mimalloc/include/mimalloc-atomic.h

295 lines
11 KiB
C
Raw Normal View History

2019-06-20 02:26:12 +03:00
/* ----------------------------------------------------------------------------
Copyright (c) 2018, Microsoft Research, Daan Leijen
This is free software; you can redistribute it and/or modify it under the
terms of the MIT license. A copy of the license can be found in the file
"LICENSE" at the root of this distribution.
2019-06-20 02:26:12 +03:00
-----------------------------------------------------------------------------*/
#pragma once
#ifndef MIMALLOC_ATOMIC_H
#define MIMALLOC_ATOMIC_H
2019-06-20 02:26:12 +03:00
// ------------------------------------------------------
// Atomics
// We need to be portable between C, C++, and MSVC.
2019-06-20 02:26:12 +03:00
// ------------------------------------------------------
#if defined(_MSC_VER)
#define _Atomic(tp) tp
#define ATOMIC_VAR_INIT(x) x
#elif defined(__cplusplus)
#include <atomic>
#define _Atomic(tp) std::atomic<tp>
#else
#include <stdatomic.h>
#endif
2019-06-20 02:26:12 +03:00
// ------------------------------------------------------
// Atomic operations specialized for mimalloc
// ------------------------------------------------------
2019-06-20 02:26:12 +03:00
// Atomically add a value; returns the previous value. Memory ordering is relaxed.
2020-01-23 06:44:54 +03:00
static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add);
2019-06-20 02:26:12 +03:00
// Atomically "and" a value; returns the previous value. Memory ordering is relaxed.
static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x);
// Atomically "or" a value; returns the previous value. Memory ordering is relaxed.
static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x);
// Atomically compare and exchange a value; returns `true` if successful.
// May fail spuriously. Memory ordering as release on success, and relaxed on failure.
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected);
2019-06-20 02:26:12 +03:00
// Atomically compare and exchange a value; returns `true` if successful.
// Memory ordering is acquire-release
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected);
2019-06-20 02:26:12 +03:00
// Atomically exchange a value. Memory ordering is acquire-release.
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange);
2019-06-20 02:26:12 +03:00
// Atomically read a value. Memory ordering is relaxed.
static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p);
2019-06-20 02:26:12 +03:00
// Atomically read a value. Memory ordering is acquire.
static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p);
// Atomically write a value. Memory ordering is release.
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x);
// Yield
static inline void mi_atomic_yield(void);
2020-07-22 23:45:04 +03:00
// Atomically add a 64-bit value; returns the previous value.
// Note: not using _Atomic(int64_t) as it is only used for statistics.
static inline void mi_atomic_addi64(volatile int64_t* p, int64_t add);
// Atomically update `*p` with the maximum of `*p` and `x` as a 64-bit value.
// Returns the previous value. Note: not using _Atomic(int64_t) as it is only used for statistics.
2020-07-22 23:45:04 +03:00
static inline void mi_atomic_maxi64(volatile int64_t* p, int64_t x);
// Atomically read a 64-bit value
// Note: not using _Atomic(int64_t) as it is only used for statistics.
static inline int64_t mi_atomic_readi64(volatile int64_t* p);
// Atomically subtract a value; returns the previous value.
2020-01-23 06:44:54 +03:00
static inline uintptr_t mi_atomic_sub(volatile _Atomic(uintptr_t)* p, uintptr_t sub) {
return mi_atomic_add(p, (uintptr_t)(-((intptr_t)sub)));
}
// Atomically increment a value; returns the incremented result.
static inline uintptr_t mi_atomic_increment(volatile _Atomic(uintptr_t)* p) {
2020-01-23 06:44:54 +03:00
return mi_atomic_add(p, 1);
}
2019-06-20 02:26:12 +03:00
// Atomically decrement a value; returns the decremented result.
static inline uintptr_t mi_atomic_decrement(volatile _Atomic(uintptr_t)* p) {
2020-01-23 06:44:54 +03:00
return mi_atomic_sub(p, 1);
}
2020-01-23 06:44:54 +03:00
// Atomically add a signed value; returns the previous value.
static inline intptr_t mi_atomic_addi(volatile _Atomic(intptr_t)* p, intptr_t add) {
return (intptr_t)mi_atomic_add((volatile _Atomic(uintptr_t)*)p, (uintptr_t)add);
}
2020-01-23 06:44:54 +03:00
// Atomically subtract a signed value; returns the previous value.
static inline intptr_t mi_atomic_subi(volatile _Atomic(intptr_t)* p, intptr_t sub) {
return (intptr_t)mi_atomic_addi(p,-sub);
}
2020-01-23 06:44:54 +03:00
// Atomically read a pointer; Memory order is relaxed (i.e. no fence, only atomic).
#define mi_atomic_read_ptr_relaxed(T,p) \
(T*)(mi_atomic_read_relaxed((const volatile _Atomic(uintptr_t)*)(p)))
// Atomically read a pointer; Memory order is acquire.
#define mi_atomic_read_ptr(T,p) \
(T*)(mi_atomic_read((const volatile _Atomic(uintptr_t)*)(p)))
// Atomically write a pointer; Memory order is acquire.
#define mi_atomic_write_ptr(T,p,x) \
mi_atomic_write((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)x))
// Atomically compare and exchange a pointer; returns `true` if successful. May fail spuriously.
2020-01-23 06:44:54 +03:00
// Memory order is release. (like a write)
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
2020-01-23 06:44:54 +03:00
#define mi_atomic_cas_ptr_weak(T,p,desired,expected) \
mi_atomic_cas_weak((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)(desired)), (uintptr_t)((T*)(expected)))
// Atomically compare and exchange a pointer; returns `true` if successful. Memory order is acquire_release.
// (Note: expected and desired are in opposite order from atomic_compare_exchange)
2020-01-23 06:44:54 +03:00
#define mi_atomic_cas_ptr_strong(T,p,desired,expected) \
mi_atomic_cas_strong((volatile _Atomic(uintptr_t)*)(p),(uintptr_t)((T*)(desired)), (uintptr_t)((T*)(expected)))
2019-06-20 02:26:12 +03:00
// Atomically exchange a pointer value.
2020-01-23 06:44:54 +03:00
#define mi_atomic_exchange_ptr(T,p,exchange) \
(T*)mi_atomic_exchange((volatile _Atomic(uintptr_t)*)(p), (uintptr_t)((T*)exchange))
2019-06-20 02:26:12 +03:00
#ifdef _MSC_VER
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <intrin.h>
#ifdef _WIN64
2019-07-08 07:59:53 +03:00
typedef LONG64 msc_intptr_t;
#define MI_64(f) f##64
2019-06-20 02:26:12 +03:00
#else
2019-07-08 07:59:53 +03:00
typedef LONG msc_intptr_t;
#define MI_64(f) f
2019-06-20 02:26:12 +03:00
#endif
2020-01-23 06:44:54 +03:00
static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
return (uintptr_t)MI_64(_InterlockedExchangeAdd)((volatile msc_intptr_t*)p, (msc_intptr_t)add);
}
static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
return (uintptr_t)MI_64(_InterlockedAnd)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
}
static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
return (uintptr_t)MI_64(_InterlockedOr)((volatile msc_intptr_t*)p, (msc_intptr_t)x);
2019-06-20 02:26:12 +03:00
}
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
return (expected == (uintptr_t)MI_64(_InterlockedCompareExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)desired, (msc_intptr_t)expected));
2019-06-20 02:26:12 +03:00
}
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
return mi_atomic_cas_strong(p,desired,expected);
2019-06-20 02:26:12 +03:00
}
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) {
return (uintptr_t)MI_64(_InterlockedExchange)((volatile msc_intptr_t*)p, (msc_intptr_t)exchange);
2019-06-20 02:26:12 +03:00
}
static inline uintptr_t mi_atomic_read(volatile _Atomic(uintptr_t) const* p) {
return *p;
}
static inline uintptr_t mi_atomic_read_relaxed(volatile _Atomic(uintptr_t) const* p) {
2020-01-23 06:44:54 +03:00
return *p;
}
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
2020-01-23 06:44:54 +03:00
#if defined(_M_IX86) || defined(_M_X64)
*p = x;
#else
mi_atomic_exchange(p,x);
2020-01-23 06:44:54 +03:00
#endif
}
2019-06-25 13:16:36 +03:00
static inline void mi_atomic_yield(void) {
2019-06-20 02:26:12 +03:00
YieldProcessor();
}
2020-01-23 06:44:54 +03:00
static inline void mi_atomic_addi64(volatile _Atomic(int64_t)* p, int64_t add) {
#ifdef _WIN64
2020-01-23 06:44:54 +03:00
mi_atomic_addi(p,add);
2019-06-20 02:26:12 +03:00
#else
int64_t current;
int64_t sum;
do {
current = *p;
sum = current + add;
} while (_InterlockedCompareExchange64(p, sum, current) != current);
#endif
}
2020-07-22 23:45:04 +03:00
static inline void mi_atomic_maxi64(volatile _Atomic(int64_t)*p, int64_t x) {
int64_t current;
do {
current = *p;
} while (current < x && _InterlockedCompareExchange64(p, x, current) != current);
}
static inline int64_t mi_atomic_readi64(volatile _Atomic(int64_t)*p) {
#ifdef _WIN64
return *p;
#else
int64_t current;
do {
current = *p;
} while (_InterlockedCompareExchange64(p, current, current) != current);
return current;
#endif
}
2019-06-20 02:26:12 +03:00
#else
#ifdef __cplusplus
#define MI_USING_STD using namespace std;
#else
#define MI_USING_STD
#endif
2020-01-23 06:44:54 +03:00
static inline uintptr_t mi_atomic_add(volatile _Atomic(uintptr_t)* p, uintptr_t add) {
2019-06-20 02:26:12 +03:00
MI_USING_STD
return atomic_fetch_add_explicit(p, add, memory_order_relaxed);
2019-06-20 02:26:12 +03:00
}
static inline uintptr_t mi_atomic_and(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
MI_USING_STD
return atomic_fetch_and_explicit(p, x, memory_order_acq_rel);
}
static inline uintptr_t mi_atomic_or(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
MI_USING_STD
return atomic_fetch_or_explicit(p, x, memory_order_acq_rel);
}
static inline bool mi_atomic_cas_weak(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
2019-06-20 02:26:12 +03:00
MI_USING_STD
return atomic_compare_exchange_weak_explicit(p, &expected, desired, memory_order_acq_rel, memory_order_acquire);
2019-06-20 02:26:12 +03:00
}
static inline bool mi_atomic_cas_strong(volatile _Atomic(uintptr_t)* p, uintptr_t desired, uintptr_t expected) {
2019-06-20 02:26:12 +03:00
MI_USING_STD
return atomic_compare_exchange_strong_explicit(p, &expected, desired, memory_order_acq_rel, memory_order_acquire);
2019-06-20 02:26:12 +03:00
}
static inline uintptr_t mi_atomic_exchange(volatile _Atomic(uintptr_t)* p, uintptr_t exchange) {
2019-06-20 02:26:12 +03:00
MI_USING_STD
return atomic_exchange_explicit(p, exchange, memory_order_acq_rel);
2019-06-20 02:26:12 +03:00
}
static inline uintptr_t mi_atomic_read_relaxed(const volatile _Atomic(uintptr_t)* p) {
2019-06-20 02:26:12 +03:00
MI_USING_STD
return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_relaxed);
2019-06-20 02:26:12 +03:00
}
static inline uintptr_t mi_atomic_read(const volatile _Atomic(uintptr_t)* p) {
MI_USING_STD
return atomic_load_explicit((volatile _Atomic(uintptr_t)*) p, memory_order_acquire);
}
static inline void mi_atomic_write(volatile _Atomic(uintptr_t)* p, uintptr_t x) {
MI_USING_STD
return atomic_store_explicit(p, x, memory_order_release);
}
static inline void mi_atomic_addi64(volatile int64_t* p, int64_t add) {
MI_USING_STD
atomic_fetch_add_explicit((volatile _Atomic(int64_t)*)p, add, memory_order_relaxed);
}
static inline int64_t mi_atomic_readi64(volatile int64_t* p) {
MI_USING_STD
return atomic_load_explicit((volatile _Atomic(int64_t)*) p, memory_order_relaxed);
}
static inline void mi_atomic_maxi64(volatile int64_t* p, int64_t x) {
MI_USING_STD
int64_t current;
do {
current = mi_atomic_readi64(p);
} while (current < x && !atomic_compare_exchange_weak_explicit((volatile _Atomic(int64_t)*)p, &current, x, memory_order_acq_rel, memory_order_relaxed));
}
2019-06-20 02:26:12 +03:00
#if defined(__cplusplus)
#include <thread>
2019-06-25 13:16:36 +03:00
static inline void mi_atomic_yield(void) {
2019-06-20 02:26:12 +03:00
std::this_thread::yield();
}
#elif (defined(__GNUC__) || defined(__clang__)) && \
(defined(__x86_64__) || defined(__i386__) || defined(__arm__) || defined(__aarch64__))
#if defined(__x86_64__) || defined(__i386__)
2019-06-25 13:16:36 +03:00
static inline void mi_atomic_yield(void) {
2019-06-20 02:26:12 +03:00
asm volatile ("pause" ::: "memory");
}
#elif defined(__arm__) || defined(__aarch64__)
2019-06-25 13:16:36 +03:00
static inline void mi_atomic_yield(void) {
asm volatile("yield");
}
#endif
2019-07-10 21:23:20 +03:00
#elif defined(__wasi__)
#include <sched.h>
static inline void mi_atomic_yield(void) {
2019-07-10 21:23:20 +03:00
sched_yield();
}
2019-06-20 02:26:12 +03:00
#else
#include <unistd.h>
2019-06-25 13:16:36 +03:00
static inline void mi_atomic_yield(void) {
2019-06-20 02:26:12 +03:00
sleep(0);
}
#endif
#endif
#endif // __MIMALLOC_ATOMIC_H