mirror of https://github.com/microsoft/mimalloc
update stress test to be more deterministic
This commit is contained in:
parent
fd6fd23470
commit
2f63964e5c
|
@ -1,42 +1,71 @@
|
|||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2018,2019 Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
terms of the MIT license.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
/* This is a stress test for the allocator, using multiple threads and
|
||||
transferring objects between threads. This is not a typical workload
|
||||
but uses a random size distribution. Do not use this test as a benchmark!
|
||||
Note: pthreads uses mimalloc to allocate stacks and thus not all
|
||||
memory is freed at the end. (usually the 320 byte chunks).
|
||||
but uses a random linear size distribution. Do not use this test as a benchmark!
|
||||
*/
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdint.h>
|
||||
#include <stdbool.h>
|
||||
#include <string.h>
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc-internal.h"
|
||||
#include "mimalloc-atomic.h"
|
||||
#include <mimalloc.h>
|
||||
|
||||
// argument defaults
|
||||
static int THREADS = 32; // more repeatable if THREADS <= #processors
|
||||
static int N = 10; // scaling factor
|
||||
|
||||
// static int THREADS = 8; // more repeatable if THREADS <= #processors
|
||||
// static int N = 100; // scaling factor
|
||||
|
||||
#define N (10) // scaling factor
|
||||
#define THREADS (32)
|
||||
#define TRANSFERS (1000)
|
||||
|
||||
static volatile void* transfer[TRANSFERS];
|
||||
|
||||
#if (MI_INTPTR_SIZE==8)
|
||||
#if (INTPTR_MAX != UINT32_MAX)
|
||||
const uintptr_t cookie = 0xbf58476d1ce4e5b9UL;
|
||||
#else
|
||||
const uintptr_t cookie = 0x1ce4e5b9UL;
|
||||
#endif
|
||||
|
||||
static void* atomic_exchange_ptr(volatile void** p, void* newval);
|
||||
|
||||
static void* alloc_items(size_t items) {
|
||||
if ((rand()%100) == 0) items *= 100; // 1% huge objects;
|
||||
typedef uintptr_t* random_t;
|
||||
|
||||
static uintptr_t pick(random_t r) {
|
||||
uintptr_t x = *r;
|
||||
#if (INTPTR_MAX > UINT32_MAX)
|
||||
// by Sebastiano Vigna, see: <http://xoshiro.di.unimi.it/splitmix64.c>
|
||||
x ^= x >> 30;
|
||||
x *= 0xbf58476d1ce4e5b9UL;
|
||||
x ^= x >> 27;
|
||||
x *= 0x94d049bb133111ebUL;
|
||||
x ^= x >> 31;
|
||||
#else
|
||||
// by Chris Wellons, see: <https://nullprogram.com/blog/2018/07/31/>
|
||||
x ^= x >> 16;
|
||||
x *= 0x7feb352dUL;
|
||||
x ^= x >> 15;
|
||||
x *= 0x846ca68bUL;
|
||||
x ^= x >> 16;
|
||||
#endif
|
||||
*r = x;
|
||||
return x;
|
||||
}
|
||||
|
||||
static bool chance(size_t perc, random_t r) {
|
||||
return (pick(r) % 100 <= perc);
|
||||
}
|
||||
|
||||
static void* alloc_items(size_t items, random_t r) {
|
||||
if (chance(1, r)) items *= 100; // 1% huge objects;
|
||||
if (items==40) items++; // pthreads uses that size for stack increases
|
||||
uintptr_t* p = mi_mallocn_tp(uintptr_t,items);
|
||||
if(p == NULL) return NULL;
|
||||
uintptr_t* p = (uintptr_t*)mi_malloc(items*sizeof(uintptr_t));
|
||||
for (uintptr_t i = 0; i < items; i++) p[i] = (items - i) ^ cookie;
|
||||
return p;
|
||||
}
|
||||
|
@ -47,7 +76,7 @@ static void free_items(void* p) {
|
|||
uintptr_t items = (q[0] ^ cookie);
|
||||
for (uintptr_t i = 0; i < items; i++) {
|
||||
if ((q[i]^cookie) != items - i) {
|
||||
fprintf(stderr,"memory corruption at block %p at %zu\n", p, i);
|
||||
fprintf(stderr, "memory corruption at block %p at %zu\n", p, i);
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
@ -57,43 +86,45 @@ static void free_items(void* p) {
|
|||
|
||||
|
||||
static void stress(intptr_t tid) {
|
||||
//bench_start_thread();
|
||||
uintptr_t r = tid ^ 42;
|
||||
const size_t max_item = 128; // in words
|
||||
const size_t max_item_retained = 10*max_item;
|
||||
size_t allocs = 80*N*(tid%8 + 1); // some threads do more
|
||||
size_t allocs = 25*N*(tid%8 + 1); // some threads do more
|
||||
size_t retain = allocs/2;
|
||||
void** data = NULL;
|
||||
size_t data_size = 0;
|
||||
size_t data_top = 0;
|
||||
void** retained = mi_mallocn_tp(void*,retain);
|
||||
void** retained = (void**)mi_malloc(retain*sizeof(void*));
|
||||
size_t retain_top = 0;
|
||||
|
||||
while (allocs>0 || retain>0) {
|
||||
if (retain == 0 || ((rand()%4 == 0) && allocs > 0)) {
|
||||
// 75% alloc
|
||||
if (retain == 0 || (chance(50, &r) && allocs > 0)) {
|
||||
// 50%+ alloc
|
||||
allocs--;
|
||||
if (data_top >= data_size) {
|
||||
data_size += 100000;
|
||||
data = mi_reallocn_tp(data, void*, data_size);
|
||||
data = (void**)mi_realloc(data, data_size*sizeof(void*));
|
||||
}
|
||||
data[data_top++] = alloc_items((rand() % max_item) + 1);
|
||||
data[data_top++] = alloc_items((pick(&r) % max_item) + 1, &r);
|
||||
}
|
||||
else {
|
||||
// 25% retain
|
||||
retained[retain_top++] = alloc_items( 10*((rand() % max_item_retained) + 1) );
|
||||
retained[retain_top++] = alloc_items(10*((pick(&r) % max_item_retained) + 1), &r);
|
||||
retain--;
|
||||
}
|
||||
if ((rand()%3)!=0 && data_top > 0) {
|
||||
if (chance(66, &r) && data_top > 0) {
|
||||
// 66% free previous alloc
|
||||
size_t idx = rand() % data_top;
|
||||
size_t idx = pick(&r) % data_top;
|
||||
free_items(data[idx]);
|
||||
data[idx]=NULL;
|
||||
data[idx] = NULL;
|
||||
}
|
||||
if ((tid%2)==0 && (rand()%4)==0 && data_top > 0) {
|
||||
// 25% transfer-swap of half the threads
|
||||
size_t data_idx = rand() % data_top;
|
||||
size_t transfer_idx = rand() % TRANSFERS;
|
||||
if (chance(25, &r) && data_top > 0) {
|
||||
// 25% transfer-swap
|
||||
size_t data_idx = pick(&r) % data_top;
|
||||
size_t transfer_idx = pick(&r) % TRANSFERS;
|
||||
void* p = data[data_idx];
|
||||
void* q = mi_atomic_exchange_ptr(&transfer[transfer_idx],p);
|
||||
void* q = atomic_exchange_ptr(&transfer[transfer_idx], p);
|
||||
data[data_idx] = q;
|
||||
}
|
||||
}
|
||||
|
@ -106,20 +137,33 @@ static void stress(intptr_t tid) {
|
|||
}
|
||||
mi_free(retained);
|
||||
mi_free(data);
|
||||
//bench_end_thread();
|
||||
}
|
||||
|
||||
static void run_os_threads();
|
||||
static void run_os_threads(size_t nthreads);
|
||||
|
||||
int main() {
|
||||
srand(42);
|
||||
memset((void*)transfer,0,TRANSFERS*sizeof(void*));
|
||||
run_os_threads();
|
||||
int main(int argc, char** argv) {
|
||||
if (argc>=2) {
|
||||
char* end;
|
||||
long n = strtol(argv[1], &end, 10);
|
||||
if (n > 0) THREADS = n;
|
||||
}
|
||||
if (argc>=3) {
|
||||
char* end;
|
||||
long n = (strtol(argv[2], &end, 10));
|
||||
if (n > 0) N = n;
|
||||
}
|
||||
printf("start with %i threads with a %i%% load-per-thread\n", THREADS, N);
|
||||
//bench_start_program();
|
||||
memset((void*)transfer, 0, TRANSFERS*sizeof(void*));
|
||||
run_os_threads(THREADS);
|
||||
for (int i = 0; i < TRANSFERS; i++) {
|
||||
free_items((void*)transfer[i]);
|
||||
}
|
||||
mi_collect(false); // ensures abandoned segments are reclaimed
|
||||
mi_collect(true); // frees everything
|
||||
mi_collect(false);
|
||||
mi_collect(true);
|
||||
mi_stats_print(NULL);
|
||||
//bench_end_program();
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
@ -133,36 +177,48 @@ static DWORD WINAPI thread_entry(LPVOID param) {
|
|||
return 0;
|
||||
}
|
||||
|
||||
static void run_os_threads() {
|
||||
DWORD tids[THREADS];
|
||||
HANDLE thandles[THREADS];
|
||||
for(intptr_t i = 0; i < THREADS; i++) {
|
||||
thandles[i] = CreateThread(0,4096,&thread_entry,(void*)(i),0,&tids[i]);
|
||||
static void run_os_threads(size_t nthreads) {
|
||||
DWORD* tids = (DWORD*)malloc(nthreads * sizeof(DWORD));
|
||||
HANDLE* thandles = (HANDLE*)malloc(nthreads * sizeof(HANDLE));
|
||||
for (intptr_t i = 0; i < nthreads; i++) {
|
||||
thandles[i] = CreateThread(0, 4096, &thread_entry, (void*)(i), 0, &tids[i]);
|
||||
}
|
||||
for (int i = 0; i < THREADS; i++) {
|
||||
for (int i = 0; i < nthreads; i++) {
|
||||
WaitForSingleObject(thandles[i], INFINITE);
|
||||
}
|
||||
}
|
||||
|
||||
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
|
||||
#if (INTPTR_MAX == UINT32_MAX)
|
||||
return (void*)InterlockedExchange((volatile LONG*)p, (LONG)newval);
|
||||
#else
|
||||
return (void*)InterlockedExchange64((volatile LONG64*)p, (LONG64)newval);
|
||||
#endif
|
||||
}
|
||||
#else
|
||||
|
||||
#include <pthread.h>
|
||||
#include <stdatomic.h>
|
||||
|
||||
static void* thread_entry( void* param ) {
|
||||
static void* thread_entry(void* param) {
|
||||
stress((uintptr_t)param);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void run_os_threads() {
|
||||
pthread_t threads[THREADS];
|
||||
memset(threads,0,sizeof(pthread_t)*THREADS);
|
||||
//pthread_setconcurrency(THREADS);
|
||||
for(uintptr_t i = 0; i < THREADS; i++) {
|
||||
static void run_os_threads(size_t nthreads) {
|
||||
pthread_t* threads = (pthread_t*)mi_malloc(nthreads*sizeof(pthread_t));
|
||||
memset(threads, 0, sizeof(pthread_t)*nthreads);
|
||||
//pthread_setconcurrency(nthreads);
|
||||
for (uintptr_t i = 0; i < nthreads; i++) {
|
||||
pthread_create(&threads[i], NULL, &thread_entry, (void*)i);
|
||||
}
|
||||
for (size_t i = 0; i < THREADS; i++) {
|
||||
for (size_t i = 0; i < nthreads; i++) {
|
||||
pthread_join(threads[i], NULL);
|
||||
}
|
||||
}
|
||||
|
||||
static void* atomic_exchange_ptr(volatile void** p, void* newval) {
|
||||
return atomic_exchange_explicit((volatile _Atomic(void*)*)p, newval, memory_order_acquire);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in New Issue