update readme for options and upcoming release
This commit is contained in:
parent
0ceef8e728
commit
7e4e545060
76
readme.md
76
readme.md
@ -12,8 +12,8 @@ is a general purpose allocator with excellent [performance](#performance) charac
|
||||
Initially developed by Daan Leijen for the runtime systems of the
|
||||
[Koka](https://koka-lang.github.io) and [Lean](https://github.com/leanprover/lean) languages.
|
||||
|
||||
Latest release tag: `v2.1.1` (2023-04-03).
|
||||
Latest stable tag: `v1.8.1` (2023-04-03).
|
||||
Latest release tag: `v2.1.2` (2023-04-24).
|
||||
Latest stable tag: `v1.8.2` (2023-04-24).
|
||||
|
||||
mimalloc is a drop-in replacement for `malloc` and can be used in other programs
|
||||
without code changes, for example, on dynamically linked ELF-based systems (Linux, BSD, etc.) you can use it as:
|
||||
@ -43,7 +43,7 @@ It also includes a robust way to override the default allocator in [Windows](#ov
|
||||
and the chance of contending on a single location will be low -- this is quite
|
||||
similar to randomized algorithms like skip lists where adding
|
||||
a random oracle removes the need for a more complex algorithm.
|
||||
- __eager page reset__: when a "page" becomes empty (with increased chance
|
||||
- __eager page purging__: when a "page" becomes empty (with increased chance
|
||||
due to free list sharding) the memory is marked to the OS as unused (reset or decommitted)
|
||||
reducing (real) memory pressure and fragmentation, especially in long running
|
||||
programs.
|
||||
@ -78,6 +78,10 @@ Note: the `v2.x` version has a new algorithm for managing internal mimalloc page
|
||||
and fragmentation compared to mimalloc `v1.x` (especially for large workloads). Should otherwise have similar performance
|
||||
(see [below](#performance)); please report if you observe any significant performance regression.
|
||||
|
||||
* 2023-04-24, `v1.8.2`, `v2.1.2`: Fixes build issues on freeBSD, musl, and C17 (UE 5.1.1). Reduce code size/complexity
|
||||
by removing regions and segment-cache's and only use arenas with improved memory purging -- this may improve memory
|
||||
usage as well for larger services. Renamed options for consistency. Improved Valgrind and ASAN checking.
|
||||
|
||||
* 2023-04-03, `v1.8.1`, `v2.1.1`: Fixes build issues on some platforms.
|
||||
|
||||
* 2023-03-29, `v1.8.0`, `v2.1.0`: Improved support dynamic overriding on Windows 11. Improved tracing precision
|
||||
@ -105,20 +109,6 @@ Note: the `v2.x` version has a new algorithm for managing internal mimalloc page
|
||||
improved wasm support, faster aligned allocation,
|
||||
various small fixes.
|
||||
|
||||
* 2021-11-14, `v1.7.3`, `v2.0.3` (beta): improved WASM support, improved macOS support and performance (including
|
||||
M1), improved performance for v2 for large objects, Python integration improvements, more standard
|
||||
installation directories, various small fixes.
|
||||
|
||||
* 2021-06-17, `v1.7.2`, `v2.0.2` (beta): support M1, better installation layout on Linux, fix
|
||||
thread_id on Android, prefer 2-6TiB area for aligned allocation to work better on pre-windows 8, various small fixes.
|
||||
|
||||
* 2021-04-06, `v1.7.1`, `v2.0.1` (beta): fix bug in arena allocation for huge pages, improved aslr on large allocations, initial M1 support (still experimental).
|
||||
|
||||
* 2021-01-31, `v2.0.0`: beta release 2.0: new slice algorithm for managing internal mimalloc pages.
|
||||
|
||||
* 2021-01-31, `v1.7.0`: stable release 1.7: support explicit user provided memory regions, more precise statistics,
|
||||
improve macOS overriding, initial support for Apple M1, improved DragonFly support, faster memcpy on Windows, various small fixes.
|
||||
|
||||
* [Older release notes](#older-release-notes)
|
||||
|
||||
Special thanks to:
|
||||
@ -280,43 +270,48 @@ completely and redirect all calls to the _mimalloc_ library instead .
|
||||
|
||||
## Environment Options
|
||||
|
||||
You can set further options either programmatically (using [`mi_option_set`](https://microsoft.github.io/mimalloc/group__options.html)),
|
||||
or via environment variables:
|
||||
You can set further options either programmatically (using [`mi_option_set`](https://microsoft.github.io/mimalloc/group__options.html)), or via environment variables:
|
||||
|
||||
- `MIMALLOC_SHOW_STATS=1`: show statistics when the program terminates.
|
||||
- `MIMALLOC_VERBOSE=1`: show verbose messages.
|
||||
- `MIMALLOC_SHOW_ERRORS=1`: show error and warning messages.
|
||||
- `MIMALLOC_PAGE_RESET=0`: by default, mimalloc will reset (or purge) OS pages that are not in use, to signal to the OS
|
||||
that the underlying physical memory can be reused. This can reduce memory fragmentation in long running (server)
|
||||
programs. By setting it to `0` this will no longer be done which can improve performance for batch-like programs.
|
||||
As an alternative, the `MIMALLOC_RESET_DELAY=`<msecs> can be set higher (100ms by default) to make the page
|
||||
reset occur less frequently instead of turning it off completely.
|
||||
|
||||
Advanced options:
|
||||
|
||||
- `MIMALLOC_PURGE_DELAY=N`: the delay in `N` milli-seconds (by default `10`) after which mimalloc will purge
|
||||
OS pages that are not in use. This signals to the OS that the underlying physical memory can be reused which
|
||||
can reduce memory fragmentation especially in long running (server) programs. Setting `N` to `0` purges immediately when
|
||||
a page becomes unused which can improve memory usage but also decreases performance. Setting `N` to a higher
|
||||
value like `100` can improve performance (sometimes by a lot) at the cost of potentially using more memory at times.
|
||||
Setting it to `-1` disables purging completely.
|
||||
- `MIMALLOC_ARENA_EAGER_COMMIT=1`: turns on eager commit for the large arenas (usually 1GiB) from which mimalloc
|
||||
allocates segments and pages. This is by default
|
||||
only enabled on overcommit systems (e.g. Linux) but enabling it explicitly on other systems (like Windows or macOS)
|
||||
may improve performance. Note that eager commit only increases the commit but not the actual the peak resident set
|
||||
(rss) so it is generally ok to enable this.
|
||||
|
||||
Further options for large workloads and services:
|
||||
|
||||
- `MIMALLOC_USE_NUMA_NODES=N`: pretend there are at most `N` NUMA nodes. If not set, the actual NUMA nodes are detected
|
||||
at runtime. Setting `N` to 1 may avoid problems in some virtual environments. Also, setting it to a lower number than
|
||||
the actual NUMA nodes is fine and will only cause threads to potentially allocate more memory across actual NUMA
|
||||
nodes (but this can happen in any case as NUMA local allocation is always a best effort but not guaranteed).
|
||||
- `MIMALLOC_LARGE_OS_PAGES=1`: use large OS pages (2MiB) when available; for some workloads this can significantly
|
||||
- `MIMALLOC_ALLOW_LARGE_OS_PAGES=1`: use large OS pages (2MiB) when available; for some workloads this can significantly
|
||||
improve performance. Use `MIMALLOC_VERBOSE` to check if the large OS pages are enabled -- usually one needs
|
||||
to explicitly allow large OS pages (as on [Windows][windows-huge] and [Linux][linux-huge]). However, sometimes
|
||||
the OS is very slow to reserve contiguous physical memory for large OS pages so use with care on systems that
|
||||
can have fragmented memory (for that reason, we generally recommend to use `MIMALLOC_RESERVE_HUGE_OS_PAGES` instead whenever possible).
|
||||
<!--
|
||||
- `MIMALLOC_EAGER_REGION_COMMIT=1`: on Windows, commit large (256MiB) regions eagerly. On Windows, these regions
|
||||
show in the working set even though usually just a small part is committed to physical memory. This is why it
|
||||
turned off by default on Windows as it looks not good in the task manager. However, turning it on has no
|
||||
real drawbacks and may improve performance by a little.
|
||||
-->
|
||||
- `MIMALLOC_RESERVE_HUGE_OS_PAGES=N`: where N is the number of 1GiB _huge_ OS pages. This reserves the huge pages at
|
||||
- `MIMALLOC_RESERVE_HUGE_OS_PAGES=N`: where `N` is the number of 1GiB _huge_ OS pages. This reserves the huge pages at
|
||||
startup and sometimes this can give a large (latency) performance improvement on big workloads.
|
||||
Usually it is better to not use
|
||||
`MIMALLOC_LARGE_OS_PAGES` in combination with this setting. Just like large OS pages, use with care as reserving
|
||||
Usually it is better to not use `MIMALLOC_ALLOW_LARGE_OS_PAGES=1` in combination with this setting. Just like large
|
||||
OS pages, use with care as reserving
|
||||
contiguous physical memory can take a long time when memory is fragmented (but reserving the huge pages is done at
|
||||
startup only once).
|
||||
Note that we usually need to explicitly enable huge OS pages (as on [Windows][windows-huge] and [Linux][linux-huge])).
|
||||
With huge OS pages, it may be beneficial to set the setting
|
||||
`MIMALLOC_EAGER_COMMIT_DELAY=N` (`N` is 1 by default) to delay the initial `N` segments (of 4MiB)
|
||||
of a thread to not allocate in the huge OS pages; this prevents threads that are short lived
|
||||
and allocate just a little to take up space in the huge OS page area (which cannot be reset).
|
||||
and allocate just a little to take up space in the huge OS page area (which cannot be purged).
|
||||
The huge pages are usually allocated evenly among NUMA nodes.
|
||||
We can use `MIMALLOC_RESERVE_HUGE_OS_PAGES_AT=N` where `N` is the numa node (starting at 0) to allocate all
|
||||
the huge pages at a specific numa node instead.
|
||||
@ -794,6 +789,16 @@ provided by the bot. You will only need to do this once across all repos using o
|
||||
|
||||
# Older Release Notes
|
||||
|
||||
* 2021-11-14, `v1.7.3`, `v2.0.3` (beta): improved WASM support, improved macOS support and performance (including
|
||||
M1), improved performance for v2 for large objects, Python integration improvements, more standard
|
||||
installation directories, various small fixes.
|
||||
* 2021-06-17, `v1.7.2`, `v2.0.2` (beta): support M1, better installation layout on Linux, fix
|
||||
thread_id on Android, prefer 2-6TiB area for aligned allocation to work better on pre-windows 8, various small fixes.
|
||||
* 2021-04-06, `v1.7.1`, `v2.0.1` (beta): fix bug in arena allocation for huge pages, improved aslr on large allocations, initial M1 support (still experimental).
|
||||
* 2021-01-31, `v2.0.0`: beta release 2.0: new slice algorithm for managing internal mimalloc pages.
|
||||
* 2021-01-31, `v1.7.0`: stable release 1.7: support explicit user provided memory regions, more precise statistics,
|
||||
improve macOS overriding, initial support for Apple M1, improved DragonFly support, faster memcpy on Windows, various small fixes.
|
||||
|
||||
* 2020-09-24, `v1.6.7`: stable release 1.6: using standard C atomics, passing tsan testing, improved
|
||||
handling of failing to commit on Windows, add [`mi_process_info`](https://github.com/microsoft/mimalloc/blob/master/include/mimalloc.h#L156) api call.
|
||||
* 2020-08-06, `v1.6.4`: stable release 1.6: improved error recovery in low-memory situations,
|
||||
@ -815,6 +820,7 @@ provided by the bot. You will only need to do this once across all repos using o
|
||||
more eager concurrent free, addition of STL allocator, fixed potential memory leak.
|
||||
* 2020-01-15, `v1.3.0`: stable release 1.3: bug fixes, improved randomness and [stronger
|
||||
free list encoding](https://github.com/microsoft/mimalloc/blob/783e3377f79ee82af43a0793910a9f2d01ac7863/include/mimalloc-internal.h#L396) in secure mode.
|
||||
|
||||
* 2019-12-22, `v1.2.2`: stable release 1.2: minor updates.
|
||||
* 2019-11-22, `v1.2.0`: stable release 1.2: bug fixes, improved secure mode (free list corruption checks, double free mitigation). Improved dynamic overriding on Windows.
|
||||
* 2019-10-07, `v1.1.0`: stable release 1.1.
|
||||
|
Loading…
Reference in New Issue
Block a user