Merge branch 'dev-slice' of https://github.com/microsoft/mimalloc into dev-slice

This commit is contained in:
Daan 2022-02-14 16:16:30 -08:00
commit a1310047c4
2 changed files with 210 additions and 182 deletions

View File

@ -466,28 +466,35 @@ static void mi_segment_commit_mask(mi_segment_t* segment, bool conservative, uin
mi_assert_internal(segment->kind != MI_SEGMENT_HUGE);
mi_commit_mask_create_empty(cm);
if (size == 0 || size > MI_SEGMENT_SIZE || segment->kind == MI_SEGMENT_HUGE) return;
const size_t segstart = mi_segment_info_size(segment);
const size_t segsize = mi_segment_size(segment);
if (p >= (uint8_t*)segment + segsize) return;
size_t diff = (p - (uint8_t*)segment);
mi_assert_internal(diff + size <= segsize);
size_t pstart = (p - (uint8_t*)segment);
mi_assert_internal(pstart + size <= segsize);
size_t start;
size_t end;
if (conservative) {
// decommit conservative
start = _mi_align_up(diff, MI_COMMIT_SIZE);
end = _mi_align_down(diff + size, MI_COMMIT_SIZE);
start = _mi_align_up(pstart, MI_COMMIT_SIZE);
end = _mi_align_down(pstart + size, MI_COMMIT_SIZE);
mi_assert_internal(start >= segstart);
mi_assert_internal(end <= segsize);
}
else {
// commit liberal
start = _mi_align_down(diff, MI_COMMIT_SIZE);
end = _mi_align_up(diff + size, MI_MINIMAL_COMMIT_SIZE);
start = _mi_align_down(pstart, MI_MINIMAL_COMMIT_SIZE);
end = _mi_align_up(pstart + size, MI_MINIMAL_COMMIT_SIZE);
}
if (pstart >= segstart && start < segstart) { // note: the mask is also calculated for an initial commit of the info area
start = segstart;
}
if (end > segsize) {
end = segsize;
}
mi_assert_internal(start <= pstart && (pstart + size) <= end);
mi_assert_internal(start % MI_COMMIT_SIZE==0 && end % MI_COMMIT_SIZE == 0);
*start_p = (uint8_t*)segment + start;
*full_size = (end > start ? end - start : 0);
@ -504,14 +511,19 @@ static void mi_segment_commit_mask(mi_segment_t* segment, bool conservative, uin
mi_commit_mask_create(bitidx, bitcount, cm);
}
#define MI_COMMIT_SIZE_BATCH MiB
static bool mi_segment_commitx(mi_segment_t* segment, bool commit, uint8_t* p, size_t size, mi_stats_t* stats) {
mi_assert_internal(mi_commit_mask_all_set(&segment->commit_mask, &segment->decommit_mask));
//if (commit && size < MI_COMMIT_SIZE_BATCH && p + MI_COMMIT_SIZE_BATCH <= mi_segment_end(segment)) {
// size = MI_COMMIT_SIZE_BATCH;
// }
// try to commit in at least MI_MINIMAL_COMMIT_SIZE sizes.
/*
if (commit && size > 0) {
const size_t csize = _mi_align_up(size, MI_MINIMAL_COMMIT_SIZE);
if (p + csize <= mi_segment_end(segment)) {
size = csize;
}
}
*/
// commit liberal, but decommit conservative
uint8_t* start = NULL;
size_t full_size = 0;
@ -569,13 +581,13 @@ static void mi_segment_perhaps_decommit(mi_segment_t* segment, uint8_t* p, size_
if (mi_commit_mask_is_empty(&mask) || full_size==0) return;
// update delayed commit
mi_assert_internal(segment->decommit_expire > 0 || mi_commit_mask_is_empty(&segment->decommit_mask));
mi_commit_mask_t cmask;
mi_commit_mask_create_intersect(&segment->commit_mask, &mask, &cmask); // only decommit what is committed; span_free may try to decommit more
mi_commit_mask_set(&segment->decommit_mask, &cmask);
mi_msecs_t now = _mi_clock_now();
if (segment->decommit_expire == 0) {
// no previous decommits, initialize now
mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
segment->decommit_expire = now + mi_option_get(mi_option_decommit_delay);
}
else if (segment->decommit_expire <= now) {
@ -609,7 +621,8 @@ static void mi_segment_delayed_decommit(mi_segment_t* segment, bool force, mi_st
mi_segment_commitx(segment, false, p, size, stats);
}
}
mi_commit_mask_foreach_end()
mi_commit_mask_foreach_end()
mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
}
@ -749,7 +762,8 @@ static mi_page_t* mi_segment_span_allocate(mi_segment_t* segment, size_t slice_i
}
// and also for the last one (if not set already) (the last one is needed for coalescing)
mi_slice_t* last = &segment->slices[slice_index + slice_count - 1];
// note: the cast is needed for ubsan since the index can be larger than MI_SLICES_PER_SEGMENT for huge allocations (see #543)
mi_slice_t* last = &((mi_slice_t*)segment->slices)[slice_index + slice_count - 1];
if (last < mi_segment_slices_end(segment) && last >= slice) {
last->slice_offset = (uint32_t)(sizeof(mi_slice_t)*(slice_count-1));
last->slice_count = 0;
@ -893,6 +907,7 @@ static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_
mi_assert_internal(mi_commit_mask_is_empty(&decommit_mask));
segment->decommit_expire = 0;
mi_commit_mask_create_empty( &segment->decommit_mask );
mi_assert_internal(mi_commit_mask_is_empty(&segment->decommit_mask));
}
}

View File

@ -8,172 +8,6 @@
#include <mimalloc-override.h> // redefines malloc etc.
#include <stdint.h>
#include <stdbool.h>
#define MI_INTPTR_SIZE 8
#define MI_LARGE_WSIZE_MAX (4*1024*1024 / MI_INTPTR_SIZE)
#define MI_BIN_HUGE 100
//#define MI_ALIGN2W
// Bit scan reverse: return the index of the highest bit.
static inline uint8_t mi_bsr32(uint32_t x);
#if defined(_MSC_VER)
#include <windows.h>
#include <intrin.h>
static inline uint8_t mi_bsr32(uint32_t x) {
uint32_t idx;
_BitScanReverse((DWORD*)&idx, x);
return idx;
}
#elif defined(__GNUC__) || defined(__clang__)
static inline uint8_t mi_bsr32(uint32_t x) {
return (31 - __builtin_clz(x));
}
#else
static inline uint8_t mi_bsr32(uint32_t x) {
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
static const uint8_t debruijn[32] = {
31, 0, 22, 1, 28, 23, 18, 2, 29, 26, 24, 10, 19, 7, 3, 12,
30, 21, 27, 17, 25, 9, 6, 11, 20, 16, 8, 5, 15, 4, 14, 13,
};
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return debruijn[(x*0x076be629) >> 27];
}
#endif
/*
// Bit scan reverse: return the index of the highest bit.
uint8_t _mi_bsr(uintptr_t x) {
if (x == 0) return 0;
#if MI_INTPTR_SIZE==8
uint32_t hi = (x >> 32);
return (hi == 0 ? mi_bsr32((uint32_t)x) : 32 + mi_bsr32(hi));
#elif MI_INTPTR_SIZE==4
return mi_bsr32(x);
#else
# error "define bsr for non-32 or 64-bit platforms"
#endif
}
*/
static inline size_t _mi_wsize_from_size(size_t size) {
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
// Return the bin for a given field size.
// Returns MI_BIN_HUGE if the size is too large.
// We use `wsize` for the size in "machine word sizes",
// i.e. byte size == `wsize*sizeof(void*)`.
extern inline uint8_t _mi_bin8(size_t size) {
size_t wsize = _mi_wsize_from_size(size);
uint8_t bin;
if (wsize <= 1) {
bin = 1;
}
#if defined(MI_ALIGN4W)
else if (wsize <= 4) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#elif defined(MI_ALIGN2W)
else if (wsize <= 8) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#else
else if (wsize <= 8) {
bin = (uint8_t)wsize;
}
#endif
else if (wsize > MI_LARGE_WSIZE_MAX) {
bin = MI_BIN_HUGE;
}
else {
#if defined(MI_ALIGN4W)
if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes
#endif
wsize--;
// find the highest bit
uint8_t b = mi_bsr32((uint32_t)wsize);
// and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation).
// - adjust with 3 because we use do not round the first 8 sizes
// which each get an exact bin
bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3;
}
return bin;
}
extern inline uint8_t _mi_bin4(size_t size) {
size_t wsize = _mi_wsize_from_size(size);
uint8_t bin;
if (wsize <= 1) {
bin = 1;
}
#if defined(MI_ALIGN4W)
else if (wsize <= 4) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#elif defined(MI_ALIGN2W)
else if (wsize <= 8) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#else
else if (wsize <= 8) {
bin = (uint8_t)wsize;
}
#endif
else if (wsize > MI_LARGE_WSIZE_MAX) {
bin = MI_BIN_HUGE;
}
else {
uint8_t b = mi_bsr32((uint32_t)wsize);
bin = ((b << 1) + (uint8_t)((wsize >> (b - 1)) & 0x01)) + 3;
}
return bin;
}
size_t _mi_binx4(size_t bsize) {
if (bsize==0) return 0;
uint8_t b = mi_bsr32((uint32_t)bsize);
if (b <= 1) return bsize;
size_t bin = ((b << 1) | (bsize >> (b - 1))&0x01);
return bin;
}
size_t _mi_binx8(size_t bsize) {
if (bsize<=1) return bsize;
uint8_t b = mi_bsr32((uint32_t)bsize);
if (b <= 2) return bsize;
size_t bin = ((b << 2) | (bsize >> (b - 2))&0x03) - 5;
return bin;
}
void mi_bins() {
//printf(" QNULL(1), /* 0 */ \\\n ");
size_t last_bin = 0;
size_t min_bsize = 0;
size_t last_bsize = 0;
for (size_t bsize = 1; bsize < 2*1024; bsize++) {
size_t size = bsize * 64 * 1024;
size_t bin = _mi_binx8(bsize);
if (bin != last_bin) {
printf("min bsize: %6zd, max bsize: %6zd, bin: %6zd\n", min_bsize, last_bsize, last_bin);
//printf("QNULL(%6zd), ", wsize);
//if (last_bin%8 == 0) printf("/* %i */ \\\n ", last_bin);
last_bin = bin;
min_bsize = bsize;
}
last_bsize = bsize;
}
}
static void double_free1();
static void double_free2();
static void corrupt_free();
@ -183,7 +17,7 @@ static void test_aslr(void);
static void test_process_info(void);
static void test_reserved(void);
static void negative_stat(void);
static void alloc_huge(void);
int main() {
mi_version();
@ -197,6 +31,7 @@ int main() {
// invalid_free();
// test_reserved();
// negative_stat();
alloc_huge();
void* p1 = malloc(78);
void* p2 = malloc(24);
@ -210,7 +45,7 @@ int main() {
free(p1);
free(p2);
free(s);
/* now test if override worked by allocating/freeing across the api's*/
//p1 = mi_malloc(32);
//free(p1);
@ -347,4 +182,182 @@ static void negative_stat(void) {
*p = 100;
mi_free(p);
mi_stats_print_out(NULL, NULL);
}
}
static void alloc_huge(void) {
void* p = mi_malloc(67108872);
mi_free(p);
}
// ----------------------------
// bin size experiments
// ------------------------------
#if 0
#include <stdint.h>
#include <stdbool.h>
#define MI_INTPTR_SIZE 8
#define MI_LARGE_WSIZE_MAX (4*1024*1024 / MI_INTPTR_SIZE)
#define MI_BIN_HUGE 100
//#define MI_ALIGN2W
// Bit scan reverse: return the index of the highest bit.
static inline uint8_t mi_bsr32(uint32_t x);
#if defined(_MSC_VER)
#include <windows.h>
#include <intrin.h>
static inline uint8_t mi_bsr32(uint32_t x) {
uint32_t idx;
_BitScanReverse((DWORD*)&idx, x);
return idx;
}
#elif defined(__GNUC__) || defined(__clang__)
static inline uint8_t mi_bsr32(uint32_t x) {
return (31 - __builtin_clz(x));
}
#else
static inline uint8_t mi_bsr32(uint32_t x) {
// de Bruijn multiplication, see <http://supertech.csail.mit.edu/papers/debruijn.pdf>
static const uint8_t debruijn[32] = {
31, 0, 22, 1, 28, 23, 18, 2, 29, 26, 24, 10, 19, 7, 3, 12,
30, 21, 27, 17, 25, 9, 6, 11, 20, 16, 8, 5, 15, 4, 14, 13,
};
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
x++;
return debruijn[(x*0x076be629) >> 27];
}
#endif
/*
// Bit scan reverse: return the index of the highest bit.
uint8_t _mi_bsr(uintptr_t x) {
if (x == 0) return 0;
#if MI_INTPTR_SIZE==8
uint32_t hi = (x >> 32);
return (hi == 0 ? mi_bsr32((uint32_t)x) : 32 + mi_bsr32(hi));
#elif MI_INTPTR_SIZE==4
return mi_bsr32(x);
#else
# error "define bsr for non-32 or 64-bit platforms"
#endif
}
*/
static inline size_t _mi_wsize_from_size(size_t size) {
return (size + sizeof(uintptr_t) - 1) / sizeof(uintptr_t);
}
// Return the bin for a given field size.
// Returns MI_BIN_HUGE if the size is too large.
// We use `wsize` for the size in "machine word sizes",
// i.e. byte size == `wsize*sizeof(void*)`.
extern inline uint8_t _mi_bin8(size_t size) {
size_t wsize = _mi_wsize_from_size(size);
uint8_t bin;
if (wsize <= 1) {
bin = 1;
}
#if defined(MI_ALIGN4W)
else if (wsize <= 4) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#elif defined(MI_ALIGN2W)
else if (wsize <= 8) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#else
else if (wsize <= 8) {
bin = (uint8_t)wsize;
}
#endif
else if (wsize > MI_LARGE_WSIZE_MAX) {
bin = MI_BIN_HUGE;
}
else {
#if defined(MI_ALIGN4W)
if (wsize <= 16) { wsize = (wsize+3)&~3; } // round to 4x word sizes
#endif
wsize--;
// find the highest bit
uint8_t b = mi_bsr32((uint32_t)wsize);
// and use the top 3 bits to determine the bin (~12.5% worst internal fragmentation).
// - adjust with 3 because we use do not round the first 8 sizes
// which each get an exact bin
bin = ((b << 2) + (uint8_t)((wsize >> (b - 2)) & 0x03)) - 3;
}
return bin;
}
static inline uint8_t _mi_bin4(size_t size) {
size_t wsize = _mi_wsize_from_size(size);
uint8_t bin;
if (wsize <= 1) {
bin = 1;
}
#if defined(MI_ALIGN4W)
else if (wsize <= 4) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#elif defined(MI_ALIGN2W)
else if (wsize <= 8) {
bin = (uint8_t)((wsize+1)&~1); // round to double word sizes
}
#else
else if (wsize <= 8) {
bin = (uint8_t)wsize;
}
#endif
else if (wsize > MI_LARGE_WSIZE_MAX) {
bin = MI_BIN_HUGE;
}
else {
uint8_t b = mi_bsr32((uint32_t)wsize);
bin = ((b << 1) + (uint8_t)((wsize >> (b - 1)) & 0x01)) + 3;
}
return bin;
}
static size_t _mi_binx4(size_t bsize) {
if (bsize==0) return 0;
uint8_t b = mi_bsr32((uint32_t)bsize);
if (b <= 1) return bsize;
size_t bin = ((b << 1) | (bsize >> (b - 1))&0x01);
return bin;
}
static size_t _mi_binx8(size_t bsize) {
if (bsize<=1) return bsize;
uint8_t b = mi_bsr32((uint32_t)bsize);
if (b <= 2) return bsize;
size_t bin = ((b << 2) | (bsize >> (b - 2))&0x03) - 5;
return bin;
}
static void mi_bins(void) {
//printf(" QNULL(1), /* 0 */ \\\n ");
size_t last_bin = 0;
size_t min_bsize = 0;
size_t last_bsize = 0;
for (size_t bsize = 1; bsize < 2*1024; bsize++) {
size_t size = bsize * 64 * 1024;
size_t bin = _mi_binx8(bsize);
if (bin != last_bin) {
printf("min bsize: %6zd, max bsize: %6zd, bin: %6zd\n", min_bsize, last_bsize, last_bin);
//printf("QNULL(%6zd), ", wsize);
//if (last_bin%8 == 0) printf("/* %i */ \\\n ", last_bin);
last_bin = bin;
min_bsize = bsize;
}
last_bsize = bsize;
}
}
#endif