*)p, (uintptr_t)1, memory_order_relaxed) + 1;
|
||||
atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed);
|
||||
}
|
||||
static inline uint32_t mi_atomic_increment32(volatile uint32_t* p) {
|
||||
static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_add_explicit((volatile _Atomic(uint32_t)*)p, (uint32_t)1, memory_order_relaxed) + 1;
|
||||
return atomic_fetch_add_explicit(p, add, memory_order_relaxed);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_decrement(volatile uintptr_t* p) {
|
||||
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_sub_explicit((volatile atomic_uintptr_t*)p, (uintptr_t)1, memory_order_relaxed) - 1;
|
||||
return atomic_compare_exchange_weak_explicit(p, &expected, desired, memory_order_release, memory_order_relaxed);
|
||||
}
|
||||
static inline int64_t mi_atomic_add(volatile int64_t* p, int64_t add) {
|
||||
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed) + add;
|
||||
return atomic_compare_exchange_strong_explicit(p, &expected, desired, memory_order_acq_rel, memory_order_relaxed);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_subtract(volatile uintptr_t* p, uintptr_t sub) {
|
||||
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_sub_explicit((volatile atomic_uintptr_t*)p, sub, memory_order_relaxed) - sub;
|
||||
return atomic_exchange_explicit(p, exchange, memory_order_acq_rel);
|
||||
}
|
||||
static inline uint32_t mi_atomic_subtract32(volatile uint32_t* p, uint32_t sub) {
|
||||
static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p) {
|
||||
MI_USING_STD
|
||||
return atomic_fetch_sub_explicit((volatile _Atomic(uint32_t)*)p, sub, memory_order_relaxed) - sub;
|
||||
return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_relaxed);
|
||||
}
|
||||
static inline bool mi_atomic_compare_exchange32(volatile uint32_t* p, uint32_t exchange, uint32_t compare) {
|
||||
static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p) {
|
||||
MI_USING_STD
|
||||
return atomic_compare_exchange_weak_explicit((volatile _Atomic(uint32_t)*)p, &compare, exchange, memory_order_release, memory_order_relaxed);
|
||||
return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_acquire);
|
||||
}
|
||||
static inline bool mi_atomic_compare_exchange(volatile uintptr_t* p, uintptr_t exchange, uintptr_t compare) {
|
||||
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
|
||||
MI_USING_STD
|
||||
return atomic_compare_exchange_weak_explicit((volatile atomic_uintptr_t*)p, &compare, exchange, memory_order_release, memory_order_relaxed);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_exchange(volatile uintptr_t* p, uintptr_t exchange) {
|
||||
MI_USING_STD
|
||||
return atomic_exchange_explicit((volatile atomic_uintptr_t*)p, exchange, memory_order_acquire);
|
||||
}
|
||||
static inline uintptr_t mi_atomic_read(volatile uintptr_t* p) {
|
||||
MI_USING_STD
|
||||
return atomic_load_explicit((volatile atomic_uintptr_t*)p, memory_order_relaxed);
|
||||
}
|
||||
static inline void mi_atomic_write(volatile uintptr_t* p, uintptr_t x) {
|
||||
MI_USING_STD
|
||||
return atomic_store_explicit((volatile atomic_uintptr_t*)p, x, memory_order_relaxed);
|
||||
return atomic_store_explicit(p, x, memory_order_release);
|
||||
}
|
||||
|
||||
#if defined(__cplusplus)
|
||||
|
@ -27,6 +27,7 @@ void _mi_error_message(const char* fmt, ...);
|
||||
void _mi_warning_message(const char* fmt, ...);
|
||||
void _mi_verbose_message(const char* fmt, ...);
|
||||
void _mi_trace_message(const char* fmt, ...);
|
||||
void _mi_options_init(void);
|
||||
|
||||
// "init.c"
|
||||
extern mi_stats_t _mi_stats_main;
|
||||
|
@ -10,6 +10,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
|
||||
#include <stddef.h> // ptrdiff_t
|
||||
#include <stdint.h> // uintptr_t, uint16_t, etc
|
||||
#include <mimalloc-atomic.h> // _Atomic
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Variants
|
||||
@ -177,8 +178,8 @@ typedef struct mi_page_s {
|
||||
size_t used; // number of blocks in use (including blocks in `local_free` and `thread_free`)
|
||||
|
||||
mi_block_t* local_free; // list of deferred free blocks by this thread (migrates to `free`)
|
||||
volatile uintptr_t thread_freed; // at least this number of blocks are in `thread_free`
|
||||
volatile mi_thread_free_t thread_free; // list of deferred free blocks freed by other threads
|
||||
volatile _Atomic(uintptr_t) thread_freed; // at least this number of blocks are in `thread_free`
|
||||
volatile _Atomic(mi_thread_free_t) thread_free; // list of deferred free blocks freed by other threads
|
||||
|
||||
// less accessed info
|
||||
size_t block_size; // size available in each block (always `>0`)
|
||||
@ -208,7 +209,7 @@ typedef enum mi_page_kind_e {
|
||||
typedef struct mi_segment_s {
|
||||
struct mi_segment_s* next;
|
||||
struct mi_segment_s* prev;
|
||||
volatile struct mi_segment_s* abandoned_next;
|
||||
volatile _Atomic(struct mi_segment_s*) abandoned_next;
|
||||
size_t abandoned; // abandoned pages (i.e. the original owning thread stopped) (`abandoned <= used`)
|
||||
size_t used; // count of pages in use (`used <= capacity`)
|
||||
size_t capacity; // count of available pages (`#free + used`)
|
||||
@ -219,7 +220,7 @@ typedef struct mi_segment_s {
|
||||
|
||||
// layout like this to optimize access in `mi_free`
|
||||
size_t page_shift; // `1 << page_shift` == the page sizes == `page->block_size * page->reserved` (unless the first page, then `-segment_info_size`).
|
||||
volatile uintptr_t thread_id; // unique id of the thread owning this segment
|
||||
volatile _Atomic(uintptr_t) thread_id; // unique id of the thread owning this segment
|
||||
mi_page_kind_t page_kind; // kind of pages: small, large, or huge
|
||||
mi_page_t pages[1]; // up to `MI_SMALL_PAGES_PER_SEGMENT` pages
|
||||
} mi_segment_t;
|
||||
@ -255,7 +256,7 @@ struct mi_heap_s {
|
||||
mi_tld_t* tld;
|
||||
mi_page_t* pages_free_direct[MI_SMALL_WSIZE_MAX + 2]; // optimize: array where every entry points a page with possibly free blocks in the corresponding queue for that size.
|
||||
mi_page_queue_t pages[MI_BIN_FULL + 1]; // queue of pages for each size class (or "bin")
|
||||
volatile mi_block_t* thread_delayed_free;
|
||||
volatile _Atomic(mi_block_t*) thread_delayed_free;
|
||||
uintptr_t thread_id; // thread this heap belongs too
|
||||
uintptr_t cookie;
|
||||
uintptr_t random; // random number used for secure allocation
|
||||
|
26
src/alloc.c
26
src/alloc.c
@ -118,22 +118,24 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
|
||||
mi_segment_t* segment = _mi_page_segment(page);
|
||||
if (segment->page_kind==MI_PAGE_HUGE) {
|
||||
// huge page segments are always abandoned and can be freed immediately
|
||||
mi_assert_internal(segment->thread_id==0);
|
||||
mi_assert_internal(segment->abandoned_next==NULL);
|
||||
mi_assert_internal(mi_atomic_read_relaxed(&segment->thread_id)==0);
|
||||
mi_assert_internal(mi_atomic_read_ptr_relaxed(mi_atomic_cast(void*,&segment->abandoned_next))==NULL);
|
||||
// claim it and free
|
||||
mi_block_set_next(page, block, page->free);
|
||||
page->free = block;
|
||||
page->used--;
|
||||
mi_heap_t* heap = mi_get_default_heap();
|
||||
segment->thread_id = heap->thread_id;
|
||||
_mi_segment_page_free(page,true,&heap->tld->segments);
|
||||
// paranoia: if this it the last reference, the cas should always succeed
|
||||
if (mi_atomic_cas_strong(&segment->thread_id,heap->thread_id,0)) {
|
||||
mi_block_set_next(page, block, page->free);
|
||||
page->free = block;
|
||||
page->used--;
|
||||
_mi_segment_page_free(page,true,&heap->tld->segments);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
do {
|
||||
tfree = page->thread_free;
|
||||
use_delayed = (mi_tf_delayed(tfree) == MI_USE_DELAYED_FREE ||
|
||||
(mi_tf_delayed(tfree) == MI_NO_DELAYED_FREE && page->used == page->thread_freed+1)
|
||||
(mi_tf_delayed(tfree) == MI_NO_DELAYED_FREE && page->used == mi_atomic_read_relaxed(&page->thread_freed)+1) // data-race but ok, just optimizes early release of the page
|
||||
);
|
||||
if (mi_unlikely(use_delayed)) {
|
||||
// unlikely: this only happens on the first concurrent free in a page that is in the full list
|
||||
@ -144,7 +146,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
|
||||
mi_block_set_next(page, block, mi_tf_block(tfree));
|
||||
tfreex = mi_tf_set_block(tfree,block);
|
||||
}
|
||||
} while (!mi_atomic_compare_exchange((volatile uintptr_t*)&page->thread_free, tfreex, tfree));
|
||||
} while (!mi_atomic_cas_weak(mi_atomic_cast(uintptr_t,&page->thread_free), tfreex, tfree));
|
||||
|
||||
if (mi_likely(!use_delayed)) {
|
||||
// increment the thread free count and return
|
||||
@ -160,7 +162,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
|
||||
do {
|
||||
dfree = (mi_block_t*)heap->thread_delayed_free;
|
||||
mi_block_set_nextx(heap->cookie,block,dfree);
|
||||
} while (!mi_atomic_compare_exchange_ptr((volatile void**)&heap->thread_delayed_free, block, dfree));
|
||||
} while (!mi_atomic_cas_ptr_weak(mi_atomic_cast(void*,&heap->thread_delayed_free), block, dfree));
|
||||
}
|
||||
|
||||
// and reset the MI_DELAYED_FREEING flag
|
||||
@ -168,7 +170,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
|
||||
tfreex = tfree = page->thread_free;
|
||||
mi_assert_internal(mi_tf_delayed(tfree) == MI_NEVER_DELAYED_FREE || mi_tf_delayed(tfree) == MI_DELAYED_FREEING);
|
||||
if (mi_tf_delayed(tfree) != MI_NEVER_DELAYED_FREE) tfreex = mi_tf_set_delayed(tfree,MI_NO_DELAYED_FREE);
|
||||
} while (!mi_atomic_compare_exchange((volatile uintptr_t*)&page->thread_free, tfreex, tfree));
|
||||
} while (!mi_atomic_cas_weak(mi_atomic_cast(uintptr_t,&page->thread_free), tfreex, tfree));
|
||||
}
|
||||
}
|
||||
|
||||
@ -224,7 +226,7 @@ void mi_free(void* p) mi_attr_noexcept
|
||||
#endif
|
||||
|
||||
const mi_segment_t* const segment = _mi_ptr_segment(p);
|
||||
if (segment == NULL) return; // checks for (p==NULL)
|
||||
if (mi_unlikely(segment == NULL)) return; // checks for (p==NULL)
|
||||
|
||||
#if (MI_DEBUG>0)
|
||||
if (mi_unlikely(!mi_is_in_heap_region(p))) {
|
||||
|
@ -19,7 +19,8 @@ const mi_page_t _mi_page_empty = {
|
||||
0,
|
||||
#endif
|
||||
0, // used
|
||||
NULL, 0, 0,
|
||||
NULL,
|
||||
ATOMIC_VAR_INIT(0), ATOMIC_VAR_INIT(0),
|
||||
0, NULL, NULL, NULL
|
||||
#if (MI_INTPTR_SIZE==8 && MI_SECURE>0) || (MI_INTPTR_SIZE==4 && MI_SECURE==0)
|
||||
, { NULL } // padding
|
||||
@ -81,7 +82,7 @@ const mi_heap_t _mi_heap_empty = {
|
||||
NULL,
|
||||
MI_SMALL_PAGES_EMPTY,
|
||||
MI_PAGE_QUEUES_EMPTY,
|
||||
NULL,
|
||||
ATOMIC_VAR_INIT(NULL),
|
||||
0,
|
||||
0,
|
||||
0,
|
||||
@ -415,6 +416,7 @@ static void mi_allocator_done() {
|
||||
static void mi_process_load(void) {
|
||||
os_preloading = false;
|
||||
atexit(&mi_process_done);
|
||||
_mi_options_init();
|
||||
mi_process_init();
|
||||
//mi_stats_reset();
|
||||
if (mi_redirected) _mi_verbose_message("malloc is redirected.\n");
|
||||
@ -426,7 +428,7 @@ static void mi_process_load(void) {
|
||||
|
||||
if (mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
|
||||
size_t pages = mi_option_get(mi_option_reserve_huge_os_pages);
|
||||
double max_secs = (double)pages / 5.0; // 0.2s per page
|
||||
double max_secs = (double)pages / 2.0; // 0.5s per page (1GiB)
|
||||
mi_reserve_huge_os_pages(pages, max_secs);
|
||||
}
|
||||
}
|
||||
|
38
src/memory.c
38
src/memory.c
@ -69,8 +69,8 @@ void* _mi_os_alloc_aligned(size_t size, size_t alignment, bool commit, mi_os_tld
|
||||
// A region owns a chunk of REGION_SIZE (256MiB) (virtual) memory with
|
||||
// a bit map with one bit per MI_SEGMENT_SIZE (4MiB) block.
|
||||
typedef struct mem_region_s {
|
||||
volatile uintptr_t map; // in-use bit per MI_SEGMENT_SIZE block
|
||||
volatile void* start; // start of virtual memory area
|
||||
volatile _Atomic(uintptr_t) map; // in-use bit per MI_SEGMENT_SIZE block
|
||||
volatile _Atomic(void*) start; // start of virtual memory area
|
||||
} mem_region_t;
|
||||
|
||||
|
||||
@ -78,7 +78,7 @@ typedef struct mem_region_s {
|
||||
// TODO: in the future, maintain a map per NUMA node for numa aware allocation
|
||||
static mem_region_t regions[MI_REGION_MAX];
|
||||
|
||||
static volatile size_t regions_count = 0; // allocated regions
|
||||
static volatile _Atomic(uintptr_t) regions_count; // = 0; // allocated regions
|
||||
|
||||
|
||||
/* ----------------------------------------------------------------------------
|
||||
@ -106,9 +106,9 @@ static size_t mi_good_commit_size(size_t size) {
|
||||
// Return if a pointer points into a region reserved by us.
|
||||
bool mi_is_in_heap_region(const void* p) mi_attr_noexcept {
|
||||
if (p==NULL) return false;
|
||||
size_t count = mi_atomic_read(®ions_count);
|
||||
size_t count = mi_atomic_read_relaxed(®ions_count);
|
||||
for (size_t i = 0; i < count; i++) {
|
||||
uint8_t* start = (uint8_t*)mi_atomic_read_ptr(®ions[i].start);
|
||||
uint8_t* start = (uint8_t*)mi_atomic_read_ptr_relaxed(®ions[i].start);
|
||||
if (start != NULL && (uint8_t*)p >= start && (uint8_t*)p < start + MI_REGION_SIZE) return true;
|
||||
}
|
||||
return false;
|
||||
@ -127,7 +127,7 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
|
||||
{
|
||||
size_t mask = mi_region_block_mask(blocks,bitidx);
|
||||
mi_assert_internal(mask != 0);
|
||||
mi_assert_internal((mask & mi_atomic_read(®ion->map)) == mask);
|
||||
mi_assert_internal((mask & mi_atomic_read_relaxed(®ion->map)) == mask);
|
||||
mi_assert_internal(®ions[idx] == region);
|
||||
|
||||
// ensure the region is reserved
|
||||
@ -139,13 +139,13 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
|
||||
// failure to allocate from the OS! unclaim the blocks and fail
|
||||
size_t map;
|
||||
do {
|
||||
map = mi_atomic_read(®ion->map);
|
||||
} while (!mi_atomic_compare_exchange(®ion->map, map & ~mask, map));
|
||||
map = mi_atomic_read_relaxed(®ion->map);
|
||||
} while (!mi_atomic_cas_weak(®ion->map, map & ~mask, map));
|
||||
return false;
|
||||
}
|
||||
|
||||
// set the newly allocated region
|
||||
if (mi_atomic_compare_exchange_ptr(®ion->start, start, NULL)) {
|
||||
if (mi_atomic_cas_ptr_strong(®ion->start, start, NULL)) {
|
||||
// update the region count
|
||||
mi_atomic_increment(®ions_count);
|
||||
}
|
||||
@ -156,7 +156,7 @@ static bool mi_region_commit_blocks(mem_region_t* region, size_t idx, size_t bit
|
||||
for(size_t i = 1; i <= 4 && idx + i < MI_REGION_MAX; i++) {
|
||||
void* s = mi_atomic_read_ptr(®ions[idx+i].start);
|
||||
if (s == NULL) { // quick test
|
||||
if (mi_atomic_compare_exchange_ptr(®ions[idx+i].start, start, s)) {
|
||||
if (mi_atomic_cas_ptr_strong(®ions[idx+i].start, start, NULL)) {
|
||||
start = NULL;
|
||||
break;
|
||||
}
|
||||
@ -245,7 +245,7 @@ static bool mi_region_alloc_blocks(mem_region_t* region, size_t idx, size_t bloc
|
||||
mi_assert_internal((m >> bitidx) == mask); // no overflow?
|
||||
uintptr_t newmap = map | m;
|
||||
mi_assert_internal((newmap^map) >> bitidx == mask);
|
||||
if (!mi_atomic_compare_exchange(®ion->map, newmap, map)) {
|
||||
if (!mi_atomic_cas_weak(®ion->map, newmap, map)) {
|
||||
// no success, another thread claimed concurrently.. keep going
|
||||
map = mi_atomic_read(®ion->map);
|
||||
continue;
|
||||
@ -281,7 +281,7 @@ static bool mi_region_try_alloc_blocks(size_t idx, size_t blocks, size_t size, b
|
||||
// check if there are available blocks in the region..
|
||||
mi_assert_internal(idx < MI_REGION_MAX);
|
||||
mem_region_t* region = ®ions[idx];
|
||||
uintptr_t m = mi_atomic_read(®ion->map);
|
||||
uintptr_t m = mi_atomic_read_relaxed(®ion->map);
|
||||
if (m != MI_REGION_MAP_FULL) { // some bits are zero
|
||||
return mi_region_alloc_blocks(region, idx, blocks, size, commit, p, id, tld);
|
||||
}
|
||||
@ -376,7 +376,7 @@ void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats) {
|
||||
size_t mask = mi_region_block_mask(blocks, bitidx);
|
||||
mi_assert_internal(idx < MI_REGION_MAX); if (idx >= MI_REGION_MAX) return; // or `abort`?
|
||||
mem_region_t* region = ®ions[idx];
|
||||
mi_assert_internal((mi_atomic_read(®ion->map) & mask) == mask ); // claimed?
|
||||
mi_assert_internal((mi_atomic_read_relaxed(®ion->map) & mask) == mask ); // claimed?
|
||||
void* start = mi_atomic_read_ptr(®ion->start);
|
||||
mi_assert_internal(start != NULL);
|
||||
void* blocks_start = (uint8_t*)start + (bitidx * MI_SEGMENT_SIZE);
|
||||
@ -405,9 +405,9 @@ void _mi_mem_free(void* p, size_t size, size_t id, mi_stats_t* stats) {
|
||||
uintptr_t map;
|
||||
uintptr_t newmap;
|
||||
do {
|
||||
map = mi_atomic_read(®ion->map);
|
||||
map = mi_atomic_read_relaxed(®ion->map);
|
||||
newmap = map & ~mask;
|
||||
} while (!mi_atomic_compare_exchange(®ion->map, newmap, map));
|
||||
} while (!mi_atomic_cas_weak(®ion->map, newmap, map));
|
||||
}
|
||||
}
|
||||
|
||||
@ -419,17 +419,17 @@ void _mi_mem_collect(mi_stats_t* stats) {
|
||||
// free every region that has no segments in use.
|
||||
for (size_t i = 0; i < regions_count; i++) {
|
||||
mem_region_t* region = ®ions[i];
|
||||
if (mi_atomic_read(®ion->map) == 0 && region->start != NULL) {
|
||||
if (mi_atomic_read_relaxed(®ion->map) == 0 && region->start != NULL) {
|
||||
// if no segments used, try to claim the whole region
|
||||
uintptr_t m;
|
||||
do {
|
||||
m = mi_atomic_read(®ion->map);
|
||||
} while(m == 0 && !mi_atomic_compare_exchange(®ion->map, ~((uintptr_t)0), 0 ));
|
||||
m = mi_atomic_read_relaxed(®ion->map);
|
||||
} while(m == 0 && !mi_atomic_cas_weak(®ion->map, ~((uintptr_t)0), 0 ));
|
||||
if (m == 0) {
|
||||
// on success, free the whole region
|
||||
if (region->start != NULL) _mi_os_free((void*)region->start, MI_REGION_SIZE, stats);
|
||||
// and release
|
||||
region->start = 0;
|
||||
mi_atomic_write_ptr(®ion->start,NULL);
|
||||
mi_atomic_write(®ion->map,0);
|
||||
}
|
||||
}
|
||||
|
@ -74,6 +74,13 @@ static mi_option_desc_t options[_mi_option_last] =
|
||||
|
||||
static void mi_option_init(mi_option_desc_t* desc);
|
||||
|
||||
void _mi_options_init(void) {
|
||||
// called on process load
|
||||
for(int i = 0; i < _mi_option_last; i++ ) {
|
||||
mi_option_get((mi_option_t)i); // initialize
|
||||
}
|
||||
}
|
||||
|
||||
long mi_option_get(mi_option_t option) {
|
||||
mi_assert(option >= 0 && option < _mi_option_last);
|
||||
mi_option_desc_t* desc = &options[option];
|
||||
@ -128,7 +135,7 @@ void mi_option_disable(mi_option_t option) {
|
||||
// Messages
|
||||
// --------------------------------------------------------
|
||||
#define MAX_ERROR_COUNT (10)
|
||||
static uintptr_t error_count = 0; // when MAX_ERROR_COUNT stop emitting errors and warnings
|
||||
static volatile _Atomic(uintptr_t) error_count; // = 0; // when MAX_ERROR_COUNT stop emitting errors and warnings
|
||||
|
||||
// When overriding malloc, we may recurse into mi_vfprintf if an allocation
|
||||
// inside the C runtime causes another message.
|
||||
@ -235,7 +242,7 @@ static void mi_strlcat(char* dest, const char* src, size_t dest_size) {
|
||||
#include <windows.h>
|
||||
static bool mi_getenv(const char* name, char* result, size_t result_size) {
|
||||
result[0] = 0;
|
||||
size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size);
|
||||
size_t len = GetEnvironmentVariableA(name, result, (DWORD)result_size);
|
||||
return (len > 0 && len < result_size);
|
||||
}
|
||||
#else
|
||||
|
65
src/os.c
65
src/os.c
@ -222,15 +222,15 @@ static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment
|
||||
}
|
||||
#endif
|
||||
#if (MI_INTPTR_SIZE >= 8)
|
||||
// on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations
|
||||
static volatile intptr_t aligned_base = ((intptr_t)4 << 40); // starting at 4TiB
|
||||
if (addr == NULL && try_alignment > 0 &&
|
||||
// on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations
|
||||
static volatile _Atomic(intptr_t) aligned_base = ATOMIC_VAR_INIT((intptr_t)4 << 40); // starting at 4TiB
|
||||
if (addr == NULL && try_alignment > 0 &&
|
||||
try_alignment <= MI_SEGMENT_SIZE && (size%MI_SEGMENT_SIZE) == 0)
|
||||
{
|
||||
intptr_t hint = mi_atomic_add(&aligned_base, size) - size;
|
||||
if (hint%try_alignment == 0) {
|
||||
return VirtualAlloc((void*)hint, size, flags, PAGE_READWRITE);
|
||||
}
|
||||
intptr_t hint = mi_atomic_add(&aligned_base, size);
|
||||
if (hint%try_alignment == 0) {
|
||||
return VirtualAlloc((void*)hint, size, flags, PAGE_READWRITE);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if defined(MEM_EXTENDED_PARAMETER_TYPE_BITS)
|
||||
@ -248,14 +248,14 @@ static void* mi_win_virtual_allocx(void* addr, size_t size, size_t try_alignment
|
||||
}
|
||||
|
||||
static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment, DWORD flags, bool large_only) {
|
||||
static volatile uintptr_t large_page_try_ok = 0;
|
||||
static volatile _Atomic(uintptr_t) large_page_try_ok; // = 0;
|
||||
void* p = NULL;
|
||||
if (large_only || use_large_os_page(size, try_alignment)) {
|
||||
uintptr_t try_ok = mi_atomic_read(&large_page_try_ok);
|
||||
if (!large_only && try_ok > 0) {
|
||||
// if a large page allocation fails, it seems the calls to VirtualAlloc get very expensive.
|
||||
// therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times.
|
||||
mi_atomic_compare_exchange(&large_page_try_ok, try_ok - 1, try_ok);
|
||||
mi_atomic_cas_weak(&large_page_try_ok, try_ok - 1, try_ok);
|
||||
}
|
||||
else {
|
||||
// large OS pages must always reserve and commit.
|
||||
@ -295,9 +295,9 @@ static void* mi_unix_mmapx(void* addr, size_t size, size_t try_alignment, int pr
|
||||
void* p = NULL;
|
||||
#if (MI_INTPTR_SIZE >= 8) && !defined(MAP_ALIGNED)
|
||||
// on 64-bit systems, use the virtual address area after 4TiB for 4MiB aligned allocations
|
||||
static volatile intptr_t aligned_base = ((intptr_t)4 << 40); // starting at 4TiB
|
||||
static volatile _Atomic(intptr_t) aligned_base = ATOMIC_VAR_INIT((intptr_t)1 << 42); // starting at 4TiB
|
||||
if (addr==NULL && try_alignment <= MI_SEGMENT_SIZE && (size%MI_SEGMENT_SIZE)==0) {
|
||||
intptr_t hint = mi_atomic_add(&aligned_base,size) - size;
|
||||
intptr_t hint = mi_atomic_add(&aligned_base,size);
|
||||
if (hint%try_alignment == 0) {
|
||||
p = mmap((void*)hint,size,protect_flags,flags,fd,0);
|
||||
if (p==MAP_FAILED) p = NULL; // fall back to regular mmap
|
||||
@ -334,14 +334,14 @@ static void* mi_unix_mmap(void* addr, size_t size, size_t try_alignment, int pro
|
||||
fd = VM_MAKE_TAG(100);
|
||||
#endif
|
||||
if (large_only || use_large_os_page(size, try_alignment)) {
|
||||
static volatile uintptr_t large_page_try_ok = 0;
|
||||
static volatile _Atomic(uintptr_t) large_page_try_ok; // = 0;
|
||||
uintptr_t try_ok = mi_atomic_read(&large_page_try_ok);
|
||||
if (!large_only && try_ok > 0) {
|
||||
// If the OS is not configured for large OS pages, or the user does not have
|
||||
// enough permission, the `mmap` will always fail (but it might also fail for other reasons).
|
||||
// Therefore, once a large page allocation failed, we don't try again for `large_page_try_ok` times
|
||||
// to avoid too many failing calls to mmap.
|
||||
mi_atomic_compare_exchange(&large_page_try_ok, try_ok - 1, try_ok);
|
||||
mi_atomic_cas_weak(&large_page_try_ok, try_ok - 1, try_ok);
|
||||
}
|
||||
else {
|
||||
int lflags = flags;
|
||||
@ -728,17 +728,17 @@ bool _mi_os_shrink(void* p, size_t oldsize, size_t newsize, mi_stats_t* stats) {
|
||||
#define MI_HUGE_OS_PAGE_SIZE ((size_t)1 << 30) // 1GiB
|
||||
|
||||
typedef struct mi_huge_info_s {
|
||||
uint8_t* start;
|
||||
ptrdiff_t reserved;
|
||||
volatile ptrdiff_t used;
|
||||
volatile _Atomic(void*) start;
|
||||
volatile _Atomic(size_t) reserved;
|
||||
volatile _Atomic(size_t) used;
|
||||
} mi_huge_info_t;
|
||||
|
||||
static mi_huge_info_t os_huge_reserved = { NULL, 0, 0 };
|
||||
static mi_huge_info_t os_huge_reserved = { NULL, 0, ATOMIC_VAR_INIT(0) };
|
||||
|
||||
static bool mi_os_is_huge_reserved(void* p) {
|
||||
return (os_huge_reserved.start != NULL &&
|
||||
(uint8_t*)p >= os_huge_reserved.start &&
|
||||
(uint8_t*)p < os_huge_reserved.start + os_huge_reserved.reserved);
|
||||
return (mi_atomic_read_ptr(&os_huge_reserved.start) != NULL &&
|
||||
p >= mi_atomic_read_ptr(&os_huge_reserved.start) &&
|
||||
(uint8_t*)p < (uint8_t*)mi_atomic_read_ptr(&os_huge_reserved.start) + mi_atomic_read(&os_huge_reserved.reserved));
|
||||
}
|
||||
|
||||
static void* mi_os_alloc_from_huge_reserved(size_t size, size_t try_alignment, bool commit)
|
||||
@ -747,23 +747,23 @@ static void* mi_os_alloc_from_huge_reserved(size_t size, size_t try_alignment, b
|
||||
if (size < MI_SEGMENT_SIZE || (size % MI_SEGMENT_SIZE) != 0) return NULL;
|
||||
if (try_alignment > MI_SEGMENT_SIZE) return NULL;
|
||||
if (!commit) return NULL;
|
||||
if (os_huge_reserved.start==NULL) return NULL;
|
||||
if (mi_atomic_iread(&os_huge_reserved.used) >= os_huge_reserved.reserved) return NULL; // already full
|
||||
if (mi_atomic_read_ptr(&os_huge_reserved.start)==NULL) return NULL;
|
||||
if (mi_atomic_read(&os_huge_reserved.used) >= mi_atomic_read(&os_huge_reserved.reserved)) return NULL; // already full
|
||||
|
||||
// always aligned
|
||||
mi_assert_internal( os_huge_reserved.used % MI_SEGMENT_SIZE == 0 );
|
||||
mi_assert_internal( (uintptr_t)os_huge_reserved.start % MI_SEGMENT_SIZE == 0 );
|
||||
mi_assert_internal(mi_atomic_read(&os_huge_reserved.used) % MI_SEGMENT_SIZE == 0 );
|
||||
mi_assert_internal( (uintptr_t)mi_atomic_read_ptr(&os_huge_reserved.start) % MI_SEGMENT_SIZE == 0 );
|
||||
|
||||
// try to reserve space
|
||||
ptrdiff_t next = mi_atomic_add( &os_huge_reserved.used, (ptrdiff_t)size );
|
||||
if (next > os_huge_reserved.reserved) {
|
||||
size_t base = mi_atomic_addu( &os_huge_reserved.used, size );
|
||||
if ((base + size) > os_huge_reserved.reserved) {
|
||||
// "free" our over-allocation
|
||||
mi_atomic_add( &os_huge_reserved.used, -((ptrdiff_t)size) );
|
||||
mi_atomic_subu( &os_huge_reserved.used, size);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// success!
|
||||
uint8_t* p = os_huge_reserved.start + next - (ptrdiff_t)size;
|
||||
uint8_t* p = (uint8_t*)mi_atomic_read_ptr(&os_huge_reserved.start) + base;
|
||||
mi_assert_internal( (uintptr_t)p % MI_SEGMENT_SIZE == 0 );
|
||||
return p;
|
||||
}
|
||||
@ -789,7 +789,7 @@ int mi_reserve_huge_os_pages( size_t pages, double max_secs ) mi_attr_noexcept
|
||||
{
|
||||
if (max_secs==0) return -1; // timeout
|
||||
if (pages==0) return 0; // ok
|
||||
if (os_huge_reserved.start != NULL) return -2; // already reserved
|
||||
if (!mi_atomic_cas_ptr_strong(&os_huge_reserved.start,(void*)1,NULL)) return -2; // already reserved
|
||||
|
||||
// Allocate one page at the time but try to place them contiguously
|
||||
// We allocate one page at the time to be able to abort if it takes too long
|
||||
@ -825,9 +825,12 @@ int mi_reserve_huge_os_pages( size_t pages, double max_secs ) mi_attr_noexcept
|
||||
}
|
||||
// success, record it
|
||||
if (page==0) {
|
||||
os_huge_reserved.start = addr;
|
||||
mi_atomic_write_ptr(&os_huge_reserved.start, addr);
|
||||
mi_atomic_write(&os_huge_reserved.reserved, MI_HUGE_OS_PAGE_SIZE);
|
||||
}
|
||||
else {
|
||||
mi_atomic_addu(&os_huge_reserved.reserved,MI_HUGE_OS_PAGE_SIZE);
|
||||
}
|
||||
os_huge_reserved.reserved += MI_HUGE_OS_PAGE_SIZE;
|
||||
_mi_stat_increase(&_mi_stats_main.committed, MI_HUGE_OS_PAGE_SIZE);
|
||||
_mi_stat_increase(&_mi_stats_main.reserved, MI_HUGE_OS_PAGE_SIZE);
|
||||
|
||||
|
13
src/page.c
13
src/page.c
@ -49,11 +49,12 @@ static size_t mi_page_list_count(mi_page_t* page, mi_block_t* head) {
|
||||
return count;
|
||||
}
|
||||
|
||||
/*
|
||||
// Start of the page available memory
|
||||
static inline uint8_t* mi_page_area(const mi_page_t* page) {
|
||||
return _mi_page_start(_mi_page_segment(page), page, NULL);
|
||||
}
|
||||
|
||||
*/
|
||||
|
||||
static bool mi_page_list_is_valid(mi_page_t* page, mi_block_t* p) {
|
||||
size_t psize;
|
||||
@ -126,7 +127,7 @@ void _mi_page_use_delayed_free(mi_page_t* page, mi_delayed_t delay ) {
|
||||
}
|
||||
}
|
||||
while((mi_tf_delayed(tfreex) != mi_tf_delayed(tfree)) && // avoid atomic operation if already equal
|
||||
!mi_atomic_compare_exchange((volatile uintptr_t*)&page->thread_free, tfreex, tfree));
|
||||
!mi_atomic_cas_weak(mi_atomic_cast(uintptr_t,&page->thread_free), tfreex, tfree));
|
||||
}
|
||||
|
||||
|
||||
@ -147,7 +148,7 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
|
||||
tfree = page->thread_free;
|
||||
head = mi_tf_block(tfree);
|
||||
tfreex = mi_tf_set_block(tfree,NULL);
|
||||
} while (!mi_atomic_compare_exchange((volatile uintptr_t*)&page->thread_free, tfreex, tfree));
|
||||
} while (!mi_atomic_cas_weak(mi_atomic_cast(uintptr_t,&page->thread_free), tfreex, tfree));
|
||||
|
||||
// return if the list is empty
|
||||
if (head == NULL) return;
|
||||
@ -165,7 +166,7 @@ static void _mi_page_thread_free_collect(mi_page_t* page)
|
||||
page->local_free = head;
|
||||
|
||||
// update counts now
|
||||
mi_atomic_subtract(&page->thread_freed, count);
|
||||
mi_atomic_subu(&page->thread_freed, count);
|
||||
page->used -= count;
|
||||
}
|
||||
|
||||
@ -261,7 +262,7 @@ void _mi_heap_delayed_free(mi_heap_t* heap) {
|
||||
mi_block_t* block;
|
||||
do {
|
||||
block = (mi_block_t*)heap->thread_delayed_free;
|
||||
} while (block != NULL && !mi_atomic_compare_exchange_ptr((volatile void**)&heap->thread_delayed_free, NULL, block));
|
||||
} while (block != NULL && !mi_atomic_cas_ptr_weak(mi_atomic_cast(void*,&heap->thread_delayed_free), NULL, block));
|
||||
|
||||
// and free them all
|
||||
while(block != NULL) {
|
||||
@ -274,7 +275,7 @@ void _mi_heap_delayed_free(mi_heap_t* heap) {
|
||||
do {
|
||||
dfree = (mi_block_t*)heap->thread_delayed_free;
|
||||
mi_block_set_nextx(heap->cookie, block, dfree);
|
||||
} while (!mi_atomic_compare_exchange_ptr((volatile void**)&heap->thread_delayed_free, block, dfree));
|
||||
} while (!mi_atomic_cas_ptr_weak(mi_atomic_cast(void*,&heap->thread_delayed_free), block, dfree));
|
||||
|
||||
}
|
||||
block = next;
|
||||
|
@ -542,8 +542,8 @@ void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
|
||||
// live blocks (reached through other threads). Such segments
|
||||
// are "abandoned" and will be reclaimed by other threads to
|
||||
// reuse their pages and/or free them eventually
|
||||
static volatile mi_segment_t* abandoned = NULL;
|
||||
static volatile uintptr_t abandoned_count = 0;
|
||||
static volatile _Atomic(mi_segment_t*) abandoned; // = NULL;
|
||||
static volatile _Atomic(uintptr_t) abandoned_count; // = 0;
|
||||
|
||||
static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
|
||||
mi_assert_internal(segment->used == segment->abandoned);
|
||||
@ -561,9 +561,9 @@ static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
|
||||
segment->thread_id = 0;
|
||||
mi_segment_t* next;
|
||||
do {
|
||||
next = (mi_segment_t*)abandoned;
|
||||
mi_atomic_write_ptr((volatile void**)&segment->abandoned_next, next);
|
||||
} while (!mi_atomic_compare_exchange_ptr((volatile void**)&abandoned, segment, next));
|
||||
next = (mi_segment_t*)mi_atomic_read_ptr_relaxed(mi_atomic_cast(void*,&abandoned));
|
||||
mi_atomic_write_ptr(mi_atomic_cast(void*,&segment->abandoned_next), next);
|
||||
} while (!mi_atomic_cas_ptr_weak(mi_atomic_cast(void*,&abandoned), segment, next));
|
||||
mi_atomic_increment(&abandoned_count);
|
||||
}
|
||||
|
||||
@ -597,7 +597,7 @@ bool _mi_segment_try_reclaim_abandoned( mi_heap_t* heap, bool try_all, mi_segmen
|
||||
mi_segment_t* segment;
|
||||
do {
|
||||
segment = (mi_segment_t*)abandoned;
|
||||
} while(segment != NULL && !mi_atomic_compare_exchange_ptr((volatile void**)&abandoned, (mi_segment_t*)segment->abandoned_next, segment));
|
||||
} while(segment != NULL && !mi_atomic_cas_ptr_weak(mi_atomic_cast(void*,&abandoned), (mi_segment_t*)segment->abandoned_next, segment));
|
||||
if (segment==NULL) break; // stop early if no more segments available
|
||||
|
||||
// got it.
|
||||
|
24
src/stats.c
24
src/stats.c
@ -38,13 +38,13 @@ static void mi_stat_update(mi_stat_count_t* stat, int64_t amount) {
|
||||
if (mi_is_in_main(stat))
|
||||
{
|
||||
// add atomically (for abandoned pages)
|
||||
int64_t current = mi_atomic_add(&stat->current,amount);
|
||||
if (current > stat->peak) stat->peak = stat->current; // racing.. it's ok
|
||||
mi_atomic_add64(&stat->current,amount);
|
||||
if (stat->current > stat->peak) stat->peak = stat->current; // racing.. it's ok
|
||||
if (amount > 0) {
|
||||
mi_atomic_add(&stat->allocated,amount);
|
||||
mi_atomic_add64(&stat->allocated,amount);
|
||||
}
|
||||
else {
|
||||
mi_atomic_add(&stat->freed, -amount);
|
||||
mi_atomic_add64(&stat->freed, -amount);
|
||||
}
|
||||
}
|
||||
else {
|
||||
@ -62,8 +62,8 @@ static void mi_stat_update(mi_stat_count_t* stat, int64_t amount) {
|
||||
|
||||
void _mi_stat_counter_increase(mi_stat_counter_t* stat, size_t amount) {
|
||||
if (mi_is_in_main(stat)) {
|
||||
mi_atomic_add( &stat->count, 1 );
|
||||
mi_atomic_add( &stat->total, (int64_t)amount );
|
||||
mi_atomic_add64( &stat->count, 1 );
|
||||
mi_atomic_add64( &stat->total, (int64_t)amount );
|
||||
}
|
||||
else {
|
||||
stat->count++;
|
||||
@ -82,16 +82,16 @@ void _mi_stat_decrease(mi_stat_count_t* stat, size_t amount) {
|
||||
// must be thread safe as it is called from stats_merge
|
||||
static void mi_stat_add(mi_stat_count_t* stat, const mi_stat_count_t* src, int64_t unit) {
|
||||
if (stat==src) return;
|
||||
mi_atomic_add( &stat->allocated, src->allocated * unit);
|
||||
mi_atomic_add( &stat->current, src->current * unit);
|
||||
mi_atomic_add( &stat->freed, src->freed * unit);
|
||||
mi_atomic_add( &stat->peak, src->peak * unit);
|
||||
mi_atomic_add64( &stat->allocated, src->allocated * unit);
|
||||
mi_atomic_add64( &stat->current, src->current * unit);
|
||||
mi_atomic_add64( &stat->freed, src->freed * unit);
|
||||
mi_atomic_add64( &stat->peak, src->peak * unit);
|
||||
}
|
||||
|
||||
static void mi_stat_counter_add(mi_stat_counter_t* stat, const mi_stat_counter_t* src, int64_t unit) {
|
||||
if (stat==src) return;
|
||||
mi_atomic_add( &stat->total, src->total * unit);
|
||||
mi_atomic_add( &stat->count, src->count * unit);
|
||||
mi_atomic_add64( &stat->total, src->total * unit);
|
||||
mi_atomic_add64( &stat->count, src->count * unit);
|
||||
}
|
||||
|
||||
// must be thread safe as it is called from stats_merge
|
||||
|
Loading…
Reference in New Issue
Block a user