merge from dev
This commit is contained in:
commit
1a36ca3eb9
@ -68,7 +68,7 @@ endif()
|
||||
|
||||
if(MI_SECURE MATCHES "ON")
|
||||
message(STATUS "Set secure build (MI_SECURE=ON)")
|
||||
list(APPEND mi_defines MI_SECURE=2)
|
||||
list(APPEND mi_defines MI_SECURE=3)
|
||||
endif()
|
||||
|
||||
if(MI_SEE_ASM MATCHES "ON")
|
||||
|
Binary file not shown.
Binary file not shown.
@ -111,12 +111,12 @@
|
||||
</ItemDefinitionGroup>
|
||||
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
|
||||
<ClCompile>
|
||||
<WarningLevel>Level3</WarningLevel>
|
||||
<WarningLevel>Level2</WarningLevel>
|
||||
<Optimization>Disabled</Optimization>
|
||||
<SDLCheck>true</SDLCheck>
|
||||
<ConformanceMode>true</ConformanceMode>
|
||||
<AdditionalIncludeDirectories>../../include</AdditionalIncludeDirectories>
|
||||
<PreprocessorDefinitions>MI_DEBUG=3;%(PreprocessorDefinitions);</PreprocessorDefinitions>
|
||||
<PreprocessorDefinitions>MI_DEBUG=1;%(PreprocessorDefinitions);</PreprocessorDefinitions>
|
||||
<CompileAs>CompileAsCpp</CompileAs>
|
||||
<SupportJustMyCode>false</SupportJustMyCode>
|
||||
<LanguageStandard>stdcpp17</LanguageStandard>
|
||||
|
@ -130,7 +130,7 @@ static inline intptr_t mi_atomic_add(volatile _Atomic(intptr_t)* p, intptr_t add
|
||||
return (intptr_t)RC64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
|
||||
}
|
||||
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
|
||||
return (expected == RC64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)expected));
|
||||
return (expected == (uintptr_t)RC64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)expected));
|
||||
}
|
||||
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
|
||||
return mi_atomic_cas_strong(p,desired,expected);
|
||||
|
@ -20,6 +20,18 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
#define mi_trace_message(...)
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define mi_decl_noinline __declspec(noinline)
|
||||
#define mi_attr_noreturn
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
#define mi_decl_noinline __attribute__((noinline))
|
||||
#define mi_attr_noreturn __attribute__((noreturn))
|
||||
#else
|
||||
#define mi_decl_noinline
|
||||
#define mi_attr_noreturn
|
||||
#endif
|
||||
|
||||
|
||||
// "options.c"
|
||||
void _mi_fputs(mi_output_fun* out, const char* prefix, const char* message);
|
||||
void _mi_fprintf(mi_output_fun* out, const char* fmt, ...);
|
||||
@ -28,12 +40,12 @@ void _mi_warning_message(const char* fmt, ...);
|
||||
void _mi_verbose_message(const char* fmt, ...);
|
||||
void _mi_trace_message(const char* fmt, ...);
|
||||
void _mi_options_init(void);
|
||||
void _mi_fatal_error(const char* fmt, ...) mi_attr_noreturn;
|
||||
|
||||
// "init.c"
|
||||
extern mi_stats_t _mi_stats_main;
|
||||
extern const mi_page_t _mi_page_empty;
|
||||
bool _mi_is_main_thread(void);
|
||||
uintptr_t _mi_ptr_cookie(const void* p);
|
||||
uintptr_t _mi_random_shuffle(uintptr_t x);
|
||||
uintptr_t _mi_random_init(uintptr_t seed /* can be zero */);
|
||||
bool _mi_preloading(); // true while the C runtime is not ready
|
||||
@ -124,13 +136,6 @@ bool _mi_page_is_valid(mi_page_t* page);
|
||||
#define __has_builtin(x) 0
|
||||
#endif
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define mi_decl_noinline __declspec(noinline)
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
#define mi_decl_noinline __attribute__((noinline))
|
||||
#else
|
||||
#define mi_decl_noinline
|
||||
#endif
|
||||
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
@ -156,10 +161,13 @@ bool _mi_page_is_valid(mi_page_t* page);
|
||||
#define MI_MUL_NO_OVERFLOW ((size_t)1 << (4*sizeof(size_t))) // sqrt(SIZE_MAX)
|
||||
static inline bool mi_mul_overflow(size_t count, size_t size, size_t* total) {
|
||||
#if __has_builtin(__builtin_umul_overflow) || __GNUC__ >= 5
|
||||
#if (MI_INTPTR_SIZE == 4)
|
||||
#include <limits.h> // UINT_MAX, ULONG_MAX
|
||||
#if (SIZE_MAX == UINT_MAX)
|
||||
return __builtin_umul_overflow(count, size, total);
|
||||
#else
|
||||
#elif (SIZE_MAX == ULONG_MAX)
|
||||
return __builtin_umull_overflow(count, size, total);
|
||||
#else
|
||||
return __builtin_umulll_overflow(count, size, total);
|
||||
#endif
|
||||
#else /* __builtin_umul_overflow is unavailable */
|
||||
*total = count * size;
|
||||
@ -235,6 +243,10 @@ static inline bool mi_heap_is_initialized(mi_heap_t* heap) {
|
||||
return (heap != &_mi_heap_empty);
|
||||
}
|
||||
|
||||
static inline uintptr_t _mi_ptr_cookie(const void* p) {
|
||||
return ((uintptr_t)p ^ _mi_heap_main.cookie);
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Pages
|
||||
----------------------------------------------------------- */
|
||||
@ -342,19 +354,19 @@ static inline mi_page_queue_t* mi_page_queue(const mi_heap_t* heap, size_t size)
|
||||
// Page flags
|
||||
//-----------------------------------------------------------
|
||||
static inline bool mi_page_is_in_full(const mi_page_t* page) {
|
||||
return page->flags.in_full;
|
||||
return page->flags.x.in_full;
|
||||
}
|
||||
|
||||
static inline void mi_page_set_in_full(mi_page_t* page, bool in_full) {
|
||||
page->flags.in_full = in_full;
|
||||
page->flags.x.in_full = in_full;
|
||||
}
|
||||
|
||||
static inline bool mi_page_has_aligned(const mi_page_t* page) {
|
||||
return page->flags.has_aligned;
|
||||
return page->flags.x.has_aligned;
|
||||
}
|
||||
|
||||
static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
|
||||
page->flags.has_aligned = has_aligned;
|
||||
page->flags.x.has_aligned = has_aligned;
|
||||
}
|
||||
|
||||
|
||||
@ -362,8 +374,12 @@ static inline void mi_page_set_has_aligned(mi_page_t* page, bool has_aligned) {
|
||||
// Encoding/Decoding the free list next pointers
|
||||
// -------------------------------------------------------------------
|
||||
|
||||
static inline mi_block_t* mi_block_nextx( uintptr_t cookie, mi_block_t* block ) {
|
||||
#if MI_SECURE
|
||||
static inline bool mi_is_in_same_segment(const void* p, const void* q) {
|
||||
return (_mi_ptr_segment(p) == _mi_ptr_segment(q));
|
||||
}
|
||||
|
||||
static inline mi_block_t* mi_block_nextx( uintptr_t cookie, const mi_block_t* block ) {
|
||||
#if MI_SECURE
|
||||
return (mi_block_t*)(block->next ^ cookie);
|
||||
#else
|
||||
UNUSED(cookie);
|
||||
@ -371,7 +387,7 @@ static inline mi_block_t* mi_block_nextx( uintptr_t cookie, mi_block_t* block )
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mi_block_set_nextx(uintptr_t cookie, mi_block_t* block, mi_block_t* next) {
|
||||
static inline void mi_block_set_nextx(uintptr_t cookie, mi_block_t* block, const mi_block_t* next) {
|
||||
#if MI_SECURE
|
||||
block->next = (mi_encoded_t)next ^ cookie;
|
||||
#else
|
||||
@ -380,16 +396,25 @@ static inline void mi_block_set_nextx(uintptr_t cookie, mi_block_t* block, mi_bl
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline mi_block_t* mi_block_next(mi_page_t* page, mi_block_t* block) {
|
||||
static inline mi_block_t* mi_block_next(const mi_page_t* page, const mi_block_t* block) {
|
||||
#if MI_SECURE
|
||||
return mi_block_nextx(page->cookie,block);
|
||||
mi_block_t* next = mi_block_nextx(page->cookie,block);
|
||||
#if MI_SECURE >= 4
|
||||
// check if next is at least in our segment range
|
||||
// TODO: it is better to check if it is actually inside our page but that is more expensive
|
||||
// to calculate. Perhaps with a relative free list this becomes feasible?
|
||||
if (next!=NULL && !mi_is_in_same_segment(block, next)) {
|
||||
_mi_fatal_error("corrupted free list entry at %p: %zx\n", block, (uintptr_t)next);
|
||||
}
|
||||
#endif
|
||||
return next;
|
||||
#else
|
||||
UNUSED(page);
|
||||
return mi_block_nextx(0, block);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline void mi_block_set_next(mi_page_t* page, mi_block_t* block, mi_block_t* next) {
|
||||
static inline void mi_block_set_next(const mi_page_t* page, mi_block_t* block, const mi_block_t* next) {
|
||||
#if MI_SECURE
|
||||
mi_block_set_nextx(page->cookie,block,next);
|
||||
#else
|
||||
|
@ -22,8 +22,11 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
// Define MI_STAT as 1 to maintain statistics; set it to 2 to have detailed statistics (but costs some performance).
|
||||
// #define MI_STAT 1
|
||||
|
||||
// Define MI_SECURE as 1 to encode free lists
|
||||
// #define MI_SECURE 1
|
||||
// Define MI_SECURE to enable security mitigations
|
||||
// #define MI_SECURE 1 // guard page around metadata
|
||||
// #define MI_SECURE 2 // guard page around each mimalloc page
|
||||
// #define MI_SECURE 3 // encode free lists
|
||||
// #define MI_SECURE 4 // all security enabled (checks for double free, corrupted free list and invalid pointer free)
|
||||
|
||||
#if !defined(MI_SECURE)
|
||||
#define MI_SECURE 0
|
||||
@ -131,15 +134,13 @@ typedef enum mi_delayed_e {
|
||||
|
||||
|
||||
// The `in_full` and `has_aligned` page flags are put in a union to efficiently
|
||||
// test if both are false (`value == 0`) in the `mi_free` routine.
|
||||
typedef union mi_page_flags_u {
|
||||
uint16_t value;
|
||||
uint8_t full_aligned;
|
||||
// test if both are false (`full_aligned == 0`) in the `mi_free` routine.
|
||||
typedef union mi_page_flags_s {
|
||||
uint8_t full_aligned;
|
||||
struct {
|
||||
bool in_full:1;
|
||||
bool has_aligned:1;
|
||||
bool is_zero; // `true` if the blocks in the free list are zero initialized
|
||||
};
|
||||
uint8_t in_full : 1;
|
||||
uint8_t has_aligned : 1;
|
||||
} x;
|
||||
} mi_page_flags_t;
|
||||
|
||||
// Thread free list.
|
||||
@ -167,15 +168,16 @@ typedef uintptr_t mi_thread_free_t;
|
||||
typedef struct mi_page_s {
|
||||
// "owned" by the segment
|
||||
uint8_t segment_idx; // index in the segment `pages` array, `page == &segment->pages[page->segment_idx]`
|
||||
bool segment_in_use:1; // `true` if the segment allocated this page
|
||||
bool is_reset:1; // `true` if the page memory was reset
|
||||
bool is_committed:1; // `true` if the page virtual memory is committed
|
||||
bool is_zero_init:1; // `true` if the page was zero initialized
|
||||
uint8_t segment_in_use:1; // `true` if the segment allocated this page
|
||||
uint8_t is_reset:1; // `true` if the page memory was reset
|
||||
uint8_t is_committed:1; // `true` if the page virtual memory is committed
|
||||
uint8_t is_zero_init:1; // `true` if the page was zero initialized
|
||||
|
||||
// layout like this to optimize access in `mi_malloc` and `mi_free`
|
||||
uint16_t capacity; // number of blocks committed, must be the first field, see `segment.c:page_clear`
|
||||
uint16_t reserved; // number of blocks reserved in memory
|
||||
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (16 bits)
|
||||
mi_page_flags_t flags; // `in_full` and `has_aligned` flags (8 bits)
|
||||
bool is_zero; // `true` if the blocks in the free list are zero initialized
|
||||
|
||||
mi_block_t* free; // list of available free blocks (`malloc` allocates from this list)
|
||||
#if MI_SECURE
|
||||
|
@ -61,53 +61,53 @@ static void* mi_heap_malloc_zero_aligned_at(mi_heap_t* const heap, const size_t
|
||||
}
|
||||
|
||||
|
||||
void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_malloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, false);
|
||||
}
|
||||
|
||||
void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_malloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_malloc_aligned_at(heap, size, alignment, 0);
|
||||
}
|
||||
|
||||
void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_zalloc_aligned_at(mi_heap_t* heap, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_malloc_zero_aligned_at(heap, size, alignment, offset, true);
|
||||
}
|
||||
|
||||
void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_zalloc_aligned(mi_heap_t* heap, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_zalloc_aligned_at(heap, size, alignment, 0);
|
||||
}
|
||||
|
||||
void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_calloc_aligned_at(mi_heap_t* heap, size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(count, size, &total)) return NULL;
|
||||
return mi_heap_zalloc_aligned_at(heap, total, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_calloc_aligned(mi_heap_t* heap, size_t count, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_calloc_aligned_at(heap,count,size,alignment,0);
|
||||
}
|
||||
|
||||
void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_malloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_malloc_aligned_at(mi_get_default_heap(), size, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_malloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_malloc_aligned(mi_get_default_heap(), size, alignment);
|
||||
}
|
||||
|
||||
void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_zalloc_aligned_at(size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_zalloc_aligned_at(mi_get_default_heap(), size, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_zalloc_aligned(size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_zalloc_aligned(mi_get_default_heap(), size, alignment);
|
||||
}
|
||||
|
||||
void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_calloc_aligned_at(size_t count, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_calloc_aligned_at(mi_get_default_heap(), count, size, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_calloc_aligned(size_t count, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_calloc_aligned(mi_get_default_heap(), count, size, alignment);
|
||||
}
|
||||
|
||||
@ -126,7 +126,7 @@ static void* mi_heap_realloc_zero_aligned_at(mi_heap_t* heap, void* p, size_t ne
|
||||
if (newp != NULL) {
|
||||
if (zero && newsize > size) {
|
||||
const mi_page_t* page = _mi_ptr_page(newp);
|
||||
if (page->flags.is_zero) {
|
||||
if (page->is_zero) {
|
||||
// already zero initialized
|
||||
mi_assert_expensive(mi_mem_is_zero(newp,newsize));
|
||||
}
|
||||
@ -150,55 +150,55 @@ static void* mi_heap_realloc_zero_aligned(mi_heap_t* heap, void* p, size_t newsi
|
||||
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,zero);
|
||||
}
|
||||
|
||||
void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_realloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_realloc_zero_aligned_at(heap,p,newsize,alignment,offset,false);
|
||||
}
|
||||
|
||||
void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_realloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_realloc_zero_aligned(heap,p,newsize,alignment,false);
|
||||
}
|
||||
|
||||
void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_rezalloc_aligned_at(mi_heap_t* heap, void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_realloc_zero_aligned_at(heap, p, newsize, alignment, offset, true);
|
||||
}
|
||||
|
||||
void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_rezalloc_aligned(mi_heap_t* heap, void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_realloc_zero_aligned(heap, p, newsize, alignment, true);
|
||||
}
|
||||
|
||||
void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_recalloc_aligned_at(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(newcount, size, &total)) return NULL;
|
||||
return mi_heap_rezalloc_aligned_at(heap, p, total, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_recalloc_aligned(mi_heap_t* heap, void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(newcount, size, &total)) return NULL;
|
||||
return mi_heap_rezalloc_aligned(heap, p, total, alignment);
|
||||
}
|
||||
|
||||
void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_realloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_realloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_realloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_realloc_aligned(mi_get_default_heap(), p, newsize, alignment);
|
||||
}
|
||||
|
||||
void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_rezalloc_aligned_at(void* p, size_t newsize, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_rezalloc_aligned_at(mi_get_default_heap(), p, newsize, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_rezalloc_aligned(void* p, size_t newsize, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_rezalloc_aligned(mi_get_default_heap(), p, newsize, alignment);
|
||||
}
|
||||
|
||||
void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_recalloc_aligned_at(void* p, size_t newcount, size_t size, size_t alignment, size_t offset) mi_attr_noexcept {
|
||||
return mi_heap_recalloc_aligned_at(mi_get_default_heap(), p, newcount, size, alignment, offset);
|
||||
}
|
||||
|
||||
void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_recalloc_aligned(void* p, size_t newcount, size_t size, size_t alignment) mi_attr_noexcept {
|
||||
return mi_heap_recalloc_aligned(mi_get_default_heap(), p, newcount, size, alignment);
|
||||
}
|
||||
|
||||
|
@ -1,715 +0,0 @@
|
||||
/* ----------------------------------------------------------------------------
|
||||
Copyright (c) 2018, Microsoft Research, Daan Leijen
|
||||
This is free software; you can redistribute it and/or modify it under the
|
||||
terms of the MIT license. A copy of the license can be found in the file
|
||||
"LICENSE" at the root of this distribution.
|
||||
-----------------------------------------------------------------------------*/
|
||||
|
||||
#include "mimalloc.h"
|
||||
#include "mimalloc-internal.h"
|
||||
|
||||
#if !defined(_WIN32)
|
||||
#error "this file should only be included on Windows"
|
||||
#endif
|
||||
|
||||
#include <windows.h>
|
||||
#include <psapi.h>
|
||||
|
||||
#include <stdlib.h> // getenv
|
||||
#include <stdio.h> // _setmaxstdio
|
||||
#include <string.h> // strstr
|
||||
|
||||
|
||||
/*
|
||||
To override the C runtime `malloc` on Windows we need to patch the allocation
|
||||
functions at runtime initialization. Unfortunately we can never patch before the
|
||||
runtime initializes itself, because as soon as we call `GetProcAddress` on the
|
||||
runtime module (a DLL or EXE in Windows speak), it will first load and initialize
|
||||
(by the OS calling `DllMain` on it).
|
||||
|
||||
This means that some things might be already allocated by the C runtime itself
|
||||
(and possibly other DLL's) before we get to resolve runtime adresses. This is
|
||||
no problem if everyone unwinds in order: when we unload, we unpatch and restore
|
||||
the original crt `free` routines and crt malloc'd memory is freed correctly.
|
||||
|
||||
But things go wrong if such early CRT alloc'd memory is freed or re-allocated
|
||||
_after_ we patch, but _before_ we unload (and unpatch), or if any memory allocated
|
||||
by us is freed after we unpatched.
|
||||
|
||||
There are two tricky situations to deal with:
|
||||
|
||||
1. The Thread Local Storage (TLS): when the main thread stops it will call registered
|
||||
callbacks on TLS entries (allocated by `FlsAlloc`). This is done by the OS
|
||||
before any DLL's are unloaded. Unfortunately, the C runtime registers such
|
||||
TLS entries with CRT allocated memory which is freed in the callback.
|
||||
|
||||
2. Inside the CRT:
|
||||
a. Some variables might get initialized by patched allocated
|
||||
blocks but freed during CRT unloading after we unpatched
|
||||
(like temporary file buffers).
|
||||
b. Some blocks are allocated at CRT and freed by the CRT (like the
|
||||
environment storage).
|
||||
c. And some blocks are allocated by the CRT and then reallocated
|
||||
while patched, and finally freed after unpatching! This
|
||||
happens with the `atexit` functions for example to grow the array
|
||||
of registered functions.
|
||||
|
||||
In principle situation 2 is hopeless: since we cannot patch before CRT initialization,
|
||||
we can never be sure how to free or reallocate a pointer during CRT unloading.
|
||||
However, in practice there is a good solution: when terminating, we just patch
|
||||
the reallocation and free routines to no-ops -- we are winding down anyway! This leaves
|
||||
just the reallocation problm of CRT alloc'd memory once we are patched. Here, a study of the
|
||||
CRT reveals that there seem to be just three such situations:
|
||||
|
||||
1. When registering `atexit` routines (to grow the exit function table),
|
||||
2. When calling `_setmaxstdio` (to grow the file handle table),
|
||||
3. and `_popen`/`_wpopen` (to grow handle pairs). These turn out not to be
|
||||
a problem as these are NULL initialized.
|
||||
|
||||
We fix these by providing wrappers:
|
||||
|
||||
1. We first register a _global_ `atexit` routine ourselves (`mi_patches_at_exit`) before patching,
|
||||
and then patch the `_crt_atexit` function to implement our own global exit list (and the
|
||||
same for `_crt_at_quick_exit`). All module local lists are no problem since they are always fully
|
||||
(un)patched from initialization to end. We can register in the global list by dynamically
|
||||
getting the global `_crt_atexit` entry from `ucrtbase.dll`.
|
||||
|
||||
2. The `_setmaxstdio` is _detoured_: we patch it by a stub that unpatches first,
|
||||
calls the original routine and repatches again.
|
||||
|
||||
That leaves us to reliably shutdown and enter "termination mode":
|
||||
|
||||
1. Using our trick to get the global exit list entry point, we register an exit function `mi_patches_atexit`
|
||||
that first executes all our home brew list of exit functions, and then enters a _termination_
|
||||
phase that patches realloc/free variants with no-ops. Patching later again with special no-ops for
|
||||
`free` also improves efficiency during the program run since no flags need to be checked.
|
||||
|
||||
2. That is not quite good enough yet since after executing exit routines after us on the
|
||||
global exit list (registered by the CRT),
|
||||
the OS starts to unwind the TLS callbacks and we would like to run callbacks registered after loading
|
||||
our DLL to be done in patched mode. So, we also allocate a TLS entry when our DLL is loaded and when its
|
||||
callback is called, we re-enable the original patches again. Since TLS is destroyed in FIFO order
|
||||
this runs any callbacks in later DLL's in patched mode.
|
||||
|
||||
3. Finally the DLL's get unloaded by the OS in order (still patched) until our DLL gets unloaded
|
||||
and then we start a termination phase again, and patch realloc/free with no-ops for good this time.
|
||||
|
||||
*/
|
||||
|
||||
static int __cdecl mi_setmaxstdio(int newmax);
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Microsoft allocation extensions
|
||||
// ------------------------------------------------------
|
||||
|
||||
|
||||
typedef size_t mi_nothrow_t;
|
||||
|
||||
static void mi_free_nothrow(void* p, mi_nothrow_t tag) {
|
||||
UNUSED(tag);
|
||||
mi_free(p);
|
||||
}
|
||||
|
||||
// Versions of `free`, `realloc`, `recalloc`, `expand` and `msize`
|
||||
// that are used during termination and are no-ops.
|
||||
static void mi_free_term(void* p) {
|
||||
UNUSED(p);
|
||||
}
|
||||
|
||||
static void mi_free_size_term(void* p, size_t size) {
|
||||
UNUSED(size);
|
||||
UNUSED(p);
|
||||
}
|
||||
|
||||
static void mi_free_nothrow_term(void* p, mi_nothrow_t tag) {
|
||||
UNUSED(tag);
|
||||
UNUSED(p);
|
||||
}
|
||||
|
||||
static void* mi_realloc_term(void* p, size_t newsize) {
|
||||
UNUSED(p); UNUSED(newsize);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void* mi__recalloc_term(void* p, size_t newcount, size_t newsize) {
|
||||
UNUSED(p); UNUSED(newcount); UNUSED(newsize);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void* mi__expand_term(void* p, size_t newsize) {
|
||||
UNUSED(p); UNUSED(newsize);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static size_t mi__msize_term(void* p) {
|
||||
UNUSED(p);
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
static void* mi__malloc_dbg(size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return _malloc_base(size);
|
||||
}
|
||||
|
||||
static void* mi__calloc_dbg(size_t count, size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return _calloc_base(count, size);
|
||||
}
|
||||
|
||||
static void* mi__realloc_dbg(void* p, size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return _realloc_base(p, size);
|
||||
}
|
||||
|
||||
static void mi__free_dbg(void* p, int block_type) {
|
||||
UNUSED(block_type);
|
||||
_free_base(p);
|
||||
}
|
||||
|
||||
|
||||
// the `recalloc`,`expand`, and `msize` don't have base versions and thus need a separate term version
|
||||
|
||||
static void* mi__recalloc_dbg(void* p, size_t count, size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return mi_recalloc(p, count, size);
|
||||
}
|
||||
|
||||
static void* mi__expand_dbg(void* p, size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return mi__expand(p, size);
|
||||
}
|
||||
|
||||
static size_t mi__msize_dbg(void* p, int block_type) {
|
||||
UNUSED(block_type);
|
||||
return mi_usable_size(p);
|
||||
}
|
||||
|
||||
static void* mi__recalloc_dbg_term(void* p, size_t count, size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return mi__recalloc_term(p, count, size);
|
||||
}
|
||||
|
||||
static void* mi__expand_dbg_term(void* p, size_t size, int block_type, const char* fname, int line) {
|
||||
UNUSED(block_type); UNUSED(fname); UNUSED(line);
|
||||
return mi__expand_term(p, size);
|
||||
}
|
||||
|
||||
static size_t mi__msize_dbg_term(void* p, int block_type) {
|
||||
UNUSED(block_type);
|
||||
return mi__msize_term(p);
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// implement our own global atexit handler
|
||||
// ------------------------------------------------------
|
||||
typedef void (cbfun_t)(void);
|
||||
typedef int (atexit_fun_t)(cbfun_t* fn);
|
||||
typedef uintptr_t encoded_t;
|
||||
|
||||
typedef struct exit_list_s {
|
||||
encoded_t functions; // encoded pointer to array of encoded function pointers
|
||||
size_t count;
|
||||
size_t capacity;
|
||||
} exit_list_t;
|
||||
|
||||
#define MI_EXIT_INC (64)
|
||||
|
||||
static exit_list_t atexit_list = { 0, 0, 0 };
|
||||
static exit_list_t at_quick_exit_list = { 0, 0, 0 };
|
||||
static CRITICAL_SECTION atexit_lock;
|
||||
|
||||
// encode/decode function pointers with a random canary for security
|
||||
static encoded_t canary;
|
||||
|
||||
static inline void *decode(encoded_t x) {
|
||||
return (void*)(x^canary);
|
||||
}
|
||||
|
||||
static inline encoded_t encode(void* p) {
|
||||
return ((uintptr_t)p ^ canary);
|
||||
}
|
||||
|
||||
|
||||
static void init_canary()
|
||||
{
|
||||
canary = _mi_random_init(0);
|
||||
atexit_list.functions = at_quick_exit_list.functions = encode(NULL);
|
||||
}
|
||||
|
||||
|
||||
// initialize the list
|
||||
static void mi_initialize_atexit(void) {
|
||||
InitializeCriticalSection(&atexit_lock);
|
||||
init_canary();
|
||||
}
|
||||
|
||||
// register an exit function
|
||||
static int mi_register_atexit(exit_list_t* list, cbfun_t* fn) {
|
||||
if (fn == NULL) return EINVAL;
|
||||
EnterCriticalSection(&atexit_lock);
|
||||
encoded_t* functions = (encoded_t*)decode(list->functions);
|
||||
if (list->count >= list->capacity) { // at first `functions == decode(0) == NULL`
|
||||
encoded_t* newf = (encoded_t*)mi_recalloc(functions, list->capacity + MI_EXIT_INC, sizeof(cbfun_t*));
|
||||
if (newf != NULL) {
|
||||
list->capacity += MI_EXIT_INC;
|
||||
list->functions = encode(newf);
|
||||
functions = newf;
|
||||
}
|
||||
}
|
||||
int result;
|
||||
if (list->count < list->capacity && functions != NULL) {
|
||||
functions[list->count] = encode(fn);
|
||||
list->count++;
|
||||
result = 0; // success
|
||||
}
|
||||
else {
|
||||
result = ENOMEM;
|
||||
}
|
||||
LeaveCriticalSection(&atexit_lock);
|
||||
return result;
|
||||
}
|
||||
|
||||
// Register a global `atexit` function
|
||||
static int mi_atexit(cbfun_t* fn) {
|
||||
return mi_register_atexit(&atexit_list,fn);
|
||||
}
|
||||
|
||||
static int mi_at_quick_exit(cbfun_t* fn) {
|
||||
return mi_register_atexit(&at_quick_exit_list,fn);
|
||||
}
|
||||
|
||||
static int mi_register_onexit(void* table, cbfun_t* fn) {
|
||||
// TODO: how can we distinguish a quick_exit from atexit?
|
||||
return mi_atexit(fn);
|
||||
}
|
||||
|
||||
// Execute exit functions in a list
|
||||
static void mi_execute_exit_list(exit_list_t* list) {
|
||||
// copy and zero the list structure
|
||||
EnterCriticalSection(&atexit_lock);
|
||||
exit_list_t clist = *list;
|
||||
memset(list,0,sizeof(*list));
|
||||
LeaveCriticalSection(&atexit_lock);
|
||||
|
||||
// now execute the functions outside of the lock
|
||||
encoded_t* functions = (encoded_t*)decode(clist.functions);
|
||||
if (functions != NULL) {
|
||||
for (size_t i = clist.count; i > 0; i--) { // careful with unsigned count down..
|
||||
cbfun_t* fn = (cbfun_t*)decode(functions[i-1]);
|
||||
if (fn==NULL) break; // corrupted!
|
||||
fn();
|
||||
}
|
||||
mi_free(functions);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Jump assembly instructions for patches
|
||||
// ------------------------------------------------------
|
||||
|
||||
#if defined(_M_IX86) || defined(_M_X64)
|
||||
|
||||
#define MI_JUMP_SIZE 14 // at most 2+4+8 for a long jump or 1+5 for a short one
|
||||
|
||||
typedef struct mi_jump_s {
|
||||
uint8_t opcodes[MI_JUMP_SIZE];
|
||||
} mi_jump_t;
|
||||
|
||||
void mi_jump_restore(void* current, const mi_jump_t* saved) {
|
||||
memcpy(current, &saved->opcodes, MI_JUMP_SIZE);
|
||||
}
|
||||
|
||||
void mi_jump_write(void* current, void* target, mi_jump_t* save) {
|
||||
if (save != NULL) {
|
||||
memcpy(&save->opcodes, current, MI_JUMP_SIZE);
|
||||
}
|
||||
uint8_t* opcodes = ((mi_jump_t*)current)->opcodes;
|
||||
ptrdiff_t diff = (uint8_t*)target - (uint8_t*)current;
|
||||
uint32_t ofs32 = (uint32_t)diff;
|
||||
#ifdef _M_X64
|
||||
uint64_t ofs64 = (uint64_t)diff;
|
||||
if (ofs64 != (uint64_t)ofs32) {
|
||||
// use long jump
|
||||
opcodes[0] = 0xFF;
|
||||
opcodes[1] = 0x25;
|
||||
*((uint32_t*)&opcodes[2]) = 0;
|
||||
*((uint64_t*)&opcodes[6]) = (uint64_t)target;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
// use short jump
|
||||
opcodes[0] = 0xE9;
|
||||
*((uint32_t*)&opcodes[1]) = ofs32 - 5 /* size of the short jump instruction */;
|
||||
}
|
||||
}
|
||||
|
||||
#elif defined(_M_ARM64)
|
||||
|
||||
#define MI_JUMP_SIZE 16
|
||||
|
||||
typedef struct mi_jump_s {
|
||||
uint8_t opcodes[MI_JUMP_SIZE];
|
||||
} mi_jump_t;
|
||||
|
||||
void mi_jump_restore(void* current, const mi_jump_t* saved) {
|
||||
memcpy(current, &saved->opcodes, MI_JUMP_SIZE);
|
||||
}
|
||||
|
||||
void mi_jump_write(void* current, void* target, mi_jump_t* save) {
|
||||
if (save != NULL) {
|
||||
memcpy(&save->opcodes, current, MI_JUMP_SIZE);
|
||||
}
|
||||
uint8_t* opcodes = ((mi_jump_t*)current)->opcodes;
|
||||
uint64_t diff = (uint8_t*)target - (uint8_t*)current;
|
||||
|
||||
// 0x50 0x00 0x00 0x58 ldr x16, .+8 # load PC relative +8
|
||||
// 0x00 0x02 0x3F 0xD6 blr x16 # and jump
|
||||
// <address>
|
||||
// <address>
|
||||
static const uint8_t jump_opcodes[8] = { 0x50, 0x00, 0x00, 0x58, 0x00, 0x02, 0x3F, 0xD6 };
|
||||
memcpy(&opcodes[0], jump_opcodes, sizeof(jump_opcodes));
|
||||
*((uint64_t*)&opcodes[8]) = diff;
|
||||
}
|
||||
|
||||
#else
|
||||
#error "define jump instructions for this platform"
|
||||
#endif
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Patches
|
||||
// ------------------------------------------------------
|
||||
typedef enum patch_apply_e {
|
||||
PATCH_NONE,
|
||||
PATCH_TARGET,
|
||||
PATCH_TARGET_TERM
|
||||
} patch_apply_t;
|
||||
|
||||
#define MAX_ENTRIES 4 // maximum number of patched entry points (like `malloc` in ucrtbase and msvcrt)
|
||||
|
||||
typedef struct mi_patch_s {
|
||||
const char* name; // name of the function to patch
|
||||
void* target; // the address of the new target (never NULL)
|
||||
void* target_term; // the address of the target during termination (or NULL)
|
||||
patch_apply_t applied; // what target has been applied?
|
||||
void* originals[MAX_ENTRIES]; // the resolved addresses of the function (or NULLs)
|
||||
mi_jump_t saves[MAX_ENTRIES]; // the saved instructions in case it was applied
|
||||
} mi_patch_t;
|
||||
|
||||
#define MI_PATCH_NAME3(name,target,term) { name, &target, &term, PATCH_NONE, {NULL,NULL,NULL,NULL} }
|
||||
#define MI_PATCH_NAME2(name,target) { name, &target, NULL, PATCH_NONE, {NULL,NULL,NULL,NULL} }
|
||||
#define MI_PATCH3(name,target,term) MI_PATCH_NAME3(#name, target, term)
|
||||
#define MI_PATCH2(name,target) MI_PATCH_NAME2(#name, target)
|
||||
#define MI_PATCH1(name) MI_PATCH2(name,mi_##name)
|
||||
|
||||
static mi_patch_t patches[] = {
|
||||
// we implement our own global exit handler (as the CRT versions do a realloc internally)
|
||||
//MI_PATCH2(_crt_atexit, mi_atexit),
|
||||
//MI_PATCH2(_crt_at_quick_exit, mi_at_quick_exit),
|
||||
MI_PATCH2(_setmaxstdio, mi_setmaxstdio),
|
||||
MI_PATCH2(_register_onexit_function, mi_register_onexit),
|
||||
|
||||
// override higher level atexit functions so we can implement at_quick_exit correcty
|
||||
MI_PATCH2(atexit, mi_atexit),
|
||||
MI_PATCH2(at_quick_exit, mi_at_quick_exit),
|
||||
|
||||
// regular entries
|
||||
MI_PATCH2(malloc, mi_malloc),
|
||||
MI_PATCH2(calloc, mi_calloc),
|
||||
MI_PATCH3(realloc, mi_realloc,mi_realloc_term),
|
||||
MI_PATCH3(free, mi_free,mi_free_term),
|
||||
|
||||
// extended api
|
||||
MI_PATCH2(_strdup, mi_strdup),
|
||||
MI_PATCH2(_strndup, mi_strndup),
|
||||
MI_PATCH3(_expand, mi__expand,mi__expand_term),
|
||||
MI_PATCH3(_recalloc, mi_recalloc,mi__recalloc_term),
|
||||
MI_PATCH3(_msize, mi_usable_size,mi__msize_term),
|
||||
|
||||
// base versions
|
||||
MI_PATCH2(_malloc_base, mi_malloc),
|
||||
MI_PATCH2(_calloc_base, mi_calloc),
|
||||
MI_PATCH3(_realloc_base, mi_realloc,mi_realloc_term),
|
||||
MI_PATCH3(_free_base, mi_free,mi_free_term),
|
||||
|
||||
// these base versions are in the crt but without import records
|
||||
MI_PATCH_NAME3("_recalloc_base", mi_recalloc,mi__recalloc_term),
|
||||
MI_PATCH_NAME3("_msize_base", mi_usable_size,mi__msize_term),
|
||||
|
||||
// debug
|
||||
MI_PATCH2(_malloc_dbg, mi__malloc_dbg),
|
||||
MI_PATCH2(_realloc_dbg, mi__realloc_dbg),
|
||||
MI_PATCH2(_calloc_dbg, mi__calloc_dbg),
|
||||
MI_PATCH2(_free_dbg, mi__free_dbg),
|
||||
|
||||
MI_PATCH3(_expand_dbg, mi__expand_dbg, mi__expand_dbg_term),
|
||||
MI_PATCH3(_recalloc_dbg, mi__recalloc_dbg, mi__recalloc_dbg_term),
|
||||
MI_PATCH3(_msize_dbg, mi__msize_dbg, mi__msize_dbg_term),
|
||||
|
||||
#if 0
|
||||
// override new/delete variants for efficiency (?)
|
||||
#ifdef _WIN64
|
||||
// 64 bit new/delete
|
||||
MI_PATCH_NAME2("??2@YAPEAX_K@Z", mi_new),
|
||||
MI_PATCH_NAME2("??_U@YAPEAX_K@Z", mi_new),
|
||||
MI_PATCH_NAME3("??3@YAXPEAX@Z", mi_free, mi_free_term),
|
||||
MI_PATCH_NAME3("??_V@YAXPEAX@Z", mi_free, mi_free_term),
|
||||
MI_PATCH_NAME3("??3@YAXPEAX_K@Z", mi_free_size, mi_free_size_term), // delete sized
|
||||
MI_PATCH_NAME3("??_V@YAXPEAX_K@Z", mi_free_size, mi_free_size_term), // delete sized
|
||||
MI_PATCH_NAME2("??2@YAPEAX_KAEBUnothrow_t@std@@@Z", mi_new),
|
||||
MI_PATCH_NAME2("??_U@YAPEAX_KAEBUnothrow_t@std@@@Z", mi_new),
|
||||
MI_PATCH_NAME3("??3@YAXPEAXAEBUnothrow_t@std@@@Z", mi_free_nothrow, mi_free_nothrow_term),
|
||||
MI_PATCH_NAME3("??_V@YAXPEAXAEBUnothrow_t@std@@@Z", mi_free_nothrow, mi_free_nothrow_term),
|
||||
|
||||
|
||||
#else
|
||||
// 32 bit new/delete
|
||||
MI_PATCH_NAME2("??2@YAPAXI@Z", mi_new),
|
||||
MI_PATCH_NAME2("??_U@YAPAXI@Z", mi_new),
|
||||
MI_PATCH_NAME3("??3@YAXPAX@Z", mi_free, mi_free_term),
|
||||
MI_PATCH_NAME3("??_V@YAXPAX@Z", mi_free, mi_free_term),
|
||||
MI_PATCH_NAME3("??3@YAXPAXI@Z", mi_free_size, mi_free_size_term), // delete sized
|
||||
MI_PATCH_NAME3("??_V@YAXPAXI@Z", mi_free_size, mi_free_size_term), // delete sized
|
||||
|
||||
MI_PATCH_NAME2("??2@YAPAXIABUnothrow_t@std@@@Z", mi_new),
|
||||
MI_PATCH_NAME2("??_U@YAPAXIABUnothrow_t@std@@@Z", mi_new),
|
||||
MI_PATCH_NAME3("??3@YAXPAXABUnothrow_t@std@@@Z", mi_free_nothrow, mi_free_nothrow_term),
|
||||
MI_PATCH_NAME3("??_V@YAXPAXABUnothrow_t@std@@@Z", mi_free_nothrow, mi_free_nothrow_term),
|
||||
|
||||
#endif
|
||||
#endif
|
||||
{ NULL, NULL, NULL, PATCH_NONE, {NULL,NULL,NULL,NULL} }
|
||||
};
|
||||
|
||||
|
||||
// Apply a patch
|
||||
static bool mi_patch_apply(mi_patch_t* patch, patch_apply_t apply)
|
||||
{
|
||||
if (patch->originals[0] == NULL) return true; // unresolved
|
||||
if (apply == PATCH_TARGET_TERM && patch->target_term == NULL) apply = PATCH_TARGET; // avoid re-applying non-term variants
|
||||
if (patch->applied == apply) return false;
|
||||
|
||||
for (int i = 0; i < MAX_ENTRIES; i++) {
|
||||
void* original = patch->originals[i];
|
||||
if (original == NULL) break; // no more
|
||||
|
||||
DWORD protect = PAGE_READWRITE;
|
||||
if (!VirtualProtect(original, MI_JUMP_SIZE, PAGE_EXECUTE_READWRITE, &protect)) return false;
|
||||
if (apply == PATCH_NONE) {
|
||||
mi_jump_restore(original, &patch->saves[i]);
|
||||
}
|
||||
else {
|
||||
void* target = (apply == PATCH_TARGET ? patch->target : patch->target_term);
|
||||
mi_assert_internal(target != NULL);
|
||||
if (target != NULL) mi_jump_write(original, target, &patch->saves[i]);
|
||||
}
|
||||
VirtualProtect(original, MI_JUMP_SIZE, protect, &protect);
|
||||
}
|
||||
patch->applied = apply;
|
||||
return true;
|
||||
}
|
||||
|
||||
// Apply all patches
|
||||
static bool _mi_patches_apply(patch_apply_t apply, patch_apply_t* previous) {
|
||||
static patch_apply_t current = PATCH_NONE;
|
||||
if (previous != NULL) *previous = current;
|
||||
if (current == apply) return true;
|
||||
current = apply;
|
||||
bool ok = true;
|
||||
for (size_t i = 0; patches[i].name != NULL; i++) {
|
||||
if (!mi_patch_apply(&patches[i], apply)) ok = false;
|
||||
}
|
||||
return ok;
|
||||
}
|
||||
|
||||
// Export the following three functions just in case
|
||||
// a user needs that level of control.
|
||||
|
||||
// Disable all patches
|
||||
mi_decl_export void mi_patches_disable(void) {
|
||||
_mi_patches_apply(PATCH_NONE, NULL);
|
||||
}
|
||||
|
||||
// Enable all patches normally
|
||||
mi_decl_export bool mi_patches_enable(void) {
|
||||
return _mi_patches_apply( PATCH_TARGET, NULL );
|
||||
}
|
||||
|
||||
// Enable all patches in termination phase where free is a no-op
|
||||
mi_decl_export bool mi_patches_enable_term(void) {
|
||||
return _mi_patches_apply(PATCH_TARGET_TERM, NULL);
|
||||
}
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Stub for _setmaxstdio
|
||||
// ------------------------------------------------------
|
||||
|
||||
static int __cdecl mi_setmaxstdio(int newmax) {
|
||||
patch_apply_t previous;
|
||||
_mi_patches_apply(PATCH_NONE, &previous); // disable patches
|
||||
int result = _setmaxstdio(newmax); // call original function (that calls original CRT recalloc)
|
||||
_mi_patches_apply(previous,NULL); // and re-enable patches
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Resolve addresses dynamically
|
||||
// ------------------------------------------------------
|
||||
|
||||
// Try to resolve patches for a given module (DLL)
|
||||
static void mi_module_resolve(const char* fname, HMODULE mod, int priority) {
|
||||
// see if any patches apply
|
||||
for (size_t i = 0; patches[i].name != NULL; i++) {
|
||||
mi_patch_t* patch = &patches[i];
|
||||
if (patch->applied == PATCH_NONE) {
|
||||
// find an available entry
|
||||
int i = 0;
|
||||
while (i < MAX_ENTRIES && patch->originals[i] != NULL) i++;
|
||||
if (i < MAX_ENTRIES) {
|
||||
void* addr = GetProcAddress(mod, patch->name);
|
||||
if (addr != NULL) {
|
||||
// found it! set the address
|
||||
patch->originals[i] = addr;
|
||||
_mi_trace_message(" found %s at %s!%p (entry %i)\n", patch->name, fname, addr, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#define MIMALLOC_NAME "mimalloc-override.dll"
|
||||
#define UCRTBASE_NAME "ucrtbase.dll"
|
||||
#define UCRTBASED_NAME "ucrtbased.dll"
|
||||
|
||||
// Resolve addresses of all patches by inspecting the loaded modules
|
||||
static atexit_fun_t* crt_atexit = NULL;
|
||||
static atexit_fun_t* crt_at_quick_exit = NULL;
|
||||
|
||||
|
||||
static bool mi_patches_resolve(void) {
|
||||
// get all loaded modules
|
||||
HANDLE process = GetCurrentProcess(); // always -1, no need to release
|
||||
DWORD needed = 0;
|
||||
HMODULE modules[400]; // try to stay under 4k to not trigger the guard page
|
||||
EnumProcessModules(process, modules, sizeof(modules), &needed);
|
||||
if (needed == 0) return false;
|
||||
int count = needed / sizeof(HMODULE);
|
||||
int ucrtbase_index = 0;
|
||||
int mimalloc_index = 0;
|
||||
// iterate through the loaded modules
|
||||
for (int i = 0; i < count; i++) {
|
||||
HMODULE mod = modules[i];
|
||||
char filename[MAX_PATH] = { 0 };
|
||||
DWORD slen = GetModuleFileName(mod, filename, MAX_PATH);
|
||||
if (slen > 0 && slen < MAX_PATH) {
|
||||
// filter out potential crt modules only
|
||||
filename[slen] = 0;
|
||||
const char* lastsep = strrchr(filename, '\\');
|
||||
const char* basename = (lastsep==NULL ? filename : lastsep+1);
|
||||
_mi_trace_message(" %i: dynamic module %s\n", i, filename);
|
||||
|
||||
// remember indices so we can check load order (in debug mode)
|
||||
if (_stricmp(basename, MIMALLOC_NAME) == 0) mimalloc_index = i;
|
||||
if (_stricmp(basename, UCRTBASE_NAME) == 0) ucrtbase_index = i;
|
||||
if (_stricmp(basename, UCRTBASED_NAME) == 0) ucrtbase_index = i;
|
||||
|
||||
// see if we potentially patch in this module
|
||||
int priority = 0;
|
||||
if (i == 0) priority = 2; // main module to allow static crt linking
|
||||
else if (_strnicmp(basename, "ucrt", 4) == 0) priority = 3; // new ucrtbase.dll in windows 10
|
||||
// NOTE: don't override msvcr -- leads to crashes in setlocale (needs more testing)
|
||||
// else if (_strnicmp(basename, "msvcr", 5) == 0) priority = 1; // older runtimes
|
||||
|
||||
if (priority > 0) {
|
||||
// probably found a crt module, try to patch it
|
||||
mi_module_resolve(basename,mod,priority);
|
||||
|
||||
// try to find the atexit functions for the main process (in `ucrtbase.dll`)
|
||||
if (crt_atexit==NULL) crt_atexit = (atexit_fun_t*)GetProcAddress(mod, "_crt_atexit");
|
||||
if (crt_at_quick_exit == NULL) crt_at_quick_exit = (atexit_fun_t*)GetProcAddress(mod, "_crt_at_quick_exit");
|
||||
}
|
||||
}
|
||||
}
|
||||
int diff = mimalloc_index - ucrtbase_index;
|
||||
if (diff > 1) {
|
||||
_mi_warning_message("warning: the \"mimalloc-override\" DLL seems not to load before or right after the C runtime (\"ucrtbase\").\n"
|
||||
" Try to fix this by changing the linking order.\n");
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Dll Entry
|
||||
// ------------------------------------------------------
|
||||
|
||||
extern BOOL WINAPI _DllMainCRTStartup(HINSTANCE inst, DWORD reason, LPVOID reserved);
|
||||
|
||||
static DWORD mi_fls_unwind_entry;
|
||||
static void NTAPI mi_fls_unwind(PVOID value) {
|
||||
if (value != NULL) mi_patches_enable(); // and re-enable normal patches again for DLL's loaded after us
|
||||
return;
|
||||
}
|
||||
|
||||
static void mi_patches_atexit(void) {
|
||||
mi_execute_exit_list(&atexit_list);
|
||||
mi_patches_enable_term(); // enter termination phase and patch realloc/free with a no-op
|
||||
}
|
||||
|
||||
static void mi_patches_at_quick_exit(void) {
|
||||
mi_execute_exit_list(&at_quick_exit_list);
|
||||
mi_patches_enable_term(); // enter termination phase and patch realloc/free with a no-op
|
||||
}
|
||||
|
||||
BOOL WINAPI DllEntry(HINSTANCE inst, DWORD reason, LPVOID reserved) {
|
||||
if (reason == DLL_PROCESS_ATTACH) {
|
||||
__security_init_cookie();
|
||||
}
|
||||
else if (reason == DLL_PROCESS_DETACH) {
|
||||
// enter termination phase for good now
|
||||
mi_patches_enable_term();
|
||||
}
|
||||
// C runtime main
|
||||
BOOL ok = _DllMainCRTStartup(inst, reason, reserved);
|
||||
if (reason == DLL_PROCESS_ATTACH && ok) {
|
||||
// initialize at exit lists
|
||||
mi_initialize_atexit();
|
||||
|
||||
// Now resolve patches
|
||||
ok = mi_patches_resolve();
|
||||
if (ok) {
|
||||
// check if patching is not disabled
|
||||
#pragma warning(suppress:4996)
|
||||
const char* s = getenv("MIMALLOC_DISABLE_OVERRIDE");
|
||||
bool enabled = (s == NULL || !(strstr("1;TRUE;YES;ON", s) != NULL));
|
||||
if (!enabled) {
|
||||
_mi_verbose_message("override is disabled\n");
|
||||
}
|
||||
else {
|
||||
// and register our unwind entry (this must be after resolving due to possible delayed DLL initialization from GetProcAddress)
|
||||
mi_fls_unwind_entry = FlsAlloc(&mi_fls_unwind);
|
||||
if (mi_fls_unwind_entry != FLS_OUT_OF_INDEXES) {
|
||||
FlsSetValue(mi_fls_unwind_entry, (void*)1);
|
||||
}
|
||||
|
||||
// register our patch disabler in the global exit list
|
||||
if (crt_atexit != NULL) (*crt_atexit)(&mi_patches_atexit);
|
||||
if (crt_at_quick_exit != NULL) (*crt_at_quick_exit)(&mi_patches_at_quick_exit);
|
||||
|
||||
// and patch ! this also redirects the `atexit` handling for the global exit list
|
||||
mi_patches_enable();
|
||||
_mi_verbose_message("override is enabled\n");
|
||||
|
||||
// hide internal allocation
|
||||
mi_stats_reset();
|
||||
}
|
||||
}
|
||||
}
|
||||
return ok;
|
||||
}
|
103
src/alloc.c
103
src/alloc.c
@ -33,7 +33,7 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
|
||||
page->used++;
|
||||
mi_assert_internal(page->free == NULL || _mi_ptr_page(page->free) == page);
|
||||
#if (MI_DEBUG)
|
||||
if (!page->flags.is_zero) { memset(block, MI_DEBUG_UNINIT, size); }
|
||||
if (!page->is_zero) { memset(block, MI_DEBUG_UNINIT, size); }
|
||||
#elif (MI_SECURE)
|
||||
block->next = 0;
|
||||
#endif
|
||||
@ -47,26 +47,26 @@ extern inline void* _mi_page_malloc(mi_heap_t* heap, mi_page_t* page, size_t siz
|
||||
}
|
||||
|
||||
// allocate a small block
|
||||
extern inline void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
|
||||
extern inline mi_decl_allocator void* mi_heap_malloc_small(mi_heap_t* heap, size_t size) mi_attr_noexcept {
|
||||
mi_assert(size <= MI_SMALL_SIZE_MAX);
|
||||
mi_page_t* page = _mi_heap_get_free_small_page(heap,size);
|
||||
return _mi_page_malloc(heap, page, size);
|
||||
}
|
||||
|
||||
extern inline void* mi_malloc_small(size_t size) mi_attr_noexcept {
|
||||
extern inline mi_decl_allocator void* mi_malloc_small(size_t size) mi_attr_noexcept {
|
||||
return mi_heap_malloc_small(mi_get_default_heap(), size);
|
||||
}
|
||||
|
||||
|
||||
// zero initialized small block
|
||||
void* mi_zalloc_small(size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_zalloc_small(size_t size) mi_attr_noexcept {
|
||||
void* p = mi_malloc_small(size);
|
||||
if (p != NULL) { memset(p, 0, size); }
|
||||
return p;
|
||||
}
|
||||
|
||||
// The main allocation function
|
||||
extern inline void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
|
||||
extern inline mi_decl_allocator void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
|
||||
mi_assert(heap!=NULL);
|
||||
mi_assert(heap->thread_id == 0 || heap->thread_id == _mi_thread_id()); // heaps are thread local
|
||||
void* p;
|
||||
@ -85,7 +85,7 @@ extern inline void* mi_heap_malloc(mi_heap_t* heap, size_t size) mi_attr_noexcep
|
||||
return p;
|
||||
}
|
||||
|
||||
extern inline void* mi_malloc(size_t size) mi_attr_noexcept {
|
||||
extern inline mi_decl_allocator void* mi_malloc(size_t size) mi_attr_noexcept {
|
||||
return mi_heap_malloc(mi_get_default_heap(), size);
|
||||
}
|
||||
|
||||
@ -96,7 +96,7 @@ void _mi_block_zero_init(const mi_page_t* page, void* p, size_t size) {
|
||||
mi_assert_internal(p != NULL);
|
||||
mi_assert_internal(size > 0 && page->block_size >= size);
|
||||
mi_assert_internal(_mi_ptr_page(p)==page);
|
||||
if (page->flags.is_zero) {
|
||||
if (page->is_zero) {
|
||||
// already zero initialized memory?
|
||||
((mi_block_t*)p)->next = 0; // clear the free list pointer
|
||||
mi_assert_expensive(mi_mem_is_zero(p,page->block_size));
|
||||
@ -115,19 +115,63 @@ void* _mi_heap_malloc_zero(mi_heap_t* heap, size_t size, bool zero) {
|
||||
return p;
|
||||
}
|
||||
|
||||
extern inline void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
|
||||
extern inline mi_decl_allocator void* mi_heap_zalloc(mi_heap_t* heap, size_t size) mi_attr_noexcept {
|
||||
return _mi_heap_malloc_zero(heap, size, true);
|
||||
}
|
||||
|
||||
void* mi_zalloc(size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_zalloc(size_t size) mi_attr_noexcept {
|
||||
return mi_heap_zalloc(mi_get_default_heap(),size);
|
||||
}
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Check for double free in secure mode
|
||||
// ------------------------------------------------------
|
||||
|
||||
#if MI_SECURE>=4
|
||||
static bool mi_list_contains(const mi_page_t* page, const mi_block_t* list, const mi_block_t* elem) {
|
||||
while (list != NULL) {
|
||||
if (elem==list) return true;
|
||||
list = mi_block_next(page, list);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static mi_decl_noinline bool mi_check_double_freex(const mi_page_t* page, const mi_block_t* block, const mi_block_t* n) {
|
||||
size_t psize;
|
||||
uint8_t* pstart = _mi_page_start(_mi_page_segment(page), page, &psize);
|
||||
if (n == NULL || ((uint8_t*)n >= pstart && (uint8_t*)n < (pstart + psize))) {
|
||||
// Suspicious: the decoded value is in the same page (or NULL).
|
||||
// Walk the free lists to see if it is already freed
|
||||
if (mi_list_contains(page, page->free, block) ||
|
||||
mi_list_contains(page, page->local_free, block) ||
|
||||
mi_list_contains(page, (const mi_block_t*)mi_atomic_read_ptr_relaxed(mi_atomic_cast(void*,&page->thread_free)), block))
|
||||
{
|
||||
_mi_fatal_error("double free detected of block %p with size %zu\n", block, page->block_size);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
static inline bool mi_check_double_free(const mi_page_t* page, const mi_block_t* block) {
|
||||
mi_block_t* n = (mi_block_t*)(block->next ^ page->cookie);
|
||||
if (((uintptr_t)n & (MI_INTPTR_SIZE-1))==0 && // quick check
|
||||
(n==NULL || mi_is_in_same_segment(block, n)))
|
||||
{
|
||||
// Suspicous: decoded value in block is in the same segment (or NULL) -- maybe a double free?
|
||||
return mi_check_double_freex(page, block, n);
|
||||
}
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
// ------------------------------------------------------
|
||||
// Free
|
||||
// ------------------------------------------------------
|
||||
|
||||
|
||||
// multi-threaded free
|
||||
static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* block)
|
||||
{
|
||||
@ -147,7 +191,7 @@ static mi_decl_noinline void _mi_free_block_mt(mi_page_t* page, mi_block_t* bloc
|
||||
mi_block_set_next(page, block, page->free);
|
||||
page->free = block;
|
||||
page->used--;
|
||||
page->flags.is_zero = false;
|
||||
page->is_zero = false;
|
||||
_mi_segment_page_free(page,true,&heap->tld->segments);
|
||||
}
|
||||
return;
|
||||
@ -251,14 +295,16 @@ void mi_free(void* p) mi_attr_noexcept
|
||||
|
||||
#if (MI_DEBUG>0)
|
||||
if (mi_unlikely(!mi_is_in_heap_region(p))) {
|
||||
_mi_warning_message("possibly trying to mi_free a pointer that does not point to a valid heap region: 0x%p\n"
|
||||
_mi_warning_message("possibly trying to free a pointer that does not point to a valid heap region: 0x%p\n"
|
||||
"(this may still be a valid very large allocation (over 64MiB))\n", p);
|
||||
if (mi_likely(_mi_ptr_cookie(segment) == segment->cookie)) {
|
||||
_mi_warning_message("(yes, the previous pointer 0x%p was valid after all)\n", p);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#if (MI_DEBUG>0 || MI_SECURE>=4)
|
||||
if (mi_unlikely(_mi_ptr_cookie(segment) != segment->cookie)) {
|
||||
_mi_error_message("trying to mi_free a pointer that does not point to a valid heap space: %p\n", p);
|
||||
_mi_error_message("trying to free a pointer that does not point to a valid heap space: %p\n", p);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
@ -278,6 +324,9 @@ void mi_free(void* p) mi_attr_noexcept
|
||||
if (mi_likely(tid == segment->thread_id && page->flags.full_aligned == 0)) { // the thread id matches and it is not a full page, nor has aligned blocks
|
||||
// local, and not full or aligned
|
||||
mi_block_t* block = (mi_block_t*)p;
|
||||
#if MI_SECURE>=4
|
||||
if (mi_check_double_free(page,block)) return;
|
||||
#endif
|
||||
mi_block_set_next(page, block, page->local_free);
|
||||
page->local_free = block;
|
||||
page->used--;
|
||||
@ -360,29 +409,29 @@ void mi_free_aligned(void* p, size_t alignment) mi_attr_noexcept {
|
||||
mi_free(p);
|
||||
}
|
||||
|
||||
extern inline void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
|
||||
extern inline mi_decl_allocator void* mi_heap_calloc(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(count,size,&total)) return NULL;
|
||||
return mi_heap_zalloc(heap,total);
|
||||
}
|
||||
|
||||
void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_calloc(size_t count, size_t size) mi_attr_noexcept {
|
||||
return mi_heap_calloc(mi_get_default_heap(),count,size);
|
||||
}
|
||||
|
||||
// Uninitialized `calloc`
|
||||
extern void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
|
||||
extern mi_decl_allocator void* mi_heap_mallocn(mi_heap_t* heap, size_t count, size_t size) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(count,size,&total)) return NULL;
|
||||
return mi_heap_malloc(heap, total);
|
||||
}
|
||||
|
||||
void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_mallocn(size_t count, size_t size) mi_attr_noexcept {
|
||||
return mi_heap_mallocn(mi_get_default_heap(),count,size);
|
||||
}
|
||||
|
||||
// Expand in place or fail
|
||||
void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_expand(void* p, size_t newsize) mi_attr_noexcept {
|
||||
if (p == NULL) return NULL;
|
||||
size_t size = mi_usable_size(p);
|
||||
if (newsize > size) return NULL;
|
||||
@ -408,11 +457,11 @@ void* _mi_heap_realloc_zero(mi_heap_t* heap, void* p, size_t newsize, bool zero)
|
||||
return newp;
|
||||
}
|
||||
|
||||
void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_realloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
|
||||
return _mi_heap_realloc_zero(heap, p, newsize, false);
|
||||
}
|
||||
|
||||
void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(count, size, &total)) return NULL;
|
||||
return mi_heap_realloc(heap, p, total);
|
||||
@ -420,41 +469,41 @@ void* mi_heap_reallocn(mi_heap_t* heap, void* p, size_t count, size_t size) mi_a
|
||||
|
||||
|
||||
// Reallocate but free `p` on errors
|
||||
void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_reallocf(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
|
||||
void* newp = mi_heap_realloc(heap, p, newsize);
|
||||
if (newp==NULL && p!=NULL) mi_free(p);
|
||||
return newp;
|
||||
}
|
||||
|
||||
void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_rezalloc(mi_heap_t* heap, void* p, size_t newsize) mi_attr_noexcept {
|
||||
return _mi_heap_realloc_zero(heap, p, newsize, true);
|
||||
}
|
||||
|
||||
void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_heap_recalloc(mi_heap_t* heap, void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
size_t total;
|
||||
if (mi_mul_overflow(count, size, &total)) return NULL;
|
||||
return mi_heap_rezalloc(heap, p, total);
|
||||
}
|
||||
|
||||
|
||||
void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_realloc(void* p, size_t newsize) mi_attr_noexcept {
|
||||
return mi_heap_realloc(mi_get_default_heap(),p,newsize);
|
||||
}
|
||||
|
||||
void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_reallocn(void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
return mi_heap_reallocn(mi_get_default_heap(),p,count,size);
|
||||
}
|
||||
|
||||
// Reallocate but free `p` on errors
|
||||
void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_reallocf(void* p, size_t newsize) mi_attr_noexcept {
|
||||
return mi_heap_reallocf(mi_get_default_heap(),p,newsize);
|
||||
}
|
||||
|
||||
void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_rezalloc(void* p, size_t newsize) mi_attr_noexcept {
|
||||
return mi_heap_rezalloc(mi_get_default_heap(), p, newsize);
|
||||
}
|
||||
|
||||
void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
mi_decl_allocator void* mi_recalloc(void* p, size_t count, size_t size) mi_attr_noexcept {
|
||||
return mi_heap_recalloc(mi_get_default_heap(), p, count, size);
|
||||
}
|
||||
|
||||
|
@ -13,7 +13,7 @@ terms of the MIT license. A copy of the license can be found in the file
|
||||
// Empty page used to initialize the small free pages array
|
||||
const mi_page_t _mi_page_empty = {
|
||||
0, false, false, false, false, 0, 0,
|
||||
{ 0 },
|
||||
{ 0 }, false,
|
||||
NULL, // free
|
||||
#if MI_SECURE
|
||||
0,
|
||||
@ -184,10 +184,6 @@ uintptr_t _mi_random_init(uintptr_t seed /* can be zero */) {
|
||||
return x;
|
||||
}
|
||||
|
||||
uintptr_t _mi_ptr_cookie(const void* p) {
|
||||
return ((uintptr_t)p ^ _mi_heap_main.cookie);
|
||||
}
|
||||
|
||||
/* -----------------------------------------------------------
|
||||
Initialization and freeing of the thread local heaps
|
||||
----------------------------------------------------------- */
|
||||
|
@ -71,7 +71,7 @@ bool _mi_os_is_huge_reserved(void* p);
|
||||
typedef uintptr_t mi_region_info_t;
|
||||
|
||||
static inline mi_region_info_t mi_region_info_create(void* start, bool is_large, bool is_committed) {
|
||||
return ((uintptr_t)start | ((is_large?1:0) << 1) | (is_committed?1:0));
|
||||
return ((uintptr_t)start | ((uintptr_t)(is_large?1:0) << 1) | (is_committed?1:0));
|
||||
}
|
||||
|
||||
static inline void* mi_region_info_read(mi_region_info_t info, bool* is_large, bool* is_committed) {
|
||||
|
@ -144,21 +144,23 @@ static void mi_out_stderr(const char* msg) {
|
||||
// function we also buffer output that happens earlier. When
|
||||
// an output function is registered it is called immediately with
|
||||
// the output up to that point.
|
||||
#define MAX_OUT_BUF (8*1024)
|
||||
static char out_buf[MAX_OUT_BUF+1];
|
||||
#ifndef MI_MAX_DELAY_OUTPUT
|
||||
#define MI_MAX_DELAY_OUTPUT (32*1024)
|
||||
#endif
|
||||
static char out_buf[MI_MAX_DELAY_OUTPUT+1];
|
||||
static _Atomic(uintptr_t) out_len;
|
||||
|
||||
static void mi_out_buf(const char* msg) {
|
||||
if (msg==NULL) return;
|
||||
if (mi_atomic_read_relaxed(&out_len)>=MAX_OUT_BUF) return;
|
||||
if (mi_atomic_read_relaxed(&out_len)>=MI_MAX_DELAY_OUTPUT) return;
|
||||
size_t n = strlen(msg);
|
||||
if (n==0) return;
|
||||
// claim space
|
||||
uintptr_t start = mi_atomic_addu(&out_len, n);
|
||||
if (start >= MAX_OUT_BUF) return;
|
||||
if (start >= MI_MAX_DELAY_OUTPUT) return;
|
||||
// check bound
|
||||
if (start+n >= MAX_OUT_BUF) {
|
||||
n = MAX_OUT_BUF-start-1;
|
||||
if (start+n >= MI_MAX_DELAY_OUTPUT) {
|
||||
n = MI_MAX_DELAY_OUTPUT-start-1;
|
||||
}
|
||||
memcpy(&out_buf[start], msg, n);
|
||||
}
|
||||
@ -166,9 +168,9 @@ static void mi_out_buf(const char* msg) {
|
||||
static void mi_out_buf_flush(mi_output_fun* out) {
|
||||
if (out==NULL) return;
|
||||
// claim all (no more output will be added after this point)
|
||||
size_t count = mi_atomic_addu(&out_len, MAX_OUT_BUF);
|
||||
size_t count = mi_atomic_addu(&out_len, MI_MAX_DELAY_OUTPUT);
|
||||
// and output the current contents
|
||||
if (count>MAX_OUT_BUF) count = MAX_OUT_BUF;
|
||||
if (count>MI_MAX_DELAY_OUTPUT) count = MI_MAX_DELAY_OUTPUT;
|
||||
out_buf[count] = 0;
|
||||
out(out_buf);
|
||||
}
|
||||
@ -283,6 +285,14 @@ void _mi_assert_fail(const char* assertion, const char* fname, unsigned line, co
|
||||
}
|
||||
#endif
|
||||
|
||||
mi_attr_noreturn void _mi_fatal_error(const char* fmt, ...) {
|
||||
va_list args;
|
||||
va_start(args, fmt);
|
||||
mi_vfprintf(NULL, "mimalloc: fatal: ", fmt, args);
|
||||
va_end(args);
|
||||
exit(99);
|
||||
}
|
||||
|
||||
// --------------------------------------------------------
|
||||
// Initialize options by checking the environment
|
||||
// --------------------------------------------------------
|
||||
@ -344,7 +354,7 @@ static void mi_option_init(mi_option_desc_t* desc) {
|
||||
size_t len = strlen(s);
|
||||
if (len >= sizeof(buf)) len = sizeof(buf) - 1;
|
||||
for (size_t i = 0; i < len; i++) {
|
||||
buf[i] = toupper(s[i]);
|
||||
buf[i] = (char)toupper(s[i]);
|
||||
}
|
||||
buf[len] = 0;
|
||||
if (buf[0]==0 || strstr("1;TRUE;YES;ON", buf) != NULL) {
|
||||
|
16
src/os.c
16
src/os.c
@ -145,13 +145,13 @@ void _mi_os_init(void) {
|
||||
hDll = LoadLibrary(TEXT("kernelbase.dll"));
|
||||
if (hDll != NULL) {
|
||||
// use VirtualAlloc2FromApp if possible as it is available to Windows store apps
|
||||
pVirtualAlloc2 = (PVirtualAlloc2)GetProcAddress(hDll, "VirtualAlloc2FromApp");
|
||||
if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)GetProcAddress(hDll, "VirtualAlloc2");
|
||||
pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2FromApp");
|
||||
if (pVirtualAlloc2==NULL) pVirtualAlloc2 = (PVirtualAlloc2)(void (*)(void))GetProcAddress(hDll, "VirtualAlloc2");
|
||||
FreeLibrary(hDll);
|
||||
}
|
||||
hDll = LoadLibrary(TEXT("ntdll.dll"));
|
||||
if (hDll != NULL) {
|
||||
pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
|
||||
if (hDll != NULL) {
|
||||
pNtAllocateVirtualMemoryEx = (PNtAllocateVirtualMemoryEx)(void (*)(void))GetProcAddress(hDll, "NtAllocateVirtualMemoryEx");
|
||||
FreeLibrary(hDll);
|
||||
}
|
||||
if (mi_option_is_enabled(mi_option_large_os_pages) || mi_option_is_enabled(mi_option_reserve_huge_os_pages)) {
|
||||
@ -283,7 +283,7 @@ static void* mi_win_virtual_alloc(void* addr, size_t size, size_t try_alignment,
|
||||
p = mi_win_virtual_allocx(addr, size, try_alignment, flags);
|
||||
}
|
||||
if (p == NULL) {
|
||||
_mi_warning_message("unable to alloc mem error: err: %i size: 0x%x \n", GetLastError(), size);
|
||||
_mi_warning_message("unable to allocate memory: error code: %i, addr: %p, size: 0x%x, large only: %d, allow_large: %d\n", GetLastError(), addr, size, large_only, allow_large);
|
||||
}
|
||||
return p;
|
||||
}
|
||||
@ -456,6 +456,7 @@ static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, boo
|
||||
if (!commit) allow_large = false;
|
||||
|
||||
void* p = NULL;
|
||||
/*
|
||||
if (commit && allow_large) {
|
||||
p = _mi_os_try_alloc_from_huge_reserved(size, try_alignment);
|
||||
if (p != NULL) {
|
||||
@ -463,6 +464,7 @@ static void* mi_os_mem_alloc(size_t size, size_t try_alignment, bool commit, boo
|
||||
return p;
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
#if defined(_WIN32)
|
||||
int flags = MEM_RESERVE;
|
||||
@ -698,7 +700,7 @@ static bool mi_os_resetx(void* addr, size_t size, bool reset, mi_stats_t* stats)
|
||||
void* p = VirtualAlloc(start, csize, MEM_RESET, PAGE_READWRITE);
|
||||
mi_assert_internal(p == start);
|
||||
#if 1
|
||||
if (p == start) {
|
||||
if (p == start && start != NULL) {
|
||||
VirtualUnlock(start,csize); // VirtualUnlock after MEM_RESET removes the memory from the working set
|
||||
}
|
||||
#endif
|
||||
@ -884,7 +886,7 @@ int mi_reserve_huge_os_pages( size_t pages, double max_secs, size_t* pages_reser
|
||||
uint8_t* start = (uint8_t*)((uintptr_t)32 << 40); // 32TiB virtual start address
|
||||
#if (MI_SECURE>0 || MI_DEBUG==0) // security: randomize start of huge pages unless in debug mode
|
||||
uintptr_t r = _mi_random_init((uintptr_t)&mi_reserve_huge_os_pages);
|
||||
start = start + ((uintptr_t)MI_SEGMENT_SIZE * ((r>>17) & 0xFFFF)); // (randomly 0-64k)*4MiB == 0 to 256GiB
|
||||
start = start + ((uintptr_t)MI_HUGE_OS_PAGE_SIZE * ((r>>17) & 0x3FF)); // (randomly 0-1024)*1GiB == 0 to 1TiB
|
||||
#endif
|
||||
|
||||
// Allocate one page at the time but try to place them contiguously
|
||||
|
@ -57,7 +57,7 @@ static inline uint8_t mi_bsr32(uint32_t x);
|
||||
static inline uint8_t mi_bsr32(uint32_t x) {
|
||||
uint32_t idx;
|
||||
_BitScanReverse((DWORD*)&idx, x);
|
||||
return idx;
|
||||
return (uint8_t)idx;
|
||||
}
|
||||
#elif defined(__GNUC__) || defined(__clang__)
|
||||
static inline uint8_t mi_bsr32(uint32_t x) {
|
||||
|
@ -192,7 +192,7 @@ void _mi_page_free_collect(mi_page_t* page, bool force) {
|
||||
// usual case
|
||||
page->free = page->local_free;
|
||||
page->local_free = NULL;
|
||||
page->flags.is_zero = false;
|
||||
page->is_zero = false;
|
||||
}
|
||||
else if (force) {
|
||||
// append -- only on shutdown (force) as this is a linear operation
|
||||
@ -204,7 +204,7 @@ void _mi_page_free_collect(mi_page_t* page, bool force) {
|
||||
mi_block_set_next(page, tail, page->free);
|
||||
page->free = page->local_free;
|
||||
page->local_free = NULL;
|
||||
page->flags.is_zero = false;
|
||||
page->is_zero = false;
|
||||
}
|
||||
}
|
||||
|
||||
@ -559,7 +559,7 @@ static void mi_page_extend_free(mi_heap_t* heap, mi_page_t* page, mi_stats_t* st
|
||||
|
||||
// extension into zero initialized memory preserves the zero'd free list
|
||||
if (!page->is_zero_init) {
|
||||
page->flags.is_zero = false;
|
||||
page->is_zero = false;
|
||||
}
|
||||
mi_assert_expensive(mi_page_is_valid_init(page));
|
||||
}
|
||||
@ -579,7 +579,7 @@ static void mi_page_init(mi_heap_t* heap, mi_page_t* page, size_t block_size, mi
|
||||
#if MI_SECURE
|
||||
page->cookie = _mi_heap_random(heap) | 1;
|
||||
#endif
|
||||
page->flags.is_zero = page->is_zero_init;
|
||||
page->is_zero = page->is_zero_init;
|
||||
|
||||
mi_assert_internal(page->capacity == 0);
|
||||
mi_assert_internal(page->free == NULL);
|
||||
|
@ -2,12 +2,18 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <mimalloc.h>
|
||||
#include <mimalloc-override.h> // redefines malloc etc.
|
||||
|
||||
static void double_free1();
|
||||
static void double_free2();
|
||||
|
||||
int main() {
|
||||
mi_version();
|
||||
//double_free1();
|
||||
//double_free2();
|
||||
void* p1 = malloc(78);
|
||||
void* p2 = malloc(24);
|
||||
free(p1);
|
||||
@ -29,3 +35,37 @@ int main() {
|
||||
mi_stats_print(NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static void double_free1() {
|
||||
void* p[256];
|
||||
uintptr_t buf[256];
|
||||
|
||||
p[0] = mi_malloc(622616);
|
||||
p[1] = mi_malloc(655362);
|
||||
p[2] = mi_malloc(786432);
|
||||
mi_free(p[2]);
|
||||
// [VULN] Double free
|
||||
mi_free(p[2]);
|
||||
p[3] = mi_malloc(786456);
|
||||
// [BUG] Found overlap
|
||||
// p[3]=0x429b2ea2000 (size=917504), p[1]=0x429b2e42000 (size=786432)
|
||||
fprintf(stderr, "p3: %p-%p, p1: %p-%p, p2: %p\n", p[3], (uint8_t*)(p[3]) + 786456, p[1], (uint8_t*)(p[1]) + 655362, p[2]);
|
||||
}
|
||||
|
||||
static void double_free2() {
|
||||
void* p[256];
|
||||
uintptr_t buf[256];
|
||||
// [INFO] Command buffer: 0x327b2000
|
||||
// [INFO] Input size: 182
|
||||
p[0] = malloc(712352);
|
||||
p[1] = malloc(786432);
|
||||
free(p[0]);
|
||||
// [VULN] Double free
|
||||
free(p[0]);
|
||||
p[2] = malloc(786440);
|
||||
p[3] = malloc(917504);
|
||||
p[4] = malloc(786440);
|
||||
// [BUG] Found overlap
|
||||
// p[4]=0x433f1402000 (size=917504), p[1]=0x433f14c2000 (size=786432)
|
||||
fprintf(stderr, "p1: %p-%p, p2: %p-%p\n", p[4], (uint8_t*)(p[4]) + 917504, p[1], (uint8_t*)(p[1]) + 786432);
|
||||
}
|
||||
|
@ -2,6 +2,7 @@
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stdint.h>
|
||||
|
||||
#include <mimalloc.h>
|
||||
#include <new>
|
||||
@ -41,7 +42,7 @@ int main() {
|
||||
p2 = malloc(16);
|
||||
p1 = realloc(p1, 32);
|
||||
free(p1);
|
||||
mi_free(p2);
|
||||
free(p2);
|
||||
mi_free(s);
|
||||
Test* t = new Test(42);
|
||||
delete t;
|
||||
@ -66,3 +67,5 @@ public:
|
||||
};
|
||||
|
||||
static Static s = Static();
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user